WO2020093241A1 - 一种用于通信的射频天线、应用该天线的微波设备和通信系统 - Google Patents

一种用于通信的射频天线、应用该天线的微波设备和通信系统 Download PDF

Info

Publication number
WO2020093241A1
WO2020093241A1 PCT/CN2018/114164 CN2018114164W WO2020093241A1 WO 2020093241 A1 WO2020093241 A1 WO 2020093241A1 CN 2018114164 W CN2018114164 W CN 2018114164W WO 2020093241 A1 WO2020093241 A1 WO 2020093241A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
filter layer
signal
radome
optical component
Prior art date
Application number
PCT/CN2018/114164
Other languages
English (en)
French (fr)
Inventor
杨宁
蔡梦
李昆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880099205.6A priority Critical patent/CN112997360B/zh
Priority to PCT/CN2018/114164 priority patent/WO2020093241A1/zh
Publication of WO2020093241A1 publication Critical patent/WO2020093241A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Definitions

  • the present application relates to the field of communications, and in particular to an antenna, microwave equipment and communication system using the antenna.
  • Microwave backhaul has the characteristics of rapid deployment and flexible installation, and is one of the solutions for mobile backhaul.
  • co-channel interference generated by different microwave devices operating in the same frequency band will seriously limit the improvement of spectrum efficiency. Therefore, the suppression of co-channel interference signals has become one of the key issues that microwave devices need to solve .
  • the angle between two co-frequency antennas (that is, two antennas with the same operating frequency range) needs to be greater than 90 degrees, that is, the co-frequency deployment of a site
  • the current spectrum resource is very scarce, and the newly added antenna can only work in the same frequency band as the existing antenna. Therefore, it is necessary to use the same-frequency interference suppression technology to make the received interference signal power low enough so that the received target service signal meets
  • the signal-to-noise ratio requirements at different modulation rates are used to reduce the deployment angle of the same-frequency antenna.
  • the sending end suppresses downlink interference by precoding the transmitted signal
  • the receiving end uses a digital baseband interference cancellation algorithm to suppress uplink interference.
  • Both the sending end and the receiving end have an impact on the target service signal.
  • the sending end needs to perform precoding according to the channel information fed back by the receiving end, and devices of different vendors cannot communicate with each other at present, the solution is limited to use between the sending and receiving devices of the same vendor, and the application scenarios are limited.
  • the present application provides a radio frequency (RF) antenna for communication, a microwave device using the antenna, and a communication system, which can solve the problem that the interference suppression process affects the target service signal and the problem of limited scenarios.
  • RF radio frequency
  • the present application provides an RF antenna for communication.
  • the RF antenna includes a radome, an optical component, and a filter layer.
  • the radome has a front end, and the incident surface of the radome receiving RF signals or the exit surface transmitting RF signals is generally called the front end.
  • the radome forms a closed space to protect the internal structure of the antenna (such as optical components) from environmental interference.
  • the optical components are located inside the radome and are used to receive RF signals passing through the front of the radome.
  • the optical component has an optical axis like a general optical system.
  • the filter layer is located between the front end of the radome and the optical component, and is disposed perpendicular to the optical axis of the optical component.
  • the filter layer has a refractive index n less than 1, to form a threshold angle of total reflection incident arcsin (n), so that the RF signal with an angle of incidence on the filter layer that is smaller than the threshold angle is transmitted, and the angle of incidence on the filter layer is greater than Or the RF signal equal to the threshold angle is totally reflected to realize filtering.
  • the RF signal received by the RF antenna may include both the target service signal and the interference signal.
  • the angle of incidence of the interference signal is usually greater than the threshold angle, so the interference signal is filtered by total reflection at the filter layer.
  • the incident angle of the target service signal is usually smaller than the threshold angle, so the target service signal is directly transmitted through the filter layer and is not affected.
  • the RF signal has a certain operating frequency range, for example, the operating frequency range of the RF signal is within the frequency range of the microwave.
  • the interference layer is totally reflected by the filter layer with a refractive index of less than 1, thereby suppressing the influence of the interference signal on the received target service signal.
  • the implementation complexity of the antenna is low, and it has almost no impact on the target service signal, and the application scenario is not limited (for example, the transceiver equipment is not limited by whether it is from the same supplier).
  • the operating frequency range of the RF signal is within the operating frequency range of the filter layer.
  • the filter layer has a certain operating frequency range, the RF signal within the operating frequency range will be totally reflected to achieve filtering.
  • the filter layer may be implemented using metamaterials, including multiple periodically arranged dielectric structures, for example, including multiple periodically arranged dielectric spheres.
  • the refractive index of the metamaterial can be controlled by selecting the material of the dielectric sphere so that the refractive index is less than 1.
  • the filter layer is close to the aperture of the radome.
  • the filter layer can be attached to the inside of the aperture of the radome and protected by the radome to avoid environmental impact.
  • the distance between the filter layer and the radome is L, where L> D / (2 ⁇ tan ⁇ c), D is the aperture size of the radome, and ⁇ c is the threshold angle at which RF signals are totally reflected and incident.
  • the position of the filter layer can be flexibly set and easy to package.
  • the RF antenna further includes a wave absorbing material, the wave absorbing material is located between the optical component and the filter layer, and is disposed on the inner side wall of the radome.
  • the wave absorbing material can absorb the reflected interference signal to avoid interference caused by the reflection of the interference signal.
  • the present application provides a microwave device.
  • the microwave device includes: an RF antenna, an indoor unit, and an outdoor unit.
  • the RF antenna includes a radome, an optical component, and a filter layer.
  • the radome has a front end, and the incident surface of the radome receiving RF signals or the exit surface transmitting RF signals is generally called the front end.
  • the radome forms a closed space to protect the internal structure of the antenna (such as optical components) from environmental interference.
  • the optical components are located inside the radome and are used to receive RF signals passing through the front of the radome.
  • the optical component has an optical axis like a general optical system.
  • the filter layer is located between the front end of the radome and the optical component, and is disposed perpendicular to the optical axis of the optical component.
  • the filter layer has a refractive index n less than 1, to form a threshold angle of total reflection incident arcsin (n), so that the RF signal incident angle on the filter layer is smaller than the threshold angle of transmission, the incident angle on the filter layer is greater than Or the RF signal equal to the threshold angle is totally reflected to realize filtering.
  • the RF signal received by the RF antenna may include both the target service signal and the interference signal.
  • the angle of incidence of the interference signal is usually greater than the threshold angle, so the interference signal is filtered by total reflection at the filter layer.
  • the incident angle of the target service signal is usually smaller than the threshold angle, so the target service signal is directly transmitted through the filter layer and is not affected.
  • the RF signal has a certain operating frequency range, for example, the operating frequency range of the RF signal is within the frequency range of the microwave.
  • the interference layer is totally reflected by the filter layer with a refractive index of less than 1, thereby suppressing the influence of the interference signal on the received target service signal.
  • the implementation complexity of the antenna is low, and it has almost no impact on the target service signal, and the application scenario is not limited (for example, the transceiver device is not limited by whether it is from the same supplier).
  • the operating frequency range of the RF signal is within the operating frequency range of the filter layer.
  • the filter layer has a certain operating frequency range, the RF signal within the operating frequency range will be totally reflected to achieve filtering.
  • the filter layer may be implemented using metamaterials, including multiple periodically arranged dielectric structures, for example, including multiple periodically arranged dielectric spheres.
  • the refractive index of the metamaterial can be controlled by selecting the material of the dielectric sphere so that the refractive index is less than 1.
  • the filter layer is close to the aperture of the radome.
  • the filter layer can be attached to the inside of the aperture of the radome and protected by the radome to avoid environmental impact.
  • the distance between the filter layer and the radome is L, where L> D / (2 ⁇ tan ⁇ c), D is the aperture size of the radome, and ⁇ c is the threshold angle at which RF signals are totally reflected .
  • the position of the filter layer can be flexibly set and easy to package.
  • the RF antenna further includes a wave absorbing material, the wave absorbing material is located between the optical component and the filter layer, and is disposed on the inner side wall of the radome.
  • the absorbing material can absorb the reflected interference signal to avoid interference caused by the reflection of the interference signal.
  • the present application provides a communication system, characterized in that the communication system includes at least two microwave devices in the second aspect or any possible implementation manner of the second aspect.
  • FIG. 1 is a schematic diagram of a microwave network architecture provided by an embodiment of the present invention.
  • FIG. 2A is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 2B is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the total reflection model of a multilayer medium
  • Figure 4 is a schematic diagram of a metamaterial structure
  • Figure 5 is a schematic diagram of another metamaterial structure
  • FIG. 6A is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • 6B is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 7A is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 7B is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 8A is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 8B is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 9A is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 9B is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a microwave device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a microwave network architecture provided by an embodiment of the present invention.
  • the microwave network system 100 may include two or more microwave devices, and a microwave link between any two microwave devices.
  • the microwave devices can transmit and receive signals through antennas.
  • four antennas 101-104 are shown in the figure.
  • the antenna 101 and the antenna 102 may belong to the same microwave device or different microwave devices.
  • the microwave network system 100 can be used for backhaul or fronthaul of wireless signals, and the microwave equipment to which the antenna 101 and the antenna 102 belong can be connected to the base station.
  • the antenna 101 transmits a downlink signal to the antenna 103 through the microwave link 105. If the relative angle ⁇ between the downlink signal direction of the antenna 101 and the antenna 104 is less than 90 degrees, and the antenna 104 and the antenna 101 work in the same frequency band, the downlink signal sent by the antenna 101 to the antenna 103 will generate a downlink interference signal to the antenna 104 .
  • the antenna 103 and the antenna 104 may belong to the same microwave device or different microwave devices.
  • the microwave equipment to which the antenna 103 and the antenna 104 belong may be connected to the base station controller, or to the transmission equipment, such as optical network equipment, Ethernet equipment, and so on.
  • the antenna 102 When the microwave device of the antenna 102 is used as the receiving end, the antenna 102 receives the uplink signal from the antenna 104 through the microwave link 106. If the relative angle ⁇ between the uplink signal direction of the antenna 104 and the antenna 101 is less than 90 degrees, and the antenna 101 and the antenna 104 work in the same frequency band, the uplink signal sent by the antenna 104 to the antenna 102 will generate an uplink interference signal to the antenna 101 .
  • the uplink interference signal and the downlink interference signal are co-channel interference signals.
  • FIG. 2A is a schematic structural diagram of an antenna provided by an embodiment of the present invention.
  • the antenna 200 may include a filter layer 210 and an optical component 220.
  • the antenna 200 can be applied to the receiving end device to perform total reflection on the received interference signal to achieve the purpose of suppressing the interference signal.
  • the antenna 200 can also be applied to the sending-end device.
  • the interference signal generated by the sending-end device is fully transmitted to avoid interference with other devices.
  • 2B is a schematic structural diagram of an antenna according to an embodiment of the present invention. As shown in FIG.
  • the filter layer 210 can be realized by a medium with a refractive index of less than 1 (refractive index of air).
  • the filter layer 210 can be realized by stacking a periodic three-dimensional array composed of dielectric spheres with sub-wavelength dimensions.
  • the filter layer 210 can also be implemented by other dielectric structures, as long as the refractive index is less than 1.
  • the optical component 220 may be an antenna of any structure in the prior art, such as a Cassegrain antenna, a reflective antenna, or a lens antenna, or may be an antenna of any structure that may appear in the future.
  • Fig. 3 is a schematic diagram of a total reflection model of a multilayer medium.
  • the first layer of dielectric 301 has a refractive index of n 1 and the second layer of dielectric 302 has a refractive index of n 2
  • the refractive index of the third layer medium 303 is n 3 .
  • the first layer medium 201 may be air
  • the second layer medium 202 may be a radome, such as polycarbonate (PC), polyethylene (PE)
  • the third layer medium 203 may be a filter layer.
  • the interference signal with an incident angle greater than or equal to ⁇ C is totally reflected, and the incident angle of the target service signal is close to 0 °.
  • the transmission through the three-layer medium is normally received, and the power loss is small.
  • n 3 / n 1 0.5
  • the interference signal with an incident angle greater than or equal to 30 ° is totally reflected, and the target service signal is transmitted through, and the power loss is 0.5 dB.
  • the filtering layer can be implemented by using metamaterials, which are used to reflect the interference signal (for example, total reflection), and directly transmit the target service signal.
  • Metamaterials can be isotropic, and there are multiple ways to achieve structure.
  • Figure 4 is a schematic diagram of a metamaterial structure. As shown in FIG. 4, the metamaterial 400 includes a plurality of dielectric spheres 401 and a fixed base 402. Among them, the plurality of dielectric spheres 401 may have a three-dimensional periodic arrangement structure. The size of the dielectric sphere 401 may be at the sub-wavelength level, and the size of each dielectric sphere may be the same or different.
  • the dielectric sphere 401 can be selected from high dielectric constant materials, such as alumina ceramic balls, zirconia ceramic balls, and strontium titanate (BST) ceramic balls.
  • the fixed substrate 402 may use a low-loss, low-dielectric constant material, such as polytetrafluoroethylene.
  • the metamaterial 500 may include a plurality of dielectric spheres 501, a filler material 502 and a fixed baseline 503.
  • the plurality of dielectric spheres 501 and the plurality of dielectric spheres 401 may have similar arrangement structures, sizes, and materials.
  • the filling material 502 may be similar to the fixing base 402.
  • the fixed base line 503 can be selected from metal materials, such as copper wires.
  • Metamaterials are artificial composite structures or composite materials with extraordinary physical properties that natural materials do not possess.
  • the refractive index of the metamaterial may be less than 1, or even a negative refractive index.
  • Parameters such as the refractive index, operating frequency, and operating bandwidth of the metamaterial can be set by the material or structure of the metamaterial.
  • the refractive index of the metamaterial can be controlled by selecting the material of the dielectric sphere.
  • the working frequency of metamaterials can be controlled by changing the size and spacing of dielectric spheres.
  • the working bandwidth of metamaterials can be improved by increasing the material types of dielectric spheres.
  • other structures may also be used to replace the dielectric sphere in FIG. 4 or FIG. 5, for example, a cylindrical, conical, or square medium.
  • the antenna 600 may be a radio frequency (RF) antenna, which may be used to receive RF signals (such as microwave signals).
  • the antenna 600 includes an antenna cover 610 with a front end 611.
  • the radome 610 may use materials such as polycarbonate (PC) and polyethylene (PE) to protect the internal structure of the antenna from the influence and interference of the space environment, while improving the operational reliability of the antenna.
  • the antenna 600 further includes an optical component 620, located in the radome 610, for receiving RF signals passing through the front end 611 of the radome.
  • the aperture of the radome 610 is slightly larger than the aperture of the optical component 620.
  • the optical component 620 may adopt a Cassegrain antenna structure, and may include a feed 621, a main reflective surface 622, and a secondary reflective surface 623.
  • the main reflection surface 622 and the sub-reflection surface 623 may convert the plane wave into a spherical wave, and the feed 621 receives the converted spherical wave.
  • the optical member 620 forms an optical axis 624 at approximately the center.
  • the optical axis 624 is an imaginary line in the optical system (optical component 620) that defines how the optical system transmits light.
  • the antenna 600 further includes a filter layer 630, which is located between the front end 611 of the radome and the optical component 620, and is disposed perpendicular to the optical axis 624 of the optical component 620.
  • the filter layer 630 has a refractive index n less than 1, to form a threshold angle of total reflection incident arcsin (n), so that the RF signal (for example, the target service signal) whose incidence angle on the filter layer is less than the threshold angle is transmitted.
  • the RF signal for example, the interference signal
  • the RF signal whose incident angle on the filter layer is greater than or equal to the threshold angle is totally reflected to realize filtering.
  • the antenna 600 can be applied to the receiving end device shown in FIG. 1, for example, instead of the antenna 101 in FIG. 1.
  • the antenna 101 receives the uplink signal from the antenna 103 (in the direction opposite to the downlink signal in the figure) from the microwave link 105, it is affected by the uplink interference signal generated when the antenna 104 transmits the uplink signal to the antenna 102.
  • the signal sent from antenna 103 to antenna 101 is a target service signal. If the uplink interference signal generated by antenna 104 to antenna 101 and the target service signal are in the same operating frequency range, the uplink interference signal is a co-frequency interference signal.
  • the uplink interference signal generated by antenna 104 to antenna 101 and the target service signal are in different operating frequency ranges, the uplink interference signal generates a non-co-frequency interference signal.
  • the antenna 600 can perform total reflection filtering on co-frequency interference signals, and can also perform total reflection filtering on non-co-frequency interference signals.
  • Co-channel interference signals and non-co-channel interference signals are collectively called interference signals.
  • the refractive index of the filter layer 630 in the antenna 600 is n, and the refractive index of air is close to 1.
  • the interference signal is totally reflected), and the spatial radiation electromagnetic wave of the target service signal is similar to the plane wave, the incident angle is close to 0 degrees, and can be transmitted through the filter layer 630.
  • the incident angle of the interference signal is determined when the site is deployed. For example, the angle ⁇ of the antenna 104 relative to the antenna 101 may determine the incident angle ⁇ of the interference signal generated by the antenna 104 to the antenna 101.
  • the incident angle of the interference signal is usually much greater than 0 degrees, and the angle of the target service signal is usually around 0 degrees.
  • the incident angle of the target service signal is usually smaller than the incident angle of the interference signal and smaller than the threshold angle at which total reflection incident occurs.
  • the interference signal is totally reflected on the surface of the filter layer 630, and the target service signal is directly transmitted through the filter layer 630, which is hardly affected.
  • the optical component 620 After receiving the target service signal, the optical component 620 sends the target service signal to other processing modules of the microwave device, for example, an outdoor unit (ODU) connected to the optical component 620.
  • ODU outdoor unit
  • FIG. 6B is a schematic structural diagram of an antenna according to an embodiment of the present invention.
  • the antenna 600 may be used to receive radio frequency signals (such as microwave signals).
  • the antenna structure shown in FIG. 6B is exactly the same as FIG. 6A except that the transmission directions of the target service signal and the interference signal are opposite.
  • the feed 621 can generate spherical waves, and the primary reflection surface 622 and the secondary reflection surface 623 can convert the spherical waves generated by the feed 621 into plane waves.
  • the antenna 600 can also be applied to the transmitting end device shown in FIG. 1, for example, instead of the antenna 101 in FIG. 1.
  • the antenna 101 When the antenna 101 sends a downlink signal to the antenna 103 through the microwave link 105, the antenna 101 affects the downlink interference signal generated by the antenna 104.
  • the downlink signal sent by the antenna 101 to the antenna 103 is a target service signal, and the downlink interference signal generated by the antenna 101 to the antenna 104 may be a co-channel interference signal or a non-co-channel interference signal.
  • the antenna 101 is used as a transmitting end to generate and transmit a target service signal. When the target service signal passes through space radiation, some of the target service signal's emission angle will be diffused. Interference from outside equipment.
  • the antenna 101 generates an interference signal to microwave devices other than the antenna 103 (for example, the antenna 104 or the antenna 102, etc.). Similar to FIG.
  • the principle of total reflection is used to make the interference signal totally reflect on the surface of the filter layer, and the spatial radiation electromagnetic wave of the target service signal is similar to the plane wave, the incident angle is close to 0 degrees, and can be transmitted through the filter layer 630 and emitted to the atmosphere In space.
  • the refractive index n of the filter layer 630 may be statically set in advance, or may be dynamically adjusted according to the change of the incident angle of the interference signal.
  • the filter layer 630 may be implemented by using metamaterials.
  • the refractive index of the metamaterial can be set by the structure or material of the metamaterial.
  • the refractive index of the metamaterial can be controlled by selecting the material of the dielectric sphere.
  • the refractive index of the metamaterial can also be adjusted by the voltage or current applied to the metamaterial.
  • the dielectric sphere is a piezoelectric material (piezoelectric ceramic) or liquid crystal. By changing the voltage or current loaded on the dielectric sphere, the dielectric constant of the dielectric sphere is changed, thereby changing the refractive index of the metamaterial.
  • the dielectric constant of the metamaterial can also be set or adjusted so that the interference signal is fully emitted.
  • the working frequency range of the target service signal and the interference signal can both be located in the microwave frequency range.
  • the filtering layer 630 can totally reflect the interference signal whose operating frequency range is within the operating frequency range of the filtering layer 630.
  • the operating frequency range of the filter layer 630 is 14.4 GHz-15.358 GHz
  • the operating frequency range of the interference signal is 14.942 GHz-15.061 GHz.
  • the operating frequency range of the interference signal is within the operating frequency range of the filter layer 630. Therefore, the filter layer 630 can totally reflect the interference signal received by the antenna.
  • the filter layer 630 can also have multiple operating frequency ranges simultaneously.
  • the filter layer 630 can be implemented by using metamaterials. For example, in the embodiment shown in FIG. 4 or FIG.
  • the working frequency of the metamaterials is controlled by changing the size and spacing of the dielectric sphere.
  • the working bandwidth of metamaterials can be improved by increasing the material types of dielectric spheres.
  • the working frequency and working bandwidth of the metamaterial jointly determine the working frequency range of the metamaterial, with the working frequency as the center, and the frequency points within the working bandwidth range constitute the working frequency range.
  • the antenna 600 may further include a wave absorbing material 640.
  • the wave absorbing material 640 may use an elastomer material, a foam material, rubber, polyurethane, epoxy resin, etc., to absorb interference signals and convert the interference signals into heat energy or other forms of energy.
  • the absorbing material 640 is attached to the inner side (or outer side) of the side wall of the radome, between the optical component 620 and the filter layer 630.
  • the absorbing material 640 is located between the optical component 620 and the front end 611 of the radome.
  • the wave absorbing material 640 can absorb the interference signal reflected by the filter layer 630.
  • the filter layer 630 is closely attached to the inside (or outside) of the aperture of the radome 610, and its size is similar to the aperture of the optical component. In another example, the filter layer 630 may also be located at a position between the optical component 620 and the front end 611 of the radome, and separated from the front end 611 of the radome by a certain distance L.
  • FIG. 7A is a schematic diagram of an antenna provided by an embodiment of the present invention. As shown in FIG. 7A, in order to prevent the interference signal from leaking into the space and to ensure that the interference signal is completely absorbed by the absorbing material 640 after being reflected, the distance L of the filter layer 630 relative to the front end 611 of the radome meets
  • D is the aperture size at the front of the radome
  • ⁇ c is the angle of incidence threshold at which the RF signal is totally reflected.
  • FIG. 7B is a schematic diagram of an antenna provided by an embodiment of the present invention. As shown in FIG. 7B, in order to prevent the interference signal from leaking into the space and ensure that the interference signal is absorbed by the wave absorbing material 640 after being reflected, at the transmitting end, the distance L between the optical component 620 and the filter layer 630 satisfies:
  • D is the aperture size of the front end of the radome and ⁇ c is the angle of incidence threshold at which the RF signal is totally reflected.
  • the interference layer is totally reflected by the filter layer with a refractive index of less than 1, thereby suppressing the influence of the interference signal on the received target service signal.
  • the implementation complexity of the antenna is low, and it has almost no impact on the target service signal, and the application scenario is not limited (for example, the transceiver device is not limited by whether it is from the same supplier).
  • the optical component 620 may adopt a reflective antenna (for example, parabolic antenna) structure.
  • the optical component 620 may include a feed 621 and a reflective surface 625.
  • the antenna 800 is used to receive a signal
  • the reflecting surface 625 can convert the plane wave into a spherical wave
  • the feed 621 receives the converted spherical wave.
  • the antenna 800 is used to transmit signals
  • the feed 621 can generate spherical waves
  • the reflective surface 625 can convert the spherical waves generated by the feed 621 into plane waves.
  • the optical component 620 may adopt a lens antenna (eg, dielectric lens antenna, flat lens antenna, metal lens antenna, etc.) structure .
  • the optical component 620 may include a feed 621 and a lens 626.
  • the lens 626 can convert the plane wave into a spherical wave, and the feed 621 receives the converted spherical wave.
  • the antenna 900 is used to transmit signals, the feed 621 can generate spherical waves, and the lens 626 can convert the spherical waves generated by the feed 621 into plane waves.
  • the working principle of FIGS. 8A and 9A is similar to that of FIG. 6A, and the working principle of FIGS. 8B and 9B is similar to that of FIG. 6B, which will not be repeated here.
  • the interference layer is totally reflected by the filter layer with a refractive index of less than 1, thereby suppressing the generation of the interference signal.
  • the implementation complexity of the antenna is low, and it has almost no impact on the target service signal, and the application scenario is not limited (for example, the transceiver device is not limited by whether it is from the same supplier).
  • the microwave device 1000 may include an antenna 1001, an outdoor unit (ODU) 1002, an indoor unit (IDU) 1003, and an intermediate frequency cable 1004.
  • the microwave device 1000 may include one or more antennas 1001.
  • the ODU 1002 and the IDU 1003 can be connected by an intermediate frequency cable 1004, and the ODU 1002 and the antenna 1001 can be connected by a feed waveguide.
  • the antenna 1001 can be implemented by using any one of the antennas in the above embodiments.
  • the antenna 1001 mainly provides the directional transmission and reception function of the radio frequency signal, and realizes the conversion between the radio frequency signal generated or received by the ODU 1002 and the radio frequency signal in the atmospheric space.
  • the antenna 1001 converts the radio frequency signal output by the ODU 1002 into a directional radio frequency signal to radiate into space.
  • the antenna 1001 receives the radio frequency signal in the space, focuses the radio frequency signal, and transmits it to the ODU 1002.
  • the interference suppression method provided by the embodiment of the present invention can be applied to an antenna in the transmission direction or an antenna in the reception direction.
  • the antenna 1001 receives a radio frequency signal radiated from space, and the radio frequency signal includes a target service signal and an interference signal, and the interference signal is totally reflected by the filter layer, where the refractive index n of the filter layer is less than 1, making interference
  • the incident angle of the signal at the filter layer is less than or equal to the incident threshold angle arcsin (n) where total reflection occurs.
  • the antenna 1001 receives the target service signal transmitted through the filter layer, and then sends it to the ODU 1002.
  • the antenna 1001 receives the radio frequency signal from the ODU 1002, generates the target service signal and the interference signal based on the received radio frequency signal, and totally reflects the interference signal through the filter layer, where the refractive index n of the filter layer is less than 1 , So that the incident angle of the interference signal on the filter layer is less than or equal to the incident threshold angle arcsin (n) where total reflection occurs.
  • the antenna 1001 transmits the target service signal transmitted through the filter layer.
  • the ODU 1002 may include an intermediate frequency module, a sending module, a receiving module, a multiplexer, a duplexer, and so on.
  • ODU 1002 mainly provides the conversion function between the intermediate frequency analog signal and the radio frequency signal.
  • ODU 1002 up-converts and amplifies the intermediate frequency analog signal from IDU 1003, converts it into a radio frequency signal of a specific frequency, and sends it to antenna 1001.
  • ODU 1002 down-converts and amplifies the RF signal received from antenna 1001, converts it to an intermediate frequency analog signal, and sends it to IDU 1003.
  • IDU 1003 can include single-board types such as main control switching clock board, intermediate frequency board, and service board. It can provide Gigabit Ethernet (GE) service and synchronous transfer mode-1 (synchronous transfer module-1, STM-1) service. Interface with multiple services such as E1 services.
  • IDU 1003 mainly provides business signal baseband processing, baseband signal and intermediate frequency analog signal conversion function. In the transmission direction, IDU 1003 modulates the baseband digital signal into an intermediate frequency analog signal. In the receiving direction, IDU 1003 demodulates and digitizes the received intermediate frequency analog signal and decomposes it into a baseband digital signal.
  • the microwave device 1000 may be a split type microwave device, that is, the IDU 1003 is placed indoors, the ODU 1002 and the antenna 1001 are assembled together, and placed outdoors.
  • the microwave device 1000 may also be an all-outdoor microwave device, that is, the ODU 1002, IDU 1003, and antenna 1001 are all placed outdoors.
  • the microwave device 1000 may also be an all-indoor microwave device, that is, the ODU 1002 and IDU 1003 are placed indoors, and the antenna 1001 is placed outdoors.
  • ODU 1002 can also be called a radio frequency module
  • IDU 1003 can also be called a baseband.
  • Applying the antenna provided by the implementation of the present invention to a microwave device can improve the anti-interference ability of the device and reduce the complexity of the device under the premise of little impact on the target service signal.

Abstract

本发明实施例提供了一种用于通信的射频RF天线、微波设备和通信系统,其中,该RF天线包括天线罩,所述天线罩具有前端;光学部件,所述光学部件位于所述天线罩内,用于接收经过所述前端的RF信号,所述光学部件具有光轴;以及滤波层,所述滤波层位于所述前端和所述光学部件之间,并且垂直于所述光轴设置;所述滤波层具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角小于所述阈值角度的RF信号发生透射,在滤波层上的入射角度大于或等于所述阈值角度的RF信号发生全反射来实现滤波。本发明实施例提供的RF天线能够解决干扰抑制的过程对目标业务信号造成影响的问题,应用场景不受限制。

Description

一种用于通信的射频天线、应用该天线的微波设备和通信系统 技术领域
本申请涉及通信领域,尤其涉及一种天线、应用天线的微波设备和通信系统。
背景技术
随着通信网络技术的发展,数据流量越来越大,而基站站址的部署成本越来越高,因此,需要充分利用现有站址的频谱效率。微波回传具有快速部署、安装灵活特点,为移动回传的解决方案之一。随着基站密度的不断增加,不同的微波设备工作在相同的频段而产生的同频干扰将会严重限制频谱效率的提升,因此,同频干扰信号的抑制成为微波设备急需解决的关键问题之一。
在实际的微波设备部署场景中,为了降低同频干扰的影响,两个同频天线(即具有相同的工作频率范围的两个天线)的夹角需要大于90度,即一个站点的同频部署方向最多只能有4个。如果要在同频部署的4个方向的基础上增加部署方向,要避免同频干扰,则新增的部署方向上的天线需要工作于不同的频段。而目前的频谱资源非常紧缺,新增的天线只能工作在与现有天线相同的频段,因此需要利用同频干扰抑制技术使得接收到的干扰信号功率足够低,使得接收到的目标业务信号满足不同调制速率下的信噪比要求,以此来减小同频天线部署的夹角。
现有技术中,发送端通过对发射信号进行预编码来抑制下行干扰,以及接收端利用数字基带干扰抵消算法来抑制上行干扰。不管是发送端还是接收端,都对目标业务信号造成影响。另外,由于发送端需要根据接收端的反馈的信道信息进行预编码,而目前不同供应商的设备之间无法互通,所以该方案仅限于同一供应商的收发设备之间使用,应用场景有限。
发明内容
有鉴于此,本申请提供一种用于通信的射频(RF)天线、应用该天线的微波设备和通信系统,可以解决干扰抑制的过程对目标业务信号造成影响的问题以及场景受限的问题。
第一方面,本申请提供一种用于通信的RF天线,该RF天线包括天线罩、光学部件和滤波层。其中,天线罩具有前端,通常把天线罩接收RF信号的入射面或发送RF信号的出射面称为前端。天线罩形成一个封闭的空间,用来保护天线的内部结构(如光学部件)不受环境的干扰。光学部件位于天线罩内,用于接收经过天线罩前端的RF信号。光学部件像一般的光学系统一样具有光轴。滤波层位于天线罩前端和光学部件之间,并且垂直于光学部件的光轴设置。其中,滤波层具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角度小于阈值角度的RF信号发生透射,在滤波层上的入射角度大于或等于阈值角度的RF信号发生全反射来实现滤波。RF天线接收到的RF信号可能同时包括目标业务信号和干扰信号,干扰信号的入射角度通常大于阈值角度,因此干扰信号在滤波层发生全反射被滤除。而目标业务信号的入射角度通常小于阈值角度,因此目标业务信号直接透射通过滤波层,不受影响。RF信号具有一定的工作频率范围,例如,RF信号的工作频率范围位于微波的频率范围内。本发明实施例中,通过折射率小于1的滤波层对干扰信号进行全反射,从而抑制了干扰信号对接收到的目标业务信号的影响。该天线实现复杂度低,对目标业务信号 几乎没有影响,应用场景不受限制(例如,收发设备不受是否来源于同一供应商的限制)。
在一种可能的实现方式中,RF信号的工作频率范围位于滤波层的工作频率范围内。当滤波层具备一定的工作频率范围时,位于该工作频率范围内的RF信号会发生全反射来实现滤波。
在一种可能的实现方式中,滤波层可以采用超材料来实现,包括多个周期性排列的介质结构,例如,包括多个周期性排列的介质球体。超材料的折射率可以通过选择介质球体的材料来控制,使得折射率小于1。
在一种可能的实现方式中,滤波层紧贴在天线罩的孔径处。滤波层可以贴在天线罩的孔径内侧,受天线罩的保护,避免了环境的影响。
在一种可能的实现方式中,滤波层距离天线罩的距离为L,其中,L>D/(2×tanθc),D为天线罩孔径大小,θc为RF信号发生全反射入射的阈值角度。滤波层的位置可以灵活设置,易于封装。
在一种可能的实现方式中,RF天线还包括吸波材料,吸波材料位于述光学部件和滤波层之间,并且设置在天线罩的内侧壁。吸波材料可以将反射后的干扰信号吸收掉,避免了干扰信号反射后造成干扰。
第二方面,本申请提供一种微波设备,该微波设备包括:RF天线、室内单元和室外单元,该RF天线包括天线罩、光学部件和滤波层。其中,天线罩具有前端,通常把天线罩接收RF信号的入射面或发送RF信号的出射面称为前端。天线罩形成一个封闭的空间,用来保护天线的内部结构(如光学部件)不受环境的干扰。光学部件位于天线罩内,用于接收经过天线罩前端的RF信号。光学部件像一般的光学系统一样具有光轴。滤波层位于天线罩前端和光学部件之间,并且垂直于光学部件的光轴设置。其中,滤波层具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角度小于阈值角度的RF信号发生透射,在滤波层上的入射角度大于或等于阈值角度的RF信号发生全反射来实现滤波。RF天线接收到的RF信号可能同时包括目标业务信号和干扰信号,干扰信号的入射角度通常大于阈值角度,因此干扰信号在滤波层发生全反射被滤除。而目标业务信号的入射角度通常小于阈值角度,因此目标业务信号直接透射通过滤波层,不受影响。RF信号具有一定的工作频率范围,例如,RF信号的工作频率范围位于微波的频率范围内。本发明实施例中,通过折射率小于1的滤波层对干扰信号进行全反射,从而抑制了干扰信号对接收到的目标业务信号的影响。该天线实现复杂度低,对目标业务信号几乎没有影响,应用场景不受限制(例如,收发设备不受是否来源于同一供应商的限制)。
在一种可能的实现方式中,RF信号的工作频率范围位于滤波层的工作频率范围内。当滤波层具备一定的工作频率范围时,位于该工作频率范围内的RF信号会发生全反射来实现滤波。
在一种可能的实现方式中,滤波层可以采用超材料来实现,包括多个周期性排列的介质结构,例如,包括多个周期性排列的介质球体。超材料的折射率可以通过选择介质球体的材料来控制,使得折射率小于1。
在一种可能的实现方式中,滤波层紧贴在天线罩的孔径处。滤波层可以贴在天线罩的孔径内侧,受天线罩的保护,避免了环境的影响。
在一种可能的实现方式中,,滤波层距离天线罩的距离为L,其中,L>D/(2×tanθc),D为天线罩孔径大小,θc为RF信号发生全反射入射的阈值角度。滤波层的位置可以灵活设置,易于封装。
在一种可能的实现方式中,RF天线还包括吸波材料,吸波材料位于述光学部件和滤波层之间,并且设置在天线罩的内侧壁。吸波材料可以将反射后的干扰信号吸收掉,避免了干扰 信号反射后造成干扰。
第三方面,本申请提供一种通信系统,其特征在于,该通信系统包括至少两个如第二方面或第二方面任意一种可能的实现方式中的微波设备。
附图说明
为了说明本发明实施例的技术方案,下面将对描述实施例时所使用的附图作简单的介绍。
图1为本发明实施例提供的一种微波网络架构的示意图;
图2A为本发明实施例提供的一种天线的结构示意图;
图2B为为本发明实施例提供的一种天线的结构示意图;
图3为多层介质的全反射模型示意图;
图4为一种超材料的结构示意图;
图5为另一种超材料的结构示意图;
图6A为本发明实施例提供的一种的天线的结构示意图;
图6B为本发明实施例提供的一种天线的结构示意图;
图7A为本发明实施例提供的一种天线的结构示意图
图7B为本发明实施例提供的一种天线的结构示意图;
图8A为本发明实施例提供的一种天线的结构示意图;
图8B为本发明实施例提供的一种天线的结构示意图;
图9A为本发明实施例提供的一种天线的结构示意图;
图9B为本发明实施例提供的一种天线的结构示意图;
图10为本发明实施例提供的一种微波设备的结构示意图。
具体实施方式
以下结合附图及实施例,对本发明进行进一步详细说明。
首先介绍本发明实施例一种可能的应用场景。图1为本发明实施例提供的一种微波网络架构的示意图。如图1所示,微波网络系统100可以包括两个或两个以上的微波设备,以及任意两个微波设备之间的微波链路。微波设备之间可以通过天线进行收发信号,例如图中示出了4个天线101-104。天线101和天线102,可以属于同一个微波设备,也可以属于不同的微波设备。微波网络系统100可以用于无线信号的回传或前传,天线101和天线102所属的微波设备可以与基站相连。天线101的微波设备作为发送端时,天线101通过微波链路105向天线103发送下行信号。如果天线101的下行信号方向和天线104之间的相对角度α小于90度,并且天线104和天线101工作于相同的频段,则天线101向天线103发送的下行信号会对天线104产生下行干扰信号。天线103和天线104可以属于同一个微波设备,也可也属于不同的微波设备。天线103和天线104所属的微波设备可以与基站控制器相连,或者与传送设备相连,例如光网络设备、以太网设备等。天线102的微波设备作为接收端时,天线102通过微波链路106接收来自天线104的上行信号。如果天线104的上行信号方向和天线101之间的相对角度β小于90度,并且天线101和天线104工作于相同的频段,则天线104向天线102发送的上行信号会对天线101产生上行干扰信号。这里的上行干扰信号和下行干扰信号为同频干扰信号。
本发明实施例提供了一种天线,可以应用到微波设备中,提高微波设备的抗干扰能力。图2A为本发明实施例提供的一种天线的结构示意图,如图2A所示,天线200可以包括滤波 层210和光学部件220。天线200可以应用于接收端设备,对接收到的干扰信号进行全反射,以达到干扰信号抑制的目的。天线200也可以应用于发送端设备,如图2B所示,对发送端设备产生的干扰信号进行全发射,避免了对其他设备的干扰。图2B为本发明实施例提供的一种天线的结构示意图。如图2B所示,目标业务信号和干扰信号的传输方向和图2A中的方向相反。其中,滤波层210可以通过折射率小于1(空气折射率)的介质来实现。滤波层210可以通过层叠排列亚波长尺寸的介质球体构成的周期性三维阵列来实现。滤波层210还可以通过其他的介质结构来实现,只要能够满足折射率小于1即可。光学部件220可以是现有技术中的任意一种结构的天线,例如卡塞格伦天线、反射面天线、透镜天线等,也可以是未来可能出现的任意一种结构的天线。
首先介绍全反射的原理。图3为多层介质的全反射模型示意图。如图3所示,多层介质模型中,具有三层介质,该三层介质具有不同的折射率,第一层介质301的折射率为n 1,第二层介质302的折射率为n 2,第三层介质303的折射率为n 3。本发明实施例中,第一层介质201可以为空气,第二层介质202可以为天线罩,如聚碳酸酯(PC)、聚乙烯(PE),第三层介质203可以为滤波层。信号经过该三层介质时,可以部分透射通过该三层介质,部分从第三层介质303的表面反射回第一层介质301中。根据Snell定律,n i×sinθ i=n T×sinθ T,信号的入射角和折射角满足关系:n 1×sinθ 1=n 2×sinθ 2=n 3×sinθ 3,则在第三层介质表面发生全反射(θ 3=90°)的条件为:
n 2>n 1>n 3且入射角大于或等于阈值角度θ C=arcsin(n 3/n 1)
可见,通过设置第三介质层和第一介质层折射率的比值n 3/n 1,使得入射角大于或等于θ C的干扰信号发生全反射,而目标业务信号的入射角接近0°,能够透射通过三层介质被正常接收,且功率损失较小。例如n 3/n 1=0.5时,入射角大于或等于30°的干扰信号发生全反射,而目标业务信号透射通过,功率损失为0.5dB。
滤波层可以采用超材料来实现,用于对干扰信号进行反射(例如,全反射),而对目标业务信号直接透射通过。超材料可以是各向同性的,有多种结构实现方式。图4为一种超材料结构示意图。如图4所示,超材料400包括多个介质球体401和固定基底402。其中,多个介质球体401可以呈三维周期性排列的结构。介质球体401的尺寸可以为亚波长级别,并且各个介质球体的尺寸可以相同或不同。介质球体401可以选用高介电常数材料,例如,氧化铝陶瓷球、氧化锆陶瓷球以及钛酸锶(BST)陶瓷球等。固定基底402可以选用低损耗、低介电常数材料,例如聚四氟乙烯。
图5为本发明实施例提供的另一种超材料的结构示意图。如图5所示,超材料500可以包括多个介质球体501、填充材料502和固定基线503。其中,多个介质球体501和多个介质球体401可以具有类似的排列结构、尺寸和材料。填充材料502可以选用和固定基底402类似的材料。固定基线503可以选用金属材料,例如铜线等。
超材料是具有天然材料所不具备的超常物理性质的人工复合结构或复合材料,例如,超材料的折射率可以小于1,甚至可以为负折射率。超材料的折射率、工作频率和工作带宽等参数可以通过超材料的材料或结构的来设置,例如:可以通过选择介质球体的材料来控制超材料的折射率。可以通过改变介质球体的尺寸和间隔来控制超材料的工作频率。可以通过增加介质球体的材料种类来提升超材料的工作带宽。本发明实施例的超材料中,还可以采用其他的结构替代图4或图5中的介质球体,例如,圆柱形、锥形、或方形的介质。
图6A为本发明实施例提供的一种的天线的结构示意图。如图6A所示,天线600可以为射频(radio frequency,RF)天线,可以用于接收RF信号(如微波信号)。天线600,包括天 线罩610,天线罩具有前端611。天线罩610可以采用聚碳酸酯(PC)、聚乙烯(PE)等材料,用于保护天线的内部结构免受空间环境的影响和干扰,同时提高天线的工作可靠性。
天线600还包括光学部件620,位于天线罩610内,用于接收经过天线罩的前端611的RF信号。天线罩610的孔径略大于光学部件620的孔径。光学部件620可以采用卡塞格伦天线结构,可以包括馈源621、主反射面622、副反射面623。当天线600用于接收信号时,主反射面622和副反射面623可以将平面波转换为球面波,馈源621接收到转换后的球面波。并且光学部件620在大致中心处形成光轴624。光轴624是光学系统(光学部件620)中,一条假想的线,定义光学系统如何传导光线。
天线600还包括滤波层630,位于天线罩的前端611和光学部件620之间,并且垂直于光学部件620的光轴624设置。滤波层630具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角度小于该阈值角度的RF信号(例如,目标业务信号)发生透射,在滤波层上的入射角度大于或等于该阈值角度的RF信号(例如,干扰信号)发生全反射来实现滤波。
天线600可以应用于图1所示的接收端设备,例如,替代图1中的天线101。天线101从微波链路105接收来自天线103的上行信号(与图中下行信号方向相反)时,会受到天线104向天线102发送上行信号时产生的上行干扰信号的影响。天线103发给天线101的信号为目标业务信号。如果天线104对天线101产生的上行干扰信号和目标业务信号处于相同的工作频率范围,则该上行干扰信号为同频干扰信号。如果天线104对天线101产生的上行干扰信号和目标业务信号处于不同的工作频率范围,则该上行干扰信号产生非同频干扰信号。天线101采用天线600实现时,天线600可以对同频干扰信号进行全反射滤波,也可以对非同频干扰信号进行全反射滤波。同频干扰信号和非同频干扰信号统称为干扰信号。天线600中滤波层630的折射率为n,空气折射率接近于1。干扰信号的入射角度大于或等于发生全发射的阈值角度θ=arcsin(n),干扰信号在滤波层的表面发生全反射(n<1,例如n=0.5时,入射角大于或等于30°的干扰信号发生全反射),而目标业务信号的空间辐射电磁波近似于平面波,入射角度接近0度,可以透射通过滤波层630。通常来说,干扰信号的入射角度在站点部署的时候就确定了的,例如,天线104相对于天线101的角度α可以决定天线104对天线101产生的干扰信号的入射角度θ。干扰信号的入射角度通常远大于0度,而目标业务信号的角度通常在0度左右,当天线晃动时,可能会存在一定的角度偏差,例如,在+/-5度的范围内。因此,目标业务信号的入射角度通常是小于干扰信号的入射角度,并且小于发生全反射入射的阈值角度。干扰信号入射到滤波层630的表面发生全反射,而目标业务信号直接透射通过滤波层630,几乎不受影响。光学部件620接收到目标业务信号后,将目标业务信号发送给微波设备的其他处理模块,例如,光学部件620连接的室外单元(outdoor unit,ODU)。
图6B为本发明实施例提供的一种天线的结构示意图。如图6B所示,天线600可以用于接收射频信号(如微波信号)。图6B所示的天线结构和图6A完全相同,只是目标业务信号和干扰信号的传输方向相反。天线600用于发送信号时,馈源621可以产生球面波,主反射面622和副反射面623可以将馈源621产生的球面波转换为平面波。天线600还可以应用于图1所示的发送端设备,例如,替代图1中的天线101。天线101通过微波链路105向天线103发送下行信号时,天线101对天线104产生的下行干扰信号的影响。天线101发给天线103的下行信号为目标业务信号,天线101对天线104产生的下行干扰信号可以为同频干扰信号,也可以为非同频干扰信号。在这个例子中,天线101作为发送端,产生并发送目标业务信号,当目标业务信号经过空间辐射,有部分的目标业务信号的发射角度会扩散,从而对除了接收 该目标业务信号的微波设备之外的设备造成干扰。天线101对除了天线103之外的微波设备(例如,天线104或天线102等)产生干扰信号。和图6A类似,利用全反射的原理使得干扰信号在滤波层的表面发生全反射,而目标业务信号的空间辐射电磁波近似于平面波,入射角度接近0度,可以透射通过滤波层630,发射到大气空间中。在图6A和图6B中,通过设置滤波层630的折射率n小于1,可以使得干扰信号发生全反射,从而被抑制,而目标业务信号几乎不受影响。滤波层630的折射率可以是预先静态设置的,也可以根据干扰信号的入射角的变化进行动态调整。滤波层630可以采用超材料来实现,超材料的结构可以参考图4或图5所示的实施例。一个例子中,超材料的折射率可以通过超材料的结构或材料来设置。超材料的折射率可以通过选择介质球体的材料来控制。另一个例子中,超材料的折射率还可以通过加载在超材料上的电压或电流来调整。例如,介质球体为压电材料(压电陶瓷)或液晶,通过改变介质球体上加载的电压或电流,改变介质球体的介电常数,从而改变超材料的折射率。可选的,由于超材料的折射率和介电常数相关,还可以通过设置或调整超材料的介电常数,使得干扰信号发生全发射。
可选地,目标业务信号和干扰信号的工作频率范围都可以位于微波的频率范围内。滤波层630可以对工作频率范围位于滤波层630的工作频率范围内的干扰信号进行全反射。例如,滤波层630的工作频率范围为14.4GHz-15.358GHz,干扰信号的工作频率范围为14.942GHz-15.061GHz。干扰信号的工作频率范围在滤波层630的工作频率范围内,因此,滤波层630可以对天线接收到的干扰信号进行全反射。当然,滤波层630还可以同时具有多个工作频率范围。滤波层630可以采用超材料来实现,例如,在图4或图5所示的实施例中,通过改变介质球体的尺寸和间隔来控制超材料的工作频率。可以通过增加介质球体的材料种类来提升超材料的工作带宽。超材料的工作频率和工作带宽共同决定了超材料的工作频率范围,以工作频率为中心,在工作带宽范围内的频点构成工作频率范围。
可选的,天线600还可以包括吸波材料640。吸波材料640可以采用弹性体材料、发泡材料、橡胶、聚氨酯和环氧树脂等,用于吸收干扰信号,将干扰信号转化为热能或者其他形式能量。吸波材料640贴附于天线罩侧壁的内侧(或外侧),位于光学部件620和滤波层630之间。或者,吸波材料640位于光学部件620和天线罩的前端611之间。吸波材料640可以吸收经过滤波层630反射的干扰信号。
一个例子中,滤波层630紧贴于天线罩610孔径内侧(或外侧),其尺寸近似于光学部件孔径。另一个例子中,滤波层630还可以位于光学部件620和天线罩的前端611之间的某一位置,并与天线罩的前端611相隔一定的距离L。
图7A为本发明实施例提供的一种天线示意图。如图7A所示,为了避免干扰信号泄露到空间中,保证干扰信号经过反射后被吸波材料640完全吸收,在接收端,滤波层630相对于天线罩前端611的距离L满足:
L>D/(2×tanθc)
其中,D为天线罩前端的孔径大小,θc为RF信号发生全反射的入射阈值角度。
图7B为本发明实施例提供的一种天线示意图。如图7B所示,为了避免干扰信号泄露到空间中,保证干扰信号经过反射后被吸波材料640吸收,在发送端,光学部件620到滤波层630之间的距离L满足:
L>D/(2×tanθc)
其中,D为天线罩前端孔径大小,θc为RF信号发生全反射的入射阈值角度。
本发明实施例中,通过折射率小于1的滤波层对干扰信号进行全反射,从而抑制了干扰 信号对接收到的目标业务信号的影响。该天线实现复杂度低,对目标业务信号几乎没有影响,应用场景不受限制(例如,收发设备不受是否来源于同一供应商的限制)。
图8A、8B为本发明实施例提供的一种天线的结构示意图,如图8A、8B所示,光学部件620可以采用反射面天线(例如,抛物面天线)结构。光学部件620可以包括馈源621和反射面625。当天线800用于接收信号时,反射面625可以将平面波转换为球面波,馈源621接收到转换后的球面波。当天线800用于发送信号时,馈源621可以产生球面波,反射面625可以将馈源621产生的球面波转换为平面波。图9A、9B为本发明实施例提供的一种天线的结构示意图,如图9A、9B所示,光学部件620可以采用透镜天线(例如,介质透镜天线、平板透镜天线、金属透镜天线等)结构。光学部件620可以包括馈源621和透镜626。当天线900用于接收信号时,透镜626可以将平面波转换为球面波,馈源621接收到转换后的球面波。当天线900用于发送信号时,馈源621可以产生球面波,透镜626可以将馈源621产生的球面波转换为平面波。图8A、9A的工作原理和图6A类似,图8B、9B的工作原理和图6B类似,此处不再赘述。
本发明实施例中,通过折射率小于1的滤波层对干扰信号进行全反射,从而抑制了干扰信号的产生。该天线实现复杂度低,对目标业务信号几乎没有影响,应用场景不受限制(例如,收发设备不受是否来源于同一供应商的限制)。
图10为本发明实施例提供的一种微波设备结构示意图。如图10所示,微波设备1000可以包括天线1001、室外单元(outdoor unit,ODU)1002、室内单元(indoor unit,IDU)1003、和中频电缆1004。微波设备1000可以包括一个或多个天线1001。微波设备1000包括多个天线时,如果两个天线之间的夹角小于90度,且具有相同的工作频率范围时,会产生同频干扰。ODU 1002和IDU 1003之间可以通过中频电缆1004相连,ODU 1002和天线1001之间可以通过馈电波导相连。
天线1001可以采用上述实施例中的任意一种天线来实现。天线1001主要提供射频信号的定向收发功能,实现ODU 1002产生或接收的射频信号与大气空间的射频信号之间的转换。发送方向上,天线1001将ODU 1002输出的射频信号转换为具有方向性的射频信号,向空间辐射。接收方向上,天线1001接收空间的射频信号,将射频信号进行聚焦,传送给ODU 1002。本发明实施例提供的干扰抑制的方法,可以应用于发送方向上的天线,也可以应用于接收方向上的天线。
例如,接收方向上,天线1001接收空间辐射的射频信号,该射频信号包括目标业务信号和干扰信号,通过滤波层对干扰信号进行全反射,其中,该滤波层的折射率n小于1,使得干扰信号在滤波层的入射角度小于或等于发生全反射的入射阈值角度arcsin(n)。天线1001接收经过滤波层透射的目标业务信号,然后发送给ODU 1002。
发送方向上,天线1001从ODU 1002接收到射频信号,基于接收到的射频信号产生目标业务信号和干扰信号,并通过滤波层对干扰信号进行全反射,其中,该滤波层的折射率n小于1,使得干扰信号在滤波层的入射角度小于或等于发生全反射的入射阈值角度arcsin(n)。天线1001将经过滤波层透射的目标业务信号发送出去。
ODU 1002可以包括中频模块、发送模块、接收模块、复用器、双工器等。ODU 1002主要提供中频模拟信号和射频信号的相互转换功能。在发送方向,ODU 1002将来自IDU 1003的中频模拟信号经过上变频和放大,转换成特定频率的射频信号,并向天线1001发送。在接收方向,ODU 1002将从天线1001接收的射频信号经过下变频和放大,转换成中频模拟信号,并向IDU 1003发送。
IDU 1003可以包括主控交换时钟板、中频板、业务板等单板类型,可以提供吉比特以太(Gigabit Ethernet,GE)业务、同步传输模式-1(synchronous transfer module-1,STM-1)业务和E1业务等多种业务接口。IDU 1003主要提供业务信号基带处理、基带信号和中频模拟信号的相互转换功能。在发送方向,IDU 1003把基带数字信号调制成中频模拟信号。在接收方向,IDU 1003将接收到的中频模拟信号进行解调和数字化处理,分解成基带数字信号。
微波设备1000可以为分体式微波设备,即IDU 1003放置于室内,ODU 1002和天线1001装配在一起,并放置于室外。微波设备1000也可以为全室外微波设备,即ODU 1002、IDU 1003和天线1001都放置于室外。微波设备1000也可以为全室内微波设备,即ODU 1002和IDU 1003放置于室内,天线1001放置于室外。ODU 1002也可以称为射频模块,IDU 1003也可以称为基带。
将本发明实施提供的天线应用于微波设备中,可以在对目标业务信号几乎没有影响的前提下提高设备抗干扰的能力,降低设备的复杂度。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种用于通信的射频RF天线,其特征在于,所述RF天线包括:
    天线罩,所述天线罩具有前端;
    光学部件,所述光学部件位于所述天线罩内,用于接收经过所述前端的RF信号,且所述光学部件具有光轴;以及
    滤波层,所述滤波层位于所述前端和所述光学部件之间,并且垂直于所述光轴设置;所述滤波层具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角度小于所述阈值角度的RF信号发生透射,在滤波层上的入射角度大于或等于所述阈值角度的RF信号发生全反射来实现滤波,所述RF信号具有预设的工作频率范围。
  2. 如权利要求1所述的RF天线,所述预设的工作频率范围位于微波的频率范围内。
  3. 如权利要求1或2所述的RF天线,其特征在于,所述滤波层包括多个周期性排列的介质结构。
  4. 如权利要求3所述的RF天线,其特征在于,所述介质结构为介质球体。
  5. 如权利要求1-4任一所述的RF天线,其特征在于,所述滤波层紧贴在所述天线罩的孔径处。
  6. 如权利要求1-4任一所述的RF天线,其特征在于,所述滤波层距离所述天线罩的距离为L,其中,L>D/(2×tanθc),D为天线罩孔径大小,θc为所述阈值角度。
  7. 如权利要求1-6任一所述的RF天线,其特征在于,所述RF天线还包括吸波材料,所述吸波材料位于所述光学部件和所述滤波层之间,并且设置在所述天线罩的内侧壁。
  8. 一种微波设备,其特征在于,所述微波设备包括:射频RF天线、室内单元和室外单元,所述RF天线包括:
    天线罩,所述天线罩具有前端;
    光学部件,所述光学部件位于所述天线罩内,用于接收经过所述前端的RF信号,且所述光学部件具有光轴;以及
    滤波层,所述滤波层位于所述前端和所述光学部件之间,并且垂直于所述光轴设置;所述滤波层具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角度小于所述阈值角度的RF信号发生透射,在滤波层上的入射角度大于或等于所述阈值角度的RF信号发生全反射来实现滤波,所述RF信号具有预设的工作频率范围。
  9. 如权利要求8所述的微波设备,其特征在于,所述预设的工作频率范围位于微波的频率范围内。
  10. 如权利要求8或9所述的微波设备,其特征在于,所述滤波层包括多个周期性排列的介质结构。
  11. 如权利要求9所述的微波设备,其特征在于,所述介质结构为介质球体。
  12. 如权利要求8-11任一所述的微波设备,其特征在于,所述滤波层紧贴在所述天线罩的孔径处。
  13. 如权利要求8-11任一所述的微波设备,其特征在于,所述滤波层距离所述天线罩的距离为L,其中,L>D/(2×tanθc),D为天线罩孔径大小,θc为所述阈值角度。
  14. 如权利要求8-13任一所述的微波设备,其特征在于,所述RF天线还包括吸波材料,所述吸波材料位于所述光学部件和所述滤波层之间,并且设置在所述天线罩的内侧壁。
  15. 一种通信系统,其特征在于,所述通信系统包括至少两个如权利要求8-14任一所述的微波设备。
PCT/CN2018/114164 2018-11-06 2018-11-06 一种用于通信的射频天线、应用该天线的微波设备和通信系统 WO2020093241A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880099205.6A CN112997360B (zh) 2018-11-06 2018-11-06 一种用于通信的射频天线、应用该天线的微波设备和通信系统
PCT/CN2018/114164 WO2020093241A1 (zh) 2018-11-06 2018-11-06 一种用于通信的射频天线、应用该天线的微波设备和通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114164 WO2020093241A1 (zh) 2018-11-06 2018-11-06 一种用于通信的射频天线、应用该天线的微波设备和通信系统

Publications (1)

Publication Number Publication Date
WO2020093241A1 true WO2020093241A1 (zh) 2020-05-14

Family

ID=70611581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114164 WO2020093241A1 (zh) 2018-11-06 2018-11-06 一种用于通信的射频天线、应用该天线的微波设备和通信系统

Country Status (2)

Country Link
CN (1) CN112997360B (zh)
WO (1) WO2020093241A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436288A (zh) * 2020-11-02 2021-03-02 中国舰船研究设计中心 基于相位相消和阻抗吸波的超宽带rcs缩减方法及结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202042599U (zh) * 2011-02-21 2011-11-16 华为技术有限公司 双反射面天线
CN102800992A (zh) * 2011-06-03 2012-11-28 深圳光启高等理工研究院 一种卡塞格伦超材料天线
US20130229299A1 (en) * 2010-07-30 2013-09-05 Toyota Jidosha Kabushiki Kaisha Antenna cover
CN103392263A (zh) * 2012-12-26 2013-11-13 华为技术有限公司 一种天线系统
CN108390159A (zh) * 2017-02-02 2018-08-10 波音公司 通过减小球面像差所实现的球面电介质透镜旁波瓣抑制

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2899015B1 (en) * 2002-08-29 2019-04-10 The Regents of The University of California Indefinite materials
US8681064B2 (en) * 2010-12-14 2014-03-25 Raytheon Company Resistive frequency selective surface circuit for reducing coupling and electromagnetic interference in radar antenna arrays
CN103296419A (zh) * 2012-03-02 2013-09-11 深圳光启创新技术有限公司 宽频带超材料天线罩及天线系统
CN105474461A (zh) * 2013-03-15 2016-04-06 伟创力有限责任公司 用于创建完全微波吸收表皮的方法和装置
CN104347952B (zh) * 2013-07-31 2018-12-21 深圳光启创新技术有限公司 超材料及天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130229299A1 (en) * 2010-07-30 2013-09-05 Toyota Jidosha Kabushiki Kaisha Antenna cover
CN202042599U (zh) * 2011-02-21 2011-11-16 华为技术有限公司 双反射面天线
CN102800992A (zh) * 2011-06-03 2012-11-28 深圳光启高等理工研究院 一种卡塞格伦超材料天线
CN103392263A (zh) * 2012-12-26 2013-11-13 华为技术有限公司 一种天线系统
CN108390159A (zh) * 2017-02-02 2018-08-10 波音公司 通过减小球面像差所实现的球面电介质透镜旁波瓣抑制

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436288A (zh) * 2020-11-02 2021-03-02 中国舰船研究设计中心 基于相位相消和阻抗吸波的超宽带rcs缩减方法及结构
CN112436288B (zh) * 2020-11-02 2022-07-01 中国舰船研究设计中心 基于相位相消和阻抗吸波的超宽带rcs缩减方法及结构

Also Published As

Publication number Publication date
CN112997360A (zh) 2021-06-18
CN112997360B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
US6370398B1 (en) Transreflector antenna for wireless communication system
Kiani et al. A novel absorb/transmit FSS for secure indoor wireless networks with reduced multipath fading
CN110739527B (zh) 一种波束重构方法、天线、微波设备和网络系统
CN108376828A (zh) 天线系统及移动终端
US10326210B2 (en) Enhanced directivity feed and feed array
WO2013086835A1 (zh) 一种天线装置、设备及信号发射装置
US11329391B2 (en) Enhanced directivity feed and feed array
Suyama et al. A study on extreme wideband 6G radio access technologies for achieving 100Gbps data rate in higher frequency bands
WO2020093241A1 (zh) 一种用于通信的射频天线、应用该天线的微波设备和通信系统
CN109037968B (zh) 一种宽窄波束结合的低轨卫星接入天线系统
JP2009535975A (ja) 無線中継器アセンブリ
Hasabelnaby et al. C-RAN availability improvement using parallel hybrid FSO/MMW 5G Fronthaul network
CN112909540B (zh) 一种天线装置以及设备
EP3883059B1 (en) Antenna, microwave device and communication system
CN106471674B (zh) 同频全双工天线结构和无线通信的电子设备
Masaoka et al. Construction and Demonstration of Access Link for Millimeter Wave UAV Base Station Network
US20210151870A1 (en) Shell and wireless device using the same
WO2020124490A1 (zh) 多入多出天线、基站及通信系统
US20230344115A1 (en) Antenna module and base station system
Altheeb et al. Geometry-Based Millimeter Wave Channel Modeling for UAV-Assisted 5G System
WO2024061009A1 (zh) 天线装置及通信设备
WO2023097472A1 (zh) 一种天线及天线系统
WO2023124839A1 (zh) 天线阵列、通信方法以及通信装置
JP4271650B2 (ja) 微弱無線通信システム
KR20230069799A (ko) 지상 모바일폰과 통신 가능한 통신위성시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939570

Country of ref document: EP

Kind code of ref document: A1