CN112997360B - 一种用于通信的射频天线、应用该天线的微波设备和通信系统 - Google Patents
一种用于通信的射频天线、应用该天线的微波设备和通信系统 Download PDFInfo
- Publication number
- CN112997360B CN112997360B CN201880099205.6A CN201880099205A CN112997360B CN 112997360 B CN112997360 B CN 112997360B CN 201880099205 A CN201880099205 A CN 201880099205A CN 112997360 B CN112997360 B CN 112997360B
- Authority
- CN
- China
- Prior art keywords
- antenna
- filter layer
- signal
- radome
- optical component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
Landscapes
- Aerials With Secondary Devices (AREA)
- Details Of Aerials (AREA)
Abstract
本发明实施例提供了一种用于通信的射频RF天线、微波设备和通信系统,其中,该RF天线包括天线罩,所述天线罩具有前端;光学部件,所述光学部件位于所述天线罩内,用于接收经过所述前端的RF信号,所述光学部件具有光轴;以及滤波层,所述滤波层位于所述前端和所述光学部件之间,并且垂直于所述光轴设置;所述滤波层具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角小于所述阈值角度的RF信号发生透射,在滤波层上的入射角度大于或等于所述阈值角度的RF信号发生全反射来实现滤波。本发明实施例提供的RF天线能够解决干扰抑制的过程对目标业务信号造成影响的问题,应用场景不受限制。
Description
技术领域
本申请涉及通信领域,尤其涉及一种天线、应用天线的微波设备和通信系统。
背景技术
随着通信网络技术的发展,数据流量越来越大,而基站站址的部署成本越来越高,因此,需要充分利用现有站址的频谱效率。微波回传具有快速部署、安装灵活特点,为移动回传的解决方案之一。随着基站密度的不断增加,不同的微波设备工作在相同的频段而产生的同频干扰将会严重限制频谱效率的提升,因此,同频干扰信号的抑制成为微波设备急需解决的关键问题之一。
在实际的微波设备部署场景中,为了降低同频干扰的影响,两个同频天线(即具有相同的工作频率范围的两个天线)的夹角需要大于90度,即一个站点的同频部署方向最多只能有4个。如果要在同频部署的4个方向的基础上增加部署方向,要避免同频干扰,则新增的部署方向上的天线需要工作于不同的频段。而目前的频谱资源非常紧缺,新增的天线只能工作在与现有天线相同的频段,因此需要利用同频干扰抑制技术使得接收到的干扰信号功率足够低,使得接收到的目标业务信号满足不同调制速率下的信噪比要求,以此来减小同频天线部署的夹角。
现有技术中,发送端通过对发射信号进行预编码来抑制下行干扰,以及接收端利用数字基带干扰抵消算法来抑制上行干扰。不管是发送端还是接收端,都对目标业务信号造成影响。另外,由于发送端需要根据接收端的反馈的信道信息进行预编码,而目前不同供应商的设备之间无法互通,所以该方案仅限于同一供应商的收发设备之间使用,应用场景有限。
发明内容
有鉴于此,本申请提供一种用于通信的射频(RF)天线、应用该天线的微波设备和通信系统,可以解决干扰抑制的过程对目标业务信号造成影响的问题以及场景受限的问题。
第一方面,本申请提供一种用于通信的RF天线,该RF天线包括天线罩、光学部件和滤波层。其中,天线罩具有前端,通常把天线罩接收RF信号的入射面或发送RF信号的出射面称为前端。天线罩形成一个封闭的空间,用来保护天线的内部结构(如光学部件)不受环境的干扰。光学部件位于天线罩内,用于接收经过天线罩前端的RF信号。光学部件像一般的光学系统一样具有光轴。滤波层位于天线罩前端和光学部件之间,并且垂直于光学部件的光轴设置。其中,滤波层具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角度小于阈值角度的RF信号发生透射,在滤波层上的入射角度大于或等于阈值角度的RF信号发生全反射来实现滤波。RF天线接收到的RF信号可能同时包括目标业务信号和干扰信号,干扰信号的入射角度通常大于阈值角度,因此干扰信号在滤波层发生全反射被滤除。而目标业务信号的入射角度通常小于阈值角度,因此目标业务信号直接透射通过滤波层,不受影响。RF信号具有一定的工作频率范围,例如,RF信号的工作频率范围位于微波的频率范围内。本发明实施例中,通过折射率小于1的滤波层对干扰信号进行全反射,从而抑制了干扰信号对接收到的目标业务信号的影响。该天线实现复杂度低,对目标业务信号几乎没有影响,应用场景不受限制(例如,收发设备不受是否来源于同一供应商的限制)。
在一种可能的实现方式中,RF信号的工作频率范围位于滤波层的工作频率范围内。当滤波层具备一定的工作频率范围时,位于该工作频率范围内的RF信号会发生全反射来实现滤波。
在一种可能的实现方式中,滤波层可以采用超材料来实现,包括多个周期性排列的介质结构,例如,包括多个周期性排列的介质球体。超材料的折射率可以通过选择介质球体的材料来控制,使得折射率小于1。
在一种可能的实现方式中,滤波层紧贴在天线罩的孔径处。滤波层可以贴在天线罩的孔径内侧,受天线罩的保护,避免了环境的影响。
在一种可能的实现方式中,滤波层距离天线罩的距离为L,其中,L>D/(2×tanθc),D为天线罩孔径大小,θc为RF信号发生全反射入射的阈值角度。滤波层的位置可以灵活设置,易于封装。
在一种可能的实现方式中,RF天线还包括吸波材料,吸波材料位于述光学部件和滤波层之间,并且设置在天线罩的内侧壁。吸波材料可以将反射后的干扰信号吸收掉,避免了干扰信号反射后造成干扰。
第二方面,本申请提供一种微波设备,该微波设备包括:RF天线、室内单元和室外单元,该RF天线包括天线罩、光学部件和滤波层。其中,天线罩具有前端,通常把天线罩接收RF信号的入射面或发送RF信号的出射面称为前端。天线罩形成一个封闭的空间,用来保护天线的内部结构(如光学部件)不受环境的干扰。光学部件位于天线罩内,用于接收经过天线罩前端的RF信号。光学部件像一般的光学系统一样具有光轴。滤波层位于天线罩前端和光学部件之间,并且垂直于光学部件的光轴设置。其中,滤波层具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角度小于阈值角度的RF信号发生透射,在滤波层上的入射角度大于或等于阈值角度的RF信号发生全反射来实现滤波。RF天线接收到的RF信号可能同时包括目标业务信号和干扰信号,干扰信号的入射角度通常大于阈值角度,因此干扰信号在滤波层发生全反射被滤除。而目标业务信号的入射角度通常小于阈值角度,因此目标业务信号直接透射通过滤波层,不受影响。RF信号具有一定的工作频率范围,例如,RF信号的工作频率范围位于微波的频率范围内。本发明实施例中,通过折射率小于1的滤波层对干扰信号进行全反射,从而抑制了干扰信号对接收到的目标业务信号的影响。该天线实现复杂度低,对目标业务信号几乎没有影响,应用场景不受限制(例如,收发设备不受是否来源于同一供应商的限制)。
在一种可能的实现方式中,RF信号的工作频率范围位于滤波层的工作频率范围内。当滤波层具备一定的工作频率范围时,位于该工作频率范围内的RF信号会发生全反射来实现滤波。
在一种可能的实现方式中,滤波层可以采用超材料来实现,包括多个周期性排列的介质结构,例如,包括多个周期性排列的介质球体。超材料的折射率可以通过选择介质球体的材料来控制,使得折射率小于1。
在一种可能的实现方式中,滤波层紧贴在天线罩的孔径处。滤波层可以贴在天线罩的孔径内侧,受天线罩的保护,避免了环境的影响。
在一种可能的实现方式中,,滤波层距离天线罩的距离为L,其中,L>D/(2×tanθc),D为天线罩孔径大小,θc为RF信号发生全反射入射的阈值角度。滤波层的位置可以灵活设置,易于封装。
在一种可能的实现方式中,RF天线还包括吸波材料,吸波材料位于述光学部件和滤波层之间,并且设置在天线罩的内侧壁。吸波材料可以将反射后的干扰信号吸收掉,避免了干扰信号反射后造成干扰。
第三方面,本申请提供一种通信系统,其特征在于,该通信系统包括至少两个如第二方面或第二方面任意一种可能的实现方式中的微波设备。
附图说明
为了说明本发明实施例的技术方案,下面将对描述实施例时所使用的附图作简单的介绍。
图1为本发明实施例提供的一种微波网络架构的示意图;
图2A为本发明实施例提供的一种天线的结构示意图;
图2B为为本发明实施例提供的一种天线的结构示意图;
图3为多层介质的全反射模型示意图;
图4为一种超材料的结构示意图;
图5为另一种超材料的结构示意图;
图6A为本发明实施例提供的一种的天线的结构示意图;
图6B为本发明实施例提供的一种天线的结构示意图;
图7A为本发明实施例提供的一种天线的结构示意图
图7B为本发明实施例提供的一种天线的结构示意图;
图8A为本发明实施例提供的一种天线的结构示意图;
图8B为本发明实施例提供的一种天线的结构示意图;
图9A为本发明实施例提供的一种天线的结构示意图;
图9B为本发明实施例提供的一种天线的结构示意图;
图10为本发明实施例提供的一种微波设备的结构示意图。
具体实施方式
以下结合附图及实施例,对本发明进行进一步详细说明。
首先介绍本发明实施例一种可能的应用场景。图1为本发明实施例提供的一种微波网络架构的示意图。如图1所示,微波网络系统100可以包括两个或两个以上的微波设备,以及任意两个微波设备之间的微波链路。微波设备之间可以通过天线进行收发信号,例如图中示出了4个天线101-104。天线101和天线102,可以属于同一个微波设备,也可以属于不同的微波设备。微波网络系统100可以用于无线信号的回传或前传,天线101和天线102所属的微波设备可以与基站相连。天线101的微波设备作为发送端时,天线101通过微波链路105向天线103发送下行信号。如果天线101的下行信号方向和天线104之间的相对角度α小于90度,并且天线104和天线101工作于相同的频段,则天线101向天线103发送的下行信号会对天线104产生下行干扰信号。天线103和天线104可以属于同一个微波设备,也可也属于不同的微波设备。天线103和天线104所属的微波设备可以与基站控制器相连,或者与传送设备相连,例如光网络设备、以太网设备等。天线102的微波设备作为接收端时,天线102通过微波链路106接收来自天线104的上行信号。如果天线104的上行信号方向和天线101之间的相对角度β小于90度,并且天线101和天线104工作于相同的频段,则天线104向天线102发送的上行信号会对天线101产生上行干扰信号。这里的上行干扰信号和下行干扰信号为同频干扰信号。
本发明实施例提供了一种天线,可以应用到微波设备中,提高微波设备的抗干扰能力。图2A为本发明实施例提供的一种天线的结构示意图,如图2A所示,天线200可以包括滤波层210和光学部件220。天线200可以应用于接收端设备,对接收到的干扰信号进行全反射,以达到干扰信号抑制的目的。天线200也可以应用于发送端设备,如图2B所示,对发送端设备产生的干扰信号进行全发射,避免了对其他设备的干扰。图2B为本发明实施例提供的一种天线的结构示意图。如图2B所示,目标业务信号和干扰信号的传输方向和图2A中的方向相反。其中,滤波层210可以通过折射率小于1(空气折射率)的介质来实现。滤波层210可以通过层叠排列亚波长尺寸的介质球体构成的周期性三维阵列来实现。滤波层210还可以通过其他的介质结构来实现,只要能够满足折射率小于1即可。光学部件220可以是现有技术中的任意一种结构的天线,例如卡塞格伦天线、反射面天线、透镜天线等,也可以是未来可能出现的任意一种结构的天线。
首先介绍全反射的原理。图3为多层介质的全反射模型示意图。如图3所示,多层介质模型中,具有三层介质,该三层介质具有不同的折射率,第一层介质301的折射率为n1,第二层介质302的折射率为n2,第三层介质303的折射率为n3。本发明实施例中,第一层介质201可以为空气,第二层介质202可以为天线罩,如聚碳酸酯(PC)、聚乙烯(PE),第三层介质203可以为滤波层。信号经过该三层介质时,可以部分透射通过该三层介质,部分从第三层介质303的表面反射回第一层介质301中。根据Snell定律,ni×sinθi=nT×sinθT,信号的入射角和折射角满足关系:n1×sinθ1=n2×sinθ2=n3×sinθ3,则在第三层介质表面发生全反射(θ3=90°)的条件为:
n2>n1>n3且入射角大于或等于阈值角度θC=arcsin(n3/n1)
可见,通过设置第三介质层和第一介质层折射率的比值n3/n1,使得入射角大于或等于θC的干扰信号发生全反射,而目标业务信号的入射角接近0°,能够透射通过三层介质被正常接收,且功率损失较小。例如n3/n1=0.5时,入射角大于或等于30°的干扰信号发生全反射,而目标业务信号透射通过,功率损失为0.5dB。
滤波层可以采用超材料来实现,用于对干扰信号进行反射(例如,全反射),而对目标业务信号直接透射通过。超材料可以是各向同性的,有多种结构实现方式。图4为一种超材料结构示意图。如图4所示,超材料400包括多个介质球体401和固定基底402。其中,多个介质球体401可以呈三维周期性排列的结构。介质球体401的尺寸可以为亚波长级别,并且各个介质球体的尺寸可以相同或不同。介质球体401可以选用高介电常数材料,例如,氧化铝陶瓷球、氧化锆陶瓷球以及钛酸锶(BST)陶瓷球等。固定基底402可以选用低损耗、低介电常数材料,例如聚四氟乙烯。
图5为本发明实施例提供的另一种超材料的结构示意图。如图5所示,超材料500可以包括多个介质球体501、填充材料502和固定基线503。其中,多个介质球体501和多个介质球体401可以具有类似的排列结构、尺寸和材料。填充材料502可以选用和固定基底402类似的材料。固定基线503可以选用金属材料,例如铜线等。
超材料是具有天然材料所不具备的超常物理性质的人工复合结构或复合材料,例如,超材料的折射率可以小于1,甚至可以为负折射率。超材料的折射率、工作频率和工作带宽等参数可以通过超材料的材料或结构的来设置,例如:可以通过选择介质球体的材料来控制超材料的折射率。可以通过改变介质球体的尺寸和间隔来控制超材料的工作频率。可以通过增加介质球体的材料种类来提升超材料的工作带宽。本发明实施例的超材料中,还可以采用其他的结构替代图4或图5中的介质球体,例如,圆柱形、锥形、或方形的介质。
图6A为本发明实施例提供的一种的天线的结构示意图。如图6A所示,天线600可以为射频(radio frequency,RF)天线,可以用于接收RF信号(如微波信号)。天线600,包括天线罩610,天线罩具有前端611。天线罩610可以采用聚碳酸酯(PC)、聚乙烯(PE)等材料,用于保护天线的内部结构免受空间环境的影响和干扰,同时提高天线的工作可靠性。
天线600还包括光学部件620,位于天线罩610内,用于接收经过天线罩的前端611的RF信号。天线罩610的孔径略大于光学部件620的孔径。光学部件620可以采用卡塞格伦天线结构,可以包括馈源621、主反射面622、副反射面623。当天线600用于接收信号时,主反射面622和副反射面623可以将平面波转换为球面波,馈源621接收到转换后的球面波。并且光学部件620在大致中心处形成光轴624。光轴624是光学系统(光学部件620)中,一条假想的线,定义光学系统如何传导光线。
天线600还包括滤波层630,位于天线罩的前端611和光学部件620之间,并且垂直于光学部件620的光轴624设置。滤波层630具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角度小于该阈值角度的RF信号(例如,目标业务信号)发生透射,在滤波层上的入射角度大于或等于该阈值角度的RF信号(例如,干扰信号)发生全反射来实现滤波。
天线600可以应用于图1所示的接收端设备,例如,替代图1中的天线101。天线101从微波链路105接收来自天线103的上行信号(与图中下行信号方向相反)时,会受到天线104向天线102发送上行信号时产生的上行干扰信号的影响。天线103发给天线101的信号为目标业务信号。如果天线104对天线101产生的上行干扰信号和目标业务信号处于相同的工作频率范围,则该上行干扰信号为同频干扰信号。如果天线104对天线101产生的上行干扰信号和目标业务信号处于不同的工作频率范围,则该上行干扰信号产生非同频干扰信号。天线101采用天线600实现时,天线600可以对同频干扰信号进行全反射滤波,也可以对非同频干扰信号进行全反射滤波。同频干扰信号和非同频干扰信号统称为干扰信号。天线600中滤波层630的折射率为n,空气折射率接近于1。干扰信号的入射角度大于或等于发生全发射的阈值角度θ=arcsin(n),干扰信号在滤波层的表面发生全反射(n<1,例如n=0.5时,入射角大于或等于30°的干扰信号发生全反射),而目标业务信号的空间辐射电磁波近似于平面波,入射角度接近0度,可以透射通过滤波层630。通常来说,干扰信号的入射角度在站点部署的时候就确定了的,例如,天线104相对于天线101的角度α可以决定天线104对天线101产生的干扰信号的入射角度θ。干扰信号的入射角度通常远大于0度,而目标业务信号的角度通常在0度左右,当天线晃动时,可能会存在一定的角度偏差,例如,在+/-5度的范围内。因此,目标业务信号的入射角度通常是小于干扰信号的入射角度,并且小于发生全反射入射的阈值角度。干扰信号入射到滤波层630的表面发生全反射,而目标业务信号直接透射通过滤波层630,几乎不受影响。光学部件620接收到目标业务信号后,将目标业务信号发送给微波设备的其他处理模块,例如,光学部件620连接的室外单元(outdoor unit,ODU)。
图6B为本发明实施例提供的一种天线的结构示意图。如图6B所示,天线600可以用于接收射频信号(如微波信号)。图6B所示的天线结构和图6A完全相同,只是目标业务信号和干扰信号的传输方向相反。天线600用于发送信号时,馈源621可以产生球面波,主反射面622和副反射面623可以将馈源621产生的球面波转换为平面波。天线600还可以应用于图1所示的发送端设备,例如,替代图1中的天线101。天线101通过微波链路105向天线103发送下行信号时,天线101对天线104产生的下行干扰信号的影响。天线101发给天线103的下行信号为目标业务信号,天线101对天线104产生的下行干扰信号可以为同频干扰信号,也可以为非同频干扰信号。在这个例子中,天线101作为发送端,产生并发送目标业务信号,当目标业务信号经过空间辐射,有部分的目标业务信号的发射角度会扩散,从而对除了接收该目标业务信号的微波设备之外的设备造成干扰。天线101对除了天线103之外的微波设备(例如,天线104或天线102等)产生干扰信号。和图6A类似,利用全反射的原理使得干扰信号在滤波层的表面发生全反射,而目标业务信号的空间辐射电磁波近似于平面波,入射角度接近0度,可以透射通过滤波层630,发射到大气空间中。在图6A和图6B中,通过设置滤波层630的折射率n小于1,可以使得干扰信号发生全反射,从而被抑制,而目标业务信号几乎不受影响。滤波层630的折射率可以是预先静态设置的,也可以根据干扰信号的入射角的变化进行动态调整。滤波层630可以采用超材料来实现,超材料的结构可以参考图4或图5所示的实施例。一个例子中,超材料的折射率可以通过超材料的结构或材料来设置。超材料的折射率可以通过选择介质球体的材料来控制。另一个例子中,超材料的折射率还可以通过加载在超材料上的电压或电流来调整。例如,介质球体为压电材料(压电陶瓷)或液晶,通过改变介质球体上加载的电压或电流,改变介质球体的介电常数,从而改变超材料的折射率。可选的,由于超材料的折射率和介电常数相关,还可以通过设置或调整超材料的介电常数,使得干扰信号发生全发射。
可选地,目标业务信号和干扰信号的工作频率范围都可以位于微波的频率范围内。滤波层630可以对工作频率范围位于滤波层630的工作频率范围内的干扰信号进行全反射。例如,滤波层630的工作频率范围为14.4GHz-15.358GHz,干扰信号的工作频率范围为14.942GHz-15.061GHz。干扰信号的工作频率范围在滤波层630的工作频率范围内,因此,滤波层630可以对天线接收到的干扰信号进行全反射。当然,滤波层630还可以同时具有多个工作频率范围。滤波层630可以采用超材料来实现,例如,在图4或图5所示的实施例中,通过改变介质球体的尺寸和间隔来控制超材料的工作频率。可以通过增加介质球体的材料种类来提升超材料的工作带宽。超材料的工作频率和工作带宽共同决定了超材料的工作频率范围,以工作频率为中心,在工作带宽范围内的频点构成工作频率范围。
可选的,天线600还可以包括吸波材料640。吸波材料640可以采用弹性体材料、发泡材料、橡胶、聚氨酯和环氧树脂等,用于吸收干扰信号,将干扰信号转化为热能或者其他形式能量。吸波材料640贴附于天线罩侧壁的内侧(或外侧),位于光学部件620和滤波层630之间。或者,吸波材料640位于光学部件620和天线罩的前端611之间。吸波材料640可以吸收经过滤波层630反射的干扰信号。
一个例子中,滤波层630紧贴于天线罩610孔径内侧(或外侧),其尺寸近似于光学部件孔径。另一个例子中,滤波层630还可以位于光学部件620和天线罩的前端611之间的某一位置,并与天线罩的前端611相隔一定的距离L。
图7A为本发明实施例提供的一种天线示意图。如图7A所示,为了避免干扰信号泄露到空间中,保证干扰信号经过反射后被吸波材料640完全吸收,在接收端,滤波层630相对于天线罩前端611的距离L满足:
L>D/(2×tanθc)
其中,D为天线罩前端的孔径大小,θc为RF信号发生全反射的入射阈值角度。
图7B为本发明实施例提供的一种天线示意图。如图7B所示,为了避免干扰信号泄露到空间中,保证干扰信号经过反射后被吸波材料640吸收,在发送端,光学部件620到滤波层630之间的距离L满足:
L>D/(2×tanθc)
其中,D为天线罩前端孔径大小,θc为RF信号发生全反射的入射阈值角度。
本发明实施例中,通过折射率小于1的滤波层对干扰信号进行全反射,从而抑制了干扰信号对接收到的目标业务信号的影响。该天线实现复杂度低,对目标业务信号几乎没有影响,应用场景不受限制(例如,收发设备不受是否来源于同一供应商的限制)。
图8A、8B为本发明实施例提供的一种天线的结构示意图,如图8A、8B所示,光学部件620可以采用反射面天线(例如,抛物面天线)结构。光学部件620可以包括馈源621和反射面625。当天线800用于接收信号时,反射面625可以将平面波转换为球面波,馈源621接收到转换后的球面波。当天线800用于发送信号时,馈源621可以产生球面波,反射面625可以将馈源621产生的球面波转换为平面波。图9A、9B为本发明实施例提供的一种天线的结构示意图,如图9A、9B所示,光学部件620可以采用透镜天线(例如,介质透镜天线、平板透镜天线、金属透镜天线等)结构。光学部件620可以包括馈源621和透镜626。当天线900用于接收信号时,透镜626可以将平面波转换为球面波,馈源621接收到转换后的球面波。当天线900用于发送信号时,馈源621可以产生球面波,透镜626可以将馈源621产生的球面波转换为平面波。图8A、9A的工作原理和图6A类似,图8B、9B的工作原理和图6B类似,此处不再赘述。
本发明实施例中,通过折射率小于1的滤波层对干扰信号进行全反射,从而抑制了干扰信号的产生。该天线实现复杂度低,对目标业务信号几乎没有影响,应用场景不受限制(例如,收发设备不受是否来源于同一供应商的限制)。
图10为本发明实施例提供的一种微波设备结构示意图。如图10所示,微波设备1000可以包括天线1001、室外单元(outdoor unit,ODU)1002、室内单元(indoor unit,IDU)1003、和中频电缆1004。微波设备1000可以包括一个或多个天线1001。微波设备1000包括多个天线时,如果两个天线之间的夹角小于90度,且具有相同的工作频率范围时,会产生同频干扰。ODU 1002和IDU 1003之间可以通过中频电缆1004相连,ODU 1002和天线1001之间可以通过馈电波导相连。
天线1001可以采用上述实施例中的任意一种天线来实现。天线1001主要提供射频信号的定向收发功能,实现ODU 1002产生或接收的射频信号与大气空间的射频信号之间的转换。发送方向上,天线1001将ODU 1002输出的射频信号转换为具有方向性的射频信号,向空间辐射。接收方向上,天线1001接收空间的射频信号,将射频信号进行聚焦,传送给ODU1002。本发明实施例提供的干扰抑制的方法,可以应用于发送方向上的天线,也可以应用于接收方向上的天线。
例如,接收方向上,天线1001接收空间辐射的射频信号,该射频信号包括目标业务信号和干扰信号,通过滤波层对干扰信号进行全反射,其中,该滤波层的折射率n小于1,使得干扰信号在滤波层的入射角度小于或等于发生全反射的入射阈值角度arcsin(n)。天线1001接收经过滤波层透射的目标业务信号,然后发送给ODU 1002。
发送方向上,天线1001从ODU 1002接收到射频信号,基于接收到的射频信号产生目标业务信号和干扰信号,并通过滤波层对干扰信号进行全反射,其中,该滤波层的折射率n小于1,使得干扰信号在滤波层的入射角度小于或等于发生全反射的入射阈值角度arcsin(n)。天线1001将经过滤波层透射的目标业务信号发送出去。
ODU 1002可以包括中频模块、发送模块、接收模块、复用器、双工器等。ODU 1002主要提供中频模拟信号和射频信号的相互转换功能。在发送方向,ODU 1002将来自IDU 1003的中频模拟信号经过上变频和放大,转换成特定频率的射频信号,并向天线1001发送。在接收方向,ODU 1002将从天线1001接收的射频信号经过下变频和放大,转换成中频模拟信号,并向IDU 1003发送。
IDU 1003可以包括主控交换时钟板、中频板、业务板等单板类型,可以提供吉比特以太(Gigabit Ethernet,GE)业务、同步传输模式-1(synchronous transfer module-1,STM-1)业务和E1业务等多种业务接口。IDU 1003主要提供业务信号基带处理、基带信号和中频模拟信号的相互转换功能。在发送方向,IDU 1003把基带数字信号调制成中频模拟信号。在接收方向,IDU 1003将接收到的中频模拟信号进行解调和数字化处理,分解成基带数字信号。
微波设备1000可以为分体式微波设备,即IDU 1003放置于室内,ODU 1002和天线1001装配在一起,并放置于室外。微波设备1000也可以为全室外微波设备,即ODU 1002、IDU1003和天线1001都放置于室外。微波设备1000也可以为全室内微波设备,即ODU 1002和IDU1003放置于室内,天线1001放置于室外。ODU 1002也可以称为射频模块,IDU 1003也可以称为基带。
将本发明实施提供的天线应用于微波设备中,可以在对目标业务信号几乎没有影响的前提下提高设备抗干扰的能力,降低设备的复杂度。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (15)
1.一种用于通信的射频RF天线,其特征在于,所述RF天线包括:
天线罩,所述天线罩具有前端;
光学部件,所述光学部件位于所述天线罩内,用于接收经过所述前端的RF信号,且所述光学部件具有光轴;以及
滤波层,所述滤波层位于所述前端和所述光学部件之间,并且垂直于所述光轴设置;所述滤波层具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角度小于所述阈值角度的RF信号发生透射,在滤波层上的入射角度大于或等于所述阈值角度的RF信号发生全反射来实现滤波,所述RF信号具有预设的工作频率范围。
2.如权利要求1所述的RF天线,所述预设的工作频率范围位于微波的频率范围内。
3.如权利要求1所述的RF天线,其特征在于,所述滤波层包括多个周期性排列的介质结构。
4.如权利要求3所述的RF天线,其特征在于,所述介质结构为介质球体。
5.如权利要求1-4任一所述的RF天线,其特征在于,所述滤波层紧贴在所述天线罩的孔径处。
6.如权利要求1-4任一所述的RF天线,其特征在于,所述滤波层距离所述天线罩的所述前端的距离为L,其中,L>D/(2×tanθc),D为天线罩孔径大小,θc为所述阈值角度。
7.如权利要求1-4任一所述的RF天线,其特征在于,所述RF天线还包括吸波材料,所述吸波材料位于所述光学部件和所述滤波层之间,并且设置在所述天线罩的内侧壁。
8.一种微波设备,其特征在于,所述微波设备包括:射频RF天线、室内单元和室外单元,所述RF天线包括:
天线罩,所述天线罩具有前端;
光学部件,所述光学部件位于所述天线罩内,用于接收经过所述前端的RF信号,且所述光学部件具有光轴;以及
滤波层,所述滤波层位于所述前端和所述光学部件之间,并且垂直于所述光轴设置;所述滤波层具有小于1的折射率n,以形成全反射入射的阈值角度arcsin(n),使得在滤波层上的入射角度小于所述阈值角度的RF信号发生透射,在滤波层上的入射角度大于或等于所述阈值角度的RF信号发生全反射来实现滤波,所述RF信号具有预设的工作频率范围。
9.如权利要求8所述的微波设备,其特征在于,所述预设的工作频率范围位于微波的频率范围内。
10.如权利要求8所述的微波设备,其特征在于,所述滤波层包括多个周期性排列的介质结构。
11.如权利要求10所述的微波设备,其特征在于,所述介质结构为介质球体。
12.如权利要求8-11任一所述的微波设备,其特征在于,所述滤波层紧贴在所述天线罩的孔径处。
13.如权利要求8-11任一所述的微波设备,其特征在于,所述滤波层距离所述天线罩的所述前端的距离为L,其中,L>D/(2×tanθc),D为天线罩孔径大小,θc为所述阈值角度。
14.如权利要求8-11任一所述的微波设备,其特征在于,所述RF天线还包括吸波材料,所述吸波材料位于所述光学部件和所述滤波层之间,并且设置在所述天线罩的内侧壁。
15.一种通信系统,其特征在于,所述通信系统包括至少两个如权利要求8-14任一所述的微波设备。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/114164 WO2020093241A1 (zh) | 2018-11-06 | 2018-11-06 | 一种用于通信的射频天线、应用该天线的微波设备和通信系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112997360A CN112997360A (zh) | 2021-06-18 |
CN112997360B true CN112997360B (zh) | 2022-04-26 |
Family
ID=70611581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880099205.6A Active CN112997360B (zh) | 2018-11-06 | 2018-11-06 | 一种用于通信的射频天线、应用该天线的微波设备和通信系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112997360B (zh) |
WO (1) | WO2020093241A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112436288B (zh) * | 2020-11-02 | 2022-07-01 | 中国舰船研究设计中心 | 基于相位相消和阻抗吸波的超宽带rcs缩减方法及结构 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004020186A2 (en) * | 2002-08-29 | 2004-03-11 | The Regents Of The University Of California | Indefinite materials |
CN103296419A (zh) * | 2012-03-02 | 2013-09-11 | 深圳光启创新技术有限公司 | 宽频带超材料天线罩及天线系统 |
CN103392263A (zh) * | 2012-12-26 | 2013-11-13 | 华为技术有限公司 | 一种天线系统 |
CN104347952A (zh) * | 2013-07-31 | 2015-02-11 | 深圳光启创新技术有限公司 | 超材料及天线 |
CN105474461A (zh) * | 2013-03-15 | 2016-04-06 | 伟创力有限责任公司 | 用于创建完全微波吸收表皮的方法和装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5555087B2 (ja) * | 2010-07-30 | 2014-07-23 | 株式会社豊田中央研究所 | レーダ装置 |
US8681064B2 (en) * | 2010-12-14 | 2014-03-25 | Raytheon Company | Resistive frequency selective surface circuit for reducing coupling and electromagnetic interference in radar antenna arrays |
CN202042599U (zh) * | 2011-02-21 | 2011-11-16 | 华为技术有限公司 | 双反射面天线 |
CN102800992B (zh) * | 2011-06-03 | 2015-11-18 | 深圳光启高等理工研究院 | 一种卡塞格伦超材料天线 |
US10714827B2 (en) * | 2017-02-02 | 2020-07-14 | The Boeing Company | Spherical dielectric lens side-lobe suppression implemented through reducing spherical aberration |
-
2018
- 2018-11-06 WO PCT/CN2018/114164 patent/WO2020093241A1/zh active Application Filing
- 2018-11-06 CN CN201880099205.6A patent/CN112997360B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004020186A2 (en) * | 2002-08-29 | 2004-03-11 | The Regents Of The University Of California | Indefinite materials |
CN103296419A (zh) * | 2012-03-02 | 2013-09-11 | 深圳光启创新技术有限公司 | 宽频带超材料天线罩及天线系统 |
CN103392263A (zh) * | 2012-12-26 | 2013-11-13 | 华为技术有限公司 | 一种天线系统 |
CN105474461A (zh) * | 2013-03-15 | 2016-04-06 | 伟创力有限责任公司 | 用于创建完全微波吸收表皮的方法和装置 |
CN104347952A (zh) * | 2013-07-31 | 2015-02-11 | 深圳光启创新技术有限公司 | 超材料及天线 |
Non-Patent Citations (2)
Title |
---|
A polarization insensitive FSS element to suppress the grating lobes for wide incident angles;A. Renuka等;《2016 IEEE Annual India Conference (INDICON)》;20170202;全文 * |
新型人工电磁材料平板透镜及其应用;韩文清;《中国优秀硕士学位论文全文数据库》;20170315;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112997360A (zh) | 2021-06-18 |
WO2020093241A1 (zh) | 2020-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11303020B2 (en) | High gain relay antenna system with multiple passive reflect arrays | |
US11114768B2 (en) | Multibeam antenna designs and operation | |
US6370398B1 (en) | Transreflector antenna for wireless communication system | |
CN110739527B (zh) | 一种波束重构方法、天线、微波设备和网络系统 | |
CN103392263B (zh) | 一种天线系统 | |
CN108376828A (zh) | 天线系统及移动终端 | |
WO2018140837A1 (en) | Variable beamwidth multiband antenna | |
WO2013086835A1 (zh) | 一种天线装置、设备及信号发射装置 | |
US7898492B2 (en) | Antenna arrangement | |
KR20240041939A (ko) | 다중경로 중계기 시스템들 | |
CN112997360B (zh) | 一种用于通信的射频天线、应用该天线的微波设备和通信系统 | |
US10559888B2 (en) | Satellite ground terminal utilizing frequency-selective surface diplexer | |
JP2009535975A (ja) | 無線中継器アセンブリ | |
CN106471674B (zh) | 同频全双工天线结构和无线通信的电子设备 | |
CN112909540B (zh) | 一种天线装置以及设备 | |
EP3883059B1 (en) | Antenna, microwave device and communication system | |
KR101508074B1 (ko) | 링 패치를 이용한 주파수 선택 표면 | |
KR102428139B1 (ko) | 밀리미터파용 균일 원형 배열 안테나 | |
CN113270727A (zh) | 一种天线装置 | |
US20240313429A1 (en) | Antenna and antenna system | |
CN113169446B (zh) | 多入多出天线、基站及通信系统 | |
WO2024061009A1 (zh) | 天线装置及通信设备 | |
US20230344115A1 (en) | Antenna module and base station system | |
JP4271650B2 (ja) | 微弱無線通信システム | |
CN116885443A (zh) | 一种用于无线中继系统的收发天线阵列 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |