WO2023124839A1 - 天线阵列、通信方法以及通信装置 - Google Patents

天线阵列、通信方法以及通信装置 Download PDF

Info

Publication number
WO2023124839A1
WO2023124839A1 PCT/CN2022/137018 CN2022137018W WO2023124839A1 WO 2023124839 A1 WO2023124839 A1 WO 2023124839A1 CN 2022137018 W CN2022137018 W CN 2022137018W WO 2023124839 A1 WO2023124839 A1 WO 2023124839A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna unit
main antenna
electromagnetic wave
main
parasitic
Prior art date
Application number
PCT/CN2022/137018
Other languages
English (en)
French (fr)
Inventor
张明
王斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023124839A1 publication Critical patent/WO2023124839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of antennas, and in particular to an antenna array, a communication method and a communication device.
  • a high-performance multi-beam phased array antenna architecture can be used in satellite communication systems to improve the spectrum efficiency of the communication system.
  • the multi-beam phased array antenna architecture includes an antenna array composed of main Active channel for the feed point connection of the antenna element.
  • the gain of the antenna array is low, so related technologies are needed to increase the gain of the antenna array.
  • the purpose of increasing the gain of the antenna array is achieved by increasing the main antenna unit and the number of active channels connected to the main antenna unit in the multi-beam phased array antenna system, but the scheme of increasing the gain of the antenna array will Increase the power consumption of the communication system.
  • the present application provides an antenna array, a communication method and a communication device, which can increase the gain of the antenna array without increasing the power consumption of the communication system.
  • the present application provides an antenna array, including a first number of main antenna units and a second number of parasitic antenna units, wherein each main antenna unit in the third number of main antenna units corresponds to at least one parasitic antenna unit, the third number is less than or equal to the first number; wherein, the distance d between the main antenna unit and the corresponding parasitic antenna unit satisfies: a ⁇ d ⁇ , a is based on the main antenna unit and the adjacent main antenna unit The target distance determined by the distance between the main antenna units, a is a real number greater than 0, ⁇ is the wavelength of an electromagnetic wave whose frequency is the working frequency of the antenna array in free space, and ⁇ is a real number greater than 0.
  • the distance d between the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfies the condition: a ⁇ d ⁇ , based on this, it is possible to prevent the parasitic antenna unit from affecting the gain of the original main antenna unit, and increasing the parasitic antenna unit is equivalent to increasing the radiation unit of the antenna array composed of the original main antenna unit, that is, increasing the antenna array Radiation area, and the increased parasitic antenna unit will not increase the power consumption of the communication system (that is, the antenna system where the antenna array is located), and can increase the gain of the antenna array without increasing the power consumption of the communication system.
  • the antenna array includes an antenna array arranged in a plane, and the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are in the same plane; or, the antenna array includes an antenna array arranged on a curved surface, and the main antenna unit and the main antenna unit are in the same plane; The parasitic antenna units corresponding to the antenna units are on the same curved surface; or, the antenna array includes an antenna array arranged on a plane and/or an antenna array arranged on a curved surface, and the parasitic antenna unit corresponding to the main antenna unit is located vertically above the arrangement surface of the main antenna unit .
  • the antenna array includes a planar antenna array and/or a curved antenna array
  • the parasitic antenna unit corresponding to the main antenna unit is located vertically above the main antenna unit arrangement surface
  • the main The height difference h between the antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfies: a ⁇ h ⁇ 0.5 ⁇ .
  • the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are respectively connected to the active channel corresponding to the main antenna unit through a power distribution device; the power distribution device is a coupler or an unequal power divider.
  • the output power in the active channel is fed into the main antenna unit corresponding to the active channel and the parasitic antenna unit corresponding to the main antenna unit by using a power distribution device, or, from the main antenna unit and the main antenna unit
  • the parasitic antenna unit corresponding to the unit receives signals, so that the main antenna unit and the corresponding parasitic antenna unit can complete the process of sending and/or receiving electromagnetic waves.
  • the power distribution device feeds part of the original power that needs to be input into the main antenna unit into the parasitic antenna unit corresponding to the main antenna unit, so the addition of the parasitic antenna unit , without increasing the power consumption of the communication system where the original main antenna unit is located. And the added power distribution device will not increase the power consumption of the communication system.
  • the parasitic antenna elements that is, the radiation elements in the antenna array are increased, that is, the radiation area of the antenna array is increased, and the gain of the antenna array can be improved. Therefore, the gain of the antenna array is improved without increasing the power consumption of the communication system.
  • the main antenna unit is connected to an active channel corresponding to the main antenna unit. Based on this design, the main antenna unit is connected to the corresponding active channel, and the parasitic antenna unit is no longer connected to the active channel, that is, there is no need to feed the output power of the active channel to the parasitic antenna unit, and radiate again through the parasitic antenna unit.
  • the transmission and/or reception of electromagnetic waves can be completed, so the addition of the parasitic antenna unit does not increase the power consumption of the communication system.
  • the parasitic antenna elements that is, the radiation elements in the antenna array are increased, that is, the radiation area of the antenna array is increased, and thus the gain of the antenna array can be improved.
  • the gain of the antenna array is improved.
  • the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfy at least one of the following: the phase of the main antenna unit is the same as the phase of the parasitic antenna unit corresponding to the main antenna unit; the gain of the main antenna unit is less than or Equal to the gain of the parasitic antenna unit corresponding to the main antenna unit; the operating frequency of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit; the polarization characteristic of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit. characteristics are the same.
  • the present application provides a communication method, which is applied to the antenna array described in the first aspect above.
  • the method includes: receiving the first electrical signal from the power distribution device through the main antenna unit, and receiving the first electrical signal through the main antenna unit corresponding to the parasitic
  • the antenna unit receives the second electrical signal from the power distribution device; the power distribution device is used to divide one electrical signal into multiple electrical signals; the first electromagnetic wave generated according to the first electrical signal is sent through the main antenna unit, and the corresponding electromagnetic wave through the main antenna unit
  • the parasitic antenna unit sends the second electromagnetic wave generated according to the second electrical signal; and/or, receives the first electromagnetic wave through the main antenna unit, and receives the second electromagnetic wave through the parasitic antenna unit corresponding to the main antenna unit, the first electromagnetic wave and the second electromagnetic wave
  • the same beam can be formed; the first electrical signal generated according to the first electromagnetic wave is sent to the power distribution device through the main antenna unit, and the second electrical signal generated according to the second electromagnetic wave is sent to the power distribution device through the parasitic antenna unit corresponding to the
  • the antenna array includes an antenna array arranged in a plane, and the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are in the same plane; or, the antenna array includes an antenna array arranged on a curved surface, and the main antenna unit and the main antenna unit are in the same plane; The parasitic antenna units corresponding to the antenna units are on the same curved surface; or, the antenna array includes an antenna array arranged on a plane and/or an antenna array arranged on a curved surface, and the parasitic antenna unit corresponding to the main antenna unit is located vertically above the arrangement surface of the main antenna unit .
  • the antenna array includes a planar antenna array and/or a curved antenna array
  • the parasitic antenna unit corresponding to the main antenna unit is located vertically above the main antenna unit arrangement surface
  • the main The height difference h between the antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfies: a ⁇ h ⁇ 0.5 ⁇ .
  • the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are respectively connected to the active channel corresponding to the main antenna unit through a power distribution device;
  • the power distribution device is a coupler or an unequal power divider.
  • the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfy at least one of the following: the phase of the main antenna unit is the same as the phase of the parasitic antenna unit corresponding to the main antenna unit; the gain of the main antenna unit is less than or Equal to the gain of the parasitic antenna unit corresponding to the main antenna unit; the operating frequency of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit; the polarization characteristic of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit. characteristics are the same.
  • the present application provides a communication method, which is applied to the antenna array described in the first aspect above, and the method includes: receiving an electrical signal through the main antenna unit, and sending a first electromagnetic wave generated according to the electrical signal through the main antenna unit; The second electromagnetic wave radiated by the first electromagnetic wave is received and sent by the parasitic antenna unit corresponding to the main antenna unit. And/or, receive the first electromagnetic wave through the main antenna unit, and receive the second electromagnetic wave through the parasitic antenna unit corresponding to the main antenna unit, the first electromagnetic wave and the second electromagnetic wave can form the same beam; receive the second electromagnetic wave radiation through the main antenna unit The third electromagnetic wave, and the electrical signal generated according to the first electromagnetic wave and the third electromagnetic wave is sent through the main antenna unit.
  • the antenna array includes an antenna array arranged in a plane, and the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are in the same plane; or, the antenna array includes an antenna array arranged on a curved surface, and the main antenna unit and the main antenna unit are in the same plane; The parasitic antenna units corresponding to the antenna units are on the same curved surface; or, the antenna array includes an antenna array arranged on a plane and/or an antenna array arranged on a curved surface, and the parasitic antenna unit corresponding to the main antenna unit is located vertically above the arrangement surface of the main antenna unit .
  • the antenna array includes a planar antenna array and/or a curved antenna array
  • the parasitic antenna unit corresponding to the main antenna unit is located vertically above the main antenna unit arrangement surface
  • the main The height difference h between the antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfies: a ⁇ h ⁇ 0.5 ⁇ .
  • the main antenna unit is connected to an active channel corresponding to the main antenna unit.
  • the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfy at least one of the following: the phase of the main antenna unit is the same as the phase of the parasitic antenna unit corresponding to the main antenna unit; the gain of the main antenna unit is less than or Equal to the gain of the parasitic antenna unit corresponding to the main antenna unit; the operating frequency of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit; the polarization characteristic of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit. characteristics are the same.
  • the present application provides a communication device, including: the antenna array described in the first aspect above, a fourth number of active channels, and a fifth number of power distribution devices; wherein, the main antenna unit corresponds to the main antenna unit The parasitic antenna units are respectively connected to active channels corresponding to the main antenna unit through power distribution devices.
  • the communication device further includes a processor, and a memory connected to the processor.
  • the antenna array includes an antenna array arranged in a plane, and the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are in the same plane; or, the antenna array includes an antenna array arranged on a curved surface, and the main antenna unit and the main antenna unit are in the same plane; The parasitic antenna units corresponding to the antenna units are on the same curved surface; or, the antenna array includes an antenna array arranged on a plane and/or an antenna array arranged on a curved surface, and the parasitic antenna unit corresponding to the main antenna unit is located vertically above the arrangement surface of the main antenna unit .
  • the antenna array includes a planar antenna array and/or a curved antenna array
  • the parasitic antenna unit corresponding to the main antenna unit is located vertically above the main antenna unit arrangement surface
  • the main The height difference h between the antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfies: a ⁇ h ⁇ 0.5 ⁇ .
  • the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfy at least one of the following: the phase of the main antenna unit is the same as the phase of the parasitic antenna unit corresponding to the main antenna unit; the gain of the main antenna unit is less than or Equal to the gain of the parasitic antenna unit corresponding to the main antenna unit; the operating frequency of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit; the polarization characteristic of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit. characteristics are the same.
  • the present application provides a communication device, including: the antenna array described in the first aspect above and a fourth number of active channels; the main antenna unit is connected to the active channel corresponding to the main antenna unit.
  • the communication device further includes a processor, and a memory connected to the processor.
  • the antenna array includes an antenna array arranged in a plane, and the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are in the same plane; or, the antenna array includes an antenna array arranged on a curved surface, and the main antenna unit and the main antenna unit are in the same plane; The parasitic antenna units corresponding to the antenna units are on the same curved surface; or, the antenna array includes an antenna array arranged on a plane and/or an antenna array arranged on a curved surface, and the parasitic antenna unit corresponding to the main antenna unit is located vertically above the arrangement surface of the main antenna unit .
  • the antenna array includes a planar antenna array and/or a curved antenna array
  • the parasitic antenna unit corresponding to the main antenna unit is located vertically above the main antenna unit arrangement surface
  • the main The height difference h between the antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfies: a ⁇ h ⁇ 0.5 ⁇ .
  • the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfy at least one of the following: the phase of the main antenna unit is the same as the phase of the parasitic antenna unit corresponding to the main antenna unit; the gain of the main antenna unit is less than or Equal to the gain of the parasitic antenna unit corresponding to the main antenna unit; the operating frequency of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit; the polarization characteristic of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit. characteristics are the same.
  • the present application provides a communication method, which is applied to the communication device described in the fourth aspect above, and the method includes: receiving the first electromagnetic wave through the main antenna unit, and receiving the second electromagnetic wave through the parasitic antenna unit corresponding to the main antenna unit , the first electromagnetic wave and the second electromagnetic wave can form the same beam; the first electrical signal generated according to the first electromagnetic wave is sent to the power distribution device through the main antenna unit, and the parasitic antenna unit corresponding to the main antenna unit is sent to the power distribution device according to the first electrical signal A second electrical signal generated by two electromagnetic waves; sending an electrical signal synthesized according to the first electrical signal and the second electrical signal to the active channel through the power distribution device; processing the electrical signal through the active channel.
  • the second electric signal generates a second electromagnetic wave.
  • the antenna array includes an antenna array arranged in a plane, and the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are in the same plane; or, the antenna array includes an antenna array arranged on a curved surface, and the main antenna unit and the main antenna unit are in the same plane; The parasitic antenna units corresponding to the antenna units are on the same curved surface; or, the antenna array includes an antenna array arranged on a plane and/or an antenna array arranged on a curved surface, and the parasitic antenna unit corresponding to the main antenna unit is located vertically above the arrangement surface of the main antenna unit .
  • the antenna array includes a planar antenna array and/or a curved antenna array
  • the parasitic antenna unit corresponding to the main antenna unit is located vertically above the main antenna unit arrangement surface
  • the main The height difference h between the antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfies: a ⁇ h ⁇ 0.5 ⁇ .
  • the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfy at least one of the following: the phase of the main antenna unit is the same as the phase of the parasitic antenna unit corresponding to the main antenna unit; the gain of the main antenna unit is less than or Equal to the gain of the parasitic antenna unit corresponding to the main antenna unit; the operating frequency of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit; the polarization characteristic of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit. characteristics are the same.
  • the present application provides a communication method, which is applied to the communication device described in the fifth aspect above.
  • the method includes: sending the generated electrical signal to the main antenna unit through the active channel; sending the generated signal based on the electrical signal through the main antenna unit. the first electromagnetic wave; the parasitic antenna unit corresponding to the main antenna unit receives and sends the second electromagnetic wave radiated by the first electromagnetic wave.
  • the first electromagnetic wave and the second electromagnetic wave can form the same beam; receive the second electromagnetic wave radiation through the main antenna unit The third electromagnetic wave; sending the electrical signal generated according to the first electromagnetic wave and the third electromagnetic wave to the active channel through the main antenna unit; processing the electrical signal through the active channel.
  • the antenna array includes an antenna array arranged in a plane, and the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are in the same plane; or, the antenna array includes an antenna array arranged on a curved surface, and the main antenna unit and the main antenna unit are in the same plane; The parasitic antenna units corresponding to the antenna units are on the same curved surface; or, the antenna array includes an antenna array arranged on a plane and/or an antenna array arranged on a curved surface, and the parasitic antenna unit corresponding to the main antenna unit is located vertically above the arrangement surface of the main antenna unit .
  • the antenna array includes a planar antenna array and/or a curved antenna array
  • the parasitic antenna unit corresponding to the main antenna unit is located vertically above the main antenna unit arrangement surface
  • the main The height difference h between the antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfies: a ⁇ h ⁇ 0.5 ⁇ .
  • the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfy at least one of the following: the phase of the main antenna unit is the same as the phase of the parasitic antenna unit corresponding to the main antenna unit; the gain of the main antenna unit is less than or Equal to the gain of the parasitic antenna unit corresponding to the main antenna unit; the operating frequency of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit; the polarization characteristic of the main antenna unit is the same as that of the parasitic antenna unit corresponding to the main antenna unit. characteristics are the same.
  • Figure 1 is a schematic diagram of the architecture of a digital multi-beam phased array antenna
  • Figure 2a is a schematic diagram of the architecture of the Rotman lens beamforming network
  • Figure 2b is a schematic diagram of the simulation results of the beamforming network using the Rotman lens
  • Fig. 3 is a structural schematic diagram of a complementary double-sided symmetrical open ring zero-refractive index metamaterial unit
  • Fig. 4 is the schematic diagram of the change curve of the refractive index of the CDSRR zero-refractive-index metamaterial unit with R;
  • Fig. 5 is a top view of the microstrip antenna and a structural schematic diagram of the covering layer formed by the arrangement of CDSRR zero-refractive index metamaterial units;
  • Fig. 6 is a comparison diagram of the reflection coefficient curve of the microstrip antenna before and after adding the covering layer and the comparison result of the actual gain of the microstrip antenna before and after loading the covering layer;
  • Fig. 7 is a schematic diagram of the structure of an antenna with a radome loaded at the near field of the antenna
  • Fig. 8 is the gain frequency response figure of the antenna structure of loading radome
  • FIG. 9 is a schematic diagram of the architecture of a digital multi-beam phased array antenna system
  • Fig. 10a is a schematic diagram of an antenna array provided by an embodiment of the present application.
  • Fig. 10b is a schematic diagram of another antenna array provided by the embodiment of the present application.
  • Fig. 10c is a schematic diagram of another antenna array provided by the embodiment of the present application.
  • Fig. 10d is a schematic diagram of another antenna array provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of an antenna array architecture provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a simulation structure of an antenna array provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a simulation result of an antenna array gain without a parasitic antenna unit provided in an embodiment of the present application
  • FIG. 14 is a schematic diagram of a simulation result of an antenna array gain with a parasitic antenna unit provided in an embodiment of the present application
  • FIG. 15 is a schematic diagram of another antenna array architecture provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a simulation structure of another antenna array provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of another simulation result of the antenna array gain without a parasitic antenna unit provided by the embodiment of the present application.
  • FIG. 18 is a schematic diagram of simulation results of another antenna array gain with a parasitic antenna unit provided in the embodiment of the present application.
  • FIG. 19 is a schematic diagram of a simulation structure of another antenna array provided by the embodiment of the present application.
  • FIG. 20 is a schematic diagram of another simulation result of antenna array gain without parasitic antenna units provided by the embodiment of the present application.
  • FIG. 21 is a schematic diagram of another simulation result of the antenna array gain with a parasitic antenna unit provided by the embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a digital phased array antenna system provided by an embodiment of the present application.
  • FIG. 23 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 24 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 26 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 27 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 28 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • NTN Non-terrestrial network
  • the NTN communication system may include a satellite communication system, which may refer to a communication system in which base stations or part of base station functions are deployed on satellites to provide coverage for terminal devices.
  • Satellite communication has significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment, and no geographical restrictions. It has been widely used in maritime communications, positioning and navigation, disaster relief, scientific experiments, video broadcasting, and earth observation. and many other fields.
  • the satellite communication system can be divided into a high elliptical orbit (highly elliptical orbit, HEO) communication system, a high orbit (geostationary earth orbit, GEO) satellite communication system, and a medium earth orbit (MEO) system. ) satellite communication system and low-earth orbit (LEO) satellite communication system.
  • HEO high elliptical orbit
  • GEO high orbit
  • MEO medium earth orbit
  • LEO low-earth orbit
  • the GEO satellite is also called the geostationary satellite, and its motion speed is the same as the rotation speed of the earth, so the GEO satellite remains stationary relative to the ground.
  • the service coverage area provided by the satellite is called the cell of the satellite.
  • the cell of the GEO satellite is also static.
  • the coverage area of the cell of the GEO satellite is relatively wide, and the diameter of the cell is generally 500 kilometers (kilometre, km).
  • the LEO satellite moves faster relative to the ground, about 7Km per second, so the cell of the LEO satellite also moves accordingly.
  • the higher the orbit of the satellite the wider the coverage area, but the longer the communication delay.
  • the satellite communication system can be divided into a non-staring satellite system and a staring satellite system.
  • the beams of the satellites of the non-staring satellite system move with the movement of the satellite.
  • the angle of each beam of the satellite does not change with time; the beams of the satellites of the staring satellite system do not move with the movement of the satellite.
  • the NTN communication system may also include a high altitude platform station (HAPS) communication system.
  • HAPS high altitude platform station
  • the HAPS communication system is a communication system in which base stations or part of base station functions are deployed on high altitude platforms to provide coverage for terminal equipment.
  • a beam is a communication resource.
  • the beams can be wide beams, or narrow beams, or other types of beams.
  • the beam forming technology may be a beam forming technology or other technical means.
  • Beamforming techniques may include digital beamforming techniques, analog beamforming techniques, hybrid digital/analog beamforming techniques. Different beams can be considered as different resources. The same information or different information can be transmitted through different beams.
  • Beam scanning refers to a process in which beams in different directions (ie, beams with different angles) are sequentially emitted by the antenna device.
  • the antenna gain (that is, the gain of the antenna) refers to the ratio of the power density generated by the actual antenna and the ideal antenna at the same position in space under the condition of equal input power.
  • the antenna gain is closely related to the antenna pattern. The narrower the main lobe of the antenna pattern and the smaller the side lobe, the higher the antenna gain.
  • Antenna gain can be used to measure the ability of an antenna to send and receive signals in a specific direction, that is, the ability to generate signals in a certain direction and within a certain range.
  • the parameters representing the antenna gain are dBd and dBi. It should be noted that, in the embodiment of the present application, dB is an abbreviation of dBi.
  • Increasing the antenna gain can increase the signal coverage in a certain direction.
  • increasing the antenna gain can increase the signal strength within that range without changing the signal coverage.
  • the gain of the antenna can be increased by narrowing the radiation direction of the antenna (that is, narrowing the lobe width in the antenna pattern).
  • the gain of the antenna can also be increased by increasing the bandwidth and frequency spectrum of the antenna.
  • the aforementioned ways to increase the gain of the antenna are restricted by various conditions, so it is difficult to increase the gain of the antenna, and thus it is difficult to improve the user capacity, data throughput, coverage distance and range of the system.
  • smart antenna technology came into being, which uses multiple antennas to form an antenna array, and uses the positional relationship between the antennas to send the same data to the user (equivalent to concentrating radiation energy in a certain direction) , thereby increasing the antenna gain.
  • the gain of the antenna array refers to the degree to which the antenna array radiates the input power.
  • the gain of an antenna array is used to measure the ability of an antenna array to send and receive signals in a specific direction.
  • the gain of the antenna array is related to factors such as the structure, number, and arrangement of the antenna elements. Under other conditions being the same, increasing the number of antenna elements in the antenna array can increase the radiation area of the antenna array, thereby increasing the gain of the antenna array.
  • an antenna array also called an antenna array.
  • Antenna radiating units constituting an antenna array are called array elements, and can also be called antenna units.
  • the antenna array can be divided into a linear array, a planar array, and a three-dimensional array (for example, a spherical array).
  • the antenna array can be divided into a side-fire array, an end-fire array, a non-side-fire non-end-fire array, and the like.
  • the phased array antenna refers to an antenna that changes the shape of the radiation pattern by controlling the feeding phase of the antenna radiating elements in the antenna array. By controlling the phase, the direction of the maximum field strength value of the antenna pattern can be changed to achieve the purpose of beam scanning.
  • the phased array antenna is composed of several parts such as the antenna array, the feeder network and the corresponding control circuit. If there is no active circuit in the feed network of the phased array antenna, the phased array antenna is called a passive phased array antenna. If the feed network channels corresponding to each antenna unit of the phased array antenna contain active devices (such as signal power amplifiers, low noise amplifiers, mixers, etc.), the phased array antenna is called an active phased array antenna. .
  • the phased array antenna front usually consists of many antenna radiating elements whose phases are excited by feed network channels. These antenna radiating elements may be individual waveguide horn antennas, dipole antennas, patch antennas, and the like. If these antenna radiating elements are distributed on a plane, this phased array antenna is called a planar phased array antenna; if these antenna radiating elements are distributed on a curved surface, this kind of phased array antenna is called a curved surface phased array antenna; If these antenna radiating elements are distributed on the surface of the object and are consistent with the shape of the object, this kind of phased array antenna is called a conformal phased array antenna.
  • a multi-beam phased array antenna refers to an antenna array that excites the required amplitude and phase to the antenna radiating elements in the phased array antenna through a beamforming network to form shaped beams of different shapes. That is, by controlling the amplitude and phase of the antenna radiating elements, multiple antenna arrays with beams of different directions can be simultaneously formed. It can flexibly control the number and shape of the beams, and can control the beams for fast scanning.
  • Multi-beam phased array antennas are divided into digital multi-beam phased array antennas and analog multi-beam phased array antennas.
  • Analog multi-beam phased array antennas use analog devices (such as phase shifters) to form beams, and the phase adjustment is performed at radio frequency (radio frequency, RF) or intermediate frequency (intermediate frequency, IF) frequency.
  • the digital multi-beam phased array antenna uses digital sampling and a digital processor to form beams, and its phase adjustment is carried out in the baseband, that is, the addition of amplitude and phase is realized in the digital domain (that is, digital beamforming).
  • FIG. 1 it is a schematic structural diagram of an existing digital multi-beam phased array antenna.
  • the digital multi-beam phased array antenna includes an antenna array composed of antenna (antenna) unit 1 to antenna unit N, with Band pass filter (BPF), duplexer (diplexer, DPX) / switch (switch, S), power amplifier (power amplifier, PA), low noise amplifier (low noise amplifier, LNA), mixer , analog to digital (AD)/digital to analog (DA) circuit, digital beam forming network (DBFN).
  • BPF Band pass filter
  • duplexer duplexer
  • DPX duplexer
  • switch switch
  • S power amplifier
  • PA power amplifier
  • LNA low noise amplifier
  • mixer analog to digital (AD)/digital to analog (DA) circuit
  • AD analog to digital
  • DA digital beam forming network
  • the antenna array is used for signal transmission and reception; BPF is used for signal filtering; DPX/S is used for switching the working mode (transmission mode/reception mode) of the antenna unit; PA and LNA are used for signal power amplification; The frequency of the signal; DBFN is used to adjust the phase of the signal to realize the addition of amplitude and phase, that is, to complete the process of digital beamforming.
  • FIG. 1 there are x directional beams formed by the digital multi-beam phased array antenna, beam 1 to beam x.
  • DBFN When the digital multi-beam phased array antenna is used as the sending end (for example: switching to the sending mode through DPX/S), DBFN performs up-conversion on the low-IF input signals of each channel (M channel is used as an example in Figure 1), and then according to The azimuth, pitch angle and other information of each input signal calculates the corresponding weighted value, weights the signals respectively, and then takes the signals of each channel and adds them up in turn to recompose M channels of signals, which are converted by DA circuit and then mixed.
  • the frequency is up-converted by the frequency converter, LNA is amplified, BPF is filtered, and it is emitted by the antenna unit.
  • the antenna unit When the digital multi-beam phased array antenna is used as the receiving end (for example: switch to the receiving mode through DPX/S), the antenna unit will receive the electromagnetic wave from the space, after BPF filtering, PA amplification, and the mixer, the RF signal will be Downconvert to IF.
  • the analog-to-digital conversion is carried out through the AD circuit.
  • DBFN calculates the corresponding weighted value based on beam azimuth, elevation angle, frequency and other information, and weights and sums the signals of each channel, and down-converts the signals of each channel to low intermediate frequency output through digital frequency conversion.
  • FIG. 2 a it is a schematic structural diagram of an existing Rotman lens beamforming network, which is a simulated beamforming network. It can be understood as an analog multi-beam feed network.
  • the architecture includes ports 1 to 7 and a printed circuit board (PCB) 8 . One of the ports may correspond to one beam.
  • the function of this architecture is similar to the DBFN function in the architecture shown in Figure 1, both of which are used to excite the required amplitude and phase to the antenna radiating unit to form shaped beams with different directions. Please refer to the existing technology for specific principles. No more details.
  • Fig. 2b is a schematic diagram of the beam simulation results formed when the feed network shown in Fig. 2a is used to excite the antenna array. It can be seen from Fig. 2b that the formed directional beams include seven beams, such as beams B1 to B7.
  • the antenna aperture (or effective area) is a parameter representing the efficiency of the antenna to receive radio wave power.
  • the antenna aperture is defined as the area perpendicular to the direction of the incident radio wave and effectively intercepting the energy of the incident radio wave.
  • the polarization characteristic of the antenna is a parameter describing the spatial orientation of the electromagnetic wave vector radiated by the antenna.
  • the polarization characteristic of the antenna is related to the spatial orientation of the electric field intensity vector of the electromagnetic wave radiated by the antenna in the maximum radiation direction. Since the electric field has a constant relationship with the magnetic field, the spatial orientation of the electric field vector is generally used as the polarization direction of the electromagnetic wave radiated by the antenna.
  • the polarization of the antenna is divided into linear polarization, circular polarization and elliptical polarization. Linear polarization is further divided into horizontal polarization and vertical polarization, and circular polarization is further divided into left-handed circular polarization and right-handed circular polarization.
  • the satellite communication system adopts high-performance multi-beam phased array antenna to improve the spectrum efficiency of the communication system.
  • the gain of the antenna array is low, so related technologies are needed to increase the gain of the antenna array.
  • the existing scheme by adopting a new space-borne phased array architecture, and adopting methods such as improving the efficiency of the power amplifier, improving the aperture efficiency of the antenna radiation, and reducing the peak-to-average ratio, the energy consumption ratio of each bit (bit) of data is improved. Purpose, thereby increasing the gain of the antenna array.
  • Zero index metamaterial is a metamaterial with zero permittivity or permeability, which can shape the beam of electromagnetic waves.
  • its unique zero-phase-shift characteristic can produce beam-converging effect on electromagnetic waves.
  • a novel near-zero refractive index metamaterial unit based on a complementary two-sided symmetrical open ring structure is proposed, which is covered 5 millimeters (mm) above the common microstrip antenna. In order to achieve the purpose of increasing the gain of the antenna array.
  • FIG. 3 it is the structure schematic diagram of existing a kind of complementary two-sided symmetric open ring (complementary duallayer symmetry resonator ring, CDSRR) zero-refractive index metamaterial unit, this CDSRR
  • the zero-refractive-index metamaterial unit is composed of a dielectric substrate with a thickness of 1mm and double-sided copper clad. There are symmetrical annular gaps etched on both sides of the substrate. Vertical slits, and a square slit is etched around the CDSRR zero-index metamaterial unit.
  • the ring gap width a is 0.1mm
  • the inner circle patch radius b is 2.1mm
  • the inner circle and outer circle radius difference c is 0.8mm
  • the edge length P of the square outline is 6mm
  • the unit period P0 is 6.2mm .
  • FIG. 3 is a simulation diagram of placing the CDSRR zero-refractive-index metamaterial unit in a waveguide surrounded by electric and magnetic walls.
  • Fig. 4 is the variation curve of the refractive index of the optimized CDSRR zero-refractive index metamaterial unit with R, and x and y in Fig. 4 are the real part and the imaginary part of the refractive index of the CDSRR zero-refractive index metamaterial unit, respectively. It can be seen from Figure 4 that with the increase of R, the zero-refractive-index frequency band moves to the lower frequency band.
  • Figure 5 (b) shows the cladding layer structure formed by the arrangement of CDSRR zero-refractive-index metamaterial units, which can be placed 5mm above the microstrip antenna.
  • FIG. 6 shows the comparison diagram of the reflection coefficient curve of the microstrip antenna before and after adding the cover layer, from (a) figure, after adding the cover layer, the microstrip antenna is (Hz) still has a good matching effect.
  • Figure 6 (b) is a schematic diagram of the comparison results of the actual gain of the microstrip antenna before and after loading the covering layer. It can be seen from (b) that the actual gain of the microstrip antenna before loading the covering layer is 7.53dBi, and the loading of the covering layer The actual gain of the rear microstrip antenna is 9.59dBi, and the gain of the microstrip antenna is increased by 2.06dBi after the covering layer is loaded.
  • the above scheme can achieve the purpose of increasing the gain of the antenna array, but since the structure of the covering layer is fixed, the beam angle generated by the antenna array is also fixed, so it can only increase the gain of the antenna array that generates a fixed beam, and cannot improve the output of the antenna array.
  • the gain of the antenna array scanning the beam.
  • the structure of the covering layer is fixed. Taking curve 3 in Figure 4 as an example, it can be seen from Figure 4 that only when the operating frequency is 10GHz, The refractive index of the covering layer is close to 0, which can achieve the effect of increasing the gain of the antenna array. At other operating frequencies, the refractive index of the covering layer is not 0, which does not achieve the effect of increasing the gain of the antenna array.
  • FIG. 7 shows a schematic structural diagram of an antenna loaded with a radome.
  • the antenna 100 includes a radiation component 110 and a radome 120 .
  • the radiation component 110 includes a radiation body 111 , a dielectric component 112 and an antenna feeding end 113 .
  • 121 to 123 are dielectric materials, and a plurality of S-shaped metal patterns 212 to 218 are arranged on the upper surface of the dielectric materials 121 to 123, and the lower surface has a plurality of reverse S-shaped metal patterns relative to the S-shaped metal patterns 212 to 218 222 to 228.
  • the radome 120 can also be regarded as composed of a plurality of array elements 130 .
  • Figure 8 shows a graph of the gain frequency response of the antenna structure loaded with a radome.
  • the curve 42 is the gain-frequency response curve of a single microstrip antenna
  • the curve 44 is the gain-frequency response curve of a radome plus a microstrip antenna. It can be seen from Figure 8 that a single microstrip antenna has a maximum gain of 5.07dBi at 6.4GHz, and a microstrip antenna with a radome has a maximum gain of 8.61dBi at 5.8GHz. Compared with the gain of the microstrip antenna, the gain value is increased by about 3.54dBi.
  • This solution can achieve the purpose of increasing the gain of the antenna array. It can be seen from Fig. 8 that due to the influence of the radome, the working frequency band of the antenna array has changed. It can only increase the gain of the antenna array generating fixed beams, but cannot increase the gain of the antenna array generating scanning beams.
  • FIG. 9 it is a schematic structural diagram of an existing digital multi-beam phased array antenna system.
  • the system architecture includes field programmable gate array (field programmable gate array, FPGA), radio chip (radio on chip, ROC), mixer, temperature compensation attenuator (thermo variable attenuators, TVA), driver (driver) PA, high power amplifier (high power amplifier, HPA), RF chain (chain), antenna array composed of antenna unit 1 to antenna unit M, etc.
  • FPGA and ROC are used to complete the function of digital beamforming.
  • the specific working principle of this architecture is similar to that shown in Figure 1.
  • the purpose of increasing the gain of the antenna array is achieved by increasing the number of channels 901 shown in FIG. 9 , but the increased channels 901 consume power consumption of the communication system.
  • the embodiments of the present application provide an antenna array, a communication method, and a communication device.
  • the gain of the antenna array capable of generating scanning beams and fixed beams ( Hereinafter, it will be collectively referred to as increasing the gain of the antenna array).
  • Orthogonal frequency-division multiple access OFDMA
  • single carrier frequency-division multiple access single carrier FDMA
  • SC-FDMA single carrier frequency-division multiple access
  • satellite communication system NTN system
  • Internet of things Internet of things, IoT
  • IoT Internet of things
  • system can be used interchangeably with "network”.
  • the communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • An embodiment of the present application provides an antenna array, and the antenna array may be applicable to the communication system exemplified in the foregoing embodiments.
  • the antenna array includes a first number of main antenna elements and a second number of parasitic antenna elements.
  • the first quantity and the second quantity can be the same or different.
  • the main antenna unit can refer to the antenna unit directly feeding the excitation signal
  • the parasitic antenna unit can refer to the antenna unit fed by electromagnetic coupling
  • the parasitic antenna unit can be a waveguide horn antenna, a dipole antenna, a patch antenna At least one of them may be the same as or different from the main antenna unit, and the application does not specifically limit the types of the main antenna unit and the parasitic antenna unit.
  • each main antenna unit of the third number of main antenna units corresponds to at least one parasitic antenna unit, and the third number is less than or equal to the first number. That is, no parasitic antenna unit may be placed around a main antenna unit, or one or more parasitic antenna units may be placed.
  • the distance d between the main antenna unit and the corresponding parasitic antenna unit satisfies: a ⁇ d ⁇ , a is the target distance determined according to the distance between the main antenna unit and the main antenna unit adjacent to the main antenna unit, a is a real number greater than 0, ⁇ is the wavelength of an electromagnetic wave whose frequency is the working frequency of the antenna array in free space, and ⁇ is a real number greater than 0. Based on this, the distance d between the main antenna unit and the corresponding parasitic antenna unit satisfies the above conditions, which can prevent the parasitic antenna unit from affecting the gain of the original main antenna unit.
  • increasing the parasitic antenna unit is equivalent to increasing the radiation unit of the antenna array composed of the original main antenna unit, that is, increasing the radiation area of the antenna array, and the increased parasitic antenna unit will not increase the power consumption of the communication system.
  • the gain of the antenna array can be increased.
  • the distance between each parasitic antenna unit and the main antenna unit may be equal or unequal.
  • the distance between the parasitic antenna unit corresponding to each main antenna unit and the main antenna unit, and the distance between the parasitic antenna units corresponding to other main antenna units and the other main antenna units can be Equal, or not equal.
  • the main antenna units may be uniformly arranged (also referred to as arrangement), that is, the distance between any two main antenna units is equal, and the value of a may be the distance between adjacent main antenna units. spacing between rows.
  • the main antenna elements may not be evenly arranged, that is, there are at least two intervals among the plurality of arrangement intervals that are unequal, that is, uneven.
  • the distance between any two main antenna elements may also be unequal.
  • the value of a may be determined according to the distance between the main antenna unit and the main antenna unit adjacent to the main antenna unit. For example, if there are multiple main antenna units adjacent to a main antenna unit, then there will be multiple distance values, and the value of a can be the maximum distance among them, or the average, mode, and median of multiple distances Count and so on.
  • the value of a can also be determined according to the arrangement spacing between some or all of the main antenna elements in the antenna array. It can be understood that when the antenna array is not evenly arranged, the distance between the main antenna elements may not be equal , there will also be multiple arrangement distances at this time, and the value of a can also be the maximum distance in the multiple arrangement distances, or the average value, mode, median, etc. of the multiple distances. The value is not specifically limited.
  • the multiple parasitic antenna units corresponding to the main antenna unit may be uniformly arranged, that is, the distance between any two parasitic antenna units is equal. It may also not be uniformly arranged, that is, there are at least two pitches among the plurality of pitches that are not equal, that is, uneven. The distance between any two parasitic antenna elements may also be unequal.
  • the distance between adjacent parasitic antenna units may be the distance between adjacent main antenna units, or the value of a, or other distances, which may be set according to actual needs.
  • all parasitic antenna elements corresponding to all main antenna elements may be arranged uniformly or not. The present application does not make any specific limitations on the arrangement of the parasitic antenna units and the distance between adjacent parasitic antenna units.
  • the antenna array in the embodiment of the present application can be a linear array, a planar array, a curved array, a three-dimensional array, a conformal array
  • a conformal array refers to an array antenna attached to the surface of a carrier and attached to a carrier, That is, the array antenna needs to be conformally installed on a fixed-shaped surface to form a non-planar conformal antenna array, that is, an array with the same shape as an object is called a conformal array, for example: the shape of an aircraft or a radar same array).
  • the antenna array includes an antenna array arranged in a plane, and the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are on the same plane.
  • the main antenna unit can be located in any direction such as left, right, front, rear, etc. of the parasitic antenna. It can be understood that, in the embodiment of the present application, the antenna array can be a planar array, a three-dimensional array (for example: a cube array, a cylinder array, a cone array, a sphere array, etc.), a conformal array, etc.
  • the main antenna units are arranged in a planar manner, for example: the upper and lower bases of a cylinder array are antenna arrays arranged in a plane, and each surface of a cube array is an antenna array arranged in a plane.
  • FIG. 10a shows a schematic diagram in which a main antenna unit and a parasitic antenna unit corresponding to the main antenna unit are on the same plane.
  • the main antenna unit 101 and the five parasitic antenna units 102 corresponding to the main antenna unit 101 are located on a plane 100 .
  • the distance between the main antenna unit 101 and the parasitic antenna unit 102 corresponding to the main antenna unit is d.
  • the antenna array includes an antenna array arranged on a curved surface, and the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are on the same curved surface.
  • the main antenna unit can also be located in any direction such as left, right, front, rear, etc. of the parasitic antenna. It can be understood that, in the embodiment of the present application, the antenna array can be a curved surface array, a three-dimensional array (for example: a cylinder array, a sphere array, etc.), a conformal array, etc.
  • the main antenna all or part of the main antenna
  • the units are arranged in a curved surface, for example: the side of the cylinder array is an antenna array arranged in a curved surface, and the spherical array is an antenna array arranged in a curved surface.
  • FIG. 10 b shows a schematic diagram in which the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are on the same curved surface.
  • the main antenna unit 104 and the three parasitic antenna units 105 corresponding to the main antenna unit 104 are on the curved surface 103 .
  • the distance between the main antenna unit 101 and the parasitic antenna unit 102 corresponding to the main antenna unit is d.
  • the antenna array includes a planar antenna array and/or a curved antenna array
  • the parasitic antenna unit corresponding to the main antenna unit is located vertically above the arrangement surface of the main antenna unit. It should be pointed out that, in the embodiment of the present application, the vertical upper direction of the arrangement surface of the main antenna unit is related to the orientation of the arrangement surface of the main antenna.
  • FIG. 10c shows a schematic diagram in which the parasitic antenna unit corresponding to the main antenna unit is located vertically above the main antenna unit arrangement surface when the arrangement surface of the main antenna unit faces upward.
  • the main antenna unit 106 is located in plane A
  • the parasitic antenna unit 107 corresponding to the main antenna unit is located in plane B
  • plane B is located above plane A.
  • the distance between the main antenna unit 101 and the parasitic antenna unit 102 corresponding to the main antenna unit is d.
  • plane A also referred to as A plane
  • plane B also referred to as B plane
  • the antenna array composed of parasitic antenna elements in B plane is the same as that in A plane
  • the antenna array formed by the main antenna elements may be parallel or non-parallel.
  • the arrangement manner of the parasitic antenna elements in the B plane may be the same as or different from the arrangement manner of the main antenna elements in the A plane.
  • Fig. 10d shows a schematic diagram of the parasitic antenna unit corresponding to the main antenna unit being located vertically above the main antenna unit arrangement surface when the arrangement surface of the main antenna unit faces to the right.
  • the main antenna unit 108 is located in plane C
  • the parasitic antenna unit 109 corresponding to the main antenna unit 108 is located in plane D
  • plane D is located on the right of plane C.
  • the distance between the main antenna unit 101 and the parasitic antenna unit 102 corresponding to the main antenna unit is d.
  • plane C also referred to as C plane
  • plane D also referred to as D plane
  • the antenna array formed by the main antenna elements may be parallel or non-parallel.
  • the arrangement of the parasitic antenna elements in the D plane may be the same as or different from the arrangement of the main antenna elements in the C plane.
  • Fig. 10a and Fig. 10d are an example where the main antenna unit corresponds to one parasitic antenna unit, and the above solution is also applicable to the case where the main antenna unit corresponds to multiple parasitic antenna units.
  • the antenna array includes a planar antenna array and/or a curved antenna array
  • the parasitic antenna unit corresponding to the antenna unit is located vertically above the main antenna unit arrangement surface
  • the main antenna unit and The height difference h between the parasitic antenna units corresponding to the main antenna unit satisfies a ⁇ h ⁇ 0.5 ⁇ .
  • the distance d between the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit is called h.
  • the heights between each parasitic antenna unit and the main antenna unit may be equal or unequal.
  • the height between the parasitic antenna unit corresponding to each main antenna unit and the main antenna unit, and the height between the parasitic antenna units corresponding to other main antenna units and the other main antenna unit can be Equal, or not equal.
  • the main antenna unit and the parasitic antenna units corresponding to the main antenna unit are respectively connected to the active channels corresponding to the main antenna unit through power distribution devices.
  • one main antenna unit may correspond to one or more active channels, which will be described uniformly here.
  • a power distribution device can connect a main antenna unit and part or all of the parasitic antenna units in the parasitic antenna unit corresponding to the main antenna, that is, a main antenna unit and a main antenna unit can be connected through one or more power distribution devices.
  • the parasitic antenna unit corresponding to the main antenna unit is connected to the same active channel.
  • the power distribution device is a device with a shunt function, which can divide one signal into multiple signals for transmission, or combine multiple signals into one for transmission.
  • the power distribution device is a passive device.
  • the power distribution device may be a coupler or an unequal power divider, and the present application does not limit the specific type of the power distribution device.
  • devices in the active channel include but are not limited to: mixers, power amplifiers, low noise amplifiers, filters and so on.
  • FIG. 11 shows a schematic diagram of the structure of the main antenna unit and the parasitic antenna unit connected to the active channel through a power distribution device.
  • a main antenna unit and the parasitic antenna unit corresponding to the main antenna unit are connected to the active channel 1100 through a power distribution device.
  • the power distribution device may be connected with the feeding point of the main antenna unit and the feeding point of the parasitic antenna unit.
  • the main antenna unit corresponds to one parasitic antenna unit. Or all parasitic antenna elements are connected.
  • the antenna array includes 9 main antenna elements, and the main antenna elements and the parasitic antenna elements are uniformly arranged on the same plane as an example.
  • FIG. 12 is an example of an antenna array without parasitic antenna elements
  • FIG. 12 is a schematic diagram of a simulation structure of an antenna array with a parasitic antenna unit added.
  • FIG. 13 shows a schematic diagram of a simulation result of the gain of the antenna array shown in FIG. 12 .
  • (a) and (b) in FIG. 13 are the gain results of the antenna array shown in (a) in FIG. 12 when the beam points to 0° and the beam points to 40°, respectively.
  • the direction of the beam, the pointing of the beam, the pointing of the beam, etc. have the same meaning, and they will be collectively described here.
  • Figures (a) and (b) in Figure 14 are the results of the gain of the antenna array in Figure 12 (b) when the beam points to 0° and the beam points to 40°, respectively.
  • the degree of coupling of the coupler will affect the insertion loss caused by the coupler, which will further affect the gain of the antenna array. Therefore, in practical applications, a coupler with an appropriate coupling degree can be selected for shunting according to needs.
  • the power distribution device inputs a part of the power originally to be input to the main antenna unit to the parasitic antenna unit corresponding to the main antenna unit.
  • the addition of the parasitic antenna unit does not increase the power consumption of the original communication system where the main antenna unit is located, and the added power distribution device will not increase the power consumption of the communication system.
  • the parasitic antenna elements that is, the radiation elements in the antenna array are increased, that is, the radiation area of the antenna array is increased, and thus the gain of the antenna array can be improved.
  • the gain of the antenna array is improved.
  • the main antenna unit is connected to an active channel corresponding to the main antenna unit.
  • the parasitic antenna element may not be connected to the active channel.
  • the main antenna unit may be directly connected to the active channel, or may be indirectly connected to the active channel.
  • FIG. 15 shows a schematic diagram of a structure in which a main antenna unit is connected to an active channel corresponding to the antenna unit.
  • the main antenna unit is connected to the active channel 1500 .
  • the active channel can be connected with the feeding point of the main antenna unit.
  • the parasitic antenna unit need not be connected to the active channel 1500 .
  • the antenna array includes 8 main antenna elements, and the main antenna elements and the parasitic antenna elements are evenly arranged on the same plane as an example.
  • FIG. 16 shows the antenna array without parasitic antenna elements A schematic diagram of a simulation structure
  • FIG. 16 is a schematic diagram of a simulation structure of an antenna array with a parasitic antenna unit added.
  • FIG. 17 and FIG. 18 show schematic diagrams of simulation results of the gain of the antenna array shown in FIG. 16 .
  • (a) and (b) in FIG. 17 are the gain results of the antenna array shown in (a) in FIG. 16 when the beam points to 0° and the beam points to 35°, respectively.
  • Figures (a) and (b) in Figure 18 are the gain results of the antenna array shown in Figure 16 (b) when the beam points to 0° and the beam points to 35°, respectively.
  • the gain of the antenna array shown in the (a) figure in Figure 16 is 12.0dB
  • the antenna array includes 8 main antenna units, the main antenna units are uniformly arranged, and the parasitic antenna unit corresponding to the main antenna unit is located vertically above the arrangement surface of the main antenna units as an example,
  • (a ) is a schematic diagram of a simulation structure of an antenna array without a parasitic antenna unit
  • (b) in FIG. 19 is a schematic diagram of a simulation structure of an antenna array with a parasitic antenna unit added.
  • Fig. 20 and Fig. 21 are schematic diagrams showing the simulation results of the gain of the antenna array shown in Fig. 19 .
  • (a) and (b) in FIG. 20 are the gain results of the antenna array shown in (a) in FIG. 19 when the beam points to 0° and the beam points to 30°, respectively.
  • Figures (a) and (b) in Figure 21 are the gain results of the antenna array shown in Figure 19 (b) when the beam points to 0° and the beam points to 30°, respectively.
  • the added parasitic antenna unit in this embodiment does not increase the power consumption of the communication system, and can also increase the gain of the antenna array without increasing the power consumption of the communication system.
  • the scanning beam angle increases, the gain of the communication system increases, and the improvement of the antenna array gain is not limited by the beam scanning angle.
  • the main antenna unit is connected to the corresponding active channel, and the parasitic antenna unit is no longer connected to the active channel, that is, the active
  • the output power of the channel is all fed into the main antenna unit and no longer into the parasitic antenna unit.
  • the transmission and/or reception of electromagnetic waves can be completed through the re-radiation of the parasitic antenna unit, so the parasitic unit will not increase the original main antenna unit.
  • power consumption of the communication system By increasing the parasitic antenna elements, that is, the radiation elements in the antenna array are increased, that is, the radiation area of the antenna array is increased, and thus the gain of the antenna array can be improved. On the basis of not increasing the power consumption of the communication system, the gain of the antenna array is improved.
  • the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit satisfy at least one of the following:
  • the phase of the main antenna element is the same as the phase of the parasitic antenna element corresponding to the main antenna element. That is, the phases between the parasitic antenna elements corresponding to the same main antenna element are also the same.
  • the gain of the main antenna unit is less than or equal to the gain of the parasitic antenna unit corresponding to the main antenna unit. That is, the gain of the parasitic antenna unit corresponding to the selected main antenna unit must be greater than or equal to the gain of the main antenna unit, that is, the performance of the parasitic antenna unit corresponding to the main antenna unit may be better than that of the main antenna unit. Therefore, assuming that a parasitic antenna unit is placed in an antenna array composed of main antenna units, it can be ensured that the newly placed parasitic antenna unit will not affect the gain of the antenna array formed by the original main antenna unit. It is also possible to further increase the gain of the antenna array.
  • the working frequency of the main antenna unit is the same as the working frequency of the parasitic antenna unit corresponding to the main antenna unit. That is, the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit work in the same frequency band, so that the electromagnetic waves sent by the main antenna unit and the electromagnetic waves sent by the parasitic antenna unit corresponding to the main antenna unit can form the same directional beam; or , the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit can receive electromagnetic waves forming the same directional beam.
  • the polarization characteristic of the main antenna unit is the same as the polarization characteristic of the parasitic antenna unit corresponding to the main antenna unit. For example: if the polarization direction of a main antenna unit is left-handed circular polarization, then the polarization direction of the parasitic antenna unit corresponding to the main antenna unit is also left-handed circular polarization.
  • the antenna array provided in the embodiment of the present application can be applied to both an analog antenna architecture and a digital antenna architecture.
  • FIG. 22 shows a system architecture of a digital phased array antenna provided by an embodiment of the present application.
  • the system architecture includes baseband processing module, AD/DA conversion module, mixer, PA, LNA, switch circuit, filter, antenna array composed of main antenna unit and parasitic antenna unit, etc.
  • the baseband processing module is used to adjust the phase of the transmission signal to realize the addition of amplitude and phase, that is, to complete the process of digital beamforming.
  • the switch circuit can be used to switch the working mode (transmitting mode/receiving mode) of the antenna unit.
  • the system architecture When the system architecture is used as a sending signal, data is transmitted from the direction of the baseband processing module to the direction of the antenna array, and when the system architecture is receiving signals, the data is transmitted from the direction of the antenna array to the direction of the baseband processing module.
  • the functions of other modules and/or devices in the architecture please refer to the functions of the corresponding modules and/or devices shown in FIG. 1 , which will not be repeated here.
  • FIG. 23 it is a communication method provided by the embodiment of the present application.
  • This method can be applied to the antenna array shown in FIG.
  • Receiving signals can also be used as a sending end and a receiving end at the same time to send and receive signals.
  • the method includes the following steps S2301 to S2302, and when the antenna array receives a signal, the method includes the following steps S2303 to S2304.
  • the power distribution device is used for dividing one electrical signal into multiple electrical signals.
  • the powers of the multiple electrical signals may or may not be equal.
  • the power of the second electrical signal received by each parasitic antenna unit may or may not be equal.
  • the power of the first electrical signal received by the main antenna unit and the power of the second electrical signal received by the second parasitic antenna unit corresponding to the main antenna unit may or may not be equal.
  • the frequency of the first electrical signal is the same as that of the second electrical signal
  • the phase of the first electrical signal is the same as that of the second electrical signal. That is, information such as the frequency and phase of the electrical signal sent and/or received by the main antenna unit is the same as the frequency and phase of the electrical signal sent and/or received by the parasitic antenna unit corresponding to the main antenna unit, and will be described uniformly here.
  • the frequency of the first electromagnetic wave is the same as that of the second electromagnetic wave
  • the wavelength of the first electromagnetic wave is also the same as that of the second electromagnetic wave
  • the propagation direction of the first electromagnetic wave is the same as that of the second electromagnetic wave. That is, information such as the frequency, wavelength, and direction of propagation of electromagnetic waves sent and/or received by the main antenna unit is the same as the frequency, wavelength, and direction of propagation of electromagnetic waves sent and/or received by the parasitic antenna unit corresponding to the main antenna unit. This unified description.
  • the first electromagnetic wave and the second electromagnetic wave may form the same beam. That is, the first electromagnetic wave and the second electromagnetic wave come from electromagnetic waves forming the same directional beam.
  • the power distribution device is used for synthesizing multiple electrical signals into one electrical signal.
  • the antenna array can send and receive signals at the same time, the "first electrical signal” and “second electrical signal” described in steps S2301 to S2302 are different from the “first electrical signal” and “second electrical signal” described in steps S2303 to S2304
  • the second electrical signal may be a different electrical signal.
  • the "first electromagnetic wave” and “second electromagnetic wave” described in steps S2301 to S2302 may be different from the “first electromagnetic wave” and “second electromagnetic wave” described in steps S2303 to S2304.
  • FIG. 24 it is another communication method provided by the embodiment of the present application.
  • This method can be applied to the antenna array shown in FIG.
  • the terminal receives signals, and can also act as a transmitting terminal and a receiving terminal at the same time to send and receive signals.
  • the method includes the following steps S2401 to S2402, and when the antenna array receives a signal, the method includes the following steps S2403 to S2404.
  • the main antenna unit may receive the electrical signal from an active channel corresponding to the main antenna unit.
  • S2402. Receive and send the second electromagnetic wave radiated by the first electromagnetic wave through the parasitic antenna unit corresponding to the main antenna unit.
  • the first electromagnetic wave sent by the main antenna unit forms an electromagnetic field in space, and under the action of the electromagnetic field, the parasitic antenna unit can receive the electromagnetic wave.
  • “radiation” can also be called “coupling”. Due to the mutual influence between the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit, the first electromagnetic wave sent by the main antenna unit into the space will be coupled To the parasitic antenna unit corresponding to the main antenna unit, that is, the first electromagnetic wave will be transmitted from the side of the main antenna unit to the side of the parasitic antenna unit corresponding to the main antenna unit.
  • the electromagnetic wave transmitted to the parasitic antenna unit is called the second electromagnetic wave. Then, the parasitic antenna unit sends the second electromagnetic wave again.
  • the electromagnetic wave (ie, the second electromagnetic wave) received by the parasitic antenna unit may be part of the electromagnetic wave (ie, the first electromagnetic wave) sent by the main antenna unit, and the electromagnetic wave sent again by the parasitic antenna unit may be part of the received electromagnetic wave.
  • the first electromagnetic wave and the second electromagnetic wave may form the same beam. That is, the first electromagnetic wave and the second electromagnetic wave come from electromagnetic waves forming the same directional beam.
  • the parasitic antenna unit after receiving the second electromagnetic wave, the parasitic antenna unit will send the electromagnetic wave again. Then, the transmitted electromagnetic wave will radiate to the corresponding main antenna unit in space.
  • the "radiation" in this step can also be described as "coupling". Due to the mutual influence between the main antenna unit and the parasitic antenna unit corresponding to the main antenna unit, the parasitic antenna unit sends to the space again.
  • the electromagnetic wave will be coupled to the corresponding main antenna unit, and the electromagnetic wave coupled to the main antenna unit is called a third electromagnetic wave.
  • the electromagnetic wave resent by the parasitic antenna unit may be a part of the second received electromagnetic wave
  • the third electromagnetic wave may be a part of the electromagnetic wave resent by the parasitic antenna unit.
  • the antenna array can send and receive signals at the same time, the "electrical signal” described in steps S2401 to S2402 may be different from the “electrical signal” described in steps S2403 to S2404. Similarly, the "first electromagnetic wave” and “second electromagnetic wave” described in steps S2401 to S2402 may be different from the “first electromagnetic wave” and “second electromagnetic wave” described in steps S2403 to S2404.
  • the embodiment of the present application also provides a communication device, the communication device includes the antenna array provided in the embodiment of the present application, the communication device can be applied to the above communication system, and the communication device can be a terminal or a network device.
  • the above-mentioned terminal is a terminal that accesses the network and has a wireless transceiver function, or a chip or a chip system that can be provided in the terminal.
  • the terminal may also be called user equipment (uesr equipment, UE), access terminal, subscriber unit (subscriber unit), subscriber station, mobile station (mobile station, MS), mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal in the embodiment of the present application can be mobile phone (mobile phone), cellular phone (cellular phone), smart phone (smart phone), tablet computer (Pad), wireless data card, personal digital assistant computer (personal digital assistant, PDA) ), wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, computer with wireless transceiver function, virtual reality (virtual reality, VR) Terminals, augmented reality (augmented reality, AR) terminals, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, smart grid wireless terminal in grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, vehicle-mounted terminal, roadside unit with terminal function (road side unit, RSU) and so on.
  • the terminal of the present application may also be an on-vehicle module, on-vehicle module, on-vehicle component, on-vehicle chip, or on-vehicle unit built into the vehicle as one or more components or
  • the above-mentioned network equipment is a device located on the network side of the above-mentioned communication system and having a wireless transceiver function, or a chip or a chip system that can be provided in the device.
  • the network equipment may include: a next-generation mobile communication system, such as the access network equipment of the sixth generation mobile communication technology (6th generation mobile communication technology, 6G), such as a 6G base station, or a 6G core network element, or in the next generation
  • the network device may also have other naming methods, all of which are covered within the protection scope of the embodiments of the present application, and the present application does not make any limitation on this.
  • the network equipment can also include the fifth generation mobile communication technology (5th generation mobile communication technology, 5G), such as the base station (next generation node B, gNB) in the new air interface (new radio, NR) system, or, 5G
  • 5G fifth generation mobile communication technology
  • the base station node B
  • gNB new air interface
  • NR new radio
  • BBU baseband unit
  • CU DU
  • roadside unit roadside unit
  • RSU roadside unit with base station function
  • wired access gateway etc.
  • the network equipment may also include access points (access points, APs) in wireless fidelity (wireless fidelity, WiFi) systems, wireless relay nodes, wireless backhaul nodes, various forms of macro base stations, micro base stations (also known as small stations), relay stations, access points, wearable devices, vehicle-mounted devices, and more.
  • access points access points, APs
  • wireless fidelity wireless fidelity, WiFi
  • wireless relay nodes wireless backhaul nodes
  • various forms of macro base stations such as macro base stations, micro base stations (also known as small stations), relay stations, access points, wearable devices, vehicle-mounted devices, and more.
  • the communication device 2500 includes an antenna array 2501 , a fourth number of active channels 2503 , and a fifth number of power distribution devices 2502 .
  • the fourth quantity and the fifth quantity may be the same or different.
  • a processor 2504 and a memory 2505 coupled with the processor 2504 may also be included.
  • the above-mentioned antenna array 2501 may include multiple antenna units, and each antenna unit may be used to implement the transceiver function of the communication device 2500 .
  • each antenna unit may be used to implement the transceiver function of the communication device 2500 .
  • the main antenna unit and the parasitic antenna units corresponding to the main antenna unit are respectively connected to the active channel 2503 corresponding to the main antenna unit through the power distribution device 2502 .
  • the power distributing device 2502 can be used to implement the splitting function, divide one signal into multiple signals, or combine multiple signals into one signal.
  • One end of the power distribution device 2502 can be used to connect the main antenna unit in the antenna array 2501 and the parasitic antenna unit corresponding to the main antenna unit (for example: respectively connected to the feeding point of the main antenna unit and the feeding point of the parasitic antenna unit).
  • the other end can be used to connect to the active channel 2503 corresponding to the main antenna unit.
  • Active channel 2503 may be used to process signals and/or transmit signals.
  • active devices included in the active channel 2503 include power amplifiers, mixers, and the like.
  • Active channel 2503 is connected to power distribution device 2502 .
  • power distribution device 2502 For other introductions about this active channel, please refer to the above, and will not repeat them here.
  • the above-mentioned processor 2504 is the control center of the communication device 2500, and may be one processing element, or may be a general term for multiple processing elements, or may also be called a logic circuit.
  • the processor 2504 is one or more central processing units (central processing unit, CPU), may also be a specific integrated circuit (application specific integrated circuit, ASIC), or is configured to implement one or more An integrated circuit, for example: one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA).
  • the processor 2504 can perform various functions of the communication device 2500 by running or executing software programs stored in the processor 2505, and calling data stored in the processor 2505, such as controlling the antenna array 2501 to transmit signals, or controlling the antenna array 2501 receives signals, etc.
  • the processor 2504 may include one or more CPUs.
  • the communication device 2500 may also include multiple processors 2504, and each of these processors 2504 may be a single-core processor (single-CPU) or a multi-core processor (multi-CPU ).
  • Processor 2504 herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the above-mentioned processor 2505 is used to store software programs for executing the solution of the present application, and is controlled by the processor 2504, so that the communication device 2500 can perform various functions, such as controlling the antenna array 2501 to transmit signals, or controlling the antenna array 2501 to receive signals, etc.
  • the processor 2505 can be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, or a random access memory (random access memory, RAM) that can store information and other types of dynamic storage devices for instructions, it can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other Optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disc storage media or other magnetic storage devices, or capable of carrying or storing desired programs in the form of instructions or data structures code and any other medium that can be accessed by a computer, without limitation.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • FIG. 26 it is a schematic structural diagram of another communication device provided by the embodiment of the present application.
  • the communication device 2600 includes an antenna array 2601 and a fourth number of active channels 2602 .
  • a processor 2603 and a memory 2604 coupled with the processor 2603 may also be included.
  • the antenna array 2601, active channel 2602, processor 2603, and memory 2604 please refer to the introduction of the antenna array 2501, active channel 2503, processor 2504, and memory 2505 described in FIG. .
  • the communication device differs from the communication device shown in FIG. 25 in that the main antenna unit is connected to the active channel corresponding to the main antenna unit.
  • the parasitic antenna corresponding to the main antenna unit is not connected to the active channel corresponding to the main antenna unit.
  • FIG 27 it is a communication method provided by the embodiment of the present application.
  • This method can apply the communication device shown in Figure 25.
  • the communication device can be used as the sending end to send signals, or, as the receiving end to receive signals, it can also be At the same time, it acts as the sending end and the receiving end to send and receive signals.
  • the method includes the following steps S2701 to S2704, and when the communication device sends a signal, the method includes the following steps S2705 to S2708.
  • the first electromagnetic wave and the second electromagnetic wave may form the same beam. That is, the first electromagnetic wave and the second electromagnetic wave come from electromagnetic waves forming the same directional beam.
  • the active channel may perform amplification, frequency conversion, etc. on the electrical signal.
  • the “first electrical signal”, “second electrical signal”, and “electrical signal” described in steps S2701 to S2704 are different from the “second electrical signal” described in steps S2705 to S2708.
  • An electrical signal”, “second electrical signal”, and “electrical signal” may be different electrical signals.
  • the “first electromagnetic wave” and “second electromagnetic wave” described in steps S2701 to S2704 may be different from the “first electromagnetic wave” and “second electromagnetic wave” described in steps S2705 to S2708.
  • FIG 28 it is another communication method provided by the embodiment of the present application.
  • This method can apply the communication device shown in Figure 26.
  • the communication device can be used as the sending end to send signals, or, as the receiving end to receive signals, or It can be used as the transmitter and receiver at the same time to send and receive signals.
  • the method includes the following steps S2801 to S2803, and when the communication device receives a signal, the method includes the following steps S2804 to S2807.
  • S2803 Receive and send the second electromagnetic wave radiated by the first electromagnetic wave through the parasitic antenna unit corresponding to the main antenna unit.
  • step S2402 shown in FIG. 24 .
  • the first electromagnetic wave and the second electromagnetic wave may form the same beam. That is, the first electromagnetic wave and the second electromagnetic wave come from electromagnetic waves forming the same directional beam.
  • step S2404 For the reception of this step, please refer to the related introduction of step S2404 shown in FIG. 24 .
  • the active channel can amplify, convert the frequency, etc. of the electrical signal.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种天线阵列、通信方法以及通信装置,涉及天线技术领域,能够在不增加通信系统功耗的基础上,提升天线阵列的增益。天线阵列包括第一数量的主天线单元以及第二数量的寄生天线单元,其中,第三数量的主天线单元中每个主天线单元分别对应至少一个寄生天线单元,第三数量小于或等于第一数量;其中,主天线单元与对应的寄生天线单元之间的距离d满足:a≤d≤λ,a为根据主天线单元和与主天线单元相邻的主天线单元之间的距离确定的目标距离,a为大于0的实数,λ是频率为天线阵列的工作频率的电磁波在自由空间中的波长,λ为大于0的实数。

Description

天线阵列、通信方法以及通信装置
本申请要求于2021年12月31日提交国家知识产权局、申请号为202111679565.3、发明名称为“天线阵列、通信方法以及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种天线阵列、通信方法以及通信装置。
背景技术
随着卫星通信的大规模发展,为满足终端用户日益增长的流量需求,需要提高通信系统的频谱效率。
目前,在卫星通信系统中可以采用高性能的多波束相控阵列天线架构来提高通信系统的频谱效率,其中,多波束相控阵天线架构中包括由主天线单元构成的天线阵列,以及与主天线单元的馈电点连接的有源通道。但是受限于卫星平台的能源能力、真空环境传导、辐射散热等因素,天线阵列的增益较低,因此需要相关技术来提高天线阵列的增益。
现有的方案中通过增加多波束相控阵列天线系统中的主天线单元以及与主天线单元连接的有源通道的数目,以达到提高天线阵列增益的目的,但是该提升天线阵列增益的方案会增加通信系统的功耗。
发明内容
本申请提供一种天线阵列、通信方法以及通信装置,能够在不增加通信系统功耗的基础上,提升天线阵列的增益。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供一种天线阵列,包括第一数量的主天线单元以及第二数量的寄生天线单元,其中,第三数量的主天线单元中每个主天线单元分别对应至少一个寄生天线单元,第三数量小于或等于第一数量;其中,主天线单元与对应的寄生天线单元之间的距离d满足:a≤d≤λ,a为根据主天线单元和与主天线单元相邻的主天线单元之间的距离确定的目标距离,a为大于0的实数,λ是频率为天线阵列的工作频率的电磁波在自由空间中的波长,λ为大于0的实数。
基于上述技术方案,在天线阵列中,包括主天线单元,以及主天线单元对应的寄生天线单元,主天线单元和主天线单元对应的寄生天线单元之间的距离d满足条件:a≤d≤λ,基于此,可以避免寄生天线单元影响原有主天线单元的增益,并且增加寄生天线单元,相当于增加了由原有主天线单元所构成的天线阵列的辐射单元,也即增加了天线阵列的辐射面积,且增加的寄生天线单元不会增加通信系统(即天线阵列所在的天线系统)的功耗,在不增加通信系统功耗的基础上,可以提升天线阵列的增益。
一种可能的设计中,天线阵列包括平面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一平面;或者,天线阵列包括曲面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一曲面;或者,天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方。
一种可能的设计中,在天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方的情况下,主天线单元与主天线单元对应的寄生天线单元之间的高度差h满足:a≤h≤0.5λ。
一种可能的设计中,主天线单元与主天线单元对应的寄生天线单元分别通过功率分配器件连接至与主天线单元对应的有源通道;功率分配器件为耦合器或者不等分功分器。基于该设计,利用功率分配器件将有源通道中的输出功率馈入该有源通道对应的主天线单元,以及与该主天线单元对应的寄生天线单元,或者,从主天线单元以及该主天线单元对应的寄生天线单元接收信号,以使得主天线单元以及对应的寄生天线单元能够完成发送和/或接收电磁波的过程。对于原有主天线单元所在的通信系统来讲,功率分配器件是将原有需要输入主天线单元的功率中的一部分馈入与该主天线单元对应的寄生天线单元的,因此寄生天线单元的加入,并未增加原有主天线单元所在的通信系统的功耗。且增加的功率分配器件也不会增加通信系统的功耗。通过增加寄生天线单元,即增加了天线阵列中的辐射单元,也即增加了天线阵列的辐射面积,进而可以提高天线阵列的增益。因此,在不增加通信系统功耗的基础上,提升了天线阵列的增益。
一种可能的设计中,主天线单元连接与主天线单元对应的有源通道。基于该设计,主天线单元与对应的有源通道连接,寄生天线单元不再与有源通道连接,也即无需向寄生天线单元馈入有源通道的输出功率,通过寄生天线单元再次辐射的方式即可完成电磁波的发送和/或接收,因此寄生天线单元的加入,并未增加通信系统的功耗。通过增加寄生天线单元,即增加了天线阵列中的辐射单元,也即增加了天线阵列的辐射面积,进而可以提升天线阵列的增益。在不增加通信系统功耗的基础上,提升了天线阵列的增益。
一种可能的设计中,主天线单元与主天线单元对应的寄生天线单元满足以下至少一项:主天线单元的相位与主天线单元对应的寄生天线单元的相位相同;主天线单元的增益小于或等于主天线单元对应的寄生天线单元的增益;主天线单元的工作频率与主天线单元对应的寄生天线单元的工作频率相同;主天线单元的极化特性与主天线单元对应的寄生天线单元的极化特性相同。
第二方面,本申请提供一种通信方法,应用于上述第一方面中所述的天线阵列,方法包括:通过主天线单元从功率分配器件接收第一电信号,以及通过主天线单元对应的寄生天线单元从功率分配器件接收第二电信号;功率分配器件用于将一路电信号分成多路电信号;通过主天线单元发送根据第一电信号生成的第一电磁波,以及通过主天线单元对应的寄生天线单元发送根据第二电信号生成的第二电磁波;和/或,通过主天线单元接收第一电磁波,以及通过主天线单元对应的寄生天线单元接收第二电磁波,第一电磁波与第二电磁波可形成同一波束;通过主天线单元向功率分配器件发送根据第一电磁波生成的第一电信号,以及通过主天线单元对应的寄生天线单元向功率分配器件发送根据第二电磁波生成的第二电信号;功率分配器件用于将多路电信号合成一路电信号。
一种可能的设计中,天线阵列包括平面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一平面;或者,天线阵列包括曲面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一曲面;或者,天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方。
一种可能的设计中,在天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵 列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方的情况下,主天线单元与主天线单元对应的寄生天线单元之间的高度差h满足:a≤h≤0.5λ。
一种可能的设计中,主天线单元与主天线单元对应的寄生天线单元分别通过功率分配器件连接至与主天线单元对应的有源通道;功率分配器件为耦合器或者不等分功分器。
一种可能的设计中,主天线单元与主天线单元对应的寄生天线单元满足以下至少一项:主天线单元的相位与主天线单元对应的寄生天线单元的相位相同;主天线单元的增益小于或等于主天线单元对应的寄生天线单元的增益;主天线单元的工作频率与主天线单元对应的寄生天线单元的工作频率相同;主天线单元的极化特性与主天线单元对应的寄生天线单元的极化特性相同。
第三方面,本申请提供一种通信方法,应用于上述第一方面所述的天线阵列,方法包括:通过主天线单元接收电信号,以及通过主天线单元发送根据电信号生成的第一电磁波;通过主天线单元对应的寄生天线单元接收并发送第一电磁波辐射的第二电磁波。和/或,通过主天线单元接收第一电磁波,以及通过主天线单元对应的寄生天线单元接收第二电磁波,第一电磁波与第二电磁波可形成同一波束;通过主天线单元接收第二电磁波辐射的第三电磁波,以及通过主天线单元发送根据第一电磁波以及第三电磁波生成的电信号。
一种可能的设计中,天线阵列包括平面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一平面;或者,天线阵列包括曲面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一曲面;或者,天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方。
一种可能的设计中,在天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方的情况下,主天线单元与主天线单元对应的寄生天线单元之间的高度差h满足:a≤h≤0.5λ。
一种可能的设计中,主天线单元连接与主天线单元对应的有源通道。
一种可能的设计中,主天线单元与主天线单元对应的寄生天线单元满足以下至少一项:主天线单元的相位与主天线单元对应的寄生天线单元的相位相同;主天线单元的增益小于或等于主天线单元对应的寄生天线单元的增益;主天线单元的工作频率与主天线单元对应的寄生天线单元的工作频率相同;主天线单元的极化特性与主天线单元对应的寄生天线单元的极化特性相同。
第四方面,本申请提供一种通信装置,包括:上述第一方面所述的天线阵列、第四数量的有源通道以及第五数量的功率分配器件;其中,主天线单元与主天线单元对应的寄生天线单元分别通过功率分配器件连接至与主天线单元对应的有源通道。可选的,该通信装置还包括处理器,以及与处理器连接的存储器。
一种可能的设计中,天线阵列包括平面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一平面;或者,天线阵列包括曲面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一曲面;或者,天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方。
一种可能的设计中,在天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵 列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方的情况下,主天线单元与主天线单元对应的寄生天线单元之间的高度差h满足:a≤h≤0.5λ。
一种可能的设计中,主天线单元与主天线单元对应的寄生天线单元满足以下至少一项:主天线单元的相位与主天线单元对应的寄生天线单元的相位相同;主天线单元的增益小于或等于主天线单元对应的寄生天线单元的增益;主天线单元的工作频率与主天线单元对应的寄生天线单元的工作频率相同;主天线单元的极化特性与主天线单元对应的寄生天线单元的极化特性相同。
第五方面,本申请提供一种通信装置,包括:上述第一方面所述的天线阵列以及第四数量的有源通道;主天线单元连接与主天线单元对应的有源通道。可选的,该通信装置还包括处理器,以及与处理器连接的存储器。
一种可能的设计中,天线阵列包括平面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一平面;或者,天线阵列包括曲面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一曲面;或者,天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方。
一种可能的设计中,在天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方的情况下,主天线单元与主天线单元对应的寄生天线单元之间的高度差h满足:a≤h≤0.5λ。
一种可能的设计中,主天线单元与主天线单元对应的寄生天线单元满足以下至少一项:主天线单元的相位与主天线单元对应的寄生天线单元的相位相同;主天线单元的增益小于或等于主天线单元对应的寄生天线单元的增益;主天线单元的工作频率与主天线单元对应的寄生天线单元的工作频率相同;主天线单元的极化特性与主天线单元对应的寄生天线单元的极化特性相同。
第六方面,本申请提供一种通信方法,应用于上述第四方面所述的通信装置,方法包括:通过主天线单元接收第一电磁波,以及通过主天线单元对应的寄生天线单元接收第二电磁波,第一电磁波以及第二电磁波可形成同一波束;通过主天线单元向功率分配器件发送根据第一电磁波生成的第一电信号,以及通过主天线单元对应的寄生天线单元向功率分配器件发送根据第二电磁波生成的第二电信号;通过功率分配器件向有源通道发送根据第一电信号以及第二电信号合成的一路电信号;通过有源通道处理电信号。和/或,通过有源通道向功率分配器件发送生成的电信号;通过功率分配器件将电信号分流成第一电信号以及第二电信号;通过主天线单元从功率分配器件接收第一电信号,以及通过主天线单元对应的寄生天线单元从功率分配器件接收第二电信号;通过主天线单元发送根据第一电信号生成的第一电磁波,以及通过主天线单元对应的寄生天线单元发送根据第二电信号生成的第二电磁波。
一种可能的设计中,天线阵列包括平面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一平面;或者,天线阵列包括曲面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一曲面;或者,天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方。
一种可能的设计中,在天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方的情况下,主天 线单元与主天线单元对应的寄生天线单元之间的高度差h满足:a≤h≤0.5λ。
一种可能的设计中,主天线单元与主天线单元对应的寄生天线单元满足以下至少一项:主天线单元的相位与主天线单元对应的寄生天线单元的相位相同;主天线单元的增益小于或等于主天线单元对应的寄生天线单元的增益;主天线单元的工作频率与主天线单元对应的寄生天线单元的工作频率相同;主天线单元的极化特性与主天线单元对应的寄生天线单元的极化特性相同。
第七方面,本申请提供一种通信方法,应用于上述第五方面所述的通信装置,方法包括:通过有源通道向主天线单元发送生成的电信号;通过主天线单元发送根据电信号生成的第一电磁波;通过主天线单元对应的寄生天线单元接收并发送第一电磁波辐射的第二电磁波。和/或,通过主天线单元接收第一电磁波,以及通过主天线单元对应的寄生天线单元接收第二电磁波,第一电磁波以及第二电磁波可形成同一波束;通过主天线单元接收第二电磁波辐射的第三电磁波;通过主天线单元向有源通道发送根据第一电磁波以及第三电磁波生成的电信号;通过有源通道处理电信号。
一种可能的设计中,天线阵列包括平面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一平面;或者,天线阵列包括曲面排布的天线阵列,主天线单元与主天线单元对应的寄生天线单元处于同一曲面;或者,天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方。
一种可能的设计中,在天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方的情况下,主天线单元与主天线单元对应的寄生天线单元之间的高度差h满足:a≤h≤0.5λ。
一种可能的设计中,主天线单元与主天线单元对应的寄生天线单元满足以下至少一项:主天线单元的相位与主天线单元对应的寄生天线单元的相位相同;主天线单元的增益小于或等于主天线单元对应的寄生天线单元的增益;主天线单元的工作频率与主天线单元对应的寄生天线单元的工作频率相同;主天线单元的极化特性与主天线单元对应的寄生天线单元的极化特性相同。
需要说明的是,上述第二方面至第七方面中任一设计所带来的技术效果可以参见第一方面中对应设计所带来的技术效果,此处不再赘述。
附图说明
图1为数字多波束相控阵天线的架构示意图;
图2a为罗特曼透镜波束成形网络的架构示意图;
图2b为采用罗特曼透镜波束成形网络仿真的结果示意图;
图3为一种互补的双面对称开口圆环零折射率超材料单元的结构示意图;
图4为CDSRR零折射率超材料单元的折射率随R的变化曲线示意图;
图5为微带天线的俯视图以及CDSRR零折射率超材料单元排列形成的覆盖层的结构示意图;
图6为微带天线在添加覆盖层前后微带天线的反射系数曲线的对比图以及加载覆盖层前后微带天线的实际增益的比较结果示意图;
图7为在天线近场处加载天线罩的天线结构示意图;
图8为加载天线罩的天线结构的增益频率响应图;
图9为数字多波束相控阵天线系统的架构示意图;
图10a为本申请实施例提供的一种天线阵列的示意图;
图10b为本申请实施例提供的又一种天线阵列的示意图;
图10c为本申请实施例提供的又一种天线阵列的示意图;
图10d为本申请实施例提供的又一种天线阵列的示意图;
图11为本申请实施例提供的一种天线阵列架构的示意图;
图12为本申请实施例提供的一种天线阵列的仿真结构示意图;
图13为本申请实施例提供的一种未加寄生天线单元的天线阵列增益的仿真结果示意图;
图14为本申请实施例提供的一种加寄生天线单元的天线阵列增益的仿真结果示意图;
图15为本申请实施例提供的另一种天线阵列架构的示意图;
图16为本申请实施例提供的另一种天线阵列的仿真结构示意图;
图17为本申请实施例提供的另一种未加寄生天线单元的天线阵列增益的仿真结果示意图;
图18为本申请实施例提供的另一种加寄生天线单元的天线阵列增益的仿真结果示意图;
图19为本申请实施例提供的又一种天线阵列的仿真结构示意图;
图20为本申请实施例提供的又一种未加寄生天线单元的天线阵列增益的仿真结果示意图;
图21为本申请实施例提供的又一种加寄生天线单元的天线阵列增益的仿真结果示意图;
图22为本申请实施例提供的一种数字相控阵天线系统的架构示意图;
图23为本申请实施例提供的一种通信方法的流程示意图;
图24为本申请实施例提供的另一种通信方法的流程示意图;
图25为本申请实施例提供的一种通信装置的结构示意图;
图26为本申请实施例提供的另一种通信装置的结构示意图;
图27为本申请实施例提供的又一种通信方法的流程示意图;
图28为本申请实施例提供的又一种通信方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行详细的描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为便于理解,下面先对本申请实施例可能涉及到的技术术语和相关概念进行介绍。
1、非地面网络(non-terrestrial network,NTN)通信系统
NTN通信系统可以包括卫星通信系统,其可以指将基站或者部分基站功能部署在卫星上为终端设备提供覆盖的通信系统。卫星通信具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理位置限制等显著优点,已经被广泛应用于海上通信、定位导航、抗险救灾、科学实验、视频广播、对地观测等多个领域。
按照卫星高度,即卫星轨道高度,可以将卫星通信系统分为高椭圆轨道(highly elliptical orbiting,HEO)通信系统、高轨(geostationary earth orbit,GEO)卫星通信系统、中轨(medium earth orbit,MEO)卫星通信系统和低轨(low-earth orbit,LEO)卫星通信系统。其中,GEO卫星又称静止卫星,其运动速度与地球自转速度相同,因此GEO卫星相对地面保持静止状态。卫星提供的服务覆盖区域称为卫星的小区。对应的,GEO卫星的小区也是静止的。GEO卫星的小区的覆盖范围较广,一般情况下小区的直径为500千米(kilometre,km)。LEO卫星相对地面移动较快,大约7Km每秒,因此LEO卫星的小区也随之移动。通常来说,卫星的轨道越高其覆盖范围越广,但是其通信时延也越长。
按照卫星波束是否随卫星的运动而运动对卫星通信系统分类,可以将卫星通信系统分为非凝视卫星系统和凝视卫星系统。非凝视卫星系统的卫星的波束随着卫星的运动而运动,对于卫星而言,卫星的各波束的角度不会随时间变化;凝视卫星系统的卫星的波束不会随着卫星的运动而运动。
此外,NTN通信系统还可以包括高空平台(high altitude platform station,HAPS)通信系统,HAPS通信系统是将基站或者部分基站功能部署在高空平台上为终端设备提供覆盖的通信系统。
2、波束、波束扫描
波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以包括数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
波束扫描是指由天线装置依次发射不同方向的波束(即不同角度的波束)的过程。
3、天线增益、天线阵列的增益
天线增益(即天线的增益)指的是在输入功率相等的条件下,实际天线与理想天线在空间同一位置处所产生的功率密度之比。天线增益与天线方向图有密切的关系,天线方向图主瓣越窄,副瓣越小,天线增益越高。天线增益可用来衡量天线在一个特定方向收发信号的能力,也即在某个方向上、某个范围内产生信号的能力。表示天线增益的参数有dBd和dBi。需要指出的是,在本申请实施例中,dB为dBi的简写。
提高天线增益,可以使得某个方向上的信号覆盖范围增大。或者,在不改变信号覆盖范围的情况下,提高天线增益,可以提高该范围内的信号强度。对于单天线而言,可以通过缩窄天线的发射方向(即缩窄天线方向图中的波瓣宽度)的方式提高天线的增益。或者,还可以通过提升天线的带宽和频谱的方式提升天线的增益。但是前述的几种提高天线的增益的方式会受到各种条件制约,如此,难以提升天线的增益,进而难以提高系统的用户容量、数据吞吐量、覆盖距离和范围等。针对这一问题,智能天线技术应运而生,其利用多个天线组成天线阵列,利用天线之间的位置关系,多个天线向用户发 送相同的数据(相当于向某个方向上集中辐射能量),从而提高天线增益。
天线阵列的增益,指的是天线阵列把输入功率集中辐射的程度。天线阵列的增益用来衡量一个天线阵列在一个特定方向上收发信号的能力。天线阵列的增益与天线单元的结构、数目、排列方式等因素有关。在其他条件相同的情况下,增加天线阵列中天线单元的数目,可以增加天线阵列的辐射面积,进而提高天线阵列的增益。
4、天线阵列
为适合各种场合的应用,将工作在同一频率的两个或两个以上的单个天线,按照一定的要求进行馈电和空间排列构成天线阵列,也叫天线阵。构成天线阵列的天线辐射单元称为阵元,也可以称之为天线单元。
按照天线阵列中的天线单元的排列方式可以将天线阵列为为线形阵列、平面阵列和三维立体阵列(例如:球形阵列)等。按照天线阵列的辐射图形的指向可将天线阵列分为边射阵列、端射阵列和非边射非端射阵列等。
5、相控阵天线
相控阵天线指的是通过控制天线阵列中的天线辐射单元的馈电相位来实现改变方向图形状的天线。通过控制相位可以改变天线方向图最大场强值的指向,以达到波束扫描的目的。
相控阵天线是由天线阵面、馈线网络以及相应的控制电路等几部分组成。如果相控阵天线的馈电网络中不含有源电路,则称该相控阵天线为无源相控阵天线。如果相控阵天线的各个天线单元对应的馈电网络通道中都含有源器件(例如信号功率放大器、低噪声放大器、混频器等),则称此相控阵天线为有源相控阵天线。
相控阵天线阵面通常由许多天线辐射单元构成,这些天线辐射单元的相位由馈电网络通道激励。这些天线辐射单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。若这些天线辐射单元分布于平面上,则称此种相控阵天线为平面相控阵天线;若这些天线辐射单元分布于曲面上,则称此种相控阵天线为曲面相控阵天线;若这些天线辐射单元分布于物体表面,与物体外形相一致,则称此种相控阵天线为共形相控阵天线。
6、多波束相控阵天线
多波束相控阵天线,指的是通过波束形成网络向相控阵天线中的天线辐射单元激励所需的振幅和相位,以形成不同形状的成形波束的天线阵列。也即,能够通过控制天线辐射单元的振幅以及相位,以同时形成多个不同指向的波束的天线阵列。其可对波束数目和形状进行灵活控制,并可控制波束作快速扫描。
多波束相控阵天线分为数字多波束相控阵天线和模拟多波束相控阵天线。模拟多波束相控阵天线采用模拟器件(例如:移相器)来形成波束,相位调整是在射频(radio frequency,RF)或中频(intermediate frequency,IF)频率下进行的。数字多波束相控阵天线采用数字采样和数字处理器形成波束,其相位调整是在基带进行的,也即在数字域实现幅相相加(即数字波束形成)。
示例性的,如图1所示,为现有的数字多波束相控阵天线的架构示意图,数字多波束相控阵天线包括由天线(antenna)单元1至天线单元N构成的天线阵列,带通滤波器(band pass filter,BPF),双工器(diplexer,DPX)/开关(switch,S),功率放大器(power amplifier,PA),低噪声放大器(low noise amplifier,LNA),混频器,模数转换(analog to digital,AD)/数模转换(digital to analog,DA)电路、数字波束形成网络(digital beam forrning network,DBFN)。其中,天线阵列用于信号的收发; BPF用于信号滤波;DPX/S用于切换天线单元的工作模式(发送模式/接收模式);PA以及LNA用于信号功率的放大;混频器用于调整信号的频率;DBFN用于调整信号的相位,实现幅相相加,也即完成数字波束形成的过程。示例性的,如图1所示,该数字多波束相控阵天线形成的指向形波束有x个,波束1至波束x。
在数字多波束相控阵天线作为发送端时(例如:通过DPX/S切换至发送模式),DBFN对各路(图1是以M路为例的)低中频输入信号进行上变频,然后根据各路输入信号的方位、俯仰角等信息计算出对应的加权值,对信号分别进行加权,然后依次取各路信号相加,重新组成M路信号,经过DA电路进行数模转换,然后经过混频器上变频,LNA放大、BPF滤波,由天线单元发射出去。
在数字多波束相控阵天线作为接收端时(例如:通过DPX/S切换至接收模式),天线单元会接收空间传来的电磁波,经过BPF滤波、PA放大,经过混频器,将射频信号下变频至中频。经过AD电路进行模数转换。DBFN根据波束方位、俯仰角、频率等信息计算出对应的加权值,并将各路信号加权求和,通过数字变频,将各路信号下变频至低中频输出。
示例性的,如图2a所示,为现有的罗特曼透镜波束形成网络的架构示意图,其为模拟的波束形成网络。其可以理解为一个模拟多波束馈电网络。该架构包括端口1至端口7以及印刷电路板(printed circuit board,PCB)8。其中一个端口可以对应一个波束。该架构的功能与图1所示的架构中的DBFN功能类似,均用于向天线辐射单元激励所需的振幅和相位,以形成不同指向的成形波束,具体的原理请参考现有技术,本文不再详细赘述。图2b为采用图2a所示的馈电网络对天线阵列激励时形成的波束仿真结果示意图,从图2b可知,形成的指向形波束包括7个,如波束B1至B7。
7、天线口径。
在天线理论中,天线口径(或者有效面积)是表示天线接收无线电波功率的效率的参数。天线口径被定义为垂直于入射无线电波方向,并且有效截获入射无线电波能量的面积。
8、天线的极化特性
天线的极化特性是描述天线辐射电磁波矢量空间指向的参数,天线的极化特性与天线辐射的电磁波在最大辐射方向上电场强度矢量的空间指向有关。由于电场与磁场有恒定的关系,故一般都以电场矢量的空间指向作为天线辐射电磁波的极化方向。天线的极化分为线极化、圆极化和椭圆极化。线极化又分为水平极化和垂直极化,圆极化又分为左旋圆极化和右旋圆极化。
以上是对本申请实施例可能涉及的技术术语和相关概念的介绍,以下不再赘述。
目前,随着卫星通信的大规模发展,为满足终端用户日益增长的流量需求,卫星通信系统中通过采用高性能的多波束相控阵列天线来提高通信系统的频谱效率。但是受限于卫星平台的能源能力、真空环境传导、辐射散热等因素,天线阵列的增益较低,因此需要相关技术来提高天线阵列的增益。现有方案中通过采用新型星载相控阵架构,并采用提高功率放大器的效率、提高天线辐射的口径效率、降低峰均比等方式,以达到提高每比特(bit)数据的能耗比的目的,从而提高天线阵列的增益。
零折射率超材料(zero index metamaterial,ZIM)是介电常数或磁导率为零的一种超材料,其可以对电磁波的波束进行整形。另外,其特有的零相移特性可以对电磁波产生波束汇聚的作用。基于此,在现有的一种方案中,提出了一种基于互补的双面对称开 口圆环结构的新型近零折射率超材料单元,将其覆盖在普通微带天线上方5毫米(mm)处,以达到提升天线阵列增益的目的。
示例性的,如图3的(a)图所示,为现有的一种互补的双面对称开口圆环(complementary duallayer symmetry resonator ring,CDSRR)零折射率超材料单元的结构示意图,该CDSRR零折射率超材料单元由一个厚度为1mm双面覆铜的介质基板构成,在基板的两面刻蚀有对称的圆环缝隙,在内圆上刻蚀了两条与x轴成45°的相互垂直的细缝,且在CDSRR零折射率超材料单元的四周刻蚀了一条正方形细缝。其中,圆环缝隙宽度a为0.1mm,内圆贴片半径b为2.1mm,内圆与外圆半径差为c为0.8mm,边缘的方形轮廓边长P为6mm,单元周期P0为6.2mm。
图3中的(b)图为将CDSRR零折射率超材料单元放置在四周由电壁和磁壁所包围的波导中的仿真图。
对CDSRR零折射率超材料单元进行优化,将图3中的(a)图中的各个几何尺寸进行缩比变换,同时乘以一个比例系数R,以实现对CDSRR零折射率超材料单元的优化。图4为优化后CDSRR零折射率超材料单元的折射率随R的变化曲线,图4中的x、y分别为CDSRR零折射率超材料单元的折射率的实部以及虚部。从图4可知,随着R的增大,零折射率频段向低频段移动。
图5中的(a)图示出了微带天线的俯视图,其中,L*W=8.5mm*11.4mm。图5中的(b)图为CDSRR零折射率超材料单元排列形成的覆盖层结构,其可放置于微带天线上方5mm处。
图6中的(a)图示出了微带天线在添加覆盖层前后微带天线的反射系数曲线的对比图,从(a)图可知,在添加覆盖层之后,微带天线在9.95G赫兹(Hz)仍旧具有很好的匹配效果。图6中的(b)图为加载覆盖层前后微带天线的实际增益的比较结果示意图,从(b)图可以看出,加载覆盖层前微带天线的实际增益为7.53dBi,加载覆盖层后微带天线的实际增益为9.59dBi,加载覆盖层后微带天线的增益提高了2.06dBi。
上述方案可以达到提高天线阵列的增益的目的,但是由于覆盖层的结构是固定的,天线阵列产生的波束角度也是固定的,因此仅能够提升产生固定波束的天线阵列的增益,并不能够提升产生扫描波束的天线阵列的增益。对于产生扫描波束的天线阵列来讲,在其上方添加覆盖层之后,覆盖层的结构是固定,以图4中的曲线3为例,从图4可知,只有在工作频率为10GHz的情况下,覆盖层的折射率接近于0,可以达到提升天线阵列增益的效果,在其他工作频率时,覆盖层的折射率不为0,并不达到提高天线阵列增益的效果。
在现有的另一种方案中,提供一种通过在天线的近场处加载天线罩,以达到提升天线阵列的增益的目的。该天线罩的结构为周期性结构的超材料单元,该天线罩的金属图案为S形。示例性的,图7示出了加载天线罩的天线的结构示意图。天线100包括辐射组件110、天线罩120。辐射组件110包括辐射主体111、介质组件112以及天线馈入端113。其中,121至123为介电材料,在介电材料121至123上表面设置多个S形金属图形212至218,下表面具有相对于S形金属图形212至218的多个反S形金属图形222至228。天线罩120亦可以视为由多个阵元130所组成。
图8示出了加载天线罩的天线结构的增益频率响应图。以图7中的辐射组件为微带天线为例,曲线42为单一微带天线的增益频率响应曲线,曲线44为天线罩加微带天线的增益频率响应曲线。从图8可知,单一微带天线在6.4GHz处具有最大增益5.07dBi, 天线罩加微带天线在5.8GHz处具有最大增益8.61dBi,加载了天线罩的微带天线的增益与不加天线罩的微带天线的增益相比,增加约3.54dBi的增益值。
该方案可以达到提高天线阵列增益的目的,从图8可知,由于天线罩的影响,天线阵列的工作频段发生了改变。其也仅能够提升产生固定波束的天线阵列的增益,并不能够提升产生扫描波束的天线阵列的增益。
在现有的又一种方案中,通过增加相控阵天线系统中的通道数目,以提升相控阵天线系统的有效全向辐射功率(effective isotropic radiated power,EIRP),进而达到提升天线阵列的增益的目的。示例性的,如图9所示,为现有的一种数字多波束相控阵天线系统的架构示意图。在该系统架构中包括现场可编程门阵列(field programmable gate array,FPGA),无线电芯片(radio on chip,ROC)、混频器、温度补偿衰减器(thermo variable attenuators,TVA)、驱动(driver)PA,高功率放大器(high power amplifie,HPA),RF链路(chain)、由天线单元1至天线单元M构成的天线阵列等。其中,FPGA以及ROC用于完成数字波束赋形的功能,该架构具体的工作原理与图1所示的架构类似,具体请参考图1所示的数字多波束相控阵天线架构的工作原理,此处不再赘述。在该方案中,通过增加图9所示的通道901的数目来达到提高天线阵列增益的目的,但是其增加的通道901会消耗通信系统的功耗。以图9所示的架构包括8个通道为例,假设一个通道的功耗为25瓦(W),则8个通道的功耗为200W,增加一个通道,天线阵列的增益可以提升1.02dBi,通信系统的总功耗增加30W,总功耗增加15%,增加一倍的通道,天线阵列的增益可以提升6dBi,但是通信系统的功耗也成倍增加。虽然该方案既能够提升产生固定波束的天线阵列的增益,也能够提升产生扫描波束的天线阵列的增益,但是其会使得通信系统的功耗大大增加。
因此,为解决上述技术问题,本申请实施例提供一种天线阵列、通信方法以及通信装置,在保证不增加通信系统功耗的基础上,提升能够产生扫描波束以及固定波束的天线阵列的增益(后文统一简称为提高天线阵列的增益)。
本申请实施例的技术方案可以应用于各种通信系统。例如:正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)、卫星通信系统、NTN系统、物联网(internet of things,IoT)系统、或未来演进的通信系统等。术语“系统”可以和“网络”相互替换。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
本申请实施例提供一种天线阵列,该天线阵列可以适用于上述实施例所例举的通信系统。该天线阵列包括第一数量的主天线单元以及第二数量的寄生天线单元。第一数量与第二数量可以相同也可以不同。可以理解的,主天线单元可以指将激励信号直接馈入的天线单元,寄生天线单元可以指通过电磁耦合馈电的天线单元,寄生天线单元可以是波导喇叭天线、偶极子天线、贴片天线等中的至少一种,其可以与主天线单元相同,也可以不同,本申请对主天线单元以及寄生天线单元的类型不作具体限定。
该天线阵列中,第三数量的主天线单元中每个主天线单元分别对应至少一个寄生天线单元,第三数量小于或等于第一数量。也即一个主天线单元周边可以不放置寄生天线单元,也可以放置1个或者多个寄生天线单元。
其中,主天线单元与对应的寄生天线单元之间的距离d满足:a≤d≤λ,a为根据主天线单元和与主天线单元相邻的主天线单元之间的距离确定的目标距离,a为大于0的实数,λ是频率为天线阵列的工作频率的电磁波在自由空间中的波长,λ为大于0的实数。基于此,主天线单元与对应的寄生天线单元之间的距离d满足上述条件,可以避免寄生天线单元影响原有主天线单元的增益。并且增加寄生天线单元,相当于增加了由原有主天线单元所构成的天线阵列的辐射单元,也即增加了天线阵列的辐射面积,且增加的寄生天线单元不会增加通信系统的功耗,在不增加通信系统功耗的基础上,可以提升天线阵列的增益。
可以理解的是,对于一个主天线单元来讲,在其对应的多个寄生天线单元中,每个寄生天线单元到该主天线单元之间的距离可以相等,也可以不相等。对于不同主天线单元来讲,每个主天线单元对应的寄生天线单元与该主天线单元之间的距离,和,其他主天线单元对应的寄生天线单元与该其他主天线单元之间的距离可以相等,也可以不相等。
示例性的,主天线单元可以是均匀排布(也可称之为排列)的,也即任意两个主天线单元之间的距离是相等的,a的取值可以是相邻主天线单元之间的排列间距。
示例性的,主天线单元之间也可以不是均匀排布的,也即多个排列间距中,存在至少两个间距不相等,即不均匀。任意两个主天线单元之间的距离也可能不相等。若在一个主天线单元周围放置寄生天线单元,a的取值可以根据该主天线单元和与该主天线单元相邻的主天线单元之间的距离确定。例如,一个主天线单元相邻的主天线单元有多个,那么会存在多个距离值,a的取值可以为其中的最大距离,也可以是多个距离的平均值、众数、中位数等。
或者,a的取值还可以根据天线阵列中部分或者全部主天线单元之间的排列间距确定,可以理解,在天线阵列不是均匀排布的情况下,由于主天线单元之间的距离可能不相等,此时也会存在多个排列间距,a的取值也可以为多个排列间距中的最大距离,也可以是多个间距的平均值、众数、中位数等,本申请对a的取值不作具体限定。
可选的,与主天线单元对应的多个寄生天线单元可以是均匀排列的,也即任意两个寄生天线单元之间的距离相等。也可以不是均匀排列的,也即多个排列间距中,存在至少两个间距不相等,即不均匀。任意两个寄生天线单元之间的距离也可能不相等。可选的,相邻寄生天线单元之间的距离可以是相邻主天线单元之间的距离,也可以是a的取值,也可以是其他的距离,其可以根据实际需求进行设定。同样的,所有主天线单元对应的所有寄生天线单元可以是均匀排列的,也可以不是均匀排列的。本申请不对寄生天线单元的排列方式、相邻寄生天线单元之间的距离做任何具体限定。
示例性的,本申请实施例中的天线阵列可以是线性阵列、平面阵列、曲面阵列、三维立体阵列、共形阵列(共形阵列指的是附着于载体表面且与载体贴合的阵列天线,即需要将阵列天线共形安装在一个固定形状的表面上,从而形成非平面的共形天线阵,也即与物体的形状相同的阵列称之为共形阵列,例如:与飞机、雷达的形状相同的阵列)。
可选的,天线阵列包括平面排列的天线阵列,主天线单元与该主天线单元对应的寄生天线单元处于同一平面。主天线单元可以位于寄生天线的左方、右方、前方、后方等任意方向。可以理解的是,在本申请实施例中,天线阵列可以是平面阵列,三维立体阵列(例如:立方体阵列、圆柱体阵列、凌锥阵列、球体阵列等),共形阵列等,在该天 线阵列中,全部或者部分主天线单元采用平面排列的方式,例如:圆柱体阵列的上底和下底是平面排列的天线阵列,立方体阵列的各个面是平面排列的天线阵列。
以天线阵列为圆柱体阵列为例,图10a示出了主天线单元与该主天线单元对应的寄生天线单元处于同一平面的示意图。如图10a所示,主天线单元101与该主天线单元101对应的5个寄生天线单元102处于平面100上。示例性的,主天线单元101和该主天线单元对应的寄生天线单元102之间的距离为d。
需要说明的是,本申请实施例附图中所示的主天线单元以及寄生天线单元的排列方式、形态、数目等仅仅是为了便于理解本申请实施例中的方案所做出的简化示意图,并不对本申请构成限定,在此统一说明。
或者,天线阵列包括曲面排布的天线阵列,主天线单元与该主天线单元对应的寄生天线单元处于同一曲面。主天线单元同样可以位于寄生天线的左方、右方、前方、后方等任意方向。可以理解的是,在本申请实施例中,天线阵列可以是曲面阵列,三维立体阵列(例如:圆柱体阵列、球体阵列等),共形阵列等,在该天线阵列中,全部或者部分主天线单元采用曲面排列的方式,例如:圆柱体阵列的侧面是曲面排列的天线阵列,球体阵列是曲面排列的天线阵列。
还是以天线阵列为圆柱体阵列为例,图10b示出了主天线单元与主天线单元对应的寄生天线单元处于同一曲面的示意图。如图10b主天线单元104与主天线单元104对应的3个寄生天线单元105处于曲面103上。示例性的,主天线单元101和该主天线单元对应的寄生天线单元102之间的距离为d。
或者,天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,主天线单元对应的寄生天线单元位于该主天线单元排布面的垂直上方。需要指出的是,本申请实施例中,主天线单元排布面的垂直上方与主天线排布面的朝向是有关的。当该主天线的排布面为朝向上方时,垂直上方指的是高于该主天线的排布面的位置;当该主天线的排布面朝向右方时,垂直上方指的是该排布面的右侧;当该主天线的排布面朝向左方时,垂直上方指的是该排布面的左侧;当该主天线的排布面朝向下方时,垂直上方指的是低于该排布面的位置;当该主天线的排布面朝向前方时,垂直上方指的是该排布面的前方,当该主天线的排布面朝向后方时,垂直上方指的是该排布面的后方等等,也即主天线单元排布面的垂直上方指的是从该主天线单元排布面向该排布面朝向移动的方向。
以天线阵列为立方体阵列为例,图10c示出了主天线单元排布面朝向上方时,主天线单元对应的寄生天线单元位于该主天线单元排布面的垂直上方的示意图。如图10c所示,主天线单元106位于平面A中,该主天线单元对应的寄生天线单元107位于平面B中,平面B位于平面A的上方。示例性的,主天线单元101和该主天线单元对应的寄生天线单元102之间的距离为d。可选的,平面A(也可称为A平面)与平面B(也可称为B平面)可以平行,也可以不平行,即B平面中由寄生天线单元所组成的天线阵列与A平面中由主天线单元构成的天线阵列可以平行,也可以不平行。可选的,B平面中寄生天线单元的排列方式与A平面中主天线单元的排列方式可以相同,也可以不同。
图10d示出了主天线单元排布面朝向右方时,主天线单元对应的寄生天线单元位于该主天线单元排布面的垂直上方的示意图。如图10d所示,主天线单元108位于平面C中,该主天线单元108对应的寄生天线单元109位于平面D中,平面D位于平面C的右方。示例性的,主天线单元101和该主天线单元对应的寄生天线单元102之间的距离为d。同样的,平面C(也可称为C平面)与平面D(也可称为D平面)可以平行,也 可以不平行,即D平面中由寄生天线单元所组成的天线阵列与C平面中由主天线单元构成的天线阵列可以平行,也可以不平行。D平面中寄生天线单元的排列方式与C平面中主天线单元的排列方式可以相同,也可以不同。
需要说明的是,图10a与图10d是以主天线单元对应一个寄生天线单元为例,对于主天线单元对应多个寄生天线单元的情况,上述方案同样适用。
可选的,在天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列的,天线单元对应的寄生天线单元位于主天线单元排布面的垂直上方的情况下,主天线单元与主天线单元对应的寄生天线单元之间的高度差h满足a≤h≤0.5λ。示例性的,如图10c、图10d所示,此时主天线单元与该主天线单元对应的寄生天线单元之间的距离d称之为h。
可以理解的是,对于一个主天线单元来讲,对于其对应的多个寄生天线单元中,每个寄生天线单元到该主天线单元之间的高度可以相等,也可以不相等。对于不同主天线单元来讲,每个主天线单元对应的寄生天线单元与该主天线单元之间的高度,和,其他主天线单元对应的寄生天线单元与该其他主天线单元之间的高度可以相等,也可以不相等。
在一些实施例中,主天线单元与该主天线单元对应的寄生天线单元分别通过功率分配器件连接至与该主天线单元对应的有源通道。
可选的,一个主天线单元可以对应一个或者多个有源通道,在此统一说明。
可选的,一个功率分配器件可以连接一个主天线单元以及与该主天线对应的寄生天线单元中的部分或者全部寄生天线单元,也即可以通过一个或者多个功率分配器件将一个主天线单元和该主天线单元对应的寄生天线单元连接至同一有源通道。
可以理解,功率分配器件是具有分流功能的器件,其可以将一路信号分成多路信号传输,也可以将多路信号合成一路传输。可选的,功率分配器件为无源器件。可选的,功率分配器件可以是耦合器或者不等分功分器等,本申请并不限定功率分配器件的具体类型。
示例性的,在有源通道中的器件包括但不限定于:混频器、功率放大器、低噪声放大器、滤波器等等。
以有源通道中的器件包括功率放大器、滤波器为例,图11示出了主天线单元以及寄生天线单元通过功率分配器件连接至有源通道的架构示意图。如图11所示,一个主天线单元与该主天线单元对应的寄生天线单元通过功率分配器件连接至有源通道1100。其中,功率分配器件可以与主天线单元的馈电点以及寄生天线单元的馈电点连接。需要指出的是,图11是以主天线单元对应一个寄生天线单元示出的,在实际应用中,一个功率分配器件可以将主天线单元以及该主天线单元对应的多个寄生天线单元中的部分或者全部寄生天线单元连接。
在该实施例中,以天线阵列包括9个主天线单元,主天线单元与寄生天线单元在同一平面上均匀排列为例,图12中的(a)图为未加寄生天线单元的天线阵列的仿真结构示意图,图12中的(b)图为加寄生天线单元的天线阵列的仿真结构示意图。
以功率分配器件为耦合度为10dB的耦合器为例,图13示出了图12所示的天线阵列的增益的仿真结果示意图。其中,图13中的(a)图、(b)图分别为图12中(a)图所示的天线阵列在波束指向0°以及波束指向40°的增益的结果。其中,在本申请实施例中,波束的方向,波束指向,波束的指向等含义相同,在此统一说明。图14中 (a)图、(b)图分别为图12中(b)图的天线阵列在波束指向0°以及波束指向40°的增益的结果。
需要说明的是,耦合器的耦合度会影响耦合器所带来的插入损耗,进而会影响天线阵列的增益。因此在实际应用中,可以根据需要选择合适耦合度的耦合器进行分流。
从图13中(a)图可知,在波束指向0°时,图12中(a)图所示的天线阵列的增益为15dB,从图14中(a)图可知图12中(b)图所示的天线阵列的增益为16.6dB。由于耦合器插入有源通道会带来0.7dB的插入损耗,因此天线阵提高的增益为16.6-15-0.7=0.9dB。
从图13中(b)图可知,在波束指向40°时,图12中(a)图所示的天线阵列的增益为12dB,从图14中(b)图可知,图12中(b)图所示的天线阵列的增益为14.6dB。因此天线阵列提高的增益为14.6-12-0.7=1.9dB。因此,对于产生扫描波束的天线阵列,该实施例中增加的寄生天线单元以及功率分配器件都不会增加通信系统的功耗,在不增加通信系统功耗的基础上,提高了天线阵列的增益。并且,从图13以及图14可知,随着扫描波束角度的增加,通信系统提升的增益也随之增加,天线阵列增益的提升不受波束扫描角度的限制。
基于该实施例提供的技术方案,通过在主天线单元周围放置满足上述距离条件的寄生天线单元,然后利用功率分配器件将有源通道中的输出功率馈入该有源通道对应的主天线单元,以及与该主天线单元对应的寄生天线单元,或者,从主天线单元以及该主天线单元对应的寄生天线单元接收信号,以使得主天线单元以及对应的寄生天线单元能够完成发送和/或接收电磁波的过程。对于由主天线单元所在的通信系统来讲,功率分配器件是将原本待输入主天线单元的功率中的一部分输入到该主天线单元对应的寄生天线单元的。因此,寄生天线单元的加入并未增加原有主天线单元所在的通信系统的功耗,且增加的功率分配器件也不会增加通信系统的功耗。通过增加寄生天线单元,即增加了天线阵列中的辐射单元,也即增加了天线阵列的辐射面积,进而可以提升天线阵列的增益。在不增加通信系统功耗的基础上,提升了天线阵列的增益。
在另一些实施例中,主天线单元连接与该主天线单元对应的有源通道。在该实施例中,寄生天线单元可不与有源通道连接。可选的,主天线单元可以直接连接有源通道,也可以间接连接有源通道。
还是以有源通道中的器件包括功率放大器、滤波器为例,图15示出了主天线单元连接与该天线单元对应的有源通道的架构示意图。如图15所示,主天线单元连接有源通道1500。其中,有源通道可以与主天线单元的馈电点连接。寄生天线单元无需与有源通道1500连接。
在该实施例中,以天线阵列包括8个主天线单元,主天线单元与寄生天线单元在同一平面上均匀排列为例,图16中的(a)图为未加寄生天线单元的天线阵列的仿真结构示意图,图16中的(b)图为加寄生天线单元的天线阵列的仿真结构示意图。
图17、图18示出了图16所示的天线阵列的增益的仿真结果示意图。其中,图17中的(a)图、(b)图分别为图16中(a)图所示的天线阵列在波束指向0°以及波束指向35°的增益的结果。图18中(a)图、(b)图分别为图16中(b)图所示的天线阵列在波束指向0°以及波束指向35°的增益的结果。
在波束指向0°时,从图17中的(a)图可知,图16中(a)图所示的天线阵列的增益为15dB,从图18中(a)图可知,图16中(b)图所示的天线阵列的增益为 15.5dB。因此天线阵列提高的增益为15.5-15=0.5dB。
在波束指向35°时,从图17中的(b)图可知,图16中(a)图所示的天线阵列的增益为12.0dB,从图18中(b)图可知,图16中(b)图所示的天线阵列的增益为12.6dB。因此天线阵列提高的增益为12.6-12.0=0.6。因此,对于产生扫描波束的天线阵列,该实施例中增加的寄生天线单元并不增加通信系统的功耗,在不增加通信系统功耗的基础上,同样可以提高天线阵列的增益,且天线阵列增益的提升不受波束扫描角度的限制。
在该实施例中,以天线阵列包括8个主天线单元,主天线单元均匀排列,主天线单元对应的寄生天线单元位于该主天线单元排布面的垂直上方为例,图19中的(a)图为未加寄生天线单元的天线阵列的仿真结构示意图,图19中的(b)图为加寄生天线单元的天线阵列的仿真结构示意图。
图20、图21示出了图19所示的天线阵列的增益的仿真结果示意图。其中,图20中的(a)图、(b)图分别为图19中(a)图所示的天线阵列在波束指向0°以及波束指向30°的增益的结果。图21中(a)图、(b)图分别为图19中(b)图所示的天线阵列在波束指向0°以及波束指向30°的增益的结果。
在波束指向0°时,从图20中(a)图可知,图19中(a)图所示的天线阵列的增益为14.1dB,从图21中(a)图可知,图19中(b)图所示的天线阵列的增益为15.0dB。因此天线阵提高的增益为15.0-14.1=0.9dB。
在波束指向30°时,从图20中(b)图可知,图19中(a)图所示的天线阵列的增益为13.4dB,从图21中(b)图可知,图19中(b)图所示的天线阵列的增益为14.5dB。因此天线阵提高的增益为14.5-13.4=1.1dB。因此,对于产生扫描波束的天线阵列,该实施例中增加的寄生天线单元并不增加通信系统的功耗,在不增加通信系统功耗的同时,同样可以提高天线阵列的增益。并且,从图20、图21可知看出,随着扫描波束角度的增加,通信系统提升的增益也随之增加,其天线阵列增益的提升,不受波束扫描角度的限制。
基于该实施例提供的技术方案,通过在主天线单元周围放置满足上述距离条件的寄生天线单元,主天线单元与对应的有源通道连接,寄生天线单元不再与有源通道连接,即有源通道的输出功率全部馈入主天线单元,不再馈入寄生天线单元,通过寄生天线单元再次辐射的方式即可完成电磁波的发送和/或接收,因此寄生单元不会增加原有主天线单元所在的通信系统的功耗。通过增加寄生天线单元,即增加了天线阵列中的辐射单元,也即增加了天线阵列的辐射面积,进而可以提升天线阵列的增益。在不增加通信系统功耗的基础上,提升了天线阵列的增益。
主天线单元与主天线单元对应的寄生天线单元满足以下至少一项:
主天线单元的相位与主天线单元对应的寄生天线单元的相位相同。也即与同一主天线单元对应的寄生天线单元之间的相位也相同。
主天线单元的增益小于或等于主天线单元对应的寄生天线单元的增益。即选择的主天线单元对应的寄生天线单元的增益要大于等于该主天线单元的增益,也即主天线单元对应的寄生天线单元的性能可以优于该主天线单元的性能。由此,假设在一个由主天线单元构成的天线阵列中放置寄生天线单元,可以保证新放置的寄生天线单元不会影响原有主天线单元构成的天线阵列的增益。也可以进一步提升天线阵列的增益。
主天线单元的工作频率与主天线单元对应的寄生天线单元的工作频率相同。也即主 天线单元与该主天线单元对应的寄生天线单元工作在同一频段,以便于该主天线单元发送的电磁波以及该主天线单元对应的寄生天线单元发送的电磁波能够形成同一指向形波束;或者,该主天线单元以及该主天线单元对应的寄生天线单元能够接收形成同一指向形波束的电磁波。
主天线单元的极化特性与主天线单元对应的寄生天线单元的极化特性相同。例如:如果一个主天线单元的极化方向为左旋圆极化,那么该主天线单元对应的寄生天线单元的极化方向也为左旋圆极化。
需要说明的是,本申请实施例提供的天线阵列既可以应用于模拟天线架构中,也可应用与数字天线架构中。
示例性的,图22示出了本申请实施例提供的一种数字相控阵天线的系统架构。如图22所示,该系统架构包括基带处理模块、AD/DA转换模块、混频器、PA、LNA、开关电路、滤波器、由主天线单元以及寄生天线单元组成的天线阵列等。其中,基带处理模块用于调整传输信号的相位,实现幅相相加,也即完成数字波束形成的过程。开关电路可用于切换天线单元的工作模式(发送模式/接收模式)。在该系统架构作为发送信号时,数据由基带处理模块方向向天线阵列方向传输,在该系统架构接收信号时,数据由天线阵列方向向基带处理模块方向传输。该架构中其他模块和/或器件的功能请参考图1所示的对应模块和/或器件的功能,此处不再赘述。
示例性的,如图23所示,为本申请实施例提供的一种通信方法,该方法可以应用于图11所示的天线阵列,该天线阵列可以作为发送端发送信号,或者,作为接收端接收信号,还可以同时作为发送端以及接收端,进行信号的收发。在该天线阵列发送信号时,该方法包括以下步骤S2301至S2302,在该天线阵列接收信号时,该方法包括以下步骤S2303至S2304。
S2301、通过主天线单元从功率分配器件接收第一电信号,以及通过主天线单元对应的寄生天线单元从功率分配器件接收第二电信号。
其中,功率分配器件用于将一路电信号分成多路电信号。这多路电信号的功率可以相等也可以不相等。
可选的,对于一个主天线单元对应的多个寄生天线单元来讲,每个寄生天线单元接收的第二电信号的功率可以相等也可以不相等。主天线单元接收的第一电信号的功率与该主天线单元对应的第二寄生天线单元接收的第二电信号的功率可以相等也可以不相等。
可选的,第一电信号的频率与第二电信号的频率相同,第一电信号的相位与第二电信号的相位相同。也即主天线单元发送和/或接收的电信号的频率、相位等信息,与主天线单元对应的寄生天线单元发送和/或接收的电信号的频率、相位等信息相同,在此统一说明。
S2302、通过主天线单元发送根据第一电信号生成的第一电磁波,以及通过主天线单元对应的寄生天线单元发送根据第二电信号生成的第二电磁波。
可选的,第一电磁波的频率与第二电磁波的频率相同,第一电磁波的波长与第二电磁波的波长也相同,第一电磁波的传播方向与第二电磁波的传播方向相同。也即主天线单元发送和/或接收的电磁波的频率、波长、传播方向等信息,与主天线单元对应的寄生天线单元发送和/或接收的电磁波的频率、波长、传播方向等信息相同,在此统一说明。
S2303、通过主天线单元接收第一电磁波,以及通过主天线单元对应的寄生天线单元接收第二电磁波。
其中,第一电磁波与第二电磁波可形成同一波束。也即第一电磁波与第二电磁波来自形成同一指向形波束中的电磁波。
S2304、通过主天线单元向功率分配器件发送根据第一电磁波生成的第一电信号,以及通过主天线单元对应的寄生天线单元向功率分配器件发送根据第二电磁波生成的第二电信号。
其中,功率分配器件用于将多路电信号合成一路电信号。
需要指出的是,由于天线阵列可以同时收发信号,因此步骤S2301至S2302中描述的“第一电信号”、“第二电信号”与步骤S2303至S2304中描述的“第一电信号”、“第二电信号”可以是不同的电信号。同样的,步骤S2301至S2302中描述的“第一电磁波”、“第二电磁波”与步骤S2303至S2304中描述的“第一电磁波”、“第二电磁波”可以是不同的电磁波。
示例性的,如图24所示,为本申请实施例提供的又一种通信方法,该方法可以应用于图15所示的天线阵列,该天线阵列可以作为发送端发送信号,或者,作为接收端接收信号,还可以同时作为发送端以及接收端,进行信号的收发。在该天线阵列发送信号时,该方法包括以下步骤S2401至S2402,在该天线阵列接收信号时,该方法包括以下步骤S2403至S2404。
S2401、通过主天线单元接收电信号,以及通过主天线单元发送根据电信号生成的第一电磁波。
其中,主天线单元可以从与该主天线单元对应的有源通道接收该电信号。
S2402、通过主天线单元对应的寄生天线单元接收并发送第一电磁波辐射的第二电磁波。
其中,主天线单元发送的第一电磁波会在空间中形成电磁场,在该电磁场的作用下,该寄生天线单元可以接收该电磁波。在该步骤中,“辐射”也可称之为“耦合”,由于主天线单元与该主天线单元对应的寄生天线单元之间的相互影响,主天线单元发送到空间中的第一电磁波会耦合到该主天线单元对应的寄生天线单元,也即第一电磁波会从主天线单元一侧向该主天线单元对应的寄生天线单元一侧传输。其中,传输到寄生天线单元的电磁波称之为第二电磁波。然后,寄生天线单元会再次发送该第二电磁波。可选的,寄生天线单元接收的电磁波(即第二电磁波)可能是主天线单元发送的电磁波(即第一电磁波)的一部分,寄生天线单元再次发送的电磁波可能是该接收的电磁波的一部分。
S2403、通过主天线单元接收第一电磁波,以及通过主天线单元对应的寄生天线单元接收第二电磁波。
其中,第一电磁波与第二电磁波可形成同一波束。也即第一电磁波与第二电磁波来自形成同一指向形波束中的电磁波。
S2404、通过主天线单元接收第二电磁波辐射的第三电磁波,以及通过主天线单元发送根据第一电磁波以及第三电磁波生成的电信号。
其中,寄生天线单元接收到第二电磁波之后,会再次发送该电磁波。然后,该发送的电磁波会在空间中辐射到对应的主天线单元。在本申请实施中,该步骤中的“辐射”也可描述为“耦合”,由于主天线单元与该主天线单元对应的寄生天线单元之间的相互影 响,寄生天线单元再次发送到空间中的电磁波会耦合到对应的主天线单元,该耦合到主天线单元的电磁波称之为第三电磁波。可选的,寄生天线单元再次发送的电磁波可能是接收的第二电磁波的一部分,第三电磁波可能是该寄生天线单元再次发送的电磁波的一部分。
需要指出的是,由于该天线阵列可以同时收发信号,因此步骤S2401至S2402中描述的“电信号”与步骤S2403至S2404中描述的“电信号”可以是不同的电信号。同样的,步骤S2401至S2402中描述的“第一电磁波”、“第二电磁波”与步骤S2403至S2404中描述的“第一电磁波”、“第二电磁波”可以是不同的电磁波。
本申请实施例还提供了一种通信装置,该通信装置包括本申请实施例提供的天线阵列,该通信装置可以适用于上述通信系统,该通信装置可以为终端或网络设备。
其中,上述终端为接入网络,且具有无线收发功能的终端或可设置于该终端的芯片或芯片系统。该终端也可以称为用户设备(uesr equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动站(mobile station,MS)、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、蜂窝电话(cellular phone)、智能电话(smart phone)、平板电脑(Pad)、无线数据卡、个人数字助理电脑(personal digital assistant,PDA)、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的路侧单元(road side unit,RSU)等。本申请的终端还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元。
上述网络设备,例如接入网设备为位于上述通信系统的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片系统。该网络设备可以包括:下一代移动通信系统,例如第六代移动通信技术(6th generation mobile communication technology,6G)的接入网设备,例如6G基站,或者6G的核心网网元,或者在下一代移动通信系统中,该网络设备也可以有其他命名方式,其均涵盖在本申请实施例的保护范围以内,本申请对此不做任何限定。此外,该网络设备也可以包括第五代移动通信技术(5th generation mobile communication technology,5G),如新空口(new radio,NR)系统中的基站(next generation node B,gNB),或,5G中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB、传输点(transmission and reception point,TRP或者transmission point,TP)或传输测量功能(transmission measurement function,TMF)的网络节点,如基带单元(BBU),或,CU、DU、具有基站功能的路边单元(road side unit,RSU),或者有线接入网关等。此外,网络设备还可以包括无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),无线中继节点、无线回传节点、各种形式的宏基站、微基站(也称为小站)、中继站、接入点、可穿戴设备、车载设备等等。
如图25所示,为本申请实施例提供的一种通信装置的结构示意图,该通信装置 2500包括天线阵列2501,第四数量的有源通道2503、第五数量的功率分配器件2502。其中,第四数量与第五数量可以相同也可以不同。可选的,还可以包括处理器2504,以及与所述处理器2504耦合的存储器2505。
其中,上述天线阵列2501可以包括多个天线单元,每个天线单元均可以用于实现通信装置2500的收发功能。此处天线阵列可参考上文所述,此处不再赘述。主天线单元与所述主天线单元对应的寄生天线单元分别通过功率分配器件2502连接至与所述主天线单元对应的有源通道2503。
功率分配器件2502可以用于实现分流的功能,将一路信号分成多路信号,或者将多路信号合成一路信号。功率分配器件2502的一端可用于连接天线阵列2501中的主天线单元以及该主天线单元对应的寄生天线单元(例如:分别与主天线单元的馈电点以及寄生天线单元的馈电点连接)。另一端可用于连接主天线单元对应的有源通道2503。
有源通道2503可用于对信号进行处理和/或对信号进行传输。可选的,在有源通道2503中包括的有源器件有功率放大器、混频器等。有源通道2503与功率分配器件2502连接。关于该有源通道的其他介绍也请参考上文所述,此处不再赘述。
上述处理器2504是通信装置2500的控制中心,可以是一个处理元件,也可以是多个处理元件的统称,或者也可以称为逻辑电路。例如,处理器2504是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。处理器2504可以通过运行或执行存储在处理器2505内的软件程序,以及调用存储在处理器2505内的数据,执行通信装置2500的各种功能,例如控制天线阵列2501发射信号,或者控制天线阵列2501接收信号等。在具体的实现中,作为一种实施例,处理器2504可以包括一个或多个CPU。作为一种实施例,通信装置2500也可以包括多个处理器2504,这些处理器2504中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器2504可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述处理器2505用于存储执行本申请方案的软件程序,并由处理器2504来控制,使得通信装置2500可以完成各种功能,例如控制天线阵列2501发射信号,或者控制天线阵列2501接收信号等。可选地,处理器2505可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
如图26所示,为本申请实施例提供的又一种通信装置的结构示意图,该通信装置2600包括天线阵列2601,第四数量的有源通道2602。可选的,还可以包括处理器2603,以及与所述处理器2603耦合的存储器2604。此处天线阵列2601、有源通道2602、处理器2603以及存储器2604的介绍请分别参考图25所述的天线阵列2501,有 源通道2503、处理器2504以及存储器2505的介绍,此处不再赘述。该通信装置与图25所示的通信装置的区别在于,主天线单元连接至与该主天线单元对应的有源通道。该主天线单元对应的寄生天线不与该主天线单元对应的有源通道连接。
如图27所示,为本申请实施例提供的一种通信方法,该方法可以应用图25所示的通信装置,该通信装置可以作为发送端发送信号,或者,作为接收端接收信号,还可以同时作为发送端以及接收端,进行信号的收发。在该通信装置接收信号时,该方法包括以下步骤S2701至S2704,在该通信装置发送信号时,该方法包括以下步骤S2705至S2708。
S2701、通过主天线单元接收第一电磁波,以及通过主天线单元对应的寄生天线单元接收第二电磁波。
其中,第一电磁波以及第二电磁波可形成同一波束。也即第一电磁波与第二电磁波来自形成同一指向形波束中的电磁波。
S2702、通过主天线单元向功率分配器件发送根据第一电磁波生成的第一电信号,以及通过主天线单元对应的寄生天线单元向功率分配器件发送根据第二电磁波生成的第二电信号。相应的,功率分配器件从主天线单元接收第一电信号,以及从寄生天线单元接收第二电信号。
S2703、通过功率分配器件向有源通道发送根据第一电信号以及第二电信号合成的一路电信号。相应的,有源通道接收来自功率分配器件的电信号。
S2704、通过有源通道处理电信号。
示例性的,有源通道可以该电信号进行放大、变频等。
S2705、通过有源通道向功率分配器件发送生成的电信号。相应的,功率分配器件从有源通道接收该电信号。
S2706、通过功率分配器件将电信号分流成第一电信号以及第二电信号。
S2707、通过主天线单元从功率分配器件接收第一电信号,以及通过主天线单元对应的寄生天线单元从功率分配器件接收第二电信号。
S2708、通过主天线单元发送根据第一电信号生成的第一电磁波,以及通过主天线单元对应的寄生天线单元发送根据第二电信号生成的第二电磁波。
需要指出的是,由于该通信装置可以同时收发信号,因此步骤S2701至S2704中描述的“第一电信号”、“第二电信号”、“电信号”与步骤S2705至S2708中描述的“第一电信号”、“第二电信号”、“电信号”可以是不同的电信号。同样的,步骤S2701至S2704中描述的“第一电磁波”、“第二电磁波”与步骤S2705至S2708中描述的“第一电磁波”、“第二电磁波”可以是不同的电磁波。
如图28所示,为本申请实施例提供的又一种通信方法,该方法可以应用图26所示的通信装置,该通信装置可以作为发送端发送信号,或者,作为接收端接收信号,还可以同时作为发送端以及接收端,进行信号的收发。在该通信装置发送信号时,该方法包括以下步骤S2801至S2803,在该通信装置接收信号时,该方法包括以下步骤S2804至S2807。
S2801、通过有源通道向主天线单元发送生成的电信号。相应的,主天线单元从有源通道接收该电信号。
S2802、通过主天线单元发送根据电信号生成的第一电磁波。
S2803通过主天线单元对应的寄生天线单元接收并发送第一电磁波辐射的第二电磁 波。
该步骤的介绍请参考图24所示的步骤S2402的相关介绍。
S2804、通过主天线单元接收第一电磁波,以及通过主天线单元对应的寄生天线单元接收第二电磁波。
其中,第一电磁波以及第二电磁波可形成同一波束。也即第一电磁波与第二电磁波来自形成同一指向形波束中的电磁波。
S2805、通过主天线单元接收第二电磁波辐射的第三电磁波。
该步骤的接收请参考图24所示的步骤S2404的相关介绍。
S2806、通过主天线单元向有源通道发送根据第一电磁波以及第三电磁波生成的电信号。相应的,有源通道从主天线单元接收该电信号。
S2807、通过有源通道处理电信号。
示例性的,有源通道可以对该电信号进行放大、变频等。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,本申请保护范围包括优选实施例以及落入本申请实施例范围的所有变更和修改。
以上对本申请所提供的一种天线阵列、通信方法以及通信装置,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (12)

  1. 一种天线阵列,其特征在于,包括第一数量的主天线单元以及第二数量的寄生天线单元,其中,第三数量的主天线单元中每个主天线单元分别对应至少一个寄生天线单元,所述第三数量小于或等于所述第一数量;
    其中,主天线单元与对应的寄生天线单元之间的距离d满足:a≤d≤λ,所述a为根据所述主天线单元和与所述主天线单元相邻的主天线单元之间的距离确定的目标距离,所述a为大于0的实数,所述λ是频率为所述天线阵列的工作频率的电磁波在自由空间中的波长,所述λ为大于0的实数。
  2. 根据权利要求1所述的天线阵列,其特征在于,所述天线阵列包括平面排布的天线阵列,所述主天线单元与所述主天线单元对应的寄生天线单元处于同一平面;
    或者,所述天线阵列包括曲面排布的天线阵列,所述主天线单元与所述主天线单元对应的寄生天线单元处于同一曲面;
    或者,所述天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,所述主天线单元对应的寄生天线单元位于所述主天线单元排布面的垂直上方。
  3. 根据权利要求2所述的天线阵列,其特征在于,在所述天线阵列包括平面排布的天线阵列和/或曲面排布的天线阵列,所述主天线单元对应的寄生天线单元位于所述主天线单元排布面的垂直上方的情况下,所述主天线单元与所述主天线单元对应的寄生天线单元之间的高度差h满足:a≤h≤0.5λ。
  4. 根据权利要求1-3任一项所述的天线阵列,其特征在于,所述主天线单元与所述主天线单元对应的寄生天线单元分别通过功率分配器件连接至与所述主天线单元对应的有源通道;所述功率分配器件为耦合器或者不等分功分器。
  5. 根据权利要求1-3任一项所述的天线阵列,其特征在于,所述主天线单元连接与所述主天线单元对应的有源通道。
  6. 根据权利要求1-5任一项所述的天线阵列,其特征在于,所述主天线单元与所述主天线单元对应的寄生天线单元满足以下至少一项:
    所述主天线单元的相位与所述主天线单元对应的寄生天线单元的相位相同;
    所述主天线单元的增益小于或等于所述主天线单元对应的寄生天线单元的增益;
    所述主天线单元的工作频率与所述主天线单元对应的寄生天线单元的工作频率相同;
    所述主天线单元的极化特性与所述主天线单元对应的寄生天线单元的极化特性相同。
  7. 一种通信方法,其特征在于,应用于权利要求1-4、6任一项所述的天线阵列,所述方法包括:
    通过主天线单元从功率分配器件接收第一电信号,以及通过所述主天线单元对应的寄生天线单元从所述功率分配器件接收第二电信号;所述功率分配器件用于将一路电信号分成多路电信号;
    通过所述主天线单元发送根据所述第一电信号生成的第一电磁波,以及通过所述主天线单元对应的寄生天线单元发送根据所述第二电信号生成的第二电磁波;
    和/或,
    通过主天线单元接收第一电磁波,以及通过所述主天线单元对应的寄生天线单元接收第二电磁波,所述第一电磁波与所述第二电磁波可形成同一波束;
    通过所述主天线单元向功率分配器件发送根据所述第一电磁波生成的第一电信号,以及通过所述主天线单元对应的寄生天线单元向所述功率分配器件发送根据所述第二电磁波生成的第二电信号;所述功率分配器件用于将多路电信号合成一路电信号。
  8. 一种通信方法,其特征在于,应用于权利要求1-3、5-6任一项所述的天线阵列,所述方法包括:
    通过主天线单元接收电信号,以及通过所述主天线单元发送根据所述电信号生成的第一电磁波;
    通过所述主天线单元对应的寄生天线单元接收并发送所述第一电磁波辐射的第二电磁波;
    和/或,
    通过主天线单元接收第一电磁波,以及通过所述主天线单元对应的寄生天线单元接收第二电磁波,所述第一电磁波与所述第二电磁波可形成同一波束;
    通过所述主天线单元接收所述第二电磁波辐射的第三电磁波,以及通过所述主天线单元发送根据所述第一电磁波以及所述第三电磁波生成的电信号。
  9. 一种通信装置,其特征在于,包括:权利要求1-4、6任一项所述的天线阵列、第四数量的有源通道以及第五数量的功率分配器件;其中,主天线单元与所述主天线单元对应的寄生天线单元分别通过功率分配器件连接至与所述主天线单元对应的有源通道。
  10. 一种通信装置,其特征在于,包括:权利要求1-3、5-6任一项所述的天线阵列以及第四数量的有源通道;主天线单元连接与所述主天线单元对应的有源通道。
  11. 一种通信方法,其特征在于,应用于权利要求9所述的通信装置,所述方法包括:
    通过主天线单元接收第一电磁波,以及通过所述主天线单元对应的寄生天线单元接收第二电磁波,所述第一电磁波以及所述第二电磁波可形成同一波束;
    通过所述主天线单元向功率分配器件发送根据所述第一电磁波生成的第一电信号,以及通过所述主天线单元对应的寄生天线单元向所述功率分配器件发送根据所述第二电磁波生成的第二电信号;
    通过所述功率分配器件向有源通道发送根据所述第一电信号以及所述第二电信号合成的一路电信号;
    通过有源通道处理所述电信号;
    和/或,
    通过有源通道向功率分配器件发送生成的电信号;
    通过所述功率分配器件将所述电信号分流成第一电信号以及第二电信号;
    通过主天线单元从所述功率分配器件接收所述第一电信号,以及通过所述主天线单元对应的寄生天线单元从所述功率分配器件接收所述第二电信号;
    通过所述主天线单元发送根据所述第一电信号生成的第一电磁波,以及通过所述 主天线单元对应的寄生天线单元发送根据所述第二电信号生成的第二电磁波。
  12. 一种通信方法,其特征在于,应用于权利要求10所述的通信装置,所述方法包括:
    通过所述有源通道向主天线单元发送生成的电信号;
    通过所述主天线单元发送根据所述电信号生成的第一电磁波;
    通过所述主天线单元对应的寄生天线单元接收并发送所述第一电磁波辐射的第二电磁波;
    和/或,
    通过主天线单元接收第一电磁波,以及通过所述主天线单元对应的寄生天线单元接收第二电磁波,所述第一电磁波以及所述第二电磁波可形成同一波束;
    通过所述主天线单元接收所述第二电磁波辐射的第三电磁波;
    通过所述主天线单元向有源通道发送根据所述第一电磁波以及所述第三电磁波生成的电信号;
    通过所述有源通道处理所述电信号。
PCT/CN2022/137018 2021-12-31 2022-12-06 天线阵列、通信方法以及通信装置 WO2023124839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111679565.3A CN116417771A (zh) 2021-12-31 2021-12-31 天线阵列、通信方法以及通信装置
CN202111679565.3 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124839A1 true WO2023124839A1 (zh) 2023-07-06

Family

ID=86997635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137018 WO2023124839A1 (zh) 2021-12-31 2022-12-06 天线阵列、通信方法以及通信装置

Country Status (2)

Country Link
CN (1) CN116417771A (zh)
WO (1) WO2023124839A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317100B1 (en) * 1999-07-12 2001-11-13 Metawave Communications Corporation Planar antenna array with parasitic elements providing multiple beams of varying widths
CN102522629A (zh) * 2011-12-15 2012-06-27 电子科技大学 一种方向图可重构的相控阵天线
CN105281030A (zh) * 2015-09-29 2016-01-27 天津工业大学 一种新型rfid平面阵列天线馈电网络
WO2021097638A1 (zh) * 2019-11-19 2021-05-27 华为技术有限公司 阵列天线控制装置和方法
CN112864635A (zh) * 2019-11-28 2021-05-28 上海华为技术有限公司 一种阵列天线以及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317100B1 (en) * 1999-07-12 2001-11-13 Metawave Communications Corporation Planar antenna array with parasitic elements providing multiple beams of varying widths
CN102522629A (zh) * 2011-12-15 2012-06-27 电子科技大学 一种方向图可重构的相控阵天线
CN105281030A (zh) * 2015-09-29 2016-01-27 天津工业大学 一种新型rfid平面阵列天线馈电网络
WO2021097638A1 (zh) * 2019-11-19 2021-05-27 华为技术有限公司 阵列天线控制装置和方法
CN112864635A (zh) * 2019-11-28 2021-05-28 上海华为技术有限公司 一种阵列天线以及设备

Also Published As

Publication number Publication date
CN116417771A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US11605901B2 (en) Beam reconstruction method, antenna, and microwave device
Liu et al. A dual-band shared aperture antenna array in Ku/Ka-bands for beam scanning applications
US10978811B2 (en) Slot antenna arrays for millimeter-wave communication systems
Bang et al. A compact hemispherical beam-coverage phased array antenna unit for 5G mm-wave applications
CN107968267B (zh) 多波束端射天线
CN114520418A (zh) 具有非对称辐射图案的双极化喇叭天线
Yu et al. Spaceborne multibeam phased array antennas for satellite communications
WO2023124839A1 (zh) 天线阵列、通信方法以及通信装置
Zhu et al. A high-precision terahertz retrodirective antenna array with navigation signal at a different frequency
Cai et al. A novel multi-beam lens antenna for high altitude platform communications
Jihao et al. Research on millimeter wave phased array antenna for 5G communication
Reudink Communications: Spot beams promise satellite communication breakthrough: Focused antenna beams with frequencies accessed by time division can mean higher uplink power and more powerful communication service
CN212162075U (zh) 一种有源天线
Jankovic et al. The multi-functional payload based on rotman-lens beamforming network
Shi et al. A small Ku-band polarization tracking active phased array for mobile satellite communications
Islamov et al. Design, Modelling and Research of an Antenna System for Transmitting and Receiving Information in Satellite Systems
US11575216B2 (en) Phased array antenna system with a fixed feed antenna
Pedram et al. Evolution and move toward fifth-generation antenna
Jankovic et al. Active multibeam antennas based on Rotman lens arrays
Turjo et al. Phased array antenna with key shaped elements for 60 GHz mmWave communications
Fukushima et al. Directivity Measurement of Circular Phased Array 4× 4 MIMO Antenna
Zaghloul et al. Low cost flat antennas for commercial and military SATCOM terminals
YE et al. Multibeam antenna based on butler matrix for 3G/LTE/5G/B5G base station applications
Shrivastava et al. Substrate integrated waveguide based antipodal linear tapered slot antenna array for inter-satellite communication at 60 GHz
Raby et al. Ku-band transmit phased array antenna for use in FSS communication systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914094

Country of ref document: EP

Kind code of ref document: A1