WO2020090730A1 - 表示装置、表示システム、及び表示装置の設置方法 - Google Patents

表示装置、表示システム、及び表示装置の設置方法 Download PDF

Info

Publication number
WO2020090730A1
WO2020090730A1 PCT/JP2019/042159 JP2019042159W WO2020090730A1 WO 2020090730 A1 WO2020090730 A1 WO 2020090730A1 JP 2019042159 W JP2019042159 W JP 2019042159W WO 2020090730 A1 WO2020090730 A1 WO 2020090730A1
Authority
WO
WIPO (PCT)
Prior art keywords
combiner
distance
display device
reflecting surface
image
Prior art date
Application number
PCT/JP2019/042159
Other languages
English (en)
French (fr)
Inventor
慶延 岸根
達郎 岩▲崎▼
米山 一也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020090730A1 publication Critical patent/WO2020090730A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present invention relates to a display device, a display system, and a method for installing the display device, and more particularly to a display device, a display system, and a method for installing the display device that allow an observer to observe a virtual image using a combiner.
  • HUDs head-up displays
  • head-mounted displays etc.
  • BACKGROUND ART Conventionally, there has been proposed a technique for improving the visibility of a display image (or a virtual image) visually recognized by an observer.
  • Patent Document 1 describes a technique for suppressing blurring of a virtual image of a head-up display using a laser scanner.
  • the pitch of the optical element portions is set so that the diffraction width of the light beam diffused by each optical element portion and incident on the visible region is equal to or smaller than the pupil diameter of the observer.
  • the shape of the combiner is complicatedly processed, or the reflecting surface of the combiner is specially processed (coating). It is considered to attach a sheet or a sheet.
  • such complicated processing of the shape of the combiner or special processing or attachment of a sheet to the reflecting surface of the combiner causes fine unevenness on the reflecting surface of the combiner.
  • the fine unevenness is caused by transfer from a mold, uneven attachment of a release film or a reflectance improving film, unevenness derived from an adhesive of the film, or adhesion of dirt.
  • the fine unevenness of the reflecting surface of this combiner may cause deterioration of the image quality of the virtual image. That is, when the viewpoint of the observer moves, the display image (or virtual image) fluctuates due to the fine unevenness of the reflecting surface of the combiner in association with the movement.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a display device, a display system, and a display device in which fluctuations of a virtual image (or a display image) due to unevenness of a reflecting surface of a combiner are suppressed. It is to provide an installation method.
  • a display device which is one embodiment of the present invention for achieving the above object, is a combiner that reflects a projection image projected from a projector and forms a display image captured by an observer who observes a virtual image.
  • the projection and projection of the combiner and the projection and The first distance and the second distance are set based on the amount of movement of the light beam diameter on the reflection surface of the light beam that enters the aperture stop.
  • the projector is installed at the first distance from the combiner, and the combiner is installed at the second distance from the aperture stop of the observation object.
  • the first distance and the second distance are set based on the unevenness of the reflecting surface of the combiner and the amount of movement of the light beam diameter on the reflecting surface of the light beam incident on the aperture stop of the observation object for observing the display image. Therefore, it is possible to suppress the fluctuation of the virtual image or the display image.
  • the first distance and the second distance are set by the following formula.
  • Z2 Z1 ⁇ Y / (X + Y).
  • X second distance
  • Y first distance
  • Z1 amount of movement of the viewpoint of the observer
  • Z2 amount of movement of the light beam diameter on the reflecting surface
  • k coefficient calculated from unevenness of the reflecting surface
  • the first distance and The second distance is set based on the unevenness of the reflecting surface, the amount of movement of the light beam diameter, and the light beam diameter, and the unevenness of the reflecting surface is the inclination distribution of the reflecting surface.
  • the slope distribution is calculated by differentiating the function showing the unevenness of the reflecting surface in at least one of the cases where the combiner is installed.
  • the inclination distribution is calculated by differentiating the function showing the unevenness of the reflecting surface in two different directions when the combiner is installed.
  • the tilt distribution is normalized by the amount of movement of the light beam diameter on the reflecting surface.
  • the inclination distribution is normalized by the light flux diameter on the reflecting surface.
  • the inclination distribution is normalized by the amount of movement of the light beam diameter on the reflecting surface, which is smoothed by the light beam diameter on the reflecting surface.
  • the luminous flux diameter moves as the viewpoint of the observation object moves.
  • the reflective surface has a maximum PV value of more than 100 nm.
  • the combiner has a reflectance improving film attached to the surface of the substrate via an adhesive layer.
  • a display device installation method includes a projector and a combiner that reflects a projection image projected from the projector to form a display image captured by an observer who observes a virtual image.
  • the projections and projections of the combiner and the opening of the observation object are defined as the first distance from the combiner and the second distance from the combiner to the aperture stop of the observation object.
  • the first distance and the second distance are set based on the amount of movement of the diameter of the light beam on the reflecting surface of the light beam entering the diaphragm.
  • a display system is a display system including a projector and a combiner that reflects a projection image projected from the projector to form a display image captured by an observer who observes a virtual image.
  • the distance from the combiner to the projector is the first distance
  • the distance from the combiner to the aperture stop of the observation object is the second distance
  • the unevenness of the reflecting surface of the combiner and the light flux incident on the aperture stop of the observation object is set based on the amount of movement of the light beam diameter on the reflecting surface.
  • the projector is installed at a first distance from the combiner
  • the combiner is installed at a second distance from the aperture stop of the observation object
  • the first distance and the second distance are the reflecting surface of the combiner. Since it is set based on the unevenness and the amount of movement of the light beam diameter on the reflection surface of the light beam incident on the aperture stop of the observation object for observing the display image, it is possible to suppress the virtual image or the display image from fluctuating.
  • FIG. 1 is a diagram showing a schematic configuration of a display device.
  • FIG. 2 is a diagram showing a schematic configuration of the display device.
  • FIG. 3 is a sectional view of the combiner.
  • FIG. 4 is a diagram showing the measurement results of the surface shape of the combiner.
  • FIG. 5 is a figure which shows the measurement result of the surface shape of a combiner.
  • FIG. 6 is a diagram showing the measurement results of the surface shape of the combiner.
  • FIG. 7 is a figure which shows the cross-sectional shape of a combiner.
  • FIG. 8 is a diagram showing a cross-sectional shape of the combiner.
  • FIG. 9 is a diagram showing a cross-sectional shape of the combiner.
  • FIG. 1 is a diagram showing a schematic configuration of a display device.
  • FIG. 2 is a diagram showing a schematic configuration of the display device.
  • FIG. 3 is a sectional view of the combiner.
  • FIG. 4 is a diagram showing the
  • FIG. 10 is a diagram showing the depth (PV value) of the unevenness of the reflecting surface of the combiner and the length of the period of the unevenness.
  • 11: is sectional drawing which showed typically the unevenness
  • FIG. 12 is a diagram showing a schematic configuration of the experimental system.
  • FIG. 13 is a diagram for explaining calculation of the luminous flux diameter.
  • FIG. 14 is a diagram for explaining how to calculate the movement amount of the luminous flux diameter.
  • FIG. 15 is a diagram showing an experimental result of occurrence of image fluctuation.
  • FIG. 16 is a diagram showing an experimental result of occurrence of image distortion.
  • FIG. 17 is a diagram showing an image obtained by photographing an experimental chart with a camera.
  • FIG. 18 is a diagram showing an image obtained by photographing an experimental chart with a camera.
  • FIG. 19 is a diagram showing an image obtained by photographing an experimental chart with a camera.
  • FIG. 20 is a diagram showing a case where the moving amount of the light beam diameter is changed under each condition where the image distortion occurs.
  • FIG. 21 is a flowchart showing the process of obtaining the image fluctuation evaluation value.
  • FIG. 22 is a diagram showing a tilt distribution in which horizontal and vertical tilt distributions are combined.
  • FIG. 23 is a diagram showing the average inclination distribution.
  • FIG. 24 is a diagram showing the image fluctuation distribution.
  • FIG. 25 is a diagram showing the image fluctuation evaluation value and the visual evaluation.
  • FIG. 26 is a diagram showing the image fluctuation evaluation value and the visual evaluation.
  • FIG. 27 is a diagram schematically showing the experimental condition 1.
  • FIG. 28 is a diagram schematically showing the experimental condition 2.
  • FIG. 29 is a diagram schematically showing the experimental condition 3.
  • FIG. 1 is a diagram showing a schematic configuration of a display device of the present invention.
  • the display device 1 includes a projector 3 that projects a projection image 21, a combiner 101 that reflects a video image projected from the projector 3 to form a display image, and an observer 7 that captures the display image and observes a virtual image 9. Composed.
  • the projected image 21 projected from the projector 3 is reflected by the combiner 101 to become reflected light 23, and when the observing body 7 is a person, the observing body 7 receives the luminous flux of the reflected light 23 on the pupil to generate a virtual image 9 To observe.
  • the observing body 7 (a person in the example of the drawing) observes the virtual image 9 while sitting on the seat 11, for example, but the viewpoint of the observing body 7 moves as the head of the observing body 7 moves.
  • the display device 1 may be configured as a display system.
  • the display system represents the entire apparatus including a plurality of devices.
  • FIG. 2 is a diagram showing a schematic configuration of the display device 1 showing the projector 3 and the combiner 101 in more detail with respect to the display device 1 shown in FIG.
  • the projector 3 is fixed at a predetermined position and projects various projected images 21 onto the combiner 101.
  • the combiner 101 is fixed at a predetermined position, and the projected image 21 projected from the projector 3 is reflected by the reflecting surface 103 to become reflected light 23.
  • the observer 7 can observe the virtual image 9 by observing the display image composed of the reflected light 23 reflected by the reflecting surface 103. Since the observation object 7 observes the virtual image 9 while sitting on the seat 11 (FIG. 1), the observation position of the observation object 7 can be estimated. In the figure, it is estimated that the observation body 7 observes the virtual image 9 from the observation position O.
  • a specific example of the observing body 7 is an observer (person) or a camera.
  • FIG. 3 is a sectional view of the combiner 101.
  • the combiner 101 is a plate-shaped optical member having a front surface and a back surface in the YZ plane.
  • the combiner 101 includes a reflectance improving film 105, an adhesive layer 107, a hard coat treatment layer 109, an acrylic base material (substrate) 116, a hard coat treatment layer 109, and an AR (Anti Reflection) coat layer 113.
  • the reflectance improving film 105 forms the reflecting surface 103 of the combiner 101.
  • the reflectance improving film 105 is adhered to the hard coat treatment layer 109 of the acrylic base material 116 via the adhesive layer 107.
  • irregularities may be formed on the reflective surface 103 due to the performance and properties of the adhesive of the adhesive layer 107.
  • the irregularities of the mold may be transferred to the reflectance improving film 105.
  • the reflecting surface 103 of the combiner 101 has unevenness with a maximum PV (Peak-to-Valley) value of more than 100 nm.
  • the adhesive layer 107 is composed of an adhesive that bonds the reflectance improving film 105 and the hard coat treatment layer 109.
  • the acrylic base material 116 has the hard coat treatment layer 109 on the surface, and by making the acrylic base material 116 transparent, the observation body 7 observes the scenery observable through the acrylic base material 116 and the virtual image 9 in an overlapping manner. can do.
  • the AR coat layer 113 is provided on the opposite surface of the acrylic base material 116 to which the reflectance improving film 105 is attached. By providing the AR coat layer 113, the visibility of the virtual image 9 can be improved by preventing reflection on the surface of the acrylic base material 116 on the side where the reflectance improving film 105 is not attached.
  • the present inventors set a method for setting the distance (first distance) between the projector 3 and the combiner 101 in the display apparatus 1 and the distance (second distance) between the observation body 7 and the combiner 101 in the display apparatus 1. I found it. Specifically, in the present invention, the first distance and the second distance are determined based on the unevenness of the reflecting surface 103 of the combiner 101 and the amount of movement of the light beam diameter ⁇ 2 due to the movement of the viewpoint of the observation body 7. (Example 1 of the determination method described below).
  • the first distance and the second distance are the unevenness of the reflecting surface 103 of the combiner 101, the light beam diameter ⁇ 2 at the reflecting surface 103 of the light beam incident on the aperture stop of the observation body 7 for observing the display image, It is determined based on the amount of movement of the light beam diameter ⁇ 2 as the viewpoint of the observation object 7 moves (Example 2 of the determination method described below).
  • the projector 3 the combiner 101, and the observation object 7 based on the first distance and the second distance thus determined, fluctuations of the virtual image 9 due to movement of the viewpoint of the observation object 7 are suppressed.
  • the specific method of determining the first distance and the second distance will be described below.
  • the fluctuating virtual image 9 or the display image refers to a phenomenon in which the virtual image 9 or the display image fluctuates and is observed as the viewpoint of the observation object 7 moves.
  • Example 1 of determination method of first distance and second distance In the determination method example 1, the first distance and the second distance are set by the following equations.
  • the unevenness of the reflecting surface 103 of the combiner 101 will be described.
  • the reflecting surface 103 of the combiner 101 has fine irregularities. This may occur due to a factor at the time of manufacturing the combiner 101, or may occur due to adhesion of dirt after the manufacturing.
  • FIG. 4 to 6 show the results of measuring the combiner A, the combiner B, and the combiner C having different surface shapes of the reflecting surface 103 with the surface shape measuring instrument.
  • the result of the surface shape measurement shown in FIG. 4 is the combiner A
  • the result of the surface shape measurement shown in FIG. 5 is the combiner B
  • the result of the surface shape measurement shown in FIG. 6 is the combiner C.
  • the surface shape measurement results are shown in 14 mm square.
  • the reflecting surface 103 has different unevenness.
  • the height of the unevenness of the reflecting surface 103 in each drawing is clearly shown by making it correspond to the scale shown on the right side of the drawing with a straight line.
  • FIGS. 7 to 9 are diagrams showing cross-sectional shapes of the combiner A, the combiner B, and the combiner C.
  • 7 is a sectional view of the combiner A
  • FIG. 8 is a sectional view of the combiner B
  • FIG. 9 is a sectional view of the combiner C.
  • the combiner A, the combiner B, and the combiner C have different fine irregularities on the reflecting surface 103.
  • k is a coefficient representing unevenness on the reflecting surface 103.
  • k is a coefficient obtained from the length of the unevenness cycle.
  • FIG. 10 is a diagram showing the depth (PV value) of the unevenness of the reflecting surface 103 of the combiner A, the combiner B, and the combiner C and the length of the cycle of the unevenness.
  • the values shown in FIG. 10 are numerical values obtained from the surface shape measurement results shown in FIGS. 4 to 9.
  • the depth of the unevenness of the combiner A is in the range of 100 nm to 300 nm
  • the depth of the unevenness of the combiner B is in the range of 20 nm to 100 nm
  • the depth of the unevenness of the combiner C is 10 nm to 20 nm.
  • the range is.
  • the combiner A has the largest unevenness depth
  • the combiner B has the next largest unevenness depth
  • the combiner C has the smallest unevenness depth.
  • the cycle length of the combiner A is 2 mm to 8 mm
  • the cycle length of the combiner B is 1 mm to 3 mm
  • the cycle length of the combiner C is 2 mm to 4 mm.
  • FIG. 11 is sectional drawing which showed typically the unevenness
  • FIG. The cross-sectional view of the figure schematically shows unevenness along the X-axis direction.
  • T1, T2, and T3 are measured and used as the length of the unevenness cycle.
  • the PV value can be obtained by measuring the height difference between the peaks and valleys of the unevenness.
  • the length of the cycle of the irregularities and the PV value are calculated in the X-axis direction, the Y-axis direction, or the X-axis direction and the Y-axis direction.
  • FIG. 12 is a diagram showing a schematic configuration of an experimental system 301 for confirming the occurrence of image fluctuation in the display device 1.
  • the observation object 7 in the display device 1 is replaced with the camera 307, and the image (projected image 21) of the experimental chart 309 is projected on the combiner 101 used in the display device 1.
  • the reflected light 23 reflected by the combiner 101 is captured by the camera 307.
  • the image of the experimental chart 309 is observed in a fluctuating manner under a predetermined condition in conjunction with the movement.
  • the movement of the camera 307 in the Y-axis direction means the movement of the viewpoint accompanying the movement of the neck of the observation object 7 (horizontal direction or vertical direction).
  • an experimental system 301 as shown in the figure, the condition of image fluctuation generated in the display device 1 is confirmed.
  • the light flux diameter ⁇ 2 and the movement amount Z2 of the light flux diameter ⁇ 2 in the experimental system 301 are calculated as follows.
  • FIG. 13 is a diagram illustrating that the experimental system 301 shown in FIG. 12 is simplified to calculate the luminous flux diameter ⁇ 2.
  • the distance Y from the combiner 101 to the experimental chart 309 corresponds to the distance (first distance) from the combiner 101 in the display device 1 to the projector 3
  • the distance X from the combiner 101 to the camera 307 is This corresponds to the distance (second distance) from the observation position O on the display device 1 to the combiner 101.
  • ⁇ 1 is an aperture stop diameter of the camera 307 and corresponds to a human pupil diameter when the observation object 7 is an observer
  • ⁇ 2 is a light flux diameter on the reflecting surface 103 of the combiner 101.
  • the luminous flux diameter ⁇ 2 on the combiner 101 is calculated by the following formula.
  • FIG. 14 is a diagram illustrating that the experimental system 301 shown in FIG. 12 is simplified to calculate the movement amount Z2 of the light beam diameter ⁇ 2 on the combiner 101.
  • the distance Y from the combiner 101 to the experimental chart 309 corresponds to the distance from the combiner 101 to the projection (first distance) in the display device 1
  • the distance X from the combiner 101 to the camera 307 is the observation in the display device 1. It corresponds to the distance (second distance) from the position O to the combiner 101.
  • Z1 represents the amount of movement of the camera 307 from the viewpoint
  • Z2 represents the amount of movement of the light beam diameter 111 in the combiner 101.
  • Z2 is calculated by the following formula.
  • Image fluctuation and image distortion >> Next, generation of image fluctuations and image distortions of the combiner A, the combiner B, and the combiner C in the experimental system 301 will be described.
  • the first distance and the second distance were 1000 mm, and the experiment was performed under the condition that the movement amount Z2 of the luminous flux diameter ⁇ 2 was 15 mm.
  • image shake occurs when the viewpoint of the observation object 7 moves under the condition that image distortion occurs when the viewpoint of the observation object 7 does not move.
  • the image distortion means that the virtual image 9 or a part or all of the display image is distorted when the viewpoint of the observation object 7 is not moved.
  • FIG. 15 is a diagram showing an experimental result of occurrence of image fluctuation of combiner A, combiner B, and combiner C.
  • the image fluctuation is evaluated by visual evaluation, “A” is a case where no image fluctuation is observed, “E” is a case where the image fluctuation is clearly visible, and “A”, “B”, “C”, “D”, and “E” are shown in this order as to how much the image fluctuation is visually recognized.
  • the luminous flux diameter ⁇ 2 on the reflecting surface 103 becomes 9 mm.
  • the visual evaluation of combiner A is “B”
  • the visual evaluation of combiner B and combiner C is “A”.
  • the luminous flux diameter ⁇ 2 on the reflecting surface 103 is 4.5 mm.
  • the visual evaluation of combiner A is "D”
  • the visual evaluation of combiner B is "B”
  • the visual evaluation of combiner C is "A”.
  • the F number of the camera 307 is set to F11
  • the luminous flux diameter ⁇ 2 on the reflecting surface 103 becomes 2.2 mm.
  • the visual evaluation of combiner A is "E”
  • the visual evaluation of combiner B is "D”
  • the visual evaluation of combiner C is "C”.
  • FIG. 16 is a diagram showing an experimental result of occurrence of image distortion of the combiner A, the combiner B, and the combiner C.
  • the image distortion is evaluated by visual evaluation, and “A” is a case where no image distortion is observed.
  • the image is evaluated in the order of “B”, “C”, “D”, “E”, and “F”. It shows that the occurrence of distortion is clearly confirmed.
  • FIGS. 17 to 19 are diagrams showing images of the experimental chart 309 taken by the camera 307 under each condition.
  • A_F2.4 is described in the chart images captured by the combiner A with the F number of the camera 307 being F2.4, and similarly, in each F value of the combiner A, the combiner B, and the combiner C.
  • the chart image of is shown.
  • A_F16.0 FIG. 19
  • the lines of the displayed chart are bent, and distortion is clearly visible.
  • FIG. 20 is a diagram showing a case where the moving amount Z2 of the luminous flux diameter ⁇ 2 is changed under each condition in which image distortion occurs in the combiner A.
  • the movement amount Z2 of the light beam diameter ⁇ 2 is as follows: Experimental condition 1 (movement amount: width 24 mm) (FIG. 27), experimental condition 2 (movement amount: width 15 mm) (FIG. 28), and experimental condition 3 (movement). Amount: width 6 mm) (Fig. 29).
  • the image shake is suppressed when the movement amount Z2 of the light flux diameter ⁇ 2 is shorter than the cycle of the unevenness of the combiner 101.
  • Z2 Z1 ⁇ Y / (X + Y).
  • X second distance
  • Y first distance
  • Z1 amount of movement of the viewpoint of the observer
  • Z2 amount of movement of light beam diameter on the reflecting surface
  • k coefficient calculated from unevenness of the reflecting surface where k (of the reflecting surface 103)
  • the coefficient calculated from the unevenness for example, the length of the cycle of the unevenness is adopted.
  • a value of k 1 mm to 10 mm, more preferably 2 mm to 8 mm can be adopted.
  • the first distance (Y), the second distance (X), and the movement amount (Z2) of the light beam diameter ⁇ 2 on the reflecting surface 103 are:
  • the coefficient (k) calculated from the concavities and convexities of the reflecting surface 103 and the viewpoint of the observation body 7 are set so that the image fluctuation is suppressed even if the image distortion occurs.
  • the first distance and the second distance are determined based on the amount of movement of the light beam diameter ⁇ 2 due to the movement of
  • Example 2 of determination method of first distance and second distance the image fluctuation evaluation value is calculated, and the first distance and the second distance are set so that the image fluctuation evaluation value becomes equal to or less than a predetermined threshold value. As a result, the occurrence of image fluctuations in the display device 1 is suppressed.
  • the image fluctuation evaluation value is an evaluation value obtained by normalizing the inclination distribution of the reflecting surface 103 of the combiner 101 with the light flux diameter ⁇ 2 and / or the movement amount Z2 of the light flux diameter ⁇ 2.
  • FIG. 21 is a flowchart showing an acquisition process of the image fluctuation evaluation value.
  • the shape distribution indicating the unevenness of the reflecting surface 103 of the combiner 101 used in the display device 1 is acquired (step S10).
  • the shape distribution of the uneven shape of the reflecting surface 103 as shown in FIGS. 4 to 6 described above is measured by the surface shape measuring device.
  • the inclination distribution in the horizontal direction and / or the vertical direction of the combiner 101 is calculated from the obtained shape distribution (step S11). That is, the unevenness of the reflecting surface 103 is represented by the inclination distribution of the reflecting surface 103.
  • the horizontal direction of the combiner 101 is the Z-axis direction in FIG. 3, and the vertical direction is the Y-axis direction.
  • the inclination distribution is calculated by differentiating the function indicating the unevenness of the reflecting surface 103 in at least one of the horizontal direction and the vertical direction when the combiner 101 is installed. Specifically, the gradient distribution in each direction is calculated by differentiating the function indicating the horizontal or vertical shape distribution.
  • FIG. 22 is a diagram showing a gradient distribution in which horizontal and vertical gradient distributions are combined. The gradient distributions shown in the same figure are obtained by combining the gradient distributions calculated in the horizontal direction and the vertical direction, respectively.
  • the average inclination distribution is acquired from the inclination distribution and the luminous flux diameter ⁇ 2 (step S12). Specifically, the average of the inclination distribution within the light flux diameter ⁇ 2 is calculated (smoothing).
  • FIG. 23 is a diagram showing the average slope distribution.
  • the average slope distribution is calculated as follows, for example.
  • the average of the gradient distributions within the light beam diameter ⁇ 2 is calculated around a certain coordinate (x, y), and the average is taken as the average gradient value of the coordinates (x, y). By plotting this average slope value at each coordinate, the average slope distribution can be obtained.
  • step S13 the image fluctuation distribution is acquired based on the average inclination distribution.
  • FIG. 24 is a diagram showing the image fluctuation distribution.
  • the image fluctuation distribution shows a distribution in which the movement amount Z2 of the light beam diameter ⁇ 2 is taken into consideration in the average inclination distribution.
  • the maximum PV value in the range of the width of the movement amount Z2 of the light beam diameter ⁇ 2 with respect to a certain coordinate (x, y) is set as the coordinate (x, y) value, and the maximum PV value is similarly set in all the coordinates.
  • an image fluctuation evaluation value is acquired from the image fluctuation distribution (step S15).
  • the image fluctuation evaluation value is a representative numerical value showing the image fluctuation distribution.
  • the image fluctuation evaluation value is set to the maximum value of the PV value in the region in consideration of the movement amount Z2 of the light flux diameter ⁇ 2 shown in the image fluctuation distribution.
  • the maximum PV value (0.3) is the image fluctuation evaluation value.
  • the image fluctuation evaluation value of the reflecting surface 103 of the combiner 101 is acquired.
  • the image fluctuation evaluation value is used to determine the first distance and the second distance.
  • Image fluctuation evaluation and occurrence of image fluctuation >> Next, the image fluctuation evaluation value and the result of visual evaluation of the occurrence of image fluctuation will be described.
  • FIG. 25 is a diagram showing image fluctuation evaluation values and visual evaluation of combiner A, combiner B, and combiner C.
  • the experimental result shown in FIG. 24 is performed under the experimental condition 2 described later.
  • the visual evaluation when the image shake evaluation value is 0.35 or more, the visual evaluation is “D”, and the image fluctuation is visually recognized.
  • the visual evaluation When the image shake evaluation value was more than 0.12 and less than 0.35, the visual evaluation was “C”, and a little image fluctuation was visually recognized.
  • the visual evaluation When the image shake evaluation value was 0.12 or less, the visual evaluation was “B”, and the image fluctuation was not visually recognized.
  • FIG. 26 is a diagram showing the image fluctuation evaluation value and the visual evaluation of the combiner A and the combiner B.
  • the experimental result shown in FIG. 26 is performed under the experimental condition 3 described later.
  • the visual evaluation when the image shake evaluation value is 0.35 or more, the visual evaluation is “D”, and the image fluctuation is visually recognized.
  • the visual evaluation When the image shake evaluation value was more than 0.12 and less than 0.35, the visual evaluation was “C”, and a little image fluctuation was visually recognized.
  • the visual evaluation When the image shake evaluation value was 0.12 or less, the visual evaluation was “B”, and the image fluctuation was not visually recognized.
  • the first distance and the second distance are set so that the image fluctuation evaluation value is equal to or less than the predetermined threshold value.
  • the image fluctuation evaluation value refers to the unevenness of the reflecting surface 103 of the combiner 101, the light flux diameter ⁇ 2 at the reflecting surface 103 of the light flux incident on the aperture stop of the observation object 7 for observing the display image, and the movement of the viewpoint of the observation object 7. It is an evaluation value of the reflecting surface 103 of the combiner 101 calculated based on the accompanying movement amount Z2 of the light flux diameter ⁇ 2.
  • FIG. 27 is a diagram showing the experimental system 301 under the experimental condition 1.
  • the distance (first distance) between the experimental chart 309 and the combiner 101 is set to 1600 mm
  • the distance between the camera 307 and the combiner 101 (second distance) is set to 400 mm.
  • the movement of the viewpoint of the camera 307 is 30 mm
  • the movement amount Z2 of the luminous flux diameter ⁇ 2 is 24 mm.
  • FIG. 28 is a diagram showing the experimental system 301 under the experimental condition 2.
  • the distance (first distance) between the experimental chart 309 and the combiner 101 is set to 1000 mm
  • the distance between the camera 307 and the combiner 101 (second distance) is set to 1000 mm.
  • the movement of the viewpoint of the camera 307 is 30 mm
  • the movement amount Z2 of the luminous flux diameter ⁇ 2 is 15 mm.
  • FIG. 29 is a diagram showing an experimental system 301 under experimental condition 3.
  • the distance (first distance) between the experimental chart 309 and the combiner 101 is set to 400 mm
  • the distance between the camera 307 and the combiner 101 (second distance) is set to 1600 mm.
  • the movement of the viewpoint of the camera 307 is 30 mm
  • the movement amount Z2 of the luminous flux diameter ⁇ 2 is 6 mm.
  • Display device 3 Projector 7: Observatory 9: Virtual image 11: Seat 21: Projected image 23: Reflected light 101: Combiner 103: Reflective surface 105: Reflectivity improving film 107: Adhesive layer 109: Hard coat layer 113 : AR coat layer 116: Acrylic base material

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Instrument Panels (AREA)

Abstract

コンバイナの反射面の凹凸に起因した虚像像(又は表示像)の揺らぎが抑制された表示装置、表示システム、及び表示装置の設置方法を提供する。表示装置(1)は、コンバイナ(101)から投影機(3)の距離を第1の距離、及びコンバイナ(101)から観察体(7)の開口絞りまでの距離を第2の距離として、コンバイナ(101)の反射面の凹凸、及び、観察体(7)の開口絞りに入射する光束の反射面における光束径の移動量に基づいて、第1の距離及び第2の距離が設定される。

Description

表示装置、表示システム、及び表示装置の設置方法
 本発明は、表示装置、表示システム、表示装置の設置方法に関し、特に、コンバイナを使用して虚像を観察者に観察させる表示装置、表示システム、及び表示装置の設置方法に関する。
 近年、ヘッドアップディスプレイ(HUD:Head-Up Display)、ヘッドマウントディスプレイ等が普及している。これらの技術においては、表示する映像の光束をコンバイナの反射面に投影することにより、表示像を観察者に視認させて観察者が虚像を観察することができる。従来より、観察者が視認する表示像(又は虚像)の視認性の向上に関する技術が提案されている。
 例えば特許文献1には、レーザースキャナを用いたヘッドアップディスプレイの虚像のぼやけを抑制することを目的とした技術が記載されている。特許文献1に記載された技術では、各光学素子部により拡散されて視認領域へ入射する光束の回折幅を観察者の瞳孔径以下となるように、光学素子部のピッチを設定している。
特開2013-64985号公報
 上述した特許文献1に記載された技術のように、表示像(又は虚像)の視認性の向上を目的として、コンバイナの形状を複雑に加工したり、コンバイナの反射面に特殊な加工(コーティング)やシートを貼り付けることが検討されている。しかし、このようにコンバイナの形状を複雑に加工したり、コンバイナの反射面に特殊な加工やシートを貼り付けることにより、コンバイナの反射面に微細な凹凸が発生してしまう。具体的には微細な凹凸は、金型からの転写、離型フィルム又は反射率向上フィルムなどの貼りムラ、フィルムの接着剤に由来する凹凸、又は汚れ付着などによって生じる。
 このコンバイナの反射面の微細な凹凸は、虚像の画質劣化を招く場合がある。すなわち、観察者の視点が移動すると、その移動に連動して、このコンバイナの反射面の微細な凹凸に起因した表示像(又は虚像)の揺らぎが発生してしまう。
 本発明はこのような事情に鑑みてなされたもので、その目的は、コンバイナの反射面の凹凸に起因した虚像(又は表示像)の揺らぎが抑制された表示装置、表示システム、及び表示装置の設置方法を提供することである。
 上記目的を達成するための、本発明の一態様である表示装置は、投影機、及び投影機から投影された投影像を反射して、虚像を観察する観察体が捉える表示像を形成するコンバイナで構成される表示装置において、コンバイナから投影機の距離を第1の距離、及びコンバイナから観察体の開口絞りまでの距離を第2の距離として、コンバイナの反射面の凹凸、及び、観察体の開口絞りに入射する光束の反射面における光束径の移動量に基づいて、第1の距離及び第2の距離が設定される。
 本態様によれば、投影機はコンバイナから第1の距離に設置され、コンバイナは観察体の開口絞りから第2の距離で設置される。ここで、第1の距離及び第2の距離は、コンバイナの反射面の凹凸、及び、表示像を観察する観察体の開口絞りに入射する光束の反射面における光束径の移動量に基づいて設定されるので、虚像又は表示像が揺らぐことを抑制することができる。
 好ましくは、第1の距離と第2の距離とは、以下の式により設定される。
 Y/(X+Y)<k/Z2
但し、Z2=Z1×Y/(X+Y)である。
X:第2の距離
Y:第1の距離
Z1:観察体の視点の移動量
Z2:反射面における光束径の移動量
k:反射面の凹凸から算出される係数
 好ましくは、第1の距離及び第2の距離は、反射面の凹凸、光束径の移動量、及び光束径に基づいて設定され、反射面の凹凸は、反射面の傾斜分布である。
 好ましくは、傾斜分布は、コンバイナを設置した場合の少なくとも一方において、反射面の凹凸を示す関数を微分することにより算出される。
 好ましくは、傾斜分布は、コンバイナを設置した場合の異なる2方向において、反射面の凹凸を示す関数を微分することにより算出される。
 好ましくは、傾斜分布は、反射面における光束径の移動量で正規化される。
 好ましくは、傾斜分布は、反射面における光束径で正規化される。
 好ましくは、傾斜分布は、反射面における光束径で平滑化したものを反射面における光束径の移動量で正規化される。
 好ましくは、光束径は、観察体の視点の移動に伴い移動する。
 好ましくは、反射面は、最大PV値が100nmを超える。
 好ましくは、コンバイナは、反射率向上フィルムを接着層を介して基板の表面に貼り付けられている。
 本発明の他の態様である表示装置の設置方法は、投影機、及び投影機から投影された投影像を反射して、虚像を観察する観察体が捉える表示像を形成するコンバイナで構成される表示装置の設置方法において、コンバイナから投影機の距離を第1の距離、及びコンバイナから観察体の開口絞りまでの距離を第2の距離として、コンバイナの反射面の凹凸、及び、観察体の開口絞りに入射する光束の反射面における光束径の移動量に基づいて、第1の距離及び第2の距離が設定される。
 本発明の他の態様である表示システムは、投影機、及び投影機から投影された投影像を反射して、虚像を観察する観察体が捉える表示像を形成するコンバイナで構成される表示システムにおいて、コンバイナから投影機の距離を第1の距離、及びコンバイナから観察体の開口絞りまでの距離を第2の距離として、コンバイナの反射面の凹凸、及び、観察体の開口絞りに入射する光束の反射面における光束径の移動量に基づいて、第1の距離及び第2の距離が設定される。
 本発明によれば、投影機はコンバイナから第1の距離に設置され、コンバイナは観察体の開口絞りから第2の距離で設置され、第1の距離及び第2の距離は、コンバイナの反射面の凹凸、及び、表示像を観察する観察体の開口絞りに入射する光束の反射面における光束径の移動量に基づいて設定されるので、虚像又は表示像が揺らぐことを抑制することができる。
図1は、表示装置の概略構成を示す図である。 図2は、表示装置の概略構成を示す図である。 図3は、コンバイナの断面図である。 図4は、コンバイナの表面形状の測定結果を示す図である。 図5は、コンバイナの表面形状の測定結果を示す図である。 図6は、コンバイナの表面形状の測定結果を示す図である。 図7は、コンバイナの断面形状を示す図である。 図8は、コンバイナの断面形状を示す図である。 図9は、コンバイナの断面形状を示す図である。 図10は、コンバイナの反射面の凹凸の深さ(PV値)及び凹凸の周期の長さに関して示す図である。 図11は、コンバイナAの反射面の凹凸を模式的に示した断面図である。 図12は、実験システムの概略構成を示す図である。 図13は、光束径を算出することを説明する図である。 図14は、光束径の移動量を算出することを説明する図である。 図15は、像揺らぎの発生の実験結果を示す図である。 図16は、像歪みの発生の実験結果を示す図である。 図17は、実験用チャートをカメラで撮影した画像を示す図である。 図18は、実験用チャートをカメラで撮影した画像を示す図である。 図19は、実験用チャートをカメラで撮影した画像を示す図である。 図20は、像歪みが発生するそれぞれの条件において、光束径の移動量を変えた場合を示す図である。 図21は、像揺らぎ評価値の取得工程を示すフローチャートである。 図22は、水平方向及び垂直方向の傾斜分布を合わせた傾斜分布を示す図である。 図23は、平均傾斜分布を示す図である。 図24は、像揺らぎ分布を示す図である。 図25は、像揺らぎ評価値と目視評価に関して示す図である。 図26は、像揺らぎ評価値と目視評価に関して示す図である。 図27は、実験条件1を概略的に示す図である。 図28は、実験条件2を概略的に示す図である。 図29は、実験条件3を概略的に示す図である。
 以下、添付図面に従って本発明に係る表示装置、表示システム及び表示装置の設置方法の好ましい実施の形態について説明する。
 図1は、本発明の表示装置の概略構成を示す図である。
 表示装置1は投影像21を投影する投影機3と、投影機3から投影された映像を反射して表示像を形成するコンバイナ101と、表示像を捉えて虚像9を観察する観察体7から構成される。投影機3から投射される投影像21はコンバイナ101で反射され反射光23となり、観察体7が人である場合には観察体7はその反射光23の光束が瞳孔に入射することにより虚像9を観察する。観察体7(同図の例では人)は例えば座席11に座った状態で虚像9を観察するが、観察体7の頭部が動くことにより、観察体7の視点が移動する。なお表示装置1は、表示システムとして構成されていてもよい。ここで表示システムとは、複数の装置により構成される装置全体を表す。
 図2は、図1で示した表示装置1に関して、投影機3及びコンバイナ101をより詳細に示した表示装置1の概略構成を示す図である。
 投影機3は、所定の位置に固定されており、コンバイナ101に対して各種の投影像21を投射する。
 コンバイナ101は、所定の位置に固定されており、投影機3から投影された投影像21は反射面103で反射して反射光23となる。
 観察体7は、反射面103で反射された反射光23で構成される表示像を観察することにより、虚像9を観察することができる。観察体7は、座席11(図1)に座りながら虚像9を観察するので、観察体7の観察位置は推定可能である。同図では、観察体7は観察位置Oから虚像9を観察すると推定されている。なお、観察体7の具体例としては、観察者(人)又はカメラが挙げられる。
 図3は、コンバイナ101の断面図である。コンバイナ101は、Y-Z平面に表面及び裏面を有する板形状の光学部材である。コンバイナ101は、反射率向上フィルム105、接着層107、ハードコート処理層109、アクリル基材(基板)116、ハードコート処理層109、AR(Anti Reflection)コート層113から構成されている。
 反射率向上フィルム105は、コンバイナ101の反射面103を形成している。反射率向上フィルム105は、アクリル基材116のハードコート処理層109と接着層107を介して接着される。この場合、接着層107の接着剤の性能及び性質に起因して、反射面103に凹凸が形成される場合がある。また、金型を使用して、コンバイナ101を成形する場合にも、金型の凹凸が反射率向上フィルム105に転写する場合がある。具体的には、コンバイナ101の反射面103は、最大PV(Peak-to-Valley)値が100nmを超える凹凸を有している。
 接着層107は、反射率向上フィルム105とハードコート処理層109とを接着する接着剤によって構成されている。
 アクリル基材116は表面にハードコート処理層109を有しており、アクリル基材116を透明にすることにより、観察体7はアクリル基材116を通して観察できる風景と虚像9とを重畳させて観察することができる。
 ARコート層113は、アクリル基材116の反射率向上フィルム105が貼り付けられた逆側の表面に設けられる。ARコート層113を設けることによって、アクリル基材116の反射率向上フィルム105が貼り付けられていない側の表面での反射を防止することにより、虚像9の視認性の向上が図られる。
 本発明者等は、表示装置1における投影機3とコンバイナ101との距離(第1の距離)、及び表示装置1における観察体7とコンバイナ101との距離(第2の距離)を設定する手法を見いだした。具体的には、本発明においては第1の距離及び第2の距離が、コンバイナ101の反射面103の凹凸、観察体7の視点の移動に伴う光束径Φ2の移動量に基づいて決定される(以下で説明する決定手法の例1)。また本発明においては、第1の距離及び第2の距離が、コンバイナ101の反射面103の凹凸、表示像を観察する観察体7の開口絞りに入射する光束の反射面103における光束径Φ2、観察体7の視点の移動に伴う光束径Φ2の移動量に基づいて決定される(以下で説明する決定手法の例2)。このように決定された第1の距離及び第2の距離に基づいて、投影機3、コンバイナ101、観察体7を設置することにより、観察体7の視点の移動に伴う虚像9の揺らぎが抑制される。以下に第1の距離及び第2の距離の具体的な決定手法に関して説明する。ここで、虚像9又は表示像が揺らぐとは、観察体7の視点の移動に伴い、虚像9又は表示像が揺らいで観察される現象のことをいう。
 <第1の距離及び第2の距離の決定手法の例1>
 決定手法の例1では、第1の距離と第2の距離を以下の式により設定する。
 Y/(X+Y)<k/Z2
但し、Z2=Z1×Y/(X+Y)である。
X:第2の距離
Y:第1の距離
Z1:観察体の視点の移動量
Z2:反射面における光束径の移動量
k:反射面の凹凸から算出される係数
 <<コンバイナの反射面の凹凸>>
 上記の式において、kはコンバイナ101の反射面103の凹凸から算出される係数である。以下にkに関して説明する。
 先ずコンバイナ101の反射面103の凹凸に関して説明する。上述したように、コンバイナ101の反射面103には微細な凹凸が存在する。これは、コンバイナ101の製造時の要因で発生する場合や、製造後の汚れの付着により生じてしまう場合がある。
 図4から図6は、異なる反射面103の表面形状を有するコンバイナA、コンバイナB、及びコンバイナCを表面形状測定機で測定した結果である。図4に示した表面形状測定の結果はコンバイナAであり、図5に示した表面形状測定の結果はコンバイナBであり、図6に示した表面形状測定の結果はコンバイナCである。なお、表面形状の測定結果は、14mm角で示されている。このように、コンバイナA、コンバイナB、及びコンバイナCでは、反射面103において異なる凹凸を有している。また、各図における反射面103の凹凸の高さを、図の右側に示されたスケールと直線で対応させることにより明示している。
 図7から図9は、コンバイナA、コンバイナB、及びコンバイナCの断面形状を示す図である。図7はコンバイナAの断面形状の図であり、図8はコンバイナBの断面形状の図であり、図9はコンバイナCの断面形状である。なお、断面形状はそれぞれ、Y=0の位置のX方向の断面の高さ情報(各図の(A))、及びX=0の位置のY方向の断面の高さ情報(各図の(B))が示されている。
 図4から図9に示すように、コンバイナA、コンバイナB、及びコンバイナCは、反射面103においてそれぞれ異なる微細な凹凸を有している。kは、この反射面103における凹凸を表す係数である。例えばkは、凹凸の周期の長さから得られる係数である。
 図10は、コンバイナA、コンバイナB、及びコンバイナCの反射面103の凹凸の深さ(PV値)及び凹凸の周期の長さに関して示す図である。なお、図10に示す値は、図4から図9に示した表面形状の測定結果から得られた数値である。図10に示すように、コンバイナAの凹凸の深さは100nmから300nmの範囲であり、コンバイナBの凹凸の深さは20nmから100nmの範囲であり、コンバイナCの凹凸の深さは10nmから20nmの範囲である。コンバイナA、コンバイナB、及びコンバイナCを比較すると、コンバイナAが最も凹凸の深さが大きく、その次にコンバイナBの凹凸の深さが大きく、コンバイナCの凹凸の深さが最も小さい。また、コンバイナAの周期の長さは2mmから8mmであり、コンバイナBの周期の長さは1mmから3mmであり、コンバイナCの周期の長さは2mmから4mmである。
 ここで、コンバイナ101の反射面103の凹凸の深さ及び凹凸の周期の長さに関して説明する。図11は、コンバイナAの反射面103の凹凸を模式的に示した断面図である。同図の断面図は、X軸方向に沿った凹凸を模式的に示している。同図に示すような凹凸が周期的に繰り返されている場合には、T1、T2、及びT3のそれぞれの長さを計測して凹凸の周期の長さとする。また、凹凸の山と谷との高低差を計測することによって、PV値を得ることができる。なお、凹凸の周期の長さ及びPV値は、X軸方向、Y軸方向、又はX軸方向及びY軸方向について算出される。
 <<コンバイナの反射面における光束径及び光束径の移動量>>
 図12は、表示装置1における像揺らぎの発生を確認するための実験システム301の概略構成を示す図である。実験システム301では、表示装置1における観察体7をカメラ307に置き換え、実験用チャート309の像(投影像21)を表示装置1で使用されるコンバイナ101に投影する。コンバイナ101で反射された反射光23をカメラ307により捉える。カメラ307をY軸方向に移動(符号311で図示)させることにより、その移動に連動して所定の条件の場合に実験用チャート309の像が揺らいで観察される。なお、カメラ307のY軸方向の移動は、観察体7の首の移動(水平方向又は垂直方向)に伴う視点の移動を意味する。同図に示すような実験システム301を用いて、表示装置1で発生する像揺らぎの条件を確認する。
 また、実験システム301における光束径Φ2及び光束径Φ2の移動量Z2の算出は以下のように行われる。
 図13は、図12で示した実験システム301を簡素化して光束径Φ2を算出することを説明する図である。
 同図に示すように、コンバイナ101における光束径Φ2を算出する場合には、コンバイナ101を挟んでカメラ307により、実験用チャート309を撮影することを考える。この場合、コンバイナ101から実験用チャート309までの距離Yは、表示装置1におけるコンバイナ101から投影機3までの距離(第1の距離)に相当し、コンバイナ101からカメラ307までの距離Xは、表示装置1における観察位置Oからコンバイナ101までの距離(第2の距離)に相当する。またΦ1はカメラ307の開口絞り径であり観察体7が観察者の場合には人の瞳孔径に相当し、Φ2はコンバイナ101の反射面103における光束径となる。
 ここで、コンバイナ101上の光束径Φ2は以下の式によって算出される。
 Φ2=Φ1×Y÷(X+Y)
 図14は、図12で示した実験システム301を簡素化して、コンバイナ101上における光束径Φ2の移動量Z2を算出することを説明する図である。
 同図に示すように、コンバイナ101における光束径111の移動量Z2を算出する場合には、コンバイナ101を挟んでカメラ307により、実験用チャート309を撮影することを考える。コンバイナ101から実験用チャート309までの距離Yは、表示装置1におけるコンバイナ101から投影までの距離(第1の距離)に相当し、コンバイナ101からカメラ307までの距離Xは、表示装置1における観察位置Oからコンバイナ101までの距離(第2の距離)に相当する。またZ1はカメラ307の視点の移動量を示し、Z2はコンバイナ101における光束径111の移動量となる。
 ここで、Z2は以下の式によって算出される。
 Z2=Z1×Y÷(X+Y)
 以上のようにして、コンバイナ101の反射面103における光束径Φ2及び光束径Φ2の移動量Z2が算出される。
 <<像揺らぎ及び像歪み>>
 次に、実験システム301で、コンバイナA、コンバイナB、及びコンバイナCの像揺らぎ及び像歪みの発生に関して説明する。なお、実験システム301において、第1の距離及び第2の距離は1000mmであり、光束径Φ2の移動量Z2は15mmの条件で実験を行った。この実験においては、観察体7の視点が移動しない場合において像歪みが発生している条件では、観察体7の視点が移動した場合には像揺れが発生することがわかる。ここで像歪みとは、観察体7の視点が移動していない場合において、虚像9又は表示像の一部又は全部が歪んでしまうことである。
 図15は、コンバイナA、コンバイナB、及びコンバイナCの像揺らぎの発生の実験結果を示す図である。なお、像揺らぎの評価は目視評価で行われ「A」は全く像揺らぎが観察されない場合であり、「E」は像揺らぎが明らかに視認される場合であり、「A」、「B」、「C」、「D」、「E」の順で像揺らぎの視認される程度を示している。
 カメラ307のF値をF2.8にすると、反射面103における光束径Φ2は9mmとなる。この場合、コンバイナAの目視評価は「B」であり、コンバイナB及びコンバイナCの目視評価は「A」である。カメラ307のF値をF5.6にすると、反射面103における光束径Φ2は4.5mmとなる。この場合、コンバイナAの目視評価は「D」であり、コンバイナBの目視評価は「B」であり、コンバイナCの目視評価は「A」である。カメラ307のF値をF11にすると、反射面103における光束径Φ2は2.2mmとなる。この場合、コンバイナAの目視評価は「E」であり、コンバイナBの目視評価は「D」であり、コンバイナCの目視評価は「C」である。
 図16は、コンバイナA、コンバイナB、及びコンバイナCの像歪みの発生の実験結果を示す図である。なお、像歪みの評価は目視評価で行われ「A」は全く像歪みが観察されない場合であり、「B」、「C」、「D」、「E」、「F」の順で、像歪みの発生が明らかに確認されることを示している。
 また、図17から図19には、各条件で実験用チャート309をカメラ307で撮影した画像を示す図である。図17から図19では、コンバイナAでカメラ307のF値がF2.4で撮影したチャート画像には、A_F2.4と記載し、同様にコンバイナA、コンバイナB、及びコンバイナCにおける各F値でのチャート画像が示されている。例えば、A_F16.0(図19)では、表示されているチャートの線が曲がっており、明らかに歪みが視認される。
 像揺らぎの発生に関して示す図15の実験結果、及び像歪みの発生に関して示す図16の実験結果より、像歪みが発生する条件において像揺らぎが発生していることがわかる。例えば、コンバイナAにおいてカメラ307のF値がF11の場合には、像歪みが発生し且つ像揺らぎも発生している。ここで、図15及び図16の実験結果から凹凸の深さが20nm以上のコンバイナA及びコンバイナBにおいて、光束径Φ2が1周期の長さ以下の条件で像歪みが顕著に確認されるようになる。像歪みが顕著である場合に、観察体7の視点が動くことにより歪み位置が変化し像揺らぎが視認されているものと考えられる。
 ここで、像歪みが発生しない条件は以下である。
 Y÷(X+Y)>λ÷Φ1
Y:第1の距離
X:第2の距離
Φ1:観察体の開口絞り
λ:反射面の凹凸の周期の長さ
 <<像揺らぎ及び光束径の移動量>>
 次に、像揺らぎと光束径Φ2の移動量Z2に関して説明する。発明者等は像歪みが発生する場合において、光束径Φ2が移動すると必ずしも像揺らぎが発生するわけではないことを発明した。すなわち発明者等は、像歪みが発生する場合であっても、光束径Φ2の移動量Z2が、凹凸の周期の長さ以下である場合には像揺れが抑制される現象を得るに至った。
 図20は、コンバイナAにおいて像歪みが発生するそれぞれの条件において、光束径Φ2の移動量Z2を変化させた場合を示す図である。なお、光束径Φ2の移動量Z2は、後で説明する実験条件1(移動量:幅24mm)(図27)、実験条件2(移動量:幅15mm)(図28)、実験条件3(移動量:幅6mm)(図29)で変化させている。
 実験条件1及び実験条件2では、移動量Z2がコンバイナAの周期(2mmから8mm)より大きいために像歪みが発生し且つ像揺らぎも発生している(評価「D」)。実験条件3では移動量Z2がコンバイナAの周期よりも小さいので像歪みが発生しているにもかかわらず、像揺らぎは抑制されている(評価「B」)。
 このように、像歪みが発生する条件においても、光束径Φ2の移動量Z2がコンバイナ101の凹凸の周期よりも短い場合には像揺れが抑制される。これは以下の式を満たすように第1の距離及び第2の距離を設置することにより、像揺らぎの発生を抑制することができる。
 Y/(X+Y)<k/Z2
但し、Z2=Z1×Y/(X+Y)である。
X:第2の距離
Y:第1の距離
Z1:観察体の視点の移動量
Z2:反射面における光束径の移動量
k:反射面の凹凸から算出される係数
 ここでk(反射面103の凹凸から算出される係数)は、例えば凹凸の周期の長さが採用される。例えばk=1mm~10mm、より好ましくは2mm~8mmの値を採用することができる。例えばコンバイナAの場合には、周期が2mm~8mmであるので、上記第1の距離(Y)、第2の距離(X)、及び反射面103における光束径Φ2の移動量(Z2)は、K=2の時に成り立つ3変数の関係とK=8の時に成り立つ3変数を満たす範囲となる。
 以上の説明のように、決定手法の例1では、像歪みが発生したとしても像揺らぎが抑制されるように、反射面103の凹凸から算出される係数(k)、及び観察体7の視点の移動に伴う光束径Φ2の移動量に基づいて第1の距離及び第2の距離が決定される。
 <第1の距離及び第2の距離の決定手法の例2>
 決定手法の例2では、像揺らぎ評価値を算出し像揺らぎ評価値が所定の閾値以下になるように、第1の距離及び第2の距離を設定する。これにより、表示装置1における像揺らぎの発生が抑制される。
 <<像揺らぎ評価値>>
 像揺らぎ評価値について説明する。像揺らぎ評価値は、コンバイナ101の反射面103の傾斜分布を光束径Φ2及び/又は光束径Φ2の移動量Z2で正規化された評価値である。
 図21は、像揺らぎ評価値の取得工程を示すフローチャートである。
 先ず、表示装置1に使用されるコンバイナ101の反射面103の凹凸の状態を示す形状分布を取得する(ステップS10)。例えば、先に説明した図4から図6に示すような反射面103の凹凸形状の形状分布を表面形状測定装置で計測する。
 次に、取得した形状分布からコンバイナ101の水平方向及び/又は垂直方向における傾斜分布を算出する(ステップS11)。すなわち、反射面103の凹凸を、反射面103の傾斜分布によって表す。ここでコンバイナ101の水平方向とは図3におけるZ軸方向であり、垂直方向はY軸方向のことである。
 傾斜分布は、コンバイナ101を設置した場合の水平方向及び垂直方向のうち少なくとも一方において、反射面103の凹凸を示す関数を微分することにより算出される。具体的には、水平方向又は垂直方向の形状分布を示す関数を微分することにより、各方向の傾斜分布が算出される。
 図22は、水平方向及び垂直方向の傾斜分布を合わせた傾斜分布を示す図である。水平方向又は垂直方向のそれぞれにおいて算出された傾斜分布を合わせることにより、同図に示す傾斜分布を得る。
 次に、傾斜分布及び光束径Φ2により、平均傾斜分布を取得する(ステップS12)。具体的には、光束径Φ2内における傾斜分布の平均を算出する(平滑化)。
 図23は、平均傾斜分布を示す図である。平均傾斜分布は、例えば以下のように算出される。例えば平均傾斜分布は、ある座標(x、y)を中心として光束径Φ2内の傾斜分布の平均を算出し、その平均を座標(x、y)の平均傾斜値とする。この平均傾斜値を各座標において図示することにより、平均傾斜分布を得ることができる。
 次に、平均傾斜分布に基づいて像揺らぎ分布を取得する(ステップS13)。
 図24は、像揺らぎ分布を示す図である。像揺らぎ分布は、平均傾斜分布において、光束径Φ2の移動量Z2が考慮された分布を示す。例えば、ある座標(x、y)を基準として光束径Φ2の移動量Z2の幅の範囲で最大のPV値を座標(x、y)の値とし、全ての座標において同様にして最大のPV値を得ることにより像揺らぎ分布が生成される。
 次に、像揺らぎ分布から像揺らぎ評価値を取得する(ステップS15)。像揺らぎ評価値は、像揺らぎ分布を示す代表的な数値とされる。例えば像揺らぎ評価値は、像揺らぎ分布に示されている光束径Φ2の移動量Z2を考慮した領域内のPV値の最大値とする。図24に示す像揺らぎ分布では、PV値の最大値(0.3)が像揺らぎ評価値となる。
 以上で説明した取得工程により、コンバイナ101の反射面103の像揺らぎ評価値が取得される。この像揺らぎ評価値を使用して、第1の距離及び第2の距離を決定する。
 <<像揺らぎ評価と像揺らぎの発生>>
 次に、像揺らぎ評価値と像揺らぎの発生を目視評価した結果に関して説明する。
 図25は、コンバイナA、コンバイナB、及びコンバイナCの像揺らぎ評価値と目視評価に関して示す図である。なお、図24に示す実験結果は、後で説明する実験条件2で行われている。
 同図に示すように、像揺れ評価値が0.35以上の場合には目視評価「D」となり像揺らぎが視認された。像揺れ評価値が0.12より大きく0.35未満の場合には目視評価「C」となり像揺らぎが少し視認された。像揺れ評価値が0.12以下の場合には目視評価「B」となり像揺らぎが視認されなかった。
 図26は、コンバイナA及びコンバイナBの像揺らぎ評価値と目視評価に関して示す図である。なお、図26に示す実験結果は、後で説明する実験条件3で行われている。
 同図に示すように、像揺れ評価値が0.35以上の場合には目視評価「D」となり像揺らぎが視認された。像揺れ評価値が0.12より大きく0.35未満の場合には目視評価「C」となり像揺らぎが少し視認された。像揺れ評価値が0.12以下の場合には目視評価「B」となり像揺らぎが視認されなかった。
 以上で説明したように、決定手法の例2では、像揺らぎ評価値が所定の閾値以下となるように、第1の距離及び第2の距離を設定する。これにより、像揺らぎの発生を抑制することができる。なお、像揺らぎ評価値とは、コンバイナ101の反射面103の凹凸、表示像を観察する観察体7の開口絞りに入射する光束の反射面103における光束径Φ2、観察体7の視点の移動に伴う光束径Φ2の移動量Z2に基づいて、算出されるコンバイナ101の反射面103の評価値である。
 <実験条件>
 図27から図29は、実験条件1、実験条件2、及び実験条件3を概略的に示す図である。なお、図12で既に説明を行った箇所は同じ符号を付し説明は省略する。
 図27は、実験条件1の実験システム301を示す図である。実験条件1では、実験用チャート309とコンバイナ101との距離(第1の距離)が1600mmに設定され、カメラ307とコンバイナ101との距離(第2の距離)が400mmに設定されている。また、カメラ307の視点の移動は30mmであり、光束径Φ2の移動量Z2は24mmである。
 図28は、実験条件2の実験システム301を示す図である。実験条件2では、実験用チャート309とコンバイナ101との距離(第1の距離)が1000mmに設定され、カメラ307とコンバイナ101との距離(第2の距離)が1000mmに設定されている。また、カメラ307の視点の移動は30mmであり、光束径Φ2の移動量Z2は15mmである。
 図29は、実験条件3の実験システム301を示す図である。実験条件3では、実験用チャート309とコンバイナ101との距離(第1の距離)が400mmに設定され、カメラ307とコンバイナ101との距離(第2の距離)が1600mmに設定されている。また、カメラ307の視点の移動は30mmであり、光束径Φ2の移動量Z2は6mmである。
 以上で本発明の例に関して説明してきたが、本発明は上述した実施の形態に限定されず、本発明の精神を逸脱しない範囲で種々の変形が可能であることは言うまでもない。
1   :表示装置
3   :投影機
7   :観察体
9   :虚像
11  :座席
21  :投影像
23  :反射光
101 :コンバイナ
103 :反射面
105 :反射率向上フィルム
107 :接着層
109 :ハードコート処理層
113 :ARコート層
116 :アクリル基材

Claims (13)

  1.  投影機、及び前記投影機から投影された投影像を反射して、虚像を観察する観察体が捉える表示像を形成するコンバイナで構成される表示装置において、
     前記コンバイナから前記投影機の距離を第1の距離、及び前記コンバイナから前記観察体の開口絞りまでの距離を第2の距離として、
     前記コンバイナの反射面の凹凸、及び、前記観察体の前記開口絞りに入射する光束の前記反射面における光束径の移動量に基づいて、前記第1の距離及び前記第2の距離が設定される表示装置。
  2.  前記第1の距離と前記第2の距離とは、以下の式により設定される請求項1に記載の表示装置。
     Y/(X+Y)<k/Z2
    但し、Z2=Z1×Y/(X+Y)である。
    X:前記第2の距離
    Y:前記第1の距離
    Z1:前記観察体の視点の移動量
    Z2:前記反射面における光束径の移動量
    k:前記反射面の凹凸から算出される係数
  3.  前記第1の距離及び前記第2の距離は、前記反射面の凹凸、前記光束径の移動量、及び前記光束径に基づいて設定され、
     前記反射面の凹凸は、前記反射面の傾斜分布である請求項1に記載の表示装置。
  4.  前記傾斜分布は、前記コンバイナを設置した場合の少なくとも一方において、前記反射面の凹凸を示す関数を微分することにより算出される請求項3に記載の表示装置。
  5.  前記傾斜分布は、前記コンバイナを設置した場合の異なる2方向において、前記反射面の凹凸を示す関数を微分することにより算出される請求項3又は4に記載の表示装置。
  6.  前記傾斜分布は、前記反射面における前記光束径の移動量で正規化される請求項3から5のいずれか1項に記載の表示装置。
  7.  前記傾斜分布は、前記反射面における前記光束径で正規化される請求項3から6のいずれか1項に記載の表示装置。
  8.  前記傾斜分布は、前記反射面における前記光束径で平滑化したものを前記反射面における前記光束径の移動量で正規化される請求項3から5のいずれか1項に記載の表示装置。
  9.  前記光束径は、前記観察体の視点の移動に伴い移動する請求項1から8のいずれか1項に記載の表示装置。
  10.  前記反射面は、最大PV値が100nmを超える請求項1から9のいずれか1項に記載の表示装置。
  11.  前記コンバイナは、反射率向上フィルムを接着層を介して基板の表面に貼り付けられている請求項1から10のいずれか1項に記載の表示装置。
  12.  投影機、及び前記投影機から投影された投影像を反射して、虚像を観察する観察体が捉える表示像を形成するコンバイナで構成される表示装置の設置方法において、
     前記コンバイナから前記投影機の距離を第1の距離、及び前記コンバイナから前記観察体の開口絞りまでの距離を第2の距離として、
     前記コンバイナの反射面の凹凸、及び、前記観察体の前記開口絞りに入射する光束の前記反射面における光束径の移動量に基づいて、前記第1の距離及び前記第2の距離が設定される表示装置の設置方法。
  13.  投影機、及び前記投影機から投影された投影像を反射して、虚像を観察する観察体が捉える表示像を形成するコンバイナで構成される表示システムにおいて、
     前記コンバイナから前記投影機の距離を第1の距離、及び前記コンバイナから前記観察体の開口絞りまでの距離を第2の距離として、
     前記コンバイナの反射面の凹凸、及び、前記観察体の前記開口絞りに入射する光束の前記反射面における光束径の移動量に基づいて、前記第1の距離及び前記第2の距離が設定される表示システム。
PCT/JP2019/042159 2018-11-01 2019-10-28 表示装置、表示システム、及び表示装置の設置方法 WO2020090730A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-206877 2018-11-01
JP2018206877 2018-11-01

Publications (1)

Publication Number Publication Date
WO2020090730A1 true WO2020090730A1 (ja) 2020-05-07

Family

ID=70462062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042159 WO2020090730A1 (ja) 2018-11-01 2019-10-28 表示装置、表示システム、及び表示装置の設置方法

Country Status (1)

Country Link
WO (1) WO2020090730A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054350A (ja) * 2011-08-11 2013-03-21 Toray Ind Inc ヘッドアップディスプレイおよびそれを用いた移動機器
JP2014206593A (ja) * 2013-04-11 2014-10-30 矢崎総業株式会社 コンバイナ
US20170123207A1 (en) * 2015-10-28 2017-05-04 Google Inc. Free space optical combiner with prescription integration
WO2018025741A1 (ja) * 2016-08-05 2018-02-08 パナソニックIpマネジメント株式会社 コンバイナおよびそれを利用したヘッドアップディスプレイ装置
JP2018045170A (ja) * 2016-09-16 2018-03-22 双葉電子工業株式会社 車載用表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054350A (ja) * 2011-08-11 2013-03-21 Toray Ind Inc ヘッドアップディスプレイおよびそれを用いた移動機器
JP2014206593A (ja) * 2013-04-11 2014-10-30 矢崎総業株式会社 コンバイナ
US20170123207A1 (en) * 2015-10-28 2017-05-04 Google Inc. Free space optical combiner with prescription integration
WO2018025741A1 (ja) * 2016-08-05 2018-02-08 パナソニックIpマネジメント株式会社 コンバイナおよびそれを利用したヘッドアップディスプレイ装置
JP2018045170A (ja) * 2016-09-16 2018-03-22 双葉電子工業株式会社 車載用表示装置

Similar Documents

Publication Publication Date Title
US20190056591A1 (en) Optical waveguide with multiple antireflective coatings
CN108713159B (zh) 场曲校正显示器
KR100386856B1 (ko) 액정 표시 장치
US10225534B2 (en) Device and method for characterization of subjective speckle formation
TW201636646A (zh) 擴散板
JP5204309B2 (ja) 表示装置およびその制御方法
JP6056680B2 (ja) ヘッドアップディスプレイ装置
US10191287B2 (en) Optical element and display device
JP6503568B2 (ja) 二重像検査システム
JP2022070877A (ja) 表示装置
CN113574442B (zh) 用于生成虚拟图像的光学系统以及智能眼镜
WO2020090730A1 (ja) 表示装置、表示システム、及び表示装置の設置方法
WO2015125283A1 (ja) 光学素子、及び、ヘッドアップディスプレイ
JP2012083538A (ja) 異方拡散スクリーン
JP2017134195A (ja) 反射スクリーン、映像表示装置
JP3766342B2 (ja) 防眩フィルムのギラツキ評価装置
JP2018109687A (ja) 反射スクリーン、映像表示装置
JP2018081193A (ja) 反射スクリーン、映像表示装置
JP6807177B2 (ja) 反射型スクリーン
JP6972642B2 (ja) 表示装置
JP2006189676A (ja) レンズアレイおよび光学機器
JP6308323B1 (ja) 表示装置
WO2011155475A1 (ja) 防眩処理が施された光学部材
JP2004070188A (ja) フレネルレンズ
JP2006171430A (ja) 光学素子及びそれを有する光学系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP