WO2020090611A1 - Work ship having tower crane and crane operating method therefor - Google Patents

Work ship having tower crane and crane operating method therefor Download PDF

Info

Publication number
WO2020090611A1
WO2020090611A1 PCT/JP2019/041667 JP2019041667W WO2020090611A1 WO 2020090611 A1 WO2020090611 A1 WO 2020090611A1 JP 2019041667 W JP2019041667 W JP 2019041667W WO 2020090611 A1 WO2020090611 A1 WO 2020090611A1
Authority
WO
WIPO (PCT)
Prior art keywords
crane
work
tower
leg
pontoon
Prior art date
Application number
PCT/JP2019/041667
Other languages
French (fr)
Japanese (ja)
Inventor
拓樹 中村
Original Assignee
ポルタパーク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポルタパーク株式会社 filed Critical ポルタパーク株式会社
Publication of WO2020090611A1 publication Critical patent/WO2020090611A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/26Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes for use on building sites; constructed, e.g. with separable parts, to facilitate rapid assembly or dismantling, for operation at successively higher levels, for transport by road or rail
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/52Floating cranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to a work boat equipped with a crane used for offshore construction in shallow water, particularly for installation of a landing type offshore wind turbine generator and maintenance work thereof, and a method for operating the crane.
  • a traveling rail is provided on a deck and a boom is provided so as to be turnable.
  • a work platform for raising and lowering a deck which is provided with a movable work carriage for traveling freely, and a jack-up leg, a large and small first crane, and a second crane as described in, for example, Japanese Patent Laid-Open No. 2004-1750.
  • the special work boats provided are proposed.
  • a semi-submerged hull is provided with a deck lifting pedestal system, and along a rail system on the side walls on both sides of the hull. It is equipped with a portal crane and a gantry crane that can be moved by moving the deck crane to the seabed during the work of lowering the offshore structure from between the rear protrusions of the side walls with this portal crane.
  • a vessel for transporting and installing offshore structures in a fixed state has been proposed.
  • a jack-up ship equipped with a plurality of jack-up legs is equipped with a ship crane such as a jib crane and the space on the deck is effectively used. Therefore, an offshore wind turbine installation vessel has been proposed in which at least one of the jack-up legs that moves up and down is disposed at the center of the swing of the on-board crane.
  • the size of the wind turbine is limited due to the capacity of the crane device for transportation and installation, but in comparison, in the case of an offshore wind power generator, this wind turbine There are few size restrictions.
  • the cost of installation work is almost proportional to the number of installations, so it is necessary to reduce the number of installations to reduce costs. Larger capacity is desired.
  • the power generation amount of one wind turbine is 7 MW class, but it is expected to reach 10 MW class within a few years.
  • the suspension height of this 10 MW class wind turbine is considered to reach 200 m.
  • this tower crane is also called a climbing type jib crane and is used for the construction of a high-rise building or a large building, or It is used for concrete pouring of dams.
  • Japanese Patent Laid-Open No. 2011-183835 Japanese Patent Laid-Open No. 2004-1750
  • Japanese Patent Laid-Open No. 2012-76738 Japanese Unexamined Patent Publication No. 2013-170493 U.S. Pat. No. 4,652,177 Japanese Unexamined Patent Publication No. 2009-280367 Japanese Patent Laid-Open No. 5-178566
  • this tower crane can be used for offshore installation of the latest wind turbine, which is increasing in capacity and increasing in suspension height, this wind turbine can be installed without using a large hoist ship. The cost can be reduced significantly. Further, not only the cost at the time of installation but also the maintenance of the landing type offshore wind turbine already installed on the ocean does not require an expensive hoist ship, so that the economical efficiency of the lifetime of the wind turbine can be greatly improved. Furthermore, even if an offshore wind turbine is assembled at a port and then shipped by a carrier ship with a stern having a fork shape, a tower crane can be easily used as a crane that can be used for this assembly and shipping. it can.
  • the present invention has been made in view of the above situation, and an object thereof is to provide an offshore construction work in a shallow sea area, particularly a work provided with a crane used for installation of a landing type offshore wind turbine generator and its maintenance work.
  • the hanging height of the crane can be easily changed according to the height of the work object, and when navigating without crane work, lower the crane height and lower the air draft.
  • a work boat equipped with a crane and a crane therefor capable of reducing the overturning moment acting on the base of the crane and reducing the size of the base structure of the crane, and suppressing the increase in the size of the hull of the work pontoon.
  • a work platform provided with the crane of the present invention for achieving the above object is a work platform provided with a crane that uses a crane for installation of an offshore structure.
  • the crane main body is placed on the top of the tower, and the tower crane is provided to adjust the height of the tower according to the number of stacked mast blocks. ..
  • the load applied to the tower is configured so that the overturning moment is minimized and the load in the vertical direction is the main component. Therefore, it is easier in strength than the supporting structure (base structure) in other types of cranes.
  • the crane support structure requires less member weight and deck area than prior art work pontoons with other types of cranes. Therefore, it is possible to suppress an increase in the deck area and weight of the work table required for mounting the crane, and it is possible to prevent the work table from increasing in size.
  • the mast blocks are stacked to form a tower, and the crane body is installed on top of it.
  • the "crane height" can be easily increased by increasing the number of stacked mast blocks when performing crane work. Therefore, it is possible to easily increase the "hanging load height" at which a hanging load having a preset hanging load can be lifted.
  • the "crane height" can be lowered by reducing the number of stacked mast blocks, so it is possible to increase the height from the water surface to the highest point of the hull structure. It is easy to lower the "air draft", which is the height of ().
  • the mast blocks forming the tower are removed and the number of them is reduced to lower the height of the tower, so the removed mast blocks can be arranged in a plane on the work table ship.
  • This mast block can be used as a weight for adjusting the attitude (trim (vertical tilt), heel (horizontal tilt)) of the hull. Therefore, in the work pontoon, it is possible to suppress an increase in the mechanism for adjusting the attitude of the hull (such as the capacity of the ballast tank) required to mount the crane, and it is possible to prevent the work pontoon from increasing in size.
  • the tower crane raises the crane main body while sequentially adding the mast block to the tower, and while sequentially removing the mast block from the tower, the crane.
  • the mast climbing device of the self-elevating type for lowering the main body is provided, the tower crane can be quickly assembled to a predetermined height without using an auxiliary crane or the like.
  • the work pontoons are drainage type work pontoons, half SEPs in which the hull is floating on the water surface during crane work, and the hull is on the water surface during crane work.
  • the following effects can be obtained with any one of the work pontoons of the full SEP in the upper position.
  • the work pontoon When the work pontoon is a drainage type work pontoon, it is necessary to hold the position of the own ship by a mooring system such as mooring lines or an automatic position keeping (DPS) system during crane work, but SEP (self There is no need for the structure of lifting legs (legs, spuds) that can be lifted up and down by jacking up like a lifting work boat.
  • a mooring system such as mooring lines or an automatic position keeping (DPS) system during crane work, but SEP (self There is no need for the structure of lifting legs (legs, spuds) that can be lifted up and down by jacking up like a lifting work boat.
  • DPS automatic position keeping
  • the work pontoon is a half SEP
  • the support force of the lifting legs and the buoyancy of the hull are used together to raise the work pontoons, but the lifting legs have been jacked up.
  • the hull is kept floating above the surface of the water.
  • the tower crane can be fixedly supported with a relatively simple structure.
  • the phrase "when performing a crane operation" may mean moving, disassembling and assembling before and after that.
  • the base pedestal may be fixed so as not to move on the rail when performing the crane work.
  • the tower crane is configured to include a leg portion formed by assembling a leg block at a lower portion of the tower formed by assembling the mast block, and The following effects can be achieved by being configured with a tower lifting system that lowers the legs into the water.
  • the tower lifting system when the crane operation is performed, the tower lifting system causes the legs to bottom on the bottom of the water, and part or all of the load of the tower crane and the load of suspension is transferred via the mast block and the legs. It can be transmitted to the bottom and supported on the bottom. Therefore, the hull side of the work pontoon may bear part of the load of the tower crane and the load of the suspended load, or may not bear the load at all, so that the support structure for supporting the tower crane becomes strong in strength.
  • a work platform equipped with the above-mentioned crane when performing a crane work, it is provided with a support structure for supporting the relative displacement of the tower crane with respect to the hull of the work platform, Almost all of the load of the tower crane and the load applied to the tower crane can be borne on the bottom of the water, the load received by the work pontoon can be significantly reduced, and the movement of the work pontoon (platform) side is transmitted to the tower crane. It is possible to solve the problem of interference that affects the crane work.
  • a full SEP type work pontoon vessel may be swayed by the influence of wind, etc. Vibration and the like propagate to the tower crane and are amplified, so that there is a problem that the work efficiency of the crane work is reduced. Since this full SEP type work pontoon generally operates under severer sea and weather conditions than the half SEP, it is important to solve this problem.
  • the legs of the tower crane When navigating without crane work, the legs of the tower crane are lifted from the bottom of the water and the legs are disassembled or lifted until the lowest part of the legs is near the water surface, similar to the lifting legs. .. After that, by fixing either one or both of the tower and the legs of the tower crane to the deck of the work pontoon, the tower crane is fixed to the work pontoon for navigation.
  • the tower crane In a work platform equipped with a tower crane that bottoms the legs, even when performing crane work, if the tower crane is configured so that it can be firmly fixed to the hull without allowing relative movement of the tower crane, Since the part can be used as a substitute for the lifting leg, one of the lifting legs can be omitted accordingly, the deck area can be saved, and the cost for one lifting leg can be reduced. Further, it is possible to reduce the working time for raising and lowering the hull and the working time for lowering the legs of the tower crane in the on-site sea area. However, this configuration requires a solid support structure for fixing the tower crane to the hull.
  • the member of the elevating leg with the mast block should be shared.
  • the operation of the work pontoon can be simplified. Also, if necessary, replace the location where the tower crane is installed with the location of the lifting legs, and install the tower crane on the bow side or stern side, making it easier to install the tower crane. The position can be changed.
  • the work pontoon lifts and lowers the hull of the work pontoon to raise and lower the hull and an elevating and lowering system for elevating and lowering the lift leg.
  • a half SEP or a full SEP equipped with the tower lifting system for lowering the legs of the tower crane into the water is configured to be compatible with the lifting platform lifting system as follows. It is possible to achieve various effects.
  • the installation location of the tower crane can be easily replaced with the installation location of the lifting legs, so the installation location of the tower crane can be changed as necessary to move it to the bow, It becomes easy to move to the stern and install it.
  • a common jack system for the lifting system for both the legs and the lifting legs of the tower crane it is possible to simplify not only the equipment but also the operation in parts procurement, maintenance and inspection.
  • the work pontoon lifts and lowers the hull of the work pontoon to raise and lower the hull and an elevating and lowering system for elevating and lowering the lift leg.
  • the tower crane is a half SEP or a full SEP provided and is mounted on one of the elevating legs during crane work, the following effects can be obtained.
  • the elevating leg for mounting the tower crane is reinforced, and the strength of the elevating leg elevating system of the elevating leg is strengthened to newly add a tower crane tower.
  • the lifting system part or all of the load of the tower crane and the load of the suspended load can be transmitted to the bottom of the water through the lifting legs and supported on the bottom of the water.
  • the tower crane is arranged at the portion of the lifting legs, the deck space for installing the tower crane can be saved, and the workbench can be prevented from increasing in size.
  • the legs of the tower crane are also used as the lifting legs, so the tower block of the tower crane and the tower Since the lifting system is not necessary, the cost can be reduced, and the work of landing on the legs of the tower crane on the work pontoon in the offshore area can be omitted, thereby reducing the work time.
  • a crane operating method of a work pontoon equipped with a crane for achieving the above-mentioned object is a crane operating method of a work pontoon equipped with the above crane, when performing a crane operation, the tower in the tower crane. Adjusting the suspension height by the number of stacked mast blocks forming the, when sailing while stopping the crane work, the number of stacked mast blocks is reduced from the number when working with the tower crane, This is a method characterized by lowering the height of the tower.
  • the installation height and the suspended load height can be easily increased in response to the height of the super-large wind turbine. Can be adjusted to. Further, at the time of navigation, the height of the tower can be easily lowered only by reducing the number of stacked mast blocks, so that the air draft of the work pontoon at the time of navigation can be lowered.
  • a work boat equipped with a crane used for offshore work in shallow water, particularly for installation of a landing type offshore wind turbine generator and maintenance work therefor In (3), it is possible to easily change the lifting height of the crane according to the height of the work object, and when navigating without crane work, lower the crane height and lower the air draft. Moreover, since the overturning moment acting on the base of the crane is small, the scale of the base structure of the crane can be small, and the hull of the work pontoon can be prevented from increasing in size.
  • FIG. 1 is a plan view schematically showing the structure of a work platform (discharging type) equipped with a crane according to a first embodiment of the present invention.
  • FIG. 2 is a side view schematically showing the configuration of a work pontoon (displacement type) equipped with the crane of FIG. 1, and is a diagram showing a configuration when a deck-installed tower crane is lowered to navigate.
  • FIG. 3 is a side view schematically showing the configuration of a work pontoon (displacement type) equipped with the crane of FIG. 1, and is a diagram showing a configuration when a deck-installed tower crane is raised to perform crane work. Is.
  • FIG. 1 is a plan view schematically showing the structure of a work platform (discharging type) equipped with a crane according to a first embodiment of the present invention.
  • FIG. 2 is a side view schematically showing the configuration of a work pontoon (displacement type) equipped with the crane of FIG. 1, and is a diagram showing a configuration when
  • FIG. 4 is a plan view schematically showing the configuration of a work pontoon ship (SEP) equipped with the cranes of the second and third embodiments according to the present invention.
  • FIG. 5 is a side view schematically showing the configuration of a work pontoon ship (SEP) equipped with the crane of FIG. 4, and is a diagram showing the configuration when a deck-installed tower crane is lowered to navigate.
  • FIG. 6 is a side view schematically showing the configuration of a work pontoon (half SEP) equipped with a crane according to the second embodiment of the present invention, in which a deck-installed tower crane is raised to perform crane work. It is a figure which shows the structure in the case of performing.
  • FIG. 5 is a side view schematically showing the configuration of a work pontoon ship (SEP) equipped with the crane of FIG. 4, and is a diagram showing the configuration when a deck-installed tower crane is lowered to navigate.
  • FIG. 6 is a side view schematically showing the configuration of a
  • FIG. 7 is a side view which shows typically the structure of the working pontoon ship (full SEP) provided with the crane of the 3rd Embodiment which concerns on this invention, raises the tower crane of a deck installation type, and carries out crane work. It is a figure which shows the structure in the case of performing.
  • FIG. 8 is a top view which shows typically the structure of the work pontoon (drainage type) provided with the crane of the 4th Embodiment which concerns on this invention.
  • 9 is a side view which shows typically the structure of the work pontoon (drainage type) provided with the crane of FIG. 8, and is a figure which shows the structure at the time of making a bottom-mounted tower crane low, and sailing. .. FIG.
  • FIG. 10 is a side view schematically showing the configuration of a work pontoon (displacement type) equipped with the crane of FIG. 8, which raises the tower by bottoming the legs of the bottom-mounted tower crane to raise the tower. It is a figure which shows the structure at the time of working.
  • FIG. 11 is a top view which shows typically the structure of the work pontoon ship (SEP) provided with the crane of the 5th and 6th embodiment which concerns on this invention.
  • FIG. 12 is a side view schematically showing the configuration of a work pontoon ship (SEP) equipped with the crane shown in FIG. 11, which is used when navigating while raising the legs of the bottom-mounted tower crane and lowering the tower. It is a figure which shows a structure.
  • FIG. 11 is a top view which shows typically the structure of the work pontoon ship (SEP) provided with the crane of the 5th and 6th embodiment which concerns on this invention.
  • FIG. 12 is a side view schematically showing the configuration of a work pontoon ship (S
  • FIG. 13 is a side view which shows typically the structure of the work pontoon (half SEP) provided with the crane of the 5th Embodiment which concerns on this invention. It is a figure which shows the structure at the time of performing a crane work by raising a tower.
  • FIG. 14 is a side view which shows typically the structure of the working pontoon (full SEP) provided with the crane of the 6th Embodiment which concerns on this invention. It is a figure which shows the structure at the time of performing a crane work by raising a tower.
  • FIG. 15 is a top view which shows typically the structure of the working table ship (SEP) provided with the crane of the 7th and 8th embodiment which concerns on this invention.
  • SEP working table ship
  • FIG. 16 is a side view schematically showing the configuration of a work pontoon ship (SEP) equipped with the crane shown in FIG. 15, which is used when navigating by pulling up the legs of a bottom-mounted tower crane and lowering the tower. It is a figure which shows a structure.
  • FIG. 17 is a side view schematically showing the configuration of a work pontoon (half SEP) equipped with a crane according to a seventh embodiment of the present invention, in which the legs of a bottom-mounted tower crane are bottomed. It is a figure which shows the structure at the time of performing a crane work by raising a tower.
  • FIG. 18 is a side view which shows typically the structure of the working pontoon ship (full SEP) provided with the crane of the 8th Embodiment which concerns on this invention. It is a figure which shows the structure at the time of performing a crane work by raising a tower.
  • FIG. 19 is a diagram for explaining the work of reducing the number of assembled mast blocks in the tower crane.
  • FIG. 20 is a side view schematically showing a state in which the crane main body 13 is placed on the deck of the work platform ship.
  • FIG. 21 is a diagram for explaining the work of increasing the number of assembled mast blocks in the tower crane.
  • 22: is a figure which illustrates the bottom plate of the raising / lowering leg of a working pontoon ship (SEP), (a) is a fixed-type bottom plate, (b) is a figure which shows an opening / closing-type bottom plate.
  • the power generation capacity per unit is, for example, about 7 MW to 10 MW, and the crane is installed in a shallow sea area with a lifting height of about 200 m.
  • An offshore wind turbine generator (offshore wind turbine) is assumed.
  • the present invention is not limited to such an offshore wind turbine generator, and may be any other offshore structure that requires crane work on the sea. Since the offshore structure itself which is the target of the crane work does not directly relate to the present invention, the offshore structure is not shown in order to simplify the drawings and the description thereof.
  • the tower cranes 10A, 10B, and 10C are also called climbing type jib cranes, and in the field of land, they are used for the construction of high-rise buildings and large-scale buildings, or concrete concrete pouring. It is a well-known crane used.
  • the tower cranes 10A, 10B, and 10C are provided on the work pontoons 1A to 1H for use in installing offshore structures and the like.
  • This tower crane has a flat top type that horizontally moves a trolley that is mounted on a horizontally fixed boom, and a hammer head that supports this horizontally fixed boom from above with a wire.
  • Type luffing type with undulating jib.
  • the luffing type has the advantages that the height of the tower to be assembled in the field is lower and the space required around the lifting work is smaller. In the following description, a luffing type tower crane is used.
  • the tower cranes 10A, 10B and 10C used in the work pontoons 1A to 1I of this embodiment are basically the same as the well-known tower cranes already used in the fields such as land construction and civil engineering. is there.
  • the tower cranes 10A, 10B, and 10C are configured such that the overturning moment acting on the tower 12 is made as small as possible and the vertical load is mainly due to its shape and use. .. That is, as shown in FIG. 3, in the tower cranes 10A, 10B, and 10C, the overturning moment (W ⁇ Lh) depending on the hanging load amount W and the horizontal distance Lh between the tower 12 and the hanging load is set on the opposite side.
  • the crane body 13 is configured so as to be balanced by 13c and 13d.
  • the tower cranes 10A, 10B, 10C are configured to have a base mount 11 (not the tower crane 10B), a tower 12, and a crane body 13.
  • a plurality of mast blocks 12a are stacked to form a tower 12, and a crane main body 13 is placed on the top of the tower 12, and the tower is constructed according to the number of stacked mast blocks 12a.
  • the height of 12 is adjusted.
  • the mast block 12a is a component of the assembling tower 12 for adjusting the "hanging height Hh" directly related to the height of the tower 12 by the number of stacks.
  • This tower crane 10A, 10B, 10C is a mast climbing in which the crane main body 13 is raised while sequentially adding the mast block 12a to the tower 12 and the crane main body 13 is lowered while sequentially removing the mast block 12a from the tower 12.
  • a device 14 is preferably provided.
  • a tower crane of a type that raises and lowers the crane body 13 with the assistance of an auxiliary crane when the crane body 13 is raised and lowered may be used. It is more preferable to use a tower crane of a self-elevating type that elevates and lowers the crane body 13 by using the mast climbing device 14 without requiring assistance from the crane.
  • the crane main body 13 can be lifted and lowered only by using the equipment and mechanism provided without using an auxiliary crane, so an auxiliary crane for lifting and lowering is not required, and the weight and deck space can be saved accordingly. Further, the tower 12 can be quickly assembled to a predetermined height.
  • a self-elevating type tower crane or an auxiliary crane may be used to incorporate the mast block 12a, but this auxiliary crane has a smaller capacity than the auxiliary crane for elevating the crane body 13.
  • a crane is enough.
  • the tower cranes 10A, 10B, and 10C form a tower 12 by stacking a plurality of mast blocks (crane masts: posts) 12a on a base pedestal 11 in a working water area (construction site).
  • the crane main body 13 is placed on 12.
  • the crane main body 13 is assembled by attaching a boom (jib: arm of crane) 13b and passing a wire 13e for raising and lowering the boom 13b and hoisting and lowering a suspended load.
  • the climbing height Hh of a desired height is obtained by repeating climbing using the mast climbing device 14 to raise the crane body 13 and raise it while adding the mast block 12a.
  • the crane main body 13 of these work lanes 10A, 10B, and 10C includes a swing mechanism 13a, a suspension mechanism having a boom 13b, a front strut 13c, a rear strut 13d, and a wire 13e, and an operator's cab 13f.
  • the front strut 13c and the rear strut 13d on the opposite side are balanced so that the overturning moment generated in the tower 12 by the load W of the suspended load is minimized.
  • the boom 13b, the front strut 13c, and the rear strut 13d are a truss structure for weight reduction, and particularly, a lattice (lattice) structure that is a rhombic structure in which members are continuously connected in a pin shape with a joint structure as a pin structure. ) Structure is preferred.
  • a lattice (lattice) structure that is a rhombic structure in which members are continuously connected in a pin shape with a joint structure as a pin structure.
  • the mast climbing device 14 is a device for raising the crane body 13 while incorporating the mast block 12a without using an auxiliary crane.
  • a climbing method using the mast climbing device 14 there are a method using expansion and contraction of a hydraulic cylinder, a method using tension of a lifting wire rope, and the like.
  • the mast climbing device 14 is composed of, for example, an upper lifting frame having an upper lift, a lower lifting frame having a lower lift, and a lifting cylinder, and the upper and lower lifts alternately support the entire mass of the crane body 13.
  • the climbing method includes a method using a hydraulic cylinder, an electric cylinder, an electric chain block, a wire rope (used in combination with a hoisting device), and the hydraulic cylinder method is the mainstream for large cranes.
  • the crane main body 13 can move up and down the tower 12 by the expansion and contraction movement of the hydraulic cylinder.
  • the lifting cylinders are equipped with "Kanuki" (bars) that engage through the holes of both members: Sekiki and Kanoki at the top and bottom. ing.
  • this tower crane 10A As for the size of this tower crane 10A, it is already known that, for example, as a crane that can support assembling a super-large wind turbine of 5 MW or more in a port and maintenance in a working water area (it is also possible to assemble), the lifting load It has a boom length of 70 m, a maximum freestanding height of about 190 m, a maximum hook height (height related to the suspended load height) of about 170 m, and a weight of about 580 t. For comparison, a jib crane of equivalent capacity requires 1200t class, and its own weight is three times (1740t) or more. Further, regarding the mast block 12a that constitutes the tower 12 portion of this exemplified tower crane 10A.
  • the outer shape of the cross section is about “3.5 m ⁇ 3.5 m” and the height is about “7.8 m”. These mast blocks 12a are bolted together.
  • the maximum hook height is 170 m in a state where the tower 12 is self-supporting without a tie-in (support at an intermediate height also called a tie-back) from an offshore wind turbine or the like.
  • the deck area required for installing the tower crane 10A is “16 m ⁇ 18 m” in the case of the structure in which the deck 3 receives the load of the tower crane 10A and the load W of the suspended load.
  • this work pontoon ship 1A comprises a drainage type work berth ship and a tower crane 10A of a deck mount type.
  • This work pontoon 1A is a drainage type work pontoon that obtains buoyancy when the lower part of the hull 2 sinks below the surface of the water. Maintain position.
  • a base platform 11 that is firmly fixed to the deck 3 of the work table ship 1A is provided.
  • the base mount 11 supports a tower 12 formed by vertically stacking mast blocks 12a, and bears the load of the tower crane 10A and the load of suspended load.
  • the deck (deck) 3 of the hull 2 is provided with a pair of arm-shaped structures formed of a pair of protrusions 4 projecting to the stern side, and a fork-shaped ( A U-shaped work mechanism is provided, an upper structure 5 serving as a bridge or a living area is provided on the bow side, and a tower crane 10A is provided on a portion of the deck 3 in the front-rear direction of the hull from the center to the rear side. ing. If necessary, a propeller for self-propelled vehicles and a propulsion system such as a rudder are mounted, but illustration of these propulsion systems is omitted.
  • the number of mast blocks 12a in the tower crane 10A can be reduced so that the height of the tower crane 10A can be equipped with the mast climbing device 14 and the crane main body 13 can be used. Is the minimum height that can be placed on the tower 12.
  • the tower 12 is lowered while the tower crane 10A is assembled as shown in FIG. 2, but the crane may be moved as necessary.
  • the main body 13 may be removed from the tower 12, the tower crane 10A may be disassembled, and the tower crane 10A may be placed on the deck 3 to lower the overall height and sail.
  • the work platform 1A when arriving at the work area and performing the crane work, the work platform 1A is moored with the anchor and the anchor rope 6a and the mooring rope 6b.
  • the mooring system or the like that holds the ship position (position of the work table 1A) while adjusting the length and tension of the mooring line 6b and the like with a winch holds the ship position at the work point.
  • an automatic ship position holding system (DPS) using a side thruster, an azimuth thruster or the like may be equipped to hold the ship position at the work point.
  • This displacement-type work pontoon 1A the construction of lifting legs (legs, spuds) that go up and down by jacking up like SEP (self-elevating work boat) described later is unnecessary.
  • This drainage type work pontoon ship 1A is suitable for crane work in a work area where the wind, waves and tidal currents are relatively small and the work berth receives less disturbance.
  • the mast climbing device 14 is used to repeatedly raise the crane body 13 while incorporating the mast block 12a to raise the tower 12 to obtain a desired "hanging height Hh".
  • the air draft He2 becomes significantly higher than the air draft He1 during navigation shown in FIG.
  • the attitude of the hull 2 is adjusted in response to changes in the load of the tower crane 10A and changes in the boom length by means of pouring and draining ballast water and a mooring system.
  • the tower crane 10A is preferably installed near the center of the hull in the left-right direction of the hull.
  • the tower crane 10A should be installed in consideration of the mounting position of an offshore structure (not shown) to be installed during transportation, the weight distribution before and after the hull 2, the arrangement of ballast tanks, and the like. The location is set.
  • the work pontoon boat 1B of the second embodiment comprises a half SEP type work pontoon boat equipped with a deck-mounted tower crane 10A.
  • the work pontoon ship 1C of the third embodiment is a full SEP type work pontoon ship equipped with a deck-mounted tower crane 10A.
  • the deck-installed tower crane 10A is installed on the deck 3.
  • This half SEP type work pontoon 1B and full SEP type work pontoon 1C are types of work pontoons called SEP (Self Elevating Platform), jack-up boat, etc.
  • Each of these work pontoons 1B, 1C is equipped with a pair of fixed stern-side lifting legs (spads) 20 near the stern and a kick-type bow-side lifting leg 20 in front.
  • This fixed-type lift leg is a type of kick-type lift that restrains the relative swing between the lift leg and the pontoon and the degree of freedom in the horizontal direction when the amount of protrusion of the lift leg to the lower part of the carrier is fixed.
  • the legs are allowed to swing relative to each other around the pins while the amount of protrusion of the lift legs to the lower part of the pedestal is fixed by the support by horizontal pins.
  • the elevating leg tilts like a pendulum, and the pedestal can be moved to walk on the seabed with the elevating leg. Is not allowed and remains vertical, but it is also possible to move the ship by sliding it horizontally with respect to the ship using a hydraulic cylinder.
  • the bottom plate of this lifting leg 20 is equipped with a bottom plate that is used as necessary in consideration of geological features of the seabed.
  • This bottom plate has a structure for receiving a force applied to the lifting legs 20, and as a work platform, as shown in FIG. 22, there is an openable-closed bottom plate 22b in addition to the fixed bottom plate 22a.
  • the openable bottom plate 22b is widely opened to cope with soft ground such as loose sand or cohesive soil, or the bottom plate 22b is flipped up to invalidate the support by the bottom plate 22b, and the sharply formed tower tip 22c is removed. It is constructed so that it can be stabbed in solid ground.
  • the work pontoons 1B and 1C are equipped with an automatic ship position holding system so that they can be used not only for offshore wind power generation but also for various projects.
  • the elevating legs (legs, spuds) 20 are lowered to reach the bottom B of the water, and the elevating legs 20 are further extended.
  • the work pontoons 1B and 1C are fixedly supported by the lifting legs 20.
  • this half SEP the hull floats above the water when a part of the lifting legs is submerged, so it is easy for the hull to move due to waves, but the buoyancy of the hull can handle changes in the load. It is possible to avoid tilting the tower and tower greatly. Therefore, this half SEP work pontoon is suitable for operation in the medium sea area.
  • the lifting legs 20 and the lifting leg lifting system 21 are not large-capacity objects such as full SEPs capable of lifting the dead weight and the load weight, but are partially used for a dredging barge. It is sufficient that the buoyancy is supplemented and the hull 2 can be stably supported.
  • the full SEP type work pontoon 1B As shown in FIG. 7, when the hull 2 is lifted, the entire hull 2 is placed above the water surface S. In this state, the elevating legs 20 support the entire weight of the hull 2 to hold the position and posture of the hull 2. In this state, the load applied to the elevating legs 20 and the attitude of the hull 2 are adjusted by adjusting the descending amount of the elevating legs 20 by the elevating leg elevating system 21. In this full SEP, by setting this state, it is possible to operate in the high sea area, and work efficiency and construction accuracy can be improved.
  • the tower crane 10A since the deck-installed tower crane 10A is fixedly supported on the deck 3, the following effects are obtained. Can be demonstrated. Regarding the fixing of the tower crane 10A to the work pontoons 1A, 1B and 1C, the tower crane 10A may be moved on the deck 3 or disassembled and assembled before and after the crane work. Good. For example, even when the base platform 11 is movably provided on the rails laid on the decks 3 of the work pontoons 1A, 1B, and 1C, it cannot move on the rails when performing the crane work. It just needs to be fixed.
  • the structure of the base pedestal 11 that supports or fixes the tower 12 of the tower crane 10A mainly receives the load in the vertical direction. Structurally easier than the supporting structure (base structure) of a crane with a large moment. That is, since the overturning moment acting on the tower 12 and the base pedestal 11 is small and most of the loads are vertical loads, the structural strength required for the base pedestal 11 as the base is smaller than that of other types of cranes. .. As a result, since the tower crane 10A can be fixedly supported by a relatively simple structure, the member weight and deck area required for the support structure of the tower crane 10A are the work benches equipped with other types of conventional cranes. It will be less than a ship. Therefore, it is possible to prevent the work pontoon from increasing in size.
  • the lifting capacity hardly depends on the height, and the installation heights He1 and He2 and the "hanging load height Hh" can be easily adjusted according to the height of a super-large wind turbine. Therefore, when performing a crane operation, the "crane height" can be easily increased by increasing the number of stacked mast blocks 12a. Therefore, it is easy to increase the "hanging load height” (the height related to the maximum hook height, which is the height of the highest position of the hook), which can lift the hanging load of the preset hanging load. it can.
  • the air draft He1 can be lowered and it becomes possible to navigate under a bridge with a height restriction.
  • the air draft as a whole of the work pontoons 1A, 1B, 1C is related to the height of the offshore structures when the offshore structures are mounted on the work pontoons 1A, 1B, 1C for navigation. , It is not always necessary to have the tower 12 at a minimum height.
  • the height of the tower crane 10A becomes lower, and the center of gravity of the work berths 1A, 1B, and 1C becomes lower, so that good stability performance can be easily achieved. Can be secured. Further, by disposing the disassembled and removed mast blocks 12a on the deck 3, an auxiliary ballast for maintaining the attitude (trim, heel) of the hull 2 of the work pontoons 1A, 1B, 1C during navigation. Can be used as As a result, the capacity of the ballast tank required to secure the restoration performance can be reduced, and the work pontoons 1A, 1B, and 1C can be prevented from increasing in size.
  • the tower crane 10A can be quickly assembled without using an auxiliary crane, so that the efficiency of the assembly work of the tower crane 10 can be improved.
  • the work pontoons 1D, 1E, and 1F of the fourth to sixth embodiments equipped with the bottom-mounted tower crane 10B will be described.
  • the work pontoon boat 1D of the fourth embodiment is the same displacement type work pontoon boat as the work pontoon boat 1A of the first embodiment.
  • the work pontoon boat 1E of the fifth embodiment is the same half SEP type work pontoon boat as the work pontoon boat 1B of the second embodiment.
  • the work pontoon 1F of the sixth embodiment is, as shown in FIGS. 12, 13, and 15, a work pontoon 1C of the third embodiment and a full SEP type work pontoon.
  • a tower crane 10B is provided with a leg portion 15 formed by assembling a leg block 15a at a lower portion of a tower 12 formed by assembling a mast block 12a.
  • the tower lifting system 16 for lowering the legs 15 into the water is provided.
  • the tower lifting system 16 for lowering the legs 15 of the tower crane 10B and the lifting leg lifting system for lifting the lifting legs 20 are separate systems.
  • the hull 2 can be stably supported only by the lifting legs 20 without depending on the legs 15 of the tower crane 10B.
  • the portion above the hull 2 is composed of the tower 12 formed by assembling the mast block 12a, and the portion below the hull 2 is the leg.
  • the legs 15 are formed by assembling the partial block 15a. Further, the leg 15 continuously provided to the tower 12 is passed through a through hole provided on the deck 3 or the hull 2 or a notch or a recess provided on a side portion of the deck 3 or the hull 2 to elevate the tower. It is lowered by the system 16 to reach the bottom B. Due to the bottom of the leg portion 15, the load of the tower crane 10B and the load for suspension are received by the water bottom B.
  • the external shape of the cross section of the mast block 12a and the external shape of the cross section of the leg block 15a are the same, that is, the leg block 15a that enters the water below the deck 3 is It is preferably formed with the same outer dimensions as the mast block 12a arranged above. Furthermore, by making the leg block 15a of the leg portion 15 and the mast block 12a of the tower 12 commonly usable, the tower 12 and the leg portion 15 are indistinguishable from each other in a series, and the space between the tower 12 and the leg portion 15 is eliminated.
  • the base stand 11 is not present.
  • the sizes of the deck 3 and the opening of the hull 2 through which the mast block 12a or the leg block 15a penetrates are, for example, 3.5 m x 3.5 m ".
  • the leg block 15a that enters the water is preferably made of a material that is superior in strength and corrosion resistance to the mast block 12a in the air.
  • the legs 15 of the bottom-mounted tower crane 10B are provided separately from the lifting legs 20 for lifting the hull 2.
  • the outer shape of the cross section of the mast block 12a and the outer shape of the cross section of the elevating leg 20 have the same shape.
  • the operation of the work pontoons 1E and 1F can be simplified by sharing the member of the lifting leg 20 with the mast block 12a.
  • the place where the bottoming-up type tower crane 10B is installed is replaced with the place of the lifting leg 20, so that the tower crane 10B can be easily installed on the bow side or the stern side. The position of the tower crane 10B can be easily changed.
  • the tower lifting system 16 for lowering the legs 15 of the tower crane 10B into the water is configured to be compatible with the lifting leg lifting system 21. This makes it possible to more easily replace the installation location of the tower crane 10B with the installation location of the lifting legs 20, so that the installation location of the tower crane 10B can be changed and moved to the bow if necessary. Or move to the stern and set up. Further, by constructing the lifting systems 16 and 21 for both the legs 15 and the lifting legs 20 of the tower crane 10B with a common jack-up system, not only when the tower crane 10B and the lifting legs 20 are equipped, It is possible to simplify the operation of the systems 16 and 21 in parts procurement, maintenance and inspection.
  • the work platform 1E, 1F can be jacked up with only three lifting legs 20 so that it can be stably supported, and instead of the remaining lifting legs 20, a bottom-mounted tower crane 10B is installed. It is also possible to do it.
  • the bottom-mounted tower crane 10B can be installed by a modification to reinforce the leg structure of the existing work platform 1E, 1F having the four lifting legs 20.
  • the deck 3 and the tower crane 10B are configured to have an elastic support structure with an elastic member interposed therebetween or a flexible support structure using a crank mechanism. It is preferable that the shaking and vibration of the above is not transmitted to the tower 12 and the leg 15 of the tower crane 10B.
  • the tower crane 10B is configured to be firmly fixed to the deck 3 by the clamp device (fixing device) 17, and when the crane work is performed, the clamp device 17 is opened to be flexible. Switch to good support.
  • the tower lifting system 16 when performing a crane operation, causes the legs 15 to land on the bottom B of the water, and the load of the tower crane 10B and a part or all of the load of the suspended load are masted.
  • the water can be transmitted to the water bottom B via the block 12a and the leg block 15a and can be supported by the water bottom B.
  • the hull 2 side of the work pontoons 1D, 1E, 1F may bear or may not bear a part of the load of the tower crane 10B and the load of the suspended load, so that the support structure for supporting the tower crane 10B is provided. Will be easier in terms of strength.
  • the supporting load on the work pontoons 1D to 1F can be reduced, the supporting structure of the tower crane 10B can be simplified, and the increase of the weight of steel materials for the supporting structure and the expansion of the deck area can be suppressed, It is possible to prevent the work pontoons 1D, 1E, and 1F from increasing in size.
  • the hulls 2 of the work pontoons 1D and 1E incline due to the load of the suspended load acting on the tower crane 10B and the boom length. Since this can be prevented, ballast adjustment is unnecessary, and the work efficiency and safety of crane work can be improved.
  • the tower crane 10B Since the load and the load applied to the tower crane 10B are not transmitted to the work pontoons 1D, 1E, 1F side, almost all of the load can be borne by the water bottom B, and the loads received by the work pontoons 1D, 1E, 1F. Can be significantly reduced. At the same time, it is possible to solve the problem of interference in which shaking and vibration on the side of the work pontoons 1D, 1E, and 1F are propagated to the tower crane 10B and the crane work is affected.
  • the tower crane 10B remains firmly fixed to the hull 2 even when performing crane work.
  • a solid support structure for fixing the tower crane 10B to the hull 2 is required, but the leg portion 15 of the tower crane 10B can be used as a substitute for the lifting leg 20. Therefore, one of the lifting legs 20 can be omitted, the deck area can be saved, and the cost of one lifting leg 20 can be reduced. Further, the working time for raising and lowering the hull 2 and the working time for lowering the legs 15 of the tower crane 10B in the on-site sea area can be saved by the reduction of the lifting legs 20.
  • the legs 15 can be reinforced by supporting the state of the water bottom B in which the work platform 1D, 1E, 1F cannot be safely supported by only the lifting legs 20. Therefore, the crane work can be performed in a wider water bottom B state.
  • the legs 15 are moved away from the bottom of the water and the legs 15 are moved until the lowest part of the legs 15 is near the surface of the water, like the lifting legs 20.
  • one or both of the tower 12 and the legs 15 of the tower crane 10B are fixed to the hull 2, and the tower crane 10B is fixed to the work pontoons 1D, 1E, and 1F for navigation.
  • the work pontoons 1G and 1H of the seventh and eighth embodiments will be described.
  • the work pontoons 1G of the seventh embodiment are, as shown in FIGS. 15 to 17, half SEP type work pontoons which are the same as the work pontoons 1B and 1E of the second and fifth embodiments.
  • the work pontoon 1H of the eighth embodiment is the same full SEP type work as the work pontoons 1C and 1F of the third and sixth embodiments. It is a barge.
  • Each of these work pontoons 1G and 1H is configured to mount a tower crane 10C of a lifting leg mounting type.
  • the base pedestal 11 is provided on the lifting leg 20A for bottoming and supporting the SEP work pontoons 1G, 1H, and the base pedestal 11 on the lifting leg 20A is used.
  • the mast block 12a supports the tower 12 formed by vertically stacking it, receives the load of the tower crane 10C and the load of the suspended load, and transmits this load to the lifting legs 20A that have bottomed on the bottom B of the water.
  • the lifting legs 20A equipped with the lifting leg-mounting tower crane 10C also support the hulls 2 of the work pontoons 1G and 1H, so a part of the weight of the hull 2 and the load of the tower crane 10C. And it will support the load of the suspended load. Therefore, it is composed of a structure having higher strength than the other lifting legs 20B.
  • the elevator leg-mounting tower crane 10C is configured in the same manner as the deck-mounting tower crane 10A, except that the base platform 11 is placed on the elevator legs 20A. There is.
  • the lifting legs 20A for mounting the tower crane 10C are reinforced, By increasing the strength of the lifting / lowering leg lifting system 21 of the lifting / lowering leg 20A, a part or all of the load of the tower crane 10C and the load of the suspended load are newly provided without providing the tower lifting / lowering system 16 for the tower crane 10C. Can be transmitted to the water bottom B via the elevating legs 20A and supported by the water bottom B.
  • the tower crane 10C is arranged at the portion of the lifting leg 20A, the deck area for installing the tower crane 10C can be reduced, and the work pontoons 1G, 1H can be prevented from increasing in size.
  • the leg portion 15 of the tower crane 10C is also used as the lifting legs 20A. Since the tower block 15a of the tower crane 10C and the tower lifting system 16 are not necessary, the cost is reduced, and the bottoms of the legs 15 of the tower crane 10B on the work berths 1D, 1E, and 1F in the field sea area are settled. The work can be omitted, and the work time for this can be reduced in the work pontoons 1G and 1H.
  • crane operating method (hereinafter, referred to as “crane operating method”) of a work pontoon ship equipped with the crane according to the embodiment of the present invention will be described.
  • This crane operating method is a crane operating method in the work pontoons 1A to 1I equipped with the above cranes.
  • the offshore structure when the offshore structure is loaded on the work berth 1A from the quay or port of the factory, the crane set on the quay or harbor is usually used, but it is loaded on the work berth 1A. It is also possible to assemble the working tower crane 10A as shown in FIG. 3 and use the tower crane 10A to mount an offshore structure on the work pontoon 1A by crane work. Alternatively, the offshore structure may be placed in the recess D (FIG. 1) formed by the protrusion 4 by utilizing the protrusion 4 at the stern of the work platform 1A.
  • the offshore structure may be placed in the recess D (FIG. 1) formed by the protrusion 4 by utilizing the protrusion 4 at the stern of the work platform 1A.
  • the number of assembled mast blocks 12a of the tower crane 10A is reduced to lower the tower 12.
  • the tower 12 is lowered to the state shown in FIG.
  • the mast block 12a is reduced to about 4 blocks in consideration of sway and especially when traveling under the bridge.
  • the crane body 13 also descends to a lower position accordingly.
  • the upper end of the crane is about 30 m above the water surface.
  • the crane body 13 is removed from the tower 12 so that it is placed on the deck 3 as shown in FIG. Then, the height of the tower crane 10A is lowered to lower the air draft of the work pontoon 1A, and the restoration performance is improved, and the boat is sailed. In this case, an auxiliary crane for assembling the crane body 13 to the tower 12 is required. Further, during a project in which a crane is not necessary, the crane main body 13 can be removed and the crane can be unloaded from the work pontoon ship 1A, but attachment and detachment of the crane requires assistance from another crane. In this case, the crane at the base can be used.
  • This navigation will be self-propelled if it has a propulsion system, and will be towed by another ship if it does not have a propulsion system.
  • SEP work pontoons 1B, 1C, 1E, 1F, 1G, 1H at the time of navigation, as shown in FIG. 5, FIG. 9, FIG. 12, and FIG. 15 is pulled up to a height around the bottom of the hull 2.
  • the height of the crane can be kept low during navigation, especially when passing under a bridge.
  • the drainage type work pontoons 1A and 1D After reaching the working water area, in the drainage type work pontoons 1A and 1D, as shown in FIGS. 3 and 10, mooring systems such as anchor ropes 6a and mooring ropes 6b, an automatic ship position holding system (DPS system), etc.
  • the work pontoon ship 1A is held at the work position.
  • the elevating leg elevating system 21 lowers the elevating legs 20 to reach the bottom B of the water.
  • the work pontoons 1B, 1E, 1G are held at the work position while floating on the water surface S.
  • the elevating leg elevating system 21 lowers the elevating legs 20, 20A, 20B to reach the bottom B of the water. Bottom out.
  • the work pontoons 1C, 1F, 1H are held at the work position in a state where they are above the water surface S.
  • the work pontoons 1A to 1H are held in stable positions.
  • the legs of the bottoming type tower crane 10B are further added before, after, or in parallel with the lifting work of the lifting legs 20. While assembling the partial blocks 15a to form the legs 15, the tower elevating system 16 lowers the legs 15 to the bottom to hold the work platform in a stable position.
  • the tower cranes 10A, 1B, and 10C are assembled.
  • the crane main body 13 is disassembled, the crane main body 13 is assembled into the state shown in FIG. From the state of FIG. 2, as shown in FIG. 21, the crane main body 13 is jacked up by the self-elevating device of the tower crane 10A, the number of mast blocks 12a incorporated is increased, and the tower 12 is raised.
  • a crane operation can be performed by the deck-mounted tower crane 10A.
  • the work pontoons 1B and 1C are also in a state in which the deck-mounted tower crane 10A can perform crane work.
  • the position holding and the bottoming of the legs 15 of the leg lifting tower crane 10B are completed.
  • the crane main body 13 is jacked up by the self-elevating device of the tower crane 10B to increase the number of incorporated mast blocks 12a and raise the tower 12.
  • the clamp device 17 When the clamp device 17 is configured to be able to release the fixed support during crane work and to flexibly support the tower crane 10B on the work pontoons 1D, 1E, and 1F while allowing relative displacement, The fixed support of the clamp device 17 is released. On the other hand, when the clamp device 17 has a structure in which the fixed support cannot be released, the clamped state is maintained as it is. As a result, as shown in FIGS. 10, 13, and 14, the tower lifting tower crane 10B is ready for crane work.
  • the crane body 13 can be self-elevated by a hydraulic cylinder, and a hoist provided on the crane body 13 can lift and add an additional mast block 12a.
  • each of the strike blocks 12a having a height of 7.8 m is required to reach the maximum freestanding height.
  • one assembly time is about one hour, so it takes about eight hours to reach the maximum freestanding height. Therefore, by assembling two mast blocks 12a in advance and loading the mast blocks 12a having a height of 15.6 m in about one hour, by repeating this four times, a short time can be obtained.
  • the block height per unit is determined in consideration of the transportation constraint on land, and on the ocean, there is no constraint on this transportation. It is possible to install the blocks together.
  • Crane work such as installation of offshore structures is performed while maintaining the posture.
  • the suspension height is adjusted by the number of mast blocks 12a forming the towers 12 in the tower cranes 10A to 10C, and when the crane work is stopped and sailing is performed, The number of mast blocks 12a to be piled up is made smaller than the number when the tower cranes 10A to 10C are operated, and the height of the tower 12 is lowered.
  • the installation height and the suspended load height can be correspondingly increased with respect to the height of the super-large wind turbine. Can be easily adjusted. Further, at the time of navigation, the height of the tower 12 can be easily lowered only by reducing the number of stacked mast blocks 12a, so that the air draft of the work pontoons 1A to 1H at the time of navigation can be lowered.
  • the crane height is adjusted according to the wind turbine when maintenance of the wind turbine is required, and the tower cranes 10A, 10B, and 10C are unnecessary and temporarily in a project. It will be possible to easily remove it.
  • the work pontoons 1A to 1H equipped with the crane having the above-described configuration and the crane operating method thereof when used for offshore work in shallow water, especially for installation and maintenance work of a landing type offshore wind turbine generator.
  • the height of the crane can be easily changed according to the height of the work object, and when navigating without crane work, the height of the crane can be lowered to lower the air draft.
  • the overturning moment acting on the base of the crane is small, the scale of the base structure of the crane is small, and the hulls of the work pontoons 1A to 1H can be suppressed.

Abstract

According to the present invention, work barges 1A, 1B, 1C, are each provided with, as cranes, tower cranes 10, 10B, 10C in each of which a tower 12 is formed by stacking a plurality of mast blocks 12a, a crane body 13 is placed on the uppermost section of the tower 12, and the height of the tower 12 is adjusted by the number of stacked mast blocks 12a. Accordingly, in this work ship provided with a crane used for oceanic construction in shallow ocean regions, in particular, for the installation of a floor-type oceanic wind power generating device or the maintenance work thereof, the suspension height of the crane is easily changed corresponding to the height of the work target object, and during sailing when crane work is not performed, the height of the crane is lowered, the air draft is lowered, and the overturning moment acting on the base section of the crane is lowered, and thus, the scale of the base structure of the crane may be reduced to be small. Accordingly, an increase in the size of the hull is suppressed.

Description

タワークレーンを備えた作業船及びそのクレーン運用方法Work boat equipped with tower crane and method of operating the crane
 本発明は、浅海域での洋上工事、特に着床型の洋上風力発電装置の設置やそのメンテナンス工事に使用するクレーンを備えた作業船及びそのクレーン運用方法に関する。 The present invention relates to a work boat equipped with a crane used for offshore construction in shallow water, particularly for installation of a landing type offshore wind turbine generator and maintenance work thereof, and a method for operating the crane.
 浅海域における洋上風力発電装置の設置やメンテナンスには、従来では、一般的には、先端にシーブ(滑車)が付いたラチスブームを備えたジブクレーンなどのクレーンを搭載した作業用台船等が用いられている。そして、作業時のクレーン作業の安定性を確保するために、クレーン作業時に船体を昇降脚(レグ、スパッド)で持ち上げる甲板昇降式脚柱システムを備えたジャッキアップ式の作業台船にクレーンを搭載することが行われている。 For the installation and maintenance of offshore wind turbines in shallow water, work berths equipped with cranes such as jib cranes equipped with a lattice boom with a sheave (pulley) at the tip have generally been used in the past. ing. In order to ensure the stability of crane work during work, the crane is mounted on a jack-up work platform with a deck lift pedestal system that lifts the hull with lift legs (legs, spuds) during crane work. Is being done.
 例えば、日本特開2011-183835号公報に記載されているように、複数本のジャッキアップ脚を備えたジャッキアップ式作業台船において、甲板上に走行レールを設けて、ブームを旋回可能に設けた移動作業台車を走行自在に設けた甲板昇降式作業台船や、例えば、日本特開2004-1750号公報に記載されているように、ジャッキアップレグと大小の第1クレーンと第2クレーンを設けた特殊作業船等が提案されている。 For example, as described in Japanese Patent Application Laid-Open No. 2011-183835, in a jack-up type work berth provided with a plurality of jack-up legs, a traveling rail is provided on a deck and a boom is provided so as to be turnable. A work platform for raising and lowering a deck, which is provided with a movable work carriage for traveling freely, and a jack-up leg, a large and small first crane, and a second crane as described in, for example, Japanese Patent Laid-Open No. 2004-1750. The special work boats provided are proposed.
 また、例えば、日本特開2012-76738号公報に記載されているように、セミサブマージブルな船体に甲板昇降式脚柱システムを備えると共に、船体の両舷側の側壁部の上のレールシステムに沿って移動可能な門型クレーンやガントリークレーンを備えて、この門型クレーンで海洋構造物を側壁の後方突起部の間から下ろす作業の間は、甲板昇降式脚柱を海底に下して船体を固定した状態とする、海洋構造物の運搬および設置用船舶が提案されている。 Further, for example, as described in Japanese Unexamined Patent Application Publication No. 2012-76738, a semi-submerged hull is provided with a deck lifting pedestal system, and along a rail system on the side walls on both sides of the hull. It is equipped with a portal crane and a gantry crane that can be moved by moving the deck crane to the seabed during the work of lowering the offshore structure from between the rear protrusions of the side walls with this portal crane. A vessel for transporting and installing offshore structures in a fixed state has been proposed.
 また、例えば、日本特開2013-170493号公報に記載されているように、複数本のジャッキアップ脚を備えたジャッキアップ船にジブクレーン等の船上クレーンを搭載すると共に、デッキ上のスペースを有効利用しているために、船上クレーンの旋回中心部に、昇降するジャッキアップ脚のうちの少なくとも一本を貫通させて配置している洋上風車設置用船舶も提案されている。 Further, for example, as described in Japanese Unexamined Patent Publication No. 2013-170493, a jack-up ship equipped with a plurality of jack-up legs is equipped with a ship crane such as a jib crane and the space on the deck is effectively used. Therefore, an offshore wind turbine installation vessel has been proposed in which at least one of the jack-up legs that moves up and down is disposed at the center of the swing of the on-board crane.
 更に、例えば、米国特許第4652177号明細書に記載されているように、海底に固定される上下動可能なレグ(脚部)によって洋上に支持されるジャッキアップ式洋上構造物において、このレグを通すガイドタワー(筒状のサポート構造)の上にクレーンを回転可能に設置し、ガイドタワーをクレーンのサポート構造として利用する技術が示されている。 Further, for example, as described in US Pat. No. 4,652,177, in a jack-up type offshore structure which is supported on the sea by a vertically movable leg (leg) fixed to the seabed, this leg is A technique is disclosed in which a crane is rotatably installed on a guide tower (cylindrical support structure) through which the guide tower is passed and the guide tower is used as a support structure for the crane.
 一方、陸上の山間部等では、輸送や設置のためのクレーン装置の容量などにより、風車の大きさに制約が発生するが、それに比較して、洋上の風力発電装置の場合は、この風車の大きさの制約が少ない。また、洋上風力発電装置の場合は、設置工事の占めるコストの割合で、設置台数にほぼ比例するコストが大きいことから、コスト削減のために設置台数を少なくする必要があり、風車1台当たりの大容量化が望まれている。例えば、現状で、最先端のクラスでは、風車1台の発電量は、7MWクラスであるが、数年内に10MWクラスになると予想される。この10MWクラスの風車の吊り高さは200mに達するものと考えられている。 On the other hand, in mountainous areas on land, the size of the wind turbine is limited due to the capacity of the crane device for transportation and installation, but in comparison, in the case of an offshore wind power generator, this wind turbine There are few size restrictions. In the case of offshore wind turbines, the cost of installation work is almost proportional to the number of installations, so it is necessary to reduce the number of installations to reduce costs. Larger capacity is desired. For example, in the current state-of-the-art class, the power generation amount of one wind turbine is 7 MW class, but it is expected to reach 10 MW class within a few years. The suspension height of this 10 MW class wind turbine is considered to reach 200 m.
 しかしながら、上記の特許文献等で提案されているクレーンでは、その設置高さを調整できず、また、クレーンの吊り高さを変更できない。そのため、風車の大容量化に伴って、必要な吊り高さが高くなると、吊り荷重はそれほど大きくなくても、高い吊り高さを確保するために、必要なブーム長が長くなる。 However, with the cranes proposed in the above patent documents, the installation height cannot be adjusted, and the hanging height of the crane cannot be changed. Therefore, when the required suspension height becomes high as the capacity of the wind turbine increases, the boom length required to secure a high suspension height becomes long even if the suspension load is not so large.
 その結果、作業船の甲板面積や積載重量の制約が大きいにもかかわらず、クレーンの容量を大きくする必要が生じる。例えば、100t以内の吊り荷重に対しても、1000t級以上のジブクレーンが使用されている例がある。この大容量のジブクレーンの設置には大きな設置場所が必要となってくる。 As a result, it is necessary to increase the capacity of the crane despite the large restrictions on the deck area and loading capacity of the work boat. For example, there is an example in which a jib crane of 1000t class or more is used even for a lifting load of 100t or less. Installation of this large capacity jib crane requires a large installation site.
 これらのクレーンの大容量化は、クレーンの重量の増加をもたらす。これらのクレーンでは、クレーンの荷重と吊り荷の荷重は、直接、又は、ガイドタワー等を介して、洋上構造物が受ける構成となっているため、クレーンの重量の増加に対応してクレーンの支持構造が大規模になってしまうという問題がある。 The increase in capacity of these cranes results in an increase in the weight of the crane. In these cranes, the load of the crane and the load of the suspended load are received by the offshore structure either directly or via a guide tower, etc. There is a problem that the structure becomes large-scale.
 一方、クレーンの種類には、設置面積が小さく、吊り能力が高さにほとんど依存しないタワークレーンがある。例えば、日本特開2009-280367号公報及び日本特開平5-178566号公報に記載されているように、このタワークレーンは、クライミング式ジブクレーンとも呼ばれ、高層ビルや大型建造物の建設、あるいは、ダムのコンクリト打設等に用いられている。 ∙ On the other hand, there are tower cranes that have a small installation area and the lifting capacity hardly depends on the height. For example, as described in Japanese Unexamined Patent Publication No. 2009-280367 and Japanese Unexamined Patent Publication No. 5-178566, this tower crane is also called a climbing type jib crane and is used for the construction of a high-rise building or a large building, or It is used for concrete pouring of dams.
 このタワークレーンは、工事現場において、ベース架台をセットしてその上に複数のマストブロック(クレーンマスト:ポスト)で組み立てられたタワーを立てて、その上に、旋回架構を有するクレーン本体をセットして組み立てられる。このマストブロックは、工事の進行状況に応じて継ぎ足されて、それに伴いクレーン本体がせり上げられて、吊り高さが高くなる。そして、工事終了後には、タワーもクレーン本体も解体されて、他の工事現場に移送され、再度組み立てられて、繰り返し使用される。 In this tower crane, at the construction site, set the base frame, set up the tower assembled with multiple mast blocks (crane mast: post) on it, and set the crane body with the swing frame on it. Can be assembled. This mast block is replenished according to the progress of construction work, and the crane main body is raised accordingly, resulting in a high suspension height. Then, after the construction is completed, the tower and the crane body are dismantled, transferred to another construction site, reassembled, and repeatedly used.
日本特開2011-183835号公報Japanese Patent Laid-Open No. 2011-183835 日本特開2004-1750号公報Japanese Patent Laid-Open No. 2004-1750 日本特開2012-76738号公報Japanese Patent Laid-Open No. 2012-76738 日本特開2013-170493号公報Japanese Unexamined Patent Publication No. 2013-170493 米国特許第4652177号明細書U.S. Pat. No. 4,652,177 日本特開2009-280367号公報Japanese Unexamined Patent Publication No. 2009-280367 日本特開平5-178566号公報Japanese Patent Laid-Open No. 5-178566
 この状況に際して、発明者は次の知見を得た。このタワークレーンを、大容量化で大型化して吊り高さが増しつつある最新型風車の洋上設置で使用できれば、大型の起重機船を使用せずにこの風車を設置することができ、設置時のコストを大幅に削減できる。また、設置時のコストだけでなく、洋上に設置済みの着床型洋上風車のメンテナンスの際にも高価な起重機船を必要としないので、風車のライフタイムでの経済性を大きく向上できる。さらに、港湾で洋上風車を組み立ててから船尾がフォーク形状をした運搬船などで積出する場合でも、この組み立てや積出に使えるクレーンとして、タワークレーンを港湾内で組み立てることで容易に利用することができる。 In this situation, the inventor obtained the following knowledge. If this tower crane can be used for offshore installation of the latest wind turbine, which is increasing in capacity and increasing in suspension height, this wind turbine can be installed without using a large hoist ship. The cost can be reduced significantly. Further, not only the cost at the time of installation but also the maintenance of the landing type offshore wind turbine already installed on the ocean does not require an expensive hoist ship, so that the economical efficiency of the lifetime of the wind turbine can be greatly improved. Furthermore, even if an offshore wind turbine is assembled at a port and then shipped by a carrier ship with a stern having a fork shape, a tower crane can be easily used as a crane that can be used for this assembly and shipping. it can.
 本発明は、上記の状況に鑑みてなされたものであり、その目的は、浅海域での洋上工事、特に着床型の洋上風力発電装置の設置やそのメンテナンス工事に使用するクレーンを備えた作業船において、作業対象物の高さに対応してクレーンの吊り高さを容易に変更できるとともに、クレーン作業をせずに航行するときは、クレーンの高さを低くして、エアドラフトを低くすることができ、しかも、クレーンの基部に作用する転倒モーメントが小さくて、クレーンの基部構造の規模が小さくて済み、作業台船の船体の大型化を抑制できる、クレーンを備えた作業船とそのクレーン運用方法を提供することにある。 The present invention has been made in view of the above situation, and an object thereof is to provide an offshore construction work in a shallow sea area, particularly a work provided with a crane used for installation of a landing type offshore wind turbine generator and its maintenance work. On the ship, the hanging height of the crane can be easily changed according to the height of the work object, and when navigating without crane work, lower the crane height and lower the air draft. A work boat equipped with a crane and a crane therefor capable of reducing the overturning moment acting on the base of the crane and reducing the size of the base structure of the crane, and suppressing the increase in the size of the hull of the work pontoon. To provide an operation method.
 上記のような目的を達成するための本発明のクレーンを備えた作業台船は、洋上構造物の設置にクレーンを使用するクレーンを備えた作業台船において、前記クレーンとして、複数個のマストブロックを積み上げてタワーを形成し、前記タワーの最上部にクレーン本体を載置して構成され、前記マストブロックの積み上げる個数により前記タワーの高さを調整するタワークレーンを備えていることを特徴とする。 A work platform provided with the crane of the present invention for achieving the above object is a work platform provided with a crane that uses a crane for installation of an offshore structure. To form a tower, the crane main body is placed on the top of the tower, and the tower crane is provided to adjust the height of the tower according to the number of stacked mast blocks. ..
 このタワークレーンは、その形状から、タワーに加わる荷重に関しては、転倒モーメントを極力小さくして、鉛直方向の荷重が主体となるように構成されている。そのため、他の種類のクレーンにおける支持構造(基礎構造)よりも強度的に楽になる。その結果、クレーンの支持構造に必要な部材重量やデッキ面積が、他の種類のクレーンを備えた従来技術の作業台船よりも少なくて済む。従って、クレーン搭載のために必要な作業台船のデッキ面積や重量が大きくなるのを抑制でき、作業台船が大型化するのを抑制できる。 Due to the shape of this tower crane, the load applied to the tower is configured so that the overturning moment is minimized and the load in the vertical direction is the main component. Therefore, it is easier in strength than the supporting structure (base structure) in other types of cranes. As a result, the crane support structure requires less member weight and deck area than prior art work pontoons with other types of cranes. Therefore, it is possible to suppress an increase in the deck area and weight of the work table required for mounting the crane, and it is possible to prevent the work table from increasing in size.
 また、タワークレーンでは、マストブロックを積み上げてタワーを形成して、その上にクレーン本体を設置する。このタワーは、クレーン作業をするときには、マストブロックの積み上げ個数が増加することにより「クレーン高さ」を容易に高くすることができる。そのため、予め設定された吊り荷重の吊り荷を吊り上げることができる「吊り荷高さ」を高くすることが容易にできる。 Also, with tower cranes, the mast blocks are stacked to form a tower, and the crane body is installed on top of it. In this tower, the "crane height" can be easily increased by increasing the number of stacked mast blocks when performing crane work. Therefore, it is possible to easily increase the "hanging load height" at which a hanging load having a preset hanging load can be lifted.
 また、クレーン作業をしないで航行するときは、マストブロックの積み上げ個数を減少させることにより、「クレーン高さ」を低くすることができるので、水面から船体構造物の一番高い所まで(最先端まで)の高さである「エアドラフト」を低くすることが容易にできる。 Also, when navigating without crane work, the "crane height" can be lowered by reducing the number of stacked mast blocks, so it is possible to increase the height from the water surface to the highest point of the hull structure. It is easy to lower the "air draft", which is the height of ().
 また、クレーン作業しないときには、タワーを形成するマストブロックを取り外してその個数を減少させて、タワーの高さを低くするので、取り外したマストブロックを作業台船の上に平面的に分散配置できる。このマストブロックを船体の姿勢(トリム(縦傾斜)、ヒール(横傾斜))の調整の錘として利用できる。そのため、作業台船において、クレーン搭載のために必要な船体の姿勢の調整機構(バラストタンクの容量等)が大きくなるのを抑制でき、作業台船が大型化するのを抑制できる。 Also, when the crane is not in operation, the mast blocks forming the tower are removed and the number of them is reduced to lower the height of the tower, so the removed mast blocks can be arranged in a plane on the work table ship. This mast block can be used as a weight for adjusting the attitude (trim (vertical tilt), heel (horizontal tilt)) of the hull. Therefore, in the work pontoon, it is possible to suppress an increase in the mechanism for adjusting the attitude of the hull (such as the capacity of the ballast tank) required to mount the crane, and it is possible to prevent the work pontoon from increasing in size.
 上記のクレーンを備えた作業台船において、前記タワークレーンが、前記タワーに順次前記マストブロックを継足しながら、前記クレーン本体を上昇させ、かつ、前記タワーから順次前記マストブロックを取り外しながら、前記クレーン本体を下降させる自己昇降タイプのマストクライミング装置を備えて構成されていると、補助クレーンなどを使用せずに、タワークレーンを所定の高さまで、迅速に組み上げることができるようになる。 In the work platform provided with the crane, the tower crane raises the crane main body while sequentially adding the mast block to the tower, and while sequentially removing the mast block from the tower, the crane. When the mast climbing device of the self-elevating type for lowering the main body is provided, the tower crane can be quickly assembled to a predetermined height without using an auxiliary crane or the like.
 上記のクレーンを備えた作業台船において、当該作業台船が、排水量型の作業台船、クレーン作業するときに船体が水面に浮いている状態であるハーフSEP、クレーン作業するときに船体が水面より上にある状態であるフルSEPのいずれか一つの作業台船であると、次のような効果を奏することができる。 In the work pontoons equipped with the above-mentioned cranes, the work pontoons are drainage type work pontoons, half SEPs in which the hull is floating on the water surface during crane work, and the hull is on the water surface during crane work. The following effects can be obtained with any one of the work pontoons of the full SEP in the upper position.
 作業台船が排水量型の作業台船である場合は、クレーン作業時に係留索等による係留システムや自動船位保持(DPS)システム等により、自船の位置保持をする必要があるが、SEP(自己昇降式作業船)のようなジャッキアップで昇降する昇降脚(レグ、スパッド)の構成が不要になる。 When the work pontoon is a drainage type work pontoon, it is necessary to hold the position of the own ship by a mooring system such as mooring lines or an automatic position keeping (DPS) system during crane work, but SEP (self There is no need for the structure of lifting legs (legs, spuds) that can be lifted up and down by jacking up like a lifting work boat.
 作業台船が、ハーフSEPである場合は、クレーン作業をするときに、昇降脚の支持力と船体の浮力を併用して、作業台船を上昇させるが、昇降脚のジャッキアップが完了した状態でも船体の全部を水面より上には上昇させずに、船体を水面に浮かせた状態とする。 When the work pontoon is a half SEP, when the crane work is performed, the support force of the lifting legs and the buoyancy of the hull are used together to raise the work pontoons, but the lifting legs have been jacked up. However, instead of raising the entire hull above the surface of the water, the hull is kept floating above the surface of the water.
 作業台船がフルSEPである場合は、クレーン作業するときに、作業台船の全体を昇降脚で水面より上の波浪の届かない高さまで上昇させて、水面の波浪の影響や潮流の影響が作業台船の船体に及ばない状態とする。 When the work pontoon is full SEP, when performing crane work, raise the whole work pontoon to a height above the water surface where the waves cannot reach, so that the influence of the waves on the water surface and the influence of the tidal current may occur. It should not reach the hull of the work pontoon.
 なお、これらのハーフSEPの作業台船やフルSEPの作業台船では、タワークレーンの作業を停止して航行するときには、昇降脚を水底から離底させて、昇降脚の最下位の部位が水面付近になるまで昇降脚を上昇させて、昇降脚を作業台船のデッキに固定させた状態で航行する。 In addition, in these half SEP work pontoons and full SEP work pontoons, when the tower crane operation is stopped and the ship is to be navigated, the lifting legs are moved away from the bottom of the water so that the lowest part of the lifting legs is on the water surface. Raise the lift legs until they are close to each other, and keep the lift legs fixed to the deck of the work platform.
 上記のクレーンを備えた作業台船において、クレーン作業するときに、前記タワーを支持するベース架台が当該作業台船に固定支持されていると、比較的簡単な構造でタワークレーンを固定支持できる。なお、「クレーン作業をするときに」とは、その前後では移動したり、分解及び組立したりしてもよい。例えば、ベース架台を作業台船のデッキ上に敷設されたレールの上を移動可能に設けたような場合でも、クレーン作業をするときに、レール上を移動できないように固定していればよい。 In a work platform equipped with the above-mentioned crane, if the base platform that supports the tower is fixedly supported by the work platform during crane work, the tower crane can be fixedly supported with a relatively simple structure. The phrase "when performing a crane operation" may mean moving, disassembling and assembling before and after that. For example, even when the base pedestal is movably provided on the rail laid on the deck of the work pontoon ship, the base pedestal may be fixed so as not to move on the rail when performing the crane work.
 上記のクレーンを備えた作業台船において、前記タワークレーンが、前記マストブロックを組み立てて形成される前記タワーの下部に、脚部ブロックを組み立てて形成される脚部を備えて構成されると共に、前記脚部を水中に降下させるタワー昇降システムを備えて構成されていると、次の効果を奏することができる。 In the work pontoon ship including the above crane, the tower crane is configured to include a leg portion formed by assembling a leg block at a lower portion of the tower formed by assembling the mast block, and The following effects can be achieved by being configured with a tower lifting system that lowers the legs into the water.
 この構成によれば、クレーン作業するときには、タワー昇降システムにより、脚部を水底に着底させて、タワークレーンの荷重と吊り荷の荷重の一部または全部を、マストブロックと脚部を介して水底に伝えて、水底に支持させることができる。従って、作業台船の船体側ではタワークレーンの荷重と吊り荷の荷重の一部を負担するかまたは全く負担しなくてもよいので、タワークレーンを支持する支持構造が強度的に楽になる。 According to this configuration, when the crane operation is performed, the tower lifting system causes the legs to bottom on the bottom of the water, and part or all of the load of the tower crane and the load of suspension is transferred via the mast block and the legs. It can be transmitted to the bottom and supported on the bottom. Therefore, the hull side of the work pontoon may bear part of the load of the tower crane and the load of the suspended load, or may not bear the load at all, so that the support structure for supporting the tower crane becomes strong in strength.
 つまり、タワークレーンを風車の洋上設置に使用することで、このタワークレーン以外のクレーンを使用する際には、作業台船のデッキにおけるタワークレーンの支持構造として強固な船体構造が必要であり、クレーン荷重を分散させるための構造を設けるために、結局、大きな甲板面積を占有してしまうという問題を解決できる。 In other words, by using a tower crane for offshore installation of a wind turbine, when using a crane other than this tower crane, a strong hull structure is required as a support structure for the tower crane on the deck of the work platform ship. Since the structure for distributing the load is provided, the problem of occupying a large deck area can be solved.
 上記のクレーンを備えた作業台船において、クレーン作業するときに、当該作業台船の船体に対して前記タワークレーンの相対変位を許容した状態で支持する支持構造を備えて構成されていると、タワークレーンの荷重とタワークレーンに加わる荷重の殆んど全部を水底に負担させることができ、作業台船で受ける荷重を著しく減少できると共に、作業台船(プラットフォーム)側の動きがタワークレーンに伝搬されてクレーン作業に影響が出るという干渉の問題を解決できる。 In a work platform equipped with the above-mentioned crane, when performing a crane work, it is provided with a support structure for supporting the relative displacement of the tower crane with respect to the hull of the work platform, Almost all of the load of the tower crane and the load applied to the tower crane can be borne on the bottom of the water, the load received by the work pontoon can be significantly reduced, and the movement of the work pontoon (platform) side is transmitted to the tower crane. It is possible to solve the problem of interference that affects the crane work.
 つまり、クレーンが作業台船に固定されて、タワークレーンの荷重と吊り荷の荷重の一部または全部を作業台船側で負担している場合では、クレーンの吊り荷の荷重の変化とブーム位置の変化等により、クレーンを固定している作業台船の船体姿勢(トリム、ヒール)が変化する。そのため、クレーン作業の進捗に応じて、バラスト操作とジャッキアップ操作による喫水調整を計画的あるいは定期的に行う必要がある。この喫水調整による船体姿勢の変化や喫水の変化がタワークレーンのクレーン作業に影響を及ぼすため、クレーン作業の中断が生じたりして、クレーンの作業効率が著しく低下するという問題がある。この干渉の問題は、ハーフSEP型(セミSEP形)の作業台船では、クレーン作業中においては、潮の干満差や吊り荷の重量等により浮力が変化したり、波浪や風により作業台船が動揺したりするので、より重要な問題となる。 In other words, if the crane is fixed to the work platform and part or all of the load of the tower crane and the load of suspension is carried by the work platform, the load of the crane changes and the boom position changes. Due to changes and the like, the hull attitude (trim, heel) of the work pontoon that holds the crane changes. Therefore, it is necessary to carry out planned or periodical draft adjustment by ballast operation and jack-up operation according to the progress of crane work. Since changes in the ship's posture and draft due to this draft adjustment affect the crane work of the tower crane, there is a problem that the crane work is interrupted and the work efficiency of the crane is significantly reduced. The problem of this interference is that in the half SEP type (semi SEP type) work pontoons, the buoyancy changes during crane work due to the tidal range and the weight of the suspended load, and the work pontoons due to waves and wind. Will be upset, which will be a more important issue.
 また、昇降脚のジャックアップにより、船体を完全に水面上に持ち上げた状態にして、クレーン作業するフルSEP型の作業台船では、風の影響等によって発生する船体の動揺や船上機器の作動による振動等が、タワークレーンに伝搬して増幅することで、クレーン作業の作業効率が低下するという問題がある。このフルSEP型の作業台船は、一般的に、ハーフSEPよりも厳しい海象・気象条件下で作業することが多いので、この問題の解決は重要である。 In addition, in a full SEP type work berth in which the hull is completely lifted above the surface of the water by jacking up the lifting legs, a full SEP type work pontoon vessel may be swayed by the influence of wind, etc. Vibration and the like propagate to the tower crane and are amplified, so that there is a problem that the work efficiency of the crane work is reduced. Since this full SEP type work pontoon generally operates under severer sea and weather conditions than the half SEP, it is important to solve this problem.
 この干渉の問題に関して、クレーン作業をするときに、タワークレーンと作業台船との間の構造的な結合を外したり、柔軟な連結に変更したりすることで、これらの作業台船側の動きが、タワークレーン側に伝達されるのを抑制できる。その結果、クレーン作業時特に吊り作業時における、クレーン作業の作業効率と安全性を向上させることができる。 Regarding the problem of this interference, when performing crane work, by removing the structural connection between the tower crane and the work pontoon or changing to a flexible connection, the movement on the side of these work pontoons can be improved. , Can be suppressed from being transmitted to the tower crane side. As a result, the work efficiency and safety of the crane work can be improved during the crane work, particularly during the lifting work.
 なお、クレーン作業をしないで航行するときには、昇降脚と同様に、タワークレーンの脚部を水底から離底させて、脚部の最下位の部位が水面付近になるまで脚部を分解又は上昇させる。その後、タワークレーンのタワー又は脚部のどちらか一方又は両方を作業台船のデッキに固定することで、タワークレーンを作業台船に固定した状態で航行する。 When navigating without crane work, the legs of the tower crane are lifted from the bottom of the water and the legs are disassembled or lifted until the lowest part of the legs is near the water surface, similar to the lifting legs. .. After that, by fixing either one or both of the tower and the legs of the tower crane to the deck of the work pontoon, the tower crane is fixed to the work pontoon for navigation.
 なお、脚部を着底させるタワークレーンを備えた作業台船において、クレーン作業するときにおいても、タワークレーンの相対運動を許さずに船体に堅固に固定可能に構成した場合は、タワークレーンの脚部を昇降脚の代用とすることができるので、その分、昇降脚の1本を省略でき、デッキ面積を節減し、昇降脚の1本分のコストを削減できる。また、現場海域での船体の昇降のための作業時間とタワークレーンの脚部の下降のための作業時間を削減することができる。しかし、この構成では、タワークレーンを船体に固定するための堅固な支持構造が必要となる。 In a work platform equipped with a tower crane that bottoms the legs, even when performing crane work, if the tower crane is configured so that it can be firmly fixed to the hull without allowing relative movement of the tower crane, Since the part can be used as a substitute for the lifting leg, one of the lifting legs can be omitted accordingly, the deck area can be saved, and the cost for one lifting leg can be reduced. Further, it is possible to reduce the working time for raising and lowering the hull and the working time for lowering the legs of the tower crane in the on-site sea area. However, this configuration requires a solid support structure for fixing the tower crane to the hull.
 また、脚部を着底させるタワークレーンを備えた作業台船において、クレーン作業するときにおいて、相対運動可能な柔軟な支持と、相対運動をさせない堅固な支持とを選択できる構成とすることにより、昇降脚だけの支持では作業台船を安全に支持できないような水底の状態に対して、脚部の支持で補強することができるようになるので、より広範な水底の状態で、クレーン作業することができるようになる。 Further, in a work table equipped with a tower crane that bottoms the legs, when the crane is operated, by providing a flexible support capable of relative movement and a solid support that does not cause relative movement, Since it is possible to reinforce by supporting the legs, it is possible to reinforce with the support of the legs, against the condition of the water bottom where the work platform cannot be safely supported by only supporting the lifting legs. Will be able to.
 上記のクレーンを備えた作業台船において、前記マストブロックの横断面の外形形状と前記脚部ブロックの横断面の外形形状が、同じ形状であると、水中部と空中部の部材を共用とすることができ、クレーンの運用を簡略化できる。また、作業水域の水深が変化しても、マストブロックと脚部ブロックを置き換える必要が無くなる。 In the work platform equipped with the above crane, if the outer shape of the cross section of the mast block and the outer shape of the cross section of the leg block are the same, the underwater portion and the aerial portion are shared. Therefore, the operation of the crane can be simplified. Further, even if the working water depth changes, it is not necessary to replace the mast block and the leg block.
 上記のクレーンを備えた作業台船において、前記マストブロックの横断面の外形形状と前記昇降脚の横断面の外形形状が、同じ形状であると、マストブロックとの昇降脚の部材を共用することができ、作業台船の運用を簡略化できる。また、必要に応じてタワークレーンを設置する場所を、昇降脚の場所と交換して、タワークレーンを船首側に設置したり船尾側に設置したりするなどすることで、容易に、タワークレーンの位置を変更することができる。 In the work platform equipped with the above-mentioned crane, if the outer shape of the cross section of the mast block and the outer shape of the cross section of the elevating leg are the same shape, the member of the elevating leg with the mast block should be shared. The operation of the work pontoon can be simplified. Also, if necessary, replace the location where the tower crane is installed with the location of the lifting legs, and install the tower crane on the bow side or stern side, making it easier to install the tower crane. The position can be changed.
 上記のクレーンを備えた作業台船において、当該作業台船が、当該作業台船の船体から降下させて着底させることで前記船体を持ち上げる昇降脚と前記昇降脚を昇降する昇降脚昇降システムを備えたハーフSEPまたはフルSEPであり、かつ、前記タワークレーンの脚部を水中に降下させる前記タワー昇降システムを、前記昇降脚昇降システムと互換性があるように構成にしていると、次のような効果を奏することができる。 In the work pontoon ship equipped with the above crane, the work pontoon lifts and lowers the hull of the work pontoon to raise and lower the hull and an elevating and lowering system for elevating and lowering the lift leg. A half SEP or a full SEP equipped with the tower lifting system for lowering the legs of the tower crane into the water is configured to be compatible with the lifting platform lifting system as follows. It is possible to achieve various effects.
 この構成によると、タワークレーンの設置場所を、昇降脚の設置場所と交換することが容易にできるようになるので、必要に応じてタワークレーンの設置場所を変更して、船首に移動したり、船尾に移動したりして設置したりすることが容易にできるようになる。また、タワークレーンの脚部と昇降脚の両方の昇降システムを共通のジャッキシステムとすることにより、装備時のみならず、部品調達や保守点検等における運用を簡略化することができる。 According to this configuration, the installation location of the tower crane can be easily replaced with the installation location of the lifting legs, so the installation location of the tower crane can be changed as necessary to move it to the bow, It becomes easy to move to the stern and install it. In addition, by using a common jack system for the lifting system for both the legs and the lifting legs of the tower crane, it is possible to simplify not only the equipment but also the operation in parts procurement, maintenance and inspection.
 上記のクレーンを備えた作業台船において、当該作業台船が、当該作業台船の船体から降下させて着底させることで前記船体を持ち上げる昇降脚と前記昇降脚を昇降する昇降脚昇降システムを備えたハーフSEPまたはフルSEPであり、かつ、クレーン作業時において、前記タワークレーンが前記昇降脚の一つの上に載置されると、次のような効果を奏することができる。 In the work pontoon ship equipped with the above crane, the work pontoon lifts and lowers the hull of the work pontoon to raise and lower the hull and an elevating and lowering system for elevating and lowering the lift leg. If the tower crane is a half SEP or a full SEP provided and is mounted on one of the elevating legs during crane work, the following effects can be obtained.
 この構成によれば、作業台船の船体側では、タワークレーンを載置する昇降脚を補強し、その昇降脚の昇降脚昇降システムの強度を増強することで、新たに、タワークレーン用のタワー昇降システムを設けずに、タワークレーンの荷重と吊り荷の荷重の一部または全部を、昇降脚を介して水底に伝えて、水底に支持させることができる。その上、タワークレーンを昇降脚の部位に配設するので、タワークレーン設置のためのデッキスペースを節減でき、作業台船の大型化を抑制できる。 According to this configuration, on the hull side of the work pontoon, the elevating leg for mounting the tower crane is reinforced, and the strength of the elevating leg elevating system of the elevating leg is strengthened to newly add a tower crane tower. Without providing the lifting system, part or all of the load of the tower crane and the load of the suspended load can be transmitted to the bottom of the water through the lifting legs and supported on the bottom of the water. In addition, since the tower crane is arranged at the portion of the lifting legs, the deck space for installing the tower crane can be saved, and the workbench can be prevented from increasing in size.
 また、昇降脚とは別個に設けるタワー昇降システムを備えたタワークレーンを備えた作業台船に比べて、タワークレーンの脚部を昇降脚と兼用しているので、タワークレーンの脚部ブロックとタワー昇降システムが不要になり、コストの削減とともに、現場海域での作業台船におけるタワークレーンの脚部の着底作業を省くことができ、このための作業時間を削減できる。 In addition, compared with a work platform equipped with a tower crane equipped with a tower lifting system that is provided separately from the lifting legs, the legs of the tower crane are also used as the lifting legs, so the tower block of the tower crane and the tower Since the lifting system is not necessary, the cost can be reduced, and the work of landing on the legs of the tower crane on the work pontoon in the offshore area can be omitted, thereby reducing the work time.
 そして、上記の目的を達成するためのクレーンを備えた作業台船のクレーン運用方法は、上記のクレーンを備えた作業台船のクレーン運用方法において、クレーン作業するときには、前記タワークレーンでの前記タワーを形成する前記マストブロックの積み上げる個数により吊り高さを調整し、クレーン作業を停止して航行するときには、前記マストブロックの積み上げる個数を前記タワークレーンで作業するときの個数よりも減少して、前記タワーの高さを低くすることを特徴とする方法である。 And, a crane operating method of a work pontoon equipped with a crane for achieving the above-mentioned object is a crane operating method of a work pontoon equipped with the above crane, when performing a crane operation, the tower in the tower crane. Adjusting the suspension height by the number of stacked mast blocks forming the, when sailing while stopping the crane work, the number of stacked mast blocks is reduced from the number when working with the tower crane, This is a method characterized by lowering the height of the tower.
 この運用方法によれば、クレーン作業をするときには、マストブロックの積み上げる個数を増加するだけで、超大型風車の高さに対しても、これに呼応して設置高さ及び吊り荷高さを容易に調整できる。また、航行時には、マストブロックの積み上げる個数を減少するだけで、タワーの高さを容易に低くできるので、航行時の作業台船のエアドラフトを低くできる。 According to this operation method, when the crane work is performed, simply by increasing the number of stacked mast blocks, the installation height and the suspended load height can be easily increased in response to the height of the super-large wind turbine. Can be adjusted to. Further, at the time of navigation, the height of the tower can be easily lowered only by reducing the number of stacked mast blocks, so that the air draft of the work pontoon at the time of navigation can be lowered.
 本発明のクレーンを備えた作業台船及びそのクレーン運用方法によれば、浅海域での洋上工事、特に着床型の洋上風力発電装置の設置やそのメンテナンス工事に使用するクレーンを備えた作業船において、作業対象物の高さに対応してクレーンの吊り高さを容易に変更できるとともに、クレーン作業をせずに航行するときは、クレーンの高さを低くして、エアドラフトを低くすることができ、しかも、クレーンの基部に作用する転倒モーメントが小さくて、クレーンの基部構造の規模が小さくて済み、作業台船の船体の大型化を抑制できる。 According to a work pontoon equipped with a crane and a method of operating the crane of the present invention, a work boat equipped with a crane used for offshore work in shallow water, particularly for installation of a landing type offshore wind turbine generator and maintenance work therefor. In (3), it is possible to easily change the lifting height of the crane according to the height of the work object, and when navigating without crane work, lower the crane height and lower the air draft. Moreover, since the overturning moment acting on the base of the crane is small, the scale of the base structure of the crane can be small, and the hull of the work pontoon can be prevented from increasing in size.
図1は、本発明に係る第1の実施の形態のクレーンを備えた作業台船(排水量型)の構成を模式的に示す平面図である。FIG. 1 is a plan view schematically showing the structure of a work platform (discharging type) equipped with a crane according to a first embodiment of the present invention. 図2は、図1のクレーンを備えた作業台船(排水量型)の構成を模式的に示す側面図で、デッキ設置式のタワークレーンを低くして、航行する場合の構成を示す図である。FIG. 2 is a side view schematically showing the configuration of a work pontoon (displacement type) equipped with the crane of FIG. 1, and is a diagram showing a configuration when a deck-installed tower crane is lowered to navigate. .. 図3は、図1のクレーンを備えた作業台船(排水量型)の構成を模式的に示す側面図で、デッキ設置式のタワークレーンを高くして、クレーン作業をする場合の構成を示す図である。FIG. 3 is a side view schematically showing the configuration of a work pontoon (displacement type) equipped with the crane of FIG. 1, and is a diagram showing a configuration when a deck-installed tower crane is raised to perform crane work. Is. 図4は、本発明に係る第2及び第3の実施の形態のクレーンを備えた作業台船(SEP)の構成を模式的に示す平面図である。FIG. 4 is a plan view schematically showing the configuration of a work pontoon ship (SEP) equipped with the cranes of the second and third embodiments according to the present invention. 図5は、図4のクレーンを備えた作業台船(SEP)の構成を模式的に示す側面図で、デッキ設置式のタワークレーンを低くして、航行する場合の構成を示す図である。FIG. 5 is a side view schematically showing the configuration of a work pontoon ship (SEP) equipped with the crane of FIG. 4, and is a diagram showing the configuration when a deck-installed tower crane is lowered to navigate. 図6は、本発明に係る第2の実施の形態のクレーンを備えた作業台船(ハーフSEP)の構成を模式的に示す側面図で、デッキ設置式のタワークレーンを高くして、クレーン作業をする場合の構成を示す図である。FIG. 6 is a side view schematically showing the configuration of a work pontoon (half SEP) equipped with a crane according to the second embodiment of the present invention, in which a deck-installed tower crane is raised to perform crane work. It is a figure which shows the structure in the case of performing. 図7は、本発明に係る第3の実施の形態のクレーンを備えた作業台船(フルSEP)の構成を模式的に示す側面図で、デッキ設置式のタワークレーンを高くして、クレーン作業をする場合の構成を示す図である。FIG. 7: is a side view which shows typically the structure of the working pontoon ship (full SEP) provided with the crane of the 3rd Embodiment which concerns on this invention, raises the tower crane of a deck installation type, and carries out crane work. It is a figure which shows the structure in the case of performing. 図8は、本発明に係る第4の実施の形態のクレーンを備えた作業台船(排水量型)の構成を模式的に示す平面図である。FIG. 8: is a top view which shows typically the structure of the work pontoon (drainage type) provided with the crane of the 4th Embodiment which concerns on this invention. 図9は、図8のクレーンを備えた作業台船(排水量型)の構成を模式的に示す側面図で、着底式のタワークレーンを低くして、航行する場合の構成を示す図である。9: is a side view which shows typically the structure of the work pontoon (drainage type) provided with the crane of FIG. 8, and is a figure which shows the structure at the time of making a bottom-mounted tower crane low, and sailing. .. 図10は、図8のクレーンを備えた作業台船(排水量型)の構成を模式的に示す側面図で、着底式のタワークレーンの脚部を着底させてタワーを高くして、クレーン作業をする場合の構成を示す図である。FIG. 10 is a side view schematically showing the configuration of a work pontoon (displacement type) equipped with the crane of FIG. 8, which raises the tower by bottoming the legs of the bottom-mounted tower crane to raise the tower. It is a figure which shows the structure at the time of working. 図11は、本発明に係る第5及び第6の実施の形態のクレーンを備えた作業台船(SEP)の構成を模式的に示す平面図である。FIG. 11: is a top view which shows typically the structure of the work pontoon ship (SEP) provided with the crane of the 5th and 6th embodiment which concerns on this invention. 図12は、図11のクレーンを備えた作業台船(SEP)の構成を模式的に示す側面図で、着底式のタワークレーンの脚部を引き上げると共にタワーを低くして、航行する場合の構成を示す図である。FIG. 12 is a side view schematically showing the configuration of a work pontoon ship (SEP) equipped with the crane shown in FIG. 11, which is used when navigating while raising the legs of the bottom-mounted tower crane and lowering the tower. It is a figure which shows a structure. 図13は、本発明に係る第5の実施の形態のクレーンを備えた作業台船(ハーフSEP)の構成を模式的に示す側面図で、着底式のタワークレーンの脚部を着底させてタワーを高くして、クレーン作業をする場合の構成を示す図である。FIG. 13: is a side view which shows typically the structure of the work pontoon (half SEP) provided with the crane of the 5th Embodiment which concerns on this invention. It is a figure which shows the structure at the time of performing a crane work by raising a tower. 図14は、本発明に係る第6の実施の形態のクレーンを備えた作業台船(フルSEP)の構成を模式的に示す側面図で、着底式のタワークレーンの脚部を着底させてタワーを高くして、クレーン作業をする場合の構成を示す図である。FIG. 14: is a side view which shows typically the structure of the working pontoon (full SEP) provided with the crane of the 6th Embodiment which concerns on this invention. It is a figure which shows the structure at the time of performing a crane work by raising a tower. 図15は、本発明に係る第7及び第8の実施の形態のクレーンを備えた作業台船(SEP)の構成を模式的に示す平面図である。FIG. 15: is a top view which shows typically the structure of the working table ship (SEP) provided with the crane of the 7th and 8th embodiment which concerns on this invention. 図16は、図15のクレーンを備えた作業台船(SEP)の構成を模式的に示す側面図で、着底式のタワークレーンの脚部を引き上げると共にタワーを低くして、航行する場合の構成を示す図である。FIG. 16 is a side view schematically showing the configuration of a work pontoon ship (SEP) equipped with the crane shown in FIG. 15, which is used when navigating by pulling up the legs of a bottom-mounted tower crane and lowering the tower. It is a figure which shows a structure. 図17は、本発明に係る第7の実施の形態のクレーンを備えた作業台船(ハーフSEP)の構成を模式的に示す側面図で、着底式のタワークレーンの脚部を着底させてタワーを高くして、クレーン作業をする場合の構成を示す図である。FIG. 17 is a side view schematically showing the configuration of a work pontoon (half SEP) equipped with a crane according to a seventh embodiment of the present invention, in which the legs of a bottom-mounted tower crane are bottomed. It is a figure which shows the structure at the time of performing a crane work by raising a tower. 図18は、本発明に係る第8の実施の形態のクレーンを備えた作業台船(フルSEP)の構成を模式的に示す側面図で、着底式のタワークレーンの脚部を着底させてタワーを高くして、クレーン作業をする場合の構成を示す図である。FIG. 18: is a side view which shows typically the structure of the working pontoon ship (full SEP) provided with the crane of the 8th Embodiment which concerns on this invention. It is a figure which shows the structure at the time of performing a crane work by raising a tower. 図19は、タワークレーンにおけるマストブロックの組み立て個数の減少作業を説明するための図である。FIG. 19 is a diagram for explaining the work of reducing the number of assembled mast blocks in the tower crane. 図20は、クレーン本体13を作業台船のデッキ上に載置した状態を模式的に示す側面図である。FIG. 20 is a side view schematically showing a state in which the crane main body 13 is placed on the deck of the work platform ship. 図21は、タワークレーンにおけるマストブロックの組み立て個数の増加作業を説明するための図である。FIG. 21 is a diagram for explaining the work of increasing the number of assembled mast blocks in the tower crane. 図22は、作業台船(SEP)の昇降脚の底板を例示する図で、(a)は固定式の底板を、(b)は開閉式の底板を示す図である。22: is a figure which illustrates the bottom plate of the raising / lowering leg of a working pontoon ship (SEP), (a) is a fixed-type bottom plate, (b) is a figure which shows an opening / closing-type bottom plate.
 以下、本発明に係る実施の形態のクレーンを備えた作業台船及びそのクレーン運用法について、図面を参照しながら説明する。 Hereinafter, a work boat equipped with a crane according to an embodiment of the present invention and a method of operating the crane will be described with reference to the drawings.
 なお、ここで、クレーン作業の対象物となる「洋上構造物」としては、1基あたりの発電容量が、例えば、7MW~10MW程度で、クレーンの吊り高さが200m程度の、浅海域に設置される洋上風力発電装置(洋上風車)を想定している。しかし、本発明は、このような洋上風力発電装置に限定されず、洋上でクレーン作業が必要な洋上構造物であればその他の物であってもよい。なお、ここでは、クレーン作業の対象となる洋上構造物そのものは、直接本発明に関与しないので、図面とその説明を簡略化するために、洋上構造物はその図示を省略している。 In addition, here, as the "offshore structure" that is the target of crane work, the power generation capacity per unit is, for example, about 7 MW to 10 MW, and the crane is installed in a shallow sea area with a lifting height of about 200 m. An offshore wind turbine generator (offshore wind turbine) is assumed. However, the present invention is not limited to such an offshore wind turbine generator, and may be any other offshore structure that requires crane work on the sea. Since the offshore structure itself which is the target of the crane work does not directly relate to the present invention, the offshore structure is not shown in order to simplify the drawings and the description thereof.
 最初に、本発明に係る実施の形態のクレーンを備えた作業台船(以下、作業台船という)に備えるタワークレーンについて説明する。図1~図21に示すように、このタワークレーン10A、10B、10Cは、クライミング式ジブクレーンとも呼ばれ、陸上の分野では、高層ビルや大型建造物の建設、あるいは、ダムのコンクリト打設等に用いられている周知技術のクレーンである。このタワークレーン10A、10B、10Cを、洋上構造物の設置等で使用するために作業台船1A~1Hに備える。 First, a tower crane provided for a work pontoon (hereinafter referred to as a work pontoon) equipped with the crane according to the embodiment of the present invention will be described. As shown in FIGS. 1 to 21, the tower cranes 10A, 10B, and 10C are also called climbing type jib cranes, and in the field of land, they are used for the construction of high-rise buildings and large-scale buildings, or concrete concrete pouring. It is a well-known crane used. The tower cranes 10A, 10B, and 10C are provided on the work pontoons 1A to 1H for use in installing offshore structures and the like.
 このタワークレーンには、吊り荷の水平移動方法に関連して、水平に固定されたブームに乗ったトロリーを水平移動させるフラットトップ型、この水平に固定されたブームを上方からワイヤーで支えるハンマーヘッド型、起伏式のジブを持つラッフィング型などがある。ラッフィング型では、現場で組み上げるタワーの高さがより低くて済み、また吊り作業の周囲に必要なスペースが少なくて済む利点がある。以下の説明では、ラッフィング型のタワークレーンを用いている。 This tower crane has a flat top type that horizontally moves a trolley that is mounted on a horizontally fixed boom, and a hammer head that supports this horizontally fixed boom from above with a wire. Type, luffing type with undulating jib. The luffing type has the advantages that the height of the tower to be assembled in the field is lower and the space required around the lifting work is smaller. In the following description, a luffing type tower crane is used.
 この実施の形態の作業台船1A~1Iで使用されるタワークレーン10A、10B、10Cは、基本的に、既に陸上の建築や土木などの分野で使用されている周知技術のタワークレーンと同じである。このタワークレーン10A、10B、10Cでは、その形状や用途から、タワーに加わる荷重に関しては、タワー12に作用する転倒モーメントを極力小さくして、鉛直方向の荷重が主となるように構成されている。つまり、図3に示すように、このタワークレーン10A、10B、10Cでは、吊り荷重量Wとタワー12と吊り荷との水平距離Lhに依存する転倒モーメント(W×Lh)を、反対側の構成13c、13dでバランスさせるように、クレーン本体13が構成されている。 The tower cranes 10A, 10B and 10C used in the work pontoons 1A to 1I of this embodiment are basically the same as the well-known tower cranes already used in the fields such as land construction and civil engineering. is there. With respect to the load applied to the tower, the tower cranes 10A, 10B, and 10C are configured such that the overturning moment acting on the tower 12 is made as small as possible and the vertical load is mainly due to its shape and use. .. That is, as shown in FIG. 3, in the tower cranes 10A, 10B, and 10C, the overturning moment (W × Lh) depending on the hanging load amount W and the horizontal distance Lh between the tower 12 and the hanging load is set on the opposite side. The crane body 13 is configured so as to be balanced by 13c and 13d.
 次に、このタワークレーン10A、10B、10Cの構造について説明する。このタワークレーン10A、10B、10Cは、ベース架台11(タワークレーン10Bでは無い)と、タワー12と、クレーン本体13とを有して構成されている。このタワークレーン10A、10B、10Cでは、複数個のマストブロック12aを積み上げてタワー12を形成し、タワー12の最上部にクレーン本体13を載置して構成され、マストブロック12aの積み上げる個数によりタワー12の高さを調整する構成となっている。このマストブロック12aは、タワー12の高さに直接関係する「吊り高さHh」をその積み立ての個数で調整するための組み立て用のタワー12の構成要素である。 Next, the structure of the tower cranes 10A, 10B, 10C will be described. The tower cranes 10A, 10B, and 10C are configured to have a base mount 11 (not the tower crane 10B), a tower 12, and a crane body 13. In this tower crane 10A, 10B, 10C, a plurality of mast blocks 12a are stacked to form a tower 12, and a crane main body 13 is placed on the top of the tower 12, and the tower is constructed according to the number of stacked mast blocks 12a. The height of 12 is adjusted. The mast block 12a is a component of the assembling tower 12 for adjusting the "hanging height Hh" directly related to the height of the tower 12 by the number of stacks.
 このタワークレーン10A、10B、10Cは、タワー12に順次マストブロック12aを継足しながら、クレーン本体13を上昇させ、かつ、タワー12から順次マストブロック12aを取り外しながら、クレーン本体13を下降させるマストクライミング装置14を備えていることが好ましい。 This tower crane 10A, 10B, 10C is a mast climbing in which the crane main body 13 is raised while sequentially adding the mast block 12a to the tower 12 and the crane main body 13 is lowered while sequentially removing the mast block 12a from the tower 12. A device 14 is preferably provided.
 つまり、このタワークレーン10A、10B、10Cには、クレーン本体13の昇降時に補助クレーンによる補助を受けてクレーン本体13を昇降させるタイプのタワークレーンを用いてもよいが、クレーン本体13の昇降時に補助クレーンによる補助を必要とせずに、マストクライミング装置14を用いてクレーン本体13を昇降させる自己昇降タイプのタワークレーンを用いることがより好ましい。 That is, as the tower cranes 10A, 10B, and 10C, a tower crane of a type that raises and lowers the crane body 13 with the assistance of an auxiliary crane when the crane body 13 is raised and lowered may be used. It is more preferable to use a tower crane of a self-elevating type that elevates and lowers the crane body 13 by using the mast climbing device 14 without requiring assistance from the crane.
 これにより、補助クレーンを使用することなく、備えた装置と機構だけでクレーン本体13を昇降できるので、昇降用の補助クレーンが不要になり、その分の重量とデッキスペースを節約できることになる。また、タワー12を所定の高さまで、迅速に組み上げることができる。 With this, the crane main body 13 can be lifted and lowered only by using the equipment and mechanism provided without using an auxiliary crane, so an auxiliary crane for lifting and lowering is not required, and the weight and deck space can be saved accordingly. Further, the tower 12 can be quickly assembled to a predetermined height.
 なお、自己昇降タイプのタワークレーンであっても、マストブロック12aの組み入れに補助クレーンを使用してもよいが、この補助クレーンは、クレーン本体13を昇降させるための補助クレーンに比べて小さい容量のクレーンで済む。 A self-elevating type tower crane or an auxiliary crane may be used to incorporate the mast block 12a, but this auxiliary crane has a smaller capacity than the auxiliary crane for elevating the crane body 13. A crane is enough.
 そして、このタワークレーン10A、10B、10Cは、作業水域(施工現場)において、ベース架台11の上に、複数個のマストブロック(クレーンマスト:ポスト)12aを積み立ててタワー12を構成し、このタワー12の上に、クレーン本体13を載置する。このクレーン本体13では、ブーム(ジブ:クレーンの腕)13bを取り付け、ブーム13bの起伏用、吊り荷の巻き上げ下げ用のワイヤー13eを通して、組み立てられる。その後、マストクライミング装置14を用いて、マストブロック12aを継ぎ足しながら、クレーン本体13をせり上げて高くするクライミングを繰り返すことで、所望の高さの吊り高さHhを得ている。 The tower cranes 10A, 10B, and 10C form a tower 12 by stacking a plurality of mast blocks (crane masts: posts) 12a on a base pedestal 11 in a working water area (construction site). The crane main body 13 is placed on 12. The crane main body 13 is assembled by attaching a boom (jib: arm of crane) 13b and passing a wire 13e for raising and lowering the boom 13b and hoisting and lowering a suspended load. After that, the climbing height Hh of a desired height is obtained by repeating climbing using the mast climbing device 14 to raise the crane body 13 and raise it while adding the mast block 12a.
 なお、これらのワークレーン10A、10B、10Cのクレーン本体13は、旋回機構13aと、ブーム13b、フロントストラット13c、リアストラット13d、ワイヤー13eとを有する吊り機構と、運転室13fを備えている。このクレーン本体13では、吊り荷の荷重Wによってタワー12に発生する転倒モーメントが極力少なくなるように反対側のフロントストラット13c、リアストラット13dによりバランスを取る構成となっている。これらのブーム13b、フロントストラット13c、リアストラット13dは、軽量化のため、トラス構造、その中でも、接合部をピン構造にして部材を井桁形状に連続的に組んだ菱格子構造であるラティス(ラチス)構造で構成されることが好ましい。 The crane main body 13 of these work lanes 10A, 10B, and 10C includes a swing mechanism 13a, a suspension mechanism having a boom 13b, a front strut 13c, a rear strut 13d, and a wire 13e, and an operator's cab 13f. In this crane body 13, the front strut 13c and the rear strut 13d on the opposite side are balanced so that the overturning moment generated in the tower 12 by the load W of the suspended load is minimized. The boom 13b, the front strut 13c, and the rear strut 13d are a truss structure for weight reduction, and particularly, a lattice (lattice) structure that is a rhombic structure in which members are continuously connected in a pin shape with a joint structure as a pin structure. ) Structure is preferred.
 マストクライミング装置14は、補助クレーンを用いないで、マストブロック12aを組み入れながらクレーン本体13をせり上げるための装置である。このマストクライミング装置14を用いたクライミングの方法には、油圧シリンダの伸縮を用いるものと、昇降ワイヤロープの緊張を用いるもの等がある。 The mast climbing device 14 is a device for raising the crane body 13 while incorporating the mast block 12a without using an auxiliary crane. As a climbing method using the mast climbing device 14, there are a method using expansion and contraction of a hydraulic cylinder, a method using tension of a lifting wire rope, and the like.
 このマストクライミング装置14は、例えば、上部カンヌキを有する上部昇降フレーム、下部カンヌキを有する下部昇降フレーム、及び、昇降シリンダで構成され、上下のカンヌキでクレーン本体13の全質量を交互に支えている。なお、クライミング方式には油圧シリンダ、電動シリンダ、電動チェーンブロック、ワイヤロープ(巻上装置と併用)などを用いたものがあり、このうち油圧シリンダ方式が大型クレーンでは主流である。 The mast climbing device 14 is composed of, for example, an upper lifting frame having an upper lift, a lower lifting frame having a lower lift, and a lifting cylinder, and the upper and lower lifts alternately support the entire mass of the crane body 13. The climbing method includes a method using a hydraulic cylinder, an electric cylinder, an electric chain block, a wire rope (used in combination with a hoisting device), and the hydraulic cylinder method is the mainstream for large cranes.
 油圧シリンダの伸縮運動によって、クレーン本体13がタワー12を昇降することが可能となる。昇降シリンダには上部と下部に「カンヌキ(閂)」(両方の部材の孔に跨って通して係合する棒状の部材:関木(かんぎ)、貫木(かんのき))が設置されている。 The crane main body 13 can move up and down the tower 12 by the expansion and contraction movement of the hydraulic cylinder. The lifting cylinders are equipped with "Kanuki" (bars) that engage through the holes of both members: Sekiki and Kanoki at the top and bottom. ing.
 先ず、下部の「カンヌキ」をセットし、油圧シリンダを伸ばして、クレーン本体13ごと持ち上げていき、規定の高さで上部の「カンヌキ」をセットする。上部の「カンヌキ」でクレーン本体13を支えたら、下部の「カンヌキ」をたたみ、伸びたシリンダを縮めていく。油圧シリンダが縮みきったら、また、下部の「カンヌキ」をセットし、上部の「カンヌキ」をたたんで、油圧シリンダを伸ばしていく。このようにして「カンヌキ」で交互にクレーン本体13を支え、油圧シリンダの伸縮を繰り返すことで、クレーン本体13を昇降させる。 First, set the lower "Kanuki", extend the hydraulic cylinder, lift the crane body 13 together, and set the upper "Kanuki" at the specified height. When the crane body 13 is supported by the upper "Kanuki", the lower "Kanuki" is folded and the extended cylinder is contracted. When the hydraulic cylinder is fully compressed, set the lower "Cannuki" again and fold the upper "Cannuki" to extend the hydraulic cylinder. In this way, the crane main body 13 is alternately supported by "kanuki" and the crane main body 13 is moved up and down by repeatedly expanding and contracting the hydraulic cylinder.
 このタワークレーン10Aの大きさとしては、既に、実績があるものとして、例えば、5MW以上の超大型風車の港湾での組み上げや作業水域でのメンテナンス(組み上げも可能)に対応できるクレーンとして、吊り荷重で75~125tで、ブーム長さが70m、最大自立高さが190m程度、最大フック高さ(吊り荷高さに関係する高さ)が170m程度、自重が580t程度となる。なお、比較のために、同等の能力のジブクレーンでは、1200tクラスが必要となり、その自重は3倍(1740t)以上となる
 また、この例示するタワークレーン10Aのタワー12部分を構成するマストブロック12aについては、その断面の外形形状の大きさは「3.5m×3.5m」程度で、高さは「7.8m」程度となる。これらのマストブロック12aは、互いにボルトで締結される。そして、最大フック高は、タワー12が洋上風車などからのタイイン(タイバックとも呼ばれる途中高さでのサポート)なしに自立した状態で170mになる。また、タワークレーン10Aの設置に必要なデッキ面積は、タワークレーン10Aの荷重と吊り荷の荷重Wをデッキ3で受ける構造の場合には、「16m×18m」となる。
As for the size of this tower crane 10A, it is already known that, for example, as a crane that can support assembling a super-large wind turbine of 5 MW or more in a port and maintenance in a working water area (it is also possible to assemble), the lifting load It has a boom length of 70 m, a maximum freestanding height of about 190 m, a maximum hook height (height related to the suspended load height) of about 170 m, and a weight of about 580 t. For comparison, a jib crane of equivalent capacity requires 1200t class, and its own weight is three times (1740t) or more. Further, regarding the mast block 12a that constitutes the tower 12 portion of this exemplified tower crane 10A. The outer shape of the cross section is about “3.5 m × 3.5 m” and the height is about “7.8 m”. These mast blocks 12a are bolted together. The maximum hook height is 170 m in a state where the tower 12 is self-supporting without a tie-in (support at an intermediate height also called a tie-back) from an offshore wind turbine or the like. The deck area required for installing the tower crane 10A is “16 m × 18 m” in the case of the structure in which the deck 3 receives the load of the tower crane 10A and the load W of the suspended load.
 次に、本発明に係る第1の実施の形態のクレーンを備える作業台船(以下、作業台船)について説明する。図1~図3に示すように、この作業台船1Aは、排水量型の作業台船に、デッキ載置式のタワークレーン10Aを備えて構成される。この作業台船1Aは、船体2の下部分が水面下に沈むことで浮力を得る排水量型の作業台船であり、航行時もクレーン作業時も、船体の水面下の浮力により、船体の上下位置を維持する。 Next, a work pontoon (hereinafter, a work pontoon) including the crane according to the first embodiment of the present invention will be described. As shown in FIGS. 1 to 3, this work pontoon ship 1A comprises a drainage type work berth ship and a tower crane 10A of a deck mount type. This work pontoon 1A is a drainage type work pontoon that obtains buoyancy when the lower part of the hull 2 sinks below the surface of the water. Maintain position.
 このデッキ載置式のタワークレーン10Aでは、作業台船1Aのデッキ3に堅固に固定されているベース架台11が設けられている。このベース架台11は、鉛直方向にマストブロック12aが積み上げられ形成されたタワー12を支持しており、タワークレーン10Aの荷重と吊り荷の荷重を負担する。 In this deck-mounting tower crane 10A, a base platform 11 that is firmly fixed to the deck 3 of the work table ship 1A is provided. The base mount 11 supports a tower 12 formed by vertically stacking mast blocks 12a, and bears the load of the tower crane 10A and the load of suspended load.
 図1の構成では、作業台船1Aでは、船体2のデッキ(甲板)3において、船尾側に突出する1対の突起部4で形成される一対の腕状構造物が設けられ、フォーク状(U字形状)の作業機構を設けると共に、船首側に船橋や居住区としての上部構造物5が配設され、デッキ3の船体前後方向で中央より後側の部位にタワークレーン10Aが配設されている。なお、必要に応じて、自航用のプロペラと舵等の推進システムを搭載するが、これらの推進システムに関しては図示を省略している。 In the configuration of FIG. 1, in the work platform 1A, the deck (deck) 3 of the hull 2 is provided with a pair of arm-shaped structures formed of a pair of protrusions 4 projecting to the stern side, and a fork-shaped ( A U-shaped work mechanism is provided, an upper structure 5 serving as a bridge or a living area is provided on the bow side, and a tower crane 10A is provided on a portion of the deck 3 in the front-rear direction of the hull from the center to the rear side. ing. If necessary, a propeller for self-propelled vehicles and a propulsion system such as a rudder are mounted, but illustration of these propulsion systems is omitted.
 図2に示す作業台船1Aの航行時においては、タワークレーン10Aでは、マストブロック12aの数を減少して、タワークレーン10Aの高さを、マストクライミング装置14を装備でき、かつ、クレーン本体13をタワー12の上に載置できる最低限の高さとする。 2, the number of mast blocks 12a in the tower crane 10A can be reduced so that the height of the tower crane 10A can be equipped with the mast climbing device 14 and the crane main body 13 can be used. Is the minimum height that can be placed on the tower 12.
 なお、通常は、クレーン本体13の組み合立て作業を省くために、図2に示すような、タワークレーン10Aを組み立てた状態で、タワー12を低くして航行するが、必要に応じて、クレーン本体13をタワー12から外して、タワークレーン10Aを分解してデッキ3の上に載置して、全体の高さをより低くした状態にして航行してもよい。 Normally, in order to save the work of assembling the crane main body 13, the tower 12 is lowered while the tower crane 10A is assembled as shown in FIG. 2, but the crane may be moved as necessary. The main body 13 may be removed from the tower 12, the tower crane 10A may be disassembled, and the tower crane 10A may be placed on the deck 3 to lower the overall height and sail.
 そして、図3に示すように、作業水域に着いて、クレーン作業するときには、作業台船1Aを錨と錨索6aや係留索6bなどで係留する。この場合、この係留索6b等の長さや張力をウインチで調整しながら船位(作業台船1Aの位置)を保持する係留システム等により、船位を作業地点に保持する。また、サイドスラスターやアジマススラスター等を使用した自動船位保持システム(DPS)を装備して船位を作業地点に保持してもよい。 Then, as shown in FIG. 3, when arriving at the work area and performing the crane work, the work platform 1A is moored with the anchor and the anchor rope 6a and the mooring rope 6b. In this case, the mooring system or the like that holds the ship position (position of the work table 1A) while adjusting the length and tension of the mooring line 6b and the like with a winch holds the ship position at the work point. Further, an automatic ship position holding system (DPS) using a side thruster, an azimuth thruster or the like may be equipped to hold the ship position at the work point.
 この排水量型の作業台船1Aでは、後で説明するSEP(自己昇降式作業船)のようなジャッキアップで昇降する昇降脚(レグ、スパッド)の構成が不要になる。この排水量型の作業台船1Aは、比較的、風や波浪や潮流が小さく、作業台船が受ける外乱が少ない作業海域でクレーン作業する場合に適している。 In this displacement-type work pontoon 1A, the construction of lifting legs (legs, spuds) that go up and down by jacking up like SEP (self-elevating work boat) described later is unnecessary. This drainage type work pontoon ship 1A is suitable for crane work in a work area where the wind, waves and tidal currents are relatively small and the work berth receives less disturbance.
 そして、クレーン作業の開始前に、マストクライミング装置14を用いて、マストブロック12aを組み入れながらクレーン本体13を繰り返しせり上げてタワー12を高くして、所望の「吊り高さHh」を得る。このとき、図3に示すように、エアドラフトHe2は、図2に示す航行時のエアドラフトHe1より著しく高くなる。 Before starting the crane work, the mast climbing device 14 is used to repeatedly raise the crane body 13 while incorporating the mast block 12a to raise the tower 12 to obtain a desired "hanging height Hh". At this time, as shown in FIG. 3, the air draft He2 becomes significantly higher than the air draft He1 during navigation shown in FIG.
 また、クレーン作業をしているときは、作業台船1Aでは、バラスト水の注排水や係留システム等により、タワークレーン10Aの吊り荷の荷重やブーム長さの変化に対応して船体2の姿勢維持を行う。そのため、タワークレーン10Aの設置場所は、船体左右方向においては船体中央に近い方がよい。また、船体前後方向に関しては、設置対象物の洋上構造物(図示しない)の搬送時の搭載位置や船体2の前後の重量分布やバラストタンクの配置などを考慮しては、タワークレーン10Aの設置場所が設定される。 In addition, during crane work, in the work pontoon 1A, the attitude of the hull 2 is adjusted in response to changes in the load of the tower crane 10A and changes in the boom length by means of pouring and draining ballast water and a mooring system. To maintain. Therefore, the tower crane 10A is preferably installed near the center of the hull in the left-right direction of the hull. Regarding the front and rear direction of the hull, the tower crane 10A should be installed in consideration of the mounting position of an offshore structure (not shown) to be installed during transportation, the weight distribution before and after the hull 2, the arrangement of ballast tanks, and the like. The location is set.
 次に、本発明に係る第2及び第3の実施の形態のクレーンを備える作業台船(以下、作業台船)について説明する。この第2の実施の形態の作業台船1Bは、図4~図6に示すように、ハーフSEP型の作業台船に、デッキ載置式のタワークレーン10Aを備えて構成される。また、第3の実施の形態の作業台船1Cは、図4、5及び図7に示すように、フルSEP型の作業台船に、デッキ載置式のタワークレーン10Aを備えて構成される。この作業台船1B、1Cにおいて、第1の実施の形態の作業台船1Aと同様に、デッキ設置式のタワークレーン10Aをデッキ3の上に設置する。 Next, a work pontoon (hereinafter, a work pontoon) including the cranes according to the second and third embodiments of the present invention will be described. As shown in FIGS. 4 to 6, the work pontoon boat 1B of the second embodiment comprises a half SEP type work pontoon boat equipped with a deck-mounted tower crane 10A. As shown in FIGS. 4, 5 and 7, the work pontoon ship 1C of the third embodiment is a full SEP type work pontoon ship equipped with a deck-mounted tower crane 10A. In the work pontoons 1B and 1C, as in the work pontoon 1A of the first embodiment, the deck-installed tower crane 10A is installed on the deck 3.
 このハーフSEP型の作業台船1BとフルSEP型の作業台船1Cは、SEP(Self Elevating Platform:自己昇降式作業台船)、ジャッキアップ船等と呼ばれる作業台船の一種であるが、プラットフォームと呼ばれる作業台船1B、1Cの周囲に配置した数本(この実施の形態では4隅に配置した4本)の昇降脚(レグ、スパッド)20と、この昇降脚20を降下させて、その先端(底部)を水底(海底)Bに着底させて、船体2を持ち上げる昇降脚昇降システム(ジャッキアップシステム)21を備えている。 This half SEP type work pontoon 1B and full SEP type work pontoon 1C are types of work pontoons called SEP (Self Elevating Platform), jack-up boat, etc. A few lifting legs (legs, spuds) 20 arranged around work pontoons 1B and 1C (four in this embodiment, four legs arranged in four corners) and the lifting legs 20 are lowered, and An elevating leg elevating system (jack up system) 21 for elevating the hull 2 by equipping the water bottom (sea bottom) B with its tip (bottom) is provided.
 これらの作業台船1B、1Cでは、船尾のそばに一対の固定型の船尾側の昇降脚(スパッド)20、前方に、キック式の船首側の昇降脚20を装備する。この固定型の昇降脚は、昇降脚の台船下部への突き出し量を固定したときに昇降脚と台船の相対揺動や水平方向の自由度も拘束されるものであり、キック式の昇降脚は昇降脚の台船下部への突き出し量が水平のピンによる支持により固定された状態でそのピンを軸にした相対揺動が許され、昇降脚のピンより上の部分が油圧シリンダ等により台船に対し相対的に水平方向に押し引きされることで昇降脚が振り子のように傾斜し、海底上を昇降脚で歩行するように台船を移動できるものや、昇降脚の相対揺動は許容されず鉛直のままだが同様に油圧シリンダにより台船に対して水平方向にスライドすることで台船を移動することのできるものである。 Each of these work pontoons 1B, 1C is equipped with a pair of fixed stern-side lifting legs (spads) 20 near the stern and a kick-type bow-side lifting leg 20 in front. This fixed-type lift leg is a type of kick-type lift that restrains the relative swing between the lift leg and the pontoon and the degree of freedom in the horizontal direction when the amount of protrusion of the lift leg to the lower part of the carrier is fixed. The legs are allowed to swing relative to each other around the pins while the amount of protrusion of the lift legs to the lower part of the pedestal is fixed by the support by horizontal pins. By pushing and pulling in a horizontal direction relative to the pedestal, the elevating leg tilts like a pendulum, and the pedestal can be moved to walk on the seabed with the elevating leg. Is not allowed and remains vertical, but it is also possible to move the ship by sliding it horizontally with respect to the ship using a hydraulic cylinder.
 この昇降脚20の最下部には、海底地質等を考慮して必要に応じて使用する底板を装備している。この底板は、昇降脚20に加わる力を受持つ構造をしており、作業台船としては、図22に示すように、固定式の底板22a以外に、開閉式の底板22bがある。この開閉式の底板22bは、広く開いて、緩い砂や粘性土等の軟弱な地盤に対応したり、底板22bを跳ね上げて底板22bによる支持を無効にし、鋭利に形成されたタワー先端22cを固い地盤に刺したりすることができるように構成されている。 The bottom plate of this lifting leg 20 is equipped with a bottom plate that is used as necessary in consideration of geological features of the seabed. This bottom plate has a structure for receiving a force applied to the lifting legs 20, and as a work platform, as shown in FIG. 22, there is an openable-closed bottom plate 22b in addition to the fixed bottom plate 22a. The openable bottom plate 22b is widely opened to cope with soft ground such as loose sand or cohesive soil, or the bottom plate 22b is flipped up to invalidate the support by the bottom plate 22b, and the sharply formed tower tip 22c is removed. It is constructed so that it can be stabbed in solid ground.
 さらに、作業台船1B、1Cに、自動船位保持システムを装備すると洋上風力発電に限らず様々なプロジェクトで使えるようになるのでより好ましい。 Furthermore, it is more preferable to equip the work pontoons 1B and 1C with an automatic ship position holding system so that they can be used not only for offshore wind power generation but also for various projects.
 そして、図5に示すように、作業台船1B、1Cは、タワークレーンの作業を停止して航行するときには、昇降脚20を水底Bから離底させて、昇降脚の最下位の部位が船底程度の高さになるまで引き上げて、降脚を作業台船のデッキに固定させた状態で航行する。この航行時状態では、排水量型の作業台船1Aの航行状態と同様、船体2の下部分が水面下に沈むことで浮力を得ている。 Then, as shown in FIG. 5, when the work pontoons 1B and 1C stop the operation of the tower crane and sail, the lift legs 20 are moved away from the water bottom B so that the lowest part of the lift legs is the bottom. Raise it to a certain height, and keep the descending legs fixed to the deck of the work platform. In this navigation state, as in the navigation state of the drainage type work pontoon ship 1A, the lower portion of the hull 2 sinks below the water surface to obtain buoyancy.
 一方、クレーン作業をするときは、図6及び図7に示すように、昇降脚(レグ、スパッド)20を降下させて、水底Bに着底させて、さらにこれらの昇降脚20を伸ばすことで、作業台船1B、1Cは昇降脚20によって固定支持された状態となる。この状態で、船体2が水面Sに浮いている場合は、ハーフSEPといい、この状態で、船体2の全体が水面Sより上に持ち上げられている場合は、フルSEPという。 On the other hand, when performing a crane operation, as shown in FIGS. 6 and 7, the elevating legs (legs, spuds) 20 are lowered to reach the bottom B of the water, and the elevating legs 20 are further extended. The work pontoons 1B and 1C are fixedly supported by the lifting legs 20. When the hull 2 floats on the water surface S in this state, it is called a half SEP, and when the entire hull 2 is lifted above the water surface S in this state, it is called a full SEP.
 そして、ハーフSEP型の作業台船1Bでは、図6に示すように、この船体2の持ち上げ時に、船体2の一部が水面Sの下にある状態にする。この状態で、船体2の重量の一部をこの昇降脚20で支持することで、船体2の位置及び姿勢を保持する。この状態では、船体2の重量の一部を船体2の浮力により負担しているが、船体2の一部を昇降脚20で水面Sよりも上に持ち上げたり、バラスト水の注入量の増減などにより船体2の重量を増減したりすることにより、昇降脚20に加わる荷重を増減している。 Then, in the half SEP type work pontoon 1B, as shown in FIG. 6, when the hull 2 is lifted, a part of the hull 2 is placed under the water surface S. In this state, a part of the weight of the hull 2 is supported by the lifting legs 20, so that the position and the posture of the hull 2 are maintained. In this state, a part of the weight of the hull 2 is borne by the buoyancy of the hull 2, but a part of the hull 2 is lifted above the water surface S by the elevating legs 20 or the amount of ballast water injected is increased or decreased. By increasing or decreasing the weight of the hull 2, the load applied to the lifting legs 20 is increased or decreased.
 このハーフSEPでは、昇降脚の一部に沈降が生じた際に、船体が水上に浮いているため、波浪による船体運動も発生し易いが、船体の浮力で荷重の変化に対応できるので、船体やタワーが大きく傾斜することを回避できる。そのため、このハーフSEPの作業台船は、中程度の波浪海域での稼働に適している。なお、このハーフSEPでは、昇降脚20及び昇降脚昇降システム21は、フルSEPのような自重と載貨重量を持ち上げられるような大容量の物ではなく、浚渫台船に使われるような、部分的に浮力を補い船体2を安定して支持できる程度のものでよい。 In this half SEP, the hull floats above the water when a part of the lifting legs is submerged, so it is easy for the hull to move due to waves, but the buoyancy of the hull can handle changes in the load. It is possible to avoid tilting the tower and tower greatly. Therefore, this half SEP work pontoon is suitable for operation in the medium sea area. It should be noted that in this half SEP, the lifting legs 20 and the lifting leg lifting system 21 are not large-capacity objects such as full SEPs capable of lifting the dead weight and the load weight, but are partially used for a dredging barge. It is sufficient that the buoyancy is supplemented and the hull 2 can be stably supported.
 一方、フルSEP型の作業台船1Bでは、図7に示すように、この船体2の持ち上げるときに、船体2の全部が水面Sより上にある状態にする。この状態で、船体2の重量の全体をこの昇降脚20で支持することで、船体2の位置及び姿勢を保持する。この状態では、昇降脚昇降システム21により、昇降脚20の下降量を調整することにより、昇降脚20に加わる荷重と船体2の姿勢を調整している。このフルSEPでは、この状態にすることにより、高波浪海域での稼動を可能として、作業効率および施工精度を高めることができる。 On the other hand, in the full SEP type work pontoon 1B, as shown in FIG. 7, when the hull 2 is lifted, the entire hull 2 is placed above the water surface S. In this state, the elevating legs 20 support the entire weight of the hull 2 to hold the position and posture of the hull 2. In this state, the load applied to the elevating legs 20 and the attitude of the hull 2 are adjusted by adjusting the descending amount of the elevating legs 20 by the elevating leg elevating system 21. In this full SEP, by setting this state, it is possible to operate in the high sea area, and work efficiency and construction accuracy can be improved.
 そして、これらの第1~第3の実施の形態の作業台船1A、1B、1Cによれば、デッキ設置式のタワークレーン10Aをデッキ3に固定支持しているので、次のような効果を発揮することができる。なお、タワークレーン10Aの作業台船1A、1B、1Cへの固定に関しては、クレーン作業をするときの前後においては、タワークレーン10Aはデッキ3の上移動したり、分解及び組立したりしてもよい。例えば、ベース架台11を作業台船1A、1B、1Cのデッキ3の上に敷設されたレールの上を移動可能に設けたような場合でも、クレーン作業をするときに、レールの上を移動できないように固定していればよい。 Further, according to the work pontoons 1A, 1B, and 1C of the first to third embodiments, since the deck-installed tower crane 10A is fixedly supported on the deck 3, the following effects are obtained. Can be demonstrated. Regarding the fixing of the tower crane 10A to the work pontoons 1A, 1B and 1C, the tower crane 10A may be moved on the deck 3 or disassembled and assembled before and after the crane work. Good. For example, even when the base platform 11 is movably provided on the rails laid on the decks 3 of the work pontoons 1A, 1B, and 1C, it cannot move on the rails when performing the crane work. It just needs to be fixed.
 これらの作業台船1A、1B、1Cによれば、タワークレーン10Aのタワー12を支持又は固定するベース架台11の構造は、主に、この鉛直方向の荷重を受けることになるので、他の転倒モーメントが大きいクレーンの支持構造(基礎構造)よりも構造的に楽になる。つまり、タワー12、及びベース架台11に作用する転倒モーメントが小さく、殆んどの荷重が垂直荷重となるため、基部となるベース架台11に必要な構造強度が他の種類のクレーンに比べて小さくなる。その結果、比較的簡単な構造でタワークレーン10Aを固定支持できるようになるので、タワークレーン10Aの支持構造に必要な部材重量やデッキ面積が、従来技術の他の種類のクレーンを備えた作業台船よりも少なくて済むことになる。従って、作業台船が大型化するのを抑制できる。 According to these work pontoons 1A, 1B, and 1C, the structure of the base pedestal 11 that supports or fixes the tower 12 of the tower crane 10A mainly receives the load in the vertical direction. Structurally easier than the supporting structure (base structure) of a crane with a large moment. That is, since the overturning moment acting on the tower 12 and the base pedestal 11 is small and most of the loads are vertical loads, the structural strength required for the base pedestal 11 as the base is smaller than that of other types of cranes. .. As a result, since the tower crane 10A can be fixedly supported by a relatively simple structure, the member weight and deck area required for the support structure of the tower crane 10A are the work benches equipped with other types of conventional cranes. It will be less than a ship. Therefore, it is possible to prevent the work pontoon from increasing in size.
 タワークレーン10Aは、その構造上、吊り能力が高さにほとんど依存せず超大型風車の高さに対応して設置高さHe1、He2と「吊り荷高さHh」を容易に調整できる。そのため、クレーン作業をするときには、マストブロック12aの積み上げ個数を増加することにより「クレーン高さ」を容易に高くすることができる。従って、予め設定された吊り荷重の吊り荷を吊り上げることができる「吊り荷高さ」(フックの最高の位置の高さである最大フック高さに関係する高さ)を高くすることが容易にできる。 Due to the structure of the tower crane 10A, the lifting capacity hardly depends on the height, and the installation heights He1 and He2 and the "hanging load height Hh" can be easily adjusted according to the height of a super-large wind turbine. Therefore, when performing a crane operation, the "crane height" can be easily increased by increasing the number of stacked mast blocks 12a. Therefore, it is easy to increase the "hanging load height" (the height related to the maximum hook height, which is the height of the highest position of the hook), which can lift the hanging load of the preset hanging load. it can.
 一方、航行時においては、マストブロック12aの積み上げ個数を減少することにより、エアドラフトHe1を低くでき、高さ制限のある橋の下を航行できるようになる。なお、作業台船1A、1B、1C全体としてのエアドラフトは、洋上構造物を作業台船1A、1B、1Cに搭載して航行する場合は、この洋上構造物の高さにも関係するので、いつもタワー12を最低高さにする必要があるとは限らない。 On the other hand, at the time of navigation, by reducing the number of stacked mast blocks 12a, the air draft He1 can be lowered and it becomes possible to navigate under a bridge with a height restriction. Note that the air draft as a whole of the work pontoons 1A, 1B, 1C is related to the height of the offshore structures when the offshore structures are mounted on the work pontoons 1A, 1B, 1C for navigation. , It is not always necessary to have the tower 12 at a minimum height.
 また、作業台船1A、1B、1Cの復原性能に関しては、タワークレーン10Aの高さが低くなることにより、作業台船1A、1B、1Cの重心が低くなるので、良好な復原性能を容易に確保することができる。また、分解して取り外したマストブロック12aをデッキ3の上に分散配置することにより、作業台船1A、1B、1Cの船体2の航行時の姿勢(トリム、ヒール)を維持するための補助バラストとして利用することができる。これにより、復原性能を確保するために必要なバラストタンクの容量を減少でき、作業台船1A、1B、1Cが大型化するのを抑制できる。 Regarding the stability performance of the work pontoons 1A, 1B, and 1C, the height of the tower crane 10A becomes lower, and the center of gravity of the work berths 1A, 1B, and 1C becomes lower, so that good stability performance can be easily achieved. Can be secured. Further, by disposing the disassembled and removed mast blocks 12a on the deck 3, an auxiliary ballast for maintaining the attitude (trim, heel) of the hull 2 of the work pontoons 1A, 1B, 1C during navigation. Can be used as As a result, the capacity of the ballast tank required to secure the restoration performance can be reduced, and the work pontoons 1A, 1B, and 1C can be prevented from increasing in size.
 そして、さらに、タワークレーン10Aを自己昇降式の構成とすることにより、補助クレーンなどを使用せず迅速に組み上げることができるので、タワークレーン10の組み立て作業の効率を向上できる。 Further, by constructing the tower crane 10A in a self-elevating type, the tower crane 10A can be quickly assembled without using an auxiliary crane, so that the efficiency of the assembly work of the tower crane 10 can be improved.
 次に、着底式のタワークレーン10Bを搭載する第4~第6の実施の形態の作業台船1D、1E、1Fについて説明する。第4の実施の形態の作業台船1Dは、図8~図10に示すように、第1の実施の形態の作業台船1Aと同じ排水量型の作業台船である。また、第5の実施の形態の作業台船1Eは、図12~図14に示すように、第2の実施の形態の作業台船1Bと同じハーフSEP型の作業台船である。そして、第6の実施の形態の作業台船1Fは、図12、図13、図15に示すように、第3の実施の形態の作業台船1CとフルSEP型の作業台船である。 Next, the work pontoons 1D, 1E, and 1F of the fourth to sixth embodiments equipped with the bottom-mounted tower crane 10B will be described. As shown in FIGS. 8 to 10, the work pontoon boat 1D of the fourth embodiment is the same displacement type work pontoon boat as the work pontoon boat 1A of the first embodiment. Further, as shown in FIGS. 12 to 14, the work pontoon boat 1E of the fifth embodiment is the same half SEP type work pontoon boat as the work pontoon boat 1B of the second embodiment. The work pontoon 1F of the sixth embodiment is, as shown in FIGS. 12, 13, and 15, a work pontoon 1C of the third embodiment and a full SEP type work pontoon.
 これらの作業台船1D、1E、1Fにおいては、タワークレーン10Bが、マストブロック12aを組み立てて形成されるタワー12の下部に、脚部ブロック15aを組み立てて形成される脚部15を備えて構成されると共に、脚部15を水中に降下させるタワー昇降システム16を備えて構成されている。また、タワークレーン10Bの脚部15を降下させるタワー昇降システム16と昇降脚20を昇降する昇降脚昇降システムは別システムとする。そして、SEPの作業台船1E、1Fでは、タワークレーン10Bの脚部15に依存することなく、昇降脚20だけで船体2を安定して支持できる構成とする。 In these work pontoons 1D, 1E, and 1F, a tower crane 10B is provided with a leg portion 15 formed by assembling a leg block 15a at a lower portion of a tower 12 formed by assembling a mast block 12a. In addition, the tower lifting system 16 for lowering the legs 15 into the water is provided. Further, the tower lifting system 16 for lowering the legs 15 of the tower crane 10B and the lifting leg lifting system for lifting the lifting legs 20 are separate systems. In the SEP work pontoons 1E and 1F, the hull 2 can be stably supported only by the lifting legs 20 without depending on the legs 15 of the tower crane 10B.
 この着底型のタワークレーン10Bでは、クレーン作業をするときに、船体2より上側になる部分をマストブロック12aの組み立てで形成されるタワー12で構成し、船体2より下側になる部分を脚部ブロック15aの組み立てで形成される脚部15で構成する。また、このタワー12に連続して設けられる脚部15を、デッキ3若しくは船体2に設けた貫通孔又はデッキ3若しくは船体2の側部に設けた切欠き部や凹部を貫通させて、タワー昇降システム16によって降下させて水底Bに着底させる。この脚部15の着底により、タワークレーン10Bの荷重と吊りに荷重を水底Bで受ける構造とする。 In this bottom-mounted tower crane 10B, when performing a crane operation, the portion above the hull 2 is composed of the tower 12 formed by assembling the mast block 12a, and the portion below the hull 2 is the leg. The legs 15 are formed by assembling the partial block 15a. Further, the leg 15 continuously provided to the tower 12 is passed through a through hole provided on the deck 3 or the hull 2 or a notch or a recess provided on a side portion of the deck 3 or the hull 2 to elevate the tower. It is lowered by the system 16 to reach the bottom B. Due to the bottom of the leg portion 15, the load of the tower crane 10B and the load for suspension are received by the water bottom B.
 この構成において、マストブロック12aの横断面の外形形状と脚部ブロック15aの横断面の外形形状を同じ形状とすること、つまり、デッキ3より下の水中に入る脚部ブロック15aは、デッキ3より上に配置されるマストブロック12aと同じ外寸で形成されることが好ましい。さらに、この脚部15の脚部ブロック15aとタワー12のマストブロック12aを共通使用可能とすることで、タワー12と脚部15が一続きで区別がなくなり、タワー12と脚部15の間のベース架台11が無い状態となる。この場合に、例示している吊り重量が125tの大きさのタワークレーン10Bでは、マストブロック12a又は脚部ブロック15aを貫通させるためのデッキ3と船体2の開口部の大きさは、例えば、「3.5m×3.5m」となる。 In this configuration, the external shape of the cross section of the mast block 12a and the external shape of the cross section of the leg block 15a are the same, that is, the leg block 15a that enters the water below the deck 3 is It is preferably formed with the same outer dimensions as the mast block 12a arranged above. Furthermore, by making the leg block 15a of the leg portion 15 and the mast block 12a of the tower 12 commonly usable, the tower 12 and the leg portion 15 are indistinguishable from each other in a series, and the space between the tower 12 and the leg portion 15 is eliminated. The base stand 11 is not present. In this case, in the illustrated tower crane 10B having a suspension weight of 125 tons, the sizes of the deck 3 and the opening of the hull 2 through which the mast block 12a or the leg block 15a penetrates are, for example, 3.5 m x 3.5 m ".
 これにより、この水中部分となる部材の脚部ブロック15aと空中部となる部材のマストブロック12aを共用とすることで、運用を簡略化できる。また、クレーン作業水域における水深が多少変化しても、マストブロック12aと脚部ブロック15aをその都度置き換える必要が無くなる。なお、水中に入る脚部ブロック15aは、空中にあるマストブロック12aよりも、強度面でも耐食性の面でもより優れた材料で形成されることが好ましい。 By doing so, the operation can be simplified by sharing the leg block 15a of the member that becomes the underwater portion and the mast block 12a of the member that becomes the aerial portion. Further, even if the water depth in the crane working water area changes a little, it is not necessary to replace the mast block 12a and the leg block 15a each time. The leg block 15a that enters the water is preferably made of a material that is superior in strength and corrosion resistance to the mast block 12a in the air.
 また、SEPの作業台船1E、1Fでは、着底式のタワークレーン10Bの脚部15を、船体2を持ち上げるための昇降脚20とは別に設ける。この構成で、マストブロック12aの横断面の外形形状と昇降脚20の横断面の外形形状を同じ形状にすることがより好ましい。これにより、マストブロック12aとの昇降脚20の部材を共用することで、作業台船1E、1Fの運用を簡略化できる。また、必要に応じて、着底式のタワークレーン10Bを設置する場所を、昇降脚20の場所と交換することで、容易に、タワークレーン10Bを船首側に設置したり船尾側に設置したりすることができ、タワークレーン10Bの位置を容易に変更することができるようになる。 In the SEP work berths 1E and 1F, the legs 15 of the bottom-mounted tower crane 10B are provided separately from the lifting legs 20 for lifting the hull 2. With this configuration, it is more preferable that the outer shape of the cross section of the mast block 12a and the outer shape of the cross section of the elevating leg 20 have the same shape. As a result, the operation of the work pontoons 1E and 1F can be simplified by sharing the member of the lifting leg 20 with the mast block 12a. In addition, if necessary, the place where the bottoming-up type tower crane 10B is installed is replaced with the place of the lifting leg 20, so that the tower crane 10B can be easily installed on the bow side or the stern side. The position of the tower crane 10B can be easily changed.
 また、タワークレーン10Bの脚部15を水中に降下させるタワー昇降システム16を昇降脚昇降システム21とを互換性があるように構成することが好ましい。これにより、さらに容易に、タワークレーン10Bの設置場所を、昇降脚20の設置場所と交換することができるようになるので、必要に応じてタワークレーン10Bの設置場所を変更して、船首に移動したり、船尾に移動したりして設置したりできるようになる。また、タワークレーン10Bの脚部15と昇降脚20の両方の昇降システム16、21を共通のジャッキアップシステムで構成することにより、タワークレーン10Bと昇降脚20の装備時のみならず、両方の昇降システム16、21の部品調達や保守点検等における運用を簡略化することができる。 Further, it is preferable that the tower lifting system 16 for lowering the legs 15 of the tower crane 10B into the water is configured to be compatible with the lifting leg lifting system 21. This makes it possible to more easily replace the installation location of the tower crane 10B with the installation location of the lifting legs 20, so that the installation location of the tower crane 10B can be changed and moved to the bow if necessary. Or move to the stern and set up. Further, by constructing the lifting systems 16 and 21 for both the legs 15 and the lifting legs 20 of the tower crane 10B with a common jack-up system, not only when the tower crane 10B and the lifting legs 20 are equipped, It is possible to simplify the operation of the systems 16 and 21 in parts procurement, maintenance and inspection.
 また、3本の昇降脚20のみで、作業台船1E、1Fをジャッキアップして、安定して支持できる構成にして、残りの昇降脚20の代わりに、着底式のタワークレーン10Bを設置することも考えられる。この場合は、既存の4本の昇降脚20を持つ作業台船1E、1Fの脚部構造を補強する程度の改造で、着底式のタワークレーン10Bを設置することができるようになる。 In addition, the work platform 1E, 1F can be jacked up with only three lifting legs 20 so that it can be stably supported, and instead of the remaining lifting legs 20, a bottom-mounted tower crane 10B is installed. It is also possible to do it. In this case, the bottom-mounted tower crane 10B can be installed by a modification to reinforce the leg structure of the existing work platform 1E, 1F having the four lifting legs 20.
 さらに、クレーン作業するときに、作業台船1D、1E、1Fの船体2に対してタワークレーン10Bの相対変位を許容した状態で支持する支持構造を備えて構成することが好ましい。つまり、クレーン作業中においては、デッキ3とタワークレーン10Bの間では、弾性部材を介在させた弾性的な支持構造やクランク機構を用いた柔軟な支持構造になるように構成して、デッキ3側の動揺や振動が、タワークレーン10Bのタワー12や脚部15に伝達されないようにすることが好ましい。例えば、クレーン作業を行わないときでは、タワークレーン10Bをクランプ装置(固定装置)17によりデッキ3に堅固に固定するように構成され、クレーン作業をするときには、このクランプ装置17を開放して、柔軟な支持に切り替える。 Furthermore, it is preferable to provide a support structure for supporting the relative displacement of the tower crane 10B with respect to the hull 2 of the work pontoons 1D, 1E, 1F during crane work. That is, during the crane operation, the deck 3 and the tower crane 10B are configured to have an elastic support structure with an elastic member interposed therebetween or a flexible support structure using a crank mechanism. It is preferable that the shaking and vibration of the above is not transmitted to the tower 12 and the leg 15 of the tower crane 10B. For example, when the crane work is not performed, the tower crane 10B is configured to be firmly fixed to the deck 3 by the clamp device (fixing device) 17, and when the crane work is performed, the clamp device 17 is opened to be flexible. Switch to good support.
 これらの第4~第6の実施の形態の作業台船1D、1E、1Fによれば、上記の第1~第3の実施の形態の作業台船1A、1B、1Cの効果に加えて、次のような効果を発揮できる。 According to the work pontoons 1D, 1E, 1F of the fourth to sixth embodiments, in addition to the effects of the work pontoons 1A, 1B, 1C of the first to third embodiments described above, The following effects can be exhibited.
 着底式のタワークレーン10Bでは、クレーン作業するときには、タワー昇降システム16により、脚部15を水底Bに着底させて、タワークレーン10Bの荷重と吊り荷の荷重の一部または全部を、マストブロック12aと脚部ブロック15aを介して水底Bに伝えて、水底Bに支持させることができる。 In the bottom-mounting tower crane 10B, when performing a crane operation, the tower lifting system 16 causes the legs 15 to land on the bottom B of the water, and the load of the tower crane 10B and a part or all of the load of the suspended load are masted. The water can be transmitted to the water bottom B via the block 12a and the leg block 15a and can be supported by the water bottom B.
 従って、作業台船1D、1E、1Fの船体2側ではタワークレーン10Bの荷重と吊り荷の荷重の一部を負担するかまたは全く負担しなくてもよいので、タワークレーン10Bを支持する支持構造が強度的に楽になる。その結果、作業台船1D~1Fでの支持荷重を軽減することができ、タワークレーン10Bの支持構造の簡略化できて、支持構造のための鋼材重量の増大やデッキ面積の拡大を抑制でき、作業台船1D、1E、1Fの大型化を抑制できる。 Therefore, the hull 2 side of the work pontoons 1D, 1E, 1F may bear or may not bear a part of the load of the tower crane 10B and the load of the suspended load, so that the support structure for supporting the tower crane 10B is provided. Will be easier in terms of strength. As a result, the supporting load on the work pontoons 1D to 1F can be reduced, the supporting structure of the tower crane 10B can be simplified, and the increase of the weight of steel materials for the supporting structure and the expansion of the deck area can be suppressed, It is possible to prevent the work pontoons 1D, 1E, and 1F from increasing in size.
 また、排水量型の作業台船1D、ハーフSEPの作業台船1Eにおいては、タワークレーン10Bに作用する吊り荷の荷重やブーム長さの影響により、作業台船1D、1Eの船体2が傾斜することを防止できるので、バラスト調整が不要になり、クレーン作業の作業効率と安全性を向上できる。 In the drainage type work pontoons 1D and the half SEP work pontoons 1E, the hulls 2 of the work pontoons 1D and 1E incline due to the load of the suspended load acting on the tower crane 10B and the boom length. Since this can be prevented, ballast adjustment is unnecessary, and the work efficiency and safety of crane work can be improved.
 そして、クレーン作業するときに、作業台船1D、1E、1Fの船体2に対してタワークレーン10Bの相対変位を許容した状態で支持する支持構造を備えて構成されていると、タワークレーン10Bの荷重とタワークレーン10Bに加わる荷重が作業台船1D、1E、1F側に伝わらなくなるので、荷重の殆んど全部を水底Bに負担させることができ、作業台船1D、1E、1Fで受ける荷重を著しく減少できる。それと共に、作業台船1D、1E、1F側の動揺や振動がタワークレーン10Bに伝搬されてクレーン作業に影響が出るという干渉の問題を解決できる。 Then, when the crane work is provided with a support structure that supports the tower crane 10B in a state in which the relative displacement of the tower crane 10B is allowed with respect to the hull 2 of the work pontoons 1D, 1E, 1F, the tower crane 10B Since the load and the load applied to the tower crane 10B are not transmitted to the work pontoons 1D, 1E, 1F side, almost all of the load can be borne by the water bottom B, and the loads received by the work pontoons 1D, 1E, 1F. Can be significantly reduced. At the same time, it is possible to solve the problem of interference in which shaking and vibration on the side of the work pontoons 1D, 1E, and 1F are propagated to the tower crane 10B and the crane work is affected.
 つまり、タワークレーン10Bが作業台船1D、1E、1Fに固定されて、タワークレーン10Bの荷重と吊り荷の荷重の一部または全部を作業台船1D、1E、1F側で負担している場合では、タワークレーン10Bの吊り荷の荷重の変化とブーム位置の変化等により、タワークレーン10Bを固定している作業台船1D、1E、1Fの船体姿勢(トリム、ヒール)が変化するので、クレーン作業の進捗に応じて、バラスト操作とジャッキアップ操作による喫水調整を計画的あるいは定期的に行う必要がある。この喫水調整による船体姿勢の変化や喫水の変化がタワークレーン10Bのクレーン作業に影響を及ぼすため、クレーン作業の中断が生じたりして、クレーンの作業効率が著しく低下するという問題がある。 That is, when the tower crane 10B is fixed to the work pontoons 1D, 1E, and 1F, and part or all of the load of the tower crane 10B and the suspended load is borne by the work pontoons 1D, 1E, and 1F. Then, since the hull postures (trim, heel) of the work pontoons 1D, 1E, 1F fixing the tower crane 10B change due to changes in the load of the tower crane 10B and changes in the boom position, etc. Depending on the progress of work, it is necessary to plan or periodically adjust the draft by ballast operation and jack-up operation. Since changes in the hull posture and draft due to this draft adjustment affect the crane work of the tower crane 10B, there is a problem that the crane work is interrupted and the work efficiency of the crane is significantly reduced.
 この干渉の問題は、ハーフSEP型(セミSEP形)の作業台船1Eでは、クレーン作業中においては、潮の干満差や吊り荷の重量等により浮力が変化したり、波浪や風により作業台船が動揺したりするので、より重要な問題となる。 The problem of this interference is that, in the half SEP type (semi SEP type) work table boat 1E, during crane work, the buoyancy changes due to the tidal range and the weight of the suspended load, and the work table due to waves and wind. This is a more important issue, as the ship will be upset.
 また、昇降脚20のジャックアップにより、船体2を完全に水面上に持ち上げた状態にして、作業するフルSEP型の作業台船1Fでは、風の影響等によって発生する船体2の動揺や船上機器の作動による振動等が、タワークレーン10Bに伝搬して増幅することで、クレーン作業の作業効率が低下するという問題がある。このフルSEP型の作業台船1Fは、一般的に、ハーフSEPの作業台船1Eよりも厳しい海象・気象条件下で作業することが多いので、この問題の解決は重要である。 In addition, in the full SEP type work berth 1F in which the hull 2 is completely lifted above the water surface by jacking up the lifting legs 20, in the full SEP type work table 1F, shaking of the hull 2 caused by the influence of wind or other equipment on board. There is a problem that the work efficiency of the crane work is lowered because the vibration and the like due to the operation of (1) propagate to the tower crane 10B and are amplified. This full SEP type work pontoon 1F generally works under severer sea conditions and meteorological conditions than the half SEP work pontoon 1E, and therefore it is important to solve this problem.
 この干渉の問題に関して、クレー作業をするときに、タワークレーン10Bと作業台船1D、1E、1F側との構造的な結合を外したり、柔軟な連結にしたりすることで、これらの作業台船1D、1E、1F側の動きが、タワークレーン10B側に伝達されるのを抑制できる。その結果、クレーン作業時特に吊り作業時における作業効率と安全性を向上させることができる。 Regarding the problem of this interference, when performing clay work, by removing the structural connection between the tower crane 10B and the work pontoons 1D, 1E, 1F side or by making a flexible connection, these work pontoons It is possible to suppress the movement of the 1D, 1E, and 1F sides from being transmitted to the tower crane 10B side. As a result, work efficiency and safety can be improved during crane work, particularly during lifting work.
 また、脚部15を着底させるタワークレーン10Bを備えた作業台船1D、1E、1Fにおいて、クレーン作業するときにおいても、タワークレーン10Bの相対運動を許さずに船体2に堅固に固定したままとする構成とした場合は、タワークレーン10Bを船体2に固定するための堅固な支持構造が必要となるが、タワークレーン10Bの脚部15を昇降脚20の代用とすることができる。従って、その分、昇降脚20の1本を省略でき、デッキ面積を節減し、昇降脚20の1本分のコストを削減できる。また、現場海域での船体2の昇降のための作業時間とタワークレーン10Bの脚部15の下降のための作業時間をこの昇降脚20の減少分、節約することができる。 Further, in the work pontoons 1D, 1E, and 1F equipped with the tower crane 10B for landing the legs 15, the tower crane 10B remains firmly fixed to the hull 2 even when performing crane work. In the case of such a configuration, a solid support structure for fixing the tower crane 10B to the hull 2 is required, but the leg portion 15 of the tower crane 10B can be used as a substitute for the lifting leg 20. Therefore, one of the lifting legs 20 can be omitted, the deck area can be saved, and the cost of one lifting leg 20 can be reduced. Further, the working time for raising and lowering the hull 2 and the working time for lowering the legs 15 of the tower crane 10B in the on-site sea area can be saved by the reduction of the lifting legs 20.
 さらに、脚部15を着底させるタワークレーン10Bを備えた作業台船1D、1E、1Fにおいて、クレーン作業するときに、相対運動可能な柔軟な支持と、相対運動をさせない堅固な支持とを選択できる構成とすることにより、昇降脚20だけの支持では作業台船1D、1E、1Fを安全に支持できないような水底Bの状態に対して、脚部15の支持で補強することができるようになるので、より広範な水底Bの状態で、クレーン作業することができるようになる。 Further, in the work pontoons 1D, 1E, and 1F equipped with the tower crane 10B that bottoms the legs 15, flexible support that allows relative movement and firm support that does not cause relative movement are selected when performing crane work. With such a structure, the legs 15 can be reinforced by supporting the state of the water bottom B in which the work platform 1D, 1E, 1F cannot be safely supported by only the lifting legs 20. Therefore, the crane work can be performed in a wider water bottom B state.
 なお、タワークレーン10Bの作業を停止して航行するときには、昇降脚20と同様に、脚部15を水底から離底させて、脚部15の最下位の部位が水面付近になるまで脚部15を上昇させると共に、タワークレーン10Bのタワー12又は脚15部のどちらか一方又は両方を船体2に固定して、タワークレーン10Bを作業台船1D、1E、1Fに固定して航行する。 When the tower crane 10B is stopped and sailing, the legs 15 are moved away from the bottom of the water and the legs 15 are moved until the lowest part of the legs 15 is near the surface of the water, like the lifting legs 20. And one or both of the tower 12 and the legs 15 of the tower crane 10B are fixed to the hull 2, and the tower crane 10B is fixed to the work pontoons 1D, 1E, and 1F for navigation.
 次に、第7及び第8の実施の形態の作業台船1G、1Hについて説明する。第7の実施の形態の作業台船1Gは、図15~図17に示すように、第2及び第5の実施の形態の作業台船1B、1Eと同じハーフSEP型の作業台船であり、第8の実施の形態の作業台船1Hは、図15、図16、図18に示すように、第3及び第6の実施の形態の作業台船1C、1Fと同じフルSEP型の作業台船である。これらの作業台船1G、1Hは、昇降脚載置式のタワークレーン10Cを搭載して構成される。 Next, the work pontoons 1G and 1H of the seventh and eighth embodiments will be described. The work pontoons 1G of the seventh embodiment are, as shown in FIGS. 15 to 17, half SEP type work pontoons which are the same as the work pontoons 1B and 1E of the second and fifth embodiments. As shown in FIGS. 15, 16 and 18, the work pontoon 1H of the eighth embodiment is the same full SEP type work as the work pontoons 1C and 1F of the third and sixth embodiments. It is a barge. Each of these work pontoons 1G and 1H is configured to mount a tower crane 10C of a lifting leg mounting type.
 この昇降脚載置式のタワークレーン10Cでは、SEPの作業台船1G、1Hを着底して支持する昇降脚20Aの上にベース架台11を設けて、昇降脚20Aの上のベース架台11で、マストブロック12aが鉛直方向に積み上げられ形成されたタワー12を支持して、タワークレーン10Cの荷重と吊り荷の荷重を受けて、この荷重を水底Bに着底した昇降脚20Aに伝達し、最終的に水底Bに負担させる。この場合には、昇降脚載置式のタワークレーン10Cを搭載した昇降脚20Aは、作業台船1G、1Hの船体2も支持しているので、船体2の重量の一部とタワークレーン10Cの荷重と吊り荷の荷重を支持することになる。そのため、他の昇降脚20Bよりは高い強度を持った構造物で構成される。 In the tower crane 10C of the lifting leg mounting type, the base pedestal 11 is provided on the lifting leg 20A for bottoming and supporting the SEP work pontoons 1G, 1H, and the base pedestal 11 on the lifting leg 20A is used. The mast block 12a supports the tower 12 formed by vertically stacking it, receives the load of the tower crane 10C and the load of the suspended load, and transmits this load to the lifting legs 20A that have bottomed on the bottom B of the water. The bottom B of water. In this case, the lifting legs 20A equipped with the lifting leg-mounting tower crane 10C also support the hulls 2 of the work pontoons 1G and 1H, so a part of the weight of the hull 2 and the load of the tower crane 10C. And it will support the load of the suspended load. Therefore, it is composed of a structure having higher strength than the other lifting legs 20B.
 これらの作業台船1G、1Hでは、昇降脚載置式のタワークレーン10Cは、ベース架台11を昇降脚20Aの上に載置すること以外は、デッキ載置式のタワークレーン10Aと同様に構成されている。 In these work pontoons 1G and 1H, the elevator leg-mounting tower crane 10C is configured in the same manner as the deck-mounting tower crane 10A, except that the base platform 11 is placed on the elevator legs 20A. There is.
 上記の構成の第7及び第8の実施の形態の作業台船1G、1Hによれば、作業台船1G、1Hの船体2側では、タワークレーン10Cを載置する昇降脚20Aを補強し、その昇降脚20Aの昇降脚昇降システム21の強度を増強することで、新たに、タワークレーン10C用のタワー昇降システム16を設けずに、タワークレーン10Cの荷重と吊り荷の荷重の一部または全部を、昇降脚20Aを介して水底Bに伝えて、水底Bに支持させることができる。その上、タワークレーン10Cを昇降脚20Aの部位に配設するので、タワークレーン10Cの設置のためのデッキ面積を節減でき、作業台船1G、1Hの大型化を抑制できる。 According to the work pontoons 1G and 1H of the seventh and eighth embodiments configured as described above, on the hull 2 side of the work pontoons 1G and 1H, the lifting legs 20A for mounting the tower crane 10C are reinforced, By increasing the strength of the lifting / lowering leg lifting system 21 of the lifting / lowering leg 20A, a part or all of the load of the tower crane 10C and the load of the suspended load are newly provided without providing the tower lifting / lowering system 16 for the tower crane 10C. Can be transmitted to the water bottom B via the elevating legs 20A and supported by the water bottom B. In addition, since the tower crane 10C is arranged at the portion of the lifting leg 20A, the deck area for installing the tower crane 10C can be reduced, and the work pontoons 1G, 1H can be prevented from increasing in size.
 また、昇降脚20とは別個に設けるタワー昇降システム16を備えたタワークレーン10Bを備えた作業台船1D、1E、1Fに比べて、タワークレーン10Cの脚部15を昇降脚20Aと兼用しているので、タワークレーン10Cの脚部ブロック15aとタワー昇降システム16が不要になり、コストの削減とともに、現場海域での作業台船1D、1E、1F船におけるタワークレーン10Bの脚部15の着底作業を省くことができ、このための作業時間を作業台船1G、1Hでは、削減できる。 Further, as compared with the work pontoons 1D, 1E, and 1F equipped with the tower crane 10B having the tower lifting system 16 provided separately from the lifting legs 20, the leg portion 15 of the tower crane 10C is also used as the lifting legs 20A. Since the tower block 15a of the tower crane 10C and the tower lifting system 16 are not necessary, the cost is reduced, and the bottoms of the legs 15 of the tower crane 10B on the work berths 1D, 1E, and 1F in the field sea area are settled. The work can be omitted, and the work time for this can be reduced in the work pontoons 1G and 1H.
 次に、本発明の実施の形態のクレーンを備えた作業台船のクレーン運用方法(以下、「クレーン運用方法」という)について説明する。このクレーン運用方法は、上記のクレーンを備えた作業台船1A~1Iにおけるクレーン運用方法である。 Next, a crane operating method (hereinafter, referred to as “crane operating method”) of a work pontoon ship equipped with the crane according to the embodiment of the present invention will be described. This crane operating method is a crane operating method in the work pontoons 1A to 1I equipped with the above cranes.
 このクレーン運用方法では、洋上構造物を、工場の岸壁又は港湾から作業台船1Aに搭載する場合には、通常は、岸壁又は港湾に設定されたクレーンを使用するが、作業台船1Aに搭載しているタワークレーン10Aを図3に示すように組み立ててこのタワークレーン10Aを使用して、クレーン作業により洋上構造物を作業台船1Aに搭載してもよい。また、作業台船1Aの船尾の突起部4を利用して、この突起部4で形成される凹部D(図1)に洋上構造物を載置してもよい。 In this crane operation method, when the offshore structure is loaded on the work berth 1A from the quay or port of the factory, the crane set on the quay or harbor is usually used, but it is loaded on the work berth 1A. It is also possible to assemble the working tower crane 10A as shown in FIG. 3 and use the tower crane 10A to mount an offshore structure on the work pontoon 1A by crane work. Alternatively, the offshore structure may be placed in the recess D (FIG. 1) formed by the protrusion 4 by utilizing the protrusion 4 at the stern of the work platform 1A.
 次の航行する前、又は、航行中の最初の段階において、図3の状態から、図19に示すように、タワークレーン10Aのマストブロック12aの組み立て個数を減少させてタワー12を低くする。これにより、タワー12を低くした図2の状態にする。例えば、通常航行中は、揺れに対応しまた特に橋下を航行することも考慮し、マストブロック12aを4ブロック程度まで減少させる。これにより、クレーン本体13もそれに合わせて低い位置まで降下する。これにより、クレーンの上端が水面上30m程度にする。 Before the next navigation or at the first stage during navigation, as shown in FIG. 19, from the state of FIG. 3, the number of assembled mast blocks 12a of the tower crane 10A is reduced to lower the tower 12. As a result, the tower 12 is lowered to the state shown in FIG. For example, during normal navigation, the mast block 12a is reduced to about 4 blocks in consideration of sway and especially when traveling under the bridge. As a result, the crane body 13 also descends to a lower position accordingly. As a result, the upper end of the crane is about 30 m above the water surface.
 さらにクレーン本体13をタワー12から取り外して、デッキ3の上の載置した図20の状態にしたりする。そして、タワークレーン10Aの高さを低くして、作業台船1Aのエアドラフトを低くすると共に、復原性能を良好なものにして航行する。この場合は、クレーン本体13をタワー12に組み上げるための補助クレーンが必要になる。また、クレーンが不要なプロジェクトの間は、クレーン本体13を外して作業台船1Aから降ろしておくこともできるが、クレーンの付け外しには別のクレーンの補助が必要となる。この場合には、拠点基地のクレーンを使用することもできる。 Further, the crane body 13 is removed from the tower 12 so that it is placed on the deck 3 as shown in FIG. Then, the height of the tower crane 10A is lowered to lower the air draft of the work pontoon 1A, and the restoration performance is improved, and the boat is sailed. In this case, an auxiliary crane for assembling the crane body 13 to the tower 12 is required. Further, during a project in which a crane is not necessary, the crane main body 13 can be removed and the crane can be unloaded from the work pontoon ship 1A, but attachment and detachment of the crane requires assistance from another crane. In this case, the crane at the base can be used.
 この航行は、推進システムを備えている場合は自航し、推進システムを備えていない場合は、他船に曳航されて航行する。なお、そのSEPの作業台船1B、1C、1E、1F、1G、1Hでは、航行時には、図5、図9、図12、図16に示すような、昇降脚20、20A、20Bと脚部15を船体2の船底程度の高さまで引き上げた状態にする。なお、航行中、特に橋の下をくぐる場合は、クレーン高さは低く抑えられる。 This navigation will be self-propelled if it has a propulsion system, and will be towed by another ship if it does not have a propulsion system. In addition, in the SEP work pontoons 1B, 1C, 1E, 1F, 1G, 1H, at the time of navigation, as shown in FIG. 5, FIG. 9, FIG. 12, and FIG. 15 is pulled up to a height around the bottom of the hull 2. The height of the crane can be kept low during navigation, especially when passing under a bridge.
 そして、作業水域に到達したら、排水量型の作業台船1A、1Dでは、図3、図10に示すように、錨索6aと係留索6b等の係留システムや自動船位保持システム(DPSシステム)等により、作業台船1Aを作業位置に保持する。また、ハーフSEPの作業台船1B、1E、1Gでは、図6、図13、図17に示すように、昇降脚昇降システム21により昇降脚20を降下させて、水底Bに着底する。これにより、作業台船1B、1E、1Gが水面Sに浮いた状態で作業位置に保持する。また、フルSEPの作業台船1C、1F、1Hでは、図7、図14、図18に示すように、昇降脚昇降システム21により昇降脚20、20A、20Bを降下させて、水底Bに着底する。これにより、作業台船1C、1F、1Hが水面Sより上に出た状態で作業位置に保持する。これらにより作業台船1A~1Hを安定した状態で位置保持する。 After reaching the working water area, in the drainage type work pontoons 1A and 1D, as shown in FIGS. 3 and 10, mooring systems such as anchor ropes 6a and mooring ropes 6b, an automatic ship position holding system (DPS system), etc. Thus, the work pontoon ship 1A is held at the work position. Further, in the half SEP work pontoons 1B, 1E, and 1G, as shown in FIGS. 6, 13, and 17, the elevating leg elevating system 21 lowers the elevating legs 20 to reach the bottom B of the water. As a result, the work pontoons 1B, 1E, 1G are held at the work position while floating on the water surface S. Further, in the full SEP work pontoons 1C, 1F, 1H, as shown in FIGS. 7, 14 and 18, the elevating leg elevating system 21 lowers the elevating legs 20, 20A, 20B to reach the bottom B of the water. Bottom out. As a result, the work pontoons 1C, 1F, 1H are held at the work position in a state where they are above the water surface S. By these, the work pontoons 1A to 1H are held in stable positions.
 そして、着底式のタワークレーン10Bを搭載している作業台船1D、1E、1Fの場合は、さらに、昇降脚20の昇降作業の前後又は並行して、着底式のタワークレーン10Bの脚部ブロック15aを組み立てて脚部15を形成しながら、タワー昇降システム16により、脚部15を降下させて着底させて、作業台船を安定した状態で位置保持する。 Further, in the case of the work pontoons 1D, 1E, 1F equipped with the bottoming type tower crane 10B, the legs of the bottoming type tower crane 10B are further added before, after, or in parallel with the lifting work of the lifting legs 20. While assembling the partial blocks 15a to form the legs 15, the tower elevating system 16 lowers the legs 15 to the bottom to hold the work platform in a stable position.
 作業台船1A~1Hにおいて、位置保持が完了したら、あるいは、位置保持作業と並行して、タワークレーン10A、1B、10Cの組み立てを行う。作業台船1Aにおいては、図20のように、クレーン本体13が分解されている場合は組み立てて、図2の状態にする。この図2の状態から、図21に示すように、タワークレーン10Aの自己昇降装置でクレーン本体13をジャッキアップし、マストブロック12aの組み入れ個数を増加して、タワー12を高くする。これにより、図3に示すように、作業台船1Aにおいて、デッキ載置型のタワークレーン10Aでクレーン作業ができる状態とする。なお、作業台船1B、1Cにおいても、図6、図7に示すように、デッキ載置型のタワークレーン10Aのクレーン作業ができる状態とする。 On the work pontoons 1A to 1H, when the position holding is completed or in parallel with the position holding work, the tower cranes 10A, 1B, and 10C are assembled. In the work pontoon ship 1A, as shown in FIG. 20, when the crane main body 13 is disassembled, the crane main body 13 is assembled into the state shown in FIG. From the state of FIG. 2, as shown in FIG. 21, the crane main body 13 is jacked up by the self-elevating device of the tower crane 10A, the number of mast blocks 12a incorporated is increased, and the tower 12 is raised. As a result, as shown in FIG. 3, in the work pontoon ship 1A, a crane operation can be performed by the deck-mounted tower crane 10A. In addition, as shown in FIGS. 6 and 7, the work pontoons 1B and 1C are also in a state in which the deck-mounted tower crane 10A can perform crane work.
 また、脚部昇降型のタワークレーン10Bを搭載した作業台船1D、1E、1Fにおいては、位置保持と脚部昇降型のタワークレーン10Bの脚部15の着底が完了する。この前後又は並行して、タワークレーン10Bの自己昇降装置でクレーン本体13をジャッキアップし、マストブロック12aの組み入れ個数を増加して、タワー12を高くする。 Also, in the work pontoons 1D, 1E, and 1F equipped with the leg lifting tower crane 10B, the position holding and the bottoming of the legs 15 of the leg lifting tower crane 10B are completed. Before or after this, or in parallel, the crane main body 13 is jacked up by the self-elevating device of the tower crane 10B to increase the number of incorporated mast blocks 12a and raise the tower 12.
 そして、クランプ装置17が、クレーン作業時に固定支持を解除できて、タワークレーン10Bを相対変位を許容した状態で作業台船1D、1E、1Fに柔軟な支持ができる構成となっている場合は、このクランプ装置17の固定支持を解除する。一方、クランプ装置17が、固定支持を解除できない構成となっている場合は、そのまま固定状態を維持する。これにより、図10、図13、図14に示すように、脚部昇降型のタワークレーン10Bでクレーン作業ができる状態とする。 When the clamp device 17 is configured to be able to release the fixed support during crane work and to flexibly support the tower crane 10B on the work pontoons 1D, 1E, and 1F while allowing relative displacement, The fixed support of the clamp device 17 is released. On the other hand, when the clamp device 17 has a structure in which the fixed support cannot be released, the clamped state is maintained as it is. As a result, as shown in FIGS. 10, 13, and 14, the tower lifting tower crane 10B is ready for crane work.
 また、昇降脚載置型のタワークレーン10Cを搭載した作業台船1G、1Hにおいては、位置保持が完了したら、図19に示すのと同様に、昇降脚20Aの上に載置されたタワークレーン10Cにおいて、マストブロック12aを組み入れてタワー12を高くして、図17、図18に示すように、昇降脚載置型のタワークレーン10Cでクレーン作業ができる状態とする。 In addition, in the work pontoons 1G and 1H equipped with the lifting / lowering leg-mounting tower crane 10C, when the position holding is completed, the tower crane 10C mounted on the lifting / lowering leg 20A, as shown in FIG. In FIG. 17, the mast block 12a is incorporated to raise the tower 12 so that the crane work can be performed by the elevating leg-mounting tower crane 10C as shown in FIGS.
 そして、作業台船1A~1Hで、クレーン作業ができる状態になったら、必要に応じて、必要な個数だけマストブロック12aを組み入れてタワー12の高さをクレーン作業に適した高さにしながら、クレーン作業を行う。自己昇降型の場合は、クレーン本体13は油圧シリンダにより自己昇降できるようになっており、クレーン本体13に設けられたホイストで追加するマストブロック12aを吊り上げて加えていける仕組みになっている。 Then, when the crane work can be performed on the work pontoons 1A to 1H, as many mast blocks 12a as necessary are incorporated to make the height of the tower 12 suitable for crane work, if necessary. Perform crane work. In the case of the self-elevating type, the crane body 13 can be self-elevated by a hydraulic cylinder, and a hoist provided on the crane body 13 can lift and add an additional mast block 12a.
 例えば、フック高さ170m、吊り荷重125t、吊り上げ速度6m/分のクレーン作業を行うタワークレーンの標準仕様では、最高自立高さに達するまでには、高さ7.8mのストブロック12a一つずつ加えて8個増加する必要があるようになっている。このタワークレーンでは、一つ当たりの組付け時間は1時間程度なので、最高自立高さまでには、8時間程度を要することになっている。そこで、事前にマストブロック12aを2個1組に組み上げて、高さ15.6mにしたマストブロック12aを1時間程度で積み込むように改良することで、これを4回繰り返し行うことで、短時間で、5MW級の風車の作業を行うことができる吊り高さを得ることができるようになる。なお、この標準仕様のマストブロック12aでは、一個あたりのブロック高さは陸上における運搬上の制約を考慮して定められているものであり、洋上では、この運搬上に制約に縛られないので2ブロックまとめて設置することが可能である。 For example, according to the standard specifications of a tower crane that performs a crane work with a hook height of 170 m, a hoisting load of 125 t, and a hoisting speed of 6 m / min, each of the strike blocks 12a having a height of 7.8 m is required to reach the maximum freestanding height. In addition, it is necessary to increase the number by eight. In this tower crane, one assembly time is about one hour, so it takes about eight hours to reach the maximum freestanding height. Therefore, by assembling two mast blocks 12a in advance and loading the mast blocks 12a having a height of 15.6 m in about one hour, by repeating this four times, a short time can be obtained. Therefore, it becomes possible to obtain a suspension height capable of performing work of a 5 MW class wind turbine. In this standard specification mast block 12a, the block height per unit is determined in consideration of the transportation constraint on land, and on the ocean, there is no constraint on this transportation. It is possible to install the blocks together.
 また、このクレーン作業中は、係留システムや船体姿勢を維持するためのバラスト制御や昇降脚20、20A、20Bや脚部15の昇降調整制御を行いながら、かつ、作業台船1A~1Hの船体姿勢を維持しながら、洋上構造物の設置などのクレーン作業を行う。 Further, during the crane work, while performing the mooring system and the ballast control for maintaining the attitude of the hull and the lifting adjustment of the lifting legs 20, 20A, 20B and the legs 15, and the hulls of the work pontoons 1A to 1H. Crane work such as installation of offshore structures is performed while maintaining the posture.
 そして、その作業位置でのクレーン作業が終了したら、必要に応じて、係留システムを解除したり、昇降脚20を上昇させて、作業水域内で別の作業位置に移動し、再度、係留システムをセットしたり、昇降脚20、20A、20B、脚部15を下降及び着底させて、その作業位置で位置保持してクレーン作業を行う。これをその作業水域で繰り返す。そして、この作業水域での一連のクレーン作業が終了して、別の作業水域に移動する際には、作業台船1A~1Hにおいて、航行時の図2、図5、図9、図12、図16の状態にする。 Then, when the crane work at the working position is completed, the mooring system is released or the elevating leg 20 is lifted to move to another working position in the working water area as necessary, and the mooring system is again set. Crane work is carried out by setting, raising and lowering legs 20, 20A, 20B, and leg portion 15 being lowered and bottomed and held at their working positions. This is repeated in the working area. Then, when a series of crane work in this work water area is completed and the work is moved to another work water area, the work berths 1A to 1H are used to carry out the operations shown in FIG. 2, FIG. 5, FIG. 9, FIG. The state shown in FIG. 16 is obtained.
 上記のクレーン運用方法によれば、クレーン作業するときには、タワークレーン10A~10Cでのタワー12を形成するマストブロック12aの積み上げる個数により吊り高さを調整し、クレーン作業を停止して航行するときには、マストブロック12aの積み上げる個数をタワークレーン10A~10Cで作業するときの個数よりも減少して、タワー12の高さを低くする。 According to the above crane operating method, when performing crane work, the suspension height is adjusted by the number of mast blocks 12a forming the towers 12 in the tower cranes 10A to 10C, and when the crane work is stopped and sailing is performed, The number of mast blocks 12a to be piled up is made smaller than the number when the tower cranes 10A to 10C are operated, and the height of the tower 12 is lowered.
 このクレーン運用方法によれば、クレーン作業をするときには、マストブロック12aの積み上げる個数を増加するだけで、超大型風車の高さに対しても、これに呼応して設置高さ及び吊り荷高さを容易に調整できる。また、航行時には、マストブロック12aの積み上げる個数を減少するだけで、タワー12の高さを容易に低くできるので、航行時の作業台船1A~1Hのエアドラフトを低くできる。 According to this crane operation method, when the crane work is performed, simply by increasing the number of the mast blocks 12a to be stacked, the installation height and the suspended load height can be correspondingly increased with respect to the height of the super-large wind turbine. Can be easily adjusted. Further, at the time of navigation, the height of the tower 12 can be easily lowered only by reducing the number of stacked mast blocks 12a, so that the air draft of the work pontoons 1A to 1H at the time of navigation can be lowered.
 従って、作業水域で水深に応じたタワー12の継ぎ足し、風車メンテナンスの必要があった場合の風車に合わせたクレーン高さの調整、タワークレーン10A、10B、10Cが不要で邪魔になるプロジェクトでの一時撤去等が簡単に行えるようになる。 Therefore, when the tower 12 is added in the working water area according to the water depth, the crane height is adjusted according to the wind turbine when maintenance of the wind turbine is required, and the tower cranes 10A, 10B, and 10C are unnecessary and temporarily in a project. It will be possible to easily remove it.
 上記の構成のクレーンを備えた作業台船1A~1H及びそのクレーン運用方法によれば、浅海域での洋上工事、特に着床型の洋上風力発電装置の設置やそのメンテナンス工事に使用する場合に、作業対象物の高さに対応してクレーンの吊り高さを容易に変更できるとともに、クレーン作業をせずに航行するときは、クレーンの高さを低くして、エアドラフトを低くすることができ、しかも、クレーンの基部に作用する転倒モーメントが小さくて、クレーンの基部構造の規模が小さくて済み、作業台船1A~1Hの船体の大型化を抑制できる。 According to the work pontoons 1A to 1H equipped with the crane having the above-described configuration and the crane operating method thereof, when used for offshore work in shallow water, especially for installation and maintenance work of a landing type offshore wind turbine generator. The height of the crane can be easily changed according to the height of the work object, and when navigating without crane work, the height of the crane can be lowered to lower the air draft. In addition, the overturning moment acting on the base of the crane is small, the scale of the base structure of the crane is small, and the hulls of the work pontoons 1A to 1H can be suppressed.
1A 作業船(デッキ載置式タワークレーン搭載の排水量型の作業船)
1B 作業船(デッキ載置式タワークレーン搭載のハーフSEPの作業船)
1C 作業船(デッキ載置式タワークレーン搭載のフルSEPの作業船)
1D 作業船(着底式タワークレーン搭載の排水量型の作業船)
1E 作業船(着底式タワークレーン搭載のハーフSEPの作業船)
1F 作業船(着底式タワークレーン搭載のフルSEPの作業船)
1G 作業船(昇降脚載置式タワークレーン搭載のハーフSEPの作業船)
1H 作業船(昇降脚載置式タワークレーン搭載のフルSEPの作業船)
2 船体(プラットフォーム)
3 デッキ(甲板)
10 タワークレーン(デッキ載置式)
10B タワークレーン(着底式)
10C タワークレーン(昇降脚載置式)
11 ベース架台
12 タワー
12a マストブロック
13 クレーン本体
13b ブーム(ジブ:クレーンの腕)
14 マストクライミング装置
15 脚部
15a 脚部ブロック
16 タワー昇降システム
17 クランプ装置(固定装置)
20、20A、20B 昇降脚(レグ、スパッド)
21 昇降脚昇降システム
22a 底板(固定式)
22b 底板(開閉式)
22c タワー先端
B 水底
D 凹部
He1 エアドラフト
S 水面
1A work boat (drainage type work boat equipped with deck-mounted tower crane)
1B workboat (half-SEP workboat with deck-mounted tower crane)
1C work boat (Full SEP work boat with deck-mounted tower crane)
1D work boat (drainage type work boat equipped with bottomed tower crane)
1E Work Vessel (Half SEP work vessel equipped with bottomed tower crane)
1F work boat (full SEP work boat equipped with bottomed tower crane)
1G work boat (Half SEP work boat equipped with a lifting tower-mounted tower crane)
1H work boat (Full SEP work boat equipped with a lifting tower-mounted tower crane)
2 hull (platform)
3 decks (deck)
10 tower crane (deck mounting type)
10B tower crane (bottom type)
10C tower crane (elevating leg mounting type)
11 base mount 12 tower 12a mast block 13 crane body 13b boom (jib: crane arm)
14 Mast Climbing Device 15 Leg 15a Leg Block 16 Tower Lifting System 17 Clamping Device (Fixing Device)
20, 20A, 20B Lifting leg (leg, spud)
21 Lifting leg lifting system 22a Bottom plate (fixed type)
22b Bottom plate (open-close type)
22c Tower tip B Water bottom D Recess He1 Air draft S Water surface

Claims (11)

  1.  洋上構造物の設置にクレーンを使用するクレーンを備えた作業台船において、
     前記クレーンとして、複数個のマストブロックを積み上げてタワーを形成し、前記タワーの最上部にクレーン本体を載置して構成され、前記マストブロックの積み上げる個数により前記タワーの高さを調整するタワークレーンを備えていることを特徴とするクレーンを備えた作業台船。
    In a work table equipped with a crane that uses a crane to install offshore structures,
    As the crane, a tower crane is formed by stacking a plurality of mast blocks to form a tower, and a crane body is placed on the top of the tower, and the height of the tower is adjusted according to the number of the mast blocks stacked. A work table equipped with a crane characterized by being equipped with.
  2.  前記タワークレーンが、前記タワーに順次前記マストブロックを継足しながら、前記クレーン本体を上昇させ、かつ、前記タワーから順次前記マストブロックを取り外しながら、前記クレーン本体を下降させる自己昇降タイプのマストクライミング装置を備えて構成されていることを特徴とする請求項1に記載のクレーンを備えた作業台船。 The tower crane is a self-elevating type mast climbing device that raises the crane main body while sequentially connecting the mast block to the tower and lowers the crane main body while sequentially removing the mast block from the tower. A work pontoon equipped with the crane according to claim 1, characterized in that the work berth is provided.
  3.  当該作業台船が、排水量型の作業台船、クレーン作業するときに船体が水面に浮いている状態であるハーフSEP、クレーン作業するときに船体が水面より上にある状態であるフルSEPのいずれか一つの作業台船であることを特徴とする請求項1又は2に記載のクレーンを備えた作業台船。 The work pontoon is either a drainage type work pontoon, a half SEP in which the hull is floating on the water surface during crane work, or a full SEP in which the hull is above the water surface during crane work. It is one work pontoon, The work pontoon provided with the crane of Claim 1 or 2 characterized by the above-mentioned.
  4.  クレーン作業するときに、前記タワーを支持するベース架台が当該作業台船に固定支持されていることを特徴とする請求項1~3のいずれか1項に記載のクレーンを備えた作業台船。 A work platform equipped with the crane according to any one of claims 1 to 3, wherein a base platform for supporting the tower is fixedly supported by the work platform during crane work.
  5.  前記タワークレーンが、前記マストブロックを組み立てて形成される前記タワーの下部に、脚部ブロックを組み立てて形成される脚部を備えて構成されると共に、前記脚部を水中に降下させるタワー昇降システムを備えて構成されていることを特徴とする請求項1~3のいずれか1項に記載のクレーンを備えた作業台船。 The tower crane is configured to include a leg portion formed by assembling leg blocks at a lower portion of the tower formed by assembling the mast block, and a tower lifting system for lowering the leg portion into water. A work table equipped with the crane according to any one of claims 1 to 3, characterized in that
  6.  クレーン作業するときに、当該作業台船の船体に対して前記タワークレーンの相対変位を許容した状態で支持する支持構造を備えて構成されていることを特徴とする請求項5に記載のクレーンを備えた作業台船。 The crane according to claim 5, comprising a support structure for supporting relative displacement of the tower crane with respect to the hull of the work pontoon during crane work. A work table equipped.
  7.  前記マストブロックの横断面の外形形状と前記脚部ブロックの横断面の外形形状が、同じ形状であることを特徴とする請求項5または6に記載のタワークレーンを備えた作業船。 The work boat equipped with the tower crane according to claim 5 or 6, wherein the external shape of the cross section of the mast block and the external shape of the cross section of the leg block are the same.
  8.  前記マストブロックの横断面の外形形状と前記昇降脚の横断面の外形形状が、同じ形状であることを特徴とする請求項5~7のいずれか1項に記載のタワークレーンを備えた作業船。 The work boat equipped with the tower crane according to any one of claims 5 to 7, wherein the outer shape of the cross section of the mast block and the outer shape of the cross section of the lifting leg are the same. ..
  9.  当該作業台船が、当該作業台船の船体から降下させて着底させることで前記船体を持ち上げる昇降脚と前記昇降脚を昇降する昇降脚昇降システムを備えたハーフSEPまたはフルSEPであり、
     かつ、前記タワークレーンの脚部を水中に降下させる前記タワー昇降システムを、前記昇降脚昇降システムと互換性があるように構成にしていることを特徴とする請求項7に記載のタワークレーンを備えた作業船。
    The work pontoon ship is a half SEP or a full SEP equipped with an elevating leg for elevating the hull by lowering it from the hull of the work pontoon and bringing it to the bottom and an elevating leg elevating system for elevating the elevating leg.
    The tower crane according to claim 7, wherein the tower lifting system for lowering the legs of the tower crane into the water is configured to be compatible with the lifting leg lifting system. Work boat.
  10.  当該作業台船が、当該作業台船の船体から降下させて着底させることで前記船体を持ち上げる昇降脚と前記昇降脚を昇降する昇降脚昇降システムを備えたハーフSEPまたはフルSEPであり、
     かつ、クレーン作業時において、前記タワークレーンが前記昇降脚の一つの上に載置されることを特徴とする請求項1または2に記載のクレーンを備えた作業台船。
    The work pontoon ship is a half SEP or a full SEP equipped with an elevating leg for elevating the hull by lowering it from the hull of the work pontoon and bringing it to the bottom and an elevating leg elevating system for elevating the elevating leg.
    The work pontoon equipped with the crane according to claim 1 or 2, wherein the tower crane is mounted on one of the elevating legs during a crane operation.
  11.  請求項1~10のいずれか1項に記載のクレーンを備えた作業台船のクレーン運用方法において、
     クレーン作業するときには、前記タワークレーンでの前記タワーを形成する前記マストブロックの積み上げる個数により吊り高さを調整し、
     クレーン作業を停止して航行するときには、前記マストブロックの積み上げる個数を前記タワークレーンで作業するときの個数よりも減少して、前記タワーの高さを低くすることを特徴とするクレーンを備えた作業台船のクレーン運用方法。
    A crane operating method for a work pontoon ship equipped with the crane according to any one of claims 1 to 10,
    When performing a crane operation, adjust the hanging height by the number of stacked mast blocks forming the tower in the tower crane,
    When sailing with the crane operation stopped, the number of stacked mast blocks is reduced from the number when working with the tower crane to lower the height of the tower. How to operate a crane on a ship.
PCT/JP2019/041667 2018-10-29 2019-10-24 Work ship having tower crane and crane operating method therefor WO2020090611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-202772 2018-10-29
JP2018202772A JP7197118B2 (en) 2018-10-29 2018-10-29 Work barge equipped with a crane and its crane operation method

Publications (1)

Publication Number Publication Date
WO2020090611A1 true WO2020090611A1 (en) 2020-05-07

Family

ID=70464491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041667 WO2020090611A1 (en) 2018-10-29 2019-10-24 Work ship having tower crane and crane operating method therefor

Country Status (2)

Country Link
JP (1) JP7197118B2 (en)
WO (1) WO2020090611A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112429656A (en) * 2020-11-24 2021-03-02 中铁十七局集团第四工程有限公司 On-spot assembled floating crane hoist device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165890A (en) * 1979-06-07 1980-12-24 Mitsubishi Heavy Ind Ltd Working boat
JPS6216998A (en) * 1985-07-12 1987-01-26 越原 良忠 Crane for construction
JP2011042257A (en) * 2009-08-21 2011-03-03 Daiichi Kensetsu Kiko Co Ltd Link-type self-elevating platform and installation method for wind power generation facility in open sea
CN102398860A (en) * 2011-07-12 2012-04-04 武汉高智创新科技有限公司 Installation apparatus and method for offshore wind power equipment
JP2018150089A (en) * 2017-03-10 2018-09-27 Ihi運搬機械株式会社 Operation method of tower crane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165471A (en) * 1985-01-18 1986-07-26 石川島播磨重工業株式会社 Iron tower construction method and climbing crane used therein
JP2004001750A (en) 2003-06-25 2004-01-08 Penta Ocean Constr Co Ltd Special working ship and execution method for offshore structure
CN105711766B (en) 2016-04-03 2017-08-25 大连理工大学 From liter descending underwater operation platform and its an application method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165890A (en) * 1979-06-07 1980-12-24 Mitsubishi Heavy Ind Ltd Working boat
JPS6216998A (en) * 1985-07-12 1987-01-26 越原 良忠 Crane for construction
JP2011042257A (en) * 2009-08-21 2011-03-03 Daiichi Kensetsu Kiko Co Ltd Link-type self-elevating platform and installation method for wind power generation facility in open sea
CN102398860A (en) * 2011-07-12 2012-04-04 武汉高智创新科技有限公司 Installation apparatus and method for offshore wind power equipment
JP2018150089A (en) * 2017-03-10 2018-09-27 Ihi運搬機械株式会社 Operation method of tower crane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112429656A (en) * 2020-11-24 2021-03-02 中铁十七局集团第四工程有限公司 On-spot assembled floating crane hoist device

Also Published As

Publication number Publication date
JP7197118B2 (en) 2022-12-27
JP2020070114A (en) 2020-05-07
TW202106602A (en) 2021-02-16

Similar Documents

Publication Publication Date Title
US8701579B2 (en) Offshore wind turbine installation
EP1356205B1 (en) Method and apparatus for placing at least one wind turbine on open water
JP6022170B2 (en) Ship for transporting a wind turbine to an offshore site and method for installing it
US5097786A (en) Method and apparatus for erecting and removing offshore structures
JP7134953B2 (en) self-propelled jack-up vessel
TW202014344A (en) Device and method for lifting an object from a deck of a vessel subject to movements
WO2003066427A1 (en) Vessel for installation of erect structures
EP3209548B1 (en) Method for transporting a buoyant structure with a vessel, and the vessel associated with the method
CN111807239A (en) Crane, vessel comprising such a crane and method for erecting a longitudinal structure
WO2000075010A1 (en) Device for positioning and lifting a marine structure, particularly a platform deck
EP1189803B1 (en) Lifting vessel and method for positioning, lifting and handling a platform deck and a jacket
KR20100087094A (en) Method for installing a drilling apparatus on a rig and for preparing drilling operations
EP4330176A1 (en) Upend crane and installation vessel
US20230399206A1 (en) Offshore wind turbine assembly vessel
CN101781887A (en) Overhang installation method for upper structure of offshore platform
WO2020090611A1 (en) Work ship having tower crane and crane operating method therefor
EP3580122A1 (en) Self-installing offshore platform
WO2020095697A1 (en) Method for constructing marine structure, and work ship
WO2012060112A1 (en) Ship for installing offshore wind turbine and method for installing offshore wind turbine using same
CN104627326A (en) Special lifting and vibration-driving ship for integrated driving of cell type steel sheet pile large cylinders and vice cells
TWI834746B (en) Work platform vessel equipped with crane and method of using the crane
JP6574395B2 (en) Construction method and work table ship
JP2001003332A (en) Immersion method for caisson and floater for immersing the caisson
WO2024003576A1 (en) Improvements in and relating to assembling a structure
WO2023194711A1 (en) Improvements in and relating to assembling a structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879082

Country of ref document: EP

Kind code of ref document: A1