WO2020095697A1 - Method for constructing marine structure, and work ship - Google Patents

Method for constructing marine structure, and work ship Download PDF

Info

Publication number
WO2020095697A1
WO2020095697A1 PCT/JP2019/041666 JP2019041666W WO2020095697A1 WO 2020095697 A1 WO2020095697 A1 WO 2020095697A1 JP 2019041666 W JP2019041666 W JP 2019041666W WO 2020095697 A1 WO2020095697 A1 WO 2020095697A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
spud
upper structure
pontoon
hull
Prior art date
Application number
PCT/JP2019/041666
Other languages
French (fr)
Japanese (ja)
Inventor
拓樹 中村
Original Assignee
ポルタパーク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポルタパーク株式会社 filed Critical ポルタパーク株式会社
Publication of WO2020095697A1 publication Critical patent/WO2020095697A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B83/00Rebuilding or retrofitting vessels, e.g. retrofitting ballast water treatment systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H19/00Marine propulsion not otherwise provided for
    • B63H19/08Marine propulsion not otherwise provided for by direct engagement with water-bed or ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to a method of constructing an offshore structure equipped with a wind turbine generator and the like, and a work pontoon.
  • Offshore structures equipped with wind turbines and other wind turbine generators are generally manufactured as upper and lower structures.
  • This superstructure is generally composed of towers, nacelles, blades and the like.
  • the lower structure in the case of a landing type offshore structure, there is a mounting table such as a pile, a gravity type, a jacket, a tripod and a tripile.
  • a columnar tower structure moored by anchors and mooring lines (in the case of a spar type).
  • the tower, nacelle, blades, etc. are assembled on land and integrated to form an upper structure, and then this upper structure is constructed by a work pontoon (without the deck lifting legs).
  • a method has been proposed in which the upper structure is joined to the lower structure without using a crane or a special device by transporting and moving the structure onto the lower structure installed on the sea.
  • a base constituting the wind turbine is installed at a erection site. It has been proposed to install a base on the upper part of the foundation by adjusting the draft of the floating body (fork with a fork) that supports the wind turbine on the sea after increasing the ballast water.
  • the hull motion of a work pontoon due to waves and swells has a cycle of several seconds to several tens of seconds. Therefore, between the upper structure and the lower structure mounted on the work pontoon, The distance in the vertical direction also changes in this cycle, and there is a possibility of collision in each cycle. In order to avoid this collision, the timing of approaching the undercarriage of the work pontoon ship and the timing of detachment from the joint after installation, etc. is left to a trained operator, which imposes a heavy burden on the operator.
  • ballast system of a general work pontoon it takes about 10 minutes or more to adjust the ballast just to raise or lower the front end or the rear end of the hull by several tens of centimeters, and avoid collision before and after joining. From the point of view, it is not enough time.
  • a self-lifting work platform (SEP), it is configured so that it can be moved by using a deck lifting leg (spud) as described in Japanese Patent Laid-Open No. 2012-45970, for example.
  • a mobile (walking) work platform has been proposed. For example, after inclining a spud (legs for raising and lowering the deck) configured in the rocking device in any direction of the entire circumference, after returning to the vertical direction or inclining in any direction of the entire circumference, A work boat has been proposed which can be stably moved as a whole in any direction around the hull by repeating tilting in the opposite direction.
  • At least one support frame of the support frames for supporting the spud on the boat main body is supported on the boat main body so as to be horizontally movable.
  • the support frame is horizontally moved by the horizontal drive means and then the spud is re-bottomed, and then the support frame is moved in the opposite direction.
  • Japanese Patent Laid-Open No. 2012-76738 Japanese Patent Laid-Open No. 2011-42257 Japanese Patent Laid-Open No. 2012-107586 Japanese Patent Laid-Open No. 2012-76622 Japanese Unexamined Patent Publication No. 2016-22783 Japanese Patent Laid-Open No. 2017-44141 Japanese Patent Laid-Open No. 2012-45970 Japanese Patent Laid-Open No. 11-310189
  • the first finding is that in a deck-elevating work platform (SEP) equipped with a crane or a handling device for vertically moving the superstructure, or with a erection device for tilting the superstructure, Can be carried out in a stable and fixed state, but on the other hand, in order to receive the weight of these devices and to secure the restoration performance of the work pontoons, the work pontoons are enlarged. There is a problem of doing.
  • SEP deck-elevating work platform
  • the second finding is that in a work platform that is not a deck lifting type, when the upper structure or the joint is moved up and down due to the sinking amount of the work platform due to ballast adjustment, the deck lifting pedestal system, crane or Since no dedicated device is required, the work pontoon has a simple structure and can be prevented from increasing in size.
  • the deck lifting work platform (SEP) has the function to move the work platform up and down by the deck lifting pedestal system, and also the mobile (walking) spud. If equipped, it can be moved horizontally. Therefore, in the work of lowering the upper structure and the work of joining the upper structure and the lower structure, if the work platform is moved up and down at a speed of several tens of cm in 1 minute by the deck lifting pedestal system, It is possible to raise and lower the superstructure mounted on the work pontoon without using a dedicated device or quicker than ballast adjustment, and to separate the work pontoon from the joined structure of the superstructure and the substructure. It is possible to solve the above problems.
  • the present invention has been made in view of such a situation, and an object thereof is to use an upper structure that is assembled and integrated on land and transported by a work table ship by using a hanging facility such as a large crane.
  • a hanging facility such as a large crane.
  • the upper structure can be joined to the lower structure located in the installation area.
  • the method for constructing an offshore structure of the present invention to achieve the above-mentioned object is a manufacturing process in which an offshore structure is divided into an upper structure and a lower structure, and the lower structure is installed in a water area.
  • the lowering of the upper structure mounted on the work platform during the lowering process can be performed with the spud of the deck lifting system. Since it is performed by the spud lifting operation used, it is not necessary to use the crane of the crane ship, the crane mounted on the work pontoon, and the handling device for moving the upper structure up and down, and equipping the work pontoon with these. It is possible to avoid an increase in the size of the work pontoon caused by this.
  • the work table is raised by the spud as compared to the case where the upper structure is lowered only by adjusting the ballast of the work table. Since the hull of the work pontoon is fixed to the water surface or fixed above the water surface, the movement of the hull of the work pontoon due to disturbances such as waves, humming, wind and tidal current can be suppressed, or their influence can be avoided.
  • the work table and The mounted upper structure can be dropped onto the lower structure. Therefore, the working time in the lowering process can be shortened.
  • the time during which there is a possibility of collision between the upper structure and the lower structure due to the movement of the hull of the work pontoon due to disturbances such as wind and tidal current can be significantly reduced.
  • the possibility of contact between the upper structure and the lower structure mounted on the work pontoon before joining and the work after joining The possibility of contact between the pontoon and the joint can be significantly reduced.
  • a work platform ship is operated by a spud moving operation using a spud of the walking type deck lifting system. By moving the position in the horizontal direction, it is configured to align the lower joint portion of the upper structure mounted on the work platform and the upper joint portion of the lower structure, The following effects can be achieved.
  • the spud moving operation moves the work pontoon in the horizontal direction such as the front-rear direction and the left-right direction. Therefore, it is not necessary to equip another device or system for alignment. Therefore, it is possible to suppress an increase in the size of the work pontoon caused by mounting the positioning device on the work pontoon.
  • the detaching step raises or lowers a portion on which the upper structure of the work pontoon is mounted by a spud lifting operation using a spud of the deck lifting system.
  • the following effects can be achieved by including the vertical separation step of separating the work platform ship from the joined body in the vertical direction.
  • the work platform is moved in the vertical direction by the spud lifting operation, so that the work platform is removed from the joint more quickly than the draft adjustment of the work platform by ballast adjustment. be able to.
  • the work pontoons are moved horizontally by a spud movement operation using a spud of the walking type deck lifting system.
  • the following effects can be achieved by including a horizontal separating step of separating the above from the joined body in the horizontal direction.
  • the work paddle is moved in the horizontal direction such as the front-rear direction and the left-right direction by the spud movement operation.
  • the work platform ship can be quickly removed from the joined body by the spud movement operation of the deck lifting system.
  • the work pontoon for achieving the above-mentioned purpose is provided with a mounting portion for mounting an upper structure of an offshore structure to be transported and installed in an installation water area, and a spud of a deck elevating system for elevating the hull.
  • the loading site tilting mechanism that tilts the loading site with respect to the hull of the work platform is provided.
  • the posture is such as bow trim or stern trim
  • the mounting part for mounting the upper structure does not have the same inclination as the hull posture, and it can take a posture suitable for the work at that time, such as horizontal, Since it is possible to maintain the inclination of the structure and the parallelism between the lower part of the upper structure and the upper part of the lower structure, it is possible to improve work efficiency and safety during work.
  • the upper structure assembled and integrated on land and transported by the work pontoon can be used without using a hanging facility such as a large crane.
  • it can move up and down more quickly than adjusting the draft of the work pontoon by ballast adjustment, and can join the upper structure to the lower structure arranged in the installation water area in a short time and safely.
  • FIG. 1 is a plan view schematically showing the configuration of an SEP type work pontoon used in the method for constructing an offshore structure according to the first embodiment of the present invention.
  • FIG. 2 is a side view schematically showing the configuration of the half SEP work pontoon ship of FIG. 1, and is a view showing a state in which the spud is bottomed.
  • FIG. 3 is a side view schematically showing the configuration of the full SEP work platform ship of FIG. 1, and is a view showing a state in which the spud is bottomed.
  • FIG. 4 is a figure which shows a part of structure of the construction method of the offshore structure of embodiment which concerns on this invention, and is a figure which shows a manufacturing process, an installation process, and a transportation process.
  • FIG. 1 is a plan view schematically showing the configuration of an SEP type work pontoon used in the method for constructing an offshore structure according to the first embodiment of the present invention.
  • FIG. 2 is a side view schematically showing the configuration of
  • FIG. 5 is a figure which shows a part of structure of the construction method of the offshore structure of FIG. 4, and is a figure which shows a moving process, a bottoming process, and a descent process.
  • FIG. 6 is a diagram showing a part of the configuration of the method for constructing an offshore structure in FIG. 4, and is a diagram showing a joining process, a detaching process, and a return process.
  • FIG. 7 is a figure which shows the state which is approaching the work berth in the state which raised and stored the spud to the quay with an upper structure by the approach method in the mounting process of a conveyance process.
  • FIG. 6 is a diagram showing a part of the configuration of the method for constructing an offshore structure in FIG. 4, and is a diagram showing a joining process, a detaching process, and a return process.
  • FIG. 7 is a figure which shows the state which is approaching the work berth in the state which raised and stored the spud to the quay with an upper
  • FIG. 8 is a diagram for explaining a second approaching method by a spud moving operation, which is an approaching method in the mounting step of the carrying step.
  • FIG. 9 is a diagram showing a state in which the fork portion is inserted under the upper structure in a state where the spud is raised and stored by the approaching method in the mounting step of the transportation step.
  • FIG. 10 is a figure for demonstrating the 2nd scooping method by a spud raising / lowering operation by the scooping method in the mounting process of a conveyance process.
  • FIG. 11 is a figure which shows the state which the work pontoon which mounts an upper structure on the fork part raises a spud, stores it, and is sailing in the navigation process of a conveyance process.
  • FIG. 12 is a figure which shows the state which made the work pontoon carrying the upper structure on the fork part approach the lower structure installed beforehand in the movement process.
  • FIG. 13 shows a state in which the position of the upper structure mounted on the work pontoon is adjusted to the position of the lower structure by the operation of the multi-point mooring winch by the mooring adjustment method in the movement adjusting process of the moving process.
  • FIG. 14 shows a state in which, in the movement adjusting process of the moving process, the position of the upper structure mounted on the work pontoon is adjusted to the position of the lower structure by the operation of the thruster or the like of the DPS system by the automatic position maintaining method.
  • FIG. 15 is a diagram showing a state in which the pad of the work pontoon is lowered and bottomed to support the work pontoon in the installation water area in the half SEP state in the bottoming step.
  • FIG. 16 is a diagram showing a state in which the pad of the work pontoon is lowered and bottomed to support the work pontoon in the installation water area in the full SEP state in the bottoming step.
  • FIG. 17 is a figure which shows the state which is moving the work pontoon horizontally by a spud movement operation in the position adjustment process of a bottoming process.
  • FIG. 18 shows a state in which both the front and rear spuds are simultaneously raised by the first descending method by the spud elevating operation in the descending step and the joining step, and the upper structure is descended together with the hull onto the lower structure.
  • FIG. FIG. 19 is a diagram showing a state in which the spud on the bow side is lowered, the bow is lifted and the stern is lowered, and the upper structure is lowered onto the lower structure in the descending step and the joining step.
  • FIG. 20 is a diagram showing a state in which, in the descending step and the joining step, the spud on the stern side is raised, the stern is lowered and the bow is raised, and the upper structure is lowered onto the lower structure.
  • FIG. 21 is a view showing an upper release method of the vertical release step, in which the spuds on the front and rear sides are lowered to raise the hull, and the work platform ship is spaced upward from the joined structure of the upper structure and the lower structure. It is a figure which shows the state which has been.
  • FIG. 22 shows an upward disengagement method in the vertical disengagement step, in which the spud on the bow side is raised, the bow is raised and the stern is lowered, and the work platform is moved upward from the joined structure of the upper structure and the lower structure. It is a figure which shows the state which is made to space apart.
  • FIG. 22 shows an upward disengagement method in the vertical disengagement step, in which the spud on the bow side is raised, the bow is raised and the stern is lowered, and the work platform is moved upward from the joined structure of the upper structure and the lower structure. It is a figure which shows the state which is made to space apart.
  • FIG. 23 is a view showing an upward disengagement method in the vertical disengagement step, in which the spud on the stern side is raised, the bow is lowered and the stern is raised, and the work platform is lifted from the joined structure of the upper structure and the lower structure. It is a figure showing the state where it has separated in the direction.
  • FIG. 24 shows that in the horizontal disengagement process, the stern side spud is moved forward by the kick mechanism of the bow side spud to move the work platform horizontally from the joined structure of the upper structure and the lower structure. It is a figure showing the state where it has separated in the direction.
  • FIG. 24 shows that in the horizontal disengagement process, the stern side spud is moved forward by the kick mechanism of the bow side spud to move the work platform horizontally from the joined structure of the upper structure and the lower structure. It is a figure showing the state where it has separated in the direction.
  • FIG. 24 shows that in the horizontal disengagement process, the stern side spud is moved forward by
  • FIG. 25 is a diagram showing a state in which the work pontoon is sailing while raising and retracting the spud in order to return from the installation water area in the returning process.
  • FIG. 26 is a diagram showing the relationship between the fork portion, the upper structure, and the lower structure before joining in the joining process when the upper structure is connected to the upper side of the fork portion.
  • FIG. 27 is a diagram showing a relationship between the fork part, the upper structure, and the lower structure after the joining in the downward separating method when the upper structure is connected to the upper side of the fork part.
  • FIG. 28 is a diagram showing a relationship between the fork portion, the upper structure, and the lower structure before joining in the joining process when the upper structure is connected to the lower side of the fork portion.
  • FIG. 29 is a diagram showing a relationship between the fork part, the upper structure, and the lower structure after joining in the upward separating method when the upper structure is connected to the lower side of the fork part.
  • FIG. 30 is a figure which illustrates the bottom plate of a spud, (a) is a figure which shows a fixed bottom plate, (b) is a figure which shows an open-close type bottom plate.
  • FIG. 31 is a top view which shows typically the structure of the work table ship of SEP type used with the construction method of the offshore structure of the 2nd Embodiment which concerns on this invention.
  • 32 is a side view schematically showing the configuration of the half SEP work pontoon ship of FIG.
  • FIG. 34 is a perspective view schematically showing the configuration of the first movable mounting table.
  • FIG. 35 is a top view which shows typically the structure of the work table ship of the SEP type used with the construction method of the offshore structure of the 3rd Embodiment which concerns on this invention.
  • FIG. 36 is a side view schematically showing the configuration of the half SEP work platform ship shown in FIG. 35, and is a view showing a state in which the spud is bottomed.
  • FIG. 37 is a side view schematically showing the configuration of the full SEP work platform ship of FIG. 35, and is a view showing a state in which the spud is bottomed.
  • FIG. 38 is a plan view schematically showing the configuration of an SEP type work pontoon used in the method for constructing an offshore structure according to the fourth embodiment of the present invention.
  • FIG. 39 is a side view schematically showing the configuration of the half SEP work platform ship of FIG. 38, and is a view showing a state in which the spud is bottomed.
  • FIG. 40 is a side view schematically showing the configuration of the full SEP work table vessel of FIG. 38, and is a view showing a state in which the spud is bottomed.
  • the work pontoons 1A and 1B are a type of work pontoons called SEP (Self Elevating Platform) or a jack-up ship.
  • SEP Self Elevating Platform
  • the work pontoons 1A and 1B are displacement-type work pontoons that obtain buoyancy when the lower part of the hull 2 sinks below the water surface. However, in the half SEP work pontoon 1A, as shown in FIG. By lowering the spuds 20A and 20B to reach the bottom by the deck elevating type systems 21A and 21B, a part of the load of the work pontoon 1A is borne by the spuds 20A and 20B.
  • the work table boat 1A is raised by using the supporting force of the spuds 20A and 20B and the buoyancy of the hull 2 together, but the hull 2 of the hull 2 can be lifted even when the jacking up of the spuds 20A and 20B is completed.
  • the hull 2 is floated on the water surface S without raising the whole body above the water surface S.
  • the spuds 20A and 20B are not large-capacity ones capable of lifting all of the dead weight and the deadweight of the work pontoon 1A like the full SEP, but are used for a dredging pontoon. , It is sufficient that the buoyancy is partially supplemented to stabilize the hull.
  • the deck lifting systems 21A and 21B lower the spuds 20A and 20B to reach the bottom, and lift the work table 1B above the water surface S.
  • the spuds 20A and 20B bear the entire load of the work pontoon 1B. That is, when performing various operations, the entire work pontoon 1B is raised by the spuds 20A and 20B to a height above the water surface S at which waves cannot reach, so that the influence of the waves on the water surface S and the influence of the tidal current may increase. It should not reach the 1B hull.
  • the full SEP work pontoon 1B generally works under severer sea and weather conditions than the half SEP.
  • the work pontoons 1A and 1B have, on the stern side, a pair of arm-like structures that project rearward on both sides of the stern ( The protrusion) 4a is formed.
  • the U-shaped fork portion 4 having the recess A is provided between the pair of protrusions 4a in plan view.
  • the fork portion 4 is a mounting portion for mounting the upper structure 41 of the offshore structure 40 that is transported and installed in the installation water area. It is preferable that the fork portion 4 as the mounting portion is provided with a mounting portion tilting mechanism for tilting the fork portion 4 with respect to the hull 2 of the work pontoon 1A, 1B. As the mounting portion tilting mechanism, the fork part 4 is connected to the hull 2 by a hinge structure so that the stern side of the fork part 4 moves up and down around this hinge and tilts in the vicinity of the bow trim and the stern trim. To configure. This inclination can be easily configured by providing an inclination sensor on the fork portion 4 and controlling the expansion and contraction of the hydraulic cylinder that supports the fork portion 4 by the output thereof. This structure can be realized by a structure similar to that of the ramp way of a car ferry or a landing craft.
  • the work pontoons 1A and 1B mount the upper structure 41, lower the upper structure 41, and work from the joined body 40 of the upper structure 41 and the lower structure 42.
  • the mounting portion (fork portion 4) for mounting the upper structure 41 is Since the posture is not the same as the posture, and the posture suitable for the work at that time can be taken such as horizontal, the inclination of the upper structure 41, the bottom surface of the lower portion 41 d of the upper structure 41 and the upper portion 42 of the lower structure 42. Since it is possible to maintain the relation of mutual postures such as parallel between the upper surface and the upper surface, it is possible to improve work efficiency and safety during work.
  • a superstructure 5 as a bridge and a living area is installed.
  • propelling systems such as a propeller and a rudder for self-propelling are mounted as needed, these propulsion systems are not shown except for FIG.
  • These work pontoons 1A, 1B are walking type work pontoons that can move the work pontoons 1A, 1B as if they walk on the seabed B using the spuds 20A, 20B.
  • the spuds 20A and 20B are provided with two or more legs, more preferably three or more legs, and further, the spuds 20A and 20B are preferably provided separately in the front, rear, left and right of the work pontoons 1A, 1B.
  • a pair of left and right fixed-type stern-side spuds 20A are provided near each of the stern-side fork portions 4, and a kick-type spud 20B is provided at the center of the bow side.
  • This fixed-type spud 20A has relative swing and horizontal freedom between the spud 20A and the work pontoons 1A and 1B when the amount of protrusion of the spud 20A to the lower part of the work pontoons 1A and 1B is fixed. The degree is restricted.
  • the kick type spud 20B relative swinging about the pin is allowed in a state where the amount of protrusion of the spud 20B to the lower part of the work platform 1A, 1B is fixed by the support by a horizontal pin, By pushing and pulling a portion of the spud 20B above the pin in a horizontal direction relative to the work platform 1A, 1B by a hydraulic cylinder or the like, as shown in FIGS. 20B is inclined like a pendulum.
  • the work pontoons using the kick type spuds 20B are used, but other walk-type work pontoons may be used.
  • the relative swing of the spuds 20A and 20B is not allowed and remains vertical, but by sliding the spuds 20A and 20B horizontally with respect to the work pontoons 1A and 1B by the hydraulic cylinder, the work pontoons 1A 1B may be movable.
  • the spuds 20A and 20B have the walking function, the horizontal position of the work pontoons 1A and 1B can be finely adjusted by the spud movement operation.
  • a bottom plate that is used as necessary in consideration of the geological features of the seabed is equipped.
  • This bottom plate has a structure for receiving the force applied to the spuds 20A and 20B.
  • the openable bottom plate 22b is widely opened to cope with soft ground such as loose sand or cohesive soil, or the bottom plate 22b is flipped up to invalidate the support by the bottom plate 22b, thereby sharply forming the tower tip 22c. It is constructed so that it can be stabbed in solid ground.
  • the front and rear spuds 20A and 20B are simultaneously raised to lower the work platform 1A while maintaining the attitude of the hull 2.
  • the descending method and the second descending method of descending only the bow side spud 20B, raising the bow and lowering the stern, and descending the stern side of the work platform 1A are shown in FIG.
  • the third descending method which raises only the stern side spud 20A, lowers the stern and raises the bow, and descends the stern side of the work platform ship 1A, and the second and third descending methods.
  • the method of raising by this spud lifting operation is to lower the front and rear spuds 20A and 20B at the same time while maintaining the attitude of the hull 2.
  • FIG. 22 only the first spud 20B on the bow side is raised, the bow is lowered and the stern is raised, and the stern side of the work pontoon 1A is raised.
  • a second raising method for raising as shown in FIG. 23, a third raising method for lowering only the stern side spud 20A, raising the stern and lowering the bow, and raising the stern side of the work pontoon 1A.
  • a fourth raising method that uses the second and third raising methods together.
  • the spud 20A on the stern side is raised and the spud 20B is moved by the kick mechanism of the spud 20B on the bow side.
  • the work pontoons 1A and 1B are pushed and pulled relatively horizontally, thereby moving the work pontoons 1A and 1B horizontally.
  • FIG. 13 Also equipped with a multi-point mooring winch system as shown in FIG. 13 or an automatic ship position holding system (DPS) as shown in FIG. When equipped with these, they can be used not only in offshore wind power facilities but also in various projects.
  • DPS automatic ship position holding system
  • the half SEP work platform ship 1A will be mainly described. However, although the height relationship between the hull 2 and the water surface S is different, the same operation can be performed with the full SEP work platform 1B.
  • the pair of arm-shaped structures 4a are provided at the stern of the work pontoons 1A and 1B. However, if there is a structure for supporting the upper structure 41, the pair of arm-shaped structures 4a is not necessary.
  • the supporting portion on which the upper structure 41 is mounted may be, for example, the bow or the side of the boat, instead of the stern. In that case, the fixed spud 20A is arranged at a position close to the support portion, and the kick spud 20B is arranged at a position far from the support portion.
  • the manufacturing process is a process of dividing the offshore structure 40 into an upper structure 41 and a lower structure 42 for manufacturing.
  • the upper structure 41 is generally composed of a tower 41a, a nacelle 41b, a blade 41c and the like.
  • the lower structure 42 as shown in FIG. 12, a landing type monopile is adopted.
  • the floating type substructure there is a columnar tower structure moored by anchors and mooring lines, as in the case of a spar type offshore structure. This is provided so that it floats in an upright state like a fishing float and the top is near the water surface S (above or below the water surface S).
  • the installation process is a process of transporting and installing the lower structure 42 in the installation water area.
  • the lower structure 42 (here, a monopile) formed of various types of mounting bases such as a landing type monopile, a gravity type, and a jacket is selected according to the water bottom ground where the offshore structure 40 is installed, and is a large hydraulic hammer. It is installed at the installation location of the offshore structure 40 by using a large work boat, a large carrier ship, or the like.
  • the carrying step is a step of carrying the superstructure 41 on the work pontoon 1A and carrying it to the installation water area.
  • the superstructure 41 approaches the quay C and the superstructure is carried by the quay C. This includes the step of mounting 41 on the work pontoon 1A and the step of navigating the work pontoon 1A with the upper structure 41 mounted therein to the installation water area as shown in FIG.
  • a manufacturing plant or a crane installed on the quay is used to assemble a tower 41a, a nacelle 41b, a blade 41c, and the like to form an integrated upper structure 41, as shown in FIG.
  • the work platform 1A is approached to the upper structure 41 placed on the pedestal Cb of the quay C, and the fork portion 4 is inserted below the lower part 41d of the upper structure 41.
  • the scooping method is used in which the fork part 4 is raised to scoop the upper structure 41 by the fork part 4 and the upper structure 41 is loaded on the work platform 1A.
  • the pads 20A and 20B are raised and stored, and the stern fork portion 4 is lowered by ballast operation of the work pontoon 1A. Then, the work table boat 1A is brought closer to the quay C by using the propulsion force of the work table boat 1A or the propulsion force of another ship such as a tug boat.
  • the spuds 20A and 20B are lowered by the spud lifting operation to reach the bottom, and the work paddle 1A is operated by the spud moving operation using these spuds 20A and 20B.
  • the fork part 4 is put under the lower part 41d of the upper structure 41 by using the spud moving method of moving the fork to the side of the quay C.
  • the work platform 1A is moved to the quay C side and the fork part 4 is put under the lower part 41d of the upper structure 41. ..
  • the fork part 4 in the stern is lowered by the ballast operation of the work pontoon ship 1A, and the fork part 4 is moved to the upper structure.
  • the lower part 41d of the upper structure 41 is put under the lower part 41d of the upper structure 41, and then the fork part 4 is lifted by the ballast operation of the working structure 1A to scoop up the lower part 41d of the upper structure 41 to move the upper structure 41 to the work structure 1A. It is loaded on the fork part 4 of.
  • the spuds 20A and 20B are lowered to reach the bottom and approached by the second approaching method, and thereafter, as shown in FIG. It is also possible to use a method of raising the fork portion 4 of the work pontoon ship 1A by a spud lifting operation using the spuds 20A and 20B.
  • the front and rear spuds 20A and 20B are lowered in the same manner in FIG. 10, only one of the spuds may be moved up and down to raise the stern.
  • this spud raising / lowering operation it is possible to reduce the influence of the hull movement of the work pontoon 1A, and moreover, the upper structure 41 can be scooped up by the fork portion 4 more quickly than the ballast operation.
  • the tilting of the fork portion 4 is kept in alignment with the quay C with respect to the change in the attitude of the hull, so that the loading work can be performed. It is preferred to avoid tilting the superstructure 41 at.
  • the fork portion 4 rises as the hull 2 rises. At that time, the upper structure 41 is scooped up by the fork portion 4 so that the work platform ship You may load in 1A.
  • the spuds 20A and 20B are separated from the water bottom B as needed, and the lowest parts of the spuds 20A and 20B are near the water surface S.
  • the spuds 20A and 20B are raised until they reach the state where they are stored in the work pontoon ship 1A.
  • the work pontoon ship 1A is equipped with a propulsion system so that it can self-propell, it will use the propulsion system to self-propell, but when it is towed by a tugboat, etc., it will depend on the propulsion system of another ship. Sail.
  • the moving process is a process after the work pontoon 1A reaches the installation water area by the navigation process, and by moving the work pontoon 1A, the upper structure 41 mounted on the work pontoon 1A is installed in advance as a lower structure.
  • This is a step of moving to the upper portion 42a of 42.
  • this moving step as shown in FIG. 12, even when the lower portion 41d and the upper portion 42a of the lower structure 42 are at the same position on the horizontal plane as the lower portion 41d and the upper portion 42a of the lower structure 42, the collision does not occur.
  • the robot moves while maintaining a certain vertical distance D.
  • the upper structure 41 and the lower structure 42 are separated by setting the hull trim as a toe (a bow trim with the stern side raised) and raising the stern's fork part 4. It is preferable that the upper structure 41 is moved so as to be positioned on the lower structure 42 while being sufficiently separated from each other in the vertical direction. Even in this case, it is preferable to avoid the inclination of the upper structure 41 by the mounting portion inclination mechanism of the fork portion 4.
  • the moving process instead of levitating the hull 2 due to the decrease of ballast water, the moving process is performed when the tide changes from low tide to high tide by using the tide (tide).
  • the fork portion 4 carrying the upper structure 41 can be raised.
  • the propulsion force moving method in the floating state in which the spuds are moved by the propulsion system of the own ship or another ship is used.
  • the spuds 20A, 20B are lowered to reach the bottom, and the work platform 1A is moved downward by the spud movement operation using these spuds 20A, 20B. It is also possible to use the spud moving method of moving the structure 42 to the upper portion 42a.
  • the movement adjustment process is, if necessary, the latter half of the movement process included in the movement process and the process before the bottoming process.
  • the position of the work pontoon 1A is moved by moving the position of the work pontoon 1A in the front-rear direction and the left-right direction, that is, in the horizontal direction.
  • the position of the work carrier 1A is adjusted so that the upper portion 41d, which is the lower joint portion of the object 41, and the lower portion 42a, which is the upper joint portion of the lower structure 42, are aligned.
  • a method of using a mooring adjustment method in the case of multi-point mooring moored by an anchoring cable 6b connecting the mooring cable 6a and the anchor is used.
  • the position of the work table boat 1A is adjusted by adjusting the length and tension of the mooring line 6a and the anchor line 6b by operating the marine vessel maneuvering winch or the anchoring device equipped on the work table boat 1A. And hold the position at the adjusted position.
  • an automatic ship position holding system using an azimuth thruster 7a, a side thruster 7b, etc. is equipped, and the position of the work carrier 1A is adjusted. Adjust and hold in place after the adjustment.
  • the spuds 20A and 20B that have dropped are not raised and stored one by one, Similar to the second approaching method in the mounting step shown in FIG. 8, the third method of moving by a spud moving operation can also be used.
  • the work pontoons 1A were floated on the water surface S while receiving the buoyancy of the hull by lowering the spuds 20A and 20B of the deck lifting system provided on the work pontoons 1A to reach the bottom. In this state, or in a state of being lifted above the water surface S, it is a step of supporting the installation water area.
  • the spuds 20A and 20B are bottomed on the water bottom B, but the spuds 20A and 20B are further lowered to form the hull 2 It floats on the water surface S while receiving the buoyancy.
  • the spuds 20A and 20B are set on the bottom of the water B, and a part of the weight of the work table ship 1A is borne on the bottom of the water B via the spuds 20A and 20B. Since the work pontoon 1A is in a state of being erected on the water bottom B while floating, it is possible to suppress the periodic hull movement of the work pontoon 1A due to waves and swells.
  • the work platform 1A is operated by a spud moving operation using the spuds 20A and 20B of a walking type deck elevating system that is horizontally movable.
  • the stern side spud 20A is raised and the work table boat 1A is horizontally moved by the kick of the bow side spud 20B or the like to perform alignment.
  • the work table boat 1A is moved in the horizontal direction such as the front-rear direction and the left-right direction by the spud movement operation of the spuds 20A and 20B, so that other devices and systems for alignment are equipped. There is no need. Therefore, it is possible to suppress an increase in the size of the work pontoon 1A caused by mounting the device for alignment on the work pontoon 1A.
  • the descending step is carried on the work pontoon 1A by lowering part or all of the work pontoon 1A by a spud raising / lowering operation of raising / lowering the spuds 20A and 20B of the deck lifting system provided on the work pontoon 1A.
  • This is a step of lowering the existing upper structure 41 onto the lower structure 42.
  • the fork portion 4 is lowered, so that the upper structure 41 and the lower structure 42 are brought into contact with, engaged with, or fitted to each other.
  • the fork portion 4 and the upper structure 41 can be lowered while suppressing the periodic hull motion due to the waves and swells of the work pontoon 1A, so that the upper structure 41 is efficiently joined to the lower structure 42. can do.
  • both the front and rear spuds 20A and 20B are simultaneously raised to maintain the attitude of the hull 2 while maintaining the attitude of the hull 2.
  • a method of lowering the fork portion 4 together with 2 can be used. In this case, since the number of spuds 20A and 20B to be operated is three, it is necessary to synchronize with each other in order to avoid the inclination of the hull 2.
  • the hull 2 can be sunk by the amount of the ballast water corresponding to the weight of the upper structure 41 and the vertical distance desired to be secured after the joint 41 is separated from the joint 41 after joining. It is preferable to load ballast water corresponding to the amount.
  • a third descending method as shown in FIG. 20, only the spud 20B on the stern side is slightly retracted and raised, and the stern side is lowered to incline the hull posture to lower the fork portion 4.
  • the method can be used.
  • the work pontoon 1A is a semi-SEP
  • the lowering of the upper structure 41 mounted on the work platform 1A is performed by the spud 20A of the deck lifting system, compared to the work platform equipped with the conventional deck lifting system and the crane. Since it is carried out by the spud lifting operation using 20B, it is not necessary to use a crane of a crane ship, a crane mounted on a work table ship, and a handling device for moving up and down an upper structure. It is possible to avoid an increase in the size of the work pontoon caused by the equipment.
  • the work platform 1A is lowered as compared with the case where the upper structure 41 is lowered only by adjusting the ballast of the work platform 1A. Since the hull 2 of the work pontoon 1A is fixed to the water surface S or fixed above the water surface S by being raised by the spuds 20A and 20B, the hull of the work pontoon 1A due to disturbances such as waves, humming, wind and tidal currents. It is possible to suppress the movements of No. 2 or avoid their influence.
  • the descent process is quick.
  • the work platform 1A and the upper structure 41 mounted on the work carrier 1A can be lowered onto the lower structure 42. Therefore, the working time in the lowering process can be shortened. For example, when increasing or decreasing the ballast water, it may take about 10 minutes or more to adjust the ballast just to raise or lower the front end or the rear end of the hull by several tens of centimeters. It may be 0.4 m / min.
  • the time during which there is a possibility of collision between the upper structure 41 and the lower structure 42 due to the hull motion of the work pontoon 1A due to disturbances such as wind and tidal current can be significantly shortened.
  • the possibility of contact between the upper structure 41 and the lower structure 42 mounted on the work platform 1A is significantly increased before joining. Can be lowered.
  • the joining step is a step of joining the upper structure 41 and the lower structure 42 and integrating them to form a joined body 40 of the upper structure 41 and the lower structure 42.
  • both the lower portion 41d of the upper structure 41 and the upper portion 42a of the lower structure 42 are brought into contact with, engaged with, or fitted to each other by the descending step.
  • the lower portion 41d of the upper structure 41 and the upper portion 42a of the lower structure 42 are joined to each other by using a joining member such as bolts and nuts or performing joining work such as welding.
  • a joining member such as bolts and nuts or performing joining work such as welding.
  • the connection between the upper structure 41 and the fork portion 4 is released.
  • it is preferable to avoid the inclination of the upper structure 41 by the mounting portion inclining mechanism of the fork portion 4 so that the efficiency of the joining operation is improved.
  • the upper structure 41 when there is a possibility that the stern suddenly rises when the connection between the upper structure 41 joined to the lower structure 42 and the fork portion 4 is released, before the joining, if necessary, the upper structure may be released. It is preferable to load ballast water in an amount corresponding to the weight of the object 41 on the rear portion of the hull 2 to prevent the stern from suddenly rising during the removal process. In addition, the load of the upper structure 41 is transferred to the lower structure 42 between the joining and the vertical separation, and the weight of the upper structure 41 is unloaded on the side of the work platform 1A.
  • the ballast of the work pontoon ship 1A is set to the medium load state, or the ballast water is transferred to the stern side so that the hull trim is even. It is preferable to adjust the ballast.
  • the swing of the work platform 1A is suppressed by the support of the spud, and the upper structure is operated by the spud lifting operation of the deck lifting system.
  • This is a step of separating the work platform 1A from the joined body 40 of 41 and the lower structure 42.
  • the horizontal disengagement step is performed after performing the up-down direction disassociation step.
  • it is more preferable.
  • the part of the work platform 1A on which the upper structure 41 is mounted is further lowered by the spud lifting operation using the spuds 20A and 20B of the deck lifting system, or conversely. It is a step of vertically moving the work pontoon 1A away from the joined body 40 by raising it.
  • the upper surface of the fork portion 4 and the lower surface of the lower portion 41d of the upper structure 41 are connected and transported, and the fork portion 4 is lowered. Then, the vertical distance D1 is reduced, and the lower surface of the lower portion 41d of the upper structure 41 is brought into contact with the upper surface of the upper portion 42a of the lower structure 42 (cross hatching portion), and the upper structure 41 and the lower structure 42 are contacted. Are joined together to form a joined body 40.
  • the lower surface of the fork portion 4 and the upper surface of the lower portion 41d of the upper structure 41 are connected and transported, and the fork portion 4 is lowered.
  • the vertical distance D3 is reduced, and the lower surface of the lower portion 41d of the upper structure 41 is brought into contact with the upper surface of the upper portion 42a of the lower structure 42 (cross hatching portion) to join the upper structure 41 and the lower structure 42.
  • the joined body 40 is formed.
  • the lower surface of the fork part 4 and the upper surface of the lower part 41d of the upper structure 41 are disconnected, and the fork part 4 is lifted to increase the vertical distance D4 and join the work pontoon 1A. Remove from body 40. In this case, the upward separation process is performed.
  • this vertical disengagement step there are a downward disengagement in which the fork portion 4 moves downward and an upward disengagement in which the fork portion 4 moves upward.
  • both the front and rear spuds 20A and 20B are simultaneously raised to maintain the attitude of the hull 2.
  • a method of lowering the fork portion 4 together with the hull 2 can be used. In this case, since the number of spuds 20A and 20B to be operated is three, it is necessary to synchronize with each other in order to avoid the inclination of the hull 2.
  • the second downward separating method as in the second descending method of the descending step shown in FIG. 19, only the spud 20A on the bow side is lowered and the bow side is raised to incline the hull attitude. Therefore, a method of lowering the fork portion 4 on the stern side can be used.
  • the third downward disengagement method similarly to the third descending method in the descending step shown in FIG. 20, only the spud 20B on the stern side is raised and the stern side is lowered to incline the hull attitude. Therefore, a method of lowering the fork portion 4 can be used. That is, the stern side spud 20A is further retracted and the fork portion 4 is lowered, whereby the upper part structure 41 of the joined body 40 and the fork portion 4 are separated in the vertical direction. In these cases, two spuds 20B to be operated are provided on the stern side, so that synchronization between the two spuds 20B is required to avoid lateral inclination of the hull 2.
  • both front and rear spuds 20A and 20B are simultaneously lowered to maintain the attitude of the hull 2 while maintaining the attitude of the hull 2.
  • a method of raising the fork portion 4 can be used.
  • the fork portion 4 on the stern side is Can be used. That is, by returning the spud 20A on the bow side and lifting the fork portion 4, the joined body 40 and the fork portion 4 are separated from each other in the vertical direction. In these cases, since the spud 20A to be operated is one on the bow side, it is not necessary to synchronize with the other two spuds 20B on the stern side.
  • a third upward disengagement method as shown in FIG. 23, only the spud 20B on the stern side is lowered, the stern side is raised, and the hull attitude is tilted to raise the fork portion 4. Any method can be used. That is, the spud 20A on the stern side is further extended to raise the fork portion 4 to separate the joined body 40 and the fork portion 4 in the vertical direction.
  • the work table boat 1A is moved in the vertical direction by the spud lifting operation. Therefore, as compared with the draft adjustment of the work table boat 1A by ballast adjustment, the work table boat 1A can be quickly moved from the joint body 40 to the work platform table. It is possible to leave the ship 1A.
  • the work pontoon 1A when the work pontoon 1A is a semi-SEP, it is preferable to decrease or increase the ballast water so that the hull 2 can easily move up or down, but the tide is used. Then, at the time of transition from high tide to low tide, or conversely at the time of transition from low tide to high tide, the work platform 1A can be raised or lifted by performing the vertical separation process without depending on ballast adjustment. Can be lowered. Therefore, the burden of auxiliary ballast adjustment for lowering the hull 2 or changing the hull attitude can be reduced, and the vertical disengagement process can be performed more quickly. In the vertical disengagement step, the vertical distances D2 and D4 between the joined body 40 and the fork portion 4 of the work platform 1A are adjusted by combining the spud lifting operation and the tidal difference and ballast adjustment as necessary.
  • the work platform 1A is moved in the horizontal direction by a spud movement operation using the spuds 20A and 20B of the walk-type deck lifting system to join the work platform 1A to the joined body. It is a step of horizontally separating from 40.
  • the above vertical separation step leaves the installation water area (site sea area) by moving in the horizontal direction after keeping a sufficient distance in the vertical direction.
  • the horizontal disengagement step as a first method, all the spuds 20A and 20B are lifted and a multi-point mooring marine vessel winch is used as in the moving step shown in FIG. You may use the mooring utilization detachment method of detaching 1A from the joined body 40 horizontally.
  • all the spuds 20A and 20B are raised to use the own ship's propulsion system such as the azimuth thruster 7a and the side thruster 7b, or the tugboat or the like.
  • the work table ship 1A may be horizontally separated from the joined body 40 by using a propulsion force separation method using the propulsion system of another ship.
  • this horizontal disengagement step there is a horizontal disengagement method by a spud moving operation.
  • the stern side spud 20A is raised and the bow side spud is operated.
  • the kick of 20B the work pontoon 1A is moved in the horizontal direction and is separated from the joined body in the horizontal direction.
  • this horizontal disengagement step when a horizontally movable walkable deck lifting system is provided, the spud movement operation of the deck lifting system moves the work platform 1A in the front-back direction, left-right direction, etc. Since it can be moved horizontally, it is not necessary to equip another device or system for this horizontal disengagement. Therefore, it is possible to suppress an increase in the size of the work pontoon 1A caused by mounting the device for horizontally separating on the work pontoon 1A. In addition, the work platform 1A can be quickly removed from the joined body 40 by moving the spud of the deck lifting system.
  • the attitude of the fork portion 4 can be easily disengaged by the mounting portion inclination mechanism of the fork portion 4. It is preferable to change or maintain.
  • the return flight process is a process of returning from the installation water area after the installation work, and as in the return flight process shown in FIG. 5, as shown in FIG. 25, the spuds 20A and 20B are placed in a safe place at the work table 1A.
  • the spuds 20A and 20B are raised from the water bottom B until the lowest parts of the spuds 20A and 20B are close to the water surface S, and stored on the deck 3 of the work pontoon 1A. In this state, move from the installation area and return to the sea.
  • This navigation uses the propulsion system if the work pontoon ship 1A is equipped with the propulsion system, but the propulsion system is used for self-navigation, but when towed by a tugboat, etc. Sail and return to port.
  • the work pontoons 1C and 1D are the same as the work pontoons 1A and 1B used in the method of constructing an offshore structure according to the first embodiment, and include half SEP and full SEP.
  • the arm-shaped structure (projection) 4a of the stern fork part 4 is configured so that the mobile mounting table 30A on which the upper structure 41 is mounted and mounted can be fixed. Is different.
  • the movable mounting table 30A is configured to be able to travel and be fixed not only to the fork part 4 of the stern but also to the deck 3, a plurality of superstructures 41 are transported at one time. It is more preferable because it is possible. In this case, not only the first passage for moving the “movable mounting table 30A on which the upper structure 41 is mounted” arranged on the deck 3 to the fork part 4 at the stern, but also the “upper structure 41 It is necessary to provide a second passage for returning the emptied mobile mounting table 30A "from the fork portion 4 at the stern to the deck 3.
  • a pair of left and right fixed type stern side spuds 20A are provided in the vicinity of each of No. 4 and a fixed type spud 20A is provided at the center of the bow side.
  • the first mobile trolley 30A has a base trolley 31 including a wheel trolley 32 that travels on the rails 8 arranged on the work pontoons 1C and 1D.
  • Consists of The base bogie 31 traveling on the rail 8 can be configured to have a structure similar to that of a mobile crane of a shipyard. Further, it is configured to have a recess A on the rear side through which the joined body 40 of the upper structure 41 and the lower structure 42 passes. Further, a driver's cab 33 is provided as needed.
  • the movable mounting table 30A is a self-propelled trolley equipped with an internal combustion engine or an electric motor, or pulls the trolley by winding a wire 9a such as a mooring winch 9 provided before and after the work platform 1C, 1D. It consists of a trolley that moves. 31 to 33, two winches 9 are provided on the deck 3 on the stern side, and two winches 9 are provided on the side surface of the protruding portion 4a so as not to hinder the traveling of the mobile mounting table 30A. , They are arranged respectively. With this configuration, it is not necessary to equip the work pontoons 1C and 1D with a new device for moving the mobile mounting table 30A, so that the work pontoons 1C and 1D can be prevented from increasing in size.
  • the movable mounting table 30A moves on the mounted upper structure 41 in a direction intersecting the traveling direction, for example, a left-right direction moving mechanism, for example, although not shown, on a base carriage of the movable mounting table 30A.
  • a slide table that is provided with rails and moves on the rails is provided, it is possible to quickly and accurately position the movable mounting table 30A in the left-right direction without using the spudder moving operation in the position adjustment process. Can be matched.
  • the upper structure 41 in a state of being mounted on the mobile mounting table 30A is moved to the mobile mounting 30A.
  • the lower joint portion 41d of the upper structure 41 and the upper joint portion 42a of the lower structure 42 mounted on the movable mounting table 30A are connected. Align.
  • the upper structure 41 can be moved in the front-rear direction of the work pontoons 1C and 1D by moving the base carriage of the movable mounting table 30A on the rail 8. Further, by moving the slide base of the movable mounting base 30A in the left-right direction with respect to the base carriage 31 by an electric motor, a hydraulic cylinder, or the like, the upper structure 41 on the slide base is moved to the work platform 1C, 1D. Can be moved left and right. By using both of them together, the upper structure 41 can be moved in the horizontal direction of the work pontoons 1C and 1D.
  • a wheel carriage 32 on the rail 8 is provided with a guide mechanism for the base carriage 31, and the wheel carriage 32 is moved by pushing the wheel carriage 32 in the left and right direction by expanding and contracting a piston of a hydraulic cylinder.
  • the upper structure 41 can be moved in the left and right directions of the work pontoons 1C and 1D also by being provided so as to be possible. Also, other configurations may be used.
  • the positioning can be performed by moving the movable mounting tables 30A and 30B in the horizontal direction, the positioning can be performed quickly and accurately regardless of the spud moving method of the walking type deck lifting system.
  • a walking type deck lifting system when a walking type deck lifting system is provided, it may be used together with the spud moving method.
  • the mobile mounting table 30A in which the upper structure 41 is mounted is mounted on the work pontoons 1C and 1D as it is, so that the upper structure 41 is mounted on the work pontoons 1C and 1D. ..
  • the work pontoons 1C and 1D are configured so that they can be docked on the quay C from the stern side, and further, the rail on the quay C side and the rail 8 of the work pontoons 1C and 1D can be connected.
  • the tilt of the fork portion 4 is changed with respect to changes in the attitude of the hull. It is preferable to avoid the inclination of the upper structure 41 during the mounting work by changing or maintaining the angle so that the berth C can be easily docked.
  • the upper structure 41 can be mounted in advance on the mobile mounting table 30A, and the connection work between the rail on the quay C side and the rails 8 of the work pontoons 1C and 1D and the mobile mounting table can be performed in advance.
  • the upper structure 41 can be quickly mounted on the work pontoons 1C and 1D only by moving the work 30A and fixing the movable mounting base 30A to the fork portion 4 or the like. In this case, the crane work and the crane work affected by the wind become unnecessary.
  • the superstructure 41 is placed on the mobile mounting table 30A already mounted on the work pontoons 1C and 1D, or on the mobile mounting table 30A previously mounted on the work pontoons 1C and 1D by the crane. It is mounted by lifting it with a crane. Alternatively, the mobile mounting table 30A on which the upper structure 41 is mounted is lifted up and mounted on the work table ships 1C and 1D.
  • the work pontoons 1E and 1F are the same as the work pontoons 1C and 1D used in the method for constructing an offshore structure according to the second embodiment, and include half SEP and full SEP.
  • the arm-shaped structure (projection) 4a of the stern fork part 4A is configured so that the mobile mounting table 30B on which the upper structure 41 is mounted and mounted can travel. Is different.
  • the second movable mounting table 30B is moved not only on the fork portion 4A of the stern but also on the deck 3 to set a predetermined arrangement. It is configured to be fixed in place. This makes it possible to carry a plurality of upper structures 41 at the same time and to perform installation work, which is more preferable.
  • the "movable mounting table 30B on which the upper structure 41 is mounted” and the "movable mounting table 30B that is empty after the upper structure 41 is installed" arranged on the deck 3 are the decks. It is necessary to keep on passing on 3.
  • the second mobile mounting table 30B differs from the first mobile mounting table 30A shown in FIG. 34 in that the wheel carriage 32 is a tire-equipped carriage. It consists of a dolly that can be moved.
  • This trolley can be constructed in a shipyard at a structure similar to a self-propelled trolley for transporting building blocks of a ship, for transporting tire blocks of a hull, and a large-scale self-propelled carrier for transporting heavy goods.
  • the upper structure 41 can be mounted on the work pontoons 1E and 1F by only moving in a plane without using a crane or the like.
  • the loading weight is about 70t to 700t.
  • the upper structure 41 can be moved in the front-rear direction and the left-right direction of the work pontoons 1C and 1D by moving the movable mounting table 30B forward and backward or by moving the table width.
  • the movable mounting table 30B is provided with a mechanism capable of moving laterally, it is possible to easily perform horizontal movement and position adjustment by lateral movement instead of width adjustment.
  • the upper structure 41 is mounted on the work berths 1E and 1F.
  • the work pontoons 1E and 1F are configured so that they can be docked on the quay C from the stern side, and further, the ground on the quay C side can be connected to the forks 4A of the work pontoons 1E and 1F.
  • the fork portion 4 provided with the mounting portion tilting mechanism is configured to be used also as a ramp way so that the berthing work can be performed quickly, and the movable mounting table 30B is provided with the protruding portion 4a from the quay wall C side. It is more preferable that the vehicle can be run on and moved.
  • the upper structure 41 can be mounted in advance on the mobile mounting table 30B, and the berthing work of the work pontoons 1E and 1F on the quay C side and the moving work of the mobile mounting base 30B are simply performed. Then, the upper structure 41 can be quickly mounted on the work pontoons 1E and 1F only by fixing the movable mounting table 30B to the fork portion 4A or the deck 3 or the like. In this case, the crane work and the crane work affected by the wind become unnecessary. Moreover, since the degree of freedom in the traveling direction is greater than that of the first movable mounting table 30A traveling on the rails 8, the fixing work and the alignment work can be performed more quickly.
  • the work pontoons 1G and 1H are the same as the work pontoons 1C and 1D used in the method for constructing an offshore structure according to the second embodiment, and include half SEP and full SEP.
  • the elevator structure includes an elevator floor 4b that moves up and down with respect to the arm-shaped structure (projection) 4a of the stern fork portion 4B.
  • the elevator structure it is possible to use the elevator structure for aircraft that the aircraft carrier has.
  • the first or second movable mounting table 30A, 30B can be mounted on the lifting floor 4b, and the mounting method, the positioning method, etc. of the construction method of the second or third offshore structure. May be used.
  • the carrier side elevator for the aircraft carrier (port side elevator) has a loading capacity of 30 to 60 tons and a hoisting speed of 10 seconds to move from the deck to the deck below and its size is (10m to 26m) x ( It is about 10 m to 16 m). If the loaded weight of one elevator is insufficient, it can be dealt with by synchronizing and operating a plurality of elevators.
  • a front-back direction moving mechanism that moves the lifting floor 4b in the front-rear direction of the work pontoons 1G, 1H
  • a left-right direction moving mechanism that moves the lifting floor 4ab in the left-right direction of the work pontoons 1G, 1H
  • the upper structure 41 mounted on the lifting floor 4ab is used by using the front-rear direction moving mechanism and the left-right direction moving mechanism in the movement adjusting step, the position adjusting step, and the horizontal movement separating step. It is possible to easily perform the alignment with respect to the lower structure 42 and the vertical separation of the lifting floor 4b from the joined body 40.
  • the spud 20A of the work pontoons 1G and 1H may be raised and floated on the water surface S.
  • the vessel 2 is fixed to the bottom and floated on the water surface S while receiving the buoyancy of the hull 2, or is lifted above the water surface S, the hull 2 is fixed, and then the elevating floor 4ab is moved up and down. 41 is mounted on this lifting floor 4b.
  • the spud 20A of the work platform 1G, 1H is bottomed to descend or rise the mounting portion, and the water surface S is received while receiving the buoyancy of the hull 2. It is performed by elevating the elevating floor 4b while floating on the floor or in a state of being lifted above the water surface S. That is, the lifting floor 4b is lifted instead of the spud lifting operation.
  • the upper structure 41 assembled and integrated on land and transported by the work pontoons 1A and 1B can be used without using a hanging facility such as a large crane. Also, the work platform 1A, 1B can be moved up and down faster than the draft adjustment of the work pontoons 1A, 1B, and the upper structure 42 can be safely and quickly joined to the lower structure 41 arranged in the installation water area in a short time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Foundations (AREA)

Abstract

A part or all of a work ship 1A is lowered using a spud raising and lowering operation for raising and lowering spuds 20A, 20B of a deck raising and lowering system provided to the work ship 1A, whereby an upper structure 41 mounted on the work ship 1A is raised and lowered on a lower structure 42, and the two structures are joined and integrated. It is thereby possible to move the upper structure, which is assembled and integrated on land and conveyed using the work ship, up and down without using suspension equipment such as a large crane, and more quickly than by draft adjustment of the work ship using ballast adjustment, and to join the upper structure to the lower structure disposed in the installation sea region safely and in a short period of time.

Description

洋上構造物の施工方法及び作業台船Construction method of offshore structure and work pontoon
 本発明は、風力発電装置等を搭載した洋上構造物の施工方法及び作業台船に関するものである。 The present invention relates to a method of constructing an offshore structure equipped with a wind turbine generator and the like, and a work pontoon.
 風車などの風力発電装置を搭載する洋上構造物は、一般に上部構造物と下部構造物に分けて製造される。この上部構造物は一般にタワー、ナセル、ブレード等で構成されている。一方、下部構造物は、着床式の洋上構造物の場合は、パイル、重力式、ジャケット、トリポッド、トリパイル等の載置台等がある。また、浮体式の洋上構造物の場合は、アンカーと係留索で係留される円柱状のタワー構造物(スパー型の場合)がある。 Offshore structures equipped with wind turbines and other wind turbine generators are generally manufactured as upper and lower structures. This superstructure is generally composed of towers, nacelles, blades and the like. On the other hand, as the lower structure, in the case of a landing type offshore structure, there is a mounting table such as a pile, a gravity type, a jacket, a tripod and a tripile. In the case of a floating offshore structure, there is a columnar tower structure moored by anchors and mooring lines (in the case of a spar type).
 この上部構造物と下部構造物を一体化して、洋上の設置水域に設置する施工方法では、多くの場合、下部構造物を水中に直立状態に固定または保持する工程があり、その工程の後で、水面上にある下部構造物の上端に上部構造物を搭載及び固定する作業が行われる。これらの上部構造物を順次下部構造物に搭載して一体化する作業は、多くの場合、クレーン船を使用して行われている。 In the construction method in which the upper structure and the lower structure are integrated and installed in the installation water area on the ocean, in many cases, there is a step of fixing or holding the lower structure in the upright state in water, and after that step The work of mounting and fixing the upper structure on the upper end of the lower structure on the water surface is performed. The work of sequentially mounting and superposing these upper structures on the lower structures is often carried out using a crane ship.
 しかしながら、このような場合、使用料が高いクレーン船が必要になる上に、クレーンで吊り下げられた、タワー等の上部構造物が風の影響を受け易く、設置工事が難航するという問題がある。 However, in such a case, there is a problem that a crane ship that is expensive to use is required, and that an upper structure such as a tower that is suspended by a crane is easily affected by wind and the installation work is difficult. ..
 このクレーン船を用いた接合作業に対して、例えば、日本特開2012-76738号公報に記載されているように、甲板昇降式脚柱システム(ジャッキアップシステム)と移動可能なクレーンを備えたセミサブマーシブルな作業台船(SEP)で、甲板昇降式脚柱を伸ばして着底して、作業台船を固定した安定な状態にしてから、搭載したクレーンによって風力タービンを海底に下す方法が提案されている。 For joining work using this crane ship, for example, as described in Japanese Unexamined Patent Publication No. 2012-76738, a semi-vehicle equipped with a deck lifting pedestal system (jackup system) and a movable crane. In a submersible work platform (SEP), a method has been proposed in which the deck lifting pedestal is extended and bottomed to make the work platform fixed and stable, and then the wind turbine is lowered to the seabed by the mounted crane. ing.
 また、同様に、例えば、日本特開2011-42257号公報に記載されているように、連結型自己昇降式作業台船(SEP)を洋上にジャッキアップして固定して安定な状態にしてから、搭載したクレーンによって、タワーマストの組み立て部材を順次吊り上げて基礎の上に設置する方法が提案されている。 Similarly, for example, as described in Japanese Unexamined Patent Application Publication No. 2011-42257, a connected self-elevating work platform ship (SEP) is jacked up on the ocean to be fixed to a stable state. , A method of sequentially hoisting the assembly members of the tower mast by a mounted crane and installing them on a foundation has been proposed.
 さらには、例えば、日本特開2012-107586号公報に記載されているように、ジャッキアップ脚を備えた洋上風車設置用船舶において、クレーンではなくて、船体の前後方向さらには船幅方向に走行するハンドリング装置で、風車のタワーを把持して持ち上げて、基礎上に風車を設置する方法が提案されている。 Furthermore, for example, as described in Japanese Unexamined Patent Publication No. 2012-107586, in an offshore wind turbine installation vessel equipped with jack-up legs, the vessel travels not in the crane but in the longitudinal direction of the hull and further in the width direction of the vessel. It has been proposed to hold and lift a tower of a wind turbine with such a handling device to install the wind turbine on a foundation.
 また、例えば、日本特開2012-76622号公報に記載されているように、台船本体を昇降自在に移動させる複数のレグを備えた甲板昇降式作業台船において、台船本体の甲板上を移動する建て起こし装置で、モノパイル又はタワー一体式風車を倒伏状態又は斜め倒伏状態から鉛直状態に建て起こして、所定位置まで降下させる洋上風力発電施設の施工方法も提案されている。 Further, for example, as described in Japanese Unexamined Patent Publication No. 2012-76622, in a deck lifting type work berth provided with a plurality of legs for vertically moving the pontoon main body, A construction method of an offshore wind power generation facility in which a monopile or tower-integrated wind turbine is erected from a laid state or an obliquely laid state to a vertical state by a moving erection device and lowered to a predetermined position is also proposed.
 しかしながら、これらの自己昇降式作業台船(SEP)に搭載したクレーンやハンドリング装置や立て起こし装置などを用いる方法では、いずれも、上部構造物を持ち上げたり、建て起こしたりするためのクレーンや専用の装置が必要になり、作業台船における重量が増加し、そのため、作業台船が大型化するという問題がある。 However, with the method of using the crane, the handling device, and the erecting device mounted on these self-lifting work pontoons (SEPs), all of them are a crane or a dedicated crane for lifting or erecting the upper structure. There is a problem in that a device is required, and the weight of the work pontoon increases, so that the work pontoon becomes large.
 このような問題を鑑みて、タワー、ナセル、ブレード等を陸上で組み上げて一体化して上部構造物を構成してから、この上部構造物を作業台船(甲板昇降用脚を備えていない)により運搬し、洋上に設置された下部構造物の上に移動させて、クレーンや特別な装置を使用せずに、上部構造物を下部構造物と接合する方法が提案されている。 In view of these problems, the tower, nacelle, blades, etc. are assembled on land and integrated to form an upper structure, and then this upper structure is constructed by a work pontoon (without the deck lifting legs). A method has been proposed in which the upper structure is joined to the lower structure without using a crane or a special device by transporting and moving the structure onto the lower structure installed on the sea.
 例えば、日本特開2016-22783号公報に記載されているように、浮体型の下部構造物を想定する洋上構造物の施工方法において、接合の開始前には、運搬船に搭載した上部構造物と下部構造物の間に十分な上下距離(上下間隔)を保持しておき、接合開始の直前に、上部構造物に向けて下部構造物をウインチなどで引き上げることで、両者の間の相対運動を徐々に抑制して安全に接合できるようにする方法が提案されている。 For example, as described in Japanese Unexamined Patent Publication No. 2016-22783, in a method for constructing an offshore structure that assumes a floating type lower structure, an upper structure mounted on a carrier ship before the joining is started. Keep a sufficient vertical distance (upper and lower distance) between the lower structures, and immediately before the start of joining, pull the lower structure toward the upper structure with a winch, etc. A method has been proposed to gradually suppress and enable safe joining.
 この方法では、接合を完了した後で、運搬船から下部構造物と上部構造物の接合体を分離する際には、バラスト調整により運搬船の一部を沈めながら、接合体を徐々に浮上させることで、接合体を運搬船から短時間で離脱させている。 With this method, when separating the joined structure of the lower structure and the upper structure from the carrier after completing the joining, by gradually adjusting the ballast to sink the part of the carrier, the joined body is gradually floated. , The joint is removed from the carrier in a short time.
 また、例えば、日本特開2017-44141号公報に記載されているように、着床型の下部構造を想定する洋上風車の架設方法において、風車を構成するベースを架設場所に設置された基礎の上部に配置した後、風車を洋上に支持している浮体(フォーク付き台船)の喫水調整をバラスト水の増減により行うことで、基礎の上部にベースを設置する方法が提案されている。 Further, for example, as described in Japanese Unexamined Patent Publication No. 2017-44141, in a method of erection of an offshore wind turbine assuming a landing type lower structure, a base constituting the wind turbine is installed at a erection site. It has been proposed to install a base on the upper part of the foundation by adjusting the draft of the floating body (fork with a fork) that supports the wind turbine on the sea after increasing the ballast water.
 この方法では、接合前に作業台船に搭載された上部構造物を下部構造物に接近させる工程、上部構造物と下部構造物の接合後に、作業台船から接合体を離脱させる工程において、それぞれの間の上下距離を、作業台船のバラスト調整によって制御している。 In this method, in the step of approaching the upper structure mounted on the work pontoon to the lower structure before joining, and in the step of separating the joined body from the work pontoon after joining the upper structure and the lower structure, respectively. The vertical distance between them is controlled by adjusting the ballast of the work table ship.
 このような作業台船のバラスト調整で、上部構造物と下部構造物を接合する場合、接合の開始時には、作業台船に搭載されている上部構造物は作業台船と一体で動いており、接合の完了後には、上部構造物は下部構造物と一体で動くことになることから、接合の開始前には作業台船に搭載された上部構造物と下部構造物の間で、接合の完了後には接合体と作業台船の間で、それぞれの間で衝突を回避するために、適切な距離(間隔)を維持する必要がある。 When joining the upper structure and the lower structure by such ballast adjustment of the work pontoon, at the start of joining, the upper structure mounted on the work pontoon is moving integrally with the work pontoon, After the joining is completed, the upper structure will move together with the lower structure.Therefore, before the start of the joining, the completion of the joining between the upper structure and the lower structure mounted on the work table ship. After that, it is necessary to maintain an appropriate distance (distance) between the joint body and the work pontoon in order to avoid collision between them.
 特に、接合作業においては、一般的に、波やうねりによる作業台船の船体運動は数秒~十数秒の周期を持つことから、作業台船に搭載された上部構造物と下部構造物の間の上下方向の距離もこの周期で変化し、この周期毎に衝突する可能性が生じることになる。この衝突回避に対しては、作業台船の下部構造物への接近や設置後の接合体からの離脱のタイミング等を、熟練した操船者に委ねることになり、操船者の負担が大きい。そのため、作業台船の船体運動で生じる、上部構造物と下部構造物との間、及び、作業台船と接合体との間の距離(特に上下方向の距離)の変動に、迅速に、例えば、数十秒以内で対応できるような施工方法が望まれている。 In particular, in joining work, generally, the hull motion of a work pontoon due to waves and swells has a cycle of several seconds to several tens of seconds. Therefore, between the upper structure and the lower structure mounted on the work pontoon, The distance in the vertical direction also changes in this cycle, and there is a possibility of collision in each cycle. In order to avoid this collision, the timing of approaching the undercarriage of the work pontoon ship and the timing of detachment from the joint after installation, etc. is left to a trained operator, which imposes a heavy burden on the operator. Therefore, a change in the distance between the upper structure and the lower structure and between the work platform and the joint (especially the distance in the vertical direction) caused by the hull motion of the work platform quickly changes, for example, quickly. However, a construction method that can respond within tens of seconds is desired.
 しかしながら、一般的な作業台船のバラストシステムの場合、船体の前端や後端を数十cm上下させるためだけでも、バラスト調整に10分程度以上の時間が必要であり、接合の前後の衝突回避の面からは十分な時間とは言えない。 However, in the case of a ballast system of a general work pontoon, it takes about 10 minutes or more to adjust the ballast just to raise or lower the front end or the rear end of the hull by several tens of centimeters, and avoid collision before and after joining. From the point of view, it is not enough time.
 一方で、自己昇降式の作業台船(SEP)においては、例えば、日本特開2012-45970号公報に記載されているように、甲板昇降用脚(スパッド)を用いて移動できるように構成した移動式(歩行式)の作業台船が提案されている。例えば、揺動装置に構成されたスパッド(甲板昇降用脚)を、全周囲のいずれかの方向に傾斜させた後、鉛直方向に戻したり、全周囲のいずれかの方向に傾斜させた後、逆方向に傾斜させたりすることを繰り返すことで、船体の周囲のいずれの方向へも全体を安定して移動させることができる作業船が提案されている。 On the other hand, in a self-lifting work platform (SEP), it is configured so that it can be moved by using a deck lifting leg (spud) as described in Japanese Patent Laid-Open No. 2012-45970, for example. A mobile (walking) work platform has been proposed. For example, after inclining a spud (legs for raising and lowering the deck) configured in the rocking device in any direction of the entire circumference, after returning to the vertical direction or inclining in any direction of the entire circumference, A work boat has been proposed which can be stably moved as a whole in any direction around the hull by repeating tilting in the opposite direction.
 また、例えば、日本特開平11-310189号公報に記載されているように、台船本体にスパッドを支持させる支持枠のうちの少なくとも1基の支持枠を台船本体に水平移動可能に支持し、この水平移動可能な支持枠に支持させたスパッドを離底させた後、この支持枠を水平駆動手段で水平移動させてからそのスパッドを再着底させ、その後、この支持枠を逆方向に水平移動させることにより、水深差による移動距離の誤差を生じることなく台船本体を移動させる台船が提案されている。 Further, for example, as described in Japanese Unexamined Patent Publication No. 11-310189, at least one support frame of the support frames for supporting the spud on the boat main body is supported on the boat main body so as to be horizontally movable. , After the spud supported on the horizontally movable support frame is released from the bottom, the support frame is horizontally moved by the horizontal drive means and then the spud is re-bottomed, and then the support frame is moved in the opposite direction. There has been proposed a barge that moves a barge body by moving the barge horizontally without causing an error in the moving distance due to a difference in water depth.
日本特開2012-76738号公報Japanese Patent Laid-Open No. 2012-76738 日本特開2011-42257号公報Japanese Patent Laid-Open No. 2011-42257 日本特開2012-107586号公報Japanese Patent Laid-Open No. 2012-107586 日本特開2012-76622号公報Japanese Patent Laid-Open No. 2012-76622 日本特開2016-22783号公報Japanese Unexamined Patent Publication No. 2016-22783 日本特開2017-44141号公報Japanese Patent Laid-Open No. 2017-44141 日本特開2012-45970号公報Japanese Patent Laid-Open No. 2012-45970 日本特開平11-310189号公報Japanese Patent Laid-Open No. 11-310189
 これらの状況に際して、発明者は次の三つの知見を得た。一つ目の知見は、上部構造物を上下移動するクレーン又はハンドリング装置を備えたり、上部構造物を傾斜させる建て起こし装置を備えたりする甲板昇降式の作業台船(SEP)では、作業台船を上昇させて安定した固定状態で、接合作業を行うことができるが、その一方で、これらの装置の重量を受けたり、作業台船の復原性能を確保するために、作業台船が大型化するという問題が有る。 In these situations, the inventor obtained the following three findings. The first finding is that in a deck-elevating work platform (SEP) equipped with a crane or a handling device for vertically moving the superstructure, or with a erection device for tilting the superstructure, Can be carried out in a stable and fixed state, but on the other hand, in order to receive the weight of these devices and to secure the restoration performance of the work pontoons, the work pontoons are enlarged. There is a problem of doing.
 二つ目の知見は、甲板昇降式ではない作業台船では、バラスト調整による作業台船の沈下量による上部構造物又は接合体の上下移動する場合は、甲板昇降式脚柱システムも、クレーン又は専用の装置も必要としないので、作業台船は単純な構造となり、大型化も抑制できる。しかし、その一方で、波やうねりによる作業台船の船体運動を抑制できず、また、バラスト調整による作業台船の10分で数十cmの速度での上下移動では、時間がかかり過ぎるので、そのため、接合前は、作業台船に搭載された上部構造物と下部構造物の間で、接合後は、作業台船と接合体の間で、接触の可能性があるという問題がある。 The second finding is that in a work platform that is not a deck lifting type, when the upper structure or the joint is moved up and down due to the sinking amount of the work platform due to ballast adjustment, the deck lifting pedestal system, crane or Since no dedicated device is required, the work pontoon has a simple structure and can be prevented from increasing in size. However, on the other hand, it is not possible to suppress the hull movement of the work pontoon due to waves and swells, and it takes too much time to move the work pontoon up and down at a speed of several tens of cm in 10 minutes by ballast adjustment. Therefore, before joining, there is a possibility that there is a possibility of contact between the upper structure and the lower structure mounted on the work pontoon, and after joining, there is a possibility of contact between the work berth and the joined body.
 三つ目の知見は、甲板昇降式の作業台船(SEP)では、甲板昇降式脚柱システムにより、作業台船を上下できる機能を備えており、また、移動式(歩行式)のスパッドを備えている場合は水平方向の移動が可能である。従って、上部構造物の降下作業と、上部構造物と下部構造物の接合作業において、甲板昇降式脚柱システムにより、1分で数十cmの速度で作業台船を上下移動させれば、クレーンや専用の装置を使用せずに、また、バラスト調整よりも迅速に、作業台船に搭載した上部構造物を上下でき、また、上部構造物と下部構造物の接合体から作業台船を離脱させることができ、上記の問題を解決できる。 The third finding is that the deck lifting work platform (SEP) has the function to move the work platform up and down by the deck lifting pedestal system, and also the mobile (walking) spud. If equipped, it can be moved horizontally. Therefore, in the work of lowering the upper structure and the work of joining the upper structure and the lower structure, if the work platform is moved up and down at a speed of several tens of cm in 1 minute by the deck lifting pedestal system, It is possible to raise and lower the superstructure mounted on the work pontoon without using a dedicated device or quicker than ballast adjustment, and to separate the work pontoon from the joined structure of the superstructure and the substructure. It is possible to solve the above problems.
 本発明はこのような状況を鑑みてなされたもので、その目的は、陸上で組み上げられ一体化されて、作業台船で運搬された上部構造物を、大型のクレーンなどの吊り下げ設備を使用せずに、また、バラスト調整による作業台船の喫水調整よりも迅速に上下移動できて、短時間で安全に、上部構造物を設置水域に配置された下部構造物に接合できる洋上構造物の施工方法及び作業台船を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is to use an upper structure that is assembled and integrated on land and transported by a work table ship by using a hanging facility such as a large crane. Of the offshore structure that can be moved up and down faster without adjusting the draft of the work table by ballast adjustment, and in a short time and safely, the upper structure can be joined to the lower structure located in the installation area. To provide a construction method and a work pontoon.
 上記のような目的を達成するための本発明の洋上構造物の施工方法は、洋上構造物を上部構造物と下部構造物に分割して製造する製造工程と、前記下部構造物を設置水域に運搬して設置する設置工程と、前記上部構造物を作業台船に搭載して前記設置水域に運搬する運搬工程と、前記作業台船の移動により、前記作業台船に搭載した前記上部構造物を、予め設置した前記下部構造物の上方部位に移動する移動工程と、前記作業台船に備えられている甲板昇降式システムのスパッドを下降させて着底させることにより、前記作業台船を、船体の浮力を受けつつ水面に浮かべた状態で、又は、水面より上に持ち上げた状態で、設置水域に支持する着底工程と、前記作業台船に備えられている甲板昇降式システムのスパッドを昇降させるスパッド昇降操作で前記作業台船の一部又は全部を降下させることにより、前記作業台船に搭載されている前記上部構造物を前記下部構造物の上に降下する降下工程と、前記上部構造物を前記下部構造物に接合して一体化して、前記上部構造物と前記下部構造物の接合体を形成する接合工程と、前記上部構造物と前記下部構造物の接合体から前記作業台船を離脱する離脱工程とを、含むことを特徴とする洋上構造物の施工方法である。 The method for constructing an offshore structure of the present invention to achieve the above-mentioned object is a manufacturing process in which an offshore structure is divided into an upper structure and a lower structure, and the lower structure is installed in a water area. An installation step of transporting and installing, a carrying step of mounting the upper structure on a work pontoon and carrying it to the installation water area, and a superstructure mounted on the work berth by moving the work berth A moving step of moving to an upper portion of the lower structure that is installed in advance, and by lowering the spud of the deck lifting system provided in the work platform to the bottom, the work platform is While floating on the surface of the water while receiving the buoyancy of the hull, or lifted above the surface of the water, the bottoming step of supporting the installation water area and the spud of the deck lifting system equipped on the work platform Spud to raise and lower A descending step of lowering a part or all of the work platform ship by a descending operation to lower the upper structure mounted on the work platform ship onto the lower structure; and the upper structure. A joining step of joining and integrating with the lower structure to form a joined body of the upper structure and the lower structure; and separating the work platform from the joined body of the upper structure and the lower structure. The method for constructing an offshore structure, comprising:
 この方法によれば、従来技術の甲板昇降式システムとクレーンなどを備えた作業台船に比べて、降下工程において、作業台船に搭載した上部構造物の降下を、甲板昇降式システムのスパッドを用いたスパッド昇降操作で行うので、クレーン船のクレーン、作業台船に搭載されたクレーン、及び、上部構造物を上下するためのハンドリング装置などを用いる必要が無くなり、これらを作業台船に装備することによって生じる作業台船の大型化を回避できる。 According to this method, in comparison with a work platform equipped with a conventional deck lifting system and a crane, the lowering of the upper structure mounted on the work platform during the lowering process can be performed with the spud of the deck lifting system. Since it is performed by the spud lifting operation used, it is not necessary to use the crane of the crane ship, the crane mounted on the work pontoon, and the handling device for moving the upper structure up and down, and equipping the work pontoon with these. It is possible to avoid an increase in the size of the work pontoon caused by this.
 また、このスパッド昇降操作で作業台船に搭載した上部構造物を降下させる方法では、作業台船のバラスト調整のみで上部構造物を降下させる場合に比べて、作業台船をスパッドで上昇させて、作業台船の船体を水面に固定又は水面より上に固定しているので、波、うなり、風と潮流等の外乱による作業台船の船体の運動を抑制、またはそれらの影響を回避できる。 In addition, in the method of lowering the upper structure mounted on the work table by this spud lifting operation, the work table is raised by the spud as compared to the case where the upper structure is lowered only by adjusting the ballast of the work table. Since the hull of the work pontoon is fixed to the water surface or fixed above the water surface, the movement of the hull of the work pontoon due to disturbances such as waves, humming, wind and tidal current can be suppressed, or their influence can be avoided.
 さらに、作業台船のバラスト水の増減による作業台船の沈下速度と浮上速度に比べて、スパッドの昇降による降下速度と上昇速度が大きいので、降下工程において、迅速に、作業台船とこれに搭載された上部構造物を下部構造物の上に降下することができる。そのため、降下工程における作業時間を短縮することができる。 Furthermore, since the descending speed and ascending speed of the spud are higher than the sinking speed and the ascending speed of the work table due to the increase or decrease of the ballast water of the work table, the work table and The mounted upper structure can be dropped onto the lower structure. Therefore, the working time in the lowering process can be shortened.
 従って、風と潮流等の外乱による作業台船の船体の運動による、上部構造物と下部構造物の間の衝突の可能性のある時間を著しく短縮できる。この船体の運動の抑制又は回避と、作業台船の降下の迅速化により、接合前は作業台船に搭載された上部構造物と下部構造物の間における接触の可能性を、接合後は作業台船と接合体の間における接触の可能性を、それぞれ大幅に低下させることができる。 Therefore, the time during which there is a possibility of collision between the upper structure and the lower structure due to the movement of the hull of the work pontoon due to disturbances such as wind and tidal current can be significantly reduced. By restraining or avoiding the movement of the hull and speeding up the descent of the work pontoon, the possibility of contact between the upper structure and the lower structure mounted on the work pontoon before joining and the work after joining The possibility of contact between the pontoon and the joint can be significantly reduced.
 上記の洋上構造物の施工方法において、前記着底工程の後に位置調整工程を含むと共に、前記位置調整工程では、歩行式の前記甲板昇降式システムのスパッドを用いたスパッド移動操作で作業台船の位置を水平方向に移動させることで、前記作業台船に搭載した前記上部構造物の下側の接合部と前記下部構造物の上側の接合部との位置合わせを行うように構成されると、次のような効果を奏することができる。 In the method for constructing the above-mentioned offshore structure, including a position adjusting step after the bottoming step, and in the position adjusting step, a work platform ship is operated by a spud moving operation using a spud of the walking type deck lifting system. By moving the position in the horizontal direction, it is configured to align the lower joint portion of the upper structure mounted on the work platform and the upper joint portion of the lower structure, The following effects can be achieved.
 この調整工程によれば、水平方向に移動可能な歩行式の甲板昇降式システムを備えている場合には、そのスパッド移動操作で、作業台船を前後方向や左右方向等の水平方向に移動させることができるので、位置合わせのための他の装置やシステムを装備する必要が無くなる。従って、位置合わせのための装置を作業台船に搭載することによって生じる作業台船の大型化を抑制できる。 According to this adjusting step, when a walkable deck elevating system capable of moving in the horizontal direction is provided, the spud moving operation moves the work pontoon in the horizontal direction such as the front-rear direction and the left-right direction. Therefore, it is not necessary to equip another device or system for alignment. Therefore, it is possible to suppress an increase in the size of the work pontoon caused by mounting the positioning device on the work pontoon.
 上記の洋上構造物の施工方法において、前記離脱工程が、前記甲板昇降式システムのスパッドを用いたスパッド昇降操作により、前記作業台船の上部構造物を搭載していた部位を上昇または降下させることにより、前記作業台船を前記接合体から上下方向に離間させる上下方向離脱工程を含むと、次のような効果を奏することができる。 In the construction method of the above-mentioned offshore structure, the detaching step raises or lowers a portion on which the upper structure of the work pontoon is mounted by a spud lifting operation using a spud of the deck lifting system. Thus, the following effects can be achieved by including the vertical separation step of separating the work platform ship from the joined body in the vertical direction.
 この上下方向離脱工程によれば、スパッド昇降操作で、作業台船を上下方向に移動させるので、バラスト調整による作業台船の喫水調整に比べて、迅速に、接合体から作業台船を離脱することができる。 According to this vertical disengagement step, the work platform is moved in the vertical direction by the spud lifting operation, so that the work platform is removed from the joint more quickly than the draft adjustment of the work platform by ballast adjustment. be able to.
 上記の洋上構造物の施工方法において、前記離脱工程が、歩行式の前記甲板昇降式システムのスパッドを用いたスパッド移動操作により、前記作業台船を水平方向に移動させることにより、前記作業台船を前記接合体から水平方向に離間させる水平方向離脱工程を含むと、次のような効果を奏することができる。 In the method for constructing an offshore structure described above, in the detaching step, the work pontoons are moved horizontally by a spud movement operation using a spud of the walking type deck lifting system. The following effects can be achieved by including a horizontal separating step of separating the above from the joined body in the horizontal direction.
 この水平方向離脱工程によれば、水平移動可能な歩行式の甲板昇降式システムを備えている場合には、そのスパッド移動操作で、作業台船を前後方向や左右方向等の水平方向に移動させることができるので、この水平方向の離脱のための他の装置やシステムを装備する必要が無くなる。従って、水平方向の離脱の装置を作業台船に搭載することによって生じる作業台船の大型化を抑制できる。また、甲板昇降式システムのスパッド移動操作により、迅速に、接合体から作業台船を離脱することができる。 According to this horizontal disengagement process, in the case where a horizontally movable walkable deck elevating system is provided, the work paddle is moved in the horizontal direction such as the front-rear direction and the left-right direction by the spud movement operation. This eliminates the need to equip any other device or system for this horizontal disengagement. Therefore, it is possible to suppress an increase in the size of the work pontoon caused by mounting the horizontal separation device on the work pontoon. In addition, the work platform ship can be quickly removed from the joined body by the spud movement operation of the deck lifting system.
 そして、上記の目的を達成するための作業台船は、設置水域に運搬して設置される洋上構造物の上部構造物を搭載する搭載部位と、船体を昇降する甲板昇降式システムのスパッドを備えた作業台船において、前記搭載部位を作業台船の船体に対して傾斜させる搭載部位傾斜機構を備えて構成される。 And, the work pontoon for achieving the above-mentioned purpose is provided with a mounting portion for mounting an upper structure of an offshore structure to be transported and installed in an installation water area, and a spud of a deck elevating system for elevating the hull. In the work platform, the loading site tilting mechanism that tilts the loading site with respect to the hull of the work platform is provided.
 この構成によれば、作業台船が、上部構造物の搭載、上部構造物の降下、上部構造物と下部構造物の接合体からの作業台船の離脱等の際に、作業台船の船体姿勢が船首トリムや船尾トリムなどとなる場合に、上部構造物を搭載する搭載部位が、船体姿勢と同じ傾斜にならず、水平などのその時の作業に適した姿勢をとることができるので、上部構造物の傾斜や、上部構造物の下部と下部構造物の上部との平行を維持することができるので、作業時における作業効率と安全性を向上することができる。 According to this configuration, the work pontoon hulls of the work pontoon when the superstructure is mounted, the superstructure is lowered, and the work pontoon is detached from the joined structure of the upper structure and the lower structure. When the posture is such as bow trim or stern trim, the mounting part for mounting the upper structure does not have the same inclination as the hull posture, and it can take a posture suitable for the work at that time, such as horizontal, Since it is possible to maintain the inclination of the structure and the parallelism between the lower part of the upper structure and the upper part of the lower structure, it is possible to improve work efficiency and safety during work.
 本発明の洋上構造物の施工方法及び作業台船によれば、陸上で組み上げられ一体化されて、作業台船で運搬された上部構造物を、大型のクレーンなどの吊り下げ設備を使用せずに、また、バラスト調整による作業台船の喫水調整よりも迅速に上下移動できて、短時間で安全に、上部構造物を設置水域に配置された下部構造物に接合できる。 According to the method of constructing an offshore structure and the work pontoon of the present invention, the upper structure assembled and integrated on land and transported by the work pontoon can be used without using a hanging facility such as a large crane. In addition, it can move up and down more quickly than adjusting the draft of the work pontoon by ballast adjustment, and can join the upper structure to the lower structure arranged in the installation water area in a short time and safely.
図1は、本発明に係る第1の実施の形態の洋上構造物の施工方法で使用するSEPタイプの作業台船の構成を模式的に示す平面図である。FIG. 1 is a plan view schematically showing the configuration of an SEP type work pontoon used in the method for constructing an offshore structure according to the first embodiment of the present invention. 図2は、図1のハーフSEPの作業台船の構成を模式的に示す側面図で、スパッドを着底させている状態を示す図である。FIG. 2 is a side view schematically showing the configuration of the half SEP work pontoon ship of FIG. 1, and is a view showing a state in which the spud is bottomed. 図3は、図1のフルSEPの作業台船の構成を模式的に示す側面図で、スパッドを着底させている状態を示す図である。FIG. 3 is a side view schematically showing the configuration of the full SEP work platform ship of FIG. 1, and is a view showing a state in which the spud is bottomed. 図4は、本発明に係る実施の形態の洋上構造物の施工方法の構成の一部を示す図で、製造工程、設置工程、運搬工程を示す図である。FIG. 4: is a figure which shows a part of structure of the construction method of the offshore structure of embodiment which concerns on this invention, and is a figure which shows a manufacturing process, an installation process, and a transportation process. 図5は、図4の洋上構造物の施工方法の構成の一部を示す図で、移動工程、着底工程、降下工程を示す図である。FIG. 5: is a figure which shows a part of structure of the construction method of the offshore structure of FIG. 4, and is a figure which shows a moving process, a bottoming process, and a descent process. 図6は、図4の洋上構造物の施工方法の構成の一部を示す図で、接合工程、離脱工程、復航工程を示す図である。FIG. 6 is a diagram showing a part of the configuration of the method for constructing an offshore structure in FIG. 4, and is a diagram showing a joining process, a detaching process, and a return process. 図7は、運搬工程の搭載工程における接近方法で、スパッドを上昇させて格納した状態の作業台船を、上部構造物がある岸壁に接近させている状態を示す図である。FIG. 7: is a figure which shows the state which is approaching the work berth in the state which raised and stored the spud to the quay with an upper structure by the approach method in the mounting process of a conveyance process. 図8は、運搬工程の搭載工程における接近方法で、スパッド移動操作による第2の接近方法を説明するための図である。FIG. 8 is a diagram for explaining a second approaching method by a spud moving operation, which is an approaching method in the mounting step of the carrying step. 図9は、運搬工程の搭載工程における接近方法で、スパッドを上昇させて格納した状態で、フォーク部を上部構造物の下に挿入している状態を示す図である。FIG. 9 is a diagram showing a state in which the fork portion is inserted under the upper structure in a state where the spud is raised and stored by the approaching method in the mounting step of the transportation step. 図10は、運搬工程の搭載工程における掬い上げ方法で、スパッド昇降操作による第2の掬い上げ方法を説明するための図である。FIG. 10: is a figure for demonstrating the 2nd scooping method by a spud raising / lowering operation by the scooping method in the mounting process of a conveyance process. 図11は、運搬工程の航行工程で、上部構造物をフォーク部の上に搭載している作業台船が、スパッドを上昇させて格納して航行している状態を示す図である。FIG. 11: is a figure which shows the state which the work pontoon which mounts an upper structure on the fork part raises a spud, stores it, and is sailing in the navigation process of a conveyance process. 図12は、移動工程において、上部構造物をフォーク部の上に搭載している作業台船を、予め設置されている下部構造物に接近させている状態を示す図である。FIG. 12: is a figure which shows the state which made the work pontoon carrying the upper structure on the fork part approach the lower structure installed beforehand in the movement process. 図13は、移動工程の移動調整工程において、係留調整方法で、作業台船に搭載した上部構造物の位置を、多点係留の操船ウインチの操作により、下部構造物の位置に合わせている状態を示す図である。FIG. 13 shows a state in which the position of the upper structure mounted on the work pontoon is adjusted to the position of the lower structure by the operation of the multi-point mooring winch by the mooring adjustment method in the movement adjusting process of the moving process. FIG. 図14は、移動工程の移動調整工程において、自動船位保持方法で、作業台船に搭載した上部構造物の位置を、DPSシステムのスラスター等の操作により、下部構造物の位置に合わせている状態を示す図であるFIG. 14 shows a state in which, in the movement adjusting process of the moving process, the position of the upper structure mounted on the work pontoon is adjusted to the position of the lower structure by the operation of the thruster or the like of the DPS system by the automatic position maintaining method. FIG. 図15は、着底工程において、作業台船のパッドを降下及び着底させて、作業台船をハーフSEP状態で設置水域に支持している状態を示す図である。FIG. 15 is a diagram showing a state in which the pad of the work pontoon is lowered and bottomed to support the work pontoon in the installation water area in the half SEP state in the bottoming step. 図16は、着底工程において、作業台船のパッドを降下及び着底させて、作業台船をフルSEP状態で設置水域に支持している状態を示す図である。FIG. 16 is a diagram showing a state in which the pad of the work pontoon is lowered and bottomed to support the work pontoon in the installation water area in the full SEP state in the bottoming step. 図17は、着底工程の位置調整工程において、スパッド移動操作で作業台船を水平方向に移動させている状態を示す図である。FIG. 17: is a figure which shows the state which is moving the work pontoon horizontally by a spud movement operation in the position adjustment process of a bottoming process. 図18は、降下工程及び接合工程において、スパッド昇降操作による第1の降下方法で、前後のスパッドの両方を同時に上昇させて、船体と共に上部構造物を下部構造物の上に降下している状態を示す図である。FIG. 18 shows a state in which both the front and rear spuds are simultaneously raised by the first descending method by the spud elevating operation in the descending step and the joining step, and the upper structure is descended together with the hull onto the lower structure. FIG. 図19は、降下工程及び接合工程において、船首側のスパッドを降下させて、船首を持ち上げて船尾を下げて、上部構造物を下部構造物の上に降下している状態を示す図である。FIG. 19 is a diagram showing a state in which the spud on the bow side is lowered, the bow is lifted and the stern is lowered, and the upper structure is lowered onto the lower structure in the descending step and the joining step. 図20は、降下工程及び接合工程において、船尾側のスパッドを上昇させて、船尾を下げて船首を持ち上げて、上部構造物を下部構造物の上に降下している状態を示す図である。FIG. 20 is a diagram showing a state in which, in the descending step and the joining step, the spud on the stern side is raised, the stern is lowered and the bow is raised, and the upper structure is lowered onto the lower structure. 図21は、上下方向離脱工程の上方向離脱方法において、前後両側のスパッドを下降させて、船体を上昇させて、上部構造物と下部構造物の接合体から作業台船を上方向に離間させている状態を示す図である。FIG. 21 is a view showing an upper release method of the vertical release step, in which the spuds on the front and rear sides are lowered to raise the hull, and the work platform ship is spaced upward from the joined structure of the upper structure and the lower structure. It is a figure which shows the state which has been. 図22は、上下方向離脱工程の上方向離脱方法において、船首側のスパッドを上昇させて、船首を上げて船尾を下げて、上部構造物と下部構造物の接合体から作業台船を上方向に離間させている状態を示す図である。FIG. 22 shows an upward disengagement method in the vertical disengagement step, in which the spud on the bow side is raised, the bow is raised and the stern is lowered, and the work platform is moved upward from the joined structure of the upper structure and the lower structure. It is a figure which shows the state which is made to space apart. 図23は、上下方向離脱工程の上方向離脱方法において、船尾側のスパッドを上昇させて、船首を下して船尾を上げて、上部構造物と下部構造物の接合体から作業台船を上方向に離間させている状態を示す図である。FIG. 23 is a view showing an upward disengagement method in the vertical disengagement step, in which the spud on the stern side is raised, the bow is lowered and the stern is raised, and the work platform is lifted from the joined structure of the upper structure and the lower structure. It is a figure showing the state where it has separated in the direction. 図24は、水平方向離脱工程において、船尾側のスパッドを船首側のスパッドのキック機構により、作業台船を前方に移動させて、上部構造物と下部構造物の接合体から作業台船を水平方向に離間させている状態を示す図である。FIG. 24 shows that in the horizontal disengagement process, the stern side spud is moved forward by the kick mechanism of the bow side spud to move the work platform horizontally from the joined structure of the upper structure and the lower structure. It is a figure showing the state where it has separated in the direction. 図25は、復航工程において、作業台船が、設置水域から帰港するために、スパッドを上昇させて格納して航行している状態を示す図である。FIG. 25 is a diagram showing a state in which the work pontoon is sailing while raising and retracting the spud in order to return from the installation water area in the returning process. 図26は、上部構造物がフォーク部の上側に接続された場合の接合工程における、接合前のフォーク部と上部構造物と下部構造物の関係を示す図である。FIG. 26 is a diagram showing the relationship between the fork portion, the upper structure, and the lower structure before joining in the joining process when the upper structure is connected to the upper side of the fork portion. 図27は、上部構造物がフォーク部の上側に接続された場合の下方向離脱方法における、接合後のフォーク部と上部構造物と下部構造物の関係を示す図である。FIG. 27 is a diagram showing a relationship between the fork part, the upper structure, and the lower structure after the joining in the downward separating method when the upper structure is connected to the upper side of the fork part. 図28は、上部構造物がフォーク部の下側に接続された場合の接合工程における、接合前のフォーク部と上部構造物と下部構造物の関係を示す図である。FIG. 28 is a diagram showing a relationship between the fork portion, the upper structure, and the lower structure before joining in the joining process when the upper structure is connected to the lower side of the fork portion. 図29は、上部構造物がフォーク部の下側に接続された場合の上方向離脱方法における、接合後のフォーク部と上部構造物と下部構造物の関係を示す図である。FIG. 29 is a diagram showing a relationship between the fork part, the upper structure, and the lower structure after joining in the upward separating method when the upper structure is connected to the lower side of the fork part. 図30は、スパッドの底板を例示する図で、(a)は固定式の底板を、(b)は開閉式の底板を示す図である。FIG. 30: is a figure which illustrates the bottom plate of a spud, (a) is a figure which shows a fixed bottom plate, (b) is a figure which shows an open-close type bottom plate. 図31は、本発明に係る第2の実施の形態の洋上構造物の施工方法で使用するSEPタイプの作業台船の構成を模式的に示す平面図である。FIG. 31: is a top view which shows typically the structure of the work table ship of SEP type used with the construction method of the offshore structure of the 2nd Embodiment which concerns on this invention. 図32は、図31のハーフSEPの作業台船の構成を模式的に示す側面図で、スパッドを着底させている状態を示す図である。32 is a side view schematically showing the configuration of the half SEP work pontoon ship of FIG. 31, and is a view showing a state in which the spud is bottomed. 図33は、図31のフルSEPの作業台船の構成を模式的に示す側面図で、スパッドを着底させている状態を示す図である。33 is a side view schematically showing the configuration of the full SEP work pontoon ship of FIG. 31, and is a view showing a state in which the spud is bottomed. 図34は、第1の移動載置台の構成を模式的に示す斜視図である。FIG. 34 is a perspective view schematically showing the configuration of the first movable mounting table. 図35は、本発明に係る第3の実施の形態の洋上構造物の施工方法で使用するSEPタイプの作業台船の構成を模式的に示す平面図である。FIG. 35: is a top view which shows typically the structure of the work table ship of the SEP type used with the construction method of the offshore structure of the 3rd Embodiment which concerns on this invention. 図36は、図35のハーフSEPの作業台船の構成を模式的に示す側面図で、スパッドを着底させている状態を示す図である。FIG. 36 is a side view schematically showing the configuration of the half SEP work platform ship shown in FIG. 35, and is a view showing a state in which the spud is bottomed. 図37は、図35のフルSEPの作業台船の構成を模式的に示す側面図で、スパッドを着底させている状態を示す図である。FIG. 37 is a side view schematically showing the configuration of the full SEP work platform ship of FIG. 35, and is a view showing a state in which the spud is bottomed. 図38は、本発明に係る第4の実施の形態の洋上構造物の施工方法で使用するSEPタイプの作業台船の構成を模式的に示す平面図である。FIG. 38 is a plan view schematically showing the configuration of an SEP type work pontoon used in the method for constructing an offshore structure according to the fourth embodiment of the present invention. 図39は、図38のハーフSEPの作業台船の構成を模式的に示す側面図で、スパッドを着底させている状態を示す図である。FIG. 39 is a side view schematically showing the configuration of the half SEP work platform ship of FIG. 38, and is a view showing a state in which the spud is bottomed. 図40は、図38のフルSEPの作業台船の構成を模式的に示す側面図で、スパッドを着底させている状態を示す図である。FIG. 40 is a side view schematically showing the configuration of the full SEP work table vessel of FIG. 38, and is a view showing a state in which the spud is bottomed.
 以下、本発明に係る実施の形態の洋上構造物の施工方法について、図面を参照しながら説明する。 Hereinafter, a method of constructing an offshore structure according to an embodiment of the present invention will be described with reference to the drawings.
 最初に、本発明に係る第1の実施の形態の洋上構造物の施工方法で使用する作業台船について説明する。図1~図3に示すように、この作業台船1A、1Bは、SEP(Self Elevating Platform:自己昇降式作業台船)、または、ジャッキアップ船等と呼ばれる作業台船の一種であるが、プラットフォームと呼ばれる作業台船1A、1Bに配置した数本(この実施の形態では3本)のスパッド(レグ、昇降脚)20A、20Bと、このスパッド20A、20Bを降下させて、その先端(底部)を水底(海底)Bに着底させて、船体2を持ち上げる昇降脚昇降システム(ジャッキアップシステム)21A、21Bを備えて構成されている。 First, a work pontoon used in the method for constructing an offshore structure according to the first embodiment of the present invention will be described. As shown in FIGS. 1 to 3, the work pontoons 1A and 1B are a type of work pontoons called SEP (Self Elevating Platform) or a jack-up ship. Several (three in this embodiment) spuds (legs, lift legs) 20A and 20B arranged on the work pontoons 1A and 1B called platforms, and the spuds 20A and 20B are lowered and their tips (bottom part). ) Is set on the water bottom (sea bottom) B to lift the hull 2 and is provided with lifting leg lifting systems (jack up systems) 21A and 21B.
 この作業台船1A、1Bは、船体2の下部分が水面下に沈むことで浮力を得る排水量型の作業台船であるが、ハーフSEPの作業台船1Aでは、図2に示すように、甲板昇降式システム21A、21Bにより、スパッド20A、20Bを降下させて着底させることにより、作業台船1Aの荷重の一部をスパッド20A、20Bで負担する。つまり、各種作業をするときに、スパッド20A、20Bの支持力と船体2の浮力を併用して、作業台船1Aを上昇させるが、スパッド20A、20Bのジャッキアップが完了した状態でも船体2の全部を水面Sより上には上昇させずに、船体2を水面Sに浮かせている状態とする。このハーフSEPの場合では、スパッド20A、20Bは、フルSEPのように、作業台船1Aの自重と載貨重量の全部を持ち上げられるような大容量のものではなく、浚渫台船に使われるような、部分的に浮力を補い船体を安定させる程度のものでよい。 The work pontoons 1A and 1B are displacement-type work pontoons that obtain buoyancy when the lower part of the hull 2 sinks below the water surface. However, in the half SEP work pontoon 1A, as shown in FIG. By lowering the spuds 20A and 20B to reach the bottom by the deck elevating type systems 21A and 21B, a part of the load of the work pontoon 1A is borne by the spuds 20A and 20B. That is, when performing various operations, the work table boat 1A is raised by using the supporting force of the spuds 20A and 20B and the buoyancy of the hull 2 together, but the hull 2 of the hull 2 can be lifted even when the jacking up of the spuds 20A and 20B is completed. The hull 2 is floated on the water surface S without raising the whole body above the water surface S. In the case of this half SEP, the spuds 20A and 20B are not large-capacity ones capable of lifting all of the dead weight and the deadweight of the work pontoon 1A like the full SEP, but are used for a dredging pontoon. , It is sufficient that the buoyancy is partially supplemented to stabilize the hull.
 一方、フルSEPの作業台船1Bでは、図3に示すように、甲板昇降式システム21A、21Bにより、スパッド20A、20Bを降下させて着底し、作業台船1Bを水面Sより上に持ち上げることにより、作業台船1Bの荷重の全部をスパッド20A、20Bで負担する。つまり、各種作業をするときに、作業台船1Bの全体をスパッド20A、20Bで水面Sより上の波浪の届かない高さまで上昇させて、水面Sの波浪の影響や潮流の影響が作業台船1Bの船体に及ばない状態とする。このフルSEPの作業台船1Bは、一般的に、ハーフSEPよりも厳しい海象・気象条件下で作業することが多い。 On the other hand, in the work table 1B of full SEP, as shown in FIG. 3, the deck lifting systems 21A and 21B lower the spuds 20A and 20B to reach the bottom, and lift the work table 1B above the water surface S. As a result, the spuds 20A and 20B bear the entire load of the work pontoon 1B. That is, when performing various operations, the entire work pontoon 1B is raised by the spuds 20A and 20B to a height above the water surface S at which waves cannot reach, so that the influence of the waves on the water surface S and the influence of the tidal current may increase. It should not reach the 1B hull. The full SEP work pontoon 1B generally works under severer sea and weather conditions than the half SEP.
 作業台船1A、1Bは、図1~図3の構成では、船体2のデッキ(甲板)3において、船尾側には、船尾の両方の側方で後方に突出する一対の腕状構造物(突起部)4aを形成している。これにより、平面視で、その1対の突起部4aの間に凹部Aを有するU字形状のフォーク部4を設けている。 1 to 3, in the decks (deck) 3 of the hull 2, the work pontoons 1A and 1B have, on the stern side, a pair of arm-like structures that project rearward on both sides of the stern ( The protrusion) 4a is formed. As a result, the U-shaped fork portion 4 having the recess A is provided between the pair of protrusions 4a in plan view.
 このフォーク部4は、設置水域に運搬して設置される洋上構造物40の上部構造物41を搭載する搭載部位である。この搭載部位であるフォーク部4を作業台船1A、1Bの船体2に対して傾斜させる搭載部位傾斜機構を備えて構成することが好ましい。この搭載部位傾斜機構として、フォーク部4を船体2に対してヒンジ構造で接続し、フォーク部4の船尾側がこのヒンジの周りに上下して、船首トリムや船尾トリムの範囲の近傍で傾斜できるように構成する。この傾斜としては、フォーク部4に傾斜センサを設けてその出力により、フォーク部4を支持する油圧シリンダの伸縮を制御することで容易に構成できる。この構造は、カーフェリーや揚陸艇のランプウエイの構造と類似した構成で実現できる。 The fork portion 4 is a mounting portion for mounting the upper structure 41 of the offshore structure 40 that is transported and installed in the installation water area. It is preferable that the fork portion 4 as the mounting portion is provided with a mounting portion tilting mechanism for tilting the fork portion 4 with respect to the hull 2 of the work pontoon 1A, 1B. As the mounting portion tilting mechanism, the fork part 4 is connected to the hull 2 by a hinge structure so that the stern side of the fork part 4 moves up and down around this hinge and tilts in the vicinity of the bow trim and the stern trim. To configure. This inclination can be easily configured by providing an inclination sensor on the fork portion 4 and controlling the expansion and contraction of the hydraulic cylinder that supports the fork portion 4 by the output thereof. This structure can be realized by a structure similar to that of the ramp way of a car ferry or a landing craft.
 この構成によれば、下記で述べるような、作業台船1A、1Bが、上部構造物41の搭載、上部構造物41の降下、上部構造物41と下部構造物42の接合体40からの作業台船1A、1Bの離脱等の際に、作業台船1A、1Bの船体姿勢が船首トリムや船尾トリムなどとなる場合に、上部構造物41を搭載する搭載部位(フォーク部4)が、船体姿勢と同じ傾斜にならず、水平などのその時の作業に適した姿勢をとることができるので、上部構造物41の傾斜や、上部構造物41の下部41dの底面と下部構造物42の上部42と上面の平行などの相互の姿勢の関係を維持することができるので、作業時における作業効率と安全性を向上することができる。 According to this configuration, as described below, the work pontoons 1A and 1B mount the upper structure 41, lower the upper structure 41, and work from the joined body 40 of the upper structure 41 and the lower structure 42. When the berths of the work pontoons 1A and 1B become the bow trim and the stern trim when the pontoons 1A and 1B are disengaged, the mounting portion (fork portion 4) for mounting the upper structure 41 is Since the posture is not the same as the posture, and the posture suitable for the work at that time can be taken such as horizontal, the inclination of the upper structure 41, the bottom surface of the lower portion 41 d of the upper structure 41 and the upper portion 42 of the lower structure 42. Since it is possible to maintain the relation of mutual postures such as parallel between the upper surface and the upper surface, it is possible to improve work efficiency and safety during work.
 また、船首側には船橋や居住区としての上部構造物5が配設されている。なお、必要に応じて、自航用のプロペラと舵等の推進システムを搭載するが、これらの推進システムに関しては、図14以外では、図示を省略している。 Also, on the bow side, a superstructure 5 as a bridge and a living area is installed. It should be noted that although propelling systems such as a propeller and a rudder for self-propelling are mounted as needed, these propulsion systems are not shown except for FIG.
 これらの作業台船1A、1Bは、スパッド20A、20Bを用いて海底Bの上を歩行するがごとく作業台船1A、1Bを移動できる歩行式の作業台船である。このスパッド20A、20Bは2脚以上、より好ましくは3脚以上備えていることが好ましく、さらには、作業台船1A、1Bの前後、左右に分かれて装備されていることが好ましい。ここでは、船尾側のフォーク部4のそれぞれの近辺に、左右一対の固定型の船尾側のスパッド20Aを、船首側の中央にキック式のスパッド20Bをそれぞれ装備している。 These work pontoons 1A, 1B are walking type work pontoons that can move the work pontoons 1A, 1B as if they walk on the seabed B using the spuds 20A, 20B. It is preferable that the spuds 20A and 20B are provided with two or more legs, more preferably three or more legs, and further, the spuds 20A and 20B are preferably provided separately in the front, rear, left and right of the work pontoons 1A, 1B. Here, a pair of left and right fixed-type stern-side spuds 20A are provided near each of the stern-side fork portions 4, and a kick-type spud 20B is provided at the center of the bow side.
 この固定型のスパッド20Aは、スパッド20Aの作業台船1A、1Bの下部への突き出し量を固定したときに、スパッド20Aと作業台船1A、1Bとの間の相対揺動や水平方向の自由度が拘束される。一方、キック式のスパッド20Bは、スパッド20Bの作業台船1A、1Bの下部への突き出し量が水平のピンによる支持により固定された状態で、そのピンを軸にした相対揺動が許され、スパッド20Bのピンより上の部分が油圧シリンダ等により作業台船1A、1Bに対し相対的に水平方向に押し引きされることで、図8、図17、及び、図24に示すように、スパッド20Bが振り子のように傾斜するものである。 This fixed-type spud 20A has relative swing and horizontal freedom between the spud 20A and the work pontoons 1A and 1B when the amount of protrusion of the spud 20A to the lower part of the work pontoons 1A and 1B is fixed. The degree is restricted. On the other hand, in the kick type spud 20B, relative swinging about the pin is allowed in a state where the amount of protrusion of the spud 20B to the lower part of the work platform 1A, 1B is fixed by the support by a horizontal pin, By pushing and pulling a portion of the spud 20B above the pin in a horizontal direction relative to the work platform 1A, 1B by a hydraulic cylinder or the like, as shown in FIGS. 20B is inclined like a pendulum.
 これらの作業台船1A、1Bでは、キック式のスパッド20Bを用いた作業台船としているが、別の歩行式の作業台船でもよい。例えば、スパッド20A、20Bの相対揺動は許容されず鉛直のままであるが、油圧シリンダにより作業台船1A、1Bに対してスパッド20A、20Bを水平方向にスライドすることで、作業台船1A、1Bを移動することのできるものであってもよい。このように、スパッド20A、20Bが歩行機能を備えていることにより、作業台船1A、1Bの水平位置の微調整がスパッド移動操作により可能となる。 In these work pontoons 1A and 1B, the work pontoons using the kick type spuds 20B are used, but other walk-type work pontoons may be used. For example, the relative swing of the spuds 20A and 20B is not allowed and remains vertical, but by sliding the spuds 20A and 20B horizontally with respect to the work pontoons 1A and 1B by the hydraulic cylinder, the work pontoons 1A 1B may be movable. As described above, since the spuds 20A and 20B have the walking function, the horizontal position of the work pontoons 1A and 1B can be finely adjusted by the spud movement operation.
 このスパッド20A、20Bの最下部には、海底地質等を考慮して必要に応じて使用する底板を装備している。この底板は、スパッド20A、20Bに加わる力を受持つ構造をしており、図30に示すように、固定式の底板22a以外に、開閉式の底板22bがある。この開閉式の底板22bは、広く開いて、緩い砂や粘性土等の軟弱な地盤に対応したり、底板22bを跳ね上げて底板22bによる支持を無効にし、鋭利に形成されたタワー先端22cを固い地盤に刺したりすることができるように構成されている。 At the bottom of these spuds 20A and 20B, a bottom plate that is used as necessary in consideration of the geological features of the seabed is equipped. This bottom plate has a structure for receiving the force applied to the spuds 20A and 20B. As shown in FIG. 30, there is an openable-closed bottom plate 22b in addition to the fixed bottom plate 22a. The openable bottom plate 22b is widely opened to cope with soft ground such as loose sand or cohesive soil, or the bottom plate 22b is flipped up to invalidate the support by the bottom plate 22b, thereby sharply forming the tower tip 22c. It is constructed so that it can be stabbed in solid ground.
 そして、このスパッド昇降操作による降下方法としては、図18に示すように、前後のスパッド20A、20Bを同時に上昇させて、船体2の姿勢を維持しながら、作業台船1Aを降下させる第1の降下方法と、図19に示すように、船首側のスパッド20Bのみを降下させて、船首を上げて船尾を下げて、作業台船1Aの船尾側を降下させる第2の降下方法、図20に示すように、船尾側のスパッド20Aのみを上昇させて、船尾を下げて船首を上げて、作業台船1Aの船尾側を降下させる第3の降下方法、及び、第2と第3の降下方法を併用する第4の降下方法等がある。 Then, as a descending method by this spud raising / lowering operation, as shown in FIG. 18, the front and rear spuds 20A and 20B are simultaneously raised to lower the work platform 1A while maintaining the attitude of the hull 2. As shown in FIG. 20, the descending method and the second descending method of descending only the bow side spud 20B, raising the bow and lowering the stern, and descending the stern side of the work platform 1A are shown in FIG. As shown, the third descending method, which raises only the stern side spud 20A, lowers the stern and raises the bow, and descends the stern side of the work platform ship 1A, and the second and third descending methods. There is a fourth descending method which uses the above together.
 また、このスパッド昇降操作よる上昇方法としては、図10、図15、図16、及び、図21に示すように、前後のスパッド20A、20Bを同時に降下させて、船体2の姿勢を維持しながら、作業台船1Aを上昇させる第1の上昇方法と、図22に示すように、船首側のスパッド20Bのみを上昇させて、船首を下げて船尾を上げて、作業台船1Aの船尾側を上昇させる第2の上昇方法、図23に示すように、船尾側のスパッド20Aのみを降下させて、船尾を上げて船首を下げて、作業台船1Aの船尾側を上昇させる第3の上昇方法、及び、第2と第3の上昇方法を併用する第4の上昇方法がある。
そして、スパッド移動操作による水平方向移動方法では、図8、図17、及び、図24に示すように、船尾側のスパッド20Aを上昇させると共に、船首側のスパッド20Bのキック機構により、スパッド20Bを振り子のように傾斜させて、その先端で海底Bをキックすることにより、作業台船1A、1Bを相対的に水平方向に押し引きすることで、作業台船1A、1Bを水平方向に移動させる。
As shown in FIGS. 10, 15, 16 and 21, the method of raising by this spud lifting operation is to lower the front and rear spuds 20A and 20B at the same time while maintaining the attitude of the hull 2. As shown in FIG. 22, only the first spud 20B on the bow side is raised, the bow is lowered and the stern is raised, and the stern side of the work pontoon 1A is raised. A second raising method for raising, as shown in FIG. 23, a third raising method for lowering only the stern side spud 20A, raising the stern and lowering the bow, and raising the stern side of the work pontoon 1A. , And there is a fourth raising method that uses the second and third raising methods together.
Then, in the horizontal movement method by the spud movement operation, as shown in FIGS. 8, 17, and 24, the spud 20A on the stern side is raised and the spud 20B is moved by the kick mechanism of the spud 20B on the bow side. By tilting like a pendulum and kicking the seabed B at its tip, the work pontoons 1A and 1B are pushed and pulled relatively horizontally, thereby moving the work pontoons 1A and 1B horizontally. .
 また、図13に示すような多点係留の操船ウインチシステム、または、図14に示すような自動船位保持システム(DPS)を装備する。これらを装備すると、洋上風力設備に限らず、様々なプロジェクトで使用できるようになる。 Also equipped with a multi-point mooring winch system as shown in FIG. 13 or an automatic ship position holding system (DPS) as shown in FIG. When equipped with these, they can be used not only in offshore wind power facilities but also in various projects.
 なお、以下の説明では、主として、ハーフSEPの作業台船1Aで説明する。しかし、船体2と水面Sの高さ関係が異なるが、フルSEPの作業台船1Bでも同様のことを行うことができる。また、上記では作業台船1A、1Bの船尾に一対の腕状構造物4aがあるとして説明したが、上部構造物41を支持する構造があれば一対の腕状構造物4aである必要はなく、その上部構造物41を搭載する支持部は船尾でなく例えば船首や船腹でもよい。その場合は、固定式のスパッド20Aを支持部に近い位置に、キック式のスパッド20Bは支持部から遠い位置に配置する。 Note that in the following description, the half SEP work platform ship 1A will be mainly described. However, although the height relationship between the hull 2 and the water surface S is different, the same operation can be performed with the full SEP work platform 1B. In the above description, the pair of arm-shaped structures 4a are provided at the stern of the work pontoons 1A and 1B. However, if there is a structure for supporting the upper structure 41, the pair of arm-shaped structures 4a is not necessary. The supporting portion on which the upper structure 41 is mounted may be, for example, the bow or the side of the boat, instead of the stern. In that case, the fixed spud 20A is arranged at a position close to the support portion, and the kick spud 20B is arranged at a position far from the support portion.
 次に、本発明の第1の実施の形態の洋上構造物の施工方法について説明する。この洋上構造物の施工方法では、図4に示す製造工程、設置工程、運搬工程と、図5に示す移動工程、着底工程、位置調整工程、降下工程と、図6に示す接合工程、離脱工程、復航工程等の各種の工程の一部または全部を含んでいる。 Next, a method of constructing an offshore structure according to the first embodiment of the present invention will be described. In this construction method for an offshore structure, the manufacturing process, the installation process, and the transportation process shown in FIG. 4, the moving process, the bottoming process, the position adjusting process, the descending process shown in FIG. 5, the joining process and the detachment shown in FIG. It includes some or all of various processes such as the process and the return process.
 先ず、図4に示す製造工程、設置工程、運搬工程について説明する。製造工程は、洋上構造物40を上部構造物41と下部構造物42に分割して製造する工程である。図7に示すように、この上部構造物41は一般にタワー41a、ナセル41b、ブレード41c等で構成されている。一方、ここでは、下部構造物42としては、図12に示すように、着床式のモノパイルを採用している。 First, the manufacturing process, installation process, and transportation process shown in FIG. 4 will be described. The manufacturing process is a process of dividing the offshore structure 40 into an upper structure 41 and a lower structure 42 for manufacturing. As shown in FIG. 7, the upper structure 41 is generally composed of a tower 41a, a nacelle 41b, a blade 41c and the like. On the other hand, here, as the lower structure 42, as shown in FIG. 12, a landing type monopile is adopted.
 なお、このモノパイルの他にも、着床式の下部構造物としては、重力式、ジャケットの基本形の他に、発展形のトリパイル、ハイブリットのトリポッド等の各種の載置台等がある。これらの下部構造物は、設置場所の水底に設置された基礎の上に自立して設けられると共に、その頂上が水面Sの近傍(水面Sの上又は下)にあるようにして設けられている。また、浮体式の下部構造物として、スパー型の洋上構造物の場合のように、アンカーと係留索で係留される円柱状のタワー構造物がある。これは、魚釣りの釣浮きのように直立状態で浮いていて、その頂上が水面Sの近傍(水面Sの上又は下)にあるように設けられている。 In addition to this monopile, there are various types of platform such as gravity type, jacket basic type, developed type tripile, hybrid type tripod, etc. in addition to the basic type of gravity type, jacket. These substructures are provided so as to be self-supporting on a foundation installed on the water bottom of the installation site, and the tops thereof are provided near the water surface S (above or below the water surface S). .. Further, as the floating type substructure, there is a columnar tower structure moored by anchors and mooring lines, as in the case of a spar type offshore structure. This is provided so that it floats in an upright state like a fishing float and the top is near the water surface S (above or below the water surface S).
 また、設置工程は、下部構造物42を設置水域に運搬して設置する工程である。着床式のモノパイル、重力式、ジャケット等の各種の載置台で形成される下部構造物42(ここではモノパイル)は、洋上構造物40の設置場所の水底地盤に応じて選択され、大型油圧ハンマーや大型作業船、大型運搬船等を使用して、洋上構造物40の設置場所に設置される。 Also, the installation process is a process of transporting and installing the lower structure 42 in the installation water area. The lower structure 42 (here, a monopile) formed of various types of mounting bases such as a landing type monopile, a gravity type, and a jacket is selected according to the water bottom ground where the offshore structure 40 is installed, and is a large hydraulic hammer. It is installed at the installation location of the offshore structure 40 by using a large work boat, a large carrier ship, or the like.
 運搬工程は、上部構造物41を作業台船1Aに搭載して設置水域に運搬する工程であるが、図7~図10に示すように、岸壁Cに接近して、岸壁Cで上部構造物41を作業台船1Aに搭載する搭載工程と、図11に示すように、上部構造物41を搭載した状態の作業台船1Aを設置水域に航行する航行工程を含んでいる。 The carrying step is a step of carrying the superstructure 41 on the work pontoon 1A and carrying it to the installation water area. However, as shown in FIGS. 7 to 10, the superstructure 41 approaches the quay C and the superstructure is carried by the quay C. This includes the step of mounting 41 on the work pontoon 1A and the step of navigating the work pontoon 1A with the upper structure 41 mounted therein to the installation water area as shown in FIG.
 搭載工程では、製造工場、又は、岸壁に設置されているクレーンなどを使用して、図7に示すように、タワー41a、ナセル41b、ブレード41c等を組み立てて、一体化した上部構造物41を岸壁Cの台座Cbの上に予め準備しておく。この搭載工程では、作業台船1Aを岸壁Cの台座Cbの上に載置された上部構造物41に接近して、フォーク部4を上部構造物41の下部41dの下に挿入する接近方法と、この挿入後にフォーク部4を上昇させてフォーク部4で上部構造物41を掬い上げて、上部構造物41を作業台船1Aに積み込む、掬い上げ方法が用いられる。 In the mounting process, a manufacturing plant or a crane installed on the quay is used to assemble a tower 41a, a nacelle 41b, a blade 41c, and the like to form an integrated upper structure 41, as shown in FIG. Prepare in advance on the pedestal Cb of the quay C. In this mounting step, the work platform 1A is approached to the upper structure 41 placed on the pedestal Cb of the quay C, and the fork portion 4 is inserted below the lower part 41d of the upper structure 41. After this insertion, the scooping method is used in which the fork part 4 is raised to scoop the upper structure 41 by the fork part 4 and the upper structure 41 is loaded on the work platform 1A.
 そして、接近方法に関しては、第1の接近方法として、図7に示すように、パッド20A、20Bを上昇させて格納すると共に、作業台船1Aのバラスト操作で船尾のフォーク部4を下げた状態で、作業台船1Aの推進力又はタグボートなどの他船の推進力を用いて、作業台船1Aを岸壁Cに接近させる。 Regarding the approaching method, as a first approaching method, as shown in FIG. 7, the pads 20A and 20B are raised and stored, and the stern fork portion 4 is lowered by ballast operation of the work pontoon 1A. Then, the work table boat 1A is brought closer to the quay C by using the propulsion force of the work table boat 1A or the propulsion force of another ship such as a tug boat.
 また、第2の接近方法として、図8に示すように、スパッド20A、20Bをスパッド昇降操作で降下して着底させて、これらのスパッド20A、20Bを用いたスパッド移動操作により作業台船1Aを岸壁Cの側へ移動させるスパッド移動方法を用いて、フォーク部4を上部構造物41の下部41dの下に入れる。 As a second approaching method, as shown in FIG. 8, the spuds 20A and 20B are lowered by the spud lifting operation to reach the bottom, and the work paddle 1A is operated by the spud moving operation using these spuds 20A and 20B. The fork part 4 is put under the lower part 41d of the upper structure 41 by using the spud moving method of moving the fork to the side of the quay C.
 さらには、第3の接近方法として、潮汐を利用して、引き潮の前後のときに、作業台船1Aを岸壁C側に移動させてフォーク部4を上部構造物41の下部41dの下に入れる。また、作業台船1Aと岸壁の間の設けた係留索の長さを調整することで、作業台船1Aを岸壁C側に移動させる方法もある。 Furthermore, as a third approaching method, by using the tide, before and after the ebb tide, the work platform 1A is moved to the quay C side and the fork part 4 is put under the lower part 41d of the upper structure 41. .. There is also a method of moving the work pontoon 1A to the quay C side by adjusting the length of the mooring line provided between the work pontoon 1A and the quay.
 次に、掬い上げ方法に関しては、第1の掬い上げ方法として、図9に示すように、作業台船1Aのバラスト操作で船尾のフォーク部4を下げた状態で、フォーク部4を上部構造物41の下部41dの下に入れて、その後、作業台船1Aのバラスト操作でフォーク部4を上昇させることで、上部構造物41の下部41dを掬い上げて、上部構造物41を作業台船1Aのフォーク部4に積み込む。 Next, as for the scooping method, as a first scooping method, as shown in FIG. 9, the fork part 4 in the stern is lowered by the ballast operation of the work pontoon ship 1A, and the fork part 4 is moved to the upper structure. The lower part 41d of the upper structure 41 is put under the lower part 41d of the upper structure 41, and then the fork part 4 is lifted by the ballast operation of the working structure 1A to scoop up the lower part 41d of the upper structure 41 to move the upper structure 41 to the work structure 1A. It is loaded on the fork part 4 of.
 更に、第2の掬い上げ方法として、図8に示すように、スパッド20A、20Bを降下して着底させて、第2の接近方法で接近し、その後、図10に示すように、これらのスパッド20A、20Bを用いたスパッド昇降操作により、作業台船1Aのフォーク部4を上昇させる方法を用いることもできる。 Further, as a second scooping method, as shown in FIG. 8, the spuds 20A and 20B are lowered to reach the bottom and approached by the second approaching method, and thereafter, as shown in FIG. It is also possible to use a method of raising the fork portion 4 of the work pontoon ship 1A by a spud lifting operation using the spuds 20A and 20B.
 なお、図10では前後のスパッド20A、20Bを同に降下させているが、どちらか一方のスパッドのみを昇降して船尾を上げてもよい。このスパッド昇降操作による場合は、作業台船1Aの船体運動による影響を減少させることができ、しかも、バラスト操作よりも迅速に、上部構造物41をフォーク部4で掬い上げることができる。なお、この場合に、フォーク部4において搭載部位傾斜機構を備えている場合には、船体姿勢の変化に対して、フォーク部4の傾斜を岸壁Cに合わせたまま維持することで、搭載作業時における上部構造物の41の傾斜を回避することが好ましい。 Although the front and rear spuds 20A and 20B are lowered in the same manner in FIG. 10, only one of the spuds may be moved up and down to raise the stern. In the case of this spud raising / lowering operation, it is possible to reduce the influence of the hull movement of the work pontoon 1A, and moreover, the upper structure 41 can be scooped up by the fork portion 4 more quickly than the ballast operation. In this case, in the case where the fork portion 4 is provided with the mounting portion tilting mechanism, the tilting of the fork portion 4 is kept in alignment with the quay C with respect to the change in the attitude of the hull, so that the loading work can be performed. It is preferred to avoid tilting the superstructure 41 at.
 また、第3の掬い上げ方法として、満ち潮になるときには、船体2の上昇と共にフォーク部4が上昇するので、そのときに、上部構造物41を、フォーク部4で掬い上げることで、作業台船1Aに積み込んでもよい。 In addition, as the third scooping method, when the tide is high, the fork portion 4 rises as the hull 2 rises. At that time, the upper structure 41 is scooped up by the fork portion 4 so that the work platform ship You may load in 1A.
 これらの第1、第2、第3の接近方法と、第1、第2、第3の掬い上げ方法を、その接近作業と搭載作業のときの海象・気象・潮汐の状態に対応させて、それぞれを単独又は組み合わせて使用することが好ましい。 Corresponding these first, second, and third approaching methods and the first, second, and third scooping methods to the state of the sea condition, the weather, and the tide at the time of the approaching work and the loading work, It is preferred to use each alone or in combination.
 航行工程においては、図11に示すように、作業台船1Aでは、必要に応じてスパッド20A、20Bを水底Bから離底させて、スパッド20A、20Bの最下位の部位が水面Sの近傍になるまでスパッド20A、20Bを上昇させて作業台船1Aに格納した状態で航行する。この航行では、作業台船1Aが自航できるように推進システムを備えている場合は、その推進システムを使用して自航するが、タグボート等により曳航されるときは、他船の推進システムにより航行する。 In the navigation process, as shown in FIG. 11, in the work pontoon ship 1A, the spuds 20A and 20B are separated from the water bottom B as needed, and the lowest parts of the spuds 20A and 20B are near the water surface S. The spuds 20A and 20B are raised until they reach the state where they are stored in the work pontoon ship 1A. In this navigation, if the work pontoon ship 1A is equipped with a propulsion system so that it can self-propell, it will use the propulsion system to self-propell, but when it is towed by a tugboat, etc., it will depend on the propulsion system of another ship. Sail.
 次に、図5に示す移動工程、着底工程、降下工程について説明する。移動工程は、航行工程により作業台船1Aが設置水域に到達した後の工程であり、作業台船1Aの移動により、作業台船1Aに搭載した上部構造物41を、予め設置した下部構造物42の上部42aに移動する工程である。この移動工程では、図12に示すように、上部構造物41の下部41dと下部構造物42の上部42aとの上下方向に関して、下部41dが上部42aと水平面で同じ位置になっても、衝突しないように、ある程度の上下距離Dを保ったまま移動する。 Next, the moving process, bottoming process, and descending process shown in FIG. 5 will be described. The moving process is a process after the work pontoon 1A reaches the installation water area by the navigation process, and by moving the work pontoon 1A, the upper structure 41 mounted on the work pontoon 1A is installed in advance as a lower structure. This is a step of moving to the upper portion 42a of 42. In this moving step, as shown in FIG. 12, even when the lower portion 41d and the upper portion 42a of the lower structure 42 are at the same position on the horizontal plane as the lower portion 41d and the upper portion 42a of the lower structure 42, the collision does not occur. As described above, the robot moves while maintaining a certain vertical distance D.
 なお、この移動工程では、船体トリムをおもてあし(船尾側が上がっている船首トリム)にして、船尾のファーク部4を上げた状態とすることで、上部構造物41と下部構造物42を十分に上下に離間させた状態で、下部構造物42の上に上部構造物41が位置するよう移動することが好ましい。この場合でも、フォーク部4の搭載部位傾斜機構で上部構造物の41の傾斜を回避することが好ましい。 In this moving step, the upper structure 41 and the lower structure 42 are separated by setting the hull trim as a toe (a bow trim with the stern side raised) and raising the stern's fork part 4. It is preferable that the upper structure 41 is moved so as to be positioned on the lower structure 42 while being sufficiently separated from each other in the vertical direction. Even in this case, it is preferable to avoid the inclination of the upper structure 41 by the mounting portion inclination mechanism of the fork portion 4.
 なお、この移動工程においては、バラスト水の減少によって船体2を浮上させる代わりに、潮汐(潮の干満)を利用して、引き潮から満ち潮になるときに移動工程を行うことで、満ち潮による作業台船1Aの上昇により、上部構造物41を搭載しているフォーク部4を上昇させることができる。 In this moving process, instead of levitating the hull 2 due to the decrease of ballast water, the moving process is performed when the tide changes from low tide to high tide by using the tide (tide). By raising the ship 1A, the fork portion 4 carrying the upper structure 41 can be raised.
 この移動では、図12に示すように、スパッド20A、20Bを上昇させて格納した状態で、自船または他船が装備している推進システムにより移動する浮上状態での推進力移動方法を用いることができる。また、図8に示す搭載工程における第2の接近方法と同様に、スパッド20A、20Bを降下して着底させて、これらのスパッド20A、20Bを用いたスパッド移動操作により作業台船1Aを下部構造物42の上部42aの上に移動するスパッド移動方法を用いることもできる。 In this movement, as shown in FIG. 12, in a state where the spuds 20A and 20B are raised and stored, the propulsion force moving method in the floating state in which the spuds are moved by the propulsion system of the own ship or another ship is used. You can Further, similar to the second approaching method in the mounting step shown in FIG. 8, the spuds 20A, 20B are lowered to reach the bottom, and the work platform 1A is moved downward by the spud movement operation using these spuds 20A, 20B. It is also possible to use the spud moving method of moving the structure 42 to the upper portion 42a.
 移動調整工程は、必要に応じて、移動工程に含まれる移動工程の後半の工程であり、着底工程の前の工程である。この移動調整工程では、作業台船1Aの位置を前後方向及び左右方向に、即ち、水平方向に移動させることで、作業台船1Aの位置決めをする工程である、この工程では、搭載した上部構造物41の下側の接合部である上部41dと下部構造物42の上側の接合部である下部42aとの位置が合うように、作業台船1Aの位置の調整を行う。 The movement adjustment process is, if necessary, the latter half of the movement process included in the movement process and the process before the bottoming process. In this movement adjusting step, the position of the work pontoon 1A is moved by moving the position of the work pontoon 1A in the front-rear direction and the left-right direction, that is, in the horizontal direction. The position of the work carrier 1A is adjusted so that the upper portion 41d, which is the lower joint portion of the object 41, and the lower portion 42a, which is the upper joint portion of the lower structure 42, are aligned.
 この移動調整工程では、次のような方法を用いることができる。第1の方法としては、図13に示すように、係留索6aと錨との間を連結している錨索6bなどで係留した多点係留の場合の係留調整方法を用いる方法である。この方法では、作業台船1Aに装備に装備している操船ウインチや投錨装置等の操作で、この係留索6aと錨索6bの長さや張力を調整しながら作業台船1Aの位置を調整して、その調整後の位置に位置保持する。 The following methods can be used in this movement adjustment process. As a first method, as shown in FIG. 13, a method of using a mooring adjustment method in the case of multi-point mooring moored by an anchoring cable 6b connecting the mooring cable 6a and the anchor is used. In this method, the position of the work table boat 1A is adjusted by adjusting the length and tension of the mooring line 6a and the anchor line 6b by operating the marine vessel maneuvering winch or the anchoring device equipped on the work table boat 1A. And hold the position at the adjusted position.
 また、移動調整工程の第2の方法としては、図14に示すように、アジマススラスター7aとサイドスラスター7b等を使用した自動船位保持システム(DPS)を装備して、作業台船1Aの位置を調整して、その調整後の位置に位置保持する。 In addition, as a second method of the movement adjusting step, as shown in FIG. 14, an automatic ship position holding system (DPS) using an azimuth thruster 7a, a side thruster 7b, etc. is equipped, and the position of the work carrier 1A is adjusted. Adjust and hold in place after the adjustment.
 なお、設置水域で、複数の上部構造物41を連続して、それぞれの下部構造物42の上に設置するような場合には、降下したスパッド20A、20Bをいちいち上昇して格納することなく、図8に示す搭載工程における第2の接近方法と同様に、スパッド移動操作で、移動する第3の方法を用いることもできる。 In addition, in a case where a plurality of upper structures 41 are continuously installed on the respective lower structures 42 in the installation water area, the spuds 20A and 20B that have dropped are not raised and stored one by one, Similar to the second approaching method in the mounting step shown in FIG. 8, the third method of moving by a spud moving operation can also be used.
 着底工程は、作業台船1Aに備えられている甲板昇降式システムのスパッド20A、20Bを下降させて着底させることにより、作業台船1Aを、船体の浮力を受けつつ水面Sに浮かべた状態で、又は、水面Sより上に持ち上げた状態で、設置水域に支持する工程である。 In the bottoming step, the work pontoons 1A were floated on the water surface S while receiving the buoyancy of the hull by lowering the spuds 20A and 20B of the deck lifting system provided on the work pontoons 1A to reach the bottom. In this state, or in a state of being lifted above the water surface S, it is a step of supporting the installation water area.
 この着底工程では、図15に示すように、作業台船1AがハーフSEPの場合は、スパッド20A、20Bを水底Bに着底させるが、さらに、スパッド20A、20Bを降下させて、船体2の浮力を受けつつ水面Sに浮かべた状態とする。この浮いている状態で作業をする場合は,スパッド20A、20Bを水底Bに着底させて、作業台船1Aの重量の一部をスパッド20A、20B経由で水底Bに負担させていることで、作業台船1Aは、浮きつつも、水底Bに立設している状態になっているので、波やうねりによる作業台船1Aの周期的な船体運動を抑制することができる。 In this bottoming step, as shown in FIG. 15, when the work pontoon 1A is a half SEP, the spuds 20A and 20B are bottomed on the water bottom B, but the spuds 20A and 20B are further lowered to form the hull 2 It floats on the water surface S while receiving the buoyancy. When working in this floating state, the spuds 20A and 20B are set on the bottom of the water B, and a part of the weight of the work table ship 1A is borne on the bottom of the water B via the spuds 20A and 20B. Since the work pontoon 1A is in a state of being erected on the water bottom B while floating, it is possible to suppress the periodic hull movement of the work pontoon 1A due to waves and swells.
 しかしながら、作業中における、潮の干満差や上部構造物41を下部構造物42に移動させることで船体に加わる重量が変化するので、それに伴う喫水の変化と浮力の変化が発生する。また、船体2が浮いている状態なので、波浪や風により作業台船1Aが動揺したりすることを完全に抑制することはできない。 However, during work, the weight added to the hull changes due to the tide difference and movement of the upper structure 41 to the lower structure 42, which causes changes in draft and buoyancy. Further, since the hull 2 is in a floating state, it is not possible to completely prevent the work pontoon 1A from swaying due to waves or wind.
 一方、この着底工程では、図16に示すように、作業台船1BがフルSEPの場合は、スパッド20A、20Bを水底Bに着底しても、さらに降下させて、作業台船1Bを水面Sより完全に上になるように持ち上げた状態とする。そして、作業するときには、作業台船1Bの船体2の全体が水面Sより上の波浪の届かない高さになるように維持して、水面Sの波浪の影響や潮流の影響が作業台船1Bの船体2に及ばないようにする。これにより、作業台船1Bの上下移動や船体運動を大幅に抑制することができる。 On the other hand, in this bottoming process, as shown in FIG. 16, when the work pontoon 1B is full SEP, even if the spuds 20A and 20B land on the water bottom B, the spuds 20A and 20B are further lowered and the work pontoon 1B is lowered. It is in a state of being lifted so as to be completely above the water surface S. Then, when working, the entire hull 2 of the work pontoon 1B is maintained at a height above the water surface S and out of reach of the waves, and the influence of the waves on the water surface S and the influence of the tidal current are influenced by the work pontoon 1B. Do not reach the hull 2 of. As a result, vertical movement of the work pontoon ship 1B and hull movement can be significantly suppressed.
 位置調整工程は、上記の着底工程の後で、図17に示すように、水平方向に移動可能な歩行式の甲板昇降式システムのスパッド20A、20Bを用いたスパッド移動操作で作業台船1Aの位置を水平方向に移動させることで、作業台船1Aに搭載した上部構造物41の下側の接合部(上部)41dと下部構造物42の上側の接合部(上部)42aとの位置合わせを行う工程である。このスパッド移動操作では、船尾側のスパッド20Aを上昇させると共に、船首側のスパッド20Bのキックなどにより、作業台船1Aを水平方向に移動させて、位置合わせを行う。 In the position adjusting step, as shown in FIG. 17, after the bottoming step described above, the work platform 1A is operated by a spud moving operation using the spuds 20A and 20B of a walking type deck elevating system that is horizontally movable. Position of the lower joint (upper) 41d of the upper structure 41 mounted on the work platform 1A and the upper joint (upper) 42a of the lower structure 42 by moving the position of Is a step of performing. In this spud movement operation, the stern side spud 20A is raised and the work table boat 1A is horizontally moved by the kick of the bow side spud 20B or the like to perform alignment.
 この位置調整工程によれば、スパッド20A、20Bのスパッド移動操作で、作業台船1Aを前後方向や左右方向等の水平方向に移動させるので、位置合わせのための他の装置やシステムを装備する必要が無くなる。従って、位置合わせのための装置を作業台船1Aに搭載することによって生じる作業台船1Aの大型化を抑制できる。 According to this position adjustment step, the work table boat 1A is moved in the horizontal direction such as the front-rear direction and the left-right direction by the spud movement operation of the spuds 20A and 20B, so that other devices and systems for alignment are equipped. There is no need. Therefore, it is possible to suppress an increase in the size of the work pontoon 1A caused by mounting the device for alignment on the work pontoon 1A.
 降下工程は、作業台船1Aに備えられている甲板昇降式システムのスパッド20A、20Bを昇降させるスパッド昇降操作で作業台船1Aの一部又は全部を降下させることにより、作業台船1Aに搭載されている上部構造物41を下部構造物42の上に降下する工程である。この降下工程により、フォーク部4を下げることで、上部構造物41と下部構造物42を、互いに、当接させたり、係合させたり、嵌合させたりする。これにより、作業台船1Aの波やうねりによる周期的な船体運動を抑えたまま、フォーク部4と上部構造物41を下げることができるので、効率よく上部構造物41を下部構造物42に接合することができる。 The descending step is carried on the work pontoon 1A by lowering part or all of the work pontoon 1A by a spud raising / lowering operation of raising / lowering the spuds 20A and 20B of the deck lifting system provided on the work pontoon 1A. This is a step of lowering the existing upper structure 41 onto the lower structure 42. By this lowering step, the fork portion 4 is lowered, so that the upper structure 41 and the lower structure 42 are brought into contact with, engaged with, or fitted to each other. As a result, the fork portion 4 and the upper structure 41 can be lowered while suppressing the periodic hull motion due to the waves and swells of the work pontoon 1A, so that the upper structure 41 is efficiently joined to the lower structure 42. can do.
 この降下工程においては、スパッドの上下操作による第1の降下方法として、図18に示すように、前後のスパッド20A、20Bの両方を同時に上昇させることにより、船体2の姿勢を維持しながら、船体2と共にフォーク部4を下降させる方法を用いることができる。この場合には操作するスパッド20A、20Bが三つとなるので、船体2の傾斜を避けるため、互いの間で同調するようにする必要がある。 In this descending step, as a first descending method by vertically operating the spud, as shown in FIG. 18, both the front and rear spuds 20A and 20B are simultaneously raised to maintain the attitude of the hull 2 while maintaining the attitude of the hull 2. A method of lowering the fork portion 4 together with 2 can be used. In this case, since the number of spuds 20A and 20B to be operated is three, it is necessary to synchronize with each other in order to avoid the inclination of the hull 2.
 また、第2の降下方法として、図19に示すように、船首側のスパッド20Aのみを降下させて、船首側を上昇させて船体姿勢を傾斜させることで、船尾側のフォーク部4を降下させる方法を用いることができる。この場合には操作するスパッド20Aが船首側の一つとなるので、他の船尾側の二つのスパッド20Bとの同調が不要となる。そして、船首側を持ち上げる「ともあし」とすることにより、作業台船1Aへの波の影響を、より確実に少なくすることができる。この場合、フォーク部4の搭載部位傾斜機構で上部構造物の41の傾斜を回避することが好ましい。 As a second descending method, as shown in FIG. 19, only the spud 20A on the bow side is lowered, the bow side is raised and the hull attitude is tilted, and the fork portion 4 on the stern side is lowered. Any method can be used. In this case, since the operated spud 20A is one on the bow side, it is not necessary to synchronize with the other two spuds 20B on the stern side. Then, the influence of the waves on the work pontoon ship 1A can be more surely reduced by adopting "tomoashi" for lifting the bow side. In this case, it is preferable to avoid the inclination of the upper structure 41 by the mounting portion inclination mechanism of the fork portion 4.
 さらに、この場合に、作業台船1Aにおけるバラスト調整で、上部構造物41の重量に相当するバラスト水と、接合後の接合体41からの離脱後に確保したい上下距離の分だけ船体2を沈められる分に相当するバラスト水を積み込むことが好ましい。 Further, in this case, by adjusting the ballast in the work pontoon 1A, the hull 2 can be sunk by the amount of the ballast water corresponding to the weight of the upper structure 41 and the vertical distance desired to be secured after the joint 41 is separated from the joint 41 after joining. It is preferable to load ballast water corresponding to the amount.
 また、第3の降下方法としては、図20に示すように、船尾側のスパッド20Bのみを少し引き込んで上昇させて、船尾側を降下させて船体姿勢を傾斜させることで、フォーク部4を降下させる方法を用いることができる。この場合には操作するスパッド20Bが船尾側の二つとなるので、船体2の横傾斜を避けるために、この二つのスパッド20Bの間での同調が必要になる。この場合、フォーク部4の搭載部位傾斜機構で上部構造物の41の傾斜を回避することが好ましい。 Further, as a third descending method, as shown in FIG. 20, only the spud 20B on the stern side is slightly retracted and raised, and the stern side is lowered to incline the hull posture to lower the fork portion 4. The method can be used. In this case, since the two spuds 20B to be operated are on the stern side, it is necessary to synchronize between the two spuds 20B in order to avoid lateral inclination of the hull 2. In this case, it is preferable to avoid the inclination of the upper structure 41 by the mounting portion inclination mechanism of the fork portion 4.
 さらには、これらの降下方法に対して、作業台船1AがセミSEPであるときには、船体2が降下し易いように、バラスト水を増加することが好ましいが、潮汐を利用して、満ち潮から引き潮へ移行するときに、降下工程を行うことで、バラスト調整に依存しなくても、作業台船1Aを降下させることができる。従って、船体2の降下や船体姿勢の変化のための補助的なバラスト調整による負担を軽減でき、より迅速に降下工程を行うことができる。 Further, in contrast to these descending methods, when the work pontoon 1A is a semi-SEP, it is preferable to increase the ballast water so that the hull 2 can easily descend. By performing the descending step when shifting to, it is possible to descend the work platform 1A without depending on the ballast adjustment. Therefore, the burden of auxiliary ballast adjustment for lowering the hull 2 and changing the hull attitude can be reduced, and the lowering process can be performed more quickly.
 この降下工程によれば、従来技術の甲板昇降式システムとクレーンなどを備えた作業台船に比べて、作業台船1Aに搭載した上部構造物41の降下を、甲板昇降式システムのスパッド20A、20Bを用いたスパッド昇降操作で行うので、クレーン船のクレーン、作業台船に搭載されたクレーン、及び、上部構造物を上下するためのハンドリング装置などを用いる必要が無くなり、これらを作業台船に装備することによって生じる作業台船の大型化を回避できる。 According to this descending process, the lowering of the upper structure 41 mounted on the work platform 1A is performed by the spud 20A of the deck lifting system, compared to the work platform equipped with the conventional deck lifting system and the crane. Since it is carried out by the spud lifting operation using 20B, it is not necessary to use a crane of a crane ship, a crane mounted on a work table ship, and a handling device for moving up and down an upper structure. It is possible to avoid an increase in the size of the work pontoon caused by the equipment.
 また、このスパッド昇降操作で作業台船1Aに搭載した上部構造物41を降下させる方法では、作業台船1Aのバラスト調整のみで上部構造物41を降下させる場合に比べて、作業台船1Aをスパッド20A、20Bで上昇させて、作業台船1Aの船体2を水面Sに固定又は水面Sより上に固定しているので、波、うなり、風と潮流等の外乱による作業台船1Aの船体2の運動を抑制、またはそれらの影響を回避できる。 Further, in the method of lowering the upper structure 41 mounted on the work platform 1A by this spud raising / lowering operation, the work platform 1A is lowered as compared with the case where the upper structure 41 is lowered only by adjusting the ballast of the work platform 1A. Since the hull 2 of the work pontoon 1A is fixed to the water surface S or fixed above the water surface S by being raised by the spuds 20A and 20B, the hull of the work pontoon 1A due to disturbances such as waves, humming, wind and tidal currents. It is possible to suppress the movements of No. 2 or avoid their influence.
 さらに、作業台船1Aのバラスト水の増減による作業台船1Aの沈下速度と浮上速度に比べて、スパッド20A、20Bの昇降による降下速度と上昇速度が10倍程度大きいので、降下工程において、迅速に、作業台船1Aとこれに搭載された上部構造物41を下部構造物42の上に降下することができる。そのため、降下工程における作業時間を短縮することができる。例えば、バラスト水の増減では、船体の前端や後端を数十cm上下させるためだけでも、バラスト調整に10分程度以上になる場合があるが、これに対し、スパッドの上昇・下降速度は0.4m/分の場合がある。 Furthermore, since the descending speed and the ascending speed of the spuds 20A and 20B are about 10 times higher than the sinking speed and the ascending speed of the working ship 1A due to the increase or decrease of the ballast water of the working ship 1A, the descent process is quick. In addition, the work platform 1A and the upper structure 41 mounted on the work carrier 1A can be lowered onto the lower structure 42. Therefore, the working time in the lowering process can be shortened. For example, when increasing or decreasing the ballast water, it may take about 10 minutes or more to adjust the ballast just to raise or lower the front end or the rear end of the hull by several tens of centimeters. It may be 0.4 m / min.
 従って、風と潮流等の外乱による作業台船1Aの船体運動による、上部構造物41と下部構造物42の間の衝突の可能性のある時間を著しく短縮できる。この船体運動の抑制又は回避と、作業台船1Aの降下の迅速化により、接合前は作業台船1Aに搭載された上部構造物41と下部構造物42の間における接触の可能性を大幅に低下させることができる。 Therefore, the time during which there is a possibility of collision between the upper structure 41 and the lower structure 42 due to the hull motion of the work pontoon 1A due to disturbances such as wind and tidal current can be significantly shortened. By suppressing or avoiding the movement of the hull and speeding up the descent of the work platform 1A, the possibility of contact between the upper structure 41 and the lower structure 42 mounted on the work platform 1A is significantly increased before joining. Can be lowered.
 接合工程は、上部構造物41を下部構造物42に接合して一体化して、上部構造物41と下部構造物42の接合体40を形成する工程である。この接合工程では、降下工程により、上部構造物41の下部41dと下部構造物42の上部42aの両者を、互いに、当接したり、係合したり、嵌合したりしている。この上部構造物41の下部41dと下部構造物42の上部42aを、ボルト・ナットなどの接合部材を用いたり、溶接等の接合作業を行ったりして、互いに接合する。この接合後に、上部構造物41とフォーク部4の接続を解除する。この接合工程においても、接合作業の効率があがるように、フォーク部4の搭載部位傾斜機構で上部構造物の41の傾斜を回避することが好ましい。 The joining step is a step of joining the upper structure 41 and the lower structure 42 and integrating them to form a joined body 40 of the upper structure 41 and the lower structure 42. In this joining step, both the lower portion 41d of the upper structure 41 and the upper portion 42a of the lower structure 42 are brought into contact with, engaged with, or fitted to each other by the descending step. The lower portion 41d of the upper structure 41 and the upper portion 42a of the lower structure 42 are joined to each other by using a joining member such as bolts and nuts or performing joining work such as welding. After this joining, the connection between the upper structure 41 and the fork portion 4 is released. Also in this joining step, it is preferable to avoid the inclination of the upper structure 41 by the mounting portion inclining mechanism of the fork portion 4 so that the efficiency of the joining operation is improved.
 なお、下部構造物42に接合した上部構造物41とフォーク部4との接続を解除した際に、船尾が急浮上する可能性がある場合等では、この接合前に、必要に応じて上部構造物41に相当する重量分程度のバラスト水を船体2の後部に積んでおき、離脱工程で、船尾が急浮上するのを防止することが好ましい。また、接合後から上下方向離脱までの間で、上部構造物41の荷重が下部構造物42に移行し、作業台船1A側では、上部構造物41の重量が除荷されている。そのため、上下方向離脱工程に先立ち、または並行して、必要に応じて、作業台船1Aのバラストを中荷状態にしたり、船体トリムをイーブンにするようバラスト水を船尾側に移送したりするなどのバラスト調整を行うことが好ましい。 In addition, when there is a possibility that the stern suddenly rises when the connection between the upper structure 41 joined to the lower structure 42 and the fork portion 4 is released, before the joining, if necessary, the upper structure may be released. It is preferable to load ballast water in an amount corresponding to the weight of the object 41 on the rear portion of the hull 2 to prevent the stern from suddenly rising during the removal process. In addition, the load of the upper structure 41 is transferred to the lower structure 42 between the joining and the vertical separation, and the weight of the upper structure 41 is unloaded on the side of the work platform 1A. Therefore, prior to or in parallel with the vertical disengagement process, if necessary, the ballast of the work pontoon ship 1A is set to the medium load state, or the ballast water is transferred to the stern side so that the hull trim is even. It is preferable to adjust the ballast.
 離脱工程は、下部構造物41に上部構造物42の荷重を移した後で、スパッドの支持により作業台船1Aの揺動を抑えたままで、甲板昇降式システムのスパッド昇降操作により、上部構造物41と下部構造物42の接合体40から作業台船1Aを離脱する工程である。この離脱工程においては、上下方向離脱工程を行った後で、水平方向離脱工程を行うが、並行して行うことが可能な場合は、並行して行った方が、離脱工程の時間を短縮できるので、より好ましい。 In the detaching process, after transferring the load of the upper structure 42 to the lower structure 41, the swing of the work platform 1A is suppressed by the support of the spud, and the upper structure is operated by the spud lifting operation of the deck lifting system. This is a step of separating the work platform 1A from the joined body 40 of 41 and the lower structure 42. In this disengagement step, the horizontal disengagement step is performed after performing the up-down direction disassociation step. However, if it is possible to perform in parallel, it is possible to shorten the disassociation step time by performing them in parallel. Therefore, it is more preferable.
 この離脱工程の上下方向離脱工程は、甲板昇降式システムのスパッド20A、20Bを用いたスパッド昇降操作により、作業台船1Aの上部構造物41を搭載していた部位をさらに降下、または、逆に上昇させることにより、作業台船1Aを接合体40から上下方向に離間させる工程である。この上下方向離脱工程では、接合後に作業台船1Aに加わらなくなる上部構造物42の重量相当分と、離脱後に確保したい上下距離の分だけ船体2を沈下または浮上させるのに必要な重量相当分を合わせた重量のバラスト水を積み込むことが好ましい。 In the vertical separation process of this separation process, the part of the work platform 1A on which the upper structure 41 is mounted is further lowered by the spud lifting operation using the spuds 20A and 20B of the deck lifting system, or conversely. It is a step of vertically moving the work pontoon 1A away from the joined body 40 by raising it. In this vertical separation step, the weight equivalent to the weight of the upper structure 42 that will not be added to the work platform 1A after joining and the weight equivalent to the sinking or floating of the hull 2 by the vertical distance that is desired to be secured after the separation. It is preferred to load a combined weight of ballast water.
 より詳細には、図26及び図27に示すように、フォーク部4の上面と上部構造物41の下部41dの下面との間(クロスハッチング部分)を接続して運搬し、フォーク部4を下降させて、上下距離D1を縮小させて、上部構造物41の下部41dの下面を下部構造物42の上部42aの上面に当接させて(クロスハッチング部分)、上部構造物41と下部構造物42を接合して、接合体40を形成する。その後、フォーク部4の上面と上部構造物41の下部41dの下面との間の接続を解除して、フォーク部4を下降させることで、上下距離D2を拡大させて、作業台船1Aを接合体40から離脱する。この場合は、下方向離脱工程となる。 More specifically, as shown in FIGS. 26 and 27, the upper surface of the fork portion 4 and the lower surface of the lower portion 41d of the upper structure 41 (cross-hatching portion) are connected and transported, and the fork portion 4 is lowered. Then, the vertical distance D1 is reduced, and the lower surface of the lower portion 41d of the upper structure 41 is brought into contact with the upper surface of the upper portion 42a of the lower structure 42 (cross hatching portion), and the upper structure 41 and the lower structure 42 are contacted. Are joined together to form a joined body 40. After that, the connection between the upper surface of the fork portion 4 and the lower surface of the lower portion 41d of the upper structure 41 is released, and the fork portion 4 is lowered, thereby increasing the vertical distance D2 and joining the work platform 1A. Remove from body 40. In this case, the downward separating process is performed.
 または、図28及び図29に示すように、フォーク部4の下面と上部構造物41の下部41dの上面との間(クロスハッチング部分)を接続して運搬し、フォーク部4を下降させて、上下距離D3を縮小させて、上部構造物41の下部41dの下面を下部構造物42の上部42aの上面に当接させて(クロスハッチング部分)、上部構造物41と下部構造物42を接合して、接合体40を形成する。その後、フォーク部4の下面と上部構造物41の下部41dの上面との間の接続を解除して、フォーク部4を上昇させることで、上下距離D4を拡大させて、作業台船1Aを接合体40から離脱する。この場合は、上方向離脱工程となる。 Alternatively, as shown in FIGS. 28 and 29, the lower surface of the fork portion 4 and the upper surface of the lower portion 41d of the upper structure 41 (cross-hatched portion) are connected and transported, and the fork portion 4 is lowered. The vertical distance D3 is reduced, and the lower surface of the lower portion 41d of the upper structure 41 is brought into contact with the upper surface of the upper portion 42a of the lower structure 42 (cross hatching portion) to join the upper structure 41 and the lower structure 42. The joined body 40 is formed. Then, the lower surface of the fork part 4 and the upper surface of the lower part 41d of the upper structure 41 are disconnected, and the fork part 4 is lifted to increase the vertical distance D4 and join the work pontoon 1A. Remove from body 40. In this case, the upward separation process is performed.
 そして、この上下方向離脱工程においては、フォーク部4を下方向に移動する下方向離脱とフォーク部4を上方向に移動する上方向離脱がある。スパッド昇降操作による第1の下方向離脱方法として、図18に示す降下工程の第1の降下方法と同様に、前後のスパッド20A、20Bの両方を同時に上昇させることにより、船体2の姿勢を維持しながら、船体2と共にフォーク部4を下降させる方法を用いることができる。この場合には操作するスパッド20A、20Bが三つとなるので、船体2の傾斜を避けるため、互いの間で同調するようにする必要がある。 Then, in this vertical disengagement step, there are a downward disengagement in which the fork portion 4 moves downward and an upward disengagement in which the fork portion 4 moves upward. As the first downward disengagement method by the spud lifting operation, similar to the first descending method of the descending step shown in FIG. 18, both the front and rear spuds 20A and 20B are simultaneously raised to maintain the attitude of the hull 2. However, a method of lowering the fork portion 4 together with the hull 2 can be used. In this case, since the number of spuds 20A and 20B to be operated is three, it is necessary to synchronize with each other in order to avoid the inclination of the hull 2.
 また、第2の下方向離脱方法としては、図19に示す降下工程の第2の降下方法と同様に、船首側のスパッド20Aのみを降下させて、船首側を上昇させて船体姿勢を傾斜させることで、船尾側のフォーク部4を降下させる方法を用いることができる。 Further, as the second downward separating method, as in the second descending method of the descending step shown in FIG. 19, only the spud 20A on the bow side is lowered and the bow side is raised to incline the hull attitude. Therefore, a method of lowering the fork portion 4 on the stern side can be used.
 また、第3の下方向離脱方法としては、図20に示す降下工程の第3の降下方法と同様に、船尾側のスパッド20Bのみを上昇させて、船尾側を降下させて船体姿勢を傾斜させることで、フォーク部4を降下させる方法を用いることができる。つまり、船尾側のスパッド20Aをさらに引き込んで、フォーク部4を下降させることで、接合体40の上部項構造物41とフォーク部4を上下方向に離脱させる。これらの場合には操作するスパッド20Bが船尾側の二つとなるので、船体2の横傾斜を避けるために、この二つのスパッド20Bの間での同調が必要になる。 As the third downward disengagement method, similarly to the third descending method in the descending step shown in FIG. 20, only the spud 20B on the stern side is raised and the stern side is lowered to incline the hull attitude. Therefore, a method of lowering the fork portion 4 can be used. That is, the stern side spud 20A is further retracted and the fork portion 4 is lowered, whereby the upper part structure 41 of the joined body 40 and the fork portion 4 are separated in the vertical direction. In these cases, two spuds 20B to be operated are provided on the stern side, so that synchronization between the two spuds 20B is required to avoid lateral inclination of the hull 2.
 この上下方向離脱工程の第1の上方向離脱方法においては、図21に示すように、さらに前後のスパッド20A、20Bの両方を同時に降下させることにより、船体2の姿勢を維持しながら、船体2と共にフォーク部4を上昇させる方法を用いることができる。 In the first upward disengagement method in the up-and-down disengagement step, as shown in FIG. 21, both front and rear spuds 20A and 20B are simultaneously lowered to maintain the attitude of the hull 2 while maintaining the attitude of the hull 2. At the same time, a method of raising the fork portion 4 can be used.
 また、第2の上方向離脱方法としては、図22に示すように、船首側のスパッド20Aのみを上昇させて、船首側を下降させて船体姿勢を傾斜させることで、船尾側のフォーク部4を上昇させる方法を用いることができる。つまり、船首側のスパッド20Aを戻し、フォーク部4を持ち上げることにより接合体40とフォーク部4を上下方向に離間させる。これらの場合には操作するスパッド20Aが船首側の一つとなるので、他の船尾側の二つのスパッド20Bとの同調が不要となる。 As a second upward disengagement method, as shown in FIG. 22, by raising only the spud 20A on the bow side and lowering the bow side to tilt the hull posture, the fork portion 4 on the stern side is Can be used. That is, by returning the spud 20A on the bow side and lifting the fork portion 4, the joined body 40 and the fork portion 4 are separated from each other in the vertical direction. In these cases, since the spud 20A to be operated is one on the bow side, it is not necessary to synchronize with the other two spuds 20B on the stern side.
 また、第3の上方向離脱方法としては、図23に示すように、船尾側のスパッド20Bのみを降下させて、船尾側を上昇させて船体姿勢を傾斜させることで、フォーク部4を上昇させる方法を用いることができる。つまり、船尾側のスパッド20Aをさらに伸ばしたりして、フォーク部4を上昇させて、接合体40とフォーク部4を上下方向に離脱させる。 In addition, as a third upward disengagement method, as shown in FIG. 23, only the spud 20B on the stern side is lowered, the stern side is raised, and the hull attitude is tilted to raise the fork portion 4. Any method can be used. That is, the spud 20A on the stern side is further extended to raise the fork portion 4 to separate the joined body 40 and the fork portion 4 in the vertical direction.
 これらの上下方向離脱工程によれば、スパッド昇降操作で、作業台船1Aを上下方向に移動させるので、バラスト調整による作業台船1Aの喫水調整に比べて、迅速に、接合体40から作業台船1Aを離脱することができる。 According to these vertical disengagement steps, the work table boat 1A is moved in the vertical direction by the spud lifting operation. Therefore, as compared with the draft adjustment of the work table boat 1A by ballast adjustment, the work table boat 1A can be quickly moved from the joint body 40 to the work platform table. It is possible to leave the ship 1A.
 さらには、これらの上下方向離脱方法に対して、作業台船1AがセミSEPであるときには、船体2が上昇又は降下し易いように、バラスト水を減少又は増加することが好ましいが、潮汐を利用して、満ち潮から引き潮への移行のときや、逆に引き潮から満ち潮への移行のときに、上下方向離脱工程を行うことで、バラスト調整に依存しなくても、作業台船1Aを上昇又は降下させることができる。従って、船体2の降下や船体姿勢の変化のための補助的なバラスト調整による負担を軽減でき、より迅速に上下方向離脱工程を行うことができる。この上下方向離脱工程では、スパッド昇降操作と必要に応じて干満差やバラスト調整を組み合わせて、接合体40と作業台船1Aのフォーク部4との間の上下距離D2、D4の調整を行う。 Further, with respect to these vertical separation methods, when the work pontoon 1A is a semi-SEP, it is preferable to decrease or increase the ballast water so that the hull 2 can easily move up or down, but the tide is used. Then, at the time of transition from high tide to low tide, or conversely at the time of transition from low tide to high tide, the work platform 1A can be raised or lifted by performing the vertical separation process without depending on ballast adjustment. Can be lowered. Therefore, the burden of auxiliary ballast adjustment for lowering the hull 2 or changing the hull attitude can be reduced, and the vertical disengagement process can be performed more quickly. In the vertical disengagement step, the vertical distances D2 and D4 between the joined body 40 and the fork portion 4 of the work platform 1A are adjusted by combining the spud lifting operation and the tidal difference and ballast adjustment as necessary.
 この離脱工程の水平方向離脱工程は、歩行式の甲板昇降式システムのスパッド20A、20Bを用いたスパッド移動操作により、作業台船1Aを水平方向に移動させることにより、作業台船1Aを接合体40から水平方向に離間させる工程である。この水平方向離脱工程では、上記の上下方向離脱工程により、上下方向に十分離間した状態にした上で、水平方向に移動して設置水域(現場海域)を離脱する。 In the horizontal separation step of this separation step, the work platform 1A is moved in the horizontal direction by a spud movement operation using the spuds 20A and 20B of the walk-type deck lifting system to join the work platform 1A to the joined body. It is a step of horizontally separating from 40. In this horizontal separation step, the above vertical separation step leaves the installation water area (site sea area) by moving in the horizontal direction after keeping a sufficient distance in the vertical direction.
 なお、この水平方向離脱工程においては、第1の方法として、図13に示す移動工程と同様に、全てのスパッド20A、20Bを上昇させて、多点係留の操船ウインチを用いて、作業台船1Aを接合体40から水平方向に離脱する係留利用離脱方法を用いてもよい。また、第2の方法として、図14に示す移動工程と同様に、全てのスパッド20A、20Bを上昇させて、アジマススラスター7aとサイドスラスター7b等の自船の推進システムを使用したり、タグボート等の他船の推進システムを使用したりする推進力離脱方法を用いて、作業台船1Aを接合体40から水平方向に離脱してもよい。 In the horizontal disengagement step, as a first method, all the spuds 20A and 20B are lifted and a multi-point mooring marine vessel winch is used as in the moving step shown in FIG. You may use the mooring utilization detachment method of detaching 1A from the joined body 40 horizontally. As a second method, similarly to the moving step shown in FIG. 14, all the spuds 20A and 20B are raised to use the own ship's propulsion system such as the azimuth thruster 7a and the side thruster 7b, or the tugboat or the like. The work table ship 1A may be horizontally separated from the joined body 40 by using a propulsion force separation method using the propulsion system of another ship.
 そして、この水平方向離脱工程の第3の方法として、スパッド移動操作による水平方向離脱方法が有り、この方法では、図24に示すように、船尾側のスパッド20Aを上昇させると共に、船首側のスパッド20Bのキックにより、作業台船1Aを水平方向に移動させて、接合体から水平方向に離脱する。 Then, as a third method of this horizontal disengagement step, there is a horizontal disengagement method by a spud moving operation. In this method, as shown in FIG. 24, the stern side spud 20A is raised and the bow side spud is operated. By the kick of 20B, the work pontoon 1A is moved in the horizontal direction and is separated from the joined body in the horizontal direction.
 この水平方向離脱工程によれば、水平移動可能な歩行式の甲板昇降式システムを備えている場合には、その甲板昇降式システムのスパッド移動操作で、作業台船1Aを前後方向や左右方向等の水平方向に移動させることができるので、この水平方向の離脱のための他の装置やシステムを装備する必要が無くなる。従って、水平方向の離脱の装置を作業台船1Aに搭載することによって生じる作業台船1Aの大型化を抑制できる。また、甲板昇降式システムのスパッドの移動操作により、迅速に、接合体40から作業台船1Aを離脱することができる。 According to this horizontal disengagement step, when a horizontally movable walkable deck lifting system is provided, the spud movement operation of the deck lifting system moves the work platform 1A in the front-back direction, left-right direction, etc. Since it can be moved horizontally, it is not necessary to equip another device or system for this horizontal disengagement. Therefore, it is possible to suppress an increase in the size of the work pontoon 1A caused by mounting the device for horizontally separating on the work pontoon 1A. In addition, the work platform 1A can be quickly removed from the joined body 40 by moving the spud of the deck lifting system.
 なお、これらの離脱工程においても、接合体40と作業台船1Aとの接触をより回避し易くするために、フォーク部4の搭載部位傾斜機構でフォーク部4の姿勢の傾斜を離脱し易い姿勢に変更又は維持することが好ましい。 Even in these disengagement steps, in order to make it easier to avoid contact between the joined body 40 and the work platform 1A, the attitude of the fork portion 4 can be easily disengaged by the mounting portion inclination mechanism of the fork portion 4. It is preferable to change or maintain.
 復航工程は、設置作業後に、設置水域から帰港する工程であり、図5に示す復航工程と同様に、図25に示すように、安全な場所で、作業台船1Aでは、スパッド20A、20Bを水底Bから離底させて、スパッド20A、20Bの最下位の部位が水面Sの近傍になるまでスパッド20A、20Bを上昇させて作業台船1Aのデッキ3に格納する。この状態で設置水域から移動して、復航する。この航行は、作業台船1Aが自航できるように推進システムを備えている場合は、その推進システムを使用して自航するが、タグボート等により曳航されるときは、他船の推進システムにより航行して、帰港する。 The return flight process is a process of returning from the installation water area after the installation work, and as in the return flight process shown in FIG. 5, as shown in FIG. 25, the spuds 20A and 20B are placed in a safe place at the work table 1A. The spuds 20A and 20B are raised from the water bottom B until the lowest parts of the spuds 20A and 20B are close to the water surface S, and stored on the deck 3 of the work pontoon 1A. In this state, move from the installation area and return to the sea. This navigation uses the propulsion system if the work pontoon ship 1A is equipped with the propulsion system, but the propulsion system is used for self-navigation, but when towed by a tugboat, etc. Sail and return to port.
 次に、本発明に係る第2の実施の形態の洋上構造物の施工方法で使用する作業台船について説明する。図31~図33に示すように、この作業台船1C、1Dは、第1の実施の形態の洋上構造物の施工方法で使用する作業台船1A、1Bと同じで、ハーフSEP、フルSEPであるが、船尾のフォーク部4の腕状構造物(突起部)4aが、その上を、上部構造物41を搭載及び載置した移動式載置台30Aを固定できるように構成されている点が異なる。 Next, a work pontoon used in the method for constructing an offshore structure according to the second embodiment of the present invention will be described. As shown in FIGS. 31 to 33, the work pontoons 1C and 1D are the same as the work pontoons 1A and 1B used in the method of constructing an offshore structure according to the first embodiment, and include half SEP and full SEP. However, the arm-shaped structure (projection) 4a of the stern fork part 4 is configured so that the mobile mounting table 30A on which the upper structure 41 is mounted and mounted can be fixed. Is different.
 なお、この作業台船1C、1Dで、移動式載置台30Aを船尾のフォーク部4だけでなくデッキ3にも走行及び固定できるように構成すると、一度に、複数の上部構造物41を運搬することができるようになるので、より好ましい。この場合は、デッキ3の上に配置された「上部構造物41を載置した移動式載置台30A」を船尾のフォーク部4に移動する第1の通路だけでなく、「上部構造物41を設置して、空になった移動式載置台30A」を、船尾のフォーク部4からデッキ3に戻す第2通路を設ける必要がある。 In addition, in this work pontoons 1C and 1D, if the movable mounting table 30A is configured to be able to travel and be fixed not only to the fork part 4 of the stern but also to the deck 3, a plurality of superstructures 41 are transported at one time. It is more preferable because it is possible. In this case, not only the first passage for moving the “movable mounting table 30A on which the upper structure 41 is mounted” arranged on the deck 3 to the fork part 4 at the stern, but also the “upper structure 41 It is necessary to provide a second passage for returning the emptied mobile mounting table 30A "from the fork portion 4 at the stern to the deck 3.
 また、作業台船1C、1Dでは、必ずしも、歩行式の昇降脚昇降システム21bを備えている必要はないので、ここでの説明は、図31~図33に示すように、船尾側のフォーク部4のそれぞれの近辺に、左右一対の固定型の船尾側のスパッド20Aを、船首側の中央に固定式のスパッド20Aをそれぞれ装備している構成を用いている。 Further, since the work pontoons 1C and 1D do not necessarily need to be equipped with the walking-type lifting / lowering leg raising / lowering system 21b, the description here will be given on the stern side fork portion as shown in FIGS. 31 to 33. A pair of left and right fixed type stern side spuds 20A are provided in the vicinity of each of No. 4 and a fixed type spud 20A is provided at the center of the bow side.
 そして、第1の移動式台車30Aは、図34に示すように、作業台船1C、1Dの上に配設されたレール8の上を走行する車輪台車32を備えた基礎台車31を有して構成される。このレール8の上を走行する基礎台車31は、造船所の移動クレーンの台車に近い構造で構成できる。また、上部構造物41と下部構造物42との接合体40が通過するための凹部Aを後部側に有して構成される。さらに、必要に応じて、運転室33が設けられる。 And, as shown in FIG. 34, the first mobile trolley 30A has a base trolley 31 including a wheel trolley 32 that travels on the rails 8 arranged on the work pontoons 1C and 1D. Consists of The base bogie 31 traveling on the rail 8 can be configured to have a structure similar to that of a mobile crane of a shipyard. Further, it is configured to have a recess A on the rear side through which the joined body 40 of the upper structure 41 and the lower structure 42 passes. Further, a driver's cab 33 is provided as needed.
 移動式載置台30Aが、内燃機関や電動機を備えた自走式の台車、又は、作業台船1C、1Dの前後に備わった係留用のウインチ9等のワイヤー9aの巻回で台車を引っ張ることにより移動する台車等で構成する。このウインチ9は、例えば、図31~図33の構成では、船尾側のデッキ3の上に2個、また、移動式載置台30Aの走行を妨げないように、突出部4aの側面に2個、それぞれ配置している。この構成とすることで、移動式載置台30Aの移動のための新たな装置を、作業台船1C、1Dに装備する必要が無くなるので、作業台船1C、1Dの大型化を抑制できる。 The movable mounting table 30A is a self-propelled trolley equipped with an internal combustion engine or an electric motor, or pulls the trolley by winding a wire 9a such as a mooring winch 9 provided before and after the work platform 1C, 1D. It consists of a trolley that moves. 31 to 33, two winches 9 are provided on the deck 3 on the stern side, and two winches 9 are provided on the side surface of the protruding portion 4a so as not to hinder the traveling of the mobile mounting table 30A. , They are arranged respectively. With this configuration, it is not necessary to equip the work pontoons 1C and 1D with a new device for moving the mobile mounting table 30A, so that the work pontoons 1C and 1D can be prevented from increasing in size.
 また、移動式載置台30Aが、載置した上部構造物41を走行方向と交差する方向に移動する左右方向移動機構、例えば、図示していないが、移動式載置台30Aの基礎台車の上にさらにレールを設けてその上を移動するスライド台を備えていると、位置調整工程における位置合わせにおいて、スッパダ移動操作を用いることなく、移動式載置台30Aの左右方向に関しても、迅速に精度よく位置合わせできる。 In addition, the movable mounting table 30A moves on the mounted upper structure 41 in a direction intersecting the traveling direction, for example, a left-right direction moving mechanism, for example, although not shown, on a base carriage of the movable mounting table 30A. Further, if a slide table that is provided with rails and moves on the rails is provided, it is possible to quickly and accurately position the movable mounting table 30A in the left-right direction without using the spudder moving operation in the position adjustment process. Can be matched.
 そして、本発明に係る第2の実施の形態の洋上構造物の施工方法では、位置調整工程においては、移動式載置台30Aに搭載された状態の上部構造物41を、移動式載置30Aを作業台船1C、1Dに対して、水平方向に移動させることで、移動式載置台30Aに搭載した上部構造物41の下側の接合部41dと下部構造物42の上側の接合部42aとの位置合わせを行う。 Then, in the method for constructing an offshore structure according to the second embodiment of the present invention, in the position adjusting step, the upper structure 41 in a state of being mounted on the mobile mounting table 30A is moved to the mobile mounting 30A. By horizontally moving the work table boats 1C and 1D, the lower joint portion 41d of the upper structure 41 and the upper joint portion 42a of the lower structure 42 mounted on the movable mounting table 30A are connected. Align.
 この水平方向の移動としては、移動式載置台30Aの基礎台車をレール8の上を移動させることにより、上部構造物41を作業台船1C、1Dの前後方向に移動することができる。また、移動式載置台30Aのスライド台を、基礎台車31に対して左右方向に、電動機や油圧シリンダ等により移動させることにより、スライド台の上の上部構造物41を作業台船1C、1Dの左右方向に移動することができる。この両方を併用することにより、上部構造物41を作業台船1C、1Dの水平方向に移動することができる。 As for the horizontal movement, the upper structure 41 can be moved in the front-rear direction of the work pontoons 1C and 1D by moving the base carriage of the movable mounting table 30A on the rail 8. Further, by moving the slide base of the movable mounting base 30A in the left-right direction with respect to the base carriage 31 by an electric motor, a hydraulic cylinder, or the like, the upper structure 41 on the slide base is moved to the work platform 1C, 1D. Can be moved left and right. By using both of them together, the upper structure 41 can be moved in the horizontal direction of the work pontoons 1C and 1D.
 また、スライド台以外でも、レール8に乗っている車輪台車32を基礎台車31に対して案内機構を設けて、この車輪台車32を左右方向に油圧シリンダのピストンの伸縮などで押圧することにより移動可能に設けておくことでも、上部構造物41を作業台船1C、1Dの左右方向に移動することができる。また、その他の構成を用いてもよい。 In addition to the slide stand, a wheel carriage 32 on the rail 8 is provided with a guide mechanism for the base carriage 31, and the wheel carriage 32 is moved by pushing the wheel carriage 32 in the left and right direction by expanding and contracting a piston of a hydraulic cylinder. The upper structure 41 can be moved in the left and right directions of the work pontoons 1C and 1D also by being provided so as to be possible. Also, other configurations may be used.
 これにより、移動式載置台30A、30Bの水平方向の移動で位置合わせできるので、歩行式の甲板昇降式システムのスパッド移動方法に依らず、迅速に精度よく位置合わせできる。また、歩行式の甲板昇降式システムを用いなくても位置合わせできる。なお、歩行式の甲板昇降式システムを備えている場合はスパッド移動方法と併用してもよい。 With this, since the positioning can be performed by moving the movable mounting tables 30A and 30B in the horizontal direction, the positioning can be performed quickly and accurately regardless of the spud moving method of the walking type deck lifting system. In addition, it is possible to perform alignment without using a walking type deck lifting system. In addition, when a walking type deck lifting system is provided, it may be used together with the spud moving method.
 また、運搬工程において、上部構造物41が搭載されている状態の移動式載置台30Aをそのまま作業台船1C、1Dに搭載することで、上部構造物41を作業台船1C、1Dに搭載する。この搭載に関して、作業台船1C、1Dが岸壁Cに船尾側から接岸できて、さらに、岸壁C側のレールと作業台船1C、1Dのレール8が接続できるように構成しておく。この場合に、フォーク部4において、上記の作業台船1A、1Bと同様に、搭載部位傾斜機構を備えている場合には、船体姿勢の変化に対して、フォーク部4の傾斜を変更させて岸壁Cに接岸し易い角度に変更または維持することで、搭載作業時における上部構造物の41の傾斜を回避することが好ましい。 Further, in the carrying process, the mobile mounting table 30A in which the upper structure 41 is mounted is mounted on the work pontoons 1C and 1D as it is, so that the upper structure 41 is mounted on the work pontoons 1C and 1D. .. Regarding this mounting, the work pontoons 1C and 1D are configured so that they can be docked on the quay C from the stern side, and further, the rail on the quay C side and the rail 8 of the work pontoons 1C and 1D can be connected. In this case, in the case where the fork portion 4 is equipped with a mounting portion tilting mechanism, as in the above-described work pontoons 1A and 1B, the tilt of the fork portion 4 is changed with respect to changes in the attitude of the hull. It is preferable to avoid the inclination of the upper structure 41 during the mounting work by changing or maintaining the angle so that the berth C can be easily docked.
 これにより、予め、移動式載置台30Aに上部構造物41を搭載しておくことができ、単に、岸壁C側のレールと作業台船1C、1Dのレール8の接続作業と、移動式載置台30Aの移動作業と、移動式載置台30Aのフォーク部4等への固定作業のみにより、迅速に、上部構造物41を作業台船1C、1Dに搭載することができる。この場合は、クレーンと風の影響を受けるクレーン作業が不要になる。 As a result, the upper structure 41 can be mounted in advance on the mobile mounting table 30A, and the connection work between the rail on the quay C side and the rails 8 of the work pontoons 1C and 1D and the mobile mounting table can be performed in advance. The upper structure 41 can be quickly mounted on the work pontoons 1C and 1D only by moving the work 30A and fixing the movable mounting base 30A to the fork portion 4 or the like. In this case, the crane work and the crane work affected by the wind become unnecessary.
 なお、岸壁C側にクレーンが有り、風の影響が少ないような場合には、クレーンを使用してもよい。この場合は、既に作業台船1C、1Dに搭載してある移動式載置台30Aに、若しくは、先にクレーンで作業台船1C、1Dに搭載した移動式載置台30Aに、上部構造物41をクレーンで吊り上げて搭載する。または、上部構造物41を搭載している移動式載置台30Aごと吊上げて作業台船1C、1Dに搭載する。 If there is a crane on the quay C side and the effect of wind is small, you may use a crane. In this case, the superstructure 41 is placed on the mobile mounting table 30A already mounted on the work pontoons 1C and 1D, or on the mobile mounting table 30A previously mounted on the work pontoons 1C and 1D by the crane. It is mounted by lifting it with a crane. Alternatively, the mobile mounting table 30A on which the upper structure 41 is mounted is lifted up and mounted on the work table ships 1C and 1D.
 次に、本発明に係る第3の実施の形態の洋上構造物の施工方法で使用する作業台船について説明する。図35~図37に示すように、この作業台船1E、1Fは、第2の実施の形態の洋上構造物の施工方法で使用する作業台船1C、1Dと同じで、ハーフSEP、フルSEPであるが、船尾のフォーク部4Aの腕状構造物(突起部)4aが、その上を、上部構造物41を搭載及び載置した移動式載置台30Bが走行できるように構成されている点が異なる。 Next, a work pontoon used in the method for constructing an offshore structure according to the third embodiment of the present invention will be described. As shown in FIGS. 35 to 37, the work pontoons 1E and 1F are the same as the work pontoons 1C and 1D used in the method for constructing an offshore structure according to the second embodiment, and include half SEP and full SEP. However, the arm-shaped structure (projection) 4a of the stern fork part 4A is configured so that the mobile mounting table 30B on which the upper structure 41 is mounted and mounted can travel. Is different.
 なお、この作業台船1E、1Fで、図35~図37に示すように、第2の移動式載置台30Bを船尾のフォーク部4Aだけでなくデッキ3を走行して、予め設定された配置場所に固定できるように構成されている。これにより、複数の上部構造物41を同時に運搬でき、また、設置作業を行うことができるようになるので、より好ましい。この場合は、デッキ3の上に配置された「上部構造物41を載置した移動式載置台30B」と「上部構造物41を設置して、空になった移動式載置台30B」がデッキ3上ですれ違えるようにしておく必要がある。 In addition, as shown in FIGS. 35 to 37, in the work pontoons 1E and 1F, the second movable mounting table 30B is moved not only on the fork portion 4A of the stern but also on the deck 3 to set a predetermined arrangement. It is configured to be fixed in place. This makes it possible to carry a plurality of upper structures 41 at the same time and to perform installation work, which is more preferable. In this case, the "movable mounting table 30B on which the upper structure 41 is mounted" and the "movable mounting table 30B that is empty after the upper structure 41 is installed" arranged on the deck 3 are the decks. It is necessary to keep on passing on 3.
 そして、第2の移動式載置台30Bは、図34に示す第1の移動式載置台30Aの車輪台車32がタイヤ装備の台車となる点が異なり、略水平の平地を直線状だけでなく平面的に移動可能な台車で構成される。この台車としては、造船所で、船舶の建造ブロックを搬送する、タイヤ走行の船体ブロック搬送用の自走台車、重量品搬送用の大型自走キャリヤに近い構造で構成できる。このように平地を走行可能であると、クレーン等を使用することなく、平面的な移動のみで上部構造物41を作業台船1E、1Fに搭載することができる。なお、これらの自走台車や大型自走キャリヤでは、積載重量は70t~700t程度となっている。 The second mobile mounting table 30B differs from the first mobile mounting table 30A shown in FIG. 34 in that the wheel carriage 32 is a tire-equipped carriage. It consists of a dolly that can be moved. This trolley can be constructed in a shipyard at a structure similar to a self-propelled trolley for transporting building blocks of a ship, for transporting tire blocks of a hull, and a large-scale self-propelled carrier for transporting heavy goods. When the vehicle can travel on the flat ground as described above, the upper structure 41 can be mounted on the work pontoons 1E and 1F by only moving in a plane without using a crane or the like. In addition, in these self-propelled carts and large-scale self-propelled carriers, the loading weight is about 70t to 700t.
 そして、この第3の実施の形態の洋上構造物の施工方法では、位置調整工程においては、移動式載置台30Bに搭載された状態の上部構造物41を、移動式載置30Bを作業台船1E、1Fに対して、水平方向に移動させることで、移動式載置台30Bに搭載した上部構造物41の下側の接合部41dと下部構造物42の上側の接合部42aとの位置合わせを行う。 Then, in the method for constructing an offshore structure according to the third embodiment, in the position adjusting step, the upper structure 41 in a state of being mounted on the mobile mounting table 30B and the mobile mounting table 30B on the work platform ship. 1E and 1F are moved horizontally to align the lower joint 41d of the upper structure 41 and the upper joint 42a of the lower structure 42 mounted on the movable mounting table 30B. To do.
 この水平方向の移動としては、移動式載置台30Bの前後進や幅寄せ等により、上部構造物41を作業台船1C、1Dの前後方向及び左右方向に移動することができる。なお、移動式載置台30Bが横移動できる機構を備えている場合は、幅寄せの代わりに、横移動により、容易に水平方向の移動を行って、位置合わせすることができる。 As for the horizontal movement, the upper structure 41 can be moved in the front-rear direction and the left-right direction of the work pontoons 1C and 1D by moving the movable mounting table 30B forward and backward or by moving the table width. In addition, when the movable mounting table 30B is provided with a mechanism capable of moving laterally, it is possible to easily perform horizontal movement and position adjustment by lateral movement instead of width adjustment.
 また、運搬工程において、上部構造物41が搭載されている状態の移動式載置台30Bを作業台船1E、1Fに搭載することで、上部構造物41を作業台船1E、1Fに搭載する。この搭載に関して、作業台船1E、1Fが岸壁Cに船尾側から接岸できて、さらに、岸壁C側の地面と作業台船1E、1Fのフォーク部4Aが接続できるように構成しておく。この場合に、迅速に接岸作業が行えるように、搭載部位傾斜機構を備えているフォーク部4をランプウエイとしても使用できるように構成して、移動式載置台30Bが岸壁C側から突出部4aの上を走行して移動できるようにしておくことが、より好ましい。 Further, in the transportation process, by mounting the mobile mounting table 30B with the upper structure 41 mounted on the work pontoons 1E and 1F, the upper structure 41 is mounted on the work berths 1E and 1F. Regarding this mounting, the work pontoons 1E and 1F are configured so that they can be docked on the quay C from the stern side, and further, the ground on the quay C side can be connected to the forks 4A of the work pontoons 1E and 1F. In this case, the fork portion 4 provided with the mounting portion tilting mechanism is configured to be used also as a ramp way so that the berthing work can be performed quickly, and the movable mounting table 30B is provided with the protruding portion 4a from the quay wall C side. It is more preferable that the vehicle can be run on and moved.
 これにより、予め、移動式載置台30Bに上部構造物41を搭載しておくことができ、単に、岸壁C側への作業台船1E、1Fの接岸作業と、移動式載置台30Bの移動作業と、移動式載置台30Bのフォーク部4Aまたはデッキ3等への固定作業のみにより、迅速に、上部構造物41を作業台船1E、1Fに搭載することができる。この場合は、クレーンと風の影響を受けるクレーン作業が不要になる。また、レール8の上を走行する第1の移動式載置台30Aに比べて、走行方向の自由度が大きいので、固定作業や位置合わせ作業などをより迅速に行うことができるようになる。 Thereby, the upper structure 41 can be mounted in advance on the mobile mounting table 30B, and the berthing work of the work pontoons 1E and 1F on the quay C side and the moving work of the mobile mounting base 30B are simply performed. Then, the upper structure 41 can be quickly mounted on the work pontoons 1E and 1F only by fixing the movable mounting table 30B to the fork portion 4A or the deck 3 or the like. In this case, the crane work and the crane work affected by the wind become unnecessary. Moreover, since the degree of freedom in the traveling direction is greater than that of the first movable mounting table 30A traveling on the rails 8, the fixing work and the alignment work can be performed more quickly.
 次に、本発明に係る第4の実施の形態の洋上構造物の施工方法で使用する作業台船について説明する。図38~図40に示すように、この作業台船1G、1Hは、第2の実施の形態の洋上構造物の施工方法で使用する作業台船1C、1Dと同じで、ハーフSEP、フルSEPであるが、船尾のフォーク部4Bの腕状構造物(突起部)4aに対して上下移動する昇降床4bを備えたエレベータ構造をして構成されている。 Next, a work pontoon used in the method for constructing an offshore structure according to the fourth embodiment of the present invention will be described. As shown in FIGS. 38 to 40, the work pontoons 1G and 1H are the same as the work pontoons 1C and 1D used in the method for constructing an offshore structure according to the second embodiment, and include half SEP and full SEP. However, the elevator structure includes an elevator floor 4b that moves up and down with respect to the arm-shaped structure (projection) 4a of the stern fork portion 4B.
 このエレベータ構造としては、航空母艦が備えている、航空機用のエレベータ構造を採用することができる。なお、この昇降床4bには、第1又は第2の移動式載置台30A、30Bを搭載可能にしておき、第2または第3の洋上構造物の施工方法の、搭載方法、位置合わせ方法等を用いてもよい。また、空母用の艦側部エレベータ(舷側エレベータ)の積載重量は30トン~60トンで昇降速度は10秒で甲板から下の甲板まで移動し、その大きさは、(10m~26m)×(10m~16m)程度である。1個のエレベータの積載重量では不足する場合は、複数のエレベータを同期させて運用するようにすることで対応できる。 As this elevator structure, it is possible to use the elevator structure for aircraft that the aircraft carrier has. It should be noted that the first or second movable mounting table 30A, 30B can be mounted on the lifting floor 4b, and the mounting method, the positioning method, etc. of the construction method of the second or third offshore structure. May be used. Also, the carrier side elevator for the aircraft carrier (port side elevator) has a loading capacity of 30 to 60 tons and a hoisting speed of 10 seconds to move from the deck to the deck below and its size is (10m to 26m) x ( It is about 10 m to 16 m). If the loaded weight of one elevator is insufficient, it can be dealt with by synchronizing and operating a plurality of elevators.
 さらには、昇降床4bを作業台船1G、1Hの前後方向に移動する前後方向移動機構、昇降床4abを作業台船1G、1Hの左右方向に移動する左右方向移動機構の少なくとも一方又は両方を備えて構成されていると、移動調整工程、位置調整工程、水平移動離脱工程において、これらの前後方向移動機構、左右方向移動機構を使用することで、昇降床4abに搭載された上部構造物41の下部構造物42に対する位置合わせや、接合体40からの昇降床4bの上下方向離脱を、容易に行うことができる。 Furthermore, at least one or both of a front-back direction moving mechanism that moves the lifting floor 4b in the front-rear direction of the work pontoons 1G, 1H and a left-right direction moving mechanism that moves the lifting floor 4ab in the left-right direction of the work pontoons 1G, 1H are used. With this configuration, the upper structure 41 mounted on the lifting floor 4ab is used by using the front-rear direction moving mechanism and the left-right direction moving mechanism in the movement adjusting step, the position adjusting step, and the horizontal movement separating step. It is possible to easily perform the alignment with respect to the lower structure 42 and the vertical separation of the lifting floor 4b from the joined body 40.
 また、運搬工程の搭載工程における接近方法や掬い上げ方法において、作業台船1G、1Hのスパッド20Aを上昇させて水面Sに浮いている状態でもよいが、作業台船1G、1Hのスパッド20Aを着底させて、船体2の浮力を受けつつ水面Sに浮かべた状態で、又は、水面Sより上に持ち上げた状態にして、船体2を固定した後、昇降床4abを昇降して上部構造物41をこの昇降床4bに搭載する。これにより、波、うねり、潮流、風などの外乱の影響を減少できるので、より迅速に、岸壁Cへの昇降床4bの接岸と、上部構造物41の岸壁Cから作業台船1G、1Hへの移動を行うことができる。 Further, in the approaching method and the scooping method in the loading step of the transportation step, the spud 20A of the work pontoons 1G and 1H may be raised and floated on the water surface S. After the vessel 2 is fixed to the bottom and floated on the water surface S while receiving the buoyancy of the hull 2, or is lifted above the water surface S, the hull 2 is fixed, and then the elevating floor 4ab is moved up and down. 41 is mounted on this lifting floor 4b. As a result, the influence of disturbances such as waves, swells, tidal currents, and wind can be reduced, so that the berthing of the lifting floor 4b to the quay C and the berth C of the upper structure 41 to the work pontoons 1G, 1H can be performed more quickly. Can be moved.
 また、同様に、降下工程、離脱工程の上下方向離脱工程においても、搭載部位の降下又は上昇を、作業台船1G、1Hのスパッド20Aを着底させて、船体2の浮力を受けつつ水面Sに浮かべた状態で、又は、水面Sより上に持ち上げた状態で、昇降床4bを昇降することで行う。つまり、スパッド昇降操作の代わりに昇降床4bを昇降させる。 Similarly, also in the vertical descending process of the descending process and the separating process, the spud 20A of the work platform 1G, 1H is bottomed to descend or rise the mounting portion, and the water surface S is received while receiving the buoyancy of the hull 2. It is performed by elevating the elevating floor 4b while floating on the floor or in a state of being lifted above the water surface S. That is, the lifting floor 4b is lifted instead of the spud lifting operation.
 上記の洋上構造物の施工方法によれば、陸上で組み上げられ一体化されて、作業台船1A、1Bで運搬された上部構造物41を、大型のクレーンなどの吊り下げ設備を使用せずに、また、バラスト調整による作業台船1A、1Bの喫水調整よりも迅速に上下移動できて、短時間で安全に、上部構造物42を設置水域に配置された下部構造物41に接合できる。 According to the above-mentioned construction method for an offshore structure, the upper structure 41 assembled and integrated on land and transported by the work pontoons 1A and 1B can be used without using a hanging facility such as a large crane. Also, the work platform 1A, 1B can be moved up and down faster than the draft adjustment of the work pontoons 1A, 1B, and the upper structure 42 can be safely and quickly joined to the lower structure 41 arranged in the installation water area in a short time.
1A、1C、1E、1G 作業台船(ハーフSEP)
1B、1D、1F、1H 作業台船(フルSEP)
2 船体
3 デッキ(甲板)
4 フォーク部
4a 腕状構造物(突起部)
4b 昇降床
5 上部構造物
6a 係留索
6b 錨索
7a アジマススラスター
7b サイドスラスター
8 レール
9 ウインチ
9a ワイヤー
20A スパッド(固定式)
20B スパッド(キック式)
21A 昇降脚昇降システム(固定式)
21B 昇降脚昇降システム(キック式)
22a 固定式の底板
22b 開閉式の底板
22c タワー先端
30A 移動式載置台(レール式)
30B 移動式載置台(タイヤ式)
40 洋上構造物
41 上部構造物
41a タワー
41b ナセル
41c ブレード
41d 上部構造物の下部
42 下部構造物
42a 下部構造物の上部
A 凹部
B 水底(海底)
C 岸壁
Cb 岸壁の台座
D、D1、D2、D3、D4 上下距離(上下間隔)
S 水面
1A, 1C, 1E, 1G Workbench (Half SEP)
1B, 1D, 1F, 1H Workbench (Full SEP)
2 hulls 3 decks (deck)
4 Fork 4a Arm-like structure (projection)
4b Lifting floor 5 Upper structure 6a Mooring line 6b Anchoring line 7a Azimuth thruster 7b Side thruster 8 Rail 9 Winch 9a Wire 20A Spud (fixed type)
20B spud (kick type)
21A Lifting leg lifting system (fixed type)
21B Lifting leg lifting system (kick type)
22a Fixed bottom plate 22b Openable bottom plate 22c Tower tip 30A Mobile mounting table (rail type)
30B Mobile stand (tire type)
40 Offshore structure 41 Upper structure 41a Tower 41b Nacelle 41c Blade 41d Lower part of upper structure 42 Lower structure 42a Upper part of lower structure A Recess B Water bottom (seabed)
C Quay Cb Quay pedestal D, D1, D2, D3, D4 Vertical distance (vertical spacing)
S water surface

Claims (5)

  1.  洋上構造物を上部構造物と下部構造物に分割して製造する製造工程と、
     前記下部構造物を設置水域に運搬して設置する設置工程と、
     前記上部構造物を作業台船に搭載して前記設置水域に運搬する運搬工程と、
     前記作業台船の移動により、前記作業台船に搭載した前記上部構造物を、予め設置した前記下部構造物の上方部位に移動する移動工程と、
     前記作業台船に備えられている甲板昇降式システムのスパッドを下降させて着底させることにより、前記作業台船を、船体の浮力を受けつつ水面に浮かべた状態で、又は、水面より上に持ち上げた状態で、設置水域に支持する着底工程と、
     前記作業台船に備えられている甲板昇降式システムのスパッドを昇降させるスパッド昇降操作で前記作業台船の一部又は全部を降下させることにより、前記作業台船に搭載されている前記上部構造物を前記下部構造物の上に降下する降下工程と、
     前記上部構造物を前記下部構造物に接合して一体化して、前記上部構造物と前記下部構造物の接合体を形成する接合工程と、
     前記上部構造物と前記下部構造物の接合体から前記作業台船を離脱する離脱工程とを、
    含むことを特徴とする洋上構造物の施工方法。
    A manufacturing process of dividing an offshore structure into an upper structure and a lower structure,
    An installation step of transporting and installing the lower structure in an installation water area,
    A carrying step of carrying the superstructure on a work table ship and carrying it to the installation water area,
    A step of moving the upper structure mounted on the work pontoon to an upper portion of the lower structure installed in advance by moving the work pontoon;
    By lowering the bottom of the spud of the deck lifting system provided in the work platform, the work platform is floated on the water surface while receiving the buoyancy of the hull, or above the water surface. In the lifted state, the bottoming process to support the installation water area,
    The upper structure mounted on the work pontoon by lowering a part or all of the work pontoon by a spud lifting operation for lifting and lowering the spud of the deck lifting system provided on the work pontoon. A descending step of descending the above onto the lower structure,
    A joining step of joining and integrating the upper structure with the lower structure to form a joined body of the upper structure and the lower structure;
    A separation step of separating the work platform from the joined structure of the upper structure and the lower structure,
    A method for constructing an offshore structure, which includes:
  2.  前記着底工程の後に位置調整工程を含むと共に、前記位置調整工程では、歩行式の前記甲板昇降式システムのスパッドを用いたスパッド移動操作で作業台船の位置を水平方向に移動させることで、前記作業台船に搭載した前記上部構造物の下側の接合部と前記下部構造物の上側の接合部との位置合わせを行うことを特徴とする請求項1に記載の洋上構造物の施工方法。 While including a position adjustment step after the bottoming step, in the position adjustment step, by moving the position of the work platform in the horizontal direction by a spud movement operation using a spud of the walking type deck lifting system, The method for constructing an offshore structure according to claim 1, wherein the lower joint portion of the upper structure and the upper joint portion of the lower structure mounted on the work platform are aligned with each other. ..
  3.  前記離脱工程が、前記甲板昇降式システムのスパッドを用いたスパッド昇降操作により、前記作業台船の上部構造物を搭載していた部位を上昇または降下させることにより、前記作業台船を前記接合体から上下方向に離間させる上下方向離脱工程を含むことを特徴とする請求項1または2に記載の洋上構造物の施工方法。 The detaching step raises or lowers the portion of the work platform on which the superstructure was mounted by a spud raising / lowering operation using the spud of the deck raising / lowering system, whereby the work platform is joined to the joined body. The method for constructing an offshore structure according to claim 1 or 2, further comprising a vertical separation step of separating the vertical structure from the vertical direction.
  4.  前記離脱工程が、歩行式の前記甲板昇降式システムのスパッドを用いたスパッド移動操作により、前記作業台船を水平方向に移動させることにより、前記作業台船を前記接合体から水平方向に離間させる水平方向離脱工程を含むことを特徴とする請求項1~3のいずれか1項に記載の洋上構造物の施工方法。 In the detaching step, the work pontoon is horizontally moved away from the joined body by moving the work pontoon in a horizontal direction by a spud movement operation using a spud of the walk-type deck lifting system. The method for constructing an offshore structure according to any one of claims 1 to 3, further comprising a horizontal separation step.
  5.  設置水域に運搬して設置される洋上構造物の上部構造物を搭載する搭載部位と、船体を昇降する甲板昇降式システムのスパッドを備えた作業台船において、前記搭載部位を作業台船の船体に対して傾斜させる搭載部位傾斜機構を備えていることを特徴とする作業台船。 In a work pontoon equipped with a mounting part for mounting an upper structure of an offshore structure to be transported to and installed in an installation water area and a spud of a deck lifting system for lifting and lowering the hull, the mounting part is the hull of the work berth. A work pontoon, which is equipped with a mounting portion tilting mechanism that tilts with respect to the above.
PCT/JP2019/041666 2018-11-05 2019-10-24 Method for constructing marine structure, and work ship WO2020095697A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018208150A JP2020075535A (en) 2018-11-05 2018-11-05 Construction method of offshore structure and work pontoon
JP2018-208150 2018-11-05

Publications (1)

Publication Number Publication Date
WO2020095697A1 true WO2020095697A1 (en) 2020-05-14

Family

ID=70610876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041666 WO2020095697A1 (en) 2018-11-05 2019-10-24 Method for constructing marine structure, and work ship

Country Status (3)

Country Link
JP (1) JP2020075535A (en)
TW (1) TW202026202A (en)
WO (1) WO2020095697A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112407171A (en) * 2020-12-28 2021-02-26 上海大学 Unmanned underwater vehicle deployment and recovery system and deployment and recovery method
CN114148463A (en) * 2021-10-26 2022-03-08 周宏勤 Construction process of semi-submersible marine installation operation platform
CN114604391A (en) * 2022-03-24 2022-06-10 中船黄埔文冲船舶有限公司 Pile fixing frame construction method
CN115817743A (en) * 2022-12-26 2023-03-21 华能(广东)能源开发有限公司 Ocean platform

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310189A (en) * 1998-04-30 1999-11-09 Fuji Kaiji Kogyo Kk Pontoon
JP2012045970A (en) * 2010-08-24 2012-03-08 Yorigami Maritime Construction Co Ltd Hull moving and mooring apparatus of working ship
JP2012076622A (en) * 2010-10-01 2012-04-19 Daiichi Kensetsu Kiko Co Ltd Deck liftable work pontoon and construction method of ocean wind power generation facility
JP2015058861A (en) * 2013-09-20 2015-03-30 ジャパンマリンユナイテッド株式会社 Spud carriage device and method for movement of hull
KR20170023476A (en) * 2015-08-24 2017-03-06 대우조선해양 주식회사 Method for installing offshore topside using liftable vessel
KR20170107629A (en) * 2016-03-15 2017-09-26 삼성중공업 주식회사 Offshore structure installation equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310189A (en) * 1998-04-30 1999-11-09 Fuji Kaiji Kogyo Kk Pontoon
JP2012045970A (en) * 2010-08-24 2012-03-08 Yorigami Maritime Construction Co Ltd Hull moving and mooring apparatus of working ship
JP2012076622A (en) * 2010-10-01 2012-04-19 Daiichi Kensetsu Kiko Co Ltd Deck liftable work pontoon and construction method of ocean wind power generation facility
JP2015058861A (en) * 2013-09-20 2015-03-30 ジャパンマリンユナイテッド株式会社 Spud carriage device and method for movement of hull
KR20170023476A (en) * 2015-08-24 2017-03-06 대우조선해양 주식회사 Method for installing offshore topside using liftable vessel
KR20170107629A (en) * 2016-03-15 2017-09-26 삼성중공업 주식회사 Offshore structure installation equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112407171A (en) * 2020-12-28 2021-02-26 上海大学 Unmanned underwater vehicle deployment and recovery system and deployment and recovery method
CN114148463A (en) * 2021-10-26 2022-03-08 周宏勤 Construction process of semi-submersible marine installation operation platform
CN114604391A (en) * 2022-03-24 2022-06-10 中船黄埔文冲船舶有限公司 Pile fixing frame construction method
CN115817743A (en) * 2022-12-26 2023-03-21 华能(广东)能源开发有限公司 Ocean platform

Also Published As

Publication number Publication date
TW202026202A (en) 2020-07-16
JP2020075535A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
WO2020095697A1 (en) Method for constructing marine structure, and work ship
JP5750537B1 (en) Offshore structure construction method
JP5383631B2 (en) Offshore wind turbine installation ship and offshore wind turbine installation method using the same
US8701579B2 (en) Offshore wind turbine installation
JP6022170B2 (en) Ship for transporting a wind turbine to an offshore site and method for installing it
CN109952246B (en) System and method for reconfiguring mobile docking equipment for transporting, removing, assembling, housing and transferring assets
US20100067989A1 (en) Vessel for transporting wind turbines and methods thereof
US20090217852A1 (en) Method and apparatus for transporting and mounting offshore wind generators
JP2020500119A (en) Self-propelled jack-up vessel
WO2010026555A2 (en) A vessel for transporting wind turbines and methods thereof
KR20100087094A (en) Method for installing a drilling apparatus on a rig and for preparing drilling operations
WO2017204656A1 (en) A vessel and method of employing a vessel, e.g. in a process of maintaining or assembling an offshore windmill, and a related assembly
JP5820953B1 (en) Wind power generator assembly method, wind power generator disassembly method, wind power generator installation method, and wind power generator work ship
JP2012112370A (en) Ship for installing offshore wind turbine and method for installing offshore wind turbine using the same
CN114808660B (en) Near-shore self-propelled quick lap-joint trestle device based on dynamic positioning
GB2485678A (en) Jack-up vessel system for offshore transport and handling of cargo
TWI834746B (en) Work platform vessel equipped with crane and method of using the crane
US20120082530A1 (en) System and method for submerging a hydraulic turbine engine
CN114148463B (en) Construction process of semi-submersible marine installation operation platform
US20240262471A1 (en) A floating fabrication arrangement and a method of building floating structures
US20220355907A1 (en) Systems and methods for a rack structure for a transport vessel adapted for use with an offshore self-elevating vessel
GB2628869A (en) Improvements in and relating to assembling a structure
CN117657389A (en) Marine wind power integrated horizontal transportation and installation method based on double-ship floating method
WO2024003576A1 (en) Improvements in and relating to assembling a structure
CN117719639A (en) Semi-submersible fan installation platform and fan installation method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881848

Country of ref document: EP

Kind code of ref document: A1