WO2020090610A1 - パッケージ用蓋材の製造方法およびパッケージの製造方法 - Google Patents

パッケージ用蓋材の製造方法およびパッケージの製造方法 Download PDF

Info

Publication number
WO2020090610A1
WO2020090610A1 PCT/JP2019/041664 JP2019041664W WO2020090610A1 WO 2020090610 A1 WO2020090610 A1 WO 2020090610A1 JP 2019041664 W JP2019041664 W JP 2019041664W WO 2020090610 A1 WO2020090610 A1 WO 2020090610A1
Authority
WO
WIPO (PCT)
Prior art keywords
package
layer
paste
manufacturing
holding
Prior art date
Application number
PCT/JP2019/041664
Other languages
English (en)
French (fr)
Inventor
悟 大道
浩規 宇野
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019190241A external-priority patent/JP6753507B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US17/275,816 priority Critical patent/US11264534B2/en
Priority to EP19877833.4A priority patent/EP3876271B1/en
Priority to CN201980059185.4A priority patent/CN112673467B/zh
Priority to KR1020207034720A priority patent/KR102263552B1/ko
Publication of WO2020090610A1 publication Critical patent/WO2020090610A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages

Definitions

  • the present invention relates to a method for manufacturing a package lid member and a method for manufacturing a package that are bonded to a package substrate.
  • the present application claims priority based on Japanese Patent Application No. 2018-203063 filed on October 29, 2018 and Japanese Patent Application No. 2019-190241 filed on October 17, 2019 in Japan, The content of is incorporated herein by reference.
  • a package substrate having a recess opening at the upper end, an optical semiconductor element accommodated in the recess, and a material such as glass that transmits light are formed so as to cover the opening of the recess. It is provided with a window member (package lid member) arranged and a sealing structure for sealing between the package substrate and the window member.
  • This sealing structure includes a first metal layer provided in a frame shape on the upper surface of the package substrate, a second metal layer provided in a frame shape on the inner surface of the window member, the first metal layer and the second metal.
  • a metal joint provided between the layers, and the other of the first metal layer and the second metal layer is entirely located in a region where one of the first metal layer and the second metal layer is provided. Is configured to.
  • the light emitting device described in Patent Document 2 is a cap (package lid) having a mounting substrate, an ultraviolet light emitting element mounted on the mounting substrate, and a recess formed on the mounting substrate and accommodating the ultraviolet light emitting element. Material) and.
  • the mounting board includes a support, a first conductor portion, a second conductor portion supported by the support, and a first bonding metal layer.
  • the cap is made of glass or the like, and includes a cap body having a recess formed on the back surface thereof, and a second bonding metal layer arranged to face the first bonding metal layer at the peripheral portion of the recess.
  • the uppermost layer farthest from the support in each of the first conductor portion, the second conductor portion, and the first bonding metal layer is formed of Au, and the first bonding metal layer and the second bonding layer are formed.
  • the metal layer for use is joined by Au—Sn.
  • the metal joint described in Patent Document 1 is composed of Au-Sn alloy. Also in Patent Document 2, the first bonding metal layer and the second bonding metal layer are bonded with an Au—Sn alloy. That is, in both configurations of Patent Documents 1 and 2, the Au—Sn layer made of the Au—Sn alloy is formed on the glass package lid material. The Au—Sn layer is formed, for example, by applying an Au—Sn paste to the above-mentioned portion and performing reflow.
  • the Au—Sn layer may be peeled from the glass plate material or a part of the glass plate material may be peeled off due to the difference in shrinkage ratio during cooling.
  • the package lid may be damaged.
  • the glass plate material (lid material) bonded to the substrate by the Au—Sn layer may fall off from the substrate.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a package lid material and a package manufacturing method capable of suppressing peeling and damage of the Au—Sn layer.
  • a method of manufacturing a package lid material includes a metallization step of forming a metallization layer on a bonding portion provided on a surface of a glass member, and an Au—Sn paste applied on the metallization layer to form a paste.
  • the cooling step includes a holding step of holding the reflowed Au-Sn paste in a temperature range of 150 ° C. or higher and 190 ° C.
  • the joint may have a planar frame shape, and the metallization layer and the Au—Sn paste layer may be formed in a planar frame shape along the joint.
  • a plurality of the metallized layers and the Au—Sn paste layer may be formed on the surface of the glass member. In that case, a plurality of package lid materials can be obtained by finally dividing the glass member.
  • the Au—Sn paste applied to the glass member is “Au—Sn paste (layer)” that has been solidified by the cooling process until it is solidified by the cooling process even after being melted by the reflow process. The rest is called “Au-Sn layer”.
  • the Au—Sn paste When the Au—Sn paste is applied to the glass member via the metallized layer and reflowed, and then cooled at a general cooling rate (for example, about 3 ° C./sec), the Au melted by reflowing is melted.
  • a general cooling rate for example, about 3 ° C./sec
  • the Au melted by reflowing is melted.
  • the linear expansion coefficient of the Sn alloy and the linear expansion coefficient of the glass member are relatively different from each other. That is, since the contraction rate of the Au—Sn alloy due to cooling is higher than the contraction rate of the glass member, the Au—Sn layer may be peeled from the glass member or a part of the glass member may be peeled off.
  • the reflowed Au—Sn paste is held in the temperature range of 150 ° C. or higher and 190 ° C. or lower for 2 minutes or more in the cooling step after reflowing the Au—Sn paste.
  • the Au—Sn layer is cooled at a normal cooling rate (for example, a cooling rate of 3 ° C./second) after the holding step, since the ⁇ ′ phase is maintained, the linear expansion of the Au—Sn alloy during the solidification process.
  • the difference between the coefficient and the linear expansion coefficient of the glass member can be suppressed to a relatively small value, and peeling of the Au—Sn layer from the glass member or peeling of a part of the glass member can be suppressed.
  • the holding temperature in the holding step is preferably 160 ° C. or higher and 180 ° C. or lower, and the holding time in the holding step is 3 minutes or longer and 8 minutes or shorter. Is preferred.
  • the heating temperature in the reflow step is 280 ° C. to 350 ° C. and the heating time is 10 seconds to 120 seconds.
  • the heating temperature is more preferably 330 ° C or lower, and further preferably 300 ° C or lower.
  • the heating time is more preferably 20 to 90 seconds, further preferably 30 to 60 seconds.
  • the metallization layer is formed in a plurality of frame shapes on the glass member in the metallization step, and the Au layers are respectively formed on the metallization layers in the paste application step. It is preferable to perform a dividing step of applying the —Sn paste and dividing the glass member having the Au—Sn layers formed into a plurality of frame shapes into the Au—Sn layers after the cooling step.
  • a method of manufacturing a package according to an aspect of the present invention is a method of manufacturing a package by bonding a package cover material obtained by any one of the above manufacturing methods and a package substrate, wherein the Au—Sn layer is An arranging step of arranging the package cover material and the package board so as to contact the package board; and a heating step of heating the package board and the package cover material to melt the Au—Sn layer. Cooling the molten Au—Sn layer to form a bonding layer for bonding the package substrate and the package lid material, the cooling step including the molten Au—Sn layer. In the temperature range of 150 ° C. or higher and 190 ° C. or lower for a holding time of 2 minutes or longer.
  • the package substrate and the lid material for the package are joined, by holding the Au—Sn layer in the temperature range of 150 ° C. or higher and 190 ° C. or lower for 2 minutes or more in the step of cooling the heated and melted Au—Sn layer, At least a part of the bonding layer obtained by solidifying the layer changes to the ⁇ ′ phase and becomes softer than the ⁇ phase of Au—Sn. Therefore, in the package obtained by joining the package substrate and the package lid member, the stress at the joining portion can be relieved, and the glass member can be prevented from being damaged, the joining layer peeling off, and the lid member falling off.
  • the heating temperature and the heating time in the heating step are substantially the same as the heating temperature and the holding time in the reflow step in the package lid manufacturing method. That is, it is preferable that the heating temperature in the heating step is 280 ° C. to 350 ° C. and the heating time is 10 seconds to 120 seconds.
  • the heating temperature is more preferably 330 ° C or lower, and further preferably 300 ° C or lower.
  • the heating time is more preferably 20 to 90 seconds, further preferably 30 to 60 seconds.
  • the method of manufacturing the package lid material and the method of manufacturing the package of the present invention it is possible to provide a package lid material and a package that can suppress peeling and damage of the Au—Sn layer.
  • FIG. 3 is a perspective view showing a package lid member and a package substrate obtained by the method of manufacturing a package lid member according to the embodiment of the present invention. It is a bottom view of the lid member for packages in this embodiment.
  • FIG. 3 is a sectional view of the package lid member taken along the line A1-A1 shown in FIG. It is a figure which shows the temperature change at the time of reflow and cooling after applying Au-Sn paste to the package lid material of an example of this embodiment. It is a front view which shows the package which concerns on this embodiment. It is a top view which shows the glass member in the metallization process and paste application process which concern on the manufacturing method of this embodiment.
  • FIG. 9 is a plan view showing a modification of the corner portion of the Au—Sn layer.
  • FIG. 9 is a plan view showing a modification of the corner portion of the Au—Sn layer.
  • FIG. 9 is a plan view showing a modification of the corner portion of the Au—Sn layer.
  • FIG. 9 is a plan view showing a modification of the corner portion of the Au—Sn layer.
  • FIG. 9 is a plan view showing a modification of the corner portion of the Au—Sn layer. It is a top view which shows the modification of a glass member and Au-Sn layer. It is a side view which shows the modification of a package shape.
  • FIG. 3 is a plan view showing a state in which a plurality of framed metallized layers and Au—Sn layers are formed on a plate-shaped glass member as Examples and Comparative Examples.
  • FIG. 1 is a perspective view showing a package substrate 2 and a package lid member 3 which constitute a package 1 obtained in this embodiment.
  • FIG. 2 is a bottom view of the package lid member 3.
  • FIG. 3 is a cross-sectional view of the package lid member 3 taken along the line A1-A1 of FIG.
  • FIG. 5 is a side view showing the package 1 according to the present embodiment.
  • the package 1 includes a package substrate 2 having a concave portion 21 that is open at the top, and a flat plate-shaped package lid member 3 that is joined to the package substrate 2 and closes the concave portion 21.
  • the package substrate 2 of this example has a rectangular parallelepiped shape, and a rectangular parallelepiped concave portion 21 is formed at substantially the center of the upper surface thereof.
  • the lid member 3 for a package of this example has the same rectangular shape as the upper surface of the package substrate 2 in a plan view, and is a plate shape having a constant thickness.
  • the package targeted by the embodiment of the present invention is not limited to the above shape, and is not limited to a rectangular parallelepiped shape as long as it has a structure in which the package cover material seals the recess forming surface of the package substrate having the recess. It can be applied to any shape such as a polygonal column, a cylinder, an elliptic column, and a sphere.
  • a light emitting element such as an LD (Laser Diode) or an LED (Light Emitting Diode) is housed.
  • the package substrate 2 has a bonding surface 22 provided around the recess 21 as shown in FIG. 1, and is formed in a rectangular box shape from, for example, AIN (aluminum nitride) or the like.
  • the recess 21 is hermetically closed by joining the outer peripheral portion of the bottom surface of the package lid member 3 to the joining surface 22, and forms a space for housing the light emitting element and the like.
  • the joint surface 22 in this example is a flat surface, the joint surface is not limited to a flat surface, and may be a three-dimensional shape having concave and convex portions or inclined surfaces that fit with each other, or complementary curved surfaces that airtightly contact each other. It may be. Further, there may be a concave portion or a convex portion on the back surface of the package lid member 3 corresponding to the concave portion 21.
  • the package lid member 3 has a rectangular plate shape having a joint portion 33 provided in a planar frame shape (rectangular shape) and a light transmitting portion 34 provided inside the joint portion 33.
  • the glass member 30 has an upper surface 31 that is the top surface of the package 1 and a lower surface 32 that includes a bonding portion 33 that is bonded to the bonding surface 22 of the package substrate 2.
  • glass such as borosilicate glass or quartz glass.
  • it is formed in a rectangular plate shape having a side of 2 mm to 30 mm and a thickness of 50 ⁇ m to 3000 ⁇ m.
  • a rectangular frame-shaped metallization layer 4 made of Au, Ti, Ni or the like has a rectangular shape larger than the planar shape of the concave portion 21 of the package substrate 2 in the joint portion 33. Is formed so as to surround.
  • an Au—Sn layer 5 having the same rectangular frame shape as the metallized layer 4 is formed on the metallized layer 4.
  • the width L1 of the Au—Sn layer 5 is the same as the width of the metallized layer 4 or narrower than the width of the metallized layer 4, and is set to 50 ⁇ m or more and 1000 ⁇ m or less.
  • the whole or part of the metallized layer 4 is covered with the Au—Sn layer 5.
  • the Au—Sn layer 5 does not need to protrude to the outside of the metallized layer 4, but the extent to which a part of the Au—Sn layer 5 in the width direction slightly protrudes to the outside of the metallized layer 4 is allowed in this embodiment. ..
  • the Au—Sn layer 5 of the lower surface 32 of the package cover material 3 is brought into contact with the bonding surface 22 of the package substrate 2 and the package substrate 2 and By reflowing (heating) the package cover material 3, as shown in FIG. 5, the bonding layer 6 (Au—Sn solder) formed by melting and solidifying the Au—Sn layer 5 is used to form the package substrate 2 and the package cover material. 3 is joined to form the package 1.
  • Au—Sn solder Au—Sn solder
  • the method of manufacturing the package lid member 3 includes a metallizing step of forming a metallized layer 4 in a frame shape on the surface (bonding portion 33) of the glass member 30, and a paste of applying a Au—Sn paste in a frame shape on the metallized layer 4.
  • a dividing step of dividing the glass member 30 after the step is a metallizing step of forming a metallized layer 4 in a frame shape on the surface (bonding portion 33) of the glass member 30, and a paste of applying a Au—Sn paste in a frame shape on the metallized layer 4.
  • a plurality of glass elements 30 (for example, having a size of 20 mm ⁇ 20 mm and a thickness of 0.5 mm) (which will be the lower surface 32 of the package cover material 3) arranged in a grid pattern are arranged.
  • the metallized layer 4 is formed on the planar frame-shaped joint portion 33 by a sputtering method using Au, Ti, Ni, or the like, or various plating methods such as electroless plating.
  • the metallized layer 4 is preferably formed by Au plating.
  • the metallized layer 4 and the Au—Sn layer 5 formed on the metallized layer 4 are formed in the same number of rectangular frame shapes having the same planar shape (for example, a square having a length and width of 3 mm and a width of 500 ⁇ m).
  • an Au—Sn paste is applied so as to form a plurality of rectangular frames (for example, squares of 3 mm in length and width) having the same shape as the metalized layer 4.
  • the Au—Sn paste is, for example, 21% by mass or more and 23% by mass or less of Sn, the balance is Au and an Au—Sn alloy powder which is an unavoidable impurity, and a flux when the Au—Sn paste is 100% by mass. Is mixed so that the ratio is 5% by mass or more and 20% by mass or less.
  • RA type strong activation flux
  • RMA type weak activation flux
  • non-halogen type flux MSN type
  • AS1 type AS2 type
  • etc. in the MIL standard can be used.
  • the Au-Sn paste is preferably applied on the metallized layer 4 by printing so as to form a rectangular frame having a width of 50 ⁇ m or more and 1000 ⁇ m or less and a thickness of 1 ⁇ m or more and 100 ⁇ m or less.
  • the Au—Sn paste may be applied by being discharged and supplied by a dispenser or the like, or may be applied by a printing method such as transfer printing or screen printing.
  • the width of the Au—Sn paste is not limited to the same width as the metallized layer 4, and may be narrower than the metallized layer 4. Even if it protrudes from No. 4, joining is possible.
  • the Au—Sn paste printed and applied on the glass member 30 is heated to melt (reflow) the Su—Sn paste.
  • This reflow process is performed in a non-oxidizing atmosphere such as an N 2 atmosphere. It is preferable to keep the glass member 30 and the Au—Sn paste horizontal during the reflow so that the molten Au—Sn alloy does not flow. As a result, the Au—Sn paste is melted, the molten Au—Sn alloy remains on the metallized layer 4 without flowing, and the state is maintained.
  • the joint surface is flat so that the entire surface can be kept horizontal. However, even if the joint surface has a slight inclination, the viscosity and metallization of the molten Au-Sn alloy can be prevented. The wettability of the layer 4 hinders the flow to some extent.
  • the heating temperature in the reflow step may be in the range of 280 ° C to 350 ° C, preferably in the range of 280 ° C to 330 ° C, more preferably in the range of 280 ° C to 300 ° C.
  • the heating time may be kept within the range of the heating temperature within the range of 10 seconds to 120 seconds, preferably within the range of 20 seconds to 90 seconds, and more preferably within the range of 30 seconds to 60 seconds.
  • An example of suitable conditions is a condition of heating at 300 ° C. for 60 seconds.
  • the cooling step is provided with a holding step of holding the Au—Sn paste and the glass member 30 within a certain temperature range during cooling.
  • the holding temperature of the Au—Sn paste is set in the range of 150 ° C. or higher and 190 ° C. or lower, and the holding time in the temperature range is set to 2 minutes or longer.
  • the Au—Sn layer 5 is formed on the glass member 30 via the metallized layer 4.
  • the formed Au—Sn layer 5 is an Au—Sn alloy in which Sn is 19 wt% to 23 wt%, and the balance is Au.
  • the Au—Sn paste applied to the glass member 30 is “Au—Sn paste” until it is solidified by the cooling process even after being melted by the reflow process, and “Au—Sn paste” is solidified by the cooling process thereafter. It is called “Au-Sn layer”.
  • the holding temperature in the holding step is less than 150 ° C., the change from the ⁇ phase to the ⁇ ′ phase is slow, and even if the holding temperature is higher than 190 ° C., the change from the ⁇ phase to the ⁇ ′ phase does not occur. Even if the holding time condition is satisfied, peeling or damage may not be suppressed.
  • the holding temperature is more preferably in the range of 160 ° C. or higher and 180 ° C. or lower.
  • the holding time in the holding step is less than 2 minutes, even if the above-mentioned holding temperature condition is satisfied, the change from the ⁇ phase to the ⁇ ′ phase does not proceed sufficiently, and peeling or damage may not be suppressed.
  • the upper limit of the holding time is not particularly limited, but it is preferable to set it to 10 minutes or less because it is difficult to further improve the characteristics even if the holding time is longer than 10 minutes. More preferably, the holding time is within the range of 3 minutes or more and 8 minutes or less.
  • the cooling rate from the maximum temperature during heating to 190 ° C. is not particularly limited, and may be, for example, 0.5 ° C./sec to 5 ° C./sec. Therefore, it is more preferably 2 ° C./sec to 4 ° C./sec. For example, it can be cooled at a normal cooling rate of 3 ° C./second.
  • FIG. 4 shows temperature changes in the reflow process and the cooling process in the example of the present embodiment.
  • the solid line indicates the temperature change of the example of the present embodiment, and the temperature range of 150 ° C. or higher and 190 ° C. or lower is cooled for 2 minutes or longer over the time H1.
  • the broken line in FIG. 4 represents a temperature change in the heat treatment in the comparative example, and the temperature range of 150 ° C. or higher and 190 ° C. or lower is cooled by the time H2 shorter than 2 minutes.
  • the temperature of the Au—Sn alloy (and the glass member 30) is lowered to 190 ° C. in the cooling step after the reflow step, and then the temperature is 150 ° C. or higher 190 minutes for 230 minutes.
  • the temperature is kept in the range of °C or less (holding step).
  • cooling is performed at a substantially constant rate after the reflow process and no holding process is provided.
  • the glass member 30 After the Au—Sn paste is applied to the glass member 30 through the metallized layer 4 and reflowed, the glass member 30 is cooled at a cooling rate of a comparative example (for example, a cooling rate of about 3 ° C./second) as shown by a broken line in FIG.
  • the linear expansion coefficient of the Au—Sn alloy obtained by melting by reflow is different from the linear expansion coefficient of the glass member 30, that is, the shrinkage ratio of the Au—Sn alloy due to cooling is lower than that of the glass member 30. Since it is large, the Au—Sn layer 5 may be peeled off from the glass member 30 or a part of the package lid material 3 may be peeled off.
  • the Au—Sn paste in the cooling step after heating and reflowing the Au—Sn paste applied to the glass member 30 through the metallized layer 4, the Au—Sn paste is heated within a temperature range of 150 ° C. or higher and 190 ° C. or lower. Since the ⁇ phase in the Au—Sn layer 5 changes to a stable ⁇ ′ phase because it is held for 2 minutes or more, when the Au—Sn layer 5 cools at the normal cooling rate and the ⁇ phase occurs. It becomes softer than.
  • the stress generated in the Au—Sn layer 5 is relaxed, and even if the Au—Sn layer 5 is cooled by a normal cooling rate (for example, a cooling rate of 3 ° C./second) after the holding step, the Au—Sn layer 5 may be cooled. It is possible to suppress the peeling of the glass member 30 from the glass member 30 and the peeling of a part of the glass member 30, and it is possible to prevent the glass member 30 from being damaged.
  • a normal cooling rate for example, a cooling rate of 3 ° C./second
  • the package lid member 3 and the package substrate 2 are arranged so as to overlap each other, and the Au—Sn layer 5 is brought into contact with the package substrate 2.
  • Heating process The package substrate 2 and the package lid member 3 are heated in the same temperature range (280 ° C. to 350 ° C.) and heating time (10 seconds to 120 seconds) as in the reflow step in the method of manufacturing the package lid member 3 described above, The Au—Sn layer 5 is melted again. At this time, the package substrate 2 and the package lid member 3 are pressed in the stacking direction as needed.
  • the package substrate 2 and the package lid member 3 are cooled and melted while performing the holding step (150 ° C. or higher and 190 ° C. or lower, 2 minutes or longer).
  • the Sn layer 5 is solidified to form the bonding layer 6, and the package substrate 2 and the package lid 3 are bonded (FIG. 5).
  • a holding step of holding the melted Au—Sn layer 5 in the temperature range of 150 ° C. or higher and 190 ° C. or lower for 2 minutes or more is performed similarly to the method of manufacturing the package lid member 3.
  • a soft ⁇ ′ phase (zeta prime phase).
  • the re-melted Au—Sn layer 5 is kept in the temperature range of 150 ° C. or higher and 190 ° C. or lower for 2 minutes or more. At least part of the ⁇ phase in the Au—Sn layer 5 changes to the stable ⁇ ′ phase. As a result, the Au—Sn layer 5 becomes soft, so that even if the Au—Sn layer 5 is cooled by a normal cooling rate (for example, a cooling rate of 3 ° C./sec) after the holding step, the stress due to shrinkage during cooling is relaxed. As a result, it is possible to prevent the Au—Sn layer 5 from peeling off from the glass member or peeling off a part of the glass member. That is, since the package substrate 2 and the package lid member 3 are joined by the soft joining layer 6, the glass member 30 in the package 1 is prevented from cracking and the package lid member 3 is prevented from falling off.
  • a normal cooling rate for example, a cooling rate of 3 ° C./sec
  • a lid 3D for a package in which the corner of the Au—Sn layer 5D is formed into an arc shape to have the same width. 11), etc. may be adopted.
  • a package lid 3D (FIG. 10) in which Au-Sn layers 5D and 7D are doubled and stress due to thermal expansion difference is dispersed may be adopted.
  • the circular Au—Sn layer 105 may be formed on the circular glass member 130 to employ the package lid 103 that prevents uneven stress due to the shape of the Au—Sn layer 105 (FIG. 12). ..
  • the package 201 may be configured by using a box-shaped package cover member 203 having a recess 221 and a flat plate-shaped package substrate 202.
  • the package lid member 203 in which the metallized layer 204 and the Au—Sn layer 205 are formed in the frame shape on the frame-shaped plane (joint portion) surrounding the concave portion 221 is manufactured.
  • the package substrate 202 on which the light emitting element (not shown) is mounted and the package lid member 203 are joined by the joining layer 206 formed by melting and solidifying the Au—Sn layer 205 by performing the above-mentioned steps.
  • the package 201 can be obtained.
  • the package lid materials were manufactured by the methods of Examples 1 to 4 and Comparative Examples 1 to 4 which were different only in the holding step, and the Au-Sn layers formed on the respective package lid materials were compared.
  • 25 square metallization layers 11 having a size of 3.0 mm ⁇ 3.0 mm ⁇ 300 ⁇ m in width were formed at intervals of 3 mm in length and width (metallizing step).
  • An Au—Sn paste was applied on each metallized layer 11 in the same shape and size as the metallized layer 11 so as to cover the entire area of the metallized layer 11 (paste application step).
  • the Au—Sn paste used was Au-22 mass% Sn alloy powder having an average particle size of 7 ⁇ m, and the ratio of the flux to the entire paste was 10 mass%.
  • RA type was used as the flux.
  • the thickness of 15 ⁇ m having 25 frame-shaped patterns of 300 ⁇ m width is set.
  • the Au—Sn paste was printed on the metallized layer 11 using a printing mesh mask. Therefore, each of the formed paste layers has a thickness of 15 ⁇ m.
  • the glass members 10 coated with the Au—Sn paste were individually reflowed using a heating furnace to form 25 Au—Sn layers 12 for each glass member 10 as shown in FIG. Reflow process).
  • the reflow step after heating for 1 minute at 300 ° C. under a N 2 atmosphere, and then cooled to room temperature near the heating furnace while maintaining an N 2 atmosphere (cooling process).
  • a holding step was performed in which cooling was performed at 3 ° C./sec until the temperature reached a predetermined holding temperature, and further, holding was performed at a predetermined holding temperature for a predetermined holding time.
  • the holding temperature and the holding time were changed as shown in Table 1 to obtain Examples 1 to 4 and Comparative Examples 1 to 4.
  • the cooling process after the reflow process of Examples 1 to 4 and Comparative Examples 1 to 4 is as follows.
  • Example 1 In the cooling process after the reflow process, in each of Examples 1 to 4, cooling was performed at 3 ° C./sec, and the holding temperature and the holding time in the holding process were changed. That is, as shown in Table 1, in Example 1, from 300 ° C. to 190 ° C., cooling was performed at 3 ° C./sec, holding at 190 ° C. for 5 minutes, and then cooling at 3 ° C./sec again. In Example 2, cooling was performed at 3 ° C./second from 300 ° C. to 150 ° C., after holding at 150 ° C. for 2 minutes, cooling was performed again at 3 ° C./second. In Example 3, cooling from 300 ° C. to 190 ° C.
  • Example 4 cooling was performed at 3 ° C./second from 300 ° C. to 160 ° C., after holding at 160 ° C. for 5 minutes, it was cooled again at 3 ° C./second.
  • Comparative Example 1 was cooled from 300 ° C. to 110 ° C. at 3 ° C./second, held at 130 ° C. for 2 minutes, and then cooled at 3 ° C./second again.
  • Comparative Example 2 from 300 ° C. to 210 ° C., it was cooled at 3 ° C./second, held at 210 ° C. for 2 minutes, and then cooled again at 3 ° C./second.
  • Comparative Example 3 was cooled from 300 ° C. to 160 ° C. at 3 ° C./second, held at 160 ° C. for 1 minute, and then cooled again at 3 ° C./second.
  • cooling was continuously performed from 300 ° C. to 3 ° C./second, and the holding step was not provided.
  • the thickness of the Au—Sn layer 12 of Examples 1 to 4 and Comparative Examples 1 to 4 thus formed was measured by an optical microscope, all were 4.7 ⁇ m. Further, with respect to the 25 Au—Sn layers 12 obtained in each of Examples 1 to 4 and Comparative Examples 1 to 4, the inner-outer penetration rate of the Au—Sn layer 12 was measured as follows to obtain the Au—Sn layer. 12 peels were evaluated.
  • the Au—Sn layer 12 formed on the metallized layer 11 of the glass member 10 is removed from the surface, which is the upper surface of the package cover material and on which the Au—Sn layer is not formed, by an optical microscope (10 times) to remove the glass member 10. It was inspected through a watermark to check whether or not there is a peeled portion continuously peeled from the outer peripheral edge to the inner peripheral edge of each Au—Sn layer 12.
  • the Au—Sn layer 12 in which even one peeled portion was generated was determined as “impossible”, and the Au—Sn layer 12 in which no peeled portion was present was determined as “good”.
  • the ratio of the Au—Sn layers 12 determined as “good” was calculated.
  • Example 1 to 4 in which the cooling step including the holding step of holding the temperature at 150 ° C. or higher and 190 ° C. or lower for 2 minutes or more was performed, the evaluation of the inside / outside penetration rate of the Au—Sn layer 12 was 48% or more.
  • the evaluation of the inside-outside penetration rate of the Au—Sn layer 12 was 60% or more.
  • the evaluation of the inside-outside penetration rate of the Au—Sn layer 12 was 70%, which is the best among Examples 1 to 4. It was an evaluation.
  • Comparative Example 1 the temperature of the holding step was as low as 130 ° C., and therefore the evaluation of the inside-outside penetration rate of the Au—Sn layer was as low as 32%. Further, in Comparative Example 2, the temperature of the holding step was as high as 210 ° C., so that the evaluation of the inside-outside penetration rate of the Au—Sn layer was as low as 36%. In Comparative Example 3, the temperature of the holding step was 160 ° C. as in Example 4, but the holding time was as short as 1 minute, so the evaluation of the inside-outside penetration rate of the Au—Sn layer was as low as 32%. In Comparative Example 4, since the cooling step did not include the holding step, the evaluation of the inside-outside penetration rate of the Au—Sn layer was 28%, which was the lowest evaluation among the comparative examples.
  • the peeling of the Au—Sn layer can be suppressed by including the holding step of holding the glass member in the temperature range of 150 ° C. to 190 ° C. for 2 minutes or more in the cooling step of cooling the glass member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

このパッケージ用蓋材の製造方法は、ガラス部材(30)の表面にメタライズ層(4)を形成するメタライズ工程と、前記メタライズ層(4)上に枠状にAu-Snぺーストを塗布するペースト塗布工程と、ペースト塗布工程後に、Au-Snペーストが塗布された前記ガラス部材(30)を加熱してAu-Snペーストをリフローするリフロー工程と、リフロー工程後のガラス部材(30)を冷却してAu-Sn層(5)を形成する冷却工程とを備える。冷却工程は、ガラス部材(30)を150℃以上190℃以下の温度範囲内で2分以上保持する保持工程を含む。

Description

パッケージ用蓋材の製造方法およびパッケージの製造方法
 本発明は、パッケージ基板に接合されるパッケージ用蓋材の製造方法およびパッケージの製造方法に関する。
 本願は、2018年10月29日に日本に出願された特願2018-203063号、および2019年10月17日に日本に出願された特願2019-190241号に基づき優先権を主張し、それらの内容をここに援用する。
 従来、半導体レーザー(LD)やLED等の発光素子を外部環境から保護するため、発光素子をパッケージ内に封止した半導体装置及び発光装置が知られている(例えば、特許文献1及び2参照)。
 特許文献1に記載の半導体装置では、上端に開口する凹部を有するパッケージ基板と、前記凹部に収容される光半導体素子と、光を透過させるガラスなどの材料からなり前記凹部の開口を覆うように配置される窓部材(パッケージ用蓋材)と、パッケージ基板と前記窓部材の間を封止する封止構造とを備えている。この封止構造は、前記パッケージ基板の上面に枠状に設けられる第1金属層と、前記窓部材の内面に枠状に設けられる第2金属層と、前記第1金属層と前記第2金属層の間に設けられる金属接合部とを有しており、前記第1金属層及び前記第2金属層の一方が設けられる領域内に第1金属層および第2金属層の他方の全体が位置するように構成されている。
 特許文献2に記載の発光装置は、実装基板と、前記実装基板に実装された紫外線発光素子と、前記実装基板上に配置され前記紫外線発光素子を収納する凹部が形成されたキャップ(パッケージ用蓋材)とを備えている。前記実装基板は、支持体と、前記支持体に支持された第1導体部、第2導体部及び第1接合用金属層とを備えている。前記キャップはガラスなどからなり、裏面に凹部が形成されたキャップ本体と、凹部の周部で第1接合用金属層に対向して配置された第2接合用金属層とを備えている。前記第1導体部、前記第2導体部及び前記第1接合用金属層のそれぞれにおける前記支持体から最も離れた最上層はAuにより形成され、これら前記第1接合用金属層と前記第2接合用金属層とは、Au-Snにより接合されている。
特許第6294417号公報 特許第6260919号公報
 特許文献1に記載の金属接合部は、Au-Sn合金により構成されている。特許文献2においても、第1接合用金属層と第2接合用金属層とは、Au-Sn合金により接合されている。すなわち、特許文献1及び2のいずれの構成においても、Au-Sn合金からなるAu-Sn層がガラス製のパッケージ用蓋材に形成されている。Au-Sn層は、例えば、Au-Snペーストが上記部位に塗布されリフローされることにより構成される。
 しかし、Au-Snペーストをガラス板材に塗布してリフローすると、冷却時の収縮率の差により、Au-Sn層がガラス板材から剥がれたり、ガラス板材の一部を剥ぎ取ったりすることがあり、パッケージ用蓋材が破損するおそれがある。さらに、Au-Sn層によって基板に接合されたガラス板材(蓋材)が、基板から脱落するおそれがある。
 本発明は、このような事情に鑑みてなされたもので、Au-Sn層の剥離及び破損を抑制できるパッケージ用蓋材およびパッケージの製造方法を提供することを目的とする。
 本発明の一態様のパッケージ用蓋材の製造方法は、ガラス部材の表面に設けられた接合部にメタライズ層を形成するメタライズ工程と、前記メタライズ層上に、Au-Snペーストを塗布してペースト層を形成するペースト塗布工程と、前記ペースト塗布工程後に、前記ガラス部材に塗布された前記Au-Snペーストを加熱してリフローするリフロー工程と、リフローされた前記Au-Snペーストを冷却する冷却工程とを備える。前記冷却工程は、リフローされた前記Au-Snペーストを150℃以上190℃以下の温度範囲内において、2分以上の保持時間で保持する保持工程を含み、前記ガラス部材の前記接合部に前記Au-Snペーストを溶融固化したAu-Sn合金からなるAu-Sn層を形成する。前記接合部は平面的な枠状であってもよく、前記メタライズ層および前記Au-Snペースト層は前記接合部に沿って平面的な枠状に形成されてもよい。前記ガラス部材の表面には、複数の前記メタライズ層および前記Au-Snペースト層を形成してもよい。その場合には最終的に前記ガラス部材を分割することにより、複数のパッケージ用蓋材を得ることができる。
 本明細書中では、ガラス部材に塗布されたAu-Snペーストについて、リフロー工程により溶融された後も冷却工程により固化されるまでは「Au-Snペースト(層)」、冷却工程により固化された後は「Au-Sn層」と称する。
 Au-Snペーストを、メタライズ層を介してガラス部材に塗布してリフローした後、一般的な冷却速度(例えば、3℃/秒程度の冷却速度)で冷却した場合には、リフローにより溶融したAu-Sn合金の線膨張係数とガラス部材の線膨張係数とが比較的大きく異なる。すなわち、冷却によるAu-Sn合金の収縮率がガラス部材の収縮率よりも大きいため、Au-Sn層がガラス部材から剥がれたり、ガラス部材の一部を剥ぎ取ったりすることがある。
 これに対し、本態様の方法では、Au-Snペーストをリフローした後の冷却工程において、リフローされたAu-Snペーストを150℃以上190℃以下の温度範囲内で2分以上保持するので、Au-Sn層内におけるAu:Sn=5:1(原子比)であるζ相(ゼータ層)の少なくとも一部が安定なAu:Sn=1:1(原子比)であるζ´相(ゼータプライム相)へと変化し、これによりAu-Sn層がζ相のみの場合よりも軟らかくなる。保持工程後に通常の冷却速度(例えば、3℃/秒の冷却速度)によりAu-Sn層が冷却されても前記ζ′相は維持されるため、固化する過程でのAu-Sn合金の線膨張係数とガラス部材の線膨張係数との差を比較的に小さく抑えることができ、Au-Sn層がガラス部材から剥がれたり、ガラス部材の一部を剥ぎ取ったりすることを抑制できる。
 本態様に係るパッケージ用蓋材の製造方法において、前記保持工程における前記保持温度は160℃以上180℃以下であることが好ましく、前記保持工程における前記保持時間は3分以上8分以下であることが好ましい。
 本態様に係るパッケージ用蓋材の製造方法において、前記リフロー工程における加熱温度は280℃~350℃、加熱時間は10秒~120秒であることが好ましい。加熱温度は、より好ましくは330℃以下、さらに好ましくは300℃以下である。加熱時間は、より好ましくは20~90秒、さらに好ましくは30~60秒である。
 本態様に係るパッケージ用蓋材の製造方法は、前記メタライズ工程において前記ガラス部材上に複数の枠状に前記メタライズ層を形成するとともに、前記ペースト塗布工程において複数の前記メタライズ層上にそれぞれ前記Au-Snペーストを塗布し、複数の枠状に前記Au-Sn層が形成された前記ガラス部材を、前記冷却工程の後に前記Au-Sn層毎に分割する分割工程を行うことが好ましい。
 本発明の一態様に係るパッケージの製造方法は、前記いずれかの製造方法により得られるパッケージ用蓋材とパッケージ基板とを接合してパッケージを製造する方法であって、前記Au-Sn層を前記パッケージ基板に接触させるように、前記パッケージ用蓋材と前記パッケージ基板とを配置する配置工程と、前記パッケージ基板および前記パッケージ用蓋材を加熱して、前記Au-Sn層を溶融する加熱工程と、溶融した前記Au-Sn層を冷却して、前記パッケージ基板と前記パッケージ用蓋材とを接合する接合層を形成する冷却工程とを有し、前記冷却工程は、溶融した前記Au-Sn層を150℃以上190℃以下の温度範囲内で、2分以上の保持時間で保持する保持工程を含む。
 パッケージ基板とパッケージ用蓋材とを接合する際に、加熱溶融したAu-Sn層を冷却する工程の中で150℃以上190℃以下の温度範囲内で2分以上保持することにより、Au-Sn層が固化して得られた接合層の少なくとも一部がζ´相へと変化し、Au-Snのζ相よりも軟質となる。したがって、パッケージ基板とパッケージ用蓋材とを接合して得られたパッケージにおいて、接合部の応力を緩和することができ、ガラス部材の破損、接合層の剥がれ、および蓋材の脱落を防止できる。
 このパッケージの製造方法において、前記加熱工程における加熱温度および加熱時間は、前記パッケージ用蓋材の製造方法における、前記リフロー工程での前記加熱温度および前記保持時間とほぼ同じであることが好ましい。すなわち、前記加熱工程における前記加熱温度は280℃~350℃、前記加熱時間は10秒~120秒であることが好ましい。加熱温度は、より好ましくは330℃以下、さらに好ましくは300℃以下である。加熱時間は、より好ましくは20~90秒、さらに好ましくは30~60秒である。
 本発明のパッケージ用蓋材の製造方法およびパッケージの製造方法によれば、Au-Sn層の剥離及び破損を抑制できるパッケージ用蓋材及びパッケージを提供できる。
本発明の実施形態に係るパッケージ用蓋材の製造方法で得られるパッケージ用蓋材及びパッケージ基板を示す斜視図である。 本実施形態におけるパッケージ用蓋材の底面図である。 図2に示すA1-A1線に沿うパッケージ用蓋材の矢視断面図である。 本実施形態の一例のパッケージ用蓋材にAu-Snペーストが塗布された後のリフロー及び冷却時の温度変化を示す図である。 本実施形態に係るパッケージを示す正面図である。 本実施形態の製造方法に係るメタライズ工程およびペースト塗布工程におけるガラス部材を示す平面図である。 Au-Sn層の角部の変形例を示す平面図である。 Au-Sn層の角部の変形例を示す平面図である。 Au-Sn層の角部の変形例を示す平面図である。 Au-Sn層の角部の変形例を示す平面図である。 Au-Sn層の角部の変形例を示す平面図である。 ガラス部材およびAu-Sn層の変形例を示す平面図である。 パッケージ形状の変形例を示す側面図である。 実施例および比較例として、板状のガラス部材上に複数の枠状にメタライズ層およびAu-Sn層を形成した状態を示す平面図である。
 以下、本発明に係るパッケージ用蓋材の製造方法及びパッケージの製造方法の実施形態について、図面を用いて説明する。図1は、本実施形態で得られるパッケージ1を構成するパッケージ基板2及びパッケージ用蓋材3を示す斜視図である。図2は、パッケージ用蓋材3の底面図である。図3は、図2のA1-A1線に沿うパッケージ用蓋材3の矢視断面図である。図5は本実施形態にかかるパッケージ1を示す側面図である。
[パッケージの概略構成]
 パッケージ1は、図1及び図5に示すように、上部に開口する凹部21を有するパッケージ基板2と、パッケージ基板2に接合されて凹部21を閉塞する平板状のパッケージ用蓋材3とを備えている。この例のパッケージ基板2は直方体状をなし、その上面のほぼ中央に、直方体状をなす凹部21が形成されている。この例のパッケージ用蓋材3は、平面視してパッケージ基板2の上面と同じ矩形状をなし、一定厚の板状である。ただし、本発明の実施形態が対象とするパッケージは上記形状に限らず、凹部のあるパッケージ基板の凹部形成面をパッケージ用蓋材が封止する構造を有すれば、直方体状に限らず、他の多角形柱状や、円筒形、楕円形柱状、球形などいかなる形状にも適用可能である。パッケージ1内には、LD(Laser Diode)やLED(Light Emitting Diode)等の発光素子等(図示せず)が収容される。
[パッケージ基板の構成]
 パッケージ基板2は、図1に示すように凹部21の周囲に設けられた接合面22を有し、例えば、AIN(窒化アルミニウム)等により矩形箱状に形成されている。凹部21は、パッケージ用蓋材3の底面の外周部が接合面22に接合されることにより気密的に閉塞され、発光素子等を収容する空間を形成する。この例の接合面22は平面であるが、接合面は平面に限らず、互いに嵌合する凹凸や傾斜面を有する立体形状であってもよいし、互いに気密的に当接する相補的な曲面であってもよい。また、凹部21と対応してパッケージ用蓋材3の裏面に凹部または凸部があってもよい。
[パッケージ用蓋材の構成]
 パッケージ用蓋材3は、図1~3に示すように、平面枠状(矩形状)に設けられた接合部33および接合部33の内側に設けられた光透過部34を有する矩形板状のガラス部材30と、接合部33に沿って枠状(矩形状)に形成されたメタライズ層4と、メタライズ層4上に枠状(矩形状)に形成されたAu-Sn層5とにより構成されている。
 ガラス部材30は、パッケージ1の天面となる上面31と、パッケージ基板2の接合面22と接合される接合部33を含む下面32とを有し、例えば、ホウケイ酸ガラス、石英ガラスなどのガラスを用いて、限定はされないが、一辺が2mm~30mm、厚さ50μm~3000μmの矩形板状に形成されている。
 接合部33には、図2,3に示すように、Au、Ti、Ni等からなる矩形枠状のメタライズ層4が、パッケージ基板2の凹部21の平面形状より大きな矩形状をなし、凹部21を囲むように形成されている。
 メタライズ層4上には、図2及び図3に示すように、メタライズ層4と同じ矩形枠状のAu-Sn層5が形成されている。Au-Sn層5の幅L1はメタライズ層4の幅と同一であるか、またはメタライズ層4の幅よりも狭く、50μm以上1000μm以下に設定されている。これにより、メタライズ層4の全面または一部はAu-Sn層5に覆われている。Au-Sn層5はメタライズ層4の外にはみ出る必要はないが、Au-Sn層5の幅方向の一部がメタライズ層4の外に若干はみ出ている程度は、本実施形態では許容される。
 以上説明したパッケージ基板2の凹部21内に発光素子を収容した後、パッケージ基板2の接合面22上にパッケージ用蓋材3の下面32のAu-Sn層5を当接させてパッケージ基板2およびパッケージ用蓋材3をリフロー(加熱)することにより、図5に示すように、Au-Sn層5が溶融固化してなる接合層6(Au-Snはんだ)でパッケージ基板2とパッケージ用蓋材3とが接合され、パッケージ1が形成される。
[パッケージ用蓋材の製造方法]
 パッケージ用蓋材3の製造方法は、ガラス部材30の表面(接合部33)に枠状にメタライズ層4を形成するメタライズ工程と、メタライズ層4上に枠状にAu-Snペーストを塗布するペースト塗布工程と、ペースト塗布工程後に、Au-Snペーストが塗布されたガラス部材30を加熱してAu-Snペーストをリフローするリフロー工程と、リフロー工程後のガラス部材30を冷却する冷却工程と、冷却工程後にガラス部材30を分割する分割工程とを備える。
(メタライズ工程)
 図6に示すように、ガラス部材30(例えば、20mm×20mmの大きさで厚さ0.5mm)の表面(パッケージ用蓋材3の下面32となる)に、格子状に配列された複数の平面枠状の接合部33に、Au、Ti、Ni等のスパッタリング法や無電解めっき等の各種のめっき法などによってメタライズ層4を形成する。メタライズ層4は、Auめっきにより形成することが好ましい。メタライズ層4と、メタライズ層4上に形成されるAu-Sn層5は、互いに同一の平面形状を有する同数の矩形枠状(例えば、縦横3mm、幅500μmの正方形)に形成される。
(ペースト塗布工程)
 メタライズ層4上に、メタライズ層4と同じ形状の矩形枠(例えば、縦横3mmの正方形)を複数形成するようにAu-Snペーストを塗布する。Au-Snペーストは、例えば、Snを21質量%以上23質量%以下、残部がAu及び不可避不純物であるAu-Sn合金粉末と、フラックスとを、Au-Snペーストを100質量%とした時にフラックスの割合が5質量%以上20質量%以下となるように混合したものである。
 フラックスとしては、例えば、MIL規格におけるRAタイプ(強活性化フラックス)、RMAタイプ(弱活性化フラックス)、ノンハロゲンタイプのフラックス、MSNタイプ、AS1タイプ、AS2タイプ等を用いることができる。
 Au-Snペーストを、好ましくは、幅が50μm以上1000μm以下、厚さが1μm以上100μm以下の矩形枠となるように、メタライズ層4上に印刷塗布する。なお、Au-Snペーストは、ディスペンサ等により吐出供給して塗布してよいし、転写印刷や、スクリーン印刷などの印刷法により塗布してもよい。また、Au-Snペーストの幅は、メタライズ層4と同じ幅に限らず、メタライズ層4の幅よりも狭くてもよいし、好ましくはないが、メタライズ層4よりも若干幅が大きくてメタライズ層4からはみ出ていても、接合は可能である。
(リフロー工程)
 次に、ガラス部材30に印刷塗布されたAu-Snペーストを加熱してSu-Snペーストを溶融(リフロー)する。このリフロー工程は、例えば、N2雰囲気下等の非酸化性雰囲気下で行う。リフロー中はガラス部材30およびAu-Snペーストを水平に保ち、溶融したAu-Sn合金が流動しないようにすることが好ましい。これにより、Au-Snペーストが溶融し、溶融した状態のAu-Sn合金がメタライズ層4上に流動せずに留まり、その状態が維持される。流動を防止するには、全面に亘って水平を保てるように、接合面が平面であることが好ましいが、接合面に多少の傾斜がある場合にも、溶融したAu-Sn合金の粘性およびメタライズ層4に対する濡れ性により、流動はある程度妨げられる。
 リフロー工程の加熱温度は、280℃~350℃の範囲内とすればよく、好ましくは280℃~330℃の範囲内、より好ましくは280℃~300℃の範囲内とするとよい。加熱時間は、前記加熱温度の範囲内において10秒~120秒の範囲内で保持するとよく、好ましくは20秒~90秒の範囲内、より好ましくは30秒から60秒の範囲内とするとよい。好適な条件の一例としては、300℃で60秒間加熱する条件である。
(冷却工程)
 リフロー工程によりAu-Snペーストを溶融させた後、溶融したAu-Sn合金及びガラス部材30を冷却して、図3に示すように、固化したAu-Sn層5を形成する。冷却工程には、冷却途中において、Au-Snペースト及びガラス部材30を、一定の温度範囲内に保持する保持工程を設けている。保持工程においては、Au-Snペーストの保持温度を150℃以上190℃以下の範囲内とし、前記温度範囲内にて保持する時間を2分以上としている。保持工程を行うことにより、Au-Sn合金内におけるAu:Sn=5:1(原子比)であるζ相(AuSn)の少なくとも一部が、より安定なAu:Sn=1:1(原子比)であるζ´相(AuSn)へと変化し、ζ相のみの場合よりもAu-Sn層5が軟化される。
 このようにして、Au-Sn層5は、メタライズ層4を介しガラス部材30上に形成される。なお、形成されたAu-Sn層5は、Snが19wt%~23wt%、残部:AuとされたAu-Sn合金である。
 なお、ここでは、ガラス部材30に塗布されたAu-Snペーストについて、リフロー工程により溶融された後も冷却工程により固化されるまでは「Au-Snペースト」、冷却工程により固化されて以降は「Au-Sn層」と呼んでいる。
 保持工程における保持温度が150℃未満の場合、ζ相からζ´相への変化が遅く、一方、190℃を超える温度で保持してもζ相からζ´相への変化が起きないので、前記保持時間の条件が満たされたとしても、剥離や破損を抑制できないおそれがある。前記保持温度は、より好ましくは160℃以上180℃以下の範囲内とするとよい。
 保持工程における保持時間が2分未満であると、前記保持温度の条件が満たされたとしても、ζ相からζ´相への変化が十分に進まず、剥離や破損を抑制できないおそれがある。保持時間の上限は特に限定されないが10分よりも長く保持してもそれ以上の特性改善は難しいことから、10分以下とすることが好ましい。より好ましくは、保持時間は、3分以上8分以下の範囲内とするとよい。
 なお、保持工程においては、必ずしも温度を一定とする必要はなく、150℃以上190℃以下の範囲内で温度が変化しても問題はない。加熱時の最高温度から190℃までの冷却速度については、特に限定されることはなく、例えば、0.5℃/秒~5℃/秒であってもよく、処理のしやすさ等の観点から、より好ましくは2℃/秒~4℃/秒である。例えば、通常の冷却速度である3℃/秒で冷却することができる。
 図4に本実施形態の一例での、リフロー工程及び冷却工程における温度変化を示す。図4において、実線は本実施形態の一例の温度変化であり、150℃以上190℃以下の温度帯を2分以上の時間H1をかけて冷却している。一方、図4の破線は比較例での熱処理における温度変化であり、150℃以上190℃以下の温度範囲内を2分より短い時間H2で冷却している。
 図4の時間H1に示すように、本実施形態ではリフロー工程後に冷却工程においてAu-Sn合金(及びガラス部材30)の温度が190℃まで低下してから、2.3分間、150℃以上190℃以下の範囲に保持している(保持工程)。一方、従来は、リフロー工程後にほぼ一定速度で冷却を行い、保持工程を設けていない。
 メタライズ層4を介してガラス部材30にAu-Snペーストを塗布してリフローした後、図4に破線で示すように比較例の冷却速度(例えば、3℃/秒程度の冷却速度)で冷却すると、リフローにより溶融して得られたAu-Sn合金の線膨張係数と、ガラス部材30の線膨張係数とが異なる、すなわち、冷却によるAu-Sn合金の収縮率がガラス部材30の収縮率よりも大きいため、Au-Sn層5がガラス部材30から剥がれたり、パッケージ用蓋材3の一部を剥ぎ取ったりすることがある。
 本実施形態では、メタライズ層4を介してガラス部材30に塗布されたAu-Snペーストを加熱してリフローした後の冷却工程において、Au-Snペーストを150℃以上190℃以下の温度範囲内で2分以上保持するので、Au-Sn層5内におけるζ相が安定的なζ´相へと変化し、これによりAu-Sn層5が通常の冷却速度で冷却してζ相が生じた場合に比べ、軟らかくなる。このため、Au-Sn層5に生じる応力が緩和され、保持工程後に通常の冷却速度(例えば、3℃/秒の冷却速度)によりAu-Sn層5が冷却されても、Au-Sn層5がガラス部材30から剥がれたり、ガラス部材30の一部を剥ぎ取ったりすることを抑制可能となり、ガラス部材30の破損を防止できる。
(分割工程)
 複数の枠状のAu-Sn層5が形成されたガラス部材30をAu-Sn層5毎に分割することにより(図6参照)、図2,3に示すパッケージ用蓋材3が製造される。
[パッケージの製造方法]
 パッケージ用蓋材3とパッケージ基板2とを、以下の各工程を行って接合して、パッケージ1を形成する。
(配置工程)
 図1に示すようにパッケージ用蓋材3とパッケージ基板2とを重ねて配置し、Au-Sn層5をパッケージ基板2に接触させる。
(加熱工程)
 パッケージ基板2およびパッケージ用蓋材3を、上述したパッケージ用蓋材3の製造方法におけるリフロー工程と同じ温度範囲(280℃~350℃)および加熱時間(10秒~120秒)で加熱して、Au-Sn層5を再度溶融する。このとき、パッケージ基板2およびパッケージ用蓋材3を必要に応じて積層方向に加圧する。
(冷却工程)
 上述したパッケージ用蓋材3の製造方法における冷却工程と同様に、保持工程(150℃以上190℃以下、2分以上)を行いながらパッケージ基板2およびパッケージ用蓋材3を冷却し、溶融したAu-Sn層5を固化させて接合層6を形成し、パッケージ基板2とパッケージ用蓋材3とを接合する(図5)。
(保持工程)
 パッケージ1の製造方法における冷却工程においても、パッケージ用蓋材3の製造方法と同様に、溶融したAu-Sn層5を150℃以上190℃以下の温度範囲内で2分以上保持する保持工程を行い、軟質なζ′相(ゼータプライム相)を得る。
 パッケージ用蓋材3の製造工程と同様に、パッケージ1を製造する際も、再溶融したAu-Sn層5を冷却工程において150℃以上190℃以下の温度範囲内で2分以上保持するので、Au-Sn層5内におけるζ相の少なくとも一部が安定的なζ´相へと変化する。これによりAu-Sn層5が軟らかくなるので、保持工程後に通常の冷却速度(例えば、3℃/秒の冷却速度)によりAu-Sn層5が冷却されても、冷却時の収縮による応力が緩和され、Au-Sn層5がガラス部材から剥がれたり、ガラス部材の一部を剥ぎ取ったりすることを抑制可能となる。つまり、パッケージ基板2とパッケージ用蓋材3とが軟質な接合層6で接合されるので、パッケージ1におけるガラス部材30の割れ、パッケージ用蓋材3の脱落が防止される。
 なお、本発明は上記実施形態に限定されることはなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
(Au-Sn層の角部の変形例)
 Au-Sn層の幅が大きいと、ガラス部材30およびパッケージ基板2との熱伸縮差により剥がれや割れが生じやすくなる。したがって、Au-Sn層5Aの角部の外角を斜めに欠いたパッケージ用蓋材3A(図7)、Au-Sn層5Bの角部の内角を円形に欠いたパッケージ用蓋材3B(図8)、Au-Sn層5Cの角部の幅を細くしたパッケージ用蓋材3C(図9)、Au-Sn層5Dの角部を円弧形状にして全体を等幅にしたパッケージ用蓋材3D(図11)、などを採用してもよい。これらのように角部を面取りすることにより、剥がれや割れを抑制することができる。
 また、二重にAu-Sn層5D,7Dを設け、熱伸縮差による応力を分散させたパッケージ用蓋材3D(図10)を採用してもよい。あるいは、円形のガラス部材130に円形のAu-Sn層105を形成して、Au-Sn層105の形状による応力の不均一を防止したパッケージ用蓋材103を採用してもよい(図12)。
(パッケージ形状の変形例)
 図13に示すように、凹部221を有する箱状のパッケージ用蓋材203と平板状のパッケージ基板202とを用いてパッケージ201を構成してもよい。この場合、凹部221を有する箱状のガラス部材230において凹部221を囲む枠状の平面(接合部)にメタライズ層204およびAu-Sn層205を枠状に形成したパッケージ用蓋材203を製造し、発光素子(図示せず)が搭載されたパッケージ基板202とパッケージ用蓋材203とを、上述した各工程を行うことによりAu-Sn層205を溶融固化してなる接合層206により接合して、パッケージ201を得ることができる。
 保持工程のみが異なる実施例1~4及び比較例1~4の方法によりパッケージ用蓋材を製造し、各パッケージ用蓋材に形成されたAu-Sn層を比較した。図14まず、20mm×20mm×0.5mmのガラス部材10を、各例1枚ずつ用意し、図14に示すように、各ガラス部材10の表面に厚さ0.1μmのAuめっきを施して、3.0mm×3.0mm×幅300μmの正方形状のメタライズ層11を25個、相互に縦横3mmの間隔をおいて形成した(メタライズ工程)。
 各メタライズ層11上に、メタライズ層11の全域を覆うように、メタライズ層11と同形状かつ同寸法に、Au-Snペーストを塗布した(ペースト塗布工程)。Au-Snペーストは、平均粒径が7μmのAu-22質量%Sn合金粉末を用い、ペースト全体に対するフラックスの比率は10質量%とした。フラックスはRAタイプを用いた。
 ペースト塗布工程は、最終的にパッケージサイズ「3030」(3.0mm×3.0mm)のAu-Sn層12の枠を形成するため、幅300μmの枠状パターンを25個有する厚さが15μmの印刷用メッシュマスクを用いてメタライズ層11にAu-Snペーストを印刷した。したがって、形成された各ペースト層の厚さは、いずれも15μmである。
 そして、Au-Snペーストが塗布されたガラス部材10を加熱炉を用いて個別にリフローして、図14に示すように、各ガラス部材10毎に25個のAu-Sn層12を形成した(リフロー工程)。このリフロー工程では、N雰囲気下において300℃で1分間加熱した後、N雰囲気を保ちつつ加熱炉内で常温近くまで冷却した(冷却工程)。冷却工程では、所定の保持温度に達するまでは3℃/秒で冷却し、さらに、所定の保持温度で所定の保持時間だけ保持する保持工程を行った。保持温度および保持時間を表1に示すように変化させ、実施例1~4および比較例1~4とした。実施例1~4および比較例1~4のリフロー工程後の冷却工程は、以下のとおりである。
 リフロー工程後の冷却工程において、実施例1~4についてはいずれも3℃/秒で冷却し、保持工程における保持温度および保持時間を異ならせた。つまり表1に示すように、実施例1は、300℃から190℃までは3℃/秒で冷却し、190℃で5分保持した後、再度3℃/秒で冷却した。実施例2は、300℃から150℃までは3℃/秒で冷却し、150℃で2分保持した後、再度3℃/秒で冷却した。実施例3は、300℃から190℃までは3℃/秒で冷却し、190℃で2分保持した後、再度3℃/秒で冷却した。実施例4は、300℃から160℃までは3℃/秒で冷却し、160℃で5分保持した後、再度3℃/秒で冷却した。
 比較例1は、300℃から110℃までは3℃/秒で冷却し、130℃で2分保持した後、再度3℃/秒で冷却した。比較例2は、300℃から210℃までは3℃/秒で冷却し、210℃で2分保持した後、再度3℃/秒で冷却した。比較例3は、300℃から160℃までは3℃/秒で冷却し、160℃で1分保持した後、再度3℃/秒で冷却した。比較例4は、300℃から3℃/秒で冷却し続け、保持工程を設けなかった。
 これにより形成された実施例1~4および比較例1~4のAu-Sn層12の厚みを光学顕微鏡で測定したところ、いずれも4.7μmであった。さらに、実施例1~4および比較例1~4毎に得られた25個のAu-Sn層12について、以下のようにAu-Sn層12の内外貫通率を測定して、Au-Sn層12の剥離を評価した。
(Au-Sn層の内外貫通率の評価)
 ガラス部材10のメタライズ層11上に形成されたAu-Sn層12を、パッケージ用蓋材の上面となる、Au-Sn層が形成されていない面から光学顕微鏡(10倍)でガラス部材10を透かして観察し、個々のAu-Sn層12の外周縁から内周縁まで連続して剥離した剥離部分が存在するかを調べた。剥離部分が一つでも発生したAu-Sn層12を「不可」と判定し、剥離部分が存在しないAu-Sn層12を「良好」と判定した。実施例1~4及び比較例1~4のガラス部材10上に形成された各25個のAu-Sn層12について「良好」と判定されたAu-Sn層12の割合を算出した。
Figure JPOXMLDOC01-appb-T000001
 150℃以上190℃以下の温度で2分以上保持する保持工程を含む冷却工程を実行した実施例1~4は、Au-Sn層12の内外貫通率の評価が48%以上であった。これらの中でも保持工程時間が長い(5分)実施例1及び4は、Au-Sn層12の内外貫通率の評価が60%以上であった。さらに、実施例1は、実施例4に比べて保持温度が190℃と高かったため、Au-Sn層12の内外貫通率の評価が70%であり、各実施例1~4の中で最もよい評価であった。
 一方、比較例1では、保持工程の温度が130℃と低かったため、Au-Sn層の内外貫通率の評価が32%と低かった。また、比較例2では、保持工程の温度が210℃と高かったため、Au-Sn層の内外貫通率の評価が36%と低かった。比較例3では、保持工程の温度は実施例4と同じ160℃であったが保持時間が1分と短かったため、Au-Sn層の内外貫通率の評価が32%と低かった。比較例4は、冷却工程に保持工程を含まないため、Au-Sn層の内外貫通率の評価が28%と各比較例の中で最も低い評価となった。
 これらのことから、ガラス部材を冷却する冷却工程において150℃以上190℃以下の温度範囲内で2分以上保持する保持工程を含むことで、Au-Sn層の剥離を抑制できることがわかった。
 以上説明したように、本発明のパッケージ用蓋材の製造方法およびパッケージの製造方法によれば、接合層となるAu-Sn層の剥離やガラス部材の破損を抑制できるから、本発明は産業上の利用が可能である。
  1,201 パッケージ
  2,202 パッケージ基板
  3,3A~3D,103,203 パッケージ用蓋材
  4,11,204 メタライズ層
  5,5A~5D,7D,12,105,205 Au-Sn層
  6,206 接合層
  21,221 凹部
  22 接合面
  10,30,130,230 ガラス部材
  31 上面
  32 下面
  33 接合部
  34 光透過部

Claims (11)

  1.  パッケージ用蓋材の製造方法であって、
     ガラス部材の表面に設けられた接合部にメタライズ層を形成するメタライズ工程と、
     前記メタライズ層上に、Au-Snペーストを塗布するペースト塗布工程と、
     前記ペースト塗布工程後に、前記Au-Snペーストを加熱してリフローするリフロー工程と、
     リフローされた前記Au-Snペーストを冷却する冷却工程とを備え、
     前記冷却工程は、リフローされた前記Au-Snペーストを150℃以上190℃以下の保持温度範囲内において2分以上の保持時間で保持する保持工程を含み、
     前記ガラス部材の前記接合部に、前記Au-Snペーストを溶融固化したAu-Sn合金からなるAu-Sn層を形成することを特徴とするパッケージ用蓋材の製造方法。
  2.  前記保持工程における前記保持温度は160℃以上180℃以下であることを特徴とする請求項1記載のパッケージ用蓋材の製造方法。
  3.  前記保持工程における前記保持時間は3分以上8分以下であることを特徴とする請求項1又は請求項2記載のパッケージ用蓋材の製造方法。
  4.  前記リフロー工程における加熱温度は280℃~350℃であり、280℃~350℃における、加熱時間は10秒~120秒であることを特徴とする請求項1~3のいずれか1項に記載のパッケージ用蓋材の製造方法。
  5.  前記リフロー工程における前記加熱温度は330℃以下であることを特徴とする請求項4記載のパッケージ用蓋材の製造方法。
  6.  前記リフロー工程における前記加熱温度は300℃以下であることを特徴とする請求項4記載のパッケージ用蓋材の製造方法。
  7.  前記リフロー工程における前記加熱時間は20~90秒であることを特徴とする請求項4~6のいずれか1項に記載のパッケージ用蓋材の製造方法。
  8.  前記リフロー工程における前記加熱時間は30~60秒であることを特徴とする請求項4~6のいずれか1項に記載のパッケージ用蓋材の製造方法。
  9.  前記メタライズ工程において前記ガラス部材上に複数の枠状に前記メタライズ層を形成するとともに前記ペースト塗布工程において複数の前記メタライズ層上にそれぞれ前記Au-Snペーストを塗布し、
     複数の枠状に前記Au-Sn層が形成された前記ガラス部材を、前記冷却工程の後に前記Au-Sn層毎に分割して複数のパッケージ用蓋材を得る分割工程を行うことを特徴とする請求項1から8のいずれか1項に記載のパッケージ用蓋材の製造方法。
  10.  請求項1~9のいずれか一項に記載の製造方法により得られるパッケージ用蓋材と、パッケージ基板とを接合してパッケージを製造する方法であって、
     前記Au-Sn層を前記パッケージ基板に接触させるように、前記パッケージ用蓋材と前記パッケージ基板とを配置する配置工程と、
     前記パッケージ基板および前記パッケージ用蓋材を加熱して、前記Au-Sn層を溶融する加熱工程と、
     溶融した前記Au-Sn層を冷却して、前記パッケージ基板と前記パッケージ用蓋材とを接合する接合層を形成する冷却工程とを有し、
     前記冷却工程は、溶融した前記Au-Sn層を150℃以上190℃以下の温度範囲内において2分以上の保持時間で保持する保持工程を含むことを特徴とするパッケージの製造方法。
  11.  前記加熱工程における加熱温度および加熱時間は、前記パッケージ用蓋材の製造方法の前記リフロー工程における前記加熱温度および前記加熱時間とほぼ同じであることを特徴とする請求項10記載のパッケージの製造方法。
PCT/JP2019/041664 2018-10-29 2019-10-24 パッケージ用蓋材の製造方法およびパッケージの製造方法 WO2020090610A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/275,816 US11264534B2 (en) 2018-10-29 2019-10-24 Method for manufacturing package lid member and method for manufacturing package
EP19877833.4A EP3876271B1 (en) 2018-10-29 2019-10-24 Method for manufacturing package lid member and method for manufacturing package
CN201980059185.4A CN112673467B (zh) 2018-10-29 2019-10-24 封装用盖部件的制造方法及封装体的制造方法
KR1020207034720A KR102263552B1 (ko) 2018-10-29 2019-10-24 패키지용 덮개재의 제조 방법 및 패키지의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-203063 2018-10-29
JP2018203063 2018-10-29
JP2019190241A JP6753507B2 (ja) 2018-10-29 2019-10-17 パッケージ用蓋材の製造方法およびパッケージの製造方法
JP2019-190241 2019-10-17

Publications (1)

Publication Number Publication Date
WO2020090610A1 true WO2020090610A1 (ja) 2020-05-07

Family

ID=70464438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041664 WO2020090610A1 (ja) 2018-10-29 2019-10-24 パッケージ用蓋材の製造方法およびパッケージの製造方法

Country Status (3)

Country Link
US (1) US11264534B2 (ja)
CN (1) CN112673467B (ja)
WO (1) WO2020090610A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023067026A (ja) * 2021-10-29 2023-05-16 日亜化学工業株式会社 発光装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451481B (zh) * 2021-06-28 2022-09-23 江西新正耀科技有限公司 一种深紫外光发光元件的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260919B2 (ja) 1981-01-21 1987-12-18 Tokyo Shibaura Electric Co
JP2011040577A (ja) * 2009-08-11 2011-02-24 Citizen Electronics Co Ltd 発光装置の製造方法
JP2015122413A (ja) * 2013-12-24 2015-07-02 セイコーインスツル株式会社 パッケージおよびその製造方法
JP6294417B2 (ja) 2016-09-01 2018-03-14 日機装株式会社 光半導体装置および光半導体装置の製造方法
JP2018203063A (ja) 2017-06-05 2018-12-27 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019190241A (ja) 2018-04-27 2019-10-31 株式会社Lixil 便器装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10102824B9 (de) 2001-01-23 2007-04-05 Schott Ag Thermisch vorgespannter Bildschirm für Kathodenstrahlröhren und Verfahren zu seiner Herstellung
JP4073183B2 (ja) * 2001-08-01 2008-04-09 株式会社日立製作所 Pbフリーはんだを用いた混載実装方法及び実装品
CN100509253C (zh) 2003-04-01 2009-07-08 纳米钢公司 焊接物的受控热膨胀以提高韧性
JP2008258353A (ja) 2007-04-04 2008-10-23 Nec Schott Components Corp 電子部品用パッケージおよびそのろう付け構造
DE102010046122A1 (de) 2010-09-21 2012-03-22 Osram Opto Semiconductors Gmbh Elektronisches Bauelement
CN102785039B (zh) * 2012-07-30 2015-04-15 东莞永安科技有限公司 一种焊锡膏及其制备方法
CN105580131B (zh) * 2013-10-10 2021-03-12 三菱综合材料株式会社 自带散热器的功率模块用基板及其制造方法
TWI610411B (zh) 2014-08-14 2018-01-01 艾馬克科技公司 用於半導體晶粒互連的雷射輔助接合
JP5866561B1 (ja) 2014-12-26 2016-02-17 パナソニックIpマネジメント株式会社 発光装置及びその製造方法
JP2016219505A (ja) 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 発光装置
JP2018152385A (ja) 2017-03-09 2018-09-27 日本山村硝子株式会社 低温封止部材及びその製造方法
CN108608137A (zh) 2018-05-02 2018-10-02 大连圣多教育咨询有限公司 一种电子封装用无铅焊料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260919B2 (ja) 1981-01-21 1987-12-18 Tokyo Shibaura Electric Co
JP2011040577A (ja) * 2009-08-11 2011-02-24 Citizen Electronics Co Ltd 発光装置の製造方法
JP2015122413A (ja) * 2013-12-24 2015-07-02 セイコーインスツル株式会社 パッケージおよびその製造方法
JP6294417B2 (ja) 2016-09-01 2018-03-14 日機装株式会社 光半導体装置および光半導体装置の製造方法
JP2018203063A (ja) 2017-06-05 2018-12-27 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2019190241A (ja) 2018-04-27 2019-10-31 株式会社Lixil 便器装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023067026A (ja) * 2021-10-29 2023-05-16 日亜化学工業株式会社 発光装置
JP7417121B2 (ja) 2021-10-29 2024-01-18 日亜化学工業株式会社 発光装置

Also Published As

Publication number Publication date
US11264534B2 (en) 2022-03-01
US20210249559A1 (en) 2021-08-12
CN112673467B (zh) 2022-01-28
CN112673467A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
KR102157009B1 (ko) 광반도체 장치 및 광반도체 장치의 제조 방법
WO2020090610A1 (ja) パッケージ用蓋材の製造方法およびパッケージの製造方法
KR20150107480A (ko) Led 패키지
JP2024052748A (ja) 窓材、光学パッケージ
JP2021012961A (ja) 発光装置、および、その製造方法
JP6753507B2 (ja) パッケージ用蓋材の製造方法およびパッケージの製造方法
JP7022297B2 (ja) 気密封止用キャップおよび電子部品収納パッケージ
CN113161467B (zh) 发光装置和水杀菌装置
TWI811468B (zh) 封裝用蓋材及封裝
WO2020022278A1 (ja) 光学パッケージ
CN112673534B (zh) 封装用盖部件及封装体
JP7473877B2 (ja) 蓋部材の製造方法
TWI850267B (zh) 窗材、光學封裝
WO2023053208A1 (ja) はんだ接合方法
JP2004200262A (ja) 熱電モジュールおよび熱電装置
JP2004319831A (ja) 電子部品用パッケージおよびこれを用いた電子部品装置
JP2003124399A (ja) 半導体素子収納用パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207034720

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019877833

Country of ref document: EP

Effective date: 20210531