WO2020090068A1 - 電力変換装置、及び、これを備える空気調和機 - Google Patents

電力変換装置、及び、これを備える空気調和機 Download PDF

Info

Publication number
WO2020090068A1
WO2020090068A1 PCT/JP2018/040619 JP2018040619W WO2020090068A1 WO 2020090068 A1 WO2020090068 A1 WO 2020090068A1 JP 2018040619 W JP2018040619 W JP 2018040619W WO 2020090068 A1 WO2020090068 A1 WO 2020090068A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
circuit
reverse voltage
voltage application
drive circuit
Prior art date
Application number
PCT/JP2018/040619
Other languages
English (en)
French (fr)
Inventor
浩二 月井
洋寿 小倉
橋本 浩之
英司 菅原
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2018/040619 priority Critical patent/WO2020090068A1/ja
Priority to TW108108427A priority patent/TWI806989B/zh
Publication of WO2020090068A1 publication Critical patent/WO2020090068A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device and the like.
  • Patent Document 1 As a technique for reducing the loss of the power converter, for example, the technique described in Patent Document 1 is known. That is, in Patent Document 1, a free wheel diode connected in anti-parallel to a main circuit switching element, and a reverse voltage applying circuit that applies a reverse voltage smaller than a DC voltage source to each free wheel diode when the free wheel diodes are cut off. And a power conversion device including.
  • the reverse voltage is applied from the reverse voltage application circuit to the freewheeling diode, thereby reducing the loss of the power conversion device.
  • the technique described in Patent Document 1 requires a dedicated microcomputer for operating the main circuit switching control circuit and the reverse voltage application circuit, respectively, which causes an increase in the number of parts and manufacturing cost.
  • an object of the present invention is to provide a low-loss power conversion device and the like with a simple configuration.
  • the power conversion device is connected to a reverse voltage application circuit in a one-to-one manner, is also connected to a switching element drive circuit, and is input to itself from the switching element drive circuit. And a reverse voltage drive circuit for generating a reverse voltage application signal to the reverse voltage application circuit.
  • FIG. 3 is a circuit diagram showing configurations of a reverse voltage application circuit, a multivibrator, an on-delay circuit, and a conduction time setting circuit in the inverter that is the power conversion device according to the first embodiment of the present invention.
  • 3 is a time chart showing an operation relating to application of a reverse voltage in the inverter that is the power conversion device according to the first embodiment of the present invention.
  • It is a block diagram of the converter which is a power converter device which concerns on 2nd Embodiment of this invention.
  • It is a block diagram of the air conditioner which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a configuration diagram of an inverter 100 that is a power conversion device according to the first embodiment.
  • the inverter 100 is a power conversion device that converts a DC voltage into an AC voltage.
  • a three-phase AC voltage applied from an AC power supply (not shown) converted into a DC voltage by a converter (not shown) may be used.
  • the inverter 100 includes, in addition to the inverter circuit 10 (power conversion circuit) as a main circuit, a switching element drive circuit 20, reverse voltage application circuits 30a and 30b, and multivibrators 40a and 40b (reverse voltage). A voltage driving circuit) and a control circuit 50.
  • the inverter circuit 10 is a power conversion circuit that converts a DC voltage applied from the DC power supply E into a three-phase AC voltage and applies the three-phase AC voltage to the motor M.
  • the inverter circuit 10 includes a first leg 10u, a second leg 10v, and a third leg 10w.
  • the first leg 10u is a switching leg in which the switching element Qa of the upper arm and the switching element Qb of the lower arm are connected.
  • switching elements Qa and Qb for example, MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) can be used. The same applies to the other switching elements Qc, Qd, Qe, and Qf.
  • the drain of the switching element Qa is connected to the positive side of the DC power source E, and the source is connected to the drain of the switching element Qb.
  • the source of the switching element Qb is grounded.
  • a connection point P1 between the source of the switching element Qa and the drain of the switching element Qb is connected to the U-phase winding Lu of the motor M via the wiring u.
  • the second leg 10v includes an upper arm switching element Qc and a lower arm switching element Qd.
  • the connection point P2 of the switching elements Qc and Qd is connected to the V-phase winding Lv of the motor M via the wiring v.
  • the third leg 10w includes an upper arm switching element Qe and a lower arm switching element Qf.
  • the connection point P3 of the switching elements Qe and Qf is connected to the W-phase winding Lw of the motor M via the wiring w.
  • the first leg 10u, the second leg 10v, and the third leg 10w are connected in parallel with each other.
  • the voltage Vd of the DC power supply E is applied to both ends of the first leg 10u, the second leg 10v, and the third leg 10w.
  • PWM Pulse Width Modulation
  • the switching element Qa has a parasitic diode Da inside.
  • the parasitic diode Da is a part of the pn junction existing between the source and the drain of the switching element Qa, and is formed in the manufacturing process of the switching element Qa (for example, MOSFET). The same applies to the other switching elements Qb to Qf.
  • the switching element drive circuit 20 is a circuit that outputs a predetermined drive signal to each of the pair of upper and lower switching elements Qa and Qb based on a command from the control circuit 50. As shown in FIG. 1, the switching element drive circuit 20 is connected to the gate of the switching element Qa via the wiring ha (first wiring). That is, the switching element Qa, which corresponds to the reverse voltage applying circuit 30a described later in a one-to-one correspondence, and the switching element drive circuit 20 are connected via the wiring ha. The switching element drive circuit 20 is also connected to the gate of the switching element Qb via the wiring hb (first wiring).
  • the resistor Ra shown in FIG. 1 is a gate circuit that adjusts the voltage of the drive signal output from the switching element drive circuit 20, and is provided on the wiring ha. Note that the configuration of FIG. 1 is an example, and the gate circuit of the switching element Qa is not necessarily configured by only the resistor Ra.
  • the reverse voltage application circuit 30a is a circuit that applies a reverse voltage to the parasitic diode Da (or freewheeling diode) of the switching element Qa, and is connected to the switching element Qa in a one-to-one relationship.
  • the “reverse voltage” means the reverse voltage of the parasitic diode Da.
  • the reverse voltage application circuit 30a is connected to the source of the switching element Qa via the wiring ia and is connected to the drain of the switching element Qa via the wiring ja.
  • the multivibrator 40a is a circuit that outputs a predetermined reverse voltage application signal to the reverse voltage application circuit 30a, and is connected to the reverse voltage application circuit 30a. As shown in FIG. 1, the multivibrator 40a is connected to the reverse voltage application circuit 30a on a one-to-one basis via the wiring ka, and is connected to the switching element drive circuit via the wiring ma and the wiring ha (partial) sequentially. It is also connected to 20. In other words, the multivibrator 40a that corresponds to the reverse voltage application circuit 30a on a one-to-one basis and the wiring ha (first wiring) are connected via the wiring ma (second wiring).
  • the multivibrator 40a uses the drive signal input to itself from the switching element drive circuit 20 through the wiring ha (first wiring) and the wiring ma (second wiring) in order to the reverse voltage application circuit 30a. To generate a reverse voltage application signal. That is, the multivibrator 40a diverts the drive signal of the switching element Qa to generate a predetermined reverse voltage application signal. This is one of the main features of the first embodiment.
  • the reverse voltage applying circuit 30b and the multivibrator 40b are also connected to the switching element Qb of the lower arm. Then, the drive signal generated by the switching element drive circuit 20 is output to the switching element Qb via the wiring hb and also output to the multivibrator 40b via the wiring hb (part) and the wiring mb sequentially. It is supposed to be done.
  • the switching elements drive circuit, the reverse circuit, and the switching elements Qc, Qd, Qe, and Qf of the second leg 10v and the third leg 10w are the same as those of the first leg 10u.
  • a voltage application circuit, a multivibrator, etc. are connected.
  • the three switching element drive circuits 20, 20, 20 corresponding to the U-phase, V-phase, and W-phase may be provided individually, or the switching element drive circuits 20, 20, 20 for the three phases may be provided. It may be packaged in one.
  • the control circuit 50 is, for example, a microcomputer (Microcomputer) and includes electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces, which are not shown. Has been done. Then, the program stored in the ROM is read and expanded in the RAM, and the CPU executes various processes.
  • the control circuit 50 outputs a predetermined control signal based on PWM control to the switching element drive circuit 20.
  • FIG. 2 is a circuit diagram showing the configurations of the reverse voltage application circuit 30a, the multivibrator 40a, the on-delay circuit 60a, and the conduction time setting circuit 70a. Note that, in FIG. 2, a circuit related to the switching element Qa of the upper arm is illustrated, and a circuit related to the other switching elements Qb to Qf (see FIG. 1) is omitted. Further, in FIG. 1 already described, the illustration of the on-delay circuit 60a and the energization time setting circuit 70a is omitted.
  • the reverse voltage application circuit 30a includes a diode 31, a switching unit 32, and a capacitor 33.
  • the diode 31 is an element for preventing current backflow and is provided on the wiring ja.
  • the diode 31 has an anode connected to the switching means 32 and a cathode connected to the drain of the switching element Qa via the wiring ja.
  • the switching means 32 is an element that switches connection / disconnection between the capacitor 33 and the switching element Qa, and is provided on the wiring ja.
  • the switching means 32 is switched on / off by a signal from the "OUT" terminal of the multivibrator 40a.
  • a switching means 32 for example, a MOSFET is used.
  • the capacitor 33 is an element that applies a predetermined voltage to the parasitic diode Da as a reverse voltage when the switching means 32 is switched on.
  • the positive side of the capacitor 33 is connected to the drain of the switching element Qa via the wiring ja, and the negative side is connected to the source of the switching element Qa via the wiring ia.
  • a booth strap circuit (not shown) for appropriately charging the capacitor 33 may be provided.
  • the multivibrator 40a is an electronic circuit that outputs a predetermined electric signal from the “OUT” terminal to the switching means 32 in response to a change in the voltage applied between the “In” terminal and the “GND” terminal.
  • the ON signal is output from the “OUT” terminal to the switching means 32 for a predetermined time. ing.
  • the “In” terminal of the multivibrator 40a is connected to the switching element drive circuit 20 through the wiring ma and the wiring ha (partial) sequentially, and the “GND” terminal is grounded. .. Further, a predetermined voltage Vcc is applied to the "Vcc" terminal of the multivibrator 40a via the conduction time setting circuit 70a.
  • the “OUT” terminal of the multivibrator 40a is connected to the gate of the MOSFET, which is the switching means 32, via the wiring ka.
  • the on-delay circuit 60a is a circuit that provides a predetermined delay time from the fall of the drive signal output from the switching element drive circuit 20 to the start of the output of the reverse voltage application signal in the multivibrator 40a.
  • an RC circuit in which a resistor 61 and a capacitor 62 are connected in an L shape is provided in the wiring ma connecting the switching element drive circuit 20 and the multivibrator 40a.
  • the resistor 61 of the on-delay circuit 60a is provided on the wiring ma that connects the “In” terminal and the wiring ha.
  • the positive side of the capacitor 62 is provided closer to the “In” terminal side than the resistor 61 in the wiring ma, and the negative side of the capacitor 62 is grounded.
  • the time constant of the on-delay circuit 60a is appropriately set in advance, so that the rectangular-wave drive signal output from the switching element drive circuit 20 is output to the multivibrator 40a with a predetermined delay time (on-delay). It is supposed to do.
  • the optimum delay time can be set in advance at the designing stage in consideration of the characteristics of the switching element Qa and the parasitic diode Da.
  • the configuration of the on-delay circuit 60a shown in FIG. 2 is an example, and the present invention is not limited to this.
  • the energization time setting circuit 70a is a circuit for setting the energization time of the ON signal output from the multivibrator 40a.
  • the energization time setting circuit 70a includes a resistor 71, a diode 72, and a capacitor 73.
  • the resistor 71 and the diode 72 are connected in parallel, and the capacitor 73 is connected in series to this parallel connection body.
  • the positive side of the capacitor 73 is connected to the anode of the diode 72, and the negative side of the capacitor 73 is connected to the "Vcc" terminal of the multivibrator 40a.
  • the control circuit 50 shown in FIG. 1 generates a PWM signal (Pulse Width Modulation) based on a comparison result between a reference sine wave signal (not shown) and a predetermined triangular wave (not shown). Based on this PWM signal, for example, the switching element drive circuit 20 corresponding to the first leg 10u generates drive signals for the pair of upper and lower switching elements Qa and Qb.
  • PWM signal Pulse Width Modulation
  • the drive signal of the switching element Qa of the upper arm and the drive signal of the switching element Qb of the lower arm are in a mutually complementary form (on / off are substantially inverted).
  • both of the switching elements Qa and Qb are temporarily turned on, a large short-circuit current will flow, so a predetermined dead time is provided to prevent such short-circuit current from flowing.
  • the dead time described above is a period in which both the upper arm switching element Qa and the lower arm switching element Qb are turned off. The same applies to the other second leg 10v and the third leg 10w.
  • the reverse recovery current generated in the parasitic diode Da will be described.
  • a current flows through the switching element Qa, the U-phase winding Lu of the motor M, the V-phase winding Lv, and the switching element Qd sequentially.
  • the reverse voltage applying circuit 30a if the reverse voltage applying circuit 30a is not provided, the voltage Vd (large reverse voltage) at the moment when the switching element Qb of the lower arm is switched from OFF to ON is the parasitic diode Da of the upper arm. Therefore, a predetermined reverse recovery current is generated in the parasitic diode Da. Since this reverse recovery current flows through the switching element Qb of the lower arm, a large loss (switching loss) occurs in this switching element Qb. In order to suppress such loss, the reverse voltage application circuit 30a is provided.
  • the "reverse recovery current” is a current that flows at the moment when the voltage applied to the parasitic diode Da (or the free wheeling diode) is switched from the forward voltage to the reverse voltage.
  • the reverse voltage applying circuit 30a applies a relatively small reverse voltage to the parasitic diode Da of the upper arm immediately after the drive signal of the switching element Qa falls and a predetermined dead time is reached. This intentionally allows a relatively small reverse recovery current to flow in the parasitic diode Da of the upper arm before the switching element Qb of the lower arm is switched from OFF to ON.
  • FIG. 3 is a time chart showing the operation relating to the application of the reverse voltage in the inverter 100 (see FIGS. 1 and 2 as appropriate).
  • the signal output from the "OUT" terminal (see FIG. 2) of 40b is shown.
  • each horizontal axis of FIG. 3 is time.
  • the “dead time” shown in FIG. 3 is a period in which both the switching elements Qa and Qb are in the off state. Actually, the “dead time” is a very short time, but in order to make it easy to understand, the “dead time” is described as a longer time in FIG.
  • the multivibrator 40a outputs an ON signal to the reverse voltage application circuit 30a for a predetermined time when detecting the fall of the drive signal of the switching element Qa. That is, when the drive signal output from the switching element drive circuit 20 to the switching element Qa of the upper arm is switched from ON to OFF (time t1), the trailing edge of this drive signal is delayed by a predetermined delay time in the ON delay circuit 60a. The multivibrator 40a detects ⁇ ta. Then, the output of the ON signal from the multivibrator 40a is started (time t2).
  • the switching means 32 When an ON signal is output from the “OUT” terminal (see FIG. 2) of the multivibrator 40a to the switching means 32 (see FIG. 2) of the reverse voltage application circuit 30a, the switching means 32 is turned on and the parasitic diode Da is turned on. A predetermined reverse voltage is applied.
  • the reverse voltage is smaller than the voltage Vd of the DC power source E. That is, the voltage between the plates of the capacitor 62 shown in FIG. 2 is smaller than the voltage Vd of the DC power source E. This is to suppress the peak value of the reverse recovery current flowing in the parasitic diode Da.
  • the ON signal output from the “OUT” terminal (see FIG. 2) of the multivibrator 40a is continued for a predetermined time based on the energization time setting circuit 70a (time t2 to t4).
  • the ON state of the switching means 32 (see FIG. 2) of the reverse voltage application circuit 30a is also continued during the period of time t2 to t4.
  • the timing at which the switching means 32 is switched from on to off may be a predetermined time ⁇ tb after the dead time (time t1 to t3) ends, or at the same time as the dead time ends. It may be.
  • the reverse voltage application signal is output during the dead time of the switching elements Qa and Qb, the reverse recovery current in the parasitic diode Da can be appropriately suppressed.
  • the operation of the other multivibrator 40b is similar to that of the one multivibrator 40a. That is, although the period is not shown in FIG. 3, when the trailing edge of the drive signal of the switching element Qb is detected with a predetermined delay time, the “OUT” terminal of the multivibrator 40b outputs a predetermined voltage to the reverse voltage application circuit 30b. The ON signal is output only for the time. As a result, a relatively small reverse voltage is applied to the parasitic diode Db of the lower-term switching element Qb, and a relatively small reverse recovery current flows during the dead time. The same applies to the other second leg 10v and the third leg 10w.
  • the reverse voltage application circuit 30a applies a reverse voltage to the parasitic diode Da before the switching element Qb of the lower arm is turned on so that a small reverse recovery current is intentionally flown. I have to. Therefore, when the switching element Qb of the lower arm is turned on and the voltage Vd is applied to the parasitic diode Da, it is possible to suppress a large reverse recovery current from flowing. As a result, the switching loss of the inverter 100 is reduced, and the efficiency of the inverter 100 can be improved. Further, it is possible to suppress the occurrence of a resonance phenomenon and surge voltage due to the noise of the reverse recovery current.
  • the driving signals from the switching element driving circuit 20 are diverted to cause the multivibrators 40a and 40b to generate reverse voltage application signals. Therefore, it is not necessary to newly prepare a microcomputer provided with dedicated pins (not shown) connected to the multivibrators 40a and 40b, and the number of parts and the manufacturing cost can be reduced. As described above, according to the first embodiment, it is possible to provide the low loss inverter 100 with a simple configuration.
  • a converter 200 including the reverse voltage application circuit 30a and the like will be described.
  • the reverse voltage applying circuit 30a, the multivibrator 40a, the on-delay circuit 60a (see FIG. 2 and not shown in FIG. 4), and the energization time setting circuit 70a (see FIG. 2 and not shown in FIG. 4) The operation is the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
  • FIG. 4 is a configuration diagram of a converter 200 that is a power conversion device according to the second embodiment.
  • the converter 200 illustrated in FIG. 4 is a power conversion device that converts an AC voltage applied from the AC power supply G into a DC voltage.
  • the converter 200 includes a reactor circuit L1 as a main circuit, a reactor L1, a smoothing capacitor C1, a switching element drive circuit 20, reverse voltage application circuits 30a and 30b, and a multivibrator 40a. , 40b and a control circuit 50A.
  • the converter circuit 10A includes four switching elements Qa, Qb, Qc, Qd connected in a bridge shape.
  • the input side of the converter circuit 10A is connected to the AC power supply G, and the output side is connected to the inverter 100.
  • the inverter 100 has the same configuration as that of the first embodiment (see FIG. 1).
  • the switching element Qa is, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and has a parasitic diode Da therein. The same applies to the other switching elements Qb, Qc, Qd.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the converter circuit 10A shown in FIG. 4 is a circuit that converts an AC voltage into a DC voltage, and includes legs 11 and 12.
  • One leg 11 is a switching leg formed by connecting the switching element Qa of the upper arm and the switching element Qb of the lower arm. The same applies to the other leg 12 as well.
  • the one leg 11 and the other leg 12 are connected in parallel.
  • the source of the switching element Qa and the drain of the switching element Qb are connected, and the connection point N1 thereof is connected to the AC power supply G via the wiring p1.
  • the source of the switching element Qc and the drain of the switching element Qd are connected, and its connection point N2 is connected to the AC power supply G via the wiring p2.
  • the drain of the switching element Qa and the drain of the switching element Qc are connected to each other, and the connection point N3 thereof is connected to the inverter 100 via the wiring p3.
  • the source of the switching element Qb and the source of the switching element Qd are connected to each other, and the connection point N4 is connected to the inverter 100 via the wiring p4 and is also grounded.
  • the reactor L1 stores the electric power supplied from the AC power source G as energy and releases the energy to boost the voltage or improve the power factor.
  • Reactor L1 is provided in wiring p1 that connects AC power supply G and converter circuit 10A.
  • the smoothing capacitor C1 smoothes the voltage applied from the converter circuit 10A.
  • the smoothing capacitor C1 has a positive side connected to the wiring p3 and a negative side connected to the wiring p4.
  • the control circuit 50A is, for example, a microcomputer and outputs a predetermined control signal to the switching element drive circuit 20. Since the processing executed by the control circuit 50A is well known, its description is omitted.
  • the drive signal from the switching element drive circuit 20 to the switching element Qa is diverted to cause the multivibrator 40a to generate a reverse voltage application signal.
  • the reverse voltage application circuit 30a applies a relatively small reverse voltage to the parasitic diode Da during the dead time of the switching elements Qa and Qb based on the above-mentioned reverse voltage application signal. Thereby, converter 200 can be simplified and switching loss can be reduced.
  • FIG. 4 shows the switching element drive circuit 20, the reverse voltage application circuits 30a and 30b, and the multivibrator 40a and 40b connected to one leg 11, the other leg 12 has the same circuit. Are connected.
  • the drive signals from the switching element drive circuit 20 are diverted and the multivibrators 40a and 40b generate reverse voltage application signals. This makes it possible to provide the converter 200 with a simple configuration and low loss.
  • FIG. 5 is a block diagram of the air conditioner W which concerns on 3rd Embodiment.
  • the air conditioner W is a device that performs predetermined air conditioning.
  • the air conditioner W will be described as mainly performing the cooling operation, but the present invention is not limited to this.
  • the air conditioner W includes a compressor 1, an outdoor heat exchanger 2, an outdoor fan 3, an expansion valve 4, an indoor heat exchanger 5, an indoor fan 6, and an inverter 100. , And a converter 200.
  • the refrigerant circuit F shown in FIG. 5 has a configuration in which the compressor 1, the outdoor heat exchanger 2, the expansion valve 4, and the indoor heat exchanger 5 are sequentially connected in an annular shape via the pipe q.
  • the compressor 1 is a device that compresses a gaseous refrigerant, and includes a motor M that is a drive source. Although not shown in FIG. 5, an accumulator for separating the refrigerant into gas and liquid is provided on the suction side of the compressor 1.
  • the inverter 100 and the converter 200 are power conversion devices that perform predetermined power conversion and output the power after power conversion to the motor M of the compressor 1.
  • the outdoor heat exchanger 2 is a heat exchanger that performs heat exchange between the refrigerant flowing through the heat transfer pipe (not shown) and the outside air sent from the outdoor fan 3.
  • the outdoor fan 3 is a fan that sends outside air to the outdoor heat exchanger 2, and is installed near the outdoor heat exchanger 2.
  • the expansion valve 4 is a valve that decompresses the refrigerant condensed in the outdoor heat exchanger 2 (condenser). Then, the refrigerant decompressed by the expansion valve 4 is introduced into the indoor heat exchanger 5 (evaporator).
  • the indoor heat exchanger 5 performs heat exchange between the refrigerant flowing through the heat transfer pipe (not shown) and the indoor air (air in the air-conditioned space) sent from the indoor fan 6.
  • the indoor fan 6 is a fan that sends indoor air to the indoor heat exchanger 5, and is installed near the indoor heat exchanger 5.
  • the compressor 1, the outdoor heat exchanger 2, the outdoor fan 3, the inverter 100, and the converter 200 are provided in the outdoor unit Uo.
  • the indoor heat exchanger 5 and the indoor fan 6 are provided in the indoor unit Ui.
  • the refrigeration cycle is sequentially performed through the compressor 1, the outdoor heat exchanger 2 (condenser), the expansion valve 4, and the indoor heat exchanger 5 (evaporator).
  • the refrigerant is circulated in.
  • the configuration of the air conditioner W is not limited to the example shown in FIG.
  • a four-way valve (not shown) that switches the flow path of the refrigerant may be provided in the refrigerant circuit F.
  • the refrigerant circulates in the refrigeration cycle through the compressor 1, the indoor heat exchanger 5 (condenser), the expansion valve 4, and the outdoor heat exchanger 2 (evaporator) in order.
  • the refrigerant circuit F in which the refrigerant flows through the compressor 1, the “condenser”, the “expansion valve”, and the “evaporator” sequentially, one of the “condenser” and the “evaporator” is the outdoor heat. It is the exchanger 2 and the other is the indoor heat exchanger 5.
  • the air conditioner W includes the inverter 100 having the same configuration as that of the first embodiment and the converter 200 having the same configuration as that of the second embodiment. This makes it possible to provide an air conditioner W with high energy efficiency (APF: Annual Performance Factor) and high reliability.
  • APF Annual Performance Factor
  • FIG. 6 is a configuration diagram of an inverter 100A that is a power conversion device according to a modification.
  • a free wheeling diode Da1 may be connected in antiparallel to the switching element Qa.
  • the reverse voltage applied by the reverse voltage application circuit 30a is applied to the parasitic diode Da and also to the free wheeling diode Da1.
  • the free wheeling diodes Db1 to Df1 connected to the other switching elements Qb to Qf.
  • the reverse recovery current in the parasitic diodes Da to Df can be suppressed and the reverse recovery current in the free wheeling diodes Da1 to Df1 can be suppressed. Therefore, the configuration of the inverter 100A can be simplified and the loss can be reduced. be able to.
  • the switching elements Qa to Qf may be another type of element such as an IGBT (Insulated Gate Bipolor Transisto).
  • IGBT Insulated Gate Bipolor Transisto
  • the switching elements Qa to Qf elements of different types may be mixed.
  • a freewheeling diode may be connected in antiparallel to each of the types of switching elements that do not have a parasitic diode. The same applies to the second and third embodiments.
  • the inverter 100 (see FIG. 1) is a two-level three-phase inverter has been described, but the present invention is not limited to this.
  • the configuration of the first embodiment can be applied to a three-level inverter, or can be applied to a single-phase inverter.
  • the configuration of the converter 200 (see FIG. 4) described in the second embodiment is also an example, and the present invention is not limited to this.
  • an air conditioner W (see FIG. 5) including the inverter 100 (see FIG. 1) described in the first embodiment and the converter 200 (see FIG. 4) described in the second embodiment.
  • the present invention is not limited to this. That is, only one of the first embodiment and the second embodiment may be applied to the air conditioner W.
  • the air conditioner W having a configuration in which one indoor unit Ui (see FIG. 5) and one outdoor unit Uo (see FIG. 5) are provided has been described, but the present invention is not limited to this.
  • each embodiment can be applied to a multi-type air conditioner including a plurality of outdoor units.
  • the air conditioner W (see FIG. 5) including the inverter 100 and the converter 200 has been described, but the present invention can be applied to other devices such as a refrigerator, a water heater, and a washing machine.
  • the embodiments are described in detail for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, it is possible to add / delete / replace other configurations with respect to a part of the configurations of the embodiment. Further, the above-mentioned mechanisms and configurations are shown to be necessary for explanation, and not all the mechanisms and configurations are shown in the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

簡素な構成で低損失な電力変換装置等を提供する。インバータ(100)は、スイッチング素子(Qa,Qb)に駆動信号を出力するスイッチング素子駆動回路(20)と、スイッチング素子(Qa,Qb)の寄生ダイオード(Da,Db)又は還流ダイオードに逆電圧を印加する逆電圧印加回路(30a,30b)と、スイッチング素子駆動回路(20)から自身に入力される駆動信号を用いて、逆電圧印加回路(30a,30b)への逆電圧印加信号を生成するマルチバイブレータ(40a,40b)と、を備える。

Description

電力変換装置、及び、これを備える空気調和機
 本発明は、電力変換装置等に関する。
 電力変換装置の損失を低減する技術として、例えば、特許文献1に記載のものが知られている。すなわち、特許文献1には、主回路スイッチング素子に逆並列に接続された還流ダイオードと、これら各還流ダイオードが遮断するにあたって、直流電圧源より小さな逆電圧を各還流ダイオードに印加する逆電圧印加回路と、を備えた電力変換装置について記載されている。
特許第4204534号公報
 特許文献1に記載の技術では、前記したように、逆電圧印加回路から還流ダイオードに逆電圧が印加されることで、電力変換装置の損失の低減が図られている。しかしながら、特許文献1に記載の技術では、主回路スイッチング制御回路と、逆電圧印加回路と、をそれぞれ動作させるための専用のマイコンが必要となるため、部品点数や製造コストの増加を招く。
 そこで、本発明は、簡素な構成で低損失な電力変換装置等を提供することを課題とする。
 前記した課題を解決するために、本発明に係る電力変換装置は、逆電圧印加回路に一対一で接続されるとともに、スイッチング素子駆動回路にも接続され、前記スイッチング素子駆動回路から自身に入力される駆動信号を用いて、前記逆電圧印加回路への逆電圧印加信号を生成する逆電圧用駆動回路を備えることとした。
 本発明によれば、簡素な構成で低損失な電力変換装置等を提供できる。
本発明の第1実施形態に係る電力変換装置であるインバータの構成図である。 本発明の第1実施形態に係る電力変換装置であるインバータにおいて、逆電圧印加回路、マルチバイブレータ、オンディレイ回路、及び通電時間設定回路の構成を示す回路図である。 本発明の第1実施形態に係る電力変換装置であるインバータでの逆電圧の印加に関する動作を示すタイムチャートである。 本発明の第2実施形態に係る電力変換装置であるコンバータの構成図である。 本発明の第3実施形態に係る空気調和機の構成図である。 本発明の変形例に係る電力変換装置であるインバータの構成図である。
≪第1実施形態≫
<インバータの構成>
 図1は、第1実施形態に係る電力変換装置であるインバータ100の構成図である。
 インバータ100は、直流電圧を交流電圧に変換する電力変換装置である。なお、図1に示す直流電源Eとして、交流電源(図示せず)から印加される三相交流電圧をコンバータ(図示せず)で直流電圧に変換したものを用いてもよい。
 図1に示すように、インバータ100は、主回路としてのインバータ回路10(電力変換回路)の他に、スイッチング素子駆動回路20と、逆電圧印加回路30a,30bと、マルチバイブレータ40a,40b(逆電圧用駆動回路)と、制御回路50と、を備えている。
 インバータ回路10は、直流電源Eから印加される直流電圧を三相交流電圧に変換し、この三相交流電圧をモータMに印加する電力変換回路である。インバータ回路10は、第1レグ10uと、第2レグ10vと、第3レグ10wと、を備えている。
 第1レグ10uは、上アームのスイッチング素子Qaと、下アームのスイッチング素子Qbと、が接続されてなるスイッチングレグである。このようなスイッチング素子Qa,Qbとして、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を用いることができる。なお、他のスイッチング素子Qc,Qd,Qe,Qfについても同様である。
 スイッチング素子Qaのドレインは直流電源Eの正側に接続され、ソースはスイッチング素子Qbのドレインに接続されている。また、スイッチング素子Qbのソースは、接地されている。スイッチング素子Qaのソースと、スイッチング素子Qbのドレインと、の接続点P1は、配線uを介して、モータMのU相巻線Luに接続されている。
 同様に、第2レグ10vは上アームのスイッチング素子Qcと、下アームのスイッチング素子Qdと、を備えている。スイッチング素子Qc,Qdの接続点P2は、配線vを介して、モータMのV相巻線Lvに接続されている。
 また、第3レグ10wは、上アームのスイッチング素子Qeと、下アームのスイッチング素子Qfと、を備えている。スイッチング素子Qe,Qfの接続点P3は、配線wを介してモータMのW相巻線Lwに接続されている。
 第1レグ10u、第2レグ10v、及び第3レグ10wは、互いに並列接続されている。また、第1レグ10u、第2レグ10v、及び第3レグ10wの両端には、直流電源Eの電圧Vdが印加される。そして、PWM(Pulse Width Modulation)制御に基づいて、スイッチング素子Qa~Qfのオン/オフが所定に切り替えられることで、配線u,v,wを介してモータMに三相交流電力が出力されるようになっている。
 スイッチング素子Qaは、その内部に寄生ダイオードDaを有している。寄生ダイオードDaは、スイッチング素子Qaのソースとドレインとの間に存在するpn接合の部分であり、スイッチング素子Qa(例えば、MOSFET)の製造過程において形成される。なお、他のスイッチング素子Qb~Qfについても同様である。
 スイッチング素子駆動回路20は、制御回路50からの指令に基づき、上下一対のスイッチング素子Qa,Qbに、それぞれ、所定の駆動信号を出力する回路である。図1に示すように、スイッチング素子駆動回路20は、配線ha(第1配線)を介して、スイッチング素子Qaのゲートに接続されている。つまり、後記する逆電圧印加回路30aに一対一で対応しているスイッチング素子Qaと、スイッチング素子駆動回路20と、が配線haを介して接続されている。また、スイッチング素子駆動回路20は、配線hb(第1配線)を介して、スイッチング素子Qbのゲートにも接続されている。
 図1に示す抵抗Raは、スイッチング素子駆動回路20から出力される駆動信号の電圧等を調整するゲート回路であり、配線haに設けられている。なお、図1の構成は一例であり、スイッチング素子Qaのゲート回路が抵抗Raのみで構成されるとは限らない。
 逆電圧印加回路30aは、スイッチング素子Qaの寄生ダイオードDa(又は還流ダイオード)に逆電圧を印加する回路であり、スイッチング素子Qaに一対一で接続されている。なお、「逆電圧」とは、寄生ダイオードDaの逆方向電圧という意味である。逆電圧印加回路30aは、スイッチング素子Qaのソースに配線iaを介して接続されるとともに、スイッチング素子Qaのドレインに配線jaを介して接続されている。
 マルチバイブレータ40aは、逆電圧印加回路30aに所定の逆電圧印加信号を出力する回路であり、逆電圧印加回路30aに接続されている。図1に示すように、マルチバイブレータ40aは、配線kaを介して逆電圧印加回路30aに一対一で接続されるとともに、配線ma及び配線ha(一部)を順次に介して、スイッチング素子駆動回路20にも接続されている。言い換えると、逆電圧印加回路30aに一対一で対応しているマルチバイブレータ40aと、配線ha(第1配線)と、が配線ma(第2配線)を介して接続されている。
 そして、マルチバイブレータ40aは、スイッチング素子駆動回路20から配線ha(第1配線)及び配線ma(第2配線)を順次に介して自身に入力される駆動信号を用いて、逆電圧印加回路30aへの逆電圧印加信号を生成する。つまり、マルチバイブレータ40aは、スイッチング素子Qaの駆動信号を流用して、所定の逆電圧印加信号を生成するようになっている。これが、第1実施形態の主な特徴の一つである。
 なお、下アームのスイッチング素子Qbにも、逆電圧印加回路30b及びマルチバイブレータ40bが接続されている。そして、スイッチング素子駆動回路20で生成された駆動信号が、配線hbを介してスイッチング素子Qbに出力されるとともに、配線hb(一部)及び配線mbを順次に介して、マルチバイブレータ40bにも出力されるようになっている。
 また、図1では図示を省略しているが、第2レグ10vや第3レグ10wの各スイッチング素子Qc,Qd,Qe,Qfにも、第1レグ10uと同様に、スイッチング素子駆動回路、逆電圧印加回路、マルチバイブレータ等が接続されている。なお、U相、V相、W相に対応する3つのスイッチング素子駆動回路20,20,20が個別で設けられてもよいし、また、3相分のスイッチング素子駆動回路20,20,20が1つにパッケージ化されていてもよい。
 制御回路50は、例えば、マイコン(Microcomputer)であり、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。制御回路50は、PWM制御に基づく所定の制御信号をスイッチング素子駆動回路20に出力する。
 図2は、逆電圧印加回路30a、マルチバイブレータ40a、オンディレイ回路60a、及び通電時間設定回路70aの構成を示す回路図である。
 なお、図2では、上アームのスイッチング素子Qaに関する回路を図示し、他のスイッチング素子Qb~Qf(図1参照)に関する回路の図示を省略している。また、既に説明した図1では、オンディレイ回路60aや通電時間設定回路70aの図示を省略している。
 図2に示すように、逆電圧印加回路30aは、ダイオード31と、スイッチング手段32と、コンデンサ33と、を備えている。
 ダイオード31は、電流の逆流防止用の素子であり、配線jaに設けられている。ダイオード31は、アノードがスイッチング手段32に接続され、カソードが配線jaを介してスイッチング素子Qaのドレインに接続されている。
 スイッチング手段32は、コンデンサ33とスイッチング素子Qaとの接続/遮断を切り替える素子であり、配線jaに設けられている。そして、マルチバイブレータ40aの「OUT」端子からの信号によって、スイッチング手段32のオン/オフが切り替わるようになっている。このようなスイッチング手段32として、例えば、MOSFETが用いられる。
 コンデンサ33は、スイッチング手段32がオンに切り替えられたとき、所定の電圧を寄生ダイオードDaに逆電圧として印加する素子である。コンデンサ33は、正側が配線jaを介してスイッチング素子Qaのドレインに接続され、負側が配線iaを介してスイッチング素子Qaのソースに接続されている。なお、コンデンサ33を適宜に充電するためのブースストラップ回路(図示せず)が設けられていてもよい。
 マルチバイブレータ40aは、「In」端子・「GND」端子間に印加される電圧の変化に応じて、「OUT」端子から所定の電気信号をスイッチング手段32に出力する電子回路である。本実施形態では、スイッチング素子駆動回路20から印加される矩形波状の電圧の立下りをマルチバイブレータ40aが検出した場合、「OUT」端子からスイッチング手段32にオン信号が所定時間出力されるようになっている。
 図2に示すように、マルチバイブレータ40aの「In」端子は、配線ma及び配線ha(一部)を順次に介して、スイッチング素子駆動回路20に接続され、「GND」端子は接地されている。また、マルチバイブレータ40aの「Vcc」端子には、通電時間設定回路70aを介して、所定の電圧Vccが印加される。マルチバイブレータ40aの「OUT」端子は、スイッチング手段32であるMOSFETのゲートに配線kaを介して接続されている。
 オンディレイ回路60aは、スイッチング素子駆動回路20から出力される駆動信号の立下り時から、マルチバイブレータ40aにおいて逆電圧印加信号の出力が開始されるまでの所定の遅れ時間を設ける回路である。図2に示す例では、オンディレイ回路60aとして、抵抗61及びコンデンサ62がL字状に接続されてなるRC回路が、スイッチング素子駆動回路20とマルチバイブレータ40aとを接続する配線maに設けられている。
 具体的に説明すると、オンディレイ回路60aの抵抗61は、「In」端子と配線haとを接続する配線maに設けられている。また、コンデンサ62の正側は、配線maにおいて抵抗61よりも「In」端子側に設けられ、コンデンサ62の負側は接地されている。
 そして、オンディレイ回路60aの時定数が予め適宜に設定されることで、スイッチング素子駆動回路20から出力される矩形波状の駆動信号を、所定の遅れ時間(オンディレイ)をもって、マルチバイブレータ40aに出力するようになっている。これによって、スイッチング素子Qaや寄生ダイオードDaの特性等を考慮して、最適な遅れ時間を設計段階で予め設定できる。なお、図2に示すオンディレイ回路60aの構成は一例であり、これに限定されるものではない。
 通電時間設定回路70aは、マルチバイブレータ40aから出力されるオン信号の通電時間を設定する回路である。図2に示す例では、通電時間設定回路70aは、抵抗71と、ダイオード72と、コンデンサ73と、を備えている。抵抗71とダイオード72とは並列接続され、この並列接続体にコンデンサ73が直列接続されている。コンデンサ73の正側はダイオード72のアノードに接続され、コンデンサ73の負側はマルチバイブレータ40aの「Vcc」端子に接続されている。
<インバータの動作>
 図1に示す制御回路50は、基準となる正弦波信号(図示せず)と、所定の三角波(図示せず)と、の比較結果に基づき、PWM信号(Pulse Width Modulation)を生成する。このPWM信号に基づき、例えば、第1レグ10uに対応するスイッチング素子駆動回路20では、上下一対のスイッチング素子Qa,Qbの駆動信号が生成される。
 なお、上アームのスイッチング素子Qaの駆動信号と、下アームのスイッチング素子Qbの駆動信号と、は互いに相補的な(オン/オフが略反転した)かたちになっている。ただし、仮に、スイッチング素子Qa,Qbが一時的に両方ともオン状態になった場合には大きな短絡電流が流れるため、このような短絡電流が流れないように所定のデッドタイムが設けられている。前記したデッドタイムとは、上アームのスイッチング素子Qa、及び、下アームのスイッチング素子Qbが両方ともオフ状態になる期間である。なお、他の第2レグ10vや第3レグ10wについても同様である。
 次に、一例として、寄生ダイオードDaで発生する逆回復電流について説明する。例えば、スイッチング素子Qa,Qdがオン状態のときには、スイッチング素子Qa、モータMのU相巻線Lu、V相巻線Lv、及びスイッチング素子Qdを順次に介して、電流が流れる。
 ここで、仮に、逆電圧印加回路30aが設けられていない構成であったとすると、下アームのスイッチング素子Qbがオフからオンに切り替わった瞬間に電圧Vd(大きな逆電圧)が上アームの寄生ダイオードDaに印加されるため、この寄生ダイオードDaにおいて所定の逆回復電流が生じる。この逆回復電流は、下アームのスイッチング素子Qbを介して流れるため、このスイッチング素子Qbで大きな損失(スイッチング損失)が生じる。このような損失を抑制するために、逆電圧印加回路30aが設けられている。
 なお、「逆回復電流」とは、寄生ダイオードDa(又は還流ダイオード)に印加される電圧が順方向電圧から逆方向電圧に切り替わった瞬間に流れる電流である。
 逆電圧印加回路30aは、スイッチング素子Qaの駆動信号が立ち下がって、所定のデッドタイムに入った直後に、比較的小さい逆電圧を上アームの寄生ダイオードDaに印加する。これによって、下アームのスイッチング素子Qbがオフからオンに切り替わる前に、上アームの寄生ダイオードDaにおいて比較的小さな逆回復電流を意図的に流すようにしている。
 その結果、寄生ダイオードDaにおいて逆回復電流の原因となるキャリア(電子又は正孔)が使い果たされる。これによって、その後に下アームのスイッチング素子Qbがオンに切り替わっても、寄生ダイオードDaには逆回復電流がほとんど流れないため、下アームのスイッチング素子Qbにおける損失を抑制できる。
 図3は、インバータ100での逆電圧の印加に関する動作を示すタイムチャートである(適宜、図1、図2を参照)。
 図3の上から順に、上アームのスイッチング素子Qaの駆動信号、下アームのスイッチング素子Qbの駆動信号、マルチバイブレータ40aの「OUT」端子(図2参照)から出力される信号、及び、マルチバイブレータ40bの「OUT」端子(図2参照)から出力される信号を示している。また、図3の各横軸は、時間である。
 図3に示す「デッドタイム」は、スイッチング素子Qa,Qbの両方がオフ状態の期間である。実際には「デッドタイム」は非常に短い時間であるが、分かりやすくするために図3では「デッドタイム」を長めの時間で記載している。
 マルチバイブレータ40aは、スイッチング素子Qaの駆動信号の立下りを検出した場合、逆電圧印加回路30aにオン信号を所定時間出力する。つまり、スイッチング素子駆動回路20から上アームのスイッチング素子Qaに出力される駆動信号がオンからオフに切り替わると(時刻t1)、この駆動信号の立下りを、オンディレイ回路60aでの所定の遅れ時間Δtaをもってマルチバイブレータ40aが検出する。そして、マルチバイブレータ40aからのオン信号の出力が開始される(時刻t2)。
 マルチバイブレータ40aの「OUT」端子(図2参照)から逆電圧印加回路30aのスイッチング手段32(図2参照)にオン信号が出力されると、このスイッチング手段32がオンに切り替わり、寄生ダイオードDaに所定の逆電圧が印加される。なお、この逆電圧は、直流電源Eの電圧Vdよりも小さい。つまり、図2に示すコンデンサ62の極板間の電圧は、直流電源Eの電圧Vdよりも小さい。これは、寄生ダイオードDaに流れる逆回復電流のピーク値を抑えるためである。
 寄生ダイオードDaに逆電圧が印加されると、上下一対のスイッチング素子Qa,Qbのデッドタイム中に、寄生ダイオードDa及びスイッチング素子Qbを介して、比較的小さい逆回復電流が流れる。これによって、寄生ダイオードDaに存在するキャリア(電子又は正孔)が、一時的にほとんど使い果たされる。したがって、その後に下アームのスイッチング素子Qbがオンに切り替わって、上アームの寄生ダイオードDaに電圧Vdが印加されても、大きな逆回復電流が流れることはほとんどない。これによって、スイッチング素子Qbにおける損失を低減できる。
 そして、マルチバイブレータ40aの「OUT」端子(図2参照)から出力されるオン信号は、通電時間設定回路70aに基づく所定時間、継続される(時刻t2~t4)。その結果、逆電圧印加回路30aのスイッチング手段32(図2参照)のオン状態も、時刻t2~t4の期間で継続される。なお、スイッチング手段32がオンからオフに切り替わるタイミングは、デッドタイム(時刻t1~t3)が終わってから所定時間Δtbの経過後であってもよいし、また、デッドタイムが終わるのと略同時であってもよい。
 このように、スイッチング素子Qa,Qbのデッドタイム中に逆電圧印加信号が出力されるため、寄生ダイオードDaでの逆回復電流を適切に抑制できる。
 他方のマルチバイブレータ40bの動作も、一方のマルチバイブレータ40aと同様である。すなわち、図3ではその期間を図示していないが、スイッチング素子Qbの駆動信号の立下りを所定の遅れ時間をもって検出した場合、マルチバイブレータ40bの「OUT」端子から逆電圧印加回路30bに、所定時間だけオン信号が出力される。これによって、下タームのスイッチング素子Qbの寄生ダイオードDbに比較的小さな逆電圧が印加され、デッドタイム中に比較的小さな逆回復電流が流れる。なお、他の第2レグ10vや第3レグ10wについても同様である。
<効果>
 第1実施形態によれば、例えば、下アームのスイッチング素子Qbがオンに切り替わる前に、逆電圧印加回路30aが寄生ダイオードDaに逆電圧を印加して、小さな逆回復電流を意図的に流すようにしている。したがって、下アームのスイッチング素子Qbがオンに切り替わって寄生ダイオードDaに電圧Vdが印加されたとき、大きな逆回復電流が流れることを抑制できる。これによって、インバータ100における損失がスイッチング低減され、その高効率化を図ることができる。また、逆回復電流のノイズに伴う共振現象やサージ電圧の発生も抑制できる。
 また、第1実施形態によれば、スイッチング素子駆動回路20からの駆動信号を流用して、マルチバイブレータ40a,40bが逆電圧印加信号を生成するようになっている。したがって、マルチバイブレータ40a,40bに接続される専用のピン(図示せず)が設けられたマイコンを新たに用意する必要がないため、部品点数や製造コストを削減できる。このように第1実施形態によれば、簡素な構成で低損失なインバータ100を提供できる。
≪第2実施形態≫
 第2実施形態では、逆電圧印加回路30a等を備えるコンバータ200(図4参照)について説明する。なお、逆電圧印加回路30aやマルチバイブレータ40a、オンディレイ回路60a(図2参照、図4では図示を省略)、及び通電時間設定回路70a(図2参照、図4では図示を省略)の構成・動作については、第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
 図4は、第2実施形態に係る電力変換装置であるコンバータ200の構成図である。
 図4に示すコンバータ200は、交流電源Gから印加される交流電圧を直流電圧に変換する電力変換装置である。図4に示すように、コンバータ200は、主回路としてのコンバータ回路10Aの他に、リアクトルL1と、平滑コンデンサC1と、スイッチング素子駆動回路20と、逆電圧印加回路30a,30bと、マルチバイブレータ40a,40bと、制御回路50Aと、を備えている。
 コンバータ回路10Aは、ブリッジ形に接続された4つのスイッチング素子Qa,Qb,Qc,Qdを備えている。コンバータ回路10Aの入力側は交流電源Gに接続され、出力側はインバータ100に接続されている。なお、インバータ100は、第1実施形態(図1参照)と同様の構成を備えている。
 スイッチング素子Qaは、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であり、その内部に寄生ダイオードDaを有している。なお、他のスイッチング素子Qb,Qc,Qdについても同様である。
 図4に示すコンバータ回路10Aは、交流電圧を直流電圧に変換する回路であり、レグ11,12を備えている。一方のレグ11は、上アームのスイッチング素子Qaと、下アームのスイッチング素子Qbと、が接続されてなるスイッチングレグである。また、他方のレグ12も同様である。そして、一方のレグ11と、他方のレグ12と、が並列接続された構成になっている。
 一方のレグ11では、スイッチング素子Qaのソースと、スイッチング素子Qbのドレインと、が接続され、その接続点N1は、配線p1を介して交流電源Gに接続されている。他方のレグ12では、スイッチング素子Qcのソースと、スイッチング素子Qdのドレインと、が接続され、その接続点N2は、配線p2を介して交流電源Gに接続されている。
 スイッチング素子Qaのドレインと、スイッチング素子Qcのドレインと、は互いに接続され、その接続点N3は、配線p3を介してインバータ100に接続されている。また、スイッチング素子Qbのソースと、スイッチング素子Qdのソースと、は互いに接続され、その接続点N4は、配線p4を介してインバータ100に接続されるとともに、接地されている。
 リアクトルL1は、交流電源Gから供給される電力をエネルギとして蓄え、このエネルギを放出することで昇圧や力率の改善を行うものである。リアクトルL1は、交流電源Gとコンバータ回路10Aとを接続する配線p1に設けられている。
 平滑コンデンサC1は、コンバータ回路10Aから印加される電圧を平滑化するものである。平滑コンデンサC1は、正側が配線p3に接続され、負側が配線p4に接続されている。
 制御回路50Aは、例えば、マイコンであり、スイッチング素子駆動回路20に所定の制御信号を出力する。なお、制御回路50Aが実行する処理については周知であるから、その説明を省略する。
 そして、スイッチング素子駆動回路20からスイッチング素子Qaへの駆動信号を流用して、マルチバイブレータ40aが逆電圧印加信号を生成するようになっている。逆電圧印加回路30aは、前記した逆電圧印加信号に基づき、スイッチング素子Qa,Qbのデッドタイム中、比較的小さい逆電圧を寄生ダイオードDaに印加する。これによって、コンバータ200の簡素化を図れるとともに、スイッチング損失を低減できる。
 なお、図4では、一方のレグ11に接続されたスイッチング素子駆動回路20、逆電圧印加回路30a,30b、及びマルチバイブレータ40a,40bを図示しているが、他方のレグ12にも同様の回路が接続されている。
<効果>
 第2実施形態によれば、スイッチング素子駆動回路20からの駆動信号を流用して、マルチバイブレータ40a,40bが逆電圧印加信号を生成する。これによって、簡素な構成で低損失なコンバータ200を提供できる。
≪第3実施形態≫
 第3実施形態では、第1実施形態で説明したインバータ100(図1参照)、及び、第2実施形態で説明したコンバータ200(図4参照)を備える空気調和機W(図5参照)について説明する。なお、インバータ100の構成については第1実施形態と同様であり、コンバータ200の構成については第2実施形態と同様であるため、これらについては説明を省略する。
 図5は、第3実施形態に係る空気調和機Wの構成図である。
 空気調和機Wは、所定の空調を行う機器である。以下では、空気調和機Wが主に冷房運転を行うものとして説明するが、これに限定されるものではない。
 図5に示すように、空気調和機Wは、圧縮機1と、室外熱交換器2と、室外ファン3と、膨張弁4と、室内熱交換器5と、室内ファン6と、インバータ100と、コンバータ200と、を備えている。また、図5に示す冷媒回路Fは、圧縮機1、室外熱交換器2、膨張弁4、及び室内熱交換器5が、配管qを介して環状に順次接続された構成になっている。
 圧縮機1は、ガス状の冷媒を圧縮する機器であり、駆動源であるモータMを備えている。なお、図5では省略しているが、圧縮機1の吸入側には、冷媒を気液分離するためのアキュムレータが設けられている。
 インバータ100やコンバータ200は、所定の電力変換を行い、電力変換後の電力を圧縮機1のモータMに出力する電力変換装置である。
 室外熱交換器2は、その伝熱管(図示せず)を通流する冷媒と、室外ファン3から送り込まれる外気と、の間で熱交換が行われる熱交換器である。
 室外ファン3は、室外熱交換器2に外気を送り込むファンであり、室外熱交換器2の付近に設置されている。
 膨張弁4は、室外熱交換器2(凝縮器)で凝縮した冷媒を減圧する弁である。そして、膨張弁4で減圧された冷媒が、室内熱交換器5(蒸発器)に導かれるようになっている。
 室内熱交換器5は、その伝熱管(図示せず)を通流する冷媒と、室内ファン6から送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。
 室内ファン6は、室内熱交換器5に室内空気を送り込むファンであり、室内熱交換器5の付近に設置されている。
 図5に示す例では、圧縮機1、室外熱交換器2、室外ファン3、インバータ100、及びコンバータ200が、室外機Uoに設けられている。一方、室内熱交換器5や室内ファン6は、室内機Uiに設けられている。
 そして、例えば、冷房運転中には冷媒回路Fにおいて、圧縮機1、室外熱交換器2(凝縮器)、膨張弁4、及び室内熱交換器5(蒸発器)を順次に介して、冷凍サイクルで冷媒が循環するようになっている。
 なお、空気調和機Wの構成は、図5の例に限定されるものではない。例えば、冷媒の流路を切り替える四方弁(図示せず)が、冷媒回路Fに設けられていてもよい。このような構成において、暖房運転時には、圧縮機1、室内熱交換器5(凝縮器)、膨張弁4、及び室外熱交換器2(蒸発器)を順次に介して、冷凍サイクルで冷媒が循環する。すなわち、圧縮機1、「凝縮器」、「膨張弁」、及び「蒸発器」を順次に介して冷媒が通流する冷媒回路Fにおいて、「凝縮器」及び「蒸発器」の一方は室外熱交換器2であり、他方は室内熱交換器5である。
<効果>
 第3実施形態によれば、空気調和機Wが、第1実施形態と同様の構成のインバータ100を備えるとともに、第2実施形態と同様の構成のコンバータ200を備えている。これによって、エネルギ効率(APF:Annual Performance Factor)が高く、また、信頼性の高い空気調和機Wを提供できる。
≪変形例≫
 以上、本発明に係るインバータ100(図1参照)、コンバータ200(図4参照)、及び空気調和機W(図5参照)について各実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。例えば、次に説明するように、第1実施形態で説明した構成に還流ダイオードDa1~Df1(図6参照)を追加してもよい。
 図6は、変形例に係る電力変換装置であるインバータ100Aの構成図である。
 図6に示すように、スイッチング素子Qaに対して逆並列に還流ダイオードDa1が接続されていてもよい。このような構成において、逆電圧印加回路30aによる逆電圧は、寄生ダイオードDaに印加されるとともに、還流ダイオードDa1にも印加される。なお、他のスイッチング素子Qb~Qfに接続された還流ダイオードDb1~Df1についても同様である。
 図6に示す構成によれば、寄生ダイオードDa~Dfにおける逆回復電流を抑制できるとともに、還流ダイオードDa1~Df1における逆回復電流を抑制できるため、インバータ100Aの構成の簡素化や低損失化を図ることができる。
 なお、第2実施形態のコンバータ200(図4参照)についても同様のことがいえる。
 また、第1実施形態では、スイッチング素子Qa~Qf(図1参照)が全てMOSFETである場合について説明したが、これに限らない。例えば、スイッチング素子Qa~Qfが、IGBT(Insulated Gate Bipolor Transisto)といった他の種類の素子であってもよい。また、スイッチング素子Qa~Qfとして、異なる種類の素子が混在していてもよい。また、寄生ダイオードが存在しない種類のスイッチング素子に、それぞれ、還流ダイオードが逆並列に接続された構成であってもよい。なお、第2実施形態や第3実施形態についても同様のことがいえる。
 また、第1実施形態では、インバータ100(図1参照)が2レベルの三相インバータである場合について説明したが、これに限らない。例えば、第1実施形態の構成を3レベルのインバータに適用することもできるし、また、単相インバータに適用することもできる。また、第2実施形態で説明したコンバータ200(図4参照)の構成も一例であり、これに限定されるものではない。
 また、第3実施形態では、第1実施形態で説明したインバータ100(図1参照)、及び、第2実施形態で説明したコンバータ200(図4参照)を備える空気調和機W(図5参照)について説明したが、これに限らない。すなわち、第1実施形態及び第2実施形態の一方のみを空気調和機Wに適用してもよい。
 また、第3実施形態では、室内機Ui(図5参照)及び室外機Uo(図5参照)が一台ずつ設けられた構成の空気調和機Wについて説明したが、これに限らない。例えば、複数台の室外機を備えるマルチ型の空気調和機にも各実施形態を適用できる。
 また、第3実施形態では、インバータ100及びコンバータ200を備える空気調和機W(図5参照)について説明したが、冷蔵庫、給湯機、洗濯機等の他の機器にも適用可能である。
 また、実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
 1   圧縮機
 2   室外熱交換器(凝縮器/蒸発器)
 3   室外ファン
 4   膨張弁
 5   室内熱交換器(蒸発器/凝縮器)
 6   室内ファン
 10  インバータ回路(電力変換回路)
 10A コンバータ回路(電力変換回路)
 10u 第1レグ(スイッチングレグ)
 10v 第2レグ(スイッチングレグ)
 10w 第3レグ(スイッチングレグ)
 11,12 レグ(スイッチングレグ)
 20  スイッチング素子駆動回路
 30a,30b 逆電圧印加回路
 40a,40b マルチバイブレータ(逆電圧用駆動回路)
 50,50A 制御回路
 60a オンディレイ回路
 70a 通電時間設定回路
 100,100A インバータ(電力変換装置)
 200 コンバータ(電力変換装置)
 Da,Db,Dc,Dd,De,Df 寄生ダイオード
 Da1,Db1,Dc1,Dd1,De1,Df1 還流ダイオード
 F   冷媒回路
 M   モータ
 Qa,Qc,Qe スイッチング素子(上アームのスイッチング素子)
 Qb,Qd,Qf スイッチング素子(下アームのスイッチング素子)
 W   空気調和機
 ha  配線(第1配線)
 ma  配線(第2配線)

Claims (7)

  1.  上アームのスイッチング素子と、下アームのスイッチング素子と、が接続されてなるスイッチングレグを有する電力変換回路を備え、
     それぞれの前記スイッチング素子が寄生ダイオードを有するか、又は、それぞれの前記スイッチング素子に還流ダイオードが逆並列に接続され、
     それぞれの前記スイッチング素子に駆動信号を出力するスイッチング素子駆動回路と、
     前記スイッチング素子に一対一で接続され、前記スイッチング素子の前記寄生ダイオード又は前記還流ダイオードに逆電圧を印加する逆電圧印加回路と、
     前記逆電圧印加回路に一対一で接続されるとともに、前記スイッチング素子駆動回路にも接続され、前記スイッチング素子駆動回路から自身に入力される前記駆動信号を用いて、前記逆電圧印加回路への逆電圧印加信号を生成する逆電圧用駆動回路と、をさらに備える電力変換装置。
  2.  前記逆電圧印加回路に一対一で対応している前記スイッチング素子と、前記スイッチング素子駆動回路と、が第1配線を介して接続され、
     前記逆電圧印加回路に一対一で対応している前記逆電圧用駆動回路と、前記第1配線と、が第2配線を介して接続され、
     前記逆電圧用駆動回路は、前記スイッチング素子駆動回路から前記第1配線及び前記第2配線を順次に介して自身に入力される前記駆動信号を用いて、前記逆電圧印加信号を生成すること
     を特徴とする請求項1に記載の電力変換装置。
  3.  前記スイッチング素子駆動回路から出力される前記駆動信号の立下り時から、前記逆電圧用駆動回路において前記逆電圧印加信号の出力が開始されるまでの所定の遅れ時間を設けるオンディレイ回路をさらに備え、
     前記オンディレイ回路は、前記スイッチング素子駆動回路と前記逆電圧用駆動回路とを接続する配線に設けられること
     を特徴とする請求項1に記載の電力変換装置。
  4.  上アームの前記スイッチング素子、及び、下アームの前記スイッチング素子が両方ともオフ状態になる所定のデッドタイム中に前記逆電圧印加信号がオン状態になること
     を特徴とする請求項1に記載の電力変換装置。
  5.  前記電力変換回路は、並列接続された複数の前記スイッチングレグを有し、直流電圧を交流電圧に変換するインバータ回路であること
     を特徴とする請求項1から請求項4のいずれか一項に記載の電力変換装置。
  6.  前記電力変換回路は、並列接続された複数の前記スイッチングレグを有し、交流電圧を直流電圧に変換するコンバータ回路であること
     を特徴とする請求項1から請求項4のいずれか一項に記載の電力変換装置。
  7.  圧縮機、凝縮器、膨張弁、及び蒸発器を順次に介して冷媒が循環する冷媒回路と、
     所定の電力変換を行い、電力変換後の電力を前記圧縮機のモータに出力する電力変換装置と、を含み、
     前記電力変換装置は、
     上アームのスイッチング素子と、下アームのスイッチング素子と、が接続されてなるスイッチングレグを有する電力変換回路を備え、
     それぞれの前記スイッチング素子が寄生ダイオードを有するか、又は、それぞれの前記スイッチング素子に還流ダイオードが逆並列に接続され、
     それぞれの前記スイッチング素子に駆動信号を出力するスイッチング素子駆動回路と、
     前記スイッチング素子に一対一で接続され、前記スイッチング素子の前記寄生ダイオード又は前記還流ダイオードに逆電圧を印加する逆電圧印加回路と、
     前記逆電圧印加回路に一対一で接続されるとともに、前記スイッチング素子駆動回路にも接続され、前記スイッチング素子駆動回路から自身に入力される前記駆動信号を用いて、前記逆電圧印加回路への逆電圧印加信号を生成する逆電圧用駆動回路と、をさらに備える空気調和機。
PCT/JP2018/040619 2018-10-31 2018-10-31 電力変換装置、及び、これを備える空気調和機 WO2020090068A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/040619 WO2020090068A1 (ja) 2018-10-31 2018-10-31 電力変換装置、及び、これを備える空気調和機
TW108108427A TWI806989B (zh) 2018-10-31 2019-03-13 電力轉換裝置及具備此之空調機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/040619 WO2020090068A1 (ja) 2018-10-31 2018-10-31 電力変換装置、及び、これを備える空気調和機

Publications (1)

Publication Number Publication Date
WO2020090068A1 true WO2020090068A1 (ja) 2020-05-07

Family

ID=70463659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040619 WO2020090068A1 (ja) 2018-10-31 2018-10-31 電力変換装置、及び、これを備える空気調和機

Country Status (2)

Country Link
TW (1) TWI806989B (ja)
WO (1) WO2020090068A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032238A1 (ja) * 2005-09-13 2007-03-22 Toshiba Carrier Corporation 電力変換装置
JP2007209098A (ja) * 2006-01-31 2007-08-16 Toshiba Kyaria Kk インバータ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7724556B2 (en) * 2004-11-15 2010-05-25 Kabushiki Kaisha Toshiba Power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032238A1 (ja) * 2005-09-13 2007-03-22 Toshiba Carrier Corporation 電力変換装置
JP2007209098A (ja) * 2006-01-31 2007-08-16 Toshiba Kyaria Kk インバータ装置

Also Published As

Publication number Publication date
TW202019080A (zh) 2020-05-16
TWI806989B (zh) 2023-07-01

Similar Documents

Publication Publication Date Title
JP5584357B2 (ja) 可変速駆動装置
CN107546991B (zh) 电力变换装置、以及具备电力变换装置的空调机
JP4935251B2 (ja) 電力変換装置
JP5697591B2 (ja) 電動機駆動装置、及び冷凍空調装置
JP7104209B2 (ja) 電力変換装置、及びこれを備える空気調和機
EP3190693A1 (en) Electric power converter
US20150318803A1 (en) Hybrid pulse width modulation method for variable speed drive
US10756666B2 (en) Electric-motor driving apparatus, electric motor system and refrigeration cycle apparatus
WO2018073875A1 (ja) 電力変換装置、モータ駆動装置および空気調和機
JP5788540B2 (ja) 電動機駆動装置、及び冷凍空調装置
JP6621913B2 (ja) 電動機駆動装置、冷凍サイクル装置および空気調和機
WO2020090068A1 (ja) 電力変換装置、及び、これを備える空気調和機
JP2016001991A (ja) 電動機駆動装置、及び冷凍空調装置
JP6416653B2 (ja) 電力変換装置、及びこれを備える空気調和機
JP7116438B2 (ja) 電力変換装置、及び、これを備える空気調和機
JP6982254B2 (ja) 電力変換装置及び空気調和機
JP6518506B2 (ja) 電源装置、並びにそれを用いる空気調和機
WO2021166111A1 (ja) 直流電源装置および冷凍サイクル適用機器
WO2020255184A1 (ja) 電力変換装置、モータ制御装置、および空気調和機
JP2024073699A (ja) モータ制御装置、モータ駆動装置、モータシステム、及び電気機器
JP2022069673A (ja) 電力変換装置、及びこれを備える空気調和機
JP2017060210A (ja) ドライブ回路、冷凍サイクル、および家電
JP2013135525A (ja) インバータ駆動装置ならびに、それを備えた冷凍空気調和装置、冷蔵庫、および冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP