WO2020088642A1 - 分光装置及其制作方法、光色散方法和光谱仪 - Google Patents

分光装置及其制作方法、光色散方法和光谱仪 Download PDF

Info

Publication number
WO2020088642A1
WO2020088642A1 PCT/CN2019/114987 CN2019114987W WO2020088642A1 WO 2020088642 A1 WO2020088642 A1 WO 2020088642A1 CN 2019114987 W CN2019114987 W CN 2019114987W WO 2020088642 A1 WO2020088642 A1 WO 2020088642A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
waveguide
incident
transmitting layer
array
Prior art date
Application number
PCT/CN2019/114987
Other languages
English (en)
French (fr)
Inventor
孟宪芹
王维
陈小川
孟宪东
谭纪风
高健
王方舟
凌秋雨
刘佩琳
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/768,543 priority Critical patent/US11402267B2/en
Publication of WO2020088642A1 publication Critical patent/WO2020088642A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1895Generating the spectrum; Monochromators using diffraction elements, e.g. grating using fiber Bragg gratings or gratings integrated in a waveguide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/14Generating the spectrum; Monochromators using refracting elements, e.g. prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/20Rowland circle spectrometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12014Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1208Prism and grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12114Prism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12173Masking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers

Definitions

  • the present disclosure relates to the technical field of light detection, and in particular, to a spectroscopic device, a manufacturing method thereof, a light dispersion method, and a spectroscopic spectrometer.
  • Spectrometer is a light detection device that uses light detectors to measure the intensity of different wavelength spectral lines. Its core component is a spectroscopic system. The spectroscopic system can split the measured light to divide the measured light into detectable light. Multiple lines detected by the detector.
  • a spectroscopic device in one aspect, includes an optical waveguide body and a dispersion grating.
  • the optical waveguide body is configured to transmit incident light to the dispersion grating
  • the dispersion grating is configured to disperse the incident light transmitted by the optical waveguide body into a plurality of spectral lines
  • the optical waveguide body is further configured to Changing the propagation direction of the multiple spectral lines and exiting the multiple spectral lines.
  • the light splitting device further includes: a first light-transmitting layer and a second light-transmitting layer disposed oppositely.
  • the optical waveguide body is located between the first light transmitting layer and the second light transmitting layer
  • the dispersion grating is located between the second light transmitting layer and the optical waveguide body.
  • the refractive index of the material used for the optical waveguide body and the refractive index of the material used for the dispersion grating are both greater than the refractive index of the material used for the first light-transmitting layer, and both are greater than the second The refractive index of the material used for the layer.
  • the optical waveguide body includes an input waveguide located on the light incident side of the dispersion grating, and an output waveguide array located on the light exit side of the dispersion grating.
  • the input waveguide is configured to provide the incident light transmitted by the optical waveguide body to the dispersion grating
  • the output waveguide array is configured to guide the plurality of spectral lines and emit the plurality of spectrums line.
  • the output waveguide array includes a plurality of guide waveguides corresponding to the plurality of spectral lines in one-to-one correspondence, and each adjacent two guide waveguides in the plurality of guide waveguides have a first interval between them.
  • the optical waveguide body includes a Dove prism.
  • the bottom surface of the Dove prism is opposite to the first light-transmitting layer, the top surface of the Dove prism is opposite to the second light-transmitting layer, the input waveguide, the output waveguide array, and the The dispersion gratings are all set on the top surface of the Dove prism.
  • the Dove prism has an incident slope and an exit slope; the incident slope is configured to reflect the incident light and provide it to the input waveguide.
  • the input waveguide is configured to provide the incident light to the dispersion grating.
  • the output waveguide array is configured to guide the plurality of spectral lines and provide it to the exit slope.
  • the exit slope is configured to reflect the plurality of spectral lines and derive the Dove prism.
  • the incident angle ⁇ arcsin (n 2 / n air ⁇ sin ⁇ ); where, n 2 is the refractive index of the material used for the first light-transmitting layer, n air is the refractive index of air, the The refractive index of the material ranges from 1.8 to 1.9, ⁇ 56.25 °, ⁇ 33.75 °.
  • the dispersion grating includes an array waveguide, and the array waveguide includes a plurality of first curved waveguides, and each adjacent two first curved waveguides in the plurality of first curved waveguides have a second At intervals, there is an optical path difference between each two adjacent first curved waveguides.
  • the output waveguide array includes a plurality of guide waveguides arranged in a one-to-one correspondence with the plurality of spectral lines.
  • the dispersion grating includes a concave grating, and the Roland circle of the concave grating has a plurality of light focusing points.
  • the multiple guide waveguides correspond to the multiple light focusing points one-to-one.
  • the optical waveguide body includes a reflective structure and a plurality of diffraction gratings
  • the dispersion grating includes a concave grating
  • the output waveguide array includes a plurality of guided waveguides.
  • the plurality of guide waveguides correspond to the light focusing points of the Rowland circle of the concave grating.
  • the reflective structure is configured to reflect the incident light and provide it to the input waveguide.
  • the input waveguide is configured to provide the incident light to the concave grating.
  • the concave grating is configured to diffract the incident light into a plurality of spectral lines, so that each spectral line in the plurality of spectral lines is focused on a corresponding light focusing point.
  • Each of the plurality of guided waveguides is configured to transmit the corresponding spectral line to the corresponding diffraction grating.
  • Each diffraction grating of the plurality of diffraction gratings is configured to control a corresponding spectral line to exit the first light-transmitting layer.
  • a manufacturing method of a spectroscopic device includes: forming an optical waveguide body and forming a dispersion grating.
  • the optical waveguide body is configured to transmit incident light to the dispersion grating; the dispersion grating is configured to disperse the incident light transmitted by the optical waveguide body into multiple spectral lines, and the optical waveguide body is further configured to Changing the propagation direction of the multiple spectral lines and exiting the multiple spectral lines.
  • the manufacturing method of the spectroscopic device further includes: forming a first light-transmitting layer.
  • the refractive index of the material used for the first light-transmitting layer is smaller than the refractive index of the material used for the optical waveguide body and the refractive index of the material used for the dispersion grating.
  • the manufacturing method of the spectroscopic device further includes: forming a second light-transmitting layer.
  • the second light-transmitting layer is disposed opposite to the first light-transmitting layer; the optical waveguide body is located between the first light-transmitting layer and the second light-transmitting layer, and the dispersion grating is located at the first Between the two light-transmitting layers and the optical waveguide body; the refractive index of the material used for the second light-transmitting layer is smaller than the refractive index of the material used for the optical waveguide body and the material used for the dispersion grating Refractive index.
  • the optical waveguide body includes a Dove prism
  • the dispersion grating includes an array waveguide.
  • the forming of the optical waveguide body and the formation of the dispersion grating include: forming a waveguide layer on one surface of the first light-transmitting layer, and the refractive index of the material used in the waveguide layer is greater than that of the first light-transmitting layer The refractive index of the material.
  • an array of input waveguides, array waveguides, and output waveguides that form a Dove prism and is located on the top surface of the Dove prism are fabricated.
  • the Dove prism has an incident slope and an exit slope.
  • the incident slope is configured to reflect the incident light and provide it to the input waveguide.
  • the input waveguide is configured to provide the incident light to the array waveguide.
  • the output waveguide array is configured to guide the plurality of spectral lines and provide it to the exit slope.
  • the exit slope is configured to reflect the plurality of spectral lines and derive the Dove prism.
  • using the waveguide layer to fabricate an input waveguide, an array waveguide, and an output waveguide array forming a Dove prism and a top surface of the Dove prism including: above the waveguide layer, providing An optical reticle; wherein the optical reticle has a pattern that corresponds one-to-one to the Dove prism, the input waveguide, the array waveguide, and the output waveguide array.
  • the optical mask to process the waveguide layer to obtain the Dove prism and the input waveguide, the array waveguide, and the output waveguide array on the top surface of the Dove prism; wherein ,
  • the chamfer ⁇ between the incident slope and the bottom of the Dove prism, the sum of the chamfer ⁇ and the incident angle ⁇ of the incident ray incident on the Dove prism into the dove prism is equal to 90 °, the The incident light is incident on the bottom surface of the Dove prism.
  • the incident angle ⁇ arcsin (n 2 / n air ⁇ sin ⁇ ); n 2 is the refractive index of the material used for the first light-transmitting layer, and n air is the refractive index of air.
  • providing an optical mask above the waveguide layer includes: forming a metal thin film on a surface of the waveguide layer facing away from the first light-transmitting layer.
  • a photoresist layer is formed on the surface of the metal film facing away from the waveguide layer.
  • the imprinting process is used to process the photoresist layer to obtain a photoresist mask plate, wherein the photoresist mask plate is provided with the Dove prism, the input waveguide, the array waveguide and The output waveguide array has a one-to-one corresponding pattern.
  • the photoresist mask is used to process the metal thin film to obtain a metal mask; wherein, the metal mask is provided with the Dove prism, the input waveguide, the array waveguide and The output waveguide array has a one-to-one corresponding pattern, and the metal mask and the photoresist mask form the optical mask.
  • the removing the optical mask includes: removing the photoresist mask, and removing the metal mask.
  • a method of light dispersion uses the spectroscopic device as provided in some embodiments described above.
  • the optical dispersion method includes: the optical waveguide body receives incident light and transmits the incident light to a dispersion grating.
  • the dispersion grating disperses the incident light to obtain multiple spectral lines.
  • the optical waveguide body changes the propagation direction of the multiple spectral lines, and exits the multiple spectral lines.
  • a spectrometer in yet another aspect, includes a spectroscopic device as provided in some embodiments described above.
  • the light splitting device includes a first light-transmitting layer and a second light-transmitting layer disposed oppositely.
  • the spectrometer further includes: a collimated light source, a microfluidic substrate, and a sensing substrate.
  • the collimated light source is configured to provide incident light to the optical waveguide body.
  • the microfluidic substrate is disposed on a side of the first light-transmitting layer facing away from the second light-transmitting layer, and corresponds to the emission positions of the plurality of spectral lines.
  • the sensing substrate corresponds to the microfluidic substrate, and the sensing substrate is configured to detect the plurality of spectral lines passing through the microfluidic substrate.
  • the microfluidic substrate includes a first base substrate, and a reaction cell, a waste liquid pool, and a plurality of micro-positions on a side of the first base substrate close to the first light-transmitting layer Flow channels; the plurality of micro-flow channels communicate with the reaction tank and the waste liquid tank respectively.
  • a hydrophilic adjustment layer is formed on the inner walls of the plurality of microfluidic channels.
  • the multiple microfluidic channels correspond to the multiple spectral lines in one-to-one correspondence.
  • the sensing substrate includes a second substrate substrate, and a plurality of photosensitive detectors located on a side of the second substrate substrate close to the first substrate substrate. An orthographic projection of each photosensitive detector of the plurality of photosensitive detectors on the second substrate substrate, one of the microfluidic channels in the plurality of microfluidic channels on the second substrate substrate within the range of orthographic projection.
  • FIG. 1 is a schematic structural diagram of a light splitting device provided by some embodiments of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a Dove prism provided by some embodiments of the present disclosure.
  • FIG. 3 is a structural parameter indexing diagram of a Dove prism provided by some embodiments of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an input waveguide, array waveguide, and output waveguide array provided by some embodiments of the present disclosure
  • FIG. 5 is a schematic structural diagram of a concave grating provided by some embodiments of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a Dove prism, input waveguide, array waveguide, and output waveguide array provided by some embodiments of the present disclosure
  • FIG. 7 is a schematic structural diagram of a Dove prism, input waveguide, array waveguide, and output waveguide array provided by some embodiments of the present disclosure
  • FIG 8 is an electron microscope diagram of an input waveguide, array waveguide, and output waveguide array provided by some embodiments of the present disclosure
  • FIG. 9 is a schematic structural diagram of a reflective structure, an input waveguide, a concave grating, an output waveguide array, and a diffraction grating provided by some embodiments of the present disclosure
  • FIG. 10 is a schematic structural diagram of a spectrometer provided by some embodiments of the present disclosure.
  • FIG. 11 is a block diagram of the working principle of a spectrometer provided by some embodiments of the present disclosure.
  • FIG. 12 is a manufacturing flowchart of a light splitting device provided by some embodiments of the present disclosure.
  • FIG. 13 is a flowchart of a method for manufacturing a light splitting device provided by some embodiments of the present disclosure
  • 15 is a flowchart of another method for manufacturing a light splitting device according to some embodiments of the present disclosure.
  • 16 is a flowchart of another method for manufacturing a light splitting device according to some embodiments of the present disclosure.
  • FIG. 17 is a flowchart of a light dispersion method provided by some embodiments of the present disclosure.
  • the splitting system in the spectrometer is usually divided into a dispersing type splitting system and a modulation type splitting system; among them, the dispersing type splitting system generally uses prisms, gratings, interferometers, etc. to achieve light splitting.
  • dispersive spectroscopic systems usually use a combination of different types of gratings, or a combination of gratings and prisms to split the measurement light to improve the spectral efficiency of the spectroscopic system.
  • this will make the structure of the scoring system complicated, more difficult to manufacture, and relatively expensive.
  • a micro-nano structure is also needed to take out multiple spectral lines formed by the dispersion of the spectroscopic system from the spectroscopic system, and the light extraction efficiency is low.
  • the spectrometer 1000 includes a spectroscopic device 100 and a collimated light source 200.
  • the collimated light source 200 is configured to provide incident light (such as polychromatic light) to the spectroscopic device 100, and the spectroscopic device 100 is configured to disperse the incident light provided by the collimated light source 200 into monochromatic light of different wavelengths (such as multiple spectral lines) And change the propagation direction of the multiple spectral lines to extract the multiple spectral lines.
  • multiple spectral lines taken out by the spectroscopic device 100 can be transmitted to the microfluidics in a preset direction, so that the microfluidics can occur under the irradiation of the multiple spectral lines
  • a certain physical change or chemical change in turn, enables multiple spectral lines to obtain the information of the detected microfluid after passing through the microfluid, so as to realize the detection of the microfluid.
  • the spectral line from which the information of the detected microfluid is acquired is called a light detection signal.
  • the spectroscopic device 100 includes an optical waveguide body 1 and a dispersion grating 2.
  • the optical waveguide body 1 is configured to transmit incident light to the dispersion grating 2
  • the dispersion grating 2 is configured to disperse the incident light transmitted by the optical waveguide body 1 into multiple spectral lines
  • the optical waveguide body 1 is further configured to change the multiple spectral lines The direction of propagation and exit the multiple spectral lines.
  • the relative positional relationship between the dispersion grating 2 and the optical waveguide body 1 is set according to the optical path.
  • the incident light is generally polychromatic light, such as white light.
  • the light splitting device 100 can disperse the incident light transmitted by the optical waveguide body 1 into multiple spectral lines by dispersing the grating 2 by disposing the optical waveguide body 1 and the dispersion grating 2, and Using the optical waveguide body 1 to take out the multiple spectral lines, this can effectively simplify the structure of the spectroscopic device 100; moreover, in the process of applying the spectroscopic device 100 to microfluidic measurement, only the microfluidic body needs to be disposed in the optical waveguide body 1 At the corresponding position of the multiple spectral lines, multiple spectral lines can be transmitted to the microfluidic to realize the detection of microfluidic, without the need to additionally set up a micro sodium structure to take out multiple spectral lines, which is conducive to simplifying microfluidic detection Process.
  • the optical efficiency of the extracted multiple spectral lines can be made approximately equal to the optical efficiency of the plurality of spectral lines formed after dispersion, effectively reducing the The loss of light efficiency of the multiple spectral lines taken out.
  • the above spectroscopic device 100 further includes: a first light-transmitting layer 3 and a second light-transmitting layer 4 that are oppositely arranged.
  • the optical waveguide body 1 is located between the first light transmitting layer 3 and the second light transmitting layer 4, and the dispersion grating 2 is located between the second light transmitting layer 4 and the optical waveguide body 1.
  • the refractive index of the material used in the optical waveguide body 1 and the refractive index of the material used in the dispersion grating 2 are both greater than the refractive index of the material used in the first light-transmitting layer 3, and both are greater than that used in the second light-transmitting layer 4 The refractive index of the material used.
  • the surface of the first light-transmitting layer 3 close to the second light-transmitting layer 4 and the surface of the second light-transmitting layer 4 close to the first light-transmitting layer 3 can form a total reflection interface, if the incident light passes through the optical waveguide
  • the angle of the body 1 incident on the first light-transmitting layer 3 or the second light-transmitting layer 4 is greater than the critical angle, and the incident light will form a total reflection between the first light-transmitting layer 3 and the second light-transmitting layer 4.
  • the critical angle refers to an incident angle with a refraction angle of 90 °.
  • the dispersive grating 2 and the optical waveguide body 1 are provided between the first light-transmitting layer 3 and the second light-transmitting layer 4, which can effectively reduce or avoid light leakage caused by incident light during transmission, Reduce or avoid the phenomenon of light leakage in the transmission process of multiple spectral lines.
  • the structure of the first light-transmitting layer 3 includes multiple types.
  • the first light-transmitting layer 3 uses the same glass substrate as that used in a liquid crystal display or an organic electroluminescence display, or a thin film formed by using materials such as optical glass or transparent resin with a lower refractive index , But not limited to this.
  • the thickness of the first light-transmitting layer 3 is selected and set according to actual needs, which is not limited by some embodiments of the present disclosure.
  • the above spectroscopic device 100 is applied to microfluidic detection. Considering that the multiple spectral lines are incident to the microfluidic fluid through the first light-transmitting layer 3 under the action of the optical waveguide body 1, the The thickness is small, so as to reduce the chance of color mixing of the plurality of spectral lines passing through the first light-transmitting layer 3.
  • the first light-transmitting layer 3 is made of 3t optical glass with a refractive index ranging from 1.4 to 1.58 (for example, 1.52), and the thickness of the first light-transmitting layer 3 ranges from 0.2 mm to 0.4 mm.
  • the structure of the second light-transmitting layer 4 includes multiple types.
  • the second light-transmitting layer 4 uses the same glass substrate as that used in a liquid crystal display or an organic electroluminescence display, or uses a photoresist with a lower refractive index or SiO 2 with a lower refractive index, etc. Films made of materials, but not limited to this.
  • the thickness of the second light-transmitting layer 4 is selected and set according to the actual situation, which is not limited by some embodiments of the present disclosure. In some examples, the thickness of the above-mentioned second light-transmitting layer 4 is small, so as to reduce the influence of the second light-transmitting layer 4 on the propagation direction of the plurality of spectral lines, and make the plurality of spectral lines change transmission After the direction, it can be accurately incident on the microfluid.
  • the material used for the second light-transmitting layer 4 is a phenolic resin or photoresist with a refractive index ranging from 1.20 to 1.30 (for example, 1.25), and the thickness of the second light-transmitting layer 4 is ranging from 0.1mm ⁇ 2mm.
  • first light-transmitting layer 3 and the structure of the second light-transmitting layer 4 are as flat as possible, and the two are as parallel as possible to avoid the first light-transmitting layer 3 and the second light-transmitting layer 4 The larger angle between them affects the transmission of incident light rays or the multiple spectral lines.
  • the optical waveguide body 1 includes an input waveguide 11 located on the light incident side of the dispersion grating 2 and an output located on the light exit side of the dispersion grating 2 Waveguide array 12.
  • the input waveguide 11 is a curved waveguide.
  • the input waveguide 11 is configured to provide the incident light transmitted by the optical waveguide body 1 to the dispersion grating 2
  • the output waveguide array 12 is configured to guide the plurality of spectral lines so that the optical waveguide body 1 changes the plurality of spectral lines The direction of propagation, and emitted from the first light-transmitting layer 3.
  • the light incident side of the dispersion grating 2 refers to the side where the dispersion grating 2 receives incident light
  • the light exit side of the dispersion grating 2 refers to the side where the dispersion grating 2 emits the multiple spectral lines.
  • the loss of the incident light during the transmission to the dispersion grating 2 can be reduced.
  • the output waveguide array 12 By setting the output waveguide array 12 to use the output waveguide array 12 to guide the multiple spectral lines, the mutual interference (such as light mixing) of the multiple spectral lines is avoided, so that the light of the multiple spectral lines can be reduced loss.
  • the relative positional relationship between the input waveguide 11, the dispersion grating 2 and the output waveguide array 12 is set according to the optical path direction. This can ensure that the incident light is dispersed into a plurality of spectral lines under the premise of lower loss of incident light and the plurality of spectral lines, and the plurality of spectral lines are derived through the first light-transmitting layer 3.
  • the above-mentioned output waveguide array 12 includes a plurality of guide waveguides 121 corresponding to each of the plurality of spectral lines, and every two adjacent guide waveguides in the plurality of guide waveguides 121 There is a first interval A1 between 121.
  • Each guiding optical waveguide 121 is configured to guide the corresponding spectral line among the plurality of spectral lines, so that the corresponding spectral line is derived through the first light-transmitting layer 3.
  • Each guide waveguide 121 is independently set, so that each guide waveguide 121 can independently transmit the corresponding spectrum line, and avoid crosstalk caused by every two adjacent spectrum lines.
  • the optical waveguide body 1 includes various structures. Exemplarily, the optical waveguide body 1 is an integrated structure, or the optical waveguide body 1 is a split structure. In some embodiments, as shown in FIGS. 2 to 3 and FIG. 6, the optical waveguide body 1 is an integrated structure.
  • the optical waveguide body 1 includes a Dove prism 13 whose appearance is in the shape of a terrace.
  • the Dove prism 13 is an image rotator, that is, when a certain color light ray passes through the Dove prism 13, the propagation direction of the multiple light ray is reversed by 180 °.
  • the bottom surface 13a of the above-mentioned Dove prism 13 is opposite to the first light-transmitting layer 3, and the top surface 13b of the Dove prism 13 is opposite to the second light-transmitting layer 4, the input waveguide 11, the dispersion grating 2 and the output waveguide array 12 are both provided on the top surface 13b of the Dove prism 13.
  • the input waveguide 11, the dispersion grating 2 and the output waveguide array 12 are formed on the top surface 13b of the Dove prism 13 by using an imprinting process or an etching process, that is, the input waveguide 11, the dispersion grating 2 and the output waveguide
  • the material of the array 12 is the same as the material of the Dove prism 13.
  • the Dove prism 13 has an incident slope 13c and an exit slope 13d. The incident slope 13c is configured to reflect incident light and provide it to the input waveguide 11.
  • the input waveguide 11 is configured to provide incident light to the dispersion grating 2.
  • the output waveguide array 12 is configured to guide the plurality of spectral lines, and provide the plurality of spectral lines to the emission slope 13d.
  • the exit slope 13d is configured to reflect the plurality of spectral lines and derive the Dove prism 13.
  • the incident slope 13c and the bottom surface 13b of the Dove prism 13 have a chamfer ⁇ , and the sum of the chamfer ⁇ and the incident angle ⁇ of the incident ray 13c incident on the Dove prism 13 is equal to 90 °.
  • the angle of incidence ⁇ arcsin (n 2 / n air ⁇ sin ⁇ ) of the bottom surface 13b of the Wei prism 13 where n 2 is the refractive index of the material used for the first light-transmitting layer 3 and n air is the refractive index of air.
  • the plurality of spectral lines will not pass through the first light-transmitting layer 3 and the second light-transmitting layer 4 and project out of the spectroscopic device 100.
  • the refractive index of the material used in the Dove prism 13 ranges from 1.8 to 1.9.
  • can also select any other angle less than or equal to 56.25 °.
  • the dispersion grating 2 includes various structures, and the structure adopted by the dispersion grating 2 is selected and set according to actual needs, which is not limited in some embodiments of the present disclosure.
  • the above-mentioned dispersion grating 2 is an array waveguide 21 formed on the top surface of the Dove prism 211, wherein the structure composed of the array waveguide 21, the input waveguide 11, and the output waveguide array 12 may be It is called Arrayed Waveguide Grating (Arrayed Waveguide Grating, AWG for short).
  • the array waveguide 21 includes a plurality of first curved waveguides 211.
  • each of the plurality of first curved waveguides 211 is an arc-shaped waveguide, which can reduce incident light generated during dispersion Optical loss.
  • each first curved waveguide 211 can also select other waveguides that can reduce optical loss.
  • each adjacent two curved waveguides 211 There is a second interval A2 between each adjacent two curved waveguides 211, and there is an optical path difference between each adjacent two curved waveguides 211, the optical path difference is kept constant, so that the incident light can pass through the array waveguide 21 In the process, diffraction occurs in the array waveguide 21, and dispersion forms multiple spectral lines. Since each adjacent two curved waveguides 211 have an optical path difference, this allows the dispersion grating 2 formed by the array waveguide 21 to work in a higher-order mode, thereby obtaining a high-resolution multiple spectrum without requiring a large focal length line.
  • the above light splitting device 100 not only has a high light splitting performance, but also facilitates the development in the direction of miniaturization, and thus can reduce the production cost of the light splitting device 100 .
  • the extending directions of the plurality of curved waveguides 211 included in the array waveguide 21 are set according to the derived angles or propagation directions of the multiple spectral lines derived from the above-mentioned Dove prism 13.
  • the shape of the orthographic projection of the above-mentioned Dove prism 13 on the plane where the first light-transmitting layer 3 is located is a trapezoid.
  • the extension direction is the same as the length direction of the Dove prism 13, at this time, after the multiple spectral lines are reflected by the exit slope 13d of the Dove prism 13, they can be moved from the Dove in the direction perpendicular to the first light-transmitting layer 3 The prism 13 is emitted.
  • the optical waveguide body 1 is a Dove prism 13
  • the dispersion grating 2 is an array waveguide 21
  • the output waveguide array 12 includes a plurality of guide waveguides 121.
  • the incident light passes through the first light-transmitting layer 3 and enters the Dove prism 13 and strikes the incident slope 13c.
  • the incident slope 13c reflects the incident light to the input waveguide 11, and the input waveguide 11 transmits the incident light to the array waveguide 21, so that the transmitted Of incident light rays enter the array waveguide 21, and each adjacent two of the first curved waveguides 21 included in the array waveguide 21 has a certain optical path difference.
  • the incident light rays Diffraction occurs inside to form a plurality of spectral lines, and then the plurality of spectral lines are transmitted to the exit slope 13d by the guide waveguides 121 included in the output waveguide array 12 in a one-to-one correspondence.
  • the exit slope 13d reflects the multiple spectral lines, so that the multiple spectral lines are led out of the Dove prism 13 and are emitted from the first light-transmitting layer 3.
  • each first curved waveguide 21 and each guide waveguide 121 may be on the order of nanometers or micrometers, but in order to reduce the The difficulty of manufacturing, the thickness of each first curved waveguide 21 and each guide waveguide 121 is in the order of micrometers, so that the processing difficulty of the array waveguide 21 is reduced from the processing of multiple nano-gratings to the processing of micron-level array optical waveguides, so that Industrial production of the device 100 becomes possible.
  • FIG. 10 shows an optical path diagram of the beam splitter 100 provided by some embodiments of the present disclosure.
  • the optical waveguide body 1 included in the spectroscopic device 100 includes a Dove prism 13, and the dispersion grating 2 is an arrayed waveguide 21 formed on the top surface 13a of the Dove prism 13 using an imprinting process or an etching process
  • the above-mentioned input waveguide 11 is a second curved waveguide formed on the top surface 13a of the Dove prism 13 using an imprinting process or an etching process
  • the output waveguide array 12 is formed on the Dove prism 13 using an imprinting process or an etching process
  • the optical path of the beam splitting device 100 is as follows: the incident light passes through the first light-transmitting layer 3 toward the incidence slope 13c of the Dove prism 13 under the constraints of ⁇ 56.25 ° and ⁇ 33.75 °, and reflects through the incidence slope 13a , Enters the input waveguide 11, and enters the array waveguide 21 in a direction parallel to the bottom surface 13b or the top surface 13a of the Dove prism 13, and the incident light passes through the diffraction of the array waveguide 21 and is dispersed into multiple spectral lines.
  • the lines are transmitted in one-to-one correspondence to the exit slope 13d of the Dove prism 13 through the plurality of guide waveguides 121, and are reflected by the exit slope 13d, and exit the Dove prism 13 and the first light transmission in a direction perpendicular to the first light-transmitting layer 3 Layer 3.
  • the incident light After the incident light enters the incident slope 13c and is reflected by the incident slope 13c, it needs to be incident on the array waveguide 21 in a direction parallel to the bottom surface 13b or the top surface 13a of the Dove prism 13. Considering the actual manufacturing process and structure of the Dove prism 13, after the incident light is reflected by the incident slope 13c of the Dove prism 13, the reflected incident light usually enters the array waveguide 21 in a diagonally upward direction.
  • the beam splitter 100 may also adjust the propagation direction of the incident light reflected by the incident slope 13a through the input waveguide 11 so that the incident light entering the array waveguide 21 is as parallel as possible
  • the array waveguide 21 enters the bottom surface 13b or the top surface 13a of the Dove prism 13.
  • the light splitting device 100 further sets the height of the input waveguide 11 (that is, the distance of the input waveguide 11 in a direction perpendicular to the first light-transmitting layer 3), an array The height of the plurality of curved waveguides 211 included in the waveguide 21 (that is, the distance of the plurality of curved waveguides in the direction perpendicular to the first light-transmitting layer 3) and the plurality of guide waveguides 121 included in the output waveguide array 12
  • the height ie, the distance of the plurality of guide waveguides 121 in the direction perpendicular to the first light-transmitting layer 3) enables the incident light reflected by the incident slope 13c of the Dove prism 13 to be parallel (or close to (Parallel) into the array waveguide 21 in the direction of the bottom surface 13b or the top surface 13a of the Dove prism 13.
  • the height of the Dove prism 13 (that is, the distance of the Dove prism 13 in the direction perpendicular to the first light-transmitting layer 3) ranges from 100 ⁇ m to 500 ⁇ m, then the height of the input waveguide 11 is set
  • the value range, the value range of the heights of the plurality of curved waveguides 211 included in the array waveguide 21, and the value range of the heights of the plurality of guide waveguides 121 included in the output waveguide array 12 are both 0.8 ⁇ m to 1.5 ⁇ m.
  • the height of the input waveguide 11 the height of the plurality of curved waveguides 211 included in the array waveguide 21, and the output waveguide array 12 are set
  • the heights of the multiple guide waveguides 121 are all 1 ⁇ m.
  • the light splitting device 100 in some embodiments of the present disclosure performs light effect estimation as follows.
  • the incident light (such as collimated light) is incident on the incident slope 13c of the Dove prism 13 at an angle ⁇ 33.75 °, and is transmitted to the input waveguide 11 by reflection from the incident slope 13c.
  • the incident light there are two aspects of light efficiency loss: on the one hand, during the process of incident light rays entering the Dove prism 13, part of the incident light rays are reflected by the bottom surface 13b of the Dove prism 13 and fail to enter the Dove prism 13, that is, the part of the incident light cannot be incident on the incident slope 13c; on the other hand, the height of the Dove prism 13 (that is, the Dove prism 13 is directed along the first light-transmitting layer 3 toward the second light-transmitting layer 4 The distance) is relatively small, usually only a few hundred nanometers, which easily makes the incident slope 13c of the Dove prism 13 small and makes it difficult to reflect all incident light, that is, it is difficult to introduce all incident light into the input waveguide 11.
  • the array waveguide 21 includes a plurality of first curved waveguides 211 (such as arc-shaped waveguides). During the process of the array waveguide 21 diffracting and dispersing the incident light reflected by the incident slope 13c, part of the light will be lost. Exemplarily, the portion of the incident light lost by the plurality of first curved waveguides 211 is about 30%, and then about 70% of the incident light reflected by the incident slope 13c is diffracted by the array waveguide 21 into multiple spectra line.
  • first curved waveguides 211 such as arc-shaped waveguides
  • the above multiple spectral lines are transmitted through the output waveguide array 12 (eg, the input waveguide array 12 includes a plurality of arc-shaped waveguides) to the exit slope 13d to be reflected by the exit slope 13d, thereby exiting the Dove prism 13,
  • the multiple spectral lines will have a partial loss during the transmission of the output waveguide array 12. For example, if the loss in this part is 10% of the multiple spectral lines, 90% of the multiple spectral lines are emitted from the Dove prism 13.
  • the above optical fiber is used to provide light passing through the first light-transmitting layer 3 to the input waveguide 11, and the light effect entering the input waveguide 11 is also It can be approximated as 20% (the light efficiency here usually depends on the radius of the light spot of the optical fiber).
  • the light efficiency estimate is about 90% (the light efficiency here generally depends on the characteristics and type of the grating)
  • the light efficiency of the output waveguide array 12 is estimated to be 90%
  • the Dove prism 13 is used to transmit incident light, and the array waveguide 21 located on the top surface 13a of the Dove prism 13 is used. Dispersing the incident light into multiple spectral lines, and using the Dove prism 13 to extract multiple spectral lines is beneficial to improving the light efficiency of the multiple spectral lines that are taken out.
  • the above-mentioned dispersion grating 2 is a concave grating 22 formed on the top surface 13 a of the Dove prism 13.
  • the Roland circle R of the concave grating 22 has a plurality of light focusing points O.
  • the output waveguide array 12 includes a plurality of guide waves 121 arranged in a one-to-one correspondence with the plurality of spectral lines.
  • the plurality of guide waveguides 121 correspond to the plurality of light focusing points J one-to-one.
  • the Roland circle R has three light focusing points J, namely a first light focusing point J1, a second light focusing point J2 and a third light focusing point J3, then the output waveguide array 12 includes three guide waveguides 121, three The guide waveguides 121 are provided at the three light focusing points J in one-to-one correspondence to respectively guide the spectral lines focused on the corresponding light focusing point J.
  • the above-mentioned concave grating 22 is also called Rolland grating.
  • the concave grating 22 can diffract the light incident on itself and focus the diffracted light.
  • the manufacturing process of the concave grating 22 is relatively simple. For example, a concave optical glass is used, and a series of equidistant lines are scribed on the concave surface of the concave optical glass to form the concave grating 22 with two functions of diffraction and focusing.
  • the Roland circle R of the concave grating 22 refers to a circle having the same diameter as the radius of curvature of the concave grating 22, and the tangent point of the concave surface of the concave grating 22 and the Roland circle R is the center position of the concave grating 22.
  • the optical path of the beam splitter 100 that uses the concave grating 22 as the dispersion grating 2 is: incident light rays pass through the first light-transmitting layer 3 to the incidence slope of the Dove prism 13 according to the constraints of ⁇ 56.25 ° and ⁇ 33.75 ° 13c, after being reflected by the incident slope 13a, it enters the input waveguide 11 (here, the input waveguide 11 is a curved waveguide), and enters the concave grating 22 in a direction parallel to the bottom surface 13b or the top surface 13a of the Dove prism 13 ,
  • the incident light rays are diffracted by the concave grating 22 to form a plurality of spectral lines, which are respectively focused on the corresponding light focusing point J of the Rowland circle, and each spectral line passes through the corresponding guide waveguide 121 (here guide waveguide 121 A curved waveguide is used) to be transmitted to the exit slope 13d of the Dove prism 13
  • the optical waveguide body 1 is a split structure.
  • the above-mentioned optical waveguide body 1 includes a reflective structure 14 and a plurality of diffraction gratings 15, a dispersion grating 2 includes a concave grating 22, and an output waveguide array 12 includes a plurality of guided waveguides 121, and the plurality of guided waveguides 121 and the concave grating 22
  • the multiple light focus points J of the Roland circle R correspond to each other.
  • the reflective structure 14 is configured to reflect incident light and provide it to the input waveguide 11.
  • the input waveguide 11 is configured to provide incident light to the concave grating 22.
  • the concave grating 22 is configured to diffract incident light into a plurality of spectral lines, so that each spectral line in the plurality of spectral lines is focused on a corresponding light focusing point J.
  • Each guide waveguide 121 is configured to transmit the corresponding spectral line to the corresponding diffraction grating 15.
  • Each diffraction grating 15 of the plurality of diffraction gratings 15 is configured to control the corresponding spectral line to exit the first light-transmitting layer 3.
  • the structure of the above-mentioned reflective structure 14 includes various types, such as an opaque device with a reflective film, or other optical reflective structure, so as to reflect incident light to the concave grating 22.
  • the installation position of the reflective structure 14 is located on the circumference of the Roland circle R.
  • the optical path of the spectroscopic device 100 is such that incident light enters the reflective structure 14, and the reflection of the reflective structure 14 enters
  • the input waveguide 11 is transmitted into the concave grating 22 through the transmission of the input waveguide 11, and the incident light is diffracted by the concave grating 22 to form a plurality of spectral lines, which are respectively focused on the corresponding light focusing points on the circumference of the Rowland circle R
  • each spectral line is guided to the corresponding diffraction grating 15 by the corresponding guide waveguide 121, and then can pass through the first light-transmitting layer 3 under the control of the corresponding diffraction grating.
  • each guide waveguide 121 individually corresponds to a diffraction grating 15, so that each diffraction grating 15 can be used to independently control the spectral lines transmitted by the corresponding guide waveguide 121, which is beneficial to improve the control of the spectral lines. Accuracy and improve the accuracy of each spectral line passing through the first light-transmitting layer 3.
  • the light splitting device 100 is formed by using the engraving process, that is, the above-mentioned concave grating 22, reflecting structure 14, output waveguide array 12 and diffraction grating 15 are used The engraving process is made.
  • the spectroscopic device 100 is composed of an input waveguide 11, a concave grating 22, a reflective structure 14, an output waveguide array 12, and a diffraction grating 15 that can achieve their respective functions in accordance with the required optical path.
  • some embodiments of the present disclosure also provide a manufacturing method of the light splitting device.
  • the manufacturing method of the spectroscopic device includes S200-S300.
  • the optical waveguide body 1 is configured to transmit incident light to the dispersion grating 2.
  • the dispersion grating 2 is configured to disperse the incident light transmitted by the optical waveguide body 1 into multiple spectral lines, and the optical waveguide body 1 is also configured to change the propagation direction of the multiple spectral lines and exit the multiple spectral lines.
  • the above-mentioned reference numbers for the steps of forming the spectroscopic device 100 do not constitute a limitation on the order of forming the optical waveguide body 1 and forming the dispersion grating 2.
  • the order of the steps for manufacturing and forming the light splitting device 100 is as follows: the optical waveguide body 1 is formed first, and then the dispersion grating 2 is formed.
  • the order of the steps of manufacturing and forming the beam splitter 100 is as follows: the dispersion grating 2 is formed first, and then the optical waveguide body 1 is formed.
  • the beneficial effects that can be achieved by the manufacturing method of the spectroscopic device provided by some embodiments of the present disclosure are the same as the beneficial effects that can be achieved by the spectroscopic device 100 provided by some embodiments described above, and details are not described herein again.
  • the manufacturing method of the above spectroscopic device further includes S100.
  • the first light-transmitting layer 3 is formed.
  • the refractive index of the material used for the first light transmitting layer 3 is smaller than the refractive index of the material used for the optical waveguide body 1 and the refractive index of the material used for the dispersion grating 2.
  • the first light-transmitting layer 3 is made of a glass substrate, or made of materials such as optical glass or transparent resin.
  • the first light-transmitting layer 3 is formed before forming the optical waveguide body 1 and the dispersion grating 2.
  • the manufacturing method of the above spectroscopic device further includes S400.
  • a second light-transmitting layer 4 is formed.
  • the first light-transmitting layer 3 and the second light-transmitting layer 4 are oppositely arranged, and there is a certain distance between the two.
  • the optical waveguide body 1 is located between the first light transmitting layer 3 and the second light transmitting layer 4, and the dispersion grating 2 is located between the second light transmitting layer 4 and the optical waveguide body 1.
  • the refractive index of the material used for the second light-transmitting layer 4 is smaller than the refractive index of the material used for the optical waveguide body 1 and the refractive index of the material used for the dispersion grating 2.
  • the second light-transmitting layer 4 is made of a glass substrate, or made of resin (such as photoresist), SiO 2 or other materials.
  • the second light-transmitting layer 3 is formed after forming the optical waveguide body 1 and the dispersion grating 2.
  • the above-mentioned optical waveguide body 1 is a Dove prism 13 and the dispersion grating 2 is an array waveguide 21.
  • the above-mentioned formation of the optical waveguide body 1 and formation of the dispersion grating 2 include S210-S220 .
  • a waveguide layer 5 is formed on one surface of the first light-transmitting layer 3, and the refractive index of the material used for the waveguide layer 5 is greater than that of the first light-transmitting layer 3
  • the refractive index of the material is, for example, SiNx (silicon nitride).
  • a magnetron sputtering process or a plasma-enhanced chemical vapor deposition method is used to form a waveguide material layer 5 on one side surface of the first light-transmitting layer 3.
  • the Dove prism 13 has an incident slope 13c and an exit slope 13d.
  • the incident slope 13 a is configured to provide the input waveguide 11 while reflecting incident light transmitted to the Dove prism 13.
  • the input waveguide 11 is configured to supply the incident light reflected by the incident slope 13c to the array waveguide 21.
  • the output waveguide array 12 is configured to guide a plurality of spectral lines, and provide the plurality of spectral lines to the emission slope 13d.
  • the exit slope 13d is configured to reflect the plurality of spectral lines and derive the Dove prism 13.
  • the waveguide layer 5 is used to fabricate the input waveguide 11, the array waveguide 21, and the output waveguide array 12 that form the Dove prism 13 and the top surface 13 a of the Dove prism 13. Including S221 ⁇ S223.
  • an optical mask 6 is provided above the waveguide layer 5.
  • the optical reticle has a pattern that corresponds one-to-one to the Dove prism 13, the input waveguide 11, the array waveguide 21, and the output waveguide array 12.
  • the waveguide layer 5 is processed using the optical mask 6 to obtain the Dove prism 13 and the input waveguide 11, array waveguide 21, and output waveguide array 12 on the top surface 13a of the Dove prism 13.
  • the incident slope 13c and the bottom surface 13b of the Dove prism 13 have a chamfer ⁇ , and the sum of the angle ⁇ and the incident angle ⁇ of the incident slope 13c of the Dove prism 13 is equal to 90 °, and the bottom surface of the Dove prism 13
  • the incident angle ⁇ of 13b arcsin (n 2 / n air ⁇ sin ⁇ ); n 2 is the refractive index of the material used for the first light-transmitting layer 3, and n air is the refractive index of air.
  • the waveguide layer 5 is processed by a dry etching process to obtain the Dove prism 13 and the input waveguide 11 and the array waveguide located on the top surface 13a of the Dove prism 13 21 ⁇ Outputwaveguide array12.
  • the optical reticle 6 has been completed before the above S221. Therefore, the Dove prism 13, the input waveguide 11, the array waveguide 21, and the output waveguide array 12 can be completed in one dry etching process.
  • the dry etching process is an inductively coupled plasma (Inductive Coupled Plasma Emission Spectrometer, ICP for short) dry etching process, or other achievable dry etching process.
  • Step S223 Remove the optical mask 6.
  • the method of removing the optical mask 6 is determined according to the material of the optical mask 6, and will not be described in detail here.
  • an optical mask 6 is provided, including S2211-S2214.
  • a metal thin film 7 is formed on the surface of the waveguide layer 5 facing away from the first light-transmitting layer 3.
  • a metal film layer 7 on a surface of the waveguide layer 5 facing away from the first light-transmitting layer 3 is adopted by a sputtering process.
  • a photoresist layer 8 is formed on the surface of the metal thin film 7 facing away from the waveguide layer 5.
  • a photoresist layer 8 is formed on the surface of the metal film 7 facing away from the waveguide layer 5 by a spin coating process or a coating process.
  • the photoresist layer 8 is processed by an imprint process to obtain a photoresist mask 81.
  • the photoresist mask 81 has a pattern corresponding one-to-one to the Dove prism 13, the input waveguide 11, the array waveguide 21, and the output waveguide array 12.
  • the process of processing the photoresist layer 8 using an imprinting process includes embossing the Dove prism master, input waveguide master, array waveguide master, and output waveguide array master to the photoresist layer 8 , So that the photoresist layer 8 forms a photoresist mask 81.
  • the imprinting template used by the photoresist mask 81 can be produced in the following manner.
  • etching solution is KOH solution, NaOH solution or HNO3 solution
  • etching solution used for wet etching The etching rate is to obtain a master prism of Dove prism that meets the requirements of the aforementioned Dove prism 211.
  • the embossing of the (111) crystal plane of monocrystalline silicon can form a Daowei prism 13 with a chamfer of 54.7 °
  • the embossing of a (100) crystal plane of single crystal silicon can form a Daowei prism with a chamfer of 47 ° 13.
  • a photoresist mask 81 is used to process the metal thin film 7 to obtain a metal mask 71.
  • the metal mask 71 has a pattern corresponding one-to-one to the Dove prism 13, the input waveguide 11, the array waveguide 21, and the output waveguide array 12.
  • the metal mask 71 and the photoresist mask 81 together constitute the optical mask 6.
  • the metal thin film 7 is made of aluminum (Al), copper (Cu), gold (Au), molybdenum (Mo), or other materials.
  • the metal thin film 7 is etched using a dry etching process.
  • the above-mentioned removal of the optical mask 800 includes: removal of the photoresist mask 81 and removal of the metal mask 71.
  • the photoresist mask 81 is removed by using a chemical solvent, or the photoresist mask 81 is ashed by using an oxygen plasma treatment process.
  • a chemical solvent or other physical method is used to remove the metal mask 71.
  • a photoresist mask 81 is formed by an imprint process, and then the metal thin film 7 is processed using the photoresist mask 81 as a mask to form Metal mask 71.
  • the etching choice based on the metal material and the material selected for the waveguide layer 5 is relatively large, so that the opening sidewall corresponding to the pattern of the metal mask 71 is perpendicular (or nearly vertical) to the first light-transmitting layer 3, so that
  • the shapes of the Dove prism 13, the input waveguide 11, the array waveguide 21, and the output waveguide array 12 can be made more regular, the precision is higher, and it is better for To achieve the dispersion of incident light.
  • the dimensions of the input waveguide 11, the array waveguide 21, and the output waveguide array 12 are micron-sized, so that the above-mentioned input waveguide 11, array In the process of the waveguide 21 and the output waveguide array 12, the production of the input waveguide 11, the array waveguide 21, and the output waveguide array 12 can be completed without using the engraving process, which is beneficial to simplify the manufacturing process of the spectroscopic device 100 and improve the spectroscopic device 100 Production efficiency.
  • the verticality of the sidewall of the concave grating 22 is directly related to the diffraction efficiency, so the manufacturing accuracy of the concave grating 22 is high, and the industrial production The difficulty is greater.
  • the spectroscopic device 100 is manufactured by using the engraving process.
  • some embodiments of the present disclosure also provide a light dispersion method, which uses the light splitting device 100 provided in some embodiments described above.
  • the light dispersion method includes S410-S430.
  • the optical waveguide body 1 receives the incident light and transmits the incident light to the dispersion grating 2.
  • the dispersion grating 2 disperses the incident light to obtain multiple spectral lines.
  • the optical waveguide body 1 changes the propagation direction of multiple spectral lines and emits multiple spectral lines.
  • beneficial effects that can be achieved by the light dispersion methods provided by some embodiments of the present disclosure are the same as the beneficial effects that can be achieved by the light splitting device 100 provided by some embodiments described above, and details are not described herein again.
  • the above-mentioned optical waveguide body 1 is a Dove prism 13
  • the above-mentioned dispersion grating 2 is an array waveguide 21
  • the optical waveguide body 1 further includes an input waveguide 11 and an output waveguide array 12.
  • the above light dispersion method includes S410a to S430a:
  • the incident light enters the incident slope 13c of the Dove prism 13 through the first light-transmitting layer 3, passes through the reflection of the incident slope 13c, and is transmitted to the array waveguide 21.
  • the array waveguide 21 diffracts the incident light to obtain multiple spectral lines.
  • the array waveguide 21 also transmits the plurality of spectral lines to the output waveguide array 12.
  • the output waveguide array 12 guides the plurality of spectral lines to the exit slope 13d of the Dove prism 13.
  • the exit slope 13d of the Dove prism 13 reflects the multiple spectral lines, so that the multiple spectral lines change the propagation direction and are derived from the first light-transmitting layer 3.
  • the optical waveguide body 1 is a split structure, including a reflective structure and a plurality of diffraction gratings, the dispersion grating 2 is a concave grating 22, and the optical waveguide body 1 further includes an input waveguide 11 and an output waveguide array 12 .
  • the above light dispersion method includes S410b to S430b.
  • the incident light passes through the first light-transmitting layer 3 and enters the reflective surface of the reflective structure. After being reflected by the reflective surface, the incident light is transmitted to the input waveguide 11.
  • the input waveguide 11 transmits incident light to the concave surface of the concave grating 22.
  • the concave surface of the concave grating 22 diffracts the incident light to obtain a plurality of spectral lines, which are focused on the light focusing points J of the Roland circle R of the concave grating 22 in one-to-one correspondence.
  • the guide waveguide 121 provided at each light focusing point J guides the corresponding spectral line to the corresponding diffraction grating 15.
  • each diffraction grating 15 controls the corresponding spectral line to pass through the first light-transmitting layer 3 and exit.
  • some embodiments of the present disclosure also provide a spectrometer 1000.
  • the spectrometer 1000 includes the spectroscopic apparatus 100 provided in some embodiments described above.
  • the types of the above spectrometer 1000 include multiple types.
  • the spectrometer 1000 is a conventional spectrometer or a micro spectrometer.
  • the spectrometer 1000 can be applied to spectrum analysis in the fields of physics, chemistry, or biology, and can also be applied to substance detection, calibration, molecular diagnosis, food quarantine, and bacteria classification.
  • the spectroscopic apparatus 100 in the spectrometer 1000 provided by some embodiments of the present disclosure has the same beneficial effects as the spectroscopic apparatus 100 provided in some embodiments described above, which is not repeated here.
  • the above-mentioned light splitting device 100 includes a first light-transmitting layer 3 and a second light-transmitting layer 4 that are oppositely arranged.
  • the collimated light source 200 included in the spectrometer 1000 is configured to provide incident light (ie, collimated light) to the spectroscopic device 100, that is, to provide incident light to the optical waveguide body 1 in the spectroscopic device 100.
  • the collimated light source 200 includes various structures.
  • the collimated light source 200 is a collimated light source that provides light to an optical fiber or a collimated micro LED (Light Emitting Diode, light emitting diode) chip with high collimation.
  • the manufacturing cost of the collimated micro LED chip is relatively low.
  • Choosing the collimated micro LED chip as the collimated light source 200 can effectively reduce the cost of the spectrometer 1000.
  • the color of the incident light provided by the collimated light source 200 is set according to actual conditions. Exemplarily, the incident light is white light, of course, it is not limited to white light.
  • the installation position of the collimated light source 200 in the spectrometer 1000 includes various types.
  • the collimated light source 200 is disposed on the side of the second light-transmitting layer 4 facing away from the first light-transmitting layer 3, that is, the incident light provided by the collimated light source 200 enters the optical waveguide through the second light-transmitting layer 4 Inside the body 1.
  • the collimated light source 200 is disposed on the side of the first light-transmitting layer 3 facing away from the second light-transmitting layer 4, that is, the incident light provided by the collimated light source 200 enters the light through the first light-transmitting layer 3 Within the waveguide body 1.
  • the collimated light source 200 when the collimated light source 200 is disposed on the side of the first light-transmitting layer 3 facing away from the second light-transmitting layer 4, the light exit of the collimating light source 200 and the first light-transmitting layer 3 facing away from the optical waveguide body
  • the side surface of 1 is opposite, so as to ensure that the incident light provided by the collimated light source 200 can enter the optical waveguide body 1.
  • the installation position of the collimated light source 200 on the side of the first light-transmitting layer 3 facing away from the second light-transmitting layer 4 is related to the structure of the optical waveguide body 1.
  • the optical waveguide body 1 is an integrated structure.
  • the optical waveguide body 1 is a Dove prism 13
  • the orthographic projection of the incident slope 13c of the Dove prism 13 on the plane where the first light-transmitting layer 3 is located is at least the light exit of the collimated light source 200 where the first light-transmitting layer 3 is located
  • the orthographic projections of the planes are coincident, which can ensure that the incident light provided by the collimated light source 200 can be directed toward the incident slope 13c, and avoid a large divergence of the incident light.
  • the optical waveguide body 1 is a split structure.
  • the optical waveguide body 1 includes a reflective structure 14.
  • the orthographic projection of the reflective surface of the reflective structure 14 on the plane where the first light-transmitting layer 3 is located at least coincides with the orthographic projection of the light exit of the collimated light source 200 on the plane where the first translucent layer 3 is located. In this way, it can be ensured that the incident light provided by the collimated light source 200 can be directed to the reflective surface of the reflective structure 14 to avoid a large divergence of the incident light.
  • the above spectrometer 1000 when the above spectrometer 1000 is applied to microfluidic detection, the above spectrometer 1000 further includes a microfluidic substrate 300 and a sensing substrate 400.
  • the microfluidic substrate 300 is disposed on the side of the first light-transmitting layer 3 facing away from the second light-transmitting layer 4. And the microfluidic substrate 300 corresponds to the exit positions of the multiple spectral lines. That is, after exiting the spectroscopic device 100, the multiple spectral lines can be incident on the microfluidic substrate 300, so that the microfluidics included in the microfluidic substrate 200 can generate certain physical properties under the irradiation of the multiple spectral lines Changes or chemical changes, so that the multiple spectral lines pass through the microfluidic substrate 300 to obtain microfluidic information in the microfluidic substrate 300.
  • the sensing substrate 400 is corresponding to the microfluidic substrate 300, and the sensing substrate 400 is configured to detect the plurality of spectral lines passing through the microfluidic substrate 300. That is, the plurality of spectral lines emitted from the microfluidic substrate 300 can be incident on the sensing substrate 400 correspondingly, so that the sensing substrate 400 detects the plurality of spectral lines to obtain the microfluid obtained by the plurality of spectral lines Information to enable the detection of microfluidics.
  • the microfluidic substrate 300 and the spectroscopic device 100 are misaligned to set the collimated light source 200 at a position corresponding to the portion of the spectroscopic device 100 beyond the microfluidic substrate 300 to ensure the collimated light source
  • the incident light provided by 200 can enter the spectroscopic device 100 from the side of the first light-transmitting layer 3 facing away from the second light-transmitting layer 4, and the plurality of spectral lines can be away from the second light-transmitting layer from the first light-transmitting layer 3
  • One side of the layer 4 exits to the microfluidic substrate 300, which can make the structure of the spectrometer 1000 more compact, which is beneficial to the miniaturization of the spectrometer 1000.
  • the sensing substrate 400 is also misaligned with the spectroscopic device 100 to allow more positions to accommodate the collimated light source 200, so that the size of the collimated light source 200 The choice is wider.
  • the above microfluidic substrate 300 includes a first base substrate 310 and a reaction cell 320 provided on the side of the first base substrate 310 close to the first light-transmitting layer 3, waste The liquid pool 330 and the plurality of microfluidic channels 340.
  • the reaction cell 320, the waste liquid pool 330 and the plurality of microfluidic channels 340 are located on a surface of the first base substrate 310 close to the first light-transmitting layer 3, which can prevent the microfluid from being affected by gravity.
  • the plurality of microfluidic channels 340 communicate with the reaction tank 320 and the waste liquid tank 340 respectively.
  • a hydrophilic adjustment layer is formed on the inner walls of the plurality of microfluidic channels 340.
  • the multiple microfluidic channels 340 correspond to the multiple spectral lines in one-to-one correspondence.
  • the types of the first base substrate 310 include multiple types.
  • the first base substrate 310 is a flexible substrate, and the flexible substrate is a polydimethylsiloxane (Polydimethylsiloxane, PDMS for short) substrate or a polymethyl methacrylate (PMMA) substrate, of course, it is not limited thereto.
  • the first base substrate 310 is a rigid substrate, and the rigid substrate is a glass substrate or a silicon substrate.
  • the surface of the rigid substrate is usually covered with a photoresist layer.
  • the above reaction cell 320, the plurality of microfluidic channels 340, and the waste liquid pool 330 are formed on the first base substrate 310 using a common exposure and development process, etching process, or other patterning process.
  • the plurality of microfluidic channels 340 are blind holes formed on the first base substrate 310.
  • the radial length and the axial length of the plurality of microfluidic channels 340 are designed according to the bandwidth of a specific spectral line, and the units of the radial length and the axial length are micrometers, nanometers, or angstroms, which are selected according to actual conditions.
  • the inner walls of the plurality of microfluidic channels 340 are formed with a hydrophilic adjusting layer, which can make the microfluid in the microfluidic channel 340 flow or temporarily stay according to experimental requirements.
  • the hydrophilic adjustment layer is a hydrophilic film or a hydrophobic film.
  • the microfluid is a hydrophilic substance
  • the hydrophilic adjustment layer is a Teflon-AF hydrophobic film. In this case, it is possible to prevent the microfluid from adhering to the plurality of microfluidic channels 340 and accelerate the microfluid in the The flow velocity in the multiple microfluidic channels 340.
  • the plurality of microfluidic channels 340 correspond one-to-one to the plurality of spectral lines, that is, the positions of the plurality of microfluidic channels 340 correspond one-to-one to the emission positions of the plurality of spectral lines from the spectroscopic device 100, thus After exiting the spectroscopic device 100, the multiple spectral lines can enter the multiple microfluidic channels 340 in one-to-one correspondence.
  • the plurality of spectral lines are perpendicularly injected into the plurality of microfluidic channels 340 along a direction perpendicular to the first light-transmitting layer 3 to ensure that the plurality of spectral lines can be more Good to test microfluidics.
  • the formation positions of the plurality of microfluidic channels 340 on the first base substrate 310 can be adjusted according to the multiple spectral lines in the exit direction of the spectroscopic device 100.
  • the direction in which the multiple spectral lines are emitted from the spectroscopic device 100 can be adjusted by adjusting the positions of the waveguide input section 11, the dispersion grating 2, and the output waveguide array 13 in the spectroscopic device 100.
  • the microfluidic will react in the reaction cell 320, which may be a chemical reaction or a physical change.
  • the microfluid after the reaction will enter the plurality of microfluidic channels 340.
  • the multiple spectral lines exiting from the spectroscopic device 100 enter the multiple microfluidic channels 340 one-to-one to detect the microfluid after reaction, so that the multiple spectral lines carry microfluidic information.
  • the above-mentioned sensing substrate 400 includes a second base substrate 410 and a plurality of photosensitive detectors 420 provided on a side of the second base substrate 410 close to the first base substrate 310 .
  • the types of the plurality of photosensitive detectors 420 include multiple types.
  • the plurality of photosensitive detectors 420 are charge coupled device image sensors, complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor (CMOS) detector for short) or PIN photodiode detectors, etc.
  • CMOS Complementary Metal Oxide Semiconductor
  • each microfluidic channel 340 located in the plurality of microfluidic channels 340 is in the second Within the range of the orthographic projection of the base substrate 420, that is, each microfluidic channel 340 corresponds to at least one photosensitive detector 420. This can ensure that the microfluidic information carried by each spectral line passing through the corresponding microfluidic channel 340 can be detected by at least one photosensitive detector 420.
  • the distance between the microfluidic substrate 300 and the photosensitive detector 420 is not only related to the signal-to-noise ratio of the photosensitive detector 420, but also related to the light emitting directions of the multiple spectral lines provided by the spectroscopic device 100.
  • the microfluidic substrate 300 when the microfluidic substrate 300 is in close contact with the sensing substrate 400, it can better ensure that multiple spectral lines passing through the microfluidic substrate 300 are detected by the photosensitive detector 420. Based on this, placing multiple photosensitive detectors 420 on the side surface of the second base substrate 410 close to the first base substrate 310 can make the distance between the photosensitive detector 420 and the microfluidic channel 322 as much as possible small.
  • a buffer layer 500 is further provided between the microfluidic substrate 300 and the sensing substrate 400, so that the buffer layer 500 can be used to protect the photosensitive detector 420.
  • the thickness of the functional layer 500 is relatively small, so as to avoid the influence of the buffer layer 500 on spectral line transmission.

Abstract

一种分光装置(100),包括光波导本体(1)和色散光栅(2)。光波导本体(1)配置为传输入射光线至色散光栅(2),色散光栅(2)配置为将光波导本体(1)所传输的入射光线色散成多条谱线,光波导本体(1)还配置为改变多条谱线的传播方向并出射多条谱线。

Description

分光装置及其制作方法、光色散方法和光谱仪
本申请要求于2018年11月02日提交中国专利局、申请号为201811303157.6、申请名称为“一种分光装置及其制作方法、光色散方法和光谱仪”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光检测技术领域,尤其涉及一种分光装置及其制作方法、光色散方法和分光光谱仪。
背景技术
光谱仪是一种利用光探测器测量不同波长谱线的强度的光线检测装置,它的核心组件为分光系统,分光系统可以对所测量的光线进行分光,以将所测量的光线分成可被光探测器探测的多条谱线。
发明内容
一方面,提供一种分光装置。所述分光装置包括光波导本体和色散光栅。所述光波导本体配置为传输入射光线至所述色散光栅,所述色散光栅配置为将所述光波导本体所传输的所述入射光线色散成多条谱线,所述光波导本体还配置为改变所述多条谱线的传播方向并出射所述多条谱线。
在一些实施例中,所述分光装置还包括:相对设置的第一透光层和第二透光层。所述光波导本体位于所述第一透光层和所述第二透光层之间,所述色散光栅位于所述第二透光层与所述光波导本体之间。所述光波导本体所使用的材料的折射率和所述色散光栅所使用的材料的折射率均大于所述第一透光层所使用的材料的折射率,且均大于所述第二透光层所使用的材料的折射率。
在一些实施例中,所述光波导本体包括位于所述色散光栅的入光侧的输入波导,以及位于所述色散光栅的出光侧的输出波导阵列。所述输入波导配置为将所述光波导本体所传输的所述入射光线提供给所述色散光栅,所述输出波导阵列配置为对所述多条谱线进行导向,并出射所述多条谱线。
在一些实施例中,所述输出波导阵列包括与所述多条谱线一一对应的多个导向波导,所述多个导向波导中每相邻的两个导向波导之间具有第一间隔。
在一些实施例中,所述光波导本体包括道威棱镜。所述道威棱镜的底面与所述第一透光层相对设置,所述道威棱镜的顶面与所述第二透光层相对设置,所述输入波导、所述输出波导阵列和所述色散光栅均设在所述道威棱镜的顶面。所述道威棱镜具有入射斜面以及出射斜面;所述入射斜面配置为对所述入射光线进行反射并提供给所述输入波导。所述输入波导配置为将所述入射光线提供给所述色散光栅。所述输出波导阵列配置为对所述多条谱线进行导向,并提供给所述出射斜面。所述出射斜面配置为对所述多条谱线进行反射并导出所述道威棱镜。所述入射斜面和所述底面之间具有倒角ψ,所述倒角ψ与所述入射光线入射至所述入射斜面的入射角α之和等于90°,所述入 射光线入射至所述底面的入射角θ=arcsin(n 2/n air×sinα);其中,n 2为第一透光层所使用的材料的折射率,n air为空气的折射率,所述道威棱镜所使用的材料折射率的取值范围为1.8~1.9,ψ≤56.25°,α≤33.75°。
在一些实施例中,所述色散光栅包括阵列波导,所述阵列波导包括多个第一弯曲波导,所述多个第一弯曲波导中每相邻的两个第一弯曲波导之间具有第二间隔,每相邻的两个所述第一弯曲波导之间具有光程差。
在一些实施例中,所述输出波导阵列包括与所述多条谱线一一对应设置的多个导向波导。所述色散光栅包括凹面光栅,所述凹面光栅的罗兰圆具有多个光线聚焦点。所述多个导向波导与所述多个光线聚焦点一一对应。
在一些实施例中,所述光波导本体包括反射结构和多个衍射光栅,所述色散光栅包括凹面光栅,所述输出波导阵列包括多个导向波导。所述多个导向波导与所述凹面光栅的罗兰圆所具有的多个光线聚焦点一一对应。所述反射结构配置为对所述入射光线进行反射并提供给所述输入波导。所述输入波导配置为将所述入射光线提供给所述凹面光栅。所述凹面光栅配置为将所述入射光线衍射成多条谱线,使得所述多条谱线中的每条谱线聚焦在对应的光线聚焦点。所述多个导向波导中的每个导向波导配置为将对应的谱线传输至对应的衍射光栅。所述多个衍射光栅中的每个衍射光栅配置为控制对应的谱线射出所述第一透光层。
另一方面,提供一种分光装置的制作方法。所述分光装置的制作方法包括:形成光波导本体,形成色散光栅。所述光波导本体配置为传输入射光线至所述色散光栅;所述色散光栅配置为将所述光波导本体所传输的所述入射光线色散成多条谱线,所述光波导本体还配置为改变所述多条谱线的传播方向并出射所述多条谱线。
在一些实施例中,所述的分光装置的制作方法,还包括:形成第一透光层。所述第一透光层所使用的材料的折射率小于所述光波导本体所使用的材料的折射率和所述色散光栅所使用的材料的折射率。所述分光装置的制作方法,还包括:形成第二透光层。所述第二透光层与所述第一透光层相对设置;所述光波导本体位于所述第一透光层和所述第二透光层之间,所述色散光栅位于所述第二透光层和所述光波导本体之间;所述第二透光层所使用的材料的折射率小于所述光波导本体所使用的材料的折射率和所述色散光栅所使用的材料的折射率。
在一些实施例中,所述光波导本体包括道威棱镜,所述色散光栅包括阵列波导。所述形成光波导本体,形成色散光栅,包括:在所述第一透光层的一侧表面形成波导层,所述波导层所使用的材料的折射率大于所述第一透光层所使用的材料的折射率。利用所述波导层,制作形成道威棱镜以及位于所述道威棱镜的顶面的输入波导、阵列波导和输出波导阵列。所述道威棱镜具有入射斜面以及出射斜面。所述入射斜面配置为对所述入射光线进行反射并提供给所述输入波导。所述输入波导配置为将所述入射光线提供给所述阵列波导。所述输出波导阵列配置为对所述多条谱线进行导向,并提供给所述出射斜面。所述出射斜面配置为对所述多条谱线进行反射并导出所述道威棱镜。
在一些实施例中,利用所述波导层,制作形成道威棱镜以及位于所述道威棱镜的顶面的输入波导、阵列波导和和输出波导阵列,包括:在所述波导层的上方,提供光 学掩膜版;其中,所述光学掩膜版具有与所述道威棱镜、所述输入波导、所述阵列波导和所述输出波导阵列一一对应的图案。利用所述光学掩膜版,对所述波导层进行处理,获得所述道威棱镜以及位于所述道威棱镜的顶面的所述输入波导、所述阵列波导和所述输出波导阵列;其中,所述道威棱镜的入射斜面和底面之间具有倒角ψ,所述倒角ψ与所述入射光线入射至所述道威棱镜的入射斜面的入射角α之和等于90°,所述入射光线入射至所述道威棱镜的底面入射角θ=arcsin(n 2/n air×sinα);n 2为第一透光层所使用的材料的折射率,n air为空气的折射率。去除所述光学掩膜版。
在一些实施例中,在所述波导层的上方,提供光学掩膜版,包括:在所述波导层的背离所述第一透光层的一侧表面形成金属薄膜。在所述金属薄膜的背离所述波导层的一侧表面形成光刻胶层。采用压印工艺对所述光刻胶层进行处理,获得光刻胶掩膜版,其中,所述光刻胶掩膜板具有与所述道威棱镜、所述输入波导、所述阵列波导和所述输出波导阵列一一对应的图案。采用所述光刻胶掩膜版,对所述金属薄膜进行处理,获得金属掩膜版;其中,所述金属掩膜版具有与所述道威棱镜、所述输入波导、所述阵列波导和所述输出波导阵列一一对应的图案,所述金属掩膜版和所述光刻胶掩膜版构成所述光学掩膜版。所述去除所述光学掩膜版,包括:去除所述光刻胶掩膜版,去除所述金属掩膜版。
又一方面,提供一种光色散方法。所述色散方法应用如上述一些实施例中提供的分光装置。所述光色散方法包括:所述光波导本体接收入射光线,并将所述入射光线传输至色散光栅。所述色散光栅将所述入射光线进行色散,获得多条谱线。所述光波导本体改变所述多条谱线的传播方向,并出射所述多条谱线。
又一方面,提供一种光谱仪。所述光谱仪包括如上述一些实施例中提供的分光装置。
在一些实施例中,所述分光装置包括相对设置的第一透光层和第二透光层。所述光谱仪还包括:准直光源、微流基板和感应基板。所述准直光源配置为提供入射光线至所述光波导本体。所述微流基板设置在所述第一透光层的背离所述第二透光层的一侧,且与所述多条谱线的出射位置对应。所述感应基板与所述微流基板对应设置,且所述感应基板配置为对穿过所述微流基板的所述多条谱线进行检测。
在一些实施例中,所述微流基板包括第一衬底基板,以及位于所述第一衬底基板的靠近所述第一透光层的一侧的反应池、废液池和多个微流通道;所述多个微流通道分别与所述反应池和所述废液池相互连通。所述多个微流通道的内壁形成有亲水调节层。所述多个微流通道与所述多条谱线一一对应。所述感应基板包括第二衬底基板,以及位于所述第二衬底基板的靠近所述第一衬底基板的一侧的多个光敏探测器。所述多个光敏探测器中的每个光敏探测器在所述第二衬底基板上的正投影,位于所述多个微流通道中的一个微流通道在所述第二衬底基板上的正投影的范围内。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的一些示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开的一些实施例提供的一种分光装置的结构示意图;
图2为本公开的一些实施例提供的一种道威棱镜的结构示意图;
图3为本公开的一些实施例提供的一种道威棱镜的结构参数标引图;
图4为本公开的一些实施例提供的一种输入波导、阵列波导和输出波导阵列的结构示意图;
图5为本公开的一些实施例提供的一种凹面光栅的结构示意图;
图6为本公开的一些实施例提供的一种道威棱镜、输入波导、阵列波导和输出波导阵列的结构示意图;
图7为本公开的一些实施例提供的一种道威棱镜、输入波导、阵列波导和输出波导阵列的结构示意图;
图8为本公开的一些实施例提供的一种输入波导、阵列波导和输出波导阵列的电镜图;
图9为本公开的一些实施例提供的一种反射结构、输入波导、凹面光栅、输出波导阵列和衍射光栅的结构示意图;
图10为本公开的一些实施例提供的一种光谱仪的结构示意图;
图11为本公开的一些实施例提供的一种光谱仪的工作原理框图;
图12为本公开的一些实施例提供的一种分光装置的制作流程图;
图13为本公开的一些实施例提供的一种分光装置的制作方法的流程图;
图14为本公开的一些实施例提供的另一种分光装置的制作方法的流程图;
图15为本公开的一些实施例提供的又一种分光装置的制作方法的流程图;
图16为本公开的一些实施例提供的又一种分光装置的制作方法的流程图;
图17为本公开的一些实施例提供的一种光色散方法的流程图。
具体实施方式
下面将结合本公开的一些实施例中的附图,对本公开的一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。
相关技术中,光谱仪中的分光系统通常分为色散式分光系统和调制式分光系统;其中,色散式分光系统一般采用棱镜、光栅、干涉仪等实现光线的分光。目前,色散式分光系统通常采用不同类型的光栅的组合的方式,或者采用光栅与棱镜组合的方式,对测量光线进行分光,以提高分光系统的分光效率。但是这样会使得分光系统的结构复杂,制作难度较大,成本比较高。而且,在将光谱仪应用于微流体检测的过程中,还需要采用微纳结构将经分光系统色散形成的多条谱线从分光系统取出,且取出光效较低。
请参阅图10,本公开的一些实施例提供了一种光谱仪1000。该光谱仪1000包括分光装置100和准直光源200。准直光源200配置为提供入射光线(如复色光)至分光装置100,分光装置100配置为将准直光源200所提供的入射光光线色散成不同波长的单色光(如多条谱线),并改变该多条谱线的传播方向以取出该多条谱线。
在将上述光谱仪1000应用于微流体检测的过程中,分光装置100所取出的多条谱线能够按照预设的方向传输至微流体,这样可以使得微流体在该多条谱线的照射下发生一定的物理变化或化学变化,进而使得多条谱线在穿过微流体后获取所检测的微流 体的信息,实现微流体的检测。此处,获取了所检测的微流体的信息的谱线称为光检测信号。
下面结合附图对本公开的一些实施例提供的光谱仪1000的结构进行示意性说明。
如图1~图9所示,本公开的一些实施例提供一种分光装置100。分光装置100包括光波导本体1和色散光栅2。光波导本体1配置为传输入射光线至色散光栅2,色散光栅2配置为将光波导本体1所传输的入射光线色散成多条谱线,光波导本体1还配置为改变所述多条谱线的传播方向并出射所述多条谱线。
此处,色散光栅2与光波导本体1之间的相对位置关系根据光路走向设置。
在将上述分光装置100应用于微流体检测的过程中,入射光线经光波导本体1传输至色散光栅2后,被色散光栅2色散成多条谱线,该多条谱线被光波导本体1改变传播方向,可以直接出射至微流体,使得微流体在该多条谱线的照射下发生一定的物理变化或化学变化,进而使得多条谱线在穿过微流体时后获取所检测的微流体的信息,这样便可以实现微流体的检测。此处,入射光线一般为复色光,例如白光。
由此,本公开的一些实施例提供的分光装置100,通过设置光波导本体1和色散光栅2,即可利用色散光栅2将光波导本体1所传输的入射光线色散成多条谱线,并利用光波导本体1将所述多条谱线取出,这样可以有效简化分光装置100的结构;而且,在将分光装置100应用于微流体测量的过程中,只需将微流体设置在光波导本体1出射所述多条谱线的相应位置处,就可以使得多条谱线传输至微流体,实现微流体的检测,而无需另外设置微钠结构取出多条谱线,有利于简化微流体检测的流程。此外,通过利用光波导本体1取出所述多条谱线,可以使得所取出的所述多条谱线的光效与色散后形成的所述多条谱线的光效近似相等,有效降低所取出的所述多条谱线的光效的损失。
在一些实施例中,如图1所示,上述分光装置100还包括:相对设置的第一透光层3和第二透光层4。光波导本体1位于第一透光层3和第二透光层4之间,色散光栅2位于第二透光层4与光波导本体1之间。并且,光波导本体1所使用的材料的折射率和色散光栅2所使用的材料的折射率均大于第一透光层3所使用的材料的折射率,且均大于第二透光层4所使用的材料的折射率。这样第一透光层3的靠近第二透光层4的一侧表面和第二透光层4的靠近第一透光层3的一侧表面可形成全反射界面,若入射光线经光波导本体1入射至第一透光层3或第二透光层4的角度大于临界角,入射光线会在第一透光层3和第二透光层4之间形成全反射。此处,临界角指的是折射角为90°的入射角。
本公开的一些实施例中,将色散光栅2和光波导本体1设在第一透光层3和第二透光层4之间,这样可以有效减少或避免入射光线在传输过程产生漏光的现象,减少或避免多条谱线在传输过程产生漏光的现象。
在一些示例中,第一透光层3的结构包括多种。示例性的,第一透光层3采用与液晶显示器或有机电致发光显示器所使用的玻璃基板相同的玻璃基板,或,采用具有较低折射率的光学玻璃或透明树脂等材料制作形成的薄膜,但不仅限于此。
此处,第一透光层3的厚度根据实际需要选择设置,本公开的一些实施例对此不作限定。在一些示例中,上述分光装置100应用于微流体检测,考虑到所述多条谱线 在光波导本体1的作用下通过第一透光层3入射至微流体,第一透光层3的厚度较小,以减少所述多条谱线在通过第一透光层3的过程中发生混色的机率。示例性的,第一透光层3采用折射率取值范围为1.4~1.58(例如1.52)的3t光学玻璃制作形成,第一透光层3的厚度的取值范围为0.2mm~0.4mm。
在一些示例中,第二透光层4的结构包括多种。示例性的,第二透光层4采用与液晶显示器或有机电致发光显示器所使用的玻璃基板相同的玻璃基板,或,采用具有较低折射率的光刻胶或低折射率的SiO 2等材料制作形成的薄膜,但不仅限于此。
此处,第二透光层4的厚度根据实际情况选择设置,本公开的一些实施例对此不作限定。在一些示例中,上述第二透光层4的厚度较小,以减少第二透光层4对所述多条谱线的传播方向的影响,并且,使得所述多条谱线在改变传输方向后能够准确的入射至微流体。示例性的,上述第二透光层4所使用的材料为折射率取值范围为1.20~1.30(例如1.25)的酚醛树脂或光刻胶,第二透光层4的厚度的取值范围为0.1mm~2mm。
此外,上述第一透光层3的结构和第二透光层4的结构尽肯能的平整,且二者尽可能保证平行,以避免因第一透光层3和第二透光层4之间具有较大夹角而影响入射光线或所述多条谱线的传输。
在一些实施例中,如图1、图4、图6~图8所示,上述光波导本体1包括位于色散光栅2的入光侧的输入波导11,以及位于色散光栅2的出光侧的输出波导阵列12。
在一些示例中,输入波导11为弯曲呈弧状的波导。
该输入波导11配置为将光波导本体1所传输的入射光线提供给色散光栅2,输出波导阵列12配置为对所述多条谱线进行导向,使得光波导本体1改变所述多条谱线的传播方向,并从第一透光层3射出。此处,色散光栅2的入光侧指的是色散光栅2接收入射光的一侧;色散光栅2的出光侧指的是色散光栅2射出所述多条谱线的一侧。
通过设置输入波导11,以利用输入波导11将光波导本体1所传输的入射光线提供给色散光栅2,可以减少入射光线在传输至色散光栅2的过程中的损失。通过设置输出波导阵列12,以利用输出波导阵列12对所述多条谱线进行导向,避免所述多条谱线发生相互干扰(如混光),从而可以降低所述多条谱线的光损失。
在一些示例中,输入波导11、色散光栅2和输出波导阵列12之间的相对位置关系,根据光路走向进行设置。这样可以保证在较低入射光线和所述多条谱线的损失的前提下,将入射光线色散成多条谱线,并将所述多条谱线经第一透光层3导出。
在一些实施例中,请参阅图4,上述输出波导阵列12包括与所述多条谱线一一对应的多个导向波导121,所述多个导向波导121中每相邻的两个导向波导121之间具有第一间隔A1。
每个导向光波导121配置为将所述多条谱线中对应的谱线进行导向,使得对应的谱线经第一透光层3导出。
每个导向波导121独立设置,这样可以使每个导向波导121对相应的谱线进行独立的传输,避免每相邻的两条谱线产生串扰。
在本公开的一些实施例中,光波导本体1包括多种结构。示例性的,光波导本体1为一体结构,或光波导本体1为分体结构。在一些实施例中,如图2~图3以及图6 所示,上述光波导本体1为一体结构。
此处,光波导本体1包括道威棱镜13,该道威棱镜13的外观呈梯台形状。道威棱镜13是一种像旋转器,也即,当某一复色光线穿过道威棱镜13后,该复色光线的传播方向翻转180°。
请参阅图2和图10,上述道威棱镜13的底面13a与第一透光层3相对设置,道威棱镜13的顶面13b与第二透光层4相对设置,输入波导11、色散光栅2和输出波导阵列12均设在道威棱镜13的顶面13b。示例性的,采用压印工艺或刻蚀工艺等方式将输入波导11、色散光栅2和输出波导阵列12形成在道威棱镜13的顶面13b,也即输入波导11、色散光栅2和输出波导阵列12的材料与道威棱镜13的材料相同。上述道威棱镜13具有入射斜面13c以及出射斜面13d。入射斜面13c配置为对入射光线进行反射,并提供给输入波导11。
输入波导11配置为将入射光线提供给色散光栅2。输出波导阵列12配置为对所述多条谱线进行导向,并将所述多条谱线提供给出射斜面13d。出射斜面13d配置为对所述多条谱线进行反射并导出道威棱镜13。
道威棱镜13的入射斜面13c和底面13b之间具有倒角ψ,该倒角ψ与入射光线入射至道威棱镜13的入射斜面13c的入射角α之和等于90°,入射光线入射至道威棱镜13的底面13b的入射角θ=arcsin(n 2/n air×sinα),其中,n 2为第一透光层3所使用的材料的折射率,n air为空气的折射率。这样可以确保入射光线穿过第一透光层3进入光波导本体1后,直至色散为多条谱线的过程中,以及所述多条谱线传输至出射斜面13d的过程中,入射光线以及所述多条谱线不会穿过第一透光层3和第二透光层4射向分光装置100外。
在一些示例示例中,道威棱镜13所使用的材料的折射率的取值范围为1.8~1.9。倒角ψ≤56.25°,入射斜面13c的入射角α≤33.75°。示例性的,道威棱镜13采用折射率为1.8的SiNx制作形成,ψ=54.7°或47°,当然ψ也可选择其他任一小于等于56.25°的角度。
此处,色散光栅2包括多种结构,色散光栅2所采用的结构根据实际需要选择设置,本公开的一些实施例对此不作限定。
在一些示例中,如图4和图6所示,上述色散光栅2为形成在道威棱镜211顶面的阵列波导21,其中,阵列波导21和输入波导11、输出波导阵列12构成的结构可以称为阵列波导光栅(Arrayed Waveguide Grating,简称AWG)。
阵列波导21包括多个第一弯曲波导211,示例性的,所述多个第一弯曲波导211中的每个第一弯曲波导211为弧状波导,这样可以减少入射光在色散的过程中产生的光损耗。当然,每个第一弯曲波导211也可以选择能够减少光损耗的其他波导。
每相邻的两个弯曲波导211之间具有第二间隔A2,且每相邻的两个弯曲波导211之间具有光程差,该光程差保持恒定,这样可以使得入射光线通过阵列波导21过程中,在阵列波导21中发生衍射,色散形成多条谱线。由于每相邻的两个弯曲波导211之间具有光程差,这样可以使得由阵列波导21形成的色散光栅2工作在高阶模,进而不需要较大的焦距便可获得高分辨率的多条谱线。由此,在将阵列波导21应用于上述分光装置100中的情况下,上述分光装置100不仅具有较高的分光性能,还有利于向小型 化的方向发展,进而可以降低分光装置100的生产成本。
如图4和图6所示,阵列波导21中所包括的多个弯曲波导211的延伸方向根据上述道威棱镜13所导出的多条谱线的导出角度或者传播方向设定。例如:上述道威棱镜13在第一透光层3所在平面的正投影的形状为梯形,定义该梯形的底边的长度方向为道威棱镜13的长度方向,且上述多个弯曲波导211的延伸方向与道威棱镜13的长度方向相同,此时,所述多条谱线在经过道威棱镜13的出射斜面13d的反射后,可以沿垂直于第一透光层3的方向从道威棱镜13中射出。
在一些实施例中,如图4和图6所示,上述光波导本体1为道威棱镜13,上述色散光栅2为阵列波导21,上述输出波导阵列12包括多个导向波导121。入射光线穿过第一透光层3进入道威棱镜13,并射向入射斜面13c,入射斜面13c将入射光线反射至输入波导11,输入波导11将入射光线传输至阵列波导21,使得所传输的入射光线入射到阵列波导21内,阵列波导21所包括的多个第一弯曲波导21中每相邻的两个第一弯曲波导21有一定光程差,因此,入射光线会在阵列波导21内发生衍射,形成多条谱线,该多条谱线再由输出波导阵列12所包括的多个导向波导121一一对应的传输至出射斜面13d。出射斜面13d将多条谱线进行反射,使得多条谱线导出道威棱镜13并从第一透光层3射出。
例如:以[380nm,780nm]的白光入射,实现1nm分辨率色散为例,则白光经过色散后,可形成(780-380)/1=400条谱线,相应的则需要有400个导向波导,以每个导向的宽度为10μm设计,每相邻的两个导向波导121之间所具有的第一间隔A1的宽度为1μm,则需要400×11=4400μm的宽或长的空间排布输出波导阵列12。
需要说明的是,每个第一弯曲波导21和每个导向波导121的厚度(该厚度方向与第一间隔A1宽度方向相同)可以为纳米级或微米级,但为了降低第一弯曲波导21的制作难度,每个第一弯曲波导21和每个导向波导121的厚度为微米级,这样阵列波导21的加工难度从多个纳米光栅的加工套刻降为微米级阵列光波导加工,使得上述分光装置100的工业化生产成为可能。
图10示出了本公开的一些实施例提供的分光装置100的光路图。如图6所示,该分光装置100中所包括的光波导本体1包括道威棱镜13,色散光栅2为采用压印工艺或刻蚀工艺形成在道威棱镜13的顶面13a的阵列波导21,上述输入波导11为采用压印工艺或刻蚀工艺形成在道威棱镜13的顶面13a的第二弯曲波导,输出波导阵列12为采用压印工艺或刻蚀工艺形成在道威棱镜13的顶面13a的多个导向波导121。分光装置100中的光路走向为:入射光线按照ψ≤56.25°且α≤33.75°的约束条件,穿过第一透光层3射向道威棱镜13的入射斜面13c,经过入射斜面13a的反射,射入输入波导11,并沿平行于道威棱镜13的底面13b或顶面13a的方向射入阵列波导21,入射光线经过阵列波导21的衍射,色散成多条谱线,该多条谱线一一对应的通过多个导向波导121传输至道威棱镜13的出射斜面13d,并经出射斜面13d反射,沿垂直于第一透光层3的方向射出道威棱镜13和第一透光层3。
入射光线入射至入射斜面13c并被入射斜面13c反射后,需要沿平行于道威棱镜13的底面13b或顶面13a的方向射入至阵列波导21。考虑到道威棱镜13的实际制作工艺和结构,入射光线经道威棱镜13的入射斜面13c的反射后,所反射的入射光线通 常会沿斜向上的方向射入阵列波导21。
在一些示例中,本公开的一些实施例提供的分光装置100还会通过输入波导11对经入射斜面13a所反射的入射光线的传播方向进行调整,使得射入阵列波导21的入射光线尽量以平行于道威棱镜13的底面13b或顶面13a的方式进入阵列波导21。
在另一些示例中,本公开的一些实施例提供的分光装置100,还通过设定上述输入波导11的高度(也即输入波导11沿垂直于第一透光层3的方向的距离)、阵列波导21所包括的多个弯曲波导211的高度(也即所述多个弯曲波导的沿垂直于第一透光层3的方向的距离)和上述输出波导阵列12所包括的多个导向波导121的高度(也即所述多个导向波导121沿垂直于第一透光层3的方向的距离),使得经道威棱镜13的入射斜面13c反射的入射光,能够沿平行(或趋近于平行)于道威棱镜13的底面13b或顶面13a的方向进入阵列波导21内。
示例性的,道威棱镜13的高度(也即道威棱镜13沿垂直于第一透光层3的方向的距离)的取值范围为100μm~500μm,则设定输入波导11的高度的取值范围、阵列波导21所包括的多个弯曲波导211的高度的取值范围和输出波导阵列12所包括的多个导向波导121的高度的取值范围均为0.8μm~1.5μm。示例性的,考虑到制作工艺的可实现性和入射光线进入阵列波导21的要求,设定输入波导11的高度、阵列波导21所包括的多个弯曲波导211的高度和输出波导阵列12所包括的多个导向波导121的高度均为1μm。
本公开的一些实施例中的分光装置100按照如下方式进行光效预估。
第一:入射光线(如准直光)以α≤33.75°的角度射向道威棱镜13的入射斜面13c,并经入射斜面13c的反射传输至输入波导11中。在这个过程中存在两个方面的光效损失:一方面,入射光线在入射至道威棱镜13的过程中,部分入射光线被道威棱镜13的底面13b反射,未能入射至被道威棱镜13内,也即该部分入射光线无法射向入射斜面13c;另一方面,道威棱镜13的高度(也即道威棱镜13在沿第一透光层3指向第二透光层4的方向的距离)比较小,通常仅有几百纳米,这样容易使得道威棱镜13的入射斜面13c较小而难以对全部的入射光线进行反射,也即难以将全部的入射光线导入输入波导11内。此处,在上述入射光线的传输过程中,光效大约为15%~25%,例如为20%。
第二:阵列波导21包括多个第一弯曲波导211(如弧状波导),在阵列波导21对经入射斜面13c所反射的入射光线进行衍射色散的过程中,会有部分光线被损耗。示例性的,被多个第一弯曲波导211损耗的该部分入射光线大约为30%,则经入射斜面13c反射的入射光线中,大约有70%的入射光线被阵列波导21衍射成多条谱线。
第三:上述多条谱线在经输出波导阵列12(如输入波导阵列12包括多个弧形波导)传输至出射斜面13d以被被出射斜面13d反射,从而射出道威棱镜13的过程中,多条谱线会在输出波导阵列12的传输过程中有部分的损耗。例如,该部分的损耗为多条谱线中的10%,则有90%的多条谱线从道威棱镜13中射出。
综上可知:本公开的一些实施例所提供的分光装置100的光效为I output=I in×20%×70%×90%=12.6%I in,其中,I in为入射光线的光效,I output为从道威棱镜13射出的多条谱线的光效。
若采用常规的光纤和导光片对入射光进行传输,在实际分光过程中,利用上述光纤将穿过第一透光层3的光线提供给输入波导11,则进入输入波导11的光效也可以近似认为20%(此处的光效通常取决于光纤出光光斑半径),采用光栅对光线进行色散时,光效估值约90%(此处的光效通常取决于光栅的特性和类型),输出波导阵列12的光效估计为90%,采用光栅取出色散后的谱线,取出谱线的过程中光效估计约为20%,则最终得到的谱线的光效为:I output=I in×20%×90%×90%×20%=3.24%I in
由上述两种光效预估结果可以发现,本公开的一些实施例提供的分光装置100中,采用道威棱镜13对入射光进行传输,采用位于道威棱镜13的顶面13a的阵列波导21将入射光线色散为多条谱线,并利用道威棱镜13将多条谱线取出,有利于提高所取出的多条谱线的光效。
在另一些示例中,如图5和图7所示,上述色散光栅2为形成在道威棱镜13的顶面13a的凹面光栅22。凹面光栅22的罗兰圆R具有多个光线聚焦点O。输出波导阵列12包括与所述多条谱线一一对应设置的多个导向波121。所述多个导向波导121与所述多个光线聚焦点J一一对应。
示例性的,罗兰圆R具有三个光线聚焦点J,即第一光线聚焦点J1、第二光线聚焦点J2和第三光线聚焦点J3,则输出波导阵列12包括三个导向波导121,三个导向波导121一一对应的设在三个光线聚焦点J处,用以分别对聚焦在对应的光线聚焦点J的谱线进行导向。
如图5所示,上述凹面光栅22又称为罗兰光栅(Rolland grating)。凹面光栅22既能使入射至其自身的光线发生衍射,又能使发生衍射的光线进行聚焦。凹面光栅22的制作工艺较为简单,例如,采用一凹面光学玻璃,并在该凹面光学玻璃的凹面刻划一系列等间距线条,即可形成具有衍射和聚焦两种功能的凹面光栅22。凹面光栅22的罗兰圆R是指直径与凹面光栅22的曲率半径相同的圆,且凹面光栅22的凹面与罗兰圆R的切点为凹面光栅22的中心位置。
采用凹面光栅22作为色散光栅2的分光装置100的光路走向为:入射光线按照ψ≤56.25°且α≤33.75°的约束条件,穿过第一透光层3射向道威棱镜13的入射斜面13c,经过入射斜面13a的反射,射入输入波导11(此处输入波导11采用弯曲呈弧状的波导),并沿平行于道威棱镜13的底面13b或顶面13a的方向射入凹面光栅22,入射光线经过凹面光栅22的衍射形成多条谱线,该多条谱线分别聚焦在罗兰圆的对应的光线聚焦点J处,每条谱线通过对应的导向波导121(此处导向波导121采用弯曲呈弧状的波导)传输至道威棱镜13的出射斜面13d,并经出射斜面13d反射,沿垂直于第一透光层3的方向射出道威棱镜13和第一透光层3。
在另一些实施例中,如图5和图9所示,上述光波导本体1为分体结构。
此处,上述光波导本体1包括反射结构14和多个衍射光栅15,色散光栅2包括凹面光栅22,输出波导阵列12包括多个导向波导121,所述多个导向波导121与凹面光栅22的罗兰圆R所具有的多个光线聚焦点J一一对应。本实施例中所述多个导向波导121与所述多个光线聚焦点J一一对应的方式,可以参照上述一些示例中所述多个导向波导121与所述多个光线聚焦点J一一对应的方式。
反射结构14配置为对入射光线进行反射并提供给输入波导11。输入波导11配置 为将入射光线提供给凹面光栅22。凹面光栅22配置为将入射光线衍射成多条谱线,使得所述多条谱线中的每条谱线聚焦在对应的光线聚焦点J。每个导向波导121配置为将对应的谱线传输至对应的衍射光栅15。所述多个衍射光栅15中的每个衍射光栅15配置为控制对应的谱线射出第一透光层3。
上述反射结构14的结构包括多种,例如为具有反射薄膜的不透光装置,或者其他光学反射结构,以能够将入射光线反射至凹面光栅22为准。反射结构14的设置位置位于罗兰圆R的圆周上。
请参阅图9,在光波导本体1为分体结构,色散光栅2为凹面光栅22的情况下,分光装置100的光路走向为:入射光线入射至反射结构14,经反射结构14的反射入射至输入波导11,并经输入波导11的传输入射至凹面光栅22,入射光线经凹面光栅22的衍射形成多条谱线,该多条谱线分别聚焦在罗兰圆R的圆周上对应的光线聚焦点J处,每条谱线通过对应的导向波导121的引导,传输至对应的衍射光栅15,之后可经对应的衍射光栅的控制穿过第一透光层3。
在一些示例中,每个导向波导121单独对应一个衍射光栅15,这样可以利用每个衍射光栅15对对应的导向波导121所传输的谱线进行独立的控制,有利于提高对谱线的控制的精度,并提高穿过第一透光层3的每条谱线的精度。
在实际生产过程中,在上述光波导本体1为分体结构的情况下,分光装置100采用套刻工艺制作形成,也即上述凹面光栅22、反射结构14、输出波导阵列12和衍射光栅15采用套刻工艺制作形成。或者,分光装置100由能够实现各自功能的输入波导11、凹面光栅22、反射结构14、输出波导阵列12和衍射光栅15按照所需的光路走向组装在构成。
如图12和图13所示,本公开的一些实施例还提供了一种分光装置的制作方法。所述分光装置的制作方法包括S200~S300。
S200,形成光波导本体1。
S300,形成色散光栅2。此处,光波导本体1配置为传输入射光线至色散光栅2。色散光栅2配置为将光波导本体1所传输的入射光线色散成多条谱线,光波导本体1还配置为改变所述多条谱线的传播方向并出射所述多条谱线。
此处,上述制作形成分光装置100的步骤标号,并不构成对形成光波导本体1和形成色散光栅2的顺序的限定。示例性的,制作形成分光装置100的步骤顺序为:先形成光波导本体1,然后形成色散光栅2。或者,制作形成分光装置100的步骤顺序为:先形成色散光栅2,然后形成光波导本体1。
本公开的一些实施例提供的分光装置的制作方法所能实现的有益效果,与上述一些实施例提供的分光装置100所能达到的有益效果相同,在此不做赘述。
在一些实施例中,如图12所示,上述分光装置的制作方法还包括S100。
S100,如图12中(a)所示,形成第一透光层3。该第一透光层3所使用的材料的折射率小于光波导本体1所使用的材料的折射率和色散光栅2所使用的材料的折射率。
此处,第一透光层3采用玻璃基板,或者,采用光学玻璃或透明树脂等材料制作形成。
在一些示例中,第一透光层3在形成光波导本体1以及色散光栅2之前制作形成。
在一些实施例中,上述分光装置的制作方法还包括S400。
S400,如图12中(i)所示,形成第二透光层4。第一透光层3和第二透光层4相对设置,两者之间具有一定的距离。光波导本体1位于第一透光层3和第二透光层4之间,色散光栅2位于第二透光层4和光波导本体1之间。第二透光层4所使用的材料的折射率小于光波导本体1所使用的材料的折射率和色散光栅2所使用的材料的折射率。
此处,第二透光层4采用玻璃基板,或者,采用树脂(例如光刻胶)或SiO 2等材料制作形成。
在一些示例中,第二透光层3在形成光波导本体1以及色散光栅2之后制作形成。
在一些实施例中,如图12和图14所示,上述光波导本体1为道威棱镜13,色散光栅2为阵列波导21,上述形成光波导本体1和形成色散光栅2,包括S210~S220。
S210,如图12中(a)所示,在第一透光层3的一侧表面形成波导层5,且该波导层5所使用的材料的折射率大于第一透光层3所使用的材料的折射率。波导层5所使用的材料例如为SiNx(氮化硅)。
示例性的,采用磁控溅射工艺或等离子体增强化学的气相沉积法在第一透光层3的一侧表面形成波导材料层5。
S220,如图12中(h)所示,利用波导层5,制作形成道威棱镜13以及位于道威棱镜13的顶面13a的输入波导11、阵列波导21和输出波导阵列12。
此处,道威棱镜13具有入射斜面13c以及出射斜面13d。
入射斜面13a配置为对传输至道威棱镜13的入射光线进行反射中提供给输入波导11。输入波导11配置为将经入射斜面13c所反射的入射光线提供给阵列波导21。输出波导阵列12配置为对多条谱线进行导向,并将多条谱线提供给出射斜面13d。出射斜面13d配置为对所述多条谱线进行反射并导出道威棱镜13。
在一些实施例中,如图12和图15所示,上述利用波导层5,制作形成道威棱镜13以及位于道威棱镜13的顶面13a的输入波导11、阵列波导21输出波导阵列12,包括S221~S223。
S221,在波导层5的上方,提供光学掩膜版6。此处,该光学掩膜版具有与道威棱镜13、输入波导11、阵列波导21和输出波导阵列12一一对应的图案。
S222,利用光学掩膜版6,对波导层5进行处理,获得道威棱镜13以及位于道威棱镜13的顶面13a的输入波导11、阵列波导21和输出波导阵列12。此处,道威棱镜13的入射斜面13c和底面13b之间具有倒角ψ,该倒角ψ与道威棱镜13的入射斜面13c的入射角α之和等于90°,道威棱镜13的底面13b的入射角θ=arcsin(n 2/n air×sinα);n 2为第一透光层3所使用的材料的折射率,n air为空气的折射率。
示例性的,在光学掩膜版6的掩膜下,采用干法刻蚀工艺对波导层5进行处理,获得道威棱镜13以及位于道威棱镜13的顶面13a的输入波导11、阵列波导21和输出波导阵列12。
此处,光学掩膜版6在上述S221之前已制作完成,因此,道威棱镜13、输入波导11、阵列波导21和输出波导阵列12可在一次干法刻蚀工艺中完成制作。示例性的, 该干法刻蚀工艺为电感耦合等离子体(Inductive Coupled Plasma Emission Spectrometer,简称ICP)干法刻蚀工艺,或其他可实现的干法刻蚀工艺。
步骤S223:去除光学掩膜版6。
去除光学掩膜版6的方法,根据光学掩膜版6的材料决定,此处不做详细说明。
在一些实施例中,如图12和图16所示,在波导层5的上方,提供光学掩膜版6,包括S2211~S2214。
S2211,如图12中(b)所示,在波导层5的背离第一透光层3的一侧表面形成金属薄膜7。
示例性的,采用溅射工艺在波导层5的背离第一透光层3的一侧表面的金属膜层7。
S2212,如图12中(c)所示,在金属薄膜7的背离波导层5的一侧表面形成光刻胶层8。
示例性的,采用旋涂工艺或涂覆工艺在金属薄膜7的背离波导层5的一侧表面形成光刻胶层8。
S2213,如图12中(d)所示,采用压印工艺对光刻胶层8进行处理,获得光刻胶掩膜版81。该光刻胶掩膜版81具有与道威棱镜13、输入波导11、阵列波导21和输出波导阵列12一一对应的图案。
示例性的,采用压印工艺对光刻胶层8进行处理的工艺,包括将道威棱镜母版、输入波导母版、阵列波导母版和输出波导阵列母版压印到光刻胶层8,使得光刻胶层8形成光刻胶掩膜版81。
此处,采用压印的方式对光刻胶层8进行处理,以制作光刻胶掩膜版81时,其所使用的压印模板可采用如下方式制作。
采用湿法刻蚀(刻蚀溶液为KOH溶液、NaOH溶液或者HNO3溶液)刻蚀P型或N型的单晶硅,根据湿法刻蚀所使用的刻蚀溶液对单晶硅不同晶面的刻蚀速率,获取满足上述道威棱镜211要求的道威棱镜母版。
例如:对单晶硅的(111)晶面进行压印可形成倒角为54.7°的道威棱镜13,对单晶硅的(100)晶面进行压印可形成倒角为47°的道威棱镜13。
S2214,如图12中(e)所示,采用光刻胶掩膜版81,对金属薄膜7进行处理,获得金属掩膜板71。金属掩膜板71具有与道威棱镜13、输入波导11、阵列波导21和输出波导阵列12一一对应的图案。上述金属掩膜版71和光刻胶掩膜版81共同构成光学掩膜版6。
示例性的,上述金属薄膜7采用铝(Al)、铜(Cu)、金(Au)或钼(Mo)等材料制作形成。采用干法刻蚀工艺对金属薄膜7进行刻蚀处理。
在一些实施例中,如图12中(f)~(h)所示,上述去除光学掩膜版800包括:去除光刻胶掩膜版81,去除金属掩膜版71。示例性的,采用化学溶剂去除光刻胶掩膜版81,或采用氧等离子处理工艺将光刻胶掩膜版81进行灰化处理。示例性的,采用化学溶剂或其他物理方法去除金属掩膜版71。
由上可知,在制作光学掩膜版6的过程中,首先采用压印工艺形成光刻胶掩膜版81,然后再以光刻胶掩膜版81为掩膜对金属薄膜7进行处理,形成金属掩膜版71。 基于金属材料和波导层5所选择的材料的刻蚀选择比较大,使得金属掩膜版71所具有的图案对应的开口侧壁垂直(或趋近垂直)于第一透光层3,这样在利用光学掩膜版6对波导层5进行处理时,可以使得所制作形成的道威棱镜13、输入波导11、阵列波导21和输出波导阵列12的形状较为规整,精度比较高,有利于更好的实现入射光线的色散。
另外,本公开的一些实施例中,在光波导本体1为一体结构的情况下,输入波导11、阵列波导21和输出波导阵列12的尺寸为微米级尺寸,这样在制作上述输入波导11、阵列波导21和输出波导阵列12的过程中,无需采用套刻工艺完成即可完成输入波导11、阵列波导21和输出波导阵列12的制作,从而有利于简化分光装置100的制作工艺,提高分光装置100的制作效率。
在光波导本体1为分体结构,且色散光栅2为凹面光栅22的情况下,凹面光栅22的侧壁的垂直度与衍射效率直接相关,因此凹面光栅22的制作精度较高,工业生产时,难度较大,此时,采用套刻工艺制作完成分光装置100。
如图17所示,本公开的一些实施例还提供了一种光色散方法,该光色散方法应用上述一些实施例中提供的分光装置100。该光色散方法包括S410~S430。
S410,光波导本体1接收入射光线,并将入射光线传输至色散光栅2。
S420,色散光栅2将入射光线进行色散,获得多条谱线。
S430,光波导本体1改变多条谱线的传播方向,并出射多条谱线。
本公开的一些实施例提供的光色散方法所能实现的有益效果,与上述一些实施例提供的分光装置100所能达到的有益效果相同,在此不做赘述。
在一些实施例中,上述光波导本体1为道威棱镜13,上述色散光栅2为阵列波导21,同时光波导本体1还包括输入波导11和输出波导阵列12。上述光色散方法包括S410a~S430a:
S410a,入射光线穿过第一透光层3入射至道威棱镜13的入射斜面13c,经过入射斜面13c的反射,输至阵列波导21。
S420a,阵列波导21将入射光线进行衍射,获得多条谱线。阵列波导21还将所述多条谱线传输至输出波导阵列12。输出波导阵列12将所述多条谱线导向至道威棱镜13的出射斜面13d。
S430a,道威棱镜13的出射斜面13d对所述多条谱线进行反射,使得所述多条谱线改变传播方向,从第一透光层3导出。
在另一些实施例中,上述光波导本体1为分体结构,包括反射结构和多个衍射光栅,上述色散光栅2为凹面光栅22,同时光波导本体1还包括输入波导11和输出波导阵列12。上述光色散方法包括S410b~S430b。
S410b,入射光线穿过第一透光层3入射至反射结构的反射面,入射光线经反射面的反射后,传输至输入波导11。输入波导11将入射光线传输至凹面光栅22的凹面。
S420b,凹面光栅22的凹面对入射光线进行衍射,获得多条谱线,该多条谱线一一对应的聚焦在凹面光栅22的罗兰圆R所具有的多个光线聚焦点J处。每个光线聚焦点J处所设置的导向波导121将对应的谱线导向至对应衍射光栅15。
S430b,每个衍射光栅15控制对应的谱线穿过第一透光层3射出。
如图10~图11所示,本公开的一些实施例还提供了一种光谱仪1000。该光谱仪1000包括上述一些实施例中提供的分光装置100。
上述光谱仪1000的类型包括多种。示例性的,该光谱仪1000为常规的光谱仪或者微型光谱仪。光谱仪1000能够应用于物理、化学或者生物等领域的光谱分析,还能够应用于物质检测、标定、分子诊断、食品检疫和细菌分类等。
本公开的一些实施例提供的光谱仪1000中的分光装置100,具有与上述一些实施例中提供的分光装置100相同的有益效果相同,在此不做赘述。
在一些实施例中,如图10所示,上述分光装置100包括相对设置的第一透光层3和第二透光层4。上述光谱仪1000所包括的准直光源200配置为向分光装置100提供入射光线(也即准直光线),也即向分光装置100中的光波导本体1提供入射光线。
准直光源200包括多种结构。在一些示例中,准直光源200是为光纤提供光线的准直光源或者是准直性较高的准直微LED(Light Emitting Diode,发光二极管)芯片。此处,准直微LED芯片的制作成本较低,选择准直微LED芯片作为准直光源200可以有效降低光谱仪1000的成本。准直光源200所提供的入射光线的颜色根据实际情况设定,示例性的,入射光线为白光,当然不限于白光。
准直光源200在光谱仪1000中的设置位置包括多种。
在一些示例中,准直光源200设置在第二透光层4的背离第一透光层3的一侧,也即准直光源200提供的入射光线通过第二透光层4入射至光波导本体1内。
在另一些示例中,准直光源200设置在第一透光层3的背离第二透光层4的一侧,也即准直光源200提供的入射光线通过第一透光层3入射至光波导本体1内。
此处,在准直光源200设置在第一透光层3的背离第二透光层4的一侧的情况下,准直光源200的出光口与第一透光层3的背离光波导本体1的一侧表面相对,以便于保证准直光源200所提供的入射光线能够入射至光波导本体1。
基于此,准直光源200在第一透光层3的背离第二透光层4的一侧的设置位置,和光波导本体1的结构相关。
示例性的,光波导本体1为一体结构。此处,光波导本体1为道威棱镜13,道威棱镜13的入射斜面13c在第一透光层3所在平面的正投影至少与准直光源200的出光口在第一透光层3所在平面的正投影重合,这样能够保证准直光源200所提供的入射光线能够射向入射斜面13c,避免入射光线发生较大的发散现象。
示例性的,光波导本体1为分体结构。光波导本体1包括反射结构14,反射结构14的反射面在第一透光层3所在平面的正投影至少与准直光源200的出光口在第一透光层3所在平面的正投影重合,这样能够保证准直光源200所提供的入射光线能够射向反射结构14的反射面,避免入射光线发生较大的发散现象。
在一些实施例中,如图10所示,在上述光谱仪1000应用于微流体检测的情况下,,上述光谱仪1000还包括微流基板300和感应基板400。
微流基板300设置在第一透光层3的背离第二透光层4的一侧。且微流基板300与所述多条谱线的出射位置对应。也即,所述多条谱线从分光装置100中出射后,能够入射至微流基板300,使得微流基板200所包括的微流体能够在所述多条谱线的照射下发生一定的物理变化或化学变化,进而使得所述多条谱线在穿过微流基板300后 获取微流基板300中的微流体的信息。
感应基板400与微流基板300对应设置,感应基板400配置为对穿过微流基板300的所述多条谱线进行检测。也即,从微流基板300射出的所述多条谱线能够对应入射至感应基板400,使得感应基板400对所述多条谱线进行检测,得到所述多条谱线所获取的微流体的信息,实现对微流体的检测。
在一些示例中,请参阅图10,微流基板300与分光装置100错位设置,以将准直光源200设置在与分光装置100超出微流基板300的部分对应的位置处,以确保准直光源200提供的入射光线能够从第一透光层3的背离第二透光层4的一侧入射至分光装置100,所述多条谱线能够从第一透光层3的背离第二透光层4的一侧出射至微流基板300,这样可以使得光谱仪1000的结构更为紧凑,有利于光谱仪1000小型化发展。
在微流基板300与分光装置100错位设置的情况下,上述感应基板400也与分光装置100错位设置,以让出更多的位置容纳准直光源200,这样就可以使得准直光源200的尺寸选择范围比较宽。
在一些实施例中,如图10所示,上述微流基板300包括第一衬底基板310以及设在第一衬底基板310的靠近第一透光层3的一侧的反应池320、废液池330和多个微流通道340。反应池320、废液池330和所述多个微流通道340位于第一衬底基板310的靠近第一透光层3的一侧表面,可以避免微流体受到重力影响。所述多个微流通道340分别与反应池320和废液池340相互连通。所述多个微流通道340的内壁形成有亲水调节层。所述多个微流通道340与所述多条谱线一一对应。
在一些示例中,第一衬底基板310的类型包括多种。示例性的,第一衬底基板310为柔性基板,柔性基板为聚二甲基硅烷(Polydimethylsiloxane,简称PDMS)基板或聚甲基丙烯酸甲酯(Polymethyl methacrylate,简称PMMA)基板,当然不仅限于此。示例性的,第一衬底基板310为刚性基板,刚性基板为玻璃基板或硅基板等。此处,刚性基板的表面通常覆盖有光刻胶层。
在一些示例中,上述反应池320、所述多个微流通道340和废液池330采用普通的曝光显影工艺、刻蚀工艺或者其他构图工艺形成在第一衬底基板310上。
在一些示例中,所述多个微流通道340为形成在第一衬底基板310上的盲孔。此处,所述多个微流通道340的径向长度和轴向长度根据具体谱线的带宽设计,径向长度和轴向长度的单位为是微米、纳米或埃,具体根据实际情况选择。
此处,所述多个微流通道340的内壁形成有亲水调节层,该亲水调节层可以使微流通道340内的微流体根据实验需求流动或者短暂滞留。在一些示例中,亲水调节层为亲水薄膜或疏水薄膜。例如,微流体为亲水性物质,上述亲水调节层为特氟龙-AF疏水薄膜,此时,可以避免微流体粘附在所述多个微流通道340内,加快微流体在所述多个微流通道340内的流动速度。
所述多个微流通道340与所述多条谱线一一对应,也即所述多个微流通道340的位置与所述多条谱线从分光装置100的出射位置一一对应,这样所述多条谱线从分光装置100中出射后,能够一一对应的入射至所述多个微流通道340内。在一些示例中,所述多条谱线沿着垂直于第一透光层3的方向一一对应的垂直射入所述多个微流通道 340内,以确保所述多条谱线能够更好的对微流体进行检测。此处,可以根据所述多条谱线在分光装置100的出射方向调节所述多个微流通道340的在第一衬底基板310的形成位置。可通过调节分光装置100中的波导输入部11、色散光栅2和输出波导阵列13的位置调整所述多条谱线从分光装置100的射出的方向。
在进行微流体检测的过程中,微流体会在反应池320内发生反应,该反应可以为化学反应,也可以为物理变化。反应后的微流体会进入所述多个微流通道340内。从分光装置100出射的所述多条谱线一一对应的进入所述多个微流通道340内对反应后的微流体进行检测,使得所述多条谱线携带微流体信息。
在一些实施例中,如图10所示,上述感应基板400包括第二衬底基板410以及设在第二衬底基板410的靠近第一衬底基板310的一侧的多个光敏探测器420。
所述多个光敏探测器420的种类包括多种。示例性的,所述多个光敏探测器420为电荷藕合器件图像传感器、互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,简称CMOS)探测器或PIN光电二极管探测器等。
此处,所述多个光敏探测器420中的每个光敏探测器420在第二衬底基板420上的正投影,位于所述多个微流通道340中的一个微流通道340在第二衬底基板420的正投影的范围内,也即,每个微流通道340对应至少一个光敏探测器420。这样能够保证每条谱线通过对应的微流通道340时所携带的微流体信息能够被至少一个光敏探测器420所检测。每个微流通道340所对应的光敏探测器420的数量越多,则微流体的检测灵敏度越高。
上述微流基板300与光敏探测器420之间的距离,不仅与光敏探测器420的信噪比有关,还与分光装置100所提供的多条谱线的出光方向有关。但无论如何,在微流基板300与感应基板400紧密接触的情况下,可更好的保证穿过微流基板300的多条谱线被光敏探测器420所检测。基于此,将多个光敏探测器420设置在第二衬底基板410的靠近第一衬底基板310的一侧表面,可以使得光敏探测器420与微流通道322之间的距离会尽可能的小。
在一些示例中,如图10所示,上述微流基板300和感应基板400之间还设有缓冲层500,这样可以利用缓冲层500对光敏探测器420进行保护。此处,功能层500的厚度较小,以避免缓冲层500对谱线传输产生的影响。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种分光装置,包括光波导本体和色散光栅;
    所述光波导本体配置为传输入射光线至所述色散光栅,所述色散光栅配置为将所述光波导本体所传输的所述入射光线色散成多条谱线,所述光波导本体还配置为改变所述多条谱线的传播方向并出射所述多条谱线。
  2. 根据权利要求1所述的分光装置,其中,所述分光装置还包括:相对设置的第一透光层和第二透光层;
    所述光波导本体位于所述第一透光层和所述第二透光层之间,所述色散光栅位于所述第二透光层与所述光波导本体之间;
    所述光波导本体所使用的材料的折射率和所述色散光栅所使用的材料的折射率均大于所述第一透光层所使用的材料的折射率,且均大于所述第二透光层所使用的材料的折射率。
  3. 根据权利要求2所述的分光装置,其中,所述光波导本体包括位于所述色散光栅的入光侧的输入波导,以及位于所述色散光栅的出光侧的输出波导阵列;
    所述输入波导配置为将所述光波导本体所传输的所述入射光线提供给所述色散光栅,所述输出波导阵列配置为对所述多条谱线进行导向,并出射所述多条谱线。
  4. 根据权利要求3所述的分光装置,其中,所述输出波导阵列包括与所述多条谱线一一对应的多个导向波导,所述多个导向波导中每相邻的两个导向波导之间具有第一间隔。
  5. 根据权利要求3所述的分光装置,其中,所述光波导本体包括道威棱镜;
    所述道威棱镜的底面与所述第一透光层相对设置,所述道威棱镜的顶面与所述第二透光层相对设置,所述输入波导、所述输出波导阵列和所述色散光栅均设在所述道威棱镜的顶面;
    所述道威棱镜具有入射斜面以及出射斜面;所述入射斜面配置为对所述入射光线进行反射并提供给所述输入波导;
    所述输入波导配置为将所述入射光线提供给所述色散光栅;
    所述输出波导阵列配置为对所述多条谱线进行导向,并提供给所述出射斜面;
    所述出射斜面配置为对所述多条谱线进行反射并导出所述道威棱镜;
    所述入射斜面和所述底面之间具有倒角ψ,所述倒角ψ与所述入射光线入射至所述入射斜面的入射角α之和等于90°,所述入射光线入射至所述底面的入射角θ=arcsin(n 2/n air×sinα);n 2为第一透光层所使用的材料的折射率,n air为空气的折射率,所述道威棱镜所使用的材料折射率的取值范围为1.8~1.9,ψ≤56.25°,α≤33.75°。
  6. 根据权利要求4或5所述的分光装置,其中,所述色散光栅包括阵列波导,所述阵列波导包括多个第一弯曲波导,所述多个第一弯曲波导中每相邻的两个第一弯曲波导之间具有第二间隔,每相邻的两个所述第一弯曲波导之间具有光程差。
  7. 根据权利要求5所述的分光装置,其中,所述输出波导阵列包括与所述多条谱线一一对应设置的多个导向波导;
    所述色散光栅包括凹面光栅,所述凹面光栅的罗兰圆具有多个光线聚焦点;
    所述多个导向波导与所述多个光线聚焦点一一对应。
  8. 根据权利要求3所述的分光装置,其中,所述光波导本体包括反射结构和多个衍射光栅,所述色散光栅包括凹面光栅,所述输出波导阵列包括多个导向波导;
    所述多个导向波导与所述凹面光栅的罗兰圆所具有的多个光线聚焦点一一对应;
    所述反射结构配置为对所述入射光线进行反射并提供给所述输入波导;
    所述输入波导配置为将所述入射光线提供给所述凹面光栅;
    所述凹面光栅配置为将所述入射光线衍射成多条谱线,使得所述多条谱线中的每条谱线聚焦在对应的光线聚焦点;
    所述多个导向波导中的每个导向波导配置为将对应的谱线传输至对应的衍射光栅;
    所述多个衍射光栅中的每个衍射光栅配置为控制对应的谱线射出所述第一透光层。
  9. 一种分光装置的制作方法,包括:
    形成光波导本体;
    形成色散光栅;其中,所述光波导本体配置为传输入射光线至所述色散光栅;所述色散光栅配置为将所述光波导本体所传输的所述入射光线色散成多条谱线,所述光波导本体还配置为改变所述多条谱线的传播方向并出射所述多条谱线。
  10. 根据权利要求9所述的分光装置的制作方法,还包括:
    形成第一透光层;其中,所述第一透光层所使用的材料的折射率小于所述光波导本体所使用的材料的折射率和所述色散光栅所使用的材料的折射率;
    所述分光装置的制作方法还包括:
    形成第二透光层;其中,所述第二透光层与所述第一透光层相对设置;所述光波导本体位于所述第一透光层和所述第二透光层之间,所述色散光栅位于所述第二透光层和所述光波导本体之间;所述第二透光层所使用的材料的折射率小于所述光波导本体所使用的材料的折射率和所述色散光栅所使用的材料的折射率。
  11. 根据权利要求10所述的分光装置的制作方法,其中,所述光波导本体包括道威棱镜,所述色散光栅包括阵列波导;
    形成光波导本体,形成色散光栅,包括:
    在所述第一透光层的一侧表面形成波导层;所述波导层所使用的材料的折射率大于所述第一透光层所使用的材料的折射率;
    利用所述波导层,制作形成道威棱镜以及位于所述道威棱镜的顶面的输入波导、阵列波导和输出波导阵列;其中,所述道威棱镜具有入射斜面以及出射斜面;所述入射斜面配置为对所述入射光线进行反射并提供给所述输入波导,所述输入波导配置为将所述入射光线提供给所述阵列波导,所述输出波导阵列配置为对所述多条谱线进行导向,并提供给所述出射斜面,所述出射斜面配置为对所述多条谱线进行反射并导出所述道威棱镜。
  12. 根据权利要求11所述的分光装置的制作方法,其中,利用所述波导层,制作形成道威棱镜以及位于所述道威棱镜的顶面的输入波导、阵列波导和输出波导阵列,包括:
    在所述波导层的上方,提供光学掩膜版;其中,所述光学掩膜版具有与所述道威 棱镜、所述输入波导、所述阵列波导和所述输出波导阵列一一对应的图案;
    利用所述光学掩膜版,对所述波导层进行处理,获得所述道威棱镜以及位于所述道威棱镜的顶面的所述输入波导、所述阵列波导和所述输出波导阵列;其中,所述道威棱镜的入射斜面和底面之间具有倒角ψ,所述倒角ψ与所述入射光线入射至所述道威棱镜的入射斜面的入射角α之和等于90°,所述入射光线入射至所述道威棱镜的底面入射角θ=arcsin(n 2/n air×sinα);n 2为第一透光层所使用的材料的折射率,n air为空气的折射率;
    去除所述光学掩膜版。
  13. 根据权利要求12所述的分光装置的制作方法,其中,在所述波导层的上方,提供光学掩膜版,包括:
    在所述波导层的背离所述第一透光层的一侧表面形成金属薄膜;
    在所述金属薄膜的背离所述波导层的一侧表面形成光刻胶层;
    采用压印工艺对所述光刻胶层进行处理,获得光刻胶掩膜版,其中,所述光刻胶掩膜板具有与所述道威棱镜、所述输入波导、所述阵列波导和所述输出波导阵列一一对应的图案;
    采用所述光刻胶掩膜版,对所述金属薄膜进行处理,获得金属掩膜版;其中,所述金属掩膜版具有与所述道威棱镜、所述输入波导、所述阵列波导和所述输出波导阵列一一对应的图案,所述金属掩膜版和所述光刻胶掩膜版构成所述光学掩膜版;
    所述去除所述光学掩膜版,包括:
    去除所述光刻胶掩膜版;
    去除所述金属掩膜版。
  14. 一种光色散方法,应用权利要求1~8中任一项所述的分光装置,所述光色散方法包括:
    所述光波导本体接收入射光线,并将所述入射光线传输至色散光栅;
    所述色散光栅将所述入射光线进行色散,获得多条谱线;
    所述光波导本体改变所述多条谱线的传播方向,并出射所述多条谱线。
  15. 一种光谱仪,包括权利要求1~8中任一项所述的分光装置。
  16. 根据权利要求15所述的光谱仪,其中,所述分光装置包括相对设置的第一透光层和第二透光层;
    所述光谱仪还包括:
    准直光源,配置为提供入射光线至所述光波导本体的;
    微流基板,设置在所述第一透光层的背离所述第二透光层的一侧,且与所述多条谱线的出射位置对应;
    以及,与所述微流基板对应设置的感应基板,所述感应基板配置为对穿过所述微流基板的所述多条谱线进行检测。
  17. 根据权利要求16所述的光谱仪,其中,
    所述微流基板包括第一衬底基板,以及位于所述第一衬底基板的靠近所述第一透光层的一侧的反应池、废液池和多个微流通道;所述多个微流通道分别与所述反应池和所述废液池相互连通,所述多个微流通道的内壁形成有亲水调节层;所述多个微流 通道与所述多条谱线一一对应;
    所述感应基板包括第二衬底基板,以及位于所述第二衬底基板的靠近所述第一衬底基板的一侧的多个光敏探测器;
    所述多个光敏探测器中的每个光敏探测器在所述第二衬底基板上的正投影,位于所述多个微流通道中的一个微流通道在所述第二衬底基板上的正投影的范围内。
PCT/CN2019/114987 2018-11-02 2019-11-01 分光装置及其制作方法、光色散方法和光谱仪 WO2020088642A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/768,543 US11402267B2 (en) 2018-11-02 2019-11-01 Light splitting device and method for manufacturing the same, method for dispersing light, and spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811303157.6 2018-11-02
CN201811303157.6A CN109239940B (zh) 2018-11-02 2018-11-02 一种分光装置及其制作方法、光色散方法和光谱仪

Publications (1)

Publication Number Publication Date
WO2020088642A1 true WO2020088642A1 (zh) 2020-05-07

Family

ID=65076752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114987 WO2020088642A1 (zh) 2018-11-02 2019-11-01 分光装置及其制作方法、光色散方法和光谱仪

Country Status (3)

Country Link
US (1) US11402267B2 (zh)
CN (1) CN109239940B (zh)
WO (1) WO2020088642A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112873A (zh) * 2021-11-23 2022-03-01 清华大学 用于流式细胞仪的片上荧光色散光路的波导设计

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239940B (zh) 2018-11-02 2021-05-07 京东方科技集团股份有限公司 一种分光装置及其制作方法、光色散方法和光谱仪
CN109613644B (zh) * 2019-02-14 2020-08-11 京东方科技集团股份有限公司 一种导光装置及其制作方法、显示装置
CN109632657A (zh) * 2019-02-26 2019-04-16 京东方科技集团股份有限公司 光谱检测装置
CN112099139B (zh) * 2020-09-15 2022-07-29 中国科学院上海技术物理研究所 一种棋盘式成像仪及实现方法
US11841270B1 (en) * 2022-05-25 2023-12-12 Visera Technologies Company Ltd. Spectrometer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089689A (zh) * 2008-05-09 2011-06-08 惠普开发有限公司 分光器装置
CN104570200A (zh) * 2014-12-19 2015-04-29 南京大学 利用硅基波导改进的二氧化硅基阵列波导光栅装置及制备
CN204740204U (zh) * 2015-06-30 2015-11-04 上海理工大学 基于导模共振效应的液体浓度光学检测装置
CN106471415A (zh) * 2014-04-30 2017-03-01 惠普发展公司,有限责任合伙企业 使用基于衍射的照明的成像装置和方法
US20180011334A1 (en) * 2016-07-07 2018-01-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical Arrangement for Spectral Decomposition of Light
CN107607475A (zh) * 2017-09-06 2018-01-19 京东方科技集团股份有限公司 微全分析系统及方法
CN109239940A (zh) * 2018-11-02 2019-01-18 京东方科技集团股份有限公司 一种分光装置及其制作方法、光色散方法和光谱仪

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960907A (en) * 1957-05-23 1960-11-22 Leitz Ernst Gmbh Range finder
US5553052A (en) * 1993-03-02 1996-09-03 Asahi Kogaku Kogyo Kabushiki Kaisha Inclination of an objective lens in an optical information system
US20050070005A1 (en) * 1997-06-16 2005-03-31 Martin Keller High throughput or capillary-based screening for a bioactivity or biomolecule
GB2334594A (en) * 1998-02-20 1999-08-25 Fujitsu Telecommunications Eur Arrayed waveguide grating device
US5937113A (en) * 1998-04-17 1999-08-10 National Research Council Of Canada Optical grating-based device having a slab waveguide polarization compensating region
US6654533B1 (en) * 2000-06-16 2003-11-25 Metrophotonics Inc. Polarization independent waveguide structure
US7615339B2 (en) * 2000-10-30 2009-11-10 Sru Biosystems, Inc. Method for producing a colorimetric resonant reflection biosensor on rigid surfaces
US6657723B2 (en) * 2000-12-13 2003-12-02 International Business Machines Corporation Multimode planar spectrographs for wavelength demultiplexing and methods of fabrication
US20020159700A1 (en) * 2001-04-30 2002-10-31 Coroy Trent Gary Tunable filter
US6674929B2 (en) * 2001-06-01 2004-01-06 Lightcross, Inc. Tunable optical filter
US20020181869A1 (en) * 2001-06-01 2002-12-05 Wenhua Lin Tunable dispersion compensator
US6614951B2 (en) * 2001-08-06 2003-09-02 Lightcross, Inc. Optical component having a flat top output
CA2357226A1 (en) * 2001-09-12 2003-03-12 Optenia Inc. Optical performance monitor
US6757469B2 (en) * 2002-03-18 2004-06-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Temperature insensitive optical waveguide device
JP2004013076A (ja) * 2002-06-11 2004-01-15 Fujitsu Ltd アレイ導波路型波長分波装置
AU2003276870A1 (en) * 2002-09-07 2004-03-29 Lightwave Bioapplications Bioanalysis systems including optical integrated circuit
US7208682B2 (en) * 2002-12-11 2007-04-24 Prysmian Cavi E Sistemi Energia Srl Electrical cable with foamed semiconductive insulation shield
US7130321B2 (en) * 2003-10-09 2006-10-31 Coherent, Inc. Intracavity frequency-tripled CW laser with traveling-wave ring-resonator
EP1688767A4 (en) * 2003-11-28 2007-11-28 Omron Tateisi Electronics Co MULTIPLEXER / DEMULTIPLEXER OF MULTI-CHANNEL ARRAY SHAFT BENDING GRID TYPE AND METHOD OF CONNECTING AN ARRAY SHAFT WITH OUTPUT SHAFT
CA2490603C (en) * 2003-12-24 2012-12-11 National Research Council Of Canada Optical off-chip interconnects in multichannel planar waveguide devices
US7440655B2 (en) * 2005-09-21 2008-10-21 Andevices, Inc. Duplex arrayed waveguide grating
CA2564658A1 (en) * 2005-10-19 2007-04-19 Mcgill University Integrated etched multilayer grating based wavelength demultiplexer
US7440650B2 (en) * 2006-08-03 2008-10-21 Jds Uniphase Corporation Planar lightwave circuit based wavelength selective switch
US7889991B2 (en) * 2007-02-12 2011-02-15 Jds Uniphase Corporation Planar lightwave circuit based tunable 3 port filter
GB2447696A (en) * 2007-03-23 2008-09-24 Univ Exeter Photonic biosensor arrays
US8520990B2 (en) * 2008-12-11 2013-08-27 Moog Inc. High-power collimating lens assemblies, and methods of reducing the optical power density in collimating lens assemblies
US8395768B2 (en) 2010-04-30 2013-03-12 Hewlett-Packard Development Company, L.P. Scattering spectroscopy apparatus and method employing a guided mode resonance (GMR) grating
CN102540397A (zh) * 2010-12-27 2012-07-04 中国科学院西安光学精密机械研究所 一种实现道威棱镜反射面轴线与旋转轴平行的方法及系统
WO2012178161A1 (en) * 2011-06-24 2012-12-27 Kci Licensing, Inc. Medical drapes, devices, and systems employing a holographically-formed polymer dispersed liquid crystal (h-pdlc) device
US9316784B2 (en) * 2012-05-23 2016-04-19 Oracle International Corporation Single- layer full-mesh, point-to-point network
US9254485B2 (en) * 2012-12-17 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for an integrated bio-entity manipulation and processing device
CN103134587A (zh) 2013-01-29 2013-06-05 北京理工大学 一种基于体全息光栅组件分光的光谱分光成像系统光路
EP3029783B1 (en) * 2014-12-01 2020-03-04 Huawei Technologies Co., Ltd. Multi-channel tunable laser
CN104515597B (zh) 2014-12-17 2016-08-24 中国科学院长春光学精密机械与物理研究所 采用体全息光栅和棱镜组合分光的光谱仪同轴光学系统
US10119915B2 (en) * 2015-04-09 2018-11-06 Visera Technologies Company Limited Detection device for specimens
CN104765103B (zh) * 2015-04-29 2018-01-19 武汉光迅科技股份有限公司 一种降低阵列波导光栅非线性温度效应的装置
CN107250767B (zh) * 2015-04-30 2020-09-11 惠普发展公司,有限责任合伙企业 光学光谱仪
US20170031144A1 (en) * 2015-07-29 2017-02-02 Ecole Polytechnique Federale De Lausanne (Epfl) Compact Side and Multi Angle Illumination Lensless Imager and Method of Operating the Same
WO2017083657A1 (en) * 2015-11-12 2017-05-18 Ring William S Photonic integrated device with dielectric structure
EP3182180B1 (en) * 2015-12-17 2024-01-24 Schleifring GmbH Multichannel fiber optic rotary joint(forj) having an achromatic metasurface
KR20220084181A (ko) * 2016-12-16 2022-06-21 퀀텀-에스아이 인코포레이티드 콤팩트한 빔 셰이핑 및 스티어링 어셈블리
CN107506728B (zh) * 2017-08-23 2021-02-12 京东方科技集团股份有限公司 感光单元、感光模组及感光装置
CN108923880B (zh) * 2018-04-23 2019-06-07 中山大学 一种基于螺旋变换的光子轨道角动量模式测量方法及系统
US10757398B1 (en) * 2018-06-22 2020-08-25 Facebook Technologies, Llc Systems and methods for generating temporally multiplexed images
US11707546B2 (en) * 2018-09-11 2023-07-25 Nxgen Partners Ip, Llc Miniaturized device to sterilize surfaces from Covid-19 and other viruses and bacteria
CN109540807B (zh) * 2018-10-23 2020-06-30 京东方科技集团股份有限公司 光谱仪以及微全分析系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089689A (zh) * 2008-05-09 2011-06-08 惠普开发有限公司 分光器装置
CN106471415A (zh) * 2014-04-30 2017-03-01 惠普发展公司,有限责任合伙企业 使用基于衍射的照明的成像装置和方法
CN104570200A (zh) * 2014-12-19 2015-04-29 南京大学 利用硅基波导改进的二氧化硅基阵列波导光栅装置及制备
CN204740204U (zh) * 2015-06-30 2015-11-04 上海理工大学 基于导模共振效应的液体浓度光学检测装置
US20180011334A1 (en) * 2016-07-07 2018-01-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical Arrangement for Spectral Decomposition of Light
CN107607475A (zh) * 2017-09-06 2018-01-19 京东方科技集团股份有限公司 微全分析系统及方法
CN109239940A (zh) * 2018-11-02 2019-01-18 京东方科技集团股份有限公司 一种分光装置及其制作方法、光色散方法和光谱仪

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112873A (zh) * 2021-11-23 2022-03-01 清华大学 用于流式细胞仪的片上荧光色散光路的波导设计

Also Published As

Publication number Publication date
CN109239940A (zh) 2019-01-18
CN109239940B (zh) 2021-05-07
US11402267B2 (en) 2022-08-02
US20200340861A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2020088642A1 (zh) 分光装置及其制作方法、光色散方法和光谱仪
US20230314325A1 (en) Arrays of integrated analytical devices
US10082425B2 (en) Integrated chromatic confocal sensor
US11085821B2 (en) Spectrometer and spectral detection and analysis method using the same
US7764374B2 (en) On-chip spectroscopy
KR100889976B1 (ko) 광 모듈과 이를 이용한 광 센서 및 그 제조방법
AU2278500A (en) A surface plasmon resonance sensor
TWI465861B (zh) 光學波長分光裝置及其製造方法
CN109238979B (zh) 光取出装置、检测装置及其使用方法
JP4018603B2 (ja) 光導波路型センサ
TWI489142B (zh) 光學波長分光裝置及其製造方法
JP5946330B2 (ja) Sprセンサセルおよびsprセンサ
WO2020019711A1 (en) Color dispersion apparatus and spectrometer
WO2015149331A1 (zh) 光谱仪、光谱仪的波导片的制造方法及其结构
US11536606B2 (en) Optical device and spectral detection apparatus
EP4095516B1 (en) Biosensor with grating array
US20230035224A1 (en) Arrays of integrated analytical devices with reduced-scale unit cell
Han et al. Development and optical characterization of vertical tapers in SiON waveguides using gray-scale lithography
JP2008268146A5 (zh)
JPH05215574A (ja) 光学式位置検出装置
Hafiz Optical sensor array based Nanospectrometer: Fabrication of high resolution 3D

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880280

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19880280

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19880280

Country of ref document: EP

Kind code of ref document: A1