WO2020088399A1 - 信息处理装置、飞行控制方法以及飞行控制系统 - Google Patents

信息处理装置、飞行控制方法以及飞行控制系统 Download PDF

Info

Publication number
WO2020088399A1
WO2020088399A1 PCT/CN2019/113654 CN2019113654W WO2020088399A1 WO 2020088399 A1 WO2020088399 A1 WO 2020088399A1 CN 2019113654 W CN2019113654 W CN 2019113654W WO 2020088399 A1 WO2020088399 A1 WO 2020088399A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
flying body
base
flying
speed
Prior art date
Application number
PCT/CN2019/113654
Other languages
English (en)
French (fr)
Inventor
顾磊
瞿宗耀
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980009026.3A priority Critical patent/CN111630466A/zh
Publication of WO2020088399A1 publication Critical patent/WO2020088399A1/zh
Priority to US17/233,431 priority patent/US20210229810A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/007Helicopter portable landing pads
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the present disclosure relates to an information processing device, a flight control method, and a flight control system for controlling the flight of a flying body.
  • a platform for example, an unmanned aerial vehicle which is equipped with a photographing device and performs photographing while flying along a predetermined flight path (for example, refer to Patent Document 1).
  • the platform receives commands such as a pre-set flight path and shooting instructions from the ground base, follows the command to fly and shoot, and sends the acquired images to the ground base.
  • the platform tilts the platform's shooting equipment to shoot according to the positional relationship between the platform and the subject while flying along the set fixed path.
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-61216
  • position estimation based on velocity integration of the measurement object position measurement based on radio waves such as beacons, and the like can be used.
  • the position estimation based on the velocity integration of the measurement object has a problem that the measurement accuracy is low, for example, an error of about 2 m occurs every 10 m, and therefore there is a problem that the required measurement accuracy cannot be obtained for the position measurement in automatic flight control.
  • the position measurement based on the beacon since it is affected by radio wave interference, there is a problem that it can only be used within a short distance of several tens of meters. In addition, there is a problem that measurement accuracy deteriorates after a distance of more than several tens of meters.
  • the information processing device is in a flight control system including a flying body and a base, and generates flying body control information for controlling the flying motion of the flying body, the base exists within the visible range of the flying body and An object to be measured is included.
  • the information processing device includes a processing unit.
  • the processing unit acquires the flying object obtained by measuring the object to be measured at the base at any time on the flying object
  • the relative position information of the flying body relative to the base and the absolute base position information indicating the absolute position of the base input the set path information set in the flying body and obtain the target path information at the current time from the set path information Calculate the target position for flying according to the set path according to the target path information; calculate the current absolute position of the flying body based on the relative position information of the flying body and the absolute position information of the base; calculate based on the current absolute position and target position of the flying body Flying body control for flying control of flying body Control information; and send flying body control information to the flying body control unit that controls the flying body.
  • the processing unit can measure the measurement object provided at the base in the flying object, detect and track the measurement object, obtain the distance and angle information of the measurement object, and infer from the distance and angle information of the measurement object The relative three-dimensional position of the object and the flying object is measured to calculate the relative position information of the flying object.
  • the processing unit can be used
  • the captured image of the measurement object acquired by the measurement unit calculates the relative position information of the flying object.
  • the processing unit may calculate the relative position information of the flying body using the measurement information of the distance and the angle to the measurement object acquired by the measurement unit.
  • the processing unit may acquire the relative position information of the flying body indicating the relative position of the flying body and the base, the speed information of the flying body indicating the speed of the flying body, the absolute position information of the base indicating the absolute position of the base, and Base speed information that represents the speed of the base; calculate the current absolute position of the flying body based on the relative position information of the flying body and the absolute position information of the base; calculate the absolute speed of the flying body based on the speed information of the flying body and the base speed information; The current absolute position and absolute speed of the body and the target position calculate flight control information for performing flight control of the flying body.
  • the processing unit may acquire the relative position information of the flying body indicating the relative position of the flying body and the base, the flying body speed information indicating the speed of the flying body, the flying body acceleration information indicating the acceleration of the flying body, and indicating The absolute position information of the base, the base speed information indicating the speed of the base, and the base acceleration information indicating the acceleration of the base; based on the relative position information of the flying body and the absolute position information of the base, the current absolute position of the flying body is calculated; Calculate the absolute speed of the flying body by the speed information of the flying body and the speed information of the base; calculate the absolute acceleration of the flying body based on the acceleration information of the flying body and the acceleration information of the base; based on the current absolute position, absolute speed and absolute acceleration of the flying body and the target position , Calculate the flight control information used for flight control of the flying body.
  • the flight control method is in a flight control system including a flying body, a base, and an information processing device, the base exists within the visible range of the flying body and has a measurement object, and the information processing device generates a flight for the flying body
  • the control information of the flying body whose operation is controlled has the following steps: in the information processing device, acquiring relative position information of the flying body indicating the relative position of the flying body and the base obtained by measuring the measurement object at any time in the flying body, And the absolute position information of the base indicating the absolute position of the base; input the set path information set in the flying body and obtain the target path information at the current time from the set path information, and according to the target path information, calculate the Set the target position of the path flight; calculate the current absolute position of the flying body based on the relative position information of the flying body and the absolute position information of the base; calculate the flight used for flight control of the flying body based on the current absolute position and target position of the flying body Steps of body control information; Control information to control the flight of the
  • the step of acquiring the relative position information of the flying object may include the steps of: measuring the measuring object at the base in the flying object; detecting and tracking the measuring object to obtain the distance and angle information of the measuring object; and according to The distance and angle information of the measurement object is measured, and the relative three-dimensional position of the measurement object and the flying object is estimated to calculate the relative position information of the flying object.
  • the step of acquiring the relative position information of the flying object may include the following steps: when the measurement object is a visible object, and the flying object has an imaging portion as a measurement portion for measuring the measurement object to photograph the visible object, and the measurement portion is oriented When measuring the gimbal of the measurement object, the relative position information of the flying object is calculated using the captured image of the measurement object acquired by the measurement unit.
  • the step of acquiring the relative position information of the flying object may include the following steps: when the measurement object is a retro-reflector, and the flying object has a measuring portion as a measuring object for measuring the distance and angle to the retro-reflector When the laser scanner and the measuring unit are directed toward the gimbal of the measurement object, the relative position information of the flying body is calculated using the measurement information of the distance and angle to the measurement object acquired by the measurement unit.
  • the following steps may be included: acquiring relative position information of the flying body indicating the relative position of the flying body and the base, flying body speed information indicating the speed of the flying body, and absolute base position information indicating the absolute position of the base , And base speed information indicating the speed of the base; based on the relative position information of the flying body and the absolute position information of the base, the current absolute position of the flying body is calculated; based on the speed information of the flying body and the base speed information, the absolute speed of the flying body is calculated; and Based on the current absolute position and absolute speed of the flying body and the target position, flight control information for performing flight control of the flying body is calculated.
  • the base is a movable base
  • the following steps may be included: acquiring relative position information of the flying body indicating the relative position of the flying body and the base, flying body speed information indicating the speed of the flying body, flying body acceleration information indicating the acceleration of the flying body , Base absolute position information indicating the absolute position of the base, base speed information indicating the speed of the base, and base acceleration information indicating the acceleration of the base; based on the relative position information of the flying body and the absolute position information of the base, the current absolute position of the flying body is calculated Calculate the absolute speed of the flying body based on the speed information of the flying body and the speed of the base; calculate the absolute acceleration of the flying body based on the acceleration information of the flying body and the acceleration information of the base; As well as the target position, flight control information used for flight control of the flying body is calculated.
  • the flight control system controls the flying behavior of the flying body, which includes the flying body, the base with the measurement object existing in the visible range of the flying body, and the generation for controlling the flying motion of the flying body
  • the information processing device of the flying body control information the flying body measures the measurement object set at the base at any time, and calculates the relative position information of the flying body indicating the relative position with the base; the base acquires the absolute position information of the base indicating the absolute position of the base;
  • the information processing device inputs the set path information set in the flying body and acquires the target path information at the current time from the set path information, and calculates the target position for flying according to the set path according to the target path information, and obtains
  • FIG. 1 is a block diagram showing a first configuration example of the flight control system in the embodiment.
  • FIG. 2 is a schematic diagram showing a first configuration example of the flight control system in the embodiment.
  • FIG. 3 is a block diagram showing a first example of the functional configuration of the path calculation section in the embodiment.
  • FIG. 4 is a diagram showing an example of a specific appearance structure of a flying body.
  • FIG. 5 is a block diagram showing an example of the hardware configuration of the flying body.
  • FIG. 6 is a flowchart illustrating an example of flight control actions in the embodiment.
  • FIG. 7 is a block diagram showing a second configuration example of the flight control system in the embodiment.
  • FIG. 8 is a schematic diagram showing a second configuration example of the flight control system in the embodiment.
  • FIG. 9 is a block diagram showing a second example of the functional configuration of the path calculation section in the embodiment.
  • FIG. 10 is a block diagram showing a third configuration example of the flight control system in the embodiment.
  • FIG. 11 is a block diagram showing a third example of the functional configuration of the path calculation section in the embodiment.
  • the information processing device is a computer included in at least one of a flying body as an example of a moving body and a platform for remotely controlling the movement or processing of the flying body, for executing the flying body Actions involved in various processing.
  • the flight control method related to the present disclosure specifies various processes (steps) in the information processing device (aircraft body, platform).
  • the program related to the present disclosure is a program for causing an information processing device (air vehicle, platform) to execute various processes (steps).
  • the recording medium involved in the present disclosure records a program (ie, a program for causing an information processing device (aircraft body, platform) to execute various processes (steps)).
  • the flight control system of the present disclosure includes: a flying body, an information processing device (a flying body, a platform), and a base for position determination of the flying body.
  • Flying objects include flying vehicles (eg drones, helicopters) that move in the air.
  • the flying body may be an unmanned aerial vehicle (UAV: Unmanned Aerial) (also called an unmanned aerial vehicle) with a shooting device.
  • UAV Unmanned Aerial
  • the flying body In order to shoot a subject within the shooting range (for example, the ground shape of buildings, roads, parks, etc. within a certain range), the flying body flies along a predetermined flight path, and multiple Shoot the subject at the shooting position.
  • Subjects include objects such as buildings, roads, and bridges.
  • the platform is a computer, and has, for example, a processing unit for instructing control of various processes including movement of the flying body, and is a terminal connected to the control unit of the flying body to enable input and output of information or data.
  • the terminal may be, for example, a PC or the like.
  • the flying body when the flying body includes the information processing device, the flying body itself may be included as a platform.
  • the flying body is exemplified by an unmanned aerial vehicle (UAV).
  • UAV unmanned aerial vehicle
  • the information processing device controls the flying action of the flying body when automatically flying according to a predetermined target path.
  • the information processing device may be mounted inside the flying body, for example.
  • the information processing device may be mounted on other devices (for example, a PC or a server that can communicate with the flying object).
  • the information processing device may be mounted on a base having a measurement target to be described later.
  • FIG. 1 is a block diagram showing a first configuration example of the flight control system in the embodiment.
  • the flight control system 10 includes a flying body 100, a flight control processing unit 300, and a base 500.
  • the flying body 100 and the flight control processing unit 300, and the base 500 and the flight control processing unit 300 can communicate with each other through wired communication or wireless communication (for example, wireless LAN (Local Area Network)).
  • wireless LAN Local Area Network
  • FIG. 2 is a schematic diagram showing a first configuration example of the flight control system in the embodiment.
  • FIG. 2 shows a configuration example when the base 500 is a ground base installed on the ground.
  • the base 500 is provided with a mark 550 as an example of a visible target.
  • the mark 550 is formed and arranged on the outer surface of the base 500, for example, the upper surface portion.
  • the flying object 100 photographs the mark 550 of the base 500 through the camera of the imaging unit of the measuring unit, and measures the relative position of the flying object 100 and the base 500.
  • the base 500 is not limited to a base fixedly installed on the ground, but may also be a base installed on a structure such as a building or a tower, a base installed in water or air, or a mobile base movable on land, water, or air.
  • the flying body 100 has a flying body control unit 110, a universal joint 120 and a universal joint control unit 130.
  • a relative position measuring unit 140 is mounted on the universal joint 120.
  • the universal joint 120 is configured to be freely rotatable in three axis directions, for example, so that the relative position measuring unit 140 can be arbitrarily changed to the desired direction so that the relative position measuring unit 140 faces the object to be measured.
  • the relative position measurement unit 140 includes a measurement unit 141, an object detection unit 142, and a relative position calculation unit 143, and measures the relative position between the flying object 100 and the base 500.
  • the measuring unit 141 may be composed of an imaging unit including a TOF (Time Of Flight) camera and an RGB camera, a laser scanner, or the like.
  • the gimbal control unit 130 outputs a drive signal to the gimbal 120, and physically controls the direction of the gimbal 120 so that the measuring unit 141 mounted on the gimbal 120 faces the measurement object of the base 500.
  • the gimbal control unit 130 inputs the measurement result of the relative position obtained by the relative position calculation unit 143, and adjusts the direction of the gimbal 120 by feedback control.
  • the flying object control unit 110 controls the flying action of the flying object 100 when automatically flying according to a predetermined target path.
  • the target path may include information such as a flight position (Waypoint) for generating a flight path, a control point that is a basis for generating a flight path, a flight time, and the like.
  • the target path may include a flight position, which includes the shooting position of the shooting object and the like.
  • the flying body control unit 110, the gimbal control unit 130, the object detection unit 142, and the relative position calculation unit 143 may be constituted by a computer having a processor and a memory.
  • the base 500 has a measurement object 510 such as the above-mentioned mark 550 and a position acquiring unit 520 that acquires the position of the base 500 itself.
  • the measurement unit 141 of the flying object 100 includes an imaging unit composed of a TOF camera and an RGB camera
  • the marker 550 is used as the measurement object 510.
  • the TOF camera measures the distance to the full-pixel object (object) for each pixel in the captured image of the measurement object 510.
  • the TOF camera is a camera that has a pulse light source and a photographing device, and can measure three-dimensional position information (distance information) by measuring the reflection time of the pulse light irradiated on the subject by each pixel.
  • the RGB camera is a camera that captures an RGB image, calculates the pixel position of the object based on the color information (RGB information) of the captured image, and measures the angle of the object.
  • the measurement unit 141 uses the TOF camera and the RGB camera to capture the mark of the measurement object 510 and measure the distance and angle of the measurement object 510.
  • the measurement unit 141 of the flying object 100 includes a laser scanner
  • a retroreflector including a prism or the like is used for the measurement object 510.
  • the laser scanner irradiates the measurement object 510 with laser light, and measures the distance and angle to the object based on the reflected light reflected from the object.
  • a laser scanner is a measuring instrument that can measure the three-dimensional position information of an object using the phase difference, TOF, and other measurement methods, using the phase difference of the laser beam or the reflection time and irradiation angle.
  • the measurement unit 141 irradiates laser light to the retro-reflector of the measurement object 510 with a laser scanner to measure the distance and angle to the measurement object 510.
  • the measurement unit 141 of the flying object 100 will be described using a case where an imaging unit composed of a TOF camera and an RGB camera is used as an example.
  • the measurement unit 141 detects and measures the measurement object 510 of the base 500 by imaging or the like, and acquires measurement data such as a captured image at any time.
  • the object detection unit 142 detects and tracks the measurement object 510 using object detection and tracking techniques based on measurement data such as the captured image of the measurement unit 141, and outputs information on the distance and angle of the measurement object 510.
  • the relative position calculation unit 143 estimates and calculates the relative three-dimensional position from the measurement object 510 to the flying object 100 based on the distance and angle information of the measurement object 510, and obtains and outputs the current relative position information of the flying object 100.
  • the position acquisition unit 520 of the base 500 may be composed of a GPS measurement unit including a GPS sensor, for example.
  • the GPS measurement unit measures the three-dimensional position based on the GPS of the base 500, acquires absolute position information of the base 500, and outputs it.
  • the position acquiring unit 520 may maintain or acquire the three-dimensional position measured in advance by GPS, or the three-dimensional position measured in advance by other measurement methods to acquire the absolute position information of the base 500.
  • the position acquisition unit 520 may be composed of a computer having a memory or a memory, or a processor and a memory.
  • the flight control processing unit 300 is an example of the information processing device according to the present disclosure, and has a target path acquisition unit 310, a path calculation unit 320, and a transmission unit 330.
  • the target path acquisition unit 310 inputs a flight path set in advance by a person using a flight control system (hereinafter, referred to as "user"), a flight path calculated based on parameters specified by the user, or a set flight path such as a flight path recorded in advance Information, obtain the target route information at the current time from the set route information.
  • the target path information includes information such as the position, posture, and angle of the flying object.
  • the path calculation unit 320 inputs the relative position information of the flying body 100 (relative position information of the flying body), the absolute position information of the base 500 (base absolute position information), and the target path information, based on the target position and the current position of the flying body 100 Information, the flying body control information necessary for flying the flying body 100 along the set path is calculated.
  • the flying body control information includes control information related to the flying body's pitch, roll, yaw, altitude and other control variables.
  • the transmission unit 330 has a communication interface of wired communication or wireless communication, and transmits the flying body control information to the flying body control unit 110 by any wired communication method or wireless communication method.
  • the flight control processing unit 300 may be composed of a computer having a processor, a memory, and a communication unit.
  • the path calculation unit 320 of the first example includes a flying body absolute position calculation unit 321, a target path information calculation unit 322, and a PID calculation unit 325.
  • the flying body absolute position calculation unit 321 inputs the flying body relative position information and the base absolute position information to calculate the current absolute position of the flying body 100.
  • the target path information calculation unit 322 inputs target path information, and calculates a target position related to the target path for flying according to the set path.
  • the PID calculation unit 325 calculates flight control information (PID control control amount information) for performing flight control of the flight 100 using PID control technology based on the current absolute position (current position) of the flight 100 and the target position.
  • the flying body control unit 110 inputs flying body control information sent by the flight control processing unit 300, and controls a driving unit such as a rotor mechanism of the flying body 100 based on the flying body control information to control the flying behavior of the flying body 100.
  • a driving unit such as a rotor mechanism of the flying body 100
  • the flying body control section 110 may be included in the information processing device.
  • FIG. 4 is a diagram showing an example of a specific appearance structure of a flying body.
  • FIG. 4 shows a perspective view of the flying object 100 when it moves in the moving direction STV0.
  • the roll axis (refer to the x axis) is defined in a direction parallel to the ground and along the moving direction STV0.
  • the pitch axis (refer to the y axis) is determined to be parallel to the ground and perpendicular to the roll axis
  • the yaw axis (refer to the z axis) is determined to be perpendicular to the ground and perpendicular to the roll axis and the pitch axis. direction.
  • the structure of the flying body 100 includes a UAV body 1100, a universal joint 1200, and an imaging unit 1220.
  • the flying body 100 is an example of a moving body that includes the imaging unit 1220 and moves.
  • the movement of the flying body 100 refers to flight, including at least ascending, descending, rotating left, rotating right, moving horizontally left, and moving horizontally right.
  • the UAV main body 1100 includes a plurality of rotors (propellers).
  • the UAV main body 1100 causes the flying body 100 to fly by controlling the rotation of a plurality of rotors.
  • the UAV main body 1100 makes the flying body 100 fly using, for example, four rotors.
  • the number of rotors is not limited to four.
  • the flying body 100 may be a fixed-wing aircraft without a rotor.
  • the imaging unit 1220 is an imaging camera that shoots an object (for example, a building on the ground, an object to be inspected) included in a desired imaging range.
  • the imaging unit 1220 has a function of the measurement unit 141 that captures the measurement object 510 of the base 500 and acquires measurement data.
  • the structure of the flying object 100 includes a UAV control unit 1110, a communication interface 1150, a memory 1160, a memory 1170, a universal joint 1200, a rotor mechanism 1210, an imaging unit 1220, a GPS receiver 1240, and an inertial measurement device (IMU: Inertial Measurement Unit) 1250, magnetic compass 1260, barometric altimeter 1270, ultrasonic sensor 1280, laser measuring instrument 1290.
  • IMU Inertial Measurement Unit
  • the UAV control unit 1110 is configured using a processor, such as a CPU (Central Processing Unit), MPU (Micro Processing Unit), or DSP (Digital Signal Processor).
  • the UAV control unit 1110 performs signal processing for overall control of the operations of each part of the flying object 100, data input / output processing with other parts, data arithmetic processing, and data storage processing.
  • the UAV control unit 1110 includes the functions of the flying body control unit 110.
  • the UAV control unit 1110 controls the movement (i.e. flight) of the flying body 100 according to a program stored in the memory 1160.
  • the UAV control unit 1110 controls the flight when the flying body 100 is automatically flying based on the flying body control information transmitted from the flight control processing unit 300.
  • the UAV control unit 1110 may control the flight of the flying body 100 according to commands received from a remote transmitter through the communication interface 1150.
  • the UAV control unit 1110 acquires the captured image (image data) of the subject captured by the imaging unit 1220.
  • the UAV control unit 1110 can perform aerial photography through the imaging unit 1220 and acquire an aerial image as a captured image.
  • the UAV control unit 1110 has a function of a relative position measurement unit 140 that measures the relative position of the flying object 100 relative to the base 500 based on the measurement data of the measurement object 510 of the base 500 acquired by the measurement unit 141 such as the imaging unit 1220.
  • the communication interface 1150 communicates with external information processing devices and terminals.
  • the communication interface 1150 can perform wireless communication through any wireless communication method.
  • the communication interface 1150 can perform wired communication through any wired communication method.
  • the communication interface 1150 may transmit the captured image and additional information (metadata) related to the captured image to the information processing device.
  • the communication interface 1150 can acquire flying body control information from an external information processing device.
  • the memory 1160 stores the UAV control unit 1110 to control the universal joint 1200, the rotor mechanism 1210, the imaging unit 1220, the GPS receiver 1240, the inertial measurement device 1250, the magnetic compass 1260, the barometric altimeter 1270, the ultrasonic sensor 1280, and the laser measuring instrument 1290 Required procedures.
  • the memory 1160 may be a computer-readable recording medium, and may include SRAM (Static Random Access Memory), DRAM (Dynamic Random Access Memory), EPROM (Erasable Programmable Read Only Only Memory: erasable At least one of flash memory such as programmable read-only memory), EEPROM (Electrically Erasable Programmable Read-Only Memory: electrically erasable programmable read-only memory), and USB (Universal Serial Bus) memory.
  • the memory 1160 may be provided inside the UAV main body 1100. The memory 1160 can be detached from the flying body 100. The memory 1160 can record the captured image captured by the imaging unit 1220. The memory 1160 can be used as a working memory.
  • the memory 1170 stores and stores various data and information.
  • the memory 1170 may include at least one of an HDD (Hard Disk Drive), an SSD (Solid State Drive), an SD memory card, a USB memory, and other memories.
  • the memory 1170 may be provided inside the UAV main body 1100.
  • the memory 1170 can be detached from the UAV 100.
  • the memory 1170 may record captured images.
  • the universal joint 1200 rotatably supports the imaging unit 1220 about at least one axis.
  • the gimbal 1200 can rotatably support the imaging unit 1220 about the yaw axis, the pitch axis, and the roll axis.
  • the gimbal 1200 can rotate the imaging unit 1220 about at least one of the yaw axis, the pitch axis, and the roll axis, thereby changing the imaging direction of the imaging unit 1220.
  • the imaging unit 1200 has a function of adjusting the direction of the imaging unit 1220 so that the imaging unit 1220 as an example of the measuring unit 141 can image the universal joint 120 of the measurement object 510 of the base 500.
  • the rotor mechanism 1210 has a plurality of rotors and a plurality of drive motors that rotate the plurality of rotors.
  • the rotor mechanism 1210 is controlled by the UAV control unit 1110 to rotate, thereby causing the aircraft 100 to fly.
  • the imaging unit 1220 shoots a subject within a desired shooting range and generates data of a captured image.
  • the captured image (image data) obtained by imaging by the imaging unit 1220 may be stored in the memory or the memory 1160 or the memory 1170 included in the imaging unit 1220.
  • the imaging unit 1220 has a TOF camera and an RCB camera as the measurement unit 141.
  • the GPS receiver 1240 receives a plurality of signals transmitted from a plurality of navigation satellites (that is, GPS satellites) indicating time and the position (coordinates) of each GPS satellite.
  • the GPS receiver 1240 calculates the position of the GPS receiver 1240 (that is, the position of the flying body 100) based on the received multiple signals.
  • the GPS receiver 1240 outputs the position information of the flying object 100 to the UAV control unit 1110.
  • the UAV control unit 1110 may replace the GPS receiver 1240 to calculate the position information of the GPS receiver 1240. At this time, information indicating the time and the position of each GPS satellite included in the plurality of signals received by the GPS receiver 1240 is input into the UAV control unit 1110.
  • the inertial measurement device 1250 detects the attitude of the flying object 100 and outputs the detection result to the UAV control unit 1110.
  • the inertial measurement device 1250 can detect the acceleration of the three-axis directions of the flying body 100 in the front-rear, left-right, and vertical directions and the angular velocities in the three-axis direction of the pitch axis, roll axis, and yaw axis as the attitude of the flying body 100.
  • the magnetic compass 1260 detects the orientation of the nose of the flying object 100 and outputs the detection result to the UAV control unit 1110.
  • the barometric altimeter 1270 detects the flying height of the flying body 100, and outputs the detection result to the control unit 1110.
  • the ultrasonic sensor 1280 emits ultrasonic waves, detects ultrasonic waves reflected on the ground and objects, and outputs the detection results to the UAV control unit 1110.
  • the detection result may represent, for example, the distance (ie, height) from the flying object 100 to the ground.
  • the detection result may also indicate, for example, the distance from the flying object 100 to the object (eg, subject).
  • the laser measuring instrument 1290 irradiates the object with laser light, receives the reflected light reflected by the object, and measures the distance between the flying body 100 and the object (for example, subject) by the reflected light.
  • the measurement result is input to the UAV control unit 1110.
  • the TOF method may be used.
  • the laser measuring instrument 1290 may have a function of the measurement unit 141 that captures the measurement object 510 of the base 500 to acquire measurement data. At this time, the laser measuring instrument 1290 may be equipped with a universal joint 1200.
  • the UAV control unit 1110 acquires position information indicating the position of the flying object 100.
  • the UAV control unit 1110 can acquire the latitude, longitude, and altitude indicating that the flying object 100 is located from the GPS receiver 1240.
  • the UAV control unit 1110 can obtain latitude and longitude information indicating the latitude and longitude of the flying object 100 from the GPS receiver 1240, and obtain altitude information indicating the height of the flying object 100 from the barometric altimeter 1270 as position information.
  • the UAV control unit 1110 may acquire the distance between the radiation point of the ultrasonic wave generated by the ultrasonic sensor 1280 and the reflection point of the ultrasonic wave as height information.
  • the UAV control unit 1110 may acquire direction information indicating the direction of the flying object 100 from the magnetic compass 1260.
  • the direction information can be expressed by, for example, an orientation corresponding to the direction of the nose of the flying object 100.
  • the UAV control unit 1110 can shoot the subject in the horizontal direction, the direction of the predetermined angle, or the vertical direction by the imaging unit 1220 at the shooting position (including the waypoint) existing on the way of the set flight path.
  • the direction of the predetermined angle is the direction of the angle of the predetermined value suitable for the information processing device (unmanned aerial vehicle or platform) to estimate the three-dimensional shape of the subject.
  • the UAV control unit 1110 can acquire shooting range information indicating each shooting range of the imaging unit 1220.
  • the UAV control unit 1110 acquires the image representing the imaging unit 1220 from the imaging unit 1220 as a parameter for specifying the shooting range.
  • the UAV control section 1110 may acquire information indicating the shooting direction of the imaging section 1220 as a parameter for specifying the shooting range.
  • the UAV control unit 1110 acquires information indicating the state of the posture of the imaging unit 1220 from the universal joint 1200 as, for example, information indicating the shooting direction of the imaging unit 1220.
  • the posture information of the imaging unit 1220 can be represented by a rotation angle from the reference rotation angle of the pitch axis and the yaw axis of the universal joint 1200, for example.
  • the UAV control unit 1110 may acquire information indicating the direction of the flying object 100 as information indicating the shooting direction of the imaging unit 1220.
  • the UAV control unit 1110 controls the universal joint 1200, the rotor mechanism 1210, and the imaging unit 1220.
  • the UAV control section 1110 may control the shooting range of the imaging section 1220 by changing the shooting direction or angle of view of the imaging section 1220.
  • the UAV control unit 1110 can control the shooting range of the imaging unit 1220 supported by the universal joint 1200 by controlling the rotation mechanism of the universal joint 1200.
  • the UAV control unit 1110 controls the flight of the flying body 100 by controlling the rotor mechanism 1210. That is, the UAV control unit 1110 controls the position including the latitude, longitude, and altitude of the flying object 100 by controlling the rotor mechanism 1210.
  • the UAV control unit 1110 can control the shooting range of the imaging unit 1220 by controlling the flight of the flying body 100.
  • the UAV control section 1110 may control the angle of view of the imaging section 1220 by controlling the zoom lens included in the imaging section 1220.
  • the UAV control unit 1110 can use the digital zoom function of the imaging unit 1220 to control the angle of view of the imaging unit 1220 through digital zoom.
  • the UAV control unit 1110 can acquire date and time information indicating the current date and time.
  • the UAV control unit 1110 can acquire date and time information indicating the current date and time from the GPS receiver 1240.
  • the UAV control unit 1110 may acquire date and time information indicating the current date and time from a timer (not shown) mounted on the flying object 100.
  • the flight control processing unit 300 acquires setting path information such as a flight path set in advance by the user, a flight path calculated by parameters specified by the user, or a flight path recorded in advance (S11).
  • the setting path information can be input from, for example, an external terminal, information processing device, memory, or the like.
  • the flight control processing unit 300 transmits the flying body control information generated based on the set path information to the flying body control unit 110.
  • the UAV control unit 110 controls the flying motion of the flying body 100 according to the flying body control information, and causes it to start automatic flight along the set path (S12).
  • the measurement unit 141 of the flying object 100 measures the measurement object 510 of the base 500 at any time, and executes the measurement operation of the object (S13).
  • the object detection unit 142 detects and tracks the measurement object 510 based on the measurement data of the object, and outputs information on the distance and angle of the measurement object 510 (S14).
  • the relative position calculation unit 143 calculates the current relative position information of the flying object 100 relative to the measurement object 510 based on the distance and angle information of the measurement object 510 (S15).
  • the target route acquisition unit 310 of the flight control processing unit 300 acquires target route information at the current time from the input set route information (S16).
  • the path calculation unit 320 calculates the position of the flying body 100 from the comparison result of the position information of the target position of the flying body 100 and the current position based on the relative position information of the flying body 100, the absolute position information of the base 500, and the target path information. Flying body control information that follows the set path (S17).
  • the transmission unit 330 transmits the calculated flying body control information to the flying body control unit 110 (S18).
  • the flying body control unit 110 controls the flying action of the flying body 100 according to the flying body control information sent by the flight control processing unit 300 at any time, so that it continues to fly automatically along the set path.
  • the flying body control unit 110 determines whether the flight of the target path according to the set path is completed (S19), and when the flight of the target path is not completed (S19, No), the above-mentioned automatic flight control-related operations are continued. That is, the flying object 100 and the flight control processing unit 300 repeatedly perform the operation of measuring the object of S13 to the transmitting operation of the flying object control information of S18.
  • the processing of the actions related to the automatic flight control is ended.
  • the relative position information of the base and the flying body and the absolute position information of the base can be obtained to obtain the current position of the flying body location information.
  • the current position information of the flying body and the target path it is possible to perform the control of the automatic flight of the flying body along the target path with high accuracy and easily. Therefore, even in an environment where it is difficult to receive a signal from a GPS satellite, for example, in a case where the flying object is automatically flying for bridge inspection, the current position information of the flying object can be acquired with high accuracy, and the execution along the target path can be performed. Control of automatic flight.
  • the flight control system 10A includes a flying body 100A, a flight control processing unit 300A, and a base 600.
  • a configuration example is shown in the case of a mobile base that has a speed measurement unit and the base 600 is movable in addition to the first configuration example.
  • repeated description of the same constituent elements as in the first configuration example shown in FIG. 1 is omitted.
  • the flying body 100A includes a flying body control unit 110, a universal joint 120, a universal joint control unit 130, a speed measurement sensor 150, and a sensor fusion unit 160.
  • the relative position measuring unit 140A mounted on the universal joint 120 has a measuring unit 141, an object detection unit 142, a relative position calculation unit 143, and a relative speed calculation unit 144.
  • FIG. 8 is a schematic diagram showing a second configuration example of the flight control system in the embodiment.
  • FIG. 8 shows a configuration example in the case where the base 600 is a dynamic mobile base using flying objects.
  • the base 600 based on another flying object is provided with a mark 650 as a target.
  • the mark 650 is formed and arranged on the outer surface of the base 600, for example, the upper surface portion of the body of the flying body.
  • the base 600 based on the flying body flies in the vicinity of the flying body 100A, and can acquire absolute position information of the base 600 itself in a moving or stationary state.
  • the flying body 100A measures the mark 650 of the base 600 by shooting or the like, and measures the relative position of the flying body 100A and the base 600.
  • a dynamic mobile base such as the base 600 shown in FIG. 8 is used.
  • the dynamic mobile base can use various mobile objects, such as flying bodies such as unmanned aircraft, ships, and vehicles.
  • flying bodies such as unmanned aircraft, ships, and vehicles.
  • the automatic flight control flying body 100A performs side inspections of structures such as bridges, the reception state of signals from GPS satellites is not ideal, and it may be difficult to perform position measurement by GPS.
  • a base 600 based on another flying body as a mobile base in the vicinity of the flying body 100A appropriate position measurement and automatic flight control of the flying body 100A can be performed.
  • the base 600 includes a measurement object 610 such as the above-mentioned mark 650, a position acquiring unit 620 that acquires the position of the base 600 itself, and a speed measurement sensor 630 that measures the moving speed of the base 600.
  • the position acquisition unit 620 of the base 600 may be constituted by, for example, a GPS measurement unit including a GPS sensor, and the three-dimensional position of the base 600 is measured to obtain the absolute position information and output.
  • the speed measuring sensor 630 measures the moving speed of the base 600, acquires and outputs base speed information indicating the speed of the base 600.
  • the relative position calculation unit 143 of the flying object 100A estimates and calculates the relative three-dimensional position from the measuring object 610 to the flying object 100A based on the distance and angle information of the measuring object 610, and obtains and outputs the relative position information of the flying object 100A.
  • the relative speed calculation unit 144 uses the captured image of 610 acquired by the measurement unit 141, records the time stamp of each frame of the captured image, and estimates the relative position of the flying object 100A relative to the measurement object 610 based on the position of the measurement object 610 at each time Speed and output it as relative speed information.
  • the relative speed calculation unit 144 may calculate the relative speed information of the flying object 100A relative to the measurement object 610 based on the change information of the distance and angle of the measurement object 610.
  • the speed measurement sensor 150 is configured using, for example, an inertial measurement device (IMU) 1250, etc., and obtains and outputs the moving speed information of the flying body 100A based on the acceleration information of the flying body 100A.
  • the sensor fusion unit 160 is a device that integrates detection information of multiple sensors through sensor fusion technology to obtain higher-precision measurement information. The sensor fusion unit 160 selects the sensor detection result according to the detection accuracy of each sensor that differs depending on the situation, and outputs high-precision measurement information.
  • the sensor fusion unit 160 integrates the relative speed information of the flying body 100A acquired by the relative speed calculation unit 144 and the moving speed information of the flying body 100A acquired by the speed measurement sensor 150, and outputs it as a flying body representing the speed of the flying body 100A Speed information.
  • the flight control processing unit 300A is an example of an information processing device according to the present disclosure, and has a target path acquisition unit 310, a path calculation unit 320A, and a transmission unit 330.
  • the path calculation unit 320A inputs the relative position information of the flying body 100A (relative position information of the flying body), the speed information of the flying body 100A (flying body speed information), the absolute position information of the base 600 (base absolute position information), and the speed of the base 600 Information (base speed information) and target path information, based on the position information of the target position and current position of the flying body 100A and the speed information of the flying body 100A and the base 600, calculate the flight required for the flying body 100A to follow the set path Body control information.
  • the path calculation unit 320A of the second example includes a flying body absolute position calculation unit 321, a target path information calculation unit 322, a flying body absolute velocity calculation unit 323, and a PID calculation unit 325.
  • the flying body absolute speed calculation unit 323 inputs flying body speed information and base speed information, and calculates the current absolute speed of the flying body 100A.
  • the PID calculation unit 325 calculates the flying body control for performing flight control of the flying body 100A through the PID control technology based on the current absolute position (current position) and absolute speed (current speed) of the flying body 100A, and the target position and target speed Information (control variable information for PID control).
  • the path calculation unit 320A calculates the flying body control information for making the flying body 100A fly according to the set path based on the comparison result of the target position and the current position of the flying body 100A, the target speed and the current speed.
  • the flying body control unit 110 inputs the flying body control information sent by the flight control processing unit 300A, and controls the flying operation of the flying body 100A by controlling the driving unit such as the rotor mechanism of the flying body 100A based on the flying body control information. At this time, the flying body control unit 110 causes the flying body 100A to fly for the target position and target passing time based on the target path information, and causes it to perform automatic flight along the set path.
  • the flying body control section 110 can control the flying of the flying body 100A and make it perform automatic flight along a set path to suit the target position and target speed.
  • the base can be arranged within the visible range of the flying body and the relative position information of the base and the flying body can be easily obtained , And the absolute location of the base.
  • the position information of the flying body can be acquired with high precision. Therefore, as in the first configuration example, it is possible to perform the control of the automatic flight of the flying body along the target path with high accuracy and easily.
  • the flight control system 10 is a block diagram showing a third configuration example of the flight control system in the embodiment.
  • the flight control system 10B includes a flying body 100B, a flight control processing unit 300B, and a base 600A.
  • a configuration example is shown in the case of a mobile base that has an acceleration measuring unit and the base 600A is movable in addition to the second configuration example.
  • repeated description of the same constituent elements as in the first configuration example shown in FIG. 1 and the second configuration example shown in FIG. 7 is omitted.
  • the flying body 100B includes a flying body control unit 110, a universal joint 120, a universal joint control unit 130, a speed and acceleration measurement sensor 170, and a sensor fusion unit 180.
  • the relative position measuring unit 140B mounted on the universal joint 120 has a measuring unit 141, an object detection unit 142, a relative position calculation unit 143, a relative speed calculation unit 144, and a relative acceleration calculation unit 145.
  • the base 600A includes a measurement object 610 using the above-mentioned mark 650 and the like, a position acquisition unit 620 that acquires the position of the base 600 itself, and a speed and acceleration measurement sensor 640 that measures the movement speed of the base 600A at the movement acceleration.
  • the speed and acceleration measuring sensor 640 measures the moving speed and the moving acceleration of the base 600A, acquires base speed information indicating the speed of the base 600A, and outputs base acceleration information indicating the acceleration.
  • the relative position calculation unit 143 of the flying object 100B estimates and calculates the relative three-dimensional position from the measuring object 610 to the flying object 100B based on the distance and angle information of the measuring object 610, and obtains and outputs the relative position information of the flying object 100B.
  • the relative velocity calculation unit 144 uses the captured image of the measurement object 610 acquired by the measurement unit 141 to estimate the relative velocity of the flying object 100B from the position of the measurement object 610 at each time relative to the measurement object 610, and uses this as the relative velocity Information output.
  • the relative speed calculation unit 144 may calculate the relative speed information of the flying object 100B relative to the measurement object 610 based on the change information of the distance and angle of the measurement object 610.
  • the relative acceleration calculation unit 145 may calculate the amount of change in the relative speed of the flying object 100B with respect to the measurement object 610 and output it as relative acceleration information.
  • the speed and acceleration measurement sensor 170 is configured using, for example, an inertial measurement device (IMU) 1250, etc., and obtains and outputs the movement acceleration information and movement speed information of the flying object 100B.
  • the sensor fusion unit 180 integrates the detection information of a plurality of sensors through sensor fusion technology, and outputs flying body speed information and flying body acceleration information as higher-precision measurement information.
  • the sensor fusion unit 180 integrates the relative speed information of the flying body 100B acquired by the relative speed calculation unit 144, the relative acceleration information of the flying body 100B acquired by the relative acceleration calculation unit 145, and the flying body 100B acquired by the speed and acceleration measurement sensor 170 The moving speed information and the moving acceleration information, and output them as flying body speed information indicating the speed of the flying body 100B and flying body acceleration information indicating the acceleration.
  • the flight control processing unit 300B is an example of the information processing device described in this disclosure, and has a target path acquisition unit 310, a path calculation unit 320B, and a transmission unit 330.
  • the path calculation unit 320B inputs the relative position information of the flying body 100B (relative position information of the flying body), the speed information of the flying body 100B (flying body speed information), the acceleration information of the flying body 100B (flying body acceleration information), the absolute Position information (base absolute position information), base 600A speed information (base speed information), base 600A acceleration information (base acceleration information) and target path information, based on the target position of the flying body 100B and the current position, flight information
  • the speed information of the body 100B and the base 600A and the acceleration information of the flying body 100B and the base 600A calculate the flying body control information required for the flying body 100B to fly according to the set path.
  • the path calculation unit 320B of the third example includes a flying body absolute position calculation unit 321, a target path information calculation unit 322, a flying body absolute velocity calculation unit 323, a flying body absolute acceleration calculation unit 324, and a PID calculation unit 325.
  • the flying body absolute speed calculation unit 323 inputs flying body speed information and base speed information, and calculates the current absolute speed of the flying body 100B.
  • the flying body absolute acceleration calculation unit 324 inputs the flying body acceleration information and the base acceleration information, and calculates the current absolute acceleration of the flying body 100B.
  • the PID calculation unit 325 calculates the PID 100 for the flying body 100B based on the current absolute position (current position) and absolute speed (current speed), absolute acceleration (current speed), target position and target speed of the flying body 100B.
  • the flight control information of the flight control (PID control control variable information).
  • the path calculation unit 320B calculates the flying body control information for causing the flying body 100B to fly according to the set path based on the comparison result of the target position and the current position of the flying body 100B, the target speed and the current speed, and the current acceleration.
  • the flying body control unit 110 inputs flying body control information sent by the flight control processing unit 300B, and controls the flying operation of the flying body 100B by controlling the driving unit such as the rotor mechanism of the flying body 100B based on the flying body control information. At this time, the flying body control unit 110 causes the flying body 100B to fly for the target position and target passing time based on the target path information, and causes it to perform automatic flight along the set path.
  • the flying body control section 110 may control the flying of the flying body 100B and make it perform automatic flight along the set path to suit the target position and target speed.
  • the accuracy of PID control can be further improved by using acceleration information.
  • the acceleration of at least one of the flying body or the base is measured, and the accuracy of the flying body control information can be improved by calculating the flying body control information using the acceleration information, or correcting the speed information or the position information using the acceleration information.
  • the information processing device in the flight control system 10 includes a flight control processing section 300, in which the information processing device generates flight body control information for controlling the flight motion of the flight body 100, flying
  • the control system 10 includes a flying body 100 and a base having a measurement object 510 that exists within the visible range of the flying body 100.
  • the flight control processing unit 300 acquires a position indicating the relative position of the flying body 100 and the base 500 obtained by measuring the measurement object 510 at any time in the flying body 100 The relative position information of the flying object and the absolute base position information indicating the absolute position of the base 500.
  • the flight control processing unit 300 inputs the set route information set by the flying body 100 and acquires target route information at the current time from the set route information, and calculates a target position for flying according to the set route based on the target route information.
  • the flight control processing unit 300 calculates the current absolute position of the flying body 100 based on the relative position information of the flying body and the absolute position information of the base.
  • the flight control processing unit 300 calculates flight body control information for performing flight control of the flight body 100 based on the current absolute position and the target position of the flight body 100.
  • the flight control processing unit 300 transmits the flying body control information to the flying body control unit 110 that controls the flying body 100.
  • the measurement object 510 provided at the base 500 can be measured by the measurement unit 141, and the measurement object 510 can be detected and tracked by the object detection unit 142 to obtain information on the distance and angle of the measurement object 510.
  • the relative position calculation unit 143 estimates the relative three-dimensional position of the measurement object 510 and the flying object 100 based on the distance and angle information of the measurement object 510 and calculates the relative position information of the flying object.
  • the measurement object 510 may be a visible object
  • the flying object 100 has an imaging unit as a measurement unit 141 for measuring the measurement object 510 for imaging the visible object, and the camera 141 is oriented toward the measurement object 510. Xiangjie 120.
  • the relative position information of the flying object can be calculated by the relative position calculation unit 143 using the captured image of the measurement object 510 acquired by the measurement unit 141.
  • the measurement object 510 may be a retroreflector
  • the flying object 100 has a laser scanner as a measurement measurement object 510 for measuring the distance and angle with respect to the retroreflector of the measurement unit 141, and the measurement The portion 141 faces the universal joint 120 of the measurement object 510.
  • the relative position information of the flying body can be calculated by the relative position calculation unit 143 using the measurement information of the distance and the angle to the measurement object 510 acquired by the measurement unit 141.
  • the flight control processing unit 300 may acquire the relative position information of the flying body indicating the relative position of the flying body 100 and the base 600, the flying body speed information indicating the speed of the flying body 100, and the base 600 The absolute position information of the base at the absolute position and the base speed information indicating the speed of the base 600.
  • the flight control processing unit 300 may calculate the current absolute position of the flying body 100 based on the relative position information of the flying body and the absolute position information of the base, and calculate the absolute speed of the flying body 100 based on the speed information of the flying body and the base speed information.
  • the flight control processing unit 300 calculates flight body control information for performing flight control of the flight body 100 based on the current absolute position and absolute speed of the flight body 100 and the target position.
  • the flight control processing unit 300 can acquire the relative position information of the flying body indicating the relative position of the flying body 100 and the base 600A, the flying body speed information indicating the speed of the flying body 100, and the flying body Flying object acceleration information with an acceleration of 100, base absolute position information indicating the absolute position of base 600A, base speed information indicating the speed of base 600A, and base acceleration information indicating the acceleration of base 600A.
  • the flight control processing unit 300 can calculate the current absolute position of the flying body 100 based on the relative position information of the flying body and the absolute position information of the base, and calculate the absolute speed of the flying body 100 based on the speed information and the base speed information of the flying body, and the acceleration information and base of the flying body 100
  • the acceleration information calculates the absolute acceleration of the flying body 100.
  • the flight control processing unit 300 calculates flight body control information for performing flight control of the flight body 100 based on the current absolute position, absolute speed, absolute acceleration, and target position of the flight body 100.
  • the flight control system 10 that controls the flying behavior of the flying body 100 may include the flying body 100, the base 500 with the measurement object 510 existing within the visible range of the flying body 100, and the generation of An information processing device for flying body control information for controlling flight actions.
  • the information processing device may be constituted by the flight control processing unit 300.
  • the flying object 100 can measure the measurement object 510 provided at the base 500 at any time, and calculate the relative position information of the flying object indicating the relative position to the base 500.
  • the base 500 can acquire base absolute position information indicating the absolute position of the base 500.
  • the flight control processing unit 300 may input the set path information set in the flying body 100, and acquire the target path information at the current time from the set path information, and calculate the target position for flying according to the set path based on the target path information .
  • the flight control processing unit 300 can acquire the relative position information of the flying body and the absolute position information of the base, and calculate the current absolute position of the flying body 100 according to the relative position information of the flying body and the absolute position information of the base.
  • the flight control processing unit 300 calculates flight body control information for performing flight control of the flight body 100 based on the current absolute position and target position of the flight body 100, and sends the flight body control information to the flight body control unit that controls the flight body 100 110.
  • the information processing for performing the steps in the flight control method is provided in the flight control processing unit 300, 300A, or 300B of any terminal or interior of the flying body provided in the PC or the base.
  • An example of a device but it may also have an information processing device on another platform and execute the steps in the flight control method.
  • IMU Inertial Measurement Unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种信息处理装置,包括:飞行体(100);存在于飞行体(100)的可见范围内的具有测定对象物(510)的基地(500);以及作为生成用于对飞行体(100)的飞行动作进行控制的飞行体控制信息的信息处理装置的一个示例的飞行控制处理部(300)。信息处理装置使用表示在飞行体(100)上随时测量测定对象物(510)而得到的飞行体和基地的相对位置的飞行体相对位置信息以及表示基地的绝对位置的基地绝对位置信息,计算出飞行体(100)当前绝对位置,根据飞行体当前绝对位置和目标位置,计算出用于进行飞行体(100)的飞行控制的飞行体控制信息,并发送到飞行体控制部(110)。采用本技术方案,即便在难以通过GPS对飞行体进行位置测定的情况下,也能够高精度地控制飞行体的自动飞行。另外,还涉及利用该信息处理装置的飞行控制方法和飞行控制系统。

Description

信息处理装置、飞行控制方法以及飞行控制系统 技术领域
本公开涉及一种用于对飞行体的飞行进行控制的信息处理装置、飞行控制方法以及飞行控制系统。
背景技术
已知一种平台(例如无人飞行体),其搭载拍摄设备,在沿预先设定的飞行路径飞行的同时进行拍摄(例如,参照专利文献1)。该平台从地面基地接收预先设定的飞行路径和拍摄指令等命令,按照该命令进行飞行并进行拍摄,将获取的图像发送给地面基地。平台在对拍摄对象进行拍摄时,在沿设定的固定路径飞行的同时根据平台与拍摄对象的位置关系,倾斜平台的拍摄设备来进行拍摄。
【现有技术文献】
专利文献1:日本特开2010-61216号公报
发明内容
【发明所要解决的技术问题】
当使飞行体沿预先设定的路径自动飞行时,需要准确测定飞行体在飞行过程中的位置。对于测定飞行体位置的方法,通常使用利用GPS(global Positioning System)的位置测定。然而,例如当使飞行体自动飞行来进行桥梁检查等时,在飞行路径中的飞行体在被桥梁等障碍物遮盖的情况下,设想不能接收来自GPS卫星的信号的情况。这样,在不能接收来自GPS卫星的信号时,难以进行准确的位置测定。
对于除GPS之外的位置测定方法,可以使用基于测定对象物的速度积分的位置推断,和基于诸如信标之类的电波的位置测定等方法。基于测定对象物的速度积分的位置推断存在如下问题:由于测定精度较低,例如每10m会产生2m左右的误差,因此存在对于自动飞行控制中的位置测定无法获得需要的测定精度这样的问题。在基于信标的位置测定中,由于受到电波干扰的影响,因此存在仅能在数十米以内的短距离内使用的问题。此外,还存在在超过数十米的距离后测定精度恶化的问题。
【用于解决问题的技术手段】
在一个方面中,信息处理装置处于包括飞行体以及基地的飞行控制系统中,并生成用于对飞行体的飞行动作进行控制的飞行体控制信息,基地存在于所述飞行体的可见范围内并具有测定对象物,该信息处理装置包括处理部,当在飞行体的可见范围内存在具有测定对象物的基地时,处理部获取表示在飞行体上随时测量基地的测定对象物而得到的飞行体和基地的相对位置的飞行体相对位置信息、以及表示基地的绝对位置的基地绝对位置信息;输入飞行体中设定的设定路径信息并从设定路径信息中获取当前时间点的目标路径信息;根据目标路径信息,计算出用于按照设定路径飞行的目 标位置;根据飞行体相对位置信息以及基地绝对位置信息,计算出飞行体当前绝对位置;根据飞行体当前绝对位置和目标位置,计算出用于进行飞行体的飞行控制的飞行体控制信息;以及将飞行体控制信息发送给控制飞行体的飞行体控制部。
处理部可以在飞行体中测量设于基地的测定对象物,进行测定对象物的检测及跟踪,来获取测定对象物的距离和角度的信息,并根据测定对象物的距离和角度的信息,推断测定对象物和飞行体的相对三维位置来计算出飞行体相对位置信息。
当测定对象物为可见目标物,且飞行体具有作为测量测定对象物的测定部的用于拍摄可见目标物的摄像部,以及令测定部朝向测定对象物的万向节时,处理部可以使用所测定部获取的测定对象物的拍摄图像来计算出飞行体相对位置信息。
当测定对象物为后向反射器,且飞行体具有作为测量测定对象物的测定部的用于测量相对于后向反射器的距离和角度的激光扫描仪,以及令测定部朝向测定对象物的万向节时,处理部可以使用测定部获取的到测定对象物的距离和角度的测量信息来计算出飞行体相对位置信息。
当基地为可移动基地时,处理部可以获取表示飞行体和基地的相对位置的飞行体相对位置信息、表示飞行体的速度的飞行体速度信息、表示基地的绝对位置的基地绝对位置信息、以及表示基地的速度的基地速度信息;并根据飞行体相对位置信息和基地绝对位置信息,计算出飞行体当前绝对位置;根据飞行体速度信息和基地速度信息,计算出飞行体的绝对速度;根据飞行体当前绝对位置和绝对速度以及目标位置,计算出用于进行飞行体的飞行控制的飞行控制信息。
当基地为可移动基地时,处理部可以获取表示飞行体和基地的相对位置的飞行体相对位置信息、表示飞行体的速度的飞行体速度信息、表示飞行体的加速度的飞行体加速度信息、表示基地的绝对位置的基地绝对位置信息、表示基地的速度的基地速度信息、以及表示基地的加速度的基地加速度信息;根据飞行体相对位置信息和基地绝对位置信息,计算出飞行体当前绝对位置;根据飞行体速度信息和基地速度信息,计算出飞行体的绝对速度;根据飞行体加速度信息和基地加速度信息,计算出飞行体的绝对加速度;根据飞行体当前绝对位置、绝对速度和绝对加速度以及目标位置,计算出用于进行飞行体的飞行控制的飞行控制信息。
在一个方面中,飞行控制方法处于包括飞行体、基地以及信息处理装置的飞行控制系统中,基地存在于飞行体的可见范围内并具有测定对象物,信息处理装置生成用于对飞行体的飞行动作进行控制的飞行体控制信息,该方法具有以下步骤:在信息处理装置中,获取表示在飞行体中通过随时测量测定对象物而得到的飞行体与基地的相对位置的飞行体相对位置信息,以及表示基地的绝对位置的基地绝对位置信息;输入飞行体中设定的设定路径信息并从设定路径信息中获取当前时间点的目标路径信息,并根据目标路径信息,计算出用于按照设定路径飞行的目标位置;根据飞行体相对位置信息以及基地绝对位置信息,计算出飞行体当前绝对位置;根据飞行体当前绝对位置和目标位置,计算出用于进行飞行体的飞行控制的飞行体控制信息的步骤;以及将飞行体控制信息发送给控制飞行体的飞行体控制部。
获取飞行体相对位置信息的步骤可以包括以下步骤:在飞行体中,测量设于基地的测定对象物;进行测定对象物的检测及跟踪,来获取测定对象物的距离和角度的信息;以及根据测定对象物的距离和角度的信息,推断测定对象物和飞行体的相对三维位置,来计算出飞行体相对位置信息。
获取飞行体相对位置信息的步骤可以包括以下步骤:当测定对象物为可见目标物,且飞行体具有作为测量测定对象物的测定部的用于拍摄可见目标物的摄像部,以及令测定部朝向测定对象物的万向节时,使用测定部获取的测定对象物的拍摄图像来计算出飞行体相对位置信息。
获取飞行体相对位置信息的步骤可以包括以下步骤:当测定对象物为后向反射器,且飞行体具有作为测量测定对象物的测定部的用于测量相对于后向反射器的距离和角度的激光扫描仪,以及令测定部朝向测定对象物的万向节时,使用测定部获取的到测定对象物的距离和角度的测量信息,计算出飞行体相对位置信息。
当基地为可移动基地时,可以包括以下步骤:获取表示飞行体和基地的相对位置的飞行体相对位置信息、表示飞行体的速度的飞行体速度信息、表示基地的绝对位置的基地绝对位置信息、以及表示基地的速度的基地速度信息;根据飞行体相对位置信息和基地绝对位置信息,计算出飞行体当前绝对位置;根据飞行体速度信息和基地速度信息,计算出飞行体的绝对速度;以及根据飞行体当前绝对位置和绝对速度以及目标位置,计算出用于进行飞行体的飞行控制的飞行控制信息。
当基地为可移动基地时,可以包括以下步骤:获取表示飞行体和基地的相对位置的飞行体相对位置信息、表示飞行体的速度的飞行体速度信息、表示飞行体的加速度的飞行体加速度信息、表示基地的绝对位置的基地绝对位置信息、表示基地的速度的基地速度信息、以及表示基地的加速度的基地加速度信息;根据飞行体相对位置信息和基地绝对位置信息,计算出飞行体当前绝对位置;根据飞行体速度信息和基地速度信息,计算出飞行体的绝对速度;根据飞行体加速度信息和基地加速度信息,计算出飞行体的绝对加速度;以及根据飞行体当前绝对位置、绝对速度和绝对加速度以及目标位置,计算出用于进行飞行体的飞行控制的飞行控制信息。
在一个方面中,飞行控制系统对飞行体的飞行动作进行控制,其包括飞行体、存在于飞行体的可见范围内的具有测定对象物的基地、以及生成用于对飞行体的飞行动作进行控制的飞行体控制信息的信息处理装置,飞行体随时测量设于基地的测定对象物,计算出表示与基地的相对位置的飞行体相对位置信息;基地获取表示基地的绝对位置的基地绝对位置信息;信息处理装置输入飞行体中设定的设定路径信息并从设定路径信息中获取当前时间点的目标路径信息,并根据目标路径信息,计算出用于按照设定路径飞行的目标位置,获取飞行体相对位置信息和基地绝对位置信息,并根据飞行体相对位置信息以及基地绝对位置信息,计算出飞行体当前绝对位置,根据飞行体当前绝对位置和目标位置,计算出用于进行飞行体的飞行控制的飞行体控制信息,并将飞行体控制信息发送给控制飞行体的飞行体控制部。
此外,上述的发明内容中并未穷举本公开的所有特征。此外,这些特征组的子组合也可以构成发明。
附图说明
图1是示出实施方式中的飞行控制系统的第一构成示例的框图。
图2是示出实施方式中的飞行控制系统的第一构成示例的示意图。
图3是示出实施方式中的路径演算部的功能配置的第一示例的框图。
图4是示出飞行体的具体的外观结构的一个示例的图。
图5是示出飞行体的硬件构成的一个示例的框图。
图6是示出实施方式中的飞行控制动作的一个示例的流程图。
图7是示出实施方式中的飞行控制系统的第二构成示例的框图。
图8是示出实施方式中的飞行控制系统的第二构成示例的示意图。
图9是示出实施方式中的路径演算部的功能配置的第二示例的框图。
图10是示出实施方式中的飞行控制系统的第三构成示例的框图。
图11是示出实施方式中的路径演算部的功能配置的第三示例的框图。
具体实施方式
以下,通过发明的实施方式来对本公开进行说明,但是以下实施方式并非限制权利要求书所涉及的发明。实施方式中说明的所有特征的组合对于发明的解决方案未必是必须的。
权利要求书、说明书、说明书附图以及说明书摘要中包含作为著作权所保护对象的事项。任何人只要如专利局的文档或者记录所表示的那样进行这些文件的复制,著作权人则不会提出异议。但是,在除此以外的情况下,保留一切的著作权。
本公开所涉及的信息处理装置,为包括在作为移动体的一个示例的飞行体、和用于对飞行体的动作或处理进行远程控制的平台中的至少一个的计算机,用于执行飞行体的动作涉及的各种处理。
本公开所涉及的飞行控制方法规定了信息处理装置(飞行体、平台)中的各种处理(步骤)。本公开所涉及的程序为用于使信息处理装置(飞行体、平台)执行各种处理(步骤)的程序。本公开所涉及的记录介质记录有程序(即用于令信息处理装置(飞行体、平台)执行各种处理(步骤)的程序)。
本公开所述飞行控制系统包括:飞行体、信息处理装置(飞行体、平台)、以及用于飞行体位置测定的基地。
飞行体包括在空中移动的飞行器(例如无人机、直升机)。飞行体可以为具有拍摄装置的无人飞行体(UAV:Unmanned Aerial Vehicle)(也称为无人驾驶航空器)。为了拍摄在拍摄范围内的被摄体(例如,一定范围内的建筑物、道路、公园等的地面形状),飞行体沿预先设定的飞行路径飞行,并在飞行路径中设定的多个拍摄位置拍摄被摄体。被摄体包括诸如建筑物、道路、桥梁等对象。
平台为计算机,具有例如用于指示包括飞行体的移动的各种处理的控制的处理部、是能够进行信息或数据的输入输出地与飞行体的控制部连接的终端。终端可以是例如PC等。另外,当飞行体包括信息处理装置时,飞行体自身可以作为平台包括在内。
在以下实施方式中,飞行体以无人驾驶航空器(UAV)为例。在本说明书的附图中,无人驾驶航空器也表述为“UAV”。在本实施方式中,信息处理装置控制飞行体按照预定目标路径自动飞行时的飞行动作。信息处理装置例如可以搭载于飞行体的内部。信息处理装置也可以搭载于其他装置(例如,能够与飞行体进行通信的PC、服务器等)。信息处理装置可以搭载于后述的具有测定对象物的基地。
[飞行控制系统的第一构成示例]
图1是示出实施方式中的飞行控制系统的第一构成示例的框图。飞行控制系统10具有飞行体100、飞行控制处理部300、以及基地500。飞行体100和飞行控制处理部300,以及基地500和飞行控制处理部300之间分别可以通过有线通信或者无线通信(例如,无线LAN(Local Area Network))互相通信。
图2是示出实施方式中的飞行控制系统的第一构成示例的示意图。图2中,示出了基地500为设置于地面的地面基地时的构成示例。作为用于飞行体100通过拍摄等测量相对位置的测定对象物,基地500中设有可见目标物的一个示例即标记550。标记550形成并布置于基地500的外表面,例如上表面部。飞行体100通过测定部的摄像部的相机,拍摄基地500的标记550,测量飞行体100与基地500的相对位置。基地500不限于固定设置于地面的基地,也可以是设于建筑物或塔等结构上的基地,设于水中或空中的基地,或者在陆地、水中、空中可移动的移动基地。
返回图1,飞行体100具有飞行体控制部110、万向节120以及万向节控制部130。万向节120中搭载有相对位置测定部140。万向节120例如配置为在三个轴方向上可自由旋转,为使相对位置测定部140面向测定对象物,可将相对位置测定部140的方向任意更改为期望方向。相对位置测定部140具有测定部141、对象物检测部142以及相对位置计算部143,并测定飞行体100和基地500之间的相对位置。测定部141可以由包括TOF(Time Of Flight)相机及RGB相机的摄像部,或者激光扫描仪等构成。万向节控制部130向万向节120输出驱动信号,并且物理地控制万向节120的方向,以使搭载于万向节120的测定部141朝向基地500的测定对象物。万向节控制部130输入利用相对位置计算部143得到的相对位置的测量结果,通过反馈控制调整万向节120的方向。飞行体控制部110控制飞行体100按照预定目标路径自动飞行时的飞行动作。目标路径可以包括用于生成飞行路径的飞行位置(航点(Waypoint))、成为飞行路径的生成的基础的控制点以及飞行时间等的信息。目标路径可以包括飞行位置,其包括拍摄对象的拍摄位置等。在飞行体100中,飞行体控制部110、万向节控制部130、对象物检测部142、相对位置计算部143可以由具有处理器及内存的计算机构成。
基地500具有上述标记550等的测定对象物510,以及获取基地500自身的位置的位置获取部520。当作为飞行体100的测定部141,包括由TOF相机和RGB相机构成的摄像部时,作为测定对象物510使用标记550。这时,TOF相机对拍摄测定对象物510的拍摄图像中的每个像素测量到全像素的被摄体(对象物)的距离。TOF相机为具有脉冲光源和拍摄装置,且通过测量每个像素照射在被摄体上的脉冲光的反射时间,能够测量三维位置信息(距离信息)的相机。RGB相机为拍摄RGB图像的相机,其根据拍摄图像的颜色信息(RGB信息)计算对象物的像素位置,并测量对象物的角度。测定部141通过TOF相机和RGB相机,拍摄测定对象物510的标记,并测量到测定对象物510的距离和角度。
此外,当飞行体100的测定部141包括激光扫描仪时,测定对象物510使用包括棱镜等的后向反射器。此时,激光扫描仪用激光照射测定对象物510,并根据从对象物反射回来的反射光,测量到对象的距离和角度。激光扫描仪是能够通过相位差、TOF等的测量方法,使用激光束的相位差或者反射时间及照射角度,测量对象物的三维位置信息的测量器具。测定部141通过激光扫描仪向测定对象物510的后向反射器照射激光,来测量到测定对象物510的距离和角度。另外,在以下描述中,作为飞行物体100的测定部141,以使用由TOF相机和RGB相机构成的摄像部构成的情况为例进行说明。
在飞行体100的相对位置测定部140中,测定部141通过拍摄等检测和测量基地500的测定对象物510,并随时获取拍摄图像等的测量数据。对象物检测部142根据测定部141的拍摄图像等的测量数据,通过对象检测、跟踪技术,检测并跟踪测定对象物510,输出测定对象物510的距离和角度的信息。相对位置计算部143,根据测定对象物510的距离和角度的信息,推断并计算从测定对象物510到飞行体100的相对三维位置,获取飞行体100当前的相对位置信息并输出。
基地500的位置获取部520例如可以由包括GPS传感器的GPS测定部构成。当位置获取部520包括GPS测定部时,GPS测定部测量基于基地500的GPS的三维位置,获取基地500的绝对位置信息并输出。位置获取部520可以保持或获取由GPS预先测量的三维位置,或者通过其他测量方法预先测量的三维位置,来获取基地500的绝对位置信息。位置获取部520可以由具有内存或存储器,或处理器及内存的计算机构成。
飞行控制处理部300为本公开所涉及的信息处理装置的一个示例,具有目标路径获取部310、路径演算部320以及发送部330。目标路径获取部310输入由使用飞行控制系统的人(以下,称为“用户”)事先设定的飞行路径,根据用户指定的参数计算的飞行路径,或者事先记录的飞行路径等的设定路径信息,从设定路径信息获取当前时间点的目标路径信息。目标路径信息包括飞行体的位置,姿势,角度等的信息。路径演算部320输入飞行体100的相对位置信息(飞行体相对位置信息)、基地500的绝对位置信息(基地绝对位置信息)、以及目标路径信息,根据飞行体100的目标位置和当前位置的位置信息,计算出使飞行体100按照设定路径飞行所需的飞行体控 制信息。飞行体控制信息包括与飞行体的俯仰、滚转、偏航、高度等控制量有关的控制信息。发送部330具有有线通信或者无线通信的通信接口,并通过任意的有线通信方法或无线通信方法将飞行体控制信息发送到飞行体控制部110。飞行控制处理部300可以由具有处理器和内存,以及通信部的计算机构成。
图3是示出实施方式中的路径演算部的功能配置的第一示例的框图。第一示例的路径演算部320具有飞行体绝对位置演算部321、目标路径信息演算部322、以及PID演算部325。飞行体绝对位置计算部321输入飞行体相对位置信息和基地绝对位置信息,计算出飞行体100当前绝对位置。目标路径信息计算部322输入目标路径信息,计算出与用于按照设定路径飞行的目标路径相关的目标位置。PID演算部325根据飞行体100当前绝对位置(当前位置)和目标位置,通过PID控制技术,计算出用于进行飞行体100的飞行控制的飞行体控制信息(PID控制的控制量信息)。
飞行体控制部110输入由飞行控制处理部300发送的飞行体控制信息,通过根据飞行体控制信息,控制飞行体100的旋翼机构等的驱动部,来控制飞行体100的飞行动作。当飞行体100自身包括信息处理装置时,飞行体控制部110可以包含在信息处理装置中。
[飞行体的构成示例]
图4是示出飞行体的具体的外观结构的一个示例的图。在图4中,示出了飞行体100沿移动方向STV0移动时的立体图。
如图4所示,在与地面平行且沿着移动方向STV0的方向上定义滚转轴(参照x轴)。此时,将俯仰轴(参照y轴)确定为与地面相平行并与滚转轴垂直的方向,进一步,将偏航轴(参照z轴)确定为与地面垂直并与滚转轴以及俯仰轴垂直的方向。
飞行体100的构成为包括UAV主体1100、万向节1200、摄像部1220。飞行体100是包括摄像部1220并移动的移动体的一个示例。飞行体100的移动是指飞行,至少包括上升、下降、左旋转、右旋转、左水平移动、右水平移动的飞行。
UAV主体1100包括多个旋翼(螺旋浆)。UAV主体1100通过控制多个旋翼的旋转来使飞行体100飞行。UAV主体1100使用例如四个旋翼使飞行体100飞行。旋翼的数量并不限于四个。另外,飞行体100可以是没有旋翼的固定翼飞机。
摄像部1220为对包含在期望的拍摄范围内的被摄体(例如,地上的建筑物、检查对象的物体)进行拍摄的拍摄用相机。摄像部1220具有对基地500的测定对象物510进行拍摄来获取测量数据的测定部141的功能。
图5是示出飞行体的硬件构成的一个示例的框图。飞行体100的构成为包括UAV控制部1110、通信接口1150、内存1160、存储器1170、万向节1200、旋翼机构1210、摄像部1220、GPS接收器1240、惯性测量装置(IMU:Inertial Measurement Unit)1250、磁罗盘1260、气压高度计1270、超声波传感器1280、激光测量仪1290。
UAV控制部1110使用处理器,例如CPU(Central Processing Unit,中央处理单元)、MPU(Micro Processing Unit,微处理单元)或DSP(Digital Signal Processor,数字信号处理器)构成。UAV控制部1110执行用于总体控制飞行体100各部分的动 作的信号处理、与其它各部分之间的数据的输入输出处理、数据的运算处理以及数据的存储处理。UAV控制部1110包括飞行体控制部110的功能。
UAV控制部1110按照存储于内存1160中的程序来控制飞行体100的移动(即飞行)。UAV控制部1110根据从飞行控制处理部300发送的飞行体控制信息,控制飞行体100自动飞行时的飞行。UAV控制部1110可以按照通过通信接口1150从远程的发送器接收到的命令来控制飞行体100的飞行。
UAV控制部1110获取由摄像部1220拍摄的被摄体的拍摄图像(图像数据)。UAV控制部1110可以通过摄像部1220进行航拍,并获取航拍图像作为拍摄图像。UAV控制部1110具有根据由诸如摄像部1220的测定部141获取的基地500的测定对象物510的测量数据,测量飞行体100相对于基地500的相对位置的相对位置测定部140的功能。
通信接口1150与外部的信息处理装置、终端进行通信。通信接口1150可以通过任意的无线通信方式进行无线通信。通信接口1150可以通过任意的有线通信方式进行有线通信。通信接口1150可以将拍摄图像、与拍摄图像相关的附加信息(元数据)发送到信息处理装置。通信接口1150可以从外部的信息处理装置获取飞行体控制信息。
内存1160存储UAV控制部1110对万向节1200、旋翼机构1210、摄像部1220、GPS接收器1240、惯性测量装置1250、磁罗盘1260、气压高度计1270、超声波传感器1280、以及激光测量仪1290进行控制所需的程序。内存1160可以是计算机可读记录介质,可以包括SRAM(Static Random Access Memory:静态随机存取存储器)、DRAM(Dynamic Random Access Memory:动态随机存取存储器)、EPROM(Erasable Programmable Read Only Memory:可擦除可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory:电可擦除可编程只读存储器)、以及USB(Universal Serial Bus:通用串行总线)存储器等闪存中的至少一个。内存1160可以设置在UAV主体1100的内部。内存1160可以从飞行体100上拆卸下来。内存1160可以记录由摄像部1220拍摄的拍摄图像。内存1160可以作为作业用内存进行工作。
存储器1170存储并保存各种数据、信息。存储器1170可以包括HDD(Hard Disk Drive:硬盘驱动器)、SSD(Solid State Drive:固态硬盘)、SD内存卡、USB存储器、其他的存储器中的至少一个。存储器1170可以设置在UAV主体1100的内部。存储器1170可以从无人飞行体100上拆卸下来。存储器1170可以记录拍摄图像。
万向节1200以至少一个轴为中心可旋转地支撑摄像部1220。万向节1200可以以偏航轴、俯仰轴以及滚转轴为中心可旋转地支撑摄像部1220。万向节1200可以使摄像部1220以偏航轴、俯仰轴以及滚转轴中的至少一个为中心旋转,从而变更摄像部1220的拍摄方向。摄像部1200具有调整摄像部1220的方向以使作为测定部141的一个示例的摄像部1220能够拍摄基地500的测定对象物510的万向节120的功能。
旋翼机构1210具有多个旋翼和使多个旋翼旋转的多个驱动电机。旋翼机构1210通过UAV控制部1110控制旋转,从而使飞行器100飞行。
摄像部1220对所希望的拍摄范围内的被摄体进行拍摄并生成拍摄图像的数据。通过摄像部1220的拍摄而得到的拍摄图像(图像数据)可以存储于摄像部1220具有的内存、或内存1160或存储器1170中。摄像部1220具有作为测定部141的TOF相机和RCB相机。
GPS接收器1240接收从多个导航卫星(即GPS卫星)发送的、表示时间以及各GPS卫星的位置(坐标)的多个信号。GPS接收器1240根据接收到的多个信号,计算出GPS接收器1240的位置(即飞行体100的位置)。GPS接收器1240将飞行体100的位置信息输出给UAV控制部1110。另外,可以由UAV控制部1110代替GPS接收器1240来进行GPS接收器1240的位置信息的计算。这时,在UAV控制部1110中输入GPS接收器1240所接收的多个信号中包含的表示时间以及各GPS卫星的位置的信息。
惯性测量装置1250检测飞行体100的姿势,并将检测结果输出到UAV控制部1110。惯性测量装置1250可以检测飞行体100的前后、左右以及上下的三轴方向的加速度和俯仰轴、滚转轴以及偏航轴的三轴方向的角速度,作为飞行体100的姿势。
磁罗盘1260检测飞行体100的机头的方位,并将检测结果输出到UAV控制部1110。
气压高度计1270检测飞行体100飞行的高度,并将检测结果输出给控制部1110。
超声波传感器1280发射超声波,检测地面、物体反射的超声波,并将检测结果输出到UAV控制部1110。检测结果可以表示例如从飞行体100到地面的距离(即高度)。检测结果还可以表示例如飞行体100到物体(例如,被摄体)的距离。
激光测量仪1290朝物体照射激光,接收物体反射的反射光,通过反射光测量飞行体100与物体(例如,被摄体)之间的距离。测量结果输入到UAV控制部1110。作为基于激光的距离测量方法的一个示例,可以为TOF方法。激光测量仪1290可以具有对基地500的测定对象物510进行拍摄来获取测量数据的测定部141的功能。此时,激光测量仪1290可以搭载万向节1200。
UAV控制部1110获取表示飞行体100位置的位置信息。UAV控制部1110可以从GPS接收器1240中获取表示飞行体100所在的纬度、经度和高度。UAV控制部1110可以从GPS接收器1240获取表示飞行体100所在的纬度及经度的纬度经度信息,并从气压高度计1270获取表示飞行体100所在的高度的高度信息,分别作为位置信息。UAV控制部1110可以获取超声波传感器1280产生的超声波的辐射点与超声波的反射点之间的距离作为高度信息。
UAV控制部1110可以从磁罗盘1260获取表示飞行体100的方向的方向信息。方向信息可以用例如与飞行体100的机头的方向相对应的方位来表示。
UAV控制部1110可以在存在于设定的飞行路径的途中的拍摄位置(包含在航点)通过摄像部1220在水平方向、预定角度的方向、或垂直方向拍摄被摄体。预定角度的方向是适合信息处理装置(无人飞行体或者平台)进行被摄体的三维形状的推断的预定值的角度的方向。
UAV控制部1110可以获取表示摄像部1220的各个拍摄范围的拍摄范围信息。UAV控制部1110从摄像部1220获取表示摄像部1220的图像,作为用于指定拍摄范围的参数。UAV控制部1110可以获取表示摄像部1220的拍摄方向的信息,作为用于指定拍摄范围的参数。UAV控制部1110从万向节1200获取表示摄像部1220的姿势的状态的信息,作为例如表示摄像部1220的拍摄方向的信息。摄像部1220的姿势信息可以通过自例如万向节1200的俯仰轴和偏航轴基准旋转角度的旋转角度来表示。UAV控制部1110可以获取表示飞行体100的方向的信息,作为表示摄像部1220的拍摄方向的信息。
UAV控制部1110控制万向节1200、旋翼机构1210、摄像部1220。UAV控制部1110可以通过改变摄像部1220的拍摄方向或视角来控制摄像部1220的拍摄范围。UAV控制部1110可以通过控制万向节1200的旋转机构来控制万向节1200所支撑的摄像部1220的拍摄范围。
UAV控制部1110通过控制旋翼机构1210来控制飞行体100的飞行。即,UAV控制部1110通过控制旋翼机构1210来对包括控制飞行体100的纬度、经度以及高度的位置进行控制。UAV控制部1110可以通过控制飞行体100的飞行来控制摄像部1220的拍摄范围。UAV控制部1110可以通过控制摄像部1220所包括的变焦镜头来控制摄像部1220的视角。UAV控制部1110可以利用摄像部1220的数字变焦功能,通过数字变焦来控制摄像部1220的视角。
UAV控制部1110可以获取表示当前的日期和时间的日期时间信息。UAV控制部1110可以从GPS接收器1240获取表示当前的日期和时间的日期时间信息。UAV控制部1110可以从搭载于飞行体100的计时器(未图示)获取表示当前的日期和时间的日期时间信息。
[飞行控制系统的动作示例]
接着,对在飞行控制系统中进行飞行体100的自动飞行时的动作的具体示例进行说明。在以下的动作示例中,示出了与上述图1的飞行体100、基地500、以及飞行控制处理部300的构成示例相对应的处理动作。
图6是示出实施方式中的飞行控制动作的一个示例的流程图。飞行控制处理部300获取用户事先设定的飞行路径、由用户指定的参数计算出的飞行路径、或者事先记录的飞行路径等的设定路径信息(S11)。设定路径信息可以从例如外部的终端、信息处理装置、内存等输入。飞行控制处理部300将根据设定路径信息生成的飞行体控制信息发送到飞行体控制部110。UAV控制部110根据飞行体控制信息控制飞行体100的飞行动作,并使其沿设定路径开始自动飞行(S12)。
在飞行体100的测定部141随时测量基地500的测定对象物510,执行对象物的测量动作(S13)。对象物检测部142根据对象物的测量数据,进行测定对象物510的检测、跟踪,输出测定对象物510的距离和角度的信息(S14)。相对位置计算部143,根据测定对象物510的距离和角度的信息,计算出飞行体100相对于测定对象物510的当前的相对位置信息(S15)。
飞行控制处理部300的目标路径获取部310从已输入的设定路径信息获取当前时间点的目标路径信息(S16)。路径演算部320根据飞行体100的相对位置信息、基地500的绝对位置信息、以及目标路径信息,从飞行体100的目标位置和当前位置的位置信息的比较结果,计算出用于使飞行体100按照设定路径飞行的飞行体控制信息(S17)。发送部330将计算出的飞行体控制信息发送到飞行体控制部110(S18)。
飞行体控制部110根据由飞行控制处理部300随时发送的飞行体控制信息,控制飞行体100的飞行动作,使其沿设定路径继续自动飞行。飞行体控制部110判断按照设定路径的目标路径的飞行是否完成(S19),当目标路径的飞行未完成时(S19、No),继续上述自动飞行控制相关的动作。即,飞行体100及飞行控制处理部300反复执行从S13的对象物的测量动作到S18的飞行体控制信息的发送动作。当目标路径的飞行完成时(S19、Yes),结束与该自动飞行控制相关的动作的处理。
根据本实施方式,即便是在例如,无法充分获取基于GPS的飞行体的位置信息的情况下,也能够获取基地与飞行体的相对位置信息、以及基地的绝对位置信息,从而获取飞行体当前的位置信息。另外,能够根据飞行体当前的位置信息和目标路径,高精度且容易地执行飞行体沿目标路径的自动飞行的控制。因此,即使在难以接受来自GPS卫星的信号的环境下,例如在使飞行体自动飞行来进行桥梁检查的情况下,也能够高精度地获取飞行体当前的位置信息,并能够执行沿目标路径的自动飞行的控制。
[飞行控制系统的第二构成示例]
图7是示出实施方式中的飞行控制系统的第二构成示例的框图。飞行控制系统10A包括飞行体100A、飞行控制处理部300A、以及基地600。在第二构成示例中,示出了除了第一构成示例外,具有速度测量部,且基地600可移动的移动基地的情况下的构成示例。此外,省略了与图1所示第一构成示例中相同的构成元件的重复描述。
飞行体100A具有飞行体控制部110、万向节120、万向节控制部130、速度测量传感器150以及传感器融合部160。搭载于万向节120的相对位置测定部140A具有测定部141、对象物检测部142、相对位置计算部143、相对速度计算部144。
图8是示出实施方式中的飞行控制系统的第二构成示例的示意图。图8中示出了基地600为使用了飞行体的动态移动基地的情况的构成示例。作为用于飞行体100A通过拍摄等测量相对位置的测定对象物,基于其他飞行体的基地600中设有目标物即标记650。标记650形成并布置于基地600的外表面,例如飞行体主体的上表面部。基于飞行体的基地600在飞行体100A的附近飞行,且在移动或静止的状态下,能够获取基地600自身的绝对位置信息。飞行体100A通过拍摄等测量基地600的标记650,并测量飞行体100A与基地600的相对位置。
当图2所示的基地500那样的地上基地的固定装置比较困难的情况下,使用例如图8所示基地600那样的动态移动基地。动态移动基地可以使用各种移动体,如无人驾驶航空器等的飞行体、船舶、车辆等。例如,当自动飞行控制飞行体100A,进行桥梁等结构的侧面检查时,来自GPS卫星的信号的接收状态不是很理想,并且可能 难以通过GPS进行位置测定。即便是在这种情况下,也可以通过在飞行体100A的附近布置作为移动基地的基于其他飞行体的基地600,来进行飞行体100A的适当的位置测定和自动飞行控制。
返回图7,基地600具有上述标记650等的测定对象物610、获取基地600自身的位置的位置获取部620、以及测量基地600的移动速度的速度测量传感器630。
基地600的位置获取部620例如可以由包括GPS传感器的GPS测定部构成,并且测量基地600的三维位置获取其绝对位置信息并输出。速度测量传感器630测量基地600的移动速度,获取表示基地600的速度的基地速度信息并输出。
飞行体100A的相对位置计算部143根据测定对象物610的距离和角度的信息,推断从测定对象物610到飞行体100A的相对三维位置并计算,获取飞行体100A的相对位置信息并输出。相对速度计算部144使用由测定部141获取的610的拍摄图像,记录拍摄图像的每帧的时间戳,根据测定对象物610的各个时刻的位置,推断飞行体100A相对于测定对象物610的相对速度,并将其作为相对速度信息输出。相对速度计算部144可以根据测量对象610的距离和角度的更改信息,计算出飞行体100A相对于测定对象物610的相对速度信息。速度测量传感器150使用例如惯性测量装置(IMU)1250等构成,根据飞行体100A的加速度信息获取飞行体100A的移动速度信息并输出。传感器融合部160是通过传感器融合技术整合多个传感器的检测信息,获取更高精度的测定信息的装置。传感器融合部160根据依据情况而不同的各个传感器的检测精度选择传感器检测结果,输出高精度的测定信息。传感器融合部160整合由相对速度计算部144获取的飞行体100A的相对速度信息、由速度测量传感器150获取的飞行体100A的移动速度信息,并将其输出作为表示飞行体100A的速度的飞行体速度信息。
飞行控制处理部300A为本公开所涉及的信息处理装置的一个示例,具有目标路径获取部310、路径演算部320A以及发送部330。路径演算部320A输入飞行体100A的相对位置信息(飞行体相对位置信息)、飞行体100A的速度信息(飞行体速度信息)、基地600的绝对位置信息(基地绝对位置信息)、基地600的速度信息(基地速度信息)以及目标路径信息,根据飞行体100A的目标位置和当前位置的位置信息以及飞行体100A及基地600的速度信息,计算出使飞行体100A按照设定路径飞行所需的飞行体控制信息。
图9是示出实施方式中的路径演算部的功能配置的第二示例的框图。第二示例的路径演算部320A具有飞行体绝对位置演算部321、目标路径信息演算部322、飞行体绝对速度计算部323以及PID演算部325。飞行体绝对速度计算部323输入飞行体速度信息和基地速度信息,计算出飞行体100A当前的绝对速度。PID演算部325根据飞行体100A当前绝对位置(当前位置)和绝对速度(当前速度),以及目标位置和目标速度,通过PID控制技术,计算出用于进行飞行体100A的飞行控制的飞行体控制信息(PID控制的控制变量信息)。这时,路径演算部320A根据飞行体100A的目标 位置和当前位置,目标速度和当前速度的比较结果,计算出用于使飞行体100A按照设定路径飞行的飞行体控制信息。
飞行体控制部110输入由飞行控制处理部300A发送的飞行体控制信息,根据飞行体控制信息,通过控制飞行体100A的旋翼机构等的驱动部,来控制飞行体100A的飞行动作。这时,飞行体控制部110针对基于目标路径信息的目标位置、目标通过时间使飞行体100A飞行,并使其执行沿设定路径的自动飞行。飞行体控制部110可以控制飞行体100A的飞行并使其执行沿设定路径的自动飞行,以适合目标位置、目标速度。
在第二构成示例中,通过使用动态基地,即便是在例如不能容易地固定布置地面基地的环境中,也能够在飞行体的可见范围内布置基地并容易地获取基地与飞行体的相对位置信息,以及基地的绝对位置信息。例如,使用其他飞行体等作为基地,并根据飞行体的飞行移动基地,能够高精度地获取飞行体的位置信息。因此,与第一构成示例相同,能够高精度且容易地执行飞行体沿目标路径的自动飞行的控制。
[飞行控制系统的第三构成示例]
图10是示出实施方式中的飞行控制系统的第三构成示例的框图。飞行控制系统10B包括飞行体100B、飞行控制处理部300B、以及基地600A。在第三构成示例中,示出了除了第二构成示例外,具有加速度测量部,且基地600A可移动的移动基地的情况下的构成示例。此外,省略了与图1所示第一构成示例及图7所示的第二构成示例中相同的构成元件的重复描述。
飞行体100B具有飞行体控制部110、万向节120、万向节控制部130、速度及加速度测量传感器170以及传感器融合部180。搭载于万向节120的相对位置测定部140B具有测定部141、对象物检测部142、相对位置计算部143、相对速度计算部144、相对加速度计算部145。
基地600A具有利用上述标记650等的测定对象物610、获取基地600自身的位置的位置获取部620、以及测量基地600A的移动速度以移动加速度的速度及加速度测量传感器640。速度及加速度测量传感器640测量基地600A的移动速度和移动加速度,获取表示基地600A的速度的基地速度信息、表示加速度的基地加速度信息并输出。
飞行体100B的相对位置计算部143根据测定对象物610的距离和角度的信息,推断计算出从测定对象物610到飞行体100B的相对三维位置,获取飞行体100B的相对位置信息并输出。相对速度计算部144使用由测定部141获取的测定对象物610的拍摄图像,推断飞行体100B从测定对象物610的各个时刻的位置相对于测定对象物610的相对速度,并将其作为相对速度信息输出。相对速度计算部144可以根据测量对象610的距离和角度的更改信息,计算出飞行体100B相对于测定对象物610的相对速度信息。相对加速度计算部145可以计算飞行体100B相对于测定对象物610的相对速度的更改量,并作为相对加速度信息输出。速度及加速度测量传感器170使用例如惯性测量装置(IMU)1250等构成,获取飞行体100B的移动加速度信息以及 移动速度信息并输出。传感器融合部180通过传感器融合技术整合多个传感器的检测信息,并输出飞行体速度信息和飞行体加速度信息,作为更高精度的测定信息。传感器融合部180整合由相对速度计算部144获取的飞行体100B的相对速度信息、由相对加速度计算部145获取的飞行体100B的相对加速度信息,以及由速度及加速度测量传感器170获取的飞行体100B的移动速度信息及移动加速度信息,并将其输出作为表示飞行体100B的速度的飞行体速度信息及表示加速度的飞行体加速度信息。
飞行控制处理部300B为本公开所述的信息处理装置的一个示例,具有目标路径获取部310、路径演算部320B以及发送部330。路径演算部320B输入飞行体100B的相对位置信息(飞行体相对位置信息)、飞行体100B的速度信息(飞行体速度信息)、飞行体100B的加速度信息(飞行体加速度信息)、基地600A的绝对位置信息(基地绝对位置信息)、基地600A的速度信息(基地速度信息)、基地600A的加速度信息(基地加速度信息)及目标路径信息,根据飞行体100B的目标位置和当前位置的位置信息、飞行体100B及基地600A的速度信息以及飞行体100B及基地600A的加速度信息,计算出使飞行体100B按照设定路径飞行所需的飞行体控制信息。
图11是示出实施方式中的路径演算部的功能配置的第三示例的框图。第三示例的路径演算部320B具有飞行体绝对位置演算部321、目标路径信息演算部322、飞行体绝对速度计算部323、飞行体绝对加速度计算部324以及PID演算部325。飞行体绝对速度计算部323输入飞行体速度信息和基地速度信息,计算出飞行体100B当前的绝对速度。飞行体绝对加速度计算部324输入飞行体加速度信息和基地加速度信息,计算出飞行体100B当前的绝对加速度。PID演算部325根据飞行体100B当前绝对位置(当前位置)和绝对速度(当前速度),和绝对加速度(当前加速度)以及目标位置和目标速度,通过PID控制技术,计算出用于进行飞行体100B的飞行控制的飞行体控制信息(PID控制的控制变量信息)。这时,路径演算部320B根据飞行体100B的目标位置和当前位置,目标速度和当前速度以及当前加速度的比较结果,计算出用于使飞行体100B按照设定路径飞行的飞行体控制信息。
飞行体控制部110输入由飞行控制处理部300B发送的飞行体控制信息,根据飞行体控制信息,通过控制飞行体100B的旋翼机构等的驱动部,来控制飞行体100B的飞行动作。这时,飞行体控制部110针对基于目标路径信息的目标位置、目标通过时间使飞行体100B飞行,并使其执行沿设定路径的自动飞行。飞行体控制部110可以控制飞行体100B的飞行并使其执行沿设定路径的自动飞行,以适合目标位置、目标速度。
在第三构成示例中,除了使用飞行体及基地的速度信息,还可以通过使用加速度信息,来进一步提高PID控制的精度。测量飞行体或基地中至少一个的加速度,通过进行使用了加速度信息的飞行体控制信息的计算、或者使用了加速度信息的速度信息或者位置信息的修正,能够提高飞行体控制信息的精度。
在上述构成示例中,作为飞行控制系统10中的信息处理装置一个示例,包括飞行控制处理部300,其中,信息处理装置生成用于对飞行体100的飞行动作进行控制 的飞行体控制信息,飞行控制系统10包括飞行体100、和存在于飞行体100的可见范围内的具有测定对象物510的基地。当在飞行体100的可见范围内存在具有测定对象物510的基地时,飞行控制处理部300获取表示在飞行体100通过随时测量测定对象物510而得到的飞行体100与基地500的相对位置的飞行体相对位置信息,以及表示基地500的绝对位置的基地绝对位置信息。飞行控制处理部300输入飞行体100设定的设定路径信息并从设定路径信息获取当前时间点的目标路径信息,根据目标路径信息计算出用于按照设定路径飞行的目标位置。飞行控制处理部300根据飞行体相对位置信息和基地绝对位置信息计算出飞行体100当前绝对位置。飞行控制处理部300根据飞行体100当前绝对位置和目标位置,计算出用于进行飞行体100的飞行控制的飞行体控制信息。飞行控制处理部300将飞行体控制信息发送到控制飞行体100的飞行体控制部110。
由此,即便是在例如无法充分获取基于GPS的飞行体的位置信息的情况下,也能够获取基地与飞行体的相对位置信息、以及基地的绝对位置信息,从而能够高精度且容易地执行沿目标路径的自动飞行的控制。
此外,在飞行体100中,可以通过测定部141测量设于基地500的测定对象物510,通过对象物检测部142检测并跟踪测定对象物510,获取测定对象物510的距离和角度的信息,通过相对位置计算部143,根据测定对象物510的距离和角度的信息,推断测定对象物510与飞行体100的相对三维位置并计算出飞行体相对位置信息。
此外,测定对象物510可以为可见目标物,且飞行体100具有作为测量测定对象物510的测定部141的用于拍摄可见目标物的摄像部,以及令测定部141朝向测定对象物510的万向节120。此时,可以通过相对位置计算部143使用由测定部141获取的测定对象物510的拍摄图像来计算出飞行体相对位置信息。
此外,测定对象物510可以为后向反射器,且飞行体100具有作为测量测定对象物510的用于测量相对于测定部141的后向反射器的距离和角度的激光扫描仪,以及令测定部141朝向测定对象物510的万向节120。此时,可以通过相对位置计算部143使用由测定部141获取的到测定对象物510的距离和角度的测定信息计算出飞行体相对位置信息。
此外,当基地为可移动基地600时,飞行控制处理部300可以获取表示飞行体100与基地600的相对位置的飞行体相对位置信息、表示飞行体100的速度的飞行体速度信息、表示基地600的绝对位置的基地绝对位置信息、以及表示基地600的速度的基地速度信息。飞行控制处理部300可以根据飞行体相对位置信息和基地绝对位置信息计算出飞行体100当前绝对位置,并根据飞行体速度信息和基地速度信息计算出飞行体100的绝对速度。飞行控制处理部300根据飞行体100当前绝对位置和绝对速度以及目标位置,计算出用于进行飞行体100的飞行控制的飞行体控制信息。
此外,当基地为可移动基地600A时,飞行控制处理部300可以获取表示飞行体100与基地600A的相对位置的飞行体相对位置信息、表示飞行体100的速度的飞行体速度信息、表示飞行体100的加速度的飞行体加速度信息、表示基地600A的绝对 位置的基地绝对位置信息、表示基地600A的速度的基地速度信息、以及表示基地600A的加速度的基地加速度信息。飞行控制处理部300可以根据飞行体相对位置信息和基地绝对位置信息计算飞行体100当前绝对位置,并根据飞行体速度信息和基地速度信息计算飞行体100的绝对速度,根据飞行体加速度信息和基地加速度信息计算出飞行体100的绝对加速度。飞行控制处理部300根据飞行体100当前绝对位置、绝对速度以及绝对加速度和目标位置,计算出用于进行飞行体100的飞行控制的飞行体控制信息。
此外,对飞行体100的飞行动作进行控制的飞行控制系统10可以包括飞行体100、存在于飞行体100的可见范围内的具有测定对象物510的基地500、以及生成用于进行飞行体100的飞行动作的控制的飞行体控制信息的信息处理装置。信息处理装置可以由飞行控制处理部300构成。飞行体100可以随时测量设于基地500的测定对象物510,并计算出表示与基地500的相对位置的飞行体相对位置信息。基地500可以获取表示基地500的绝对位置的基地绝对位置信息。飞行控制处理部300可以输入飞行体100中设定的设定路径信息,并从设定路径信息获取当前时间点的目标路径信息,根据目标路径信息计算出用于按照设定路径飞行的目标位置。飞行控制处理部300可以获取飞行体相对位置信息和基地绝对位置信息,并根据飞行体相对位置信息和基地绝对位置信息计算出飞行体100当前绝对位置。飞行控制处理部300根据飞行体100当前绝对位置和目标位置,计算出用于进行飞行体100的飞行控制的飞行体控制信息,并将飞行体控制信息发送到控制飞行体100的飞行体控制部110。
另外,在上述实施方式中,示出了在设于PC等的终端、飞行体的内部或基地中任意一个的飞行控制处理部300、300A、300B中具有执行飞行控制方法中的步骤的信息处理装置的例子,但也可以是在其他平台上具有信息处理装置,并执行飞行控制方法中的步骤。
以上通过实施方式对本公开进行了说明,但是本公开的技术范围并不限于上述实施方式所记载的范围。对本领域普通技术人员来说,显然可对上述实施方式加以各种变更或改良。从权利要求书的记载即可明白,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
权利要求书、说明书以及说明书附图中所示的装置、系统、程序和方法中的动作、顺序、步骤、以及阶段等各项处理的执行顺序,只要没有特别明示“在...之前”、“事先”等,且只要前面处理的输出并不用在后面的处理中,即可以以任意顺序实现。关于权利要求书、说明书以及说明书附图中的操作流程,为了方便起见而使用“首先”、“接着”等,但并不意味着必须按照这样的顺序实施。
【符号说明】
10、10A、10B 飞行控制系统
100、100A、100B 飞行体
110 飞行体控制部
120 万向节
130 万向节控制部
140、140A、140B 相对位置测定部
141 测定部
142 对象物检测部
143 相对位置计算部
144 相对速度计算部
150 速度测量传感器
160、180 传感器融合部
170 速度及加速度测量传感器
300、300A、300B 飞行控制处理部
310 目标路径获取部
320、320A、320B 路径演算部
321 飞行体绝对位置计算部
322 目标路径信息计算部
323 飞行体绝对速度计算部
324 飞行体绝对加速度计算部
325 PID演算部
330 发送部
500、600、600A 基地
510、610 测定对象物
520、620 位置获取部
550、650 标记
630 速度测量传感器
640 速度及加速度测量传感器
1100 UAV主体
1110 UAV控制部
1150 通信接口
1160 内存
1170 存储器
1200 万向节
1220 摄像部
1210 旋翼机构
1240 GPS接收器
1250 惯性测量装置(IMU)
1260 磁罗盘
1270 气压高度计
1280 超声波传感器
1290 激光测量仪

Claims (13)

  1. 一种信息处理装置,其处于包括飞行体以及基地的飞行控制系统中,并生成用于对所述飞行体的飞行动作进行控制的飞行体控制信息,所述基地存在于所述飞行体的可见范围内并具有测定对象物,其特征在于:包括处理部,所述处理部获取表示在所述飞行体上随时测量所述基地的所述测定对象物而得到的所述飞行体和所述基地的相对位置的飞行体相对位置信息、以及表示所述基地的绝对位置的基地绝对位置信息;输入所述飞行体中设定的设定路径信息,并从所述设定路径信息获取当前时间点的目标路径信息,根据所述目标路径信息计算出用于按照设定路径飞行的目标位置;根据所述飞行体相对位置信息和所述基地绝对位置信息,计算出所述飞行体当前绝对位置;根据所述飞行体当前绝对位置和所述目标位置,计算出用于进行所述飞行体的飞行控制的飞行体控制信息;以及将所述飞行体控制信息发送到控制所述飞行体的飞行体控制部。
  2. 根据权利要求1所述的信息处理装置,其特征在于:所述处理部在所述飞行体中,测量设于所述基地的所述测定对象物;进行所述测定对象物的检测及跟踪,获取所述测定对象物的距离和角度的信息;以及根据所述测定对象物的距离和角度的信息,推断所述测定对象物和所述飞行体的相对三维位置,从而计算出所述飞行体相对位置信息。
  3. 根据权利要求1或2所述的信息处理装置,其特征在于:当所述测定对象物为可见目标物,且所述飞行体具有作为测量所述测定对象物的测定部的用于拍摄所述可见目标物的摄像部,以及令所述测定部朝向所述测定对象物的万向节时,所述处理部使用所述测定部获取的所述测定对象物的拍摄图像来计算出所述飞行体相对位置信息。
  4. 根据权利要求1或2所述的信息处理装置,其特征在于:当所述测定对象物为后向反射器,且所述飞行体具有作为测量所述测定对象物的测定部的用于测量相对于所述后向反射器的距离和角度的激光扫描仪,以及令所述测定部朝向所述测定对象物的万向节时,所述处理部使用所述测定部获得的到所述测定对象物的距离和角度的测定信息,计算出所述飞行体相对位置信息。
  5. 根据权利要求1或2所述的信息处理装置,其特征在于:当所述基地为可移动基地时,所述处理部获取表示所述飞行体和所述基地的相对位置的飞行体相对位置信息、表示所述飞行体的速度的飞行体速度信息、表示所述基地的绝对位置的基地绝对位置信息、以及表示所述基地的速度的基地速度信息;并根据所述飞行体相对位置信息和所述基地绝对位置信息,计算出所述飞行体当前绝对位置;根据所述飞行体速度信息和所述基地速度信息,计算出所述飞行体的绝对速度;根据所述飞行体当前绝 对位置和绝对速度,以及所述目标位置,计算出用于进行所述飞行体的飞行控制的飞行体控制信息。
  6. 根据权利要求1或2所述的信息处理装置,其特征在于:当所述基地为可移动基地时,所述处理部获取表示所述飞行体和所述基地的相对位置的飞行体相对位置信息、表示所述飞行体的速度的飞行体速度信息、表示所述飞行体的加速度的飞行体加速度信息、表示所述基地的绝对位置的基地绝对位置信息、表示所述基地的速度的基地速度信息以及表示所述基地的加速度的基地加速度信息;并根据所述飞行体相对位置信息和所述基地绝对位置信息,计算出所述飞行体当前绝对位置;根据所述飞行体速度信息和所述基地速度信息,计算出所述飞行体的绝对速度;根据所述飞行体加速度信息和所述基地加速度信息计算出所述飞行体的绝对加速度;根据所述飞行体当前绝对位置、绝对速度和绝对加速度及绝对加速度、所述目标位置,计算出用于进行所述飞行体的飞行控制的飞行体控制信息。
  7. 一种飞行控制方法,其处于包括飞行体、基地以及信息处理装置的飞行控制系统中,所述基地存在于所述飞行体的可见范围内并具有测定对象物,所述信息处理装置生成用于对所述飞行体的飞行动作进行控制的飞行体控制信息,其特征在于,具有以下步骤:在所述信息处理装置中,获取表示在所述飞行体中随时测量所述基地的所述测定对象物而得到的所述飞行体和所述基地的相对位置的飞行体相对位置信息以及表示所述基地的绝对位置的基地绝对位置信息;输入所述飞行体中设定的设定路径信息,从所述设定路径信息获取当前时间点的目标路径信息,根据所述目标路径信息,计算出用于按照设定路径飞行的目标位置;根据所述飞行体相对位置信息和所述基地绝对位置信息,计算出所述飞行体当前绝对位置;根据所述飞行体当前绝对位置和所述目标位置,计算出用于进行所述飞行体的飞行控制的飞行体控制信息;以及将所述飞行体控制信息发送到控制所述飞行体的飞行体控制部。
  8. 根据权利要求7所述的飞行控制方法,其特征在于,所述获取飞行体相对位置信息的步骤包括以下步骤:在所述飞行体中测量设于所述基地的所述测定对象物;进行所述测定对象物的检测及跟踪,获取所述测定对象物的距离和角度的信息;以及根据所述测定对象物的距离和角度的信息,推断所述测定对象物和所述飞行体的相对三维位置,来计算出所述飞行体相对位置信息。
  9. 根据权利要求7或8所述的飞行控制方法,其特征在于,所述获取飞行体相对位置信息的步骤包括以下步骤:当所述测定对象物为可见目标物,且所述飞行体具有作为测量所述测定对象物的测定部的用于拍摄所述可见目标物的摄像部,以及令所述测定部朝向所述测定对象物的万向节时,使用所述测定部获取的所述测定对象物的拍摄图像来计算出所述飞行体相对位置信息。
  10. 根据权利要求7或8所述的飞行控制方法,其特征在于,所述获取飞行体相对位置信息的步骤,包括以下步骤:当所述测定对象物为后向反射器,且所述飞行体具有作为测量所述测定对象物的测定部的用于测量相对于所述后向反射器的距离和角度的激光扫描仪,以及令所述测定部朝向所述测定对象物的万向节时,使用所述测定部获取的到所述测定对象物的距离和角度的测定信息,计算出所述飞行体相对位置信息。
  11. 根据权利要求7或8所述的飞行控制方法,其特征在于,当所述基地为可移动基地时,包括以下步骤:所述处理部获取表示所述飞行体和所述基地的相对位置的飞行体相对位置信息、表示所述飞行体的速度的飞行体速度信息、表示所述基地的绝对位置的基地绝对位置信息、以及表示所述基地的速度的基地速度信息;根据所述飞行体相对位置信息和所述基地绝对位置信息,计算所述飞行体当前绝对位置;根据所述飞行体速度信息和所述基地速度信息,计算所述飞行体的绝对速度;以及根据所述飞行体当前绝对位置和绝对速度,以及所述目标位置,计算出用于进行所述飞行体的飞行控制的飞行体控制信息。
  12. 根据权利要求7或8所述的飞行控制方法,其特征在于,当所述基地为可移动基地时,包括以下步骤:所述处理部获取表示所述飞行体和所述基地的相对位置的飞行体相对位置信息、表示所述飞行体的速度的飞行体速度信息、表示所述飞行体的加速度的飞行体加速度信息、表示所述基地的绝对位置的基地绝对位置信息、表示所述基地的速度的基地速度信息以及表示所述基地的加速度的基地加速度信息;根据所述飞行体相对位置信息和所述基地绝对位置信息,计算出所述飞行体当前绝对位置;根据所述飞行体速度信息和所述基地速度信息,计算出所述飞行体的绝对速度;根据所述飞行体加速度信息和所述基地加速度信息,计算出所述飞行体的绝对加速度;以及根据所述飞行体当前绝对位置、绝对速度及绝对加速度和所述目标位置,计算出用于进行所述飞行体的飞行控制的飞行体控制信息。
  13. 一种飞行控制系统,其对飞行体的飞行动作进行控制,其特征在于:包括飞行体、存在于所述飞行体的可见范围内的具有测定对象物的基地、以及生成用于对所述飞行体的飞行动作进行控制的飞行体控制信息的信息处理装置;所述飞行体随时测量设于所述基地的所述测定对象物,并计算表示与所述基地的相对位置的飞行体相对位置信息,所述基地获取表示所述基地的绝对位置的基地绝对位置信息,所述信息处理装置输入所述飞行体中设定的设定路径信息,并从所述设定路径信息获取当前时间点的目标路径信息,根据所述目标路径信息计算出用于按照设定路径飞行的目标位置;获取所述飞行体相对位置信息和所述基地绝对位置信息,并根据所述飞行体相对位置信息和所述基地绝对位置信息,计算出所述飞行体当前绝对位置;根据所述飞行体当前绝对位置和所述目标位置,计算出用于进行所述飞行体的飞行控制的飞行体控制信息;以及将所述飞行体控制信息发送到控制所述飞行体的飞行体控制部。
PCT/CN2019/113654 2018-10-30 2019-10-28 信息处理装置、飞行控制方法以及飞行控制系统 WO2020088399A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980009026.3A CN111630466A (zh) 2018-10-30 2019-10-28 信息处理装置、飞行控制方法以及飞行控制系统
US17/233,431 US20210229810A1 (en) 2018-10-30 2021-04-16 Information processing device, flight control method, and flight control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-203824 2018-10-30
JP2018203824A JP6927943B2 (ja) 2018-10-30 2018-10-30 情報処理装置、飛行制御方法及び飛行制御システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/233,431 Continuation US20210229810A1 (en) 2018-10-30 2021-04-16 Information processing device, flight control method, and flight control system

Publications (1)

Publication Number Publication Date
WO2020088399A1 true WO2020088399A1 (zh) 2020-05-07

Family

ID=70463676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113654 WO2020088399A1 (zh) 2018-10-30 2019-10-28 信息处理装置、飞行控制方法以及飞行控制系统

Country Status (4)

Country Link
US (1) US20210229810A1 (zh)
JP (1) JP6927943B2 (zh)
CN (1) CN111630466A (zh)
WO (1) WO2020088399A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022065316A (ja) * 2020-10-15 2022-04-27 国立研究開発法人宇宙航空研究開発機構 飛行支援装置、飛行支援プログラム及び飛行支援システム
CN116840824B (zh) * 2023-09-01 2023-11-07 天府兴隆湖实验室 飞行器定位方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180081065A1 (en) * 2012-12-19 2018-03-22 Elwha Llc Unoccupied flying vehicle (ufv) location assurance
JP2018055656A (ja) * 2016-09-30 2018-04-05 キヤノンマーケティングジャパン株式会社 無人航空機制御システム、その制御方法、及びプログラム
CN108445900A (zh) * 2018-06-20 2018-08-24 江苏大成航空科技有限公司 一种无人机视觉定位替代差分技术
CN108694367A (zh) * 2017-04-07 2018-10-23 北京图森未来科技有限公司 一种驾驶行为模型的建立方法、装置和系统
CN108713179A (zh) * 2017-09-18 2018-10-26 深圳市大疆创新科技有限公司 可移动物体控制方法、设备及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8463459B2 (en) * 2010-08-24 2013-06-11 The Boeing Company Methods and apparatus for indicating a location
JP5618840B2 (ja) * 2011-01-04 2014-11-05 株式会社トプコン 飛行体の飛行制御システム
EP2538298A1 (en) * 2011-06-22 2012-12-26 Sensefly Sàrl Method for acquiring images from arbitrary perspectives with UAVs equipped with fixed imagers
JP6326237B2 (ja) * 2014-01-31 2018-05-16 株式会社トプコン 測定システム
JP6597603B2 (ja) * 2014-04-25 2019-10-30 ソニー株式会社 制御装置、撮像装置、制御方法、撮像方法及びコンピュータプログラム
US9545995B1 (en) * 2015-07-14 2017-01-17 Qualcomm Incorporated Control normalization for unmanned autonomous systems
US9862488B2 (en) * 2015-08-28 2018-01-09 Mcafee, Llc Location verification and secure no-fly logic for unmanned aerial vehicles
CN108153333B (zh) * 2015-09-23 2020-12-01 郑州大学 生态文明监测装置的飞行基地
JP6813427B2 (ja) * 2016-08-31 2021-01-13 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 位置測定システム、位置測定方法、および移動ロボット
CN108351650B (zh) * 2016-10-17 2021-01-12 深圳市大疆创新科技有限公司 一种对飞行器的飞行控制方法、装置及飞行器
JP2018090012A (ja) * 2016-11-30 2018-06-14 キヤノンマーケティングジャパン株式会社 無人航空機制御システム、無人航空機制御システムの制御方法、およびプログラム
CN108886585B (zh) * 2017-01-25 2022-01-11 松下知识产权经营株式会社 驾驶控制系统以及驾驶控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180081065A1 (en) * 2012-12-19 2018-03-22 Elwha Llc Unoccupied flying vehicle (ufv) location assurance
JP2018055656A (ja) * 2016-09-30 2018-04-05 キヤノンマーケティングジャパン株式会社 無人航空機制御システム、その制御方法、及びプログラム
CN108694367A (zh) * 2017-04-07 2018-10-23 北京图森未来科技有限公司 一种驾驶行为模型的建立方法、装置和系统
CN108713179A (zh) * 2017-09-18 2018-10-26 深圳市大疆创新科技有限公司 可移动物体控制方法、设备及系统
CN108445900A (zh) * 2018-06-20 2018-08-24 江苏大成航空科技有限公司 一种无人机视觉定位替代差分技术

Also Published As

Publication number Publication date
CN111630466A (zh) 2020-09-04
JP2020071580A (ja) 2020-05-07
JP6927943B2 (ja) 2021-09-01
US20210229810A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
US10565732B2 (en) Sensor fusion using inertial and image sensors
JP6029446B2 (ja) 自律飛行ロボット
US10636171B2 (en) Device, method, and system for tracking unmanned aerial vehicle, and program therefor
JP5990453B2 (ja) 自律移動ロボット
WO2016187758A1 (en) Sensor fusion using inertial and image sensors
US10527423B1 (en) Fusion of vision and depth sensors for navigation in complex environments
US11029707B2 (en) Moving object, moving object control method, moving object control system, and moving object control program
JP6962775B2 (ja) 情報処理装置、空撮経路生成方法、プログラム、及び記録媒体
US10146230B2 (en) Control device, optical device, and control method for tracking unmanned aerial vehicle, and system and program therefor
JP6758068B2 (ja) 自律移動ロボット
WO2020088399A1 (zh) 信息处理装置、飞行控制方法以及飞行控制系统
JP2020173138A (ja) 風向風速計測方法及び風向風速計測システム
US20220026208A1 (en) Surveying system, surveying method, and surveying program
JP2016181178A (ja) 自律移動ロボット
JP2016181177A (ja) 自律移動ロボット
CN111213107B (zh) 信息处理装置、拍摄控制方法、程序以及记录介质
JP2022015978A (ja) 無人航空機の制御方法、無人航空機、および、無人航空機の制御プログラム
JP2021143861A (ja) 情報処理装置、情報処理方法及び情報処理システム
JP6974290B2 (ja) 位置推定装置、位置推定方法、プログラム、及び記録媒体
JP7031997B2 (ja) 飛行体システム、飛行体、位置測定方法、プログラム
WO2022153392A1 (ja) 無人航空機の自己位置推定システム及び方法、無人航空機、プログラム、並びに記憶媒体
JP2024022918A (ja) 飛行体および飛行体の制御方法
JP2020052255A (ja) 移動体、制御方法、及びプログラム
JP2007240435A (ja) 目標対象物の位置検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877976

Country of ref document: EP

Kind code of ref document: A1