WO2020088342A1 - 一种资源调度方法和装置 - Google Patents

一种资源调度方法和装置 Download PDF

Info

Publication number
WO2020088342A1
WO2020088342A1 PCT/CN2019/113070 CN2019113070W WO2020088342A1 WO 2020088342 A1 WO2020088342 A1 WO 2020088342A1 CN 2019113070 W CN2019113070 W CN 2019113070W WO 2020088342 A1 WO2020088342 A1 WO 2020088342A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
resource
resources
cyclic shift
equal
Prior art date
Application number
PCT/CN2019/113070
Other languages
English (en)
French (fr)
Inventor
胡远洲
丁梦颖
廖树日
汪凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020088342A1 publication Critical patent/WO2020088342A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message

Definitions

  • the present application relates to the field of communications, and in particular, to a resource scheduling method and device.
  • a terminal device when a terminal device needs to perform uplink transmission to a base station, it can send an SR to the base station through a specific scheduling request (SR) resource configured by the base station.
  • the SR is used to request the base station to allocate uplink transmission resources to the terminal device.
  • the base station After receiving the SR sent by the terminal device, the base station may configure specific frequency domain resources for the terminal device to send uplink data.
  • NR new radio
  • IoT Internet of Things
  • MTC machine type communication
  • Embodiments of the present application provide a resource scheduling method and apparatus, which can enhance the SR coverage of a terminal device.
  • an embodiment of the present application provides a resource scheduling method, including: determining K 1 time slots for transmitting a scheduling request SR of a terminal device; where K 1 is an integer greater than or equal to 2; determining the K 1 K 2 SR resources used for transmitting the SR of the terminal device in each time slot of the time slot; where one SR resource corresponds to one or more symbols, K 2 is an integer greater than or equal to 2; in the K 1 ⁇ K 2 SR resources send the SR of the terminal device to the network device.
  • the base station needs to configure specific SR resources for each terminal device, resulting in a very large SR resource overhead, which cannot well support the requirements of wide coverage.
  • the terminal device can send the SR of the terminal device to the network device on K 1 ⁇ K 2 SR resources, that is, the K 2 SR resources in a time slot can be repeatedly sent K 1 times, which can improve the terminal Coverage of the device's SR.
  • the j-th SR resource for the i-th time slot in the K 1 time slot, for the j-th SR resource out of the K 2 SR resources in the i-th time slot, the j-th SR resource
  • the SR cyclic shift value of the terminal device transmitted on SR resources is determined according to i and j; where i is an integer greater than or equal to 0 and less than or equal to K 1 -1, and j is greater than or equal to 0 and less than or equal to K Integer of 2 -1. It can be understood that the i-th time slot is the i-th repetition of K 2 SR resources, and the symbol number of the j-th SR resource in the i-th repetition is determined.
  • determining the cyclic shift value of the SR of the terminal device according to i and j can be equivalent to determining the cyclic shift by the slot number corresponding to the i-th repetition and the symbol sequence number of the j-th SR resource in the i-th repetition value.
  • the SR resources of different terminal devices can correspond to their respective cyclic shift values, thereby supporting more terminal device connections.
  • the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource is determined according to i and j, including: the transmission of the SR on the jth SR resource
  • the cyclic shift value of the SR of the terminal device is determined according to i, j and the identification of the terminal device. That is, the corresponding cyclic shift value can be determined for SRs transmitted on multiple SR resources corresponding to the terminal device through the identifiers of i, j and the terminal device. In this way, when the SR resources of multiple terminal devices are the same, different terminal devices can be distinguished according to the cyclic shift value corresponding to the SR resources, so that more terminal device connections can be supported.
  • the cyclic shift parameter of the terminal device may be received from the network device, and the cyclic shift value of the SR of the terminal device transmitted on the j-th SR resource is determined according to i, j and the cyclic shift parameter.
  • different terminal devices can configure their respective cyclic shift parameters, for example, different terminal devices can correspond to different cyclic shift values, thereby supporting more terminal device connections.
  • the number of bits in the information field used to indicate the cyclic shift parameter is determined according to K 1 , K 2 and the number of (available) cyclic shifts that can be supported by one SR resource.
  • the K 1 ⁇ K 2 SR resources of the terminal device may correspond to a cyclic shift pattern, and the cyclic shift pattern includes a cyclic shift value corresponding to each SR resource in the K 1 ⁇ K 2 SR resources.
  • the terminal device is instructed to determine the cyclic shift pattern through the cyclic shift parameter, which requires fewer bits and can reduce signaling overhead.
  • the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource is determined according to i and j, including: the transmission of the SR on the jth SR resource
  • the cyclic shift value of the SR of the terminal device is determined according to i, j and the pseudo-random sequence; wherein, the initialization value of the pseudo-random sequence is determined according to the identification of the terminal device, or the value of the pseudo-random sequence is based on The cell identifier of the cell where the terminal device is located and the identifier of the terminal device are determined.
  • the SR resources of different terminal devices can correspond to their respective cyclic shift values, thereby supporting more terminal device connections.
  • the pseudo-random sequence can use the pseudo-random sequence in the long term evolution (LTE) protocol, and can also use other pseudo-noise sequence (PN) sequence, Gold sequence (by R.Gold in m sequence) Based on a pseudo-random sequence proposed), etc., this application is not limited.
  • LTE long term evolution
  • PN pseudo-noise sequence
  • Gold sequence by R.Gold in m sequence
  • sending the SR of the terminal device to the network device on the K 1 ⁇ K 2 SR resources includes: sending the SR to the network device on K 1 ⁇ K 2 ⁇ K 3 SR resources
  • the K 1 ⁇ K 2 ⁇ K 3 SR resources are K 3 repetitions of the K 1 ⁇ K 2 SR resources; where K 3 is an integer greater than or equal to 2.
  • the base station needs to configure specific SR resources for each terminal device, resulting in a very large SR resource overhead, which cannot well support the requirements of wide coverage.
  • the terminal device may be a network device transmitting the SR terminal device, i.e. K K 1 ⁇ K 2 th SR resources in a slot in the K 1 ⁇ K 2 ⁇ K 3 th SR resources K 3 times repeatedly transmitted , Can improve the SR coverage of terminal equipment.
  • the K 1 ⁇ K 2 SR resources included in any two repetitions of the K 3 repetitions of the K 1 ⁇ K 2 SR resources are the same, the receiver detection complexity is low, the detection performance is good, and the high level The signaling indication overhead is also small.
  • an embodiment of the present application provides a resource scheduling method, including: determining K 1 time slots for transmitting a scheduling request SR of a terminal device, where K 1 is an integer greater than or equal to 2; determining the K 1 K 2 SR resources used to transmit the SR of the terminal device in each time slot, where one SR resource corresponds to one or more symbols, and K 2 is an integer greater than or equal to 2; where K 1 ⁇ K 2 SR resources receive the SR of the terminal device.
  • an embodiment of the present application provides an apparatus, which may be a terminal device, or an apparatus that can support a terminal device to implement any of the methods of the first aspect, for example, the apparatus may be an apparatus in a terminal device ,
  • the apparatus may include: a determining unit and a sending unit; these units may perform the corresponding functions performed by the terminal device in any of the design examples of the first aspect above, specifically: the determining unit is used to determine the terminal device for transmission K 1 time slots of the scheduling request SR of which K 1 is an integer greater than or equal to 2; the determining unit is also used to determine the SR used to transmit the terminal device in each time slot of the K 1 time slots K 2 SR resources, where one SR resource corresponds to one or more symbols, K 2 is an integer greater than or equal to 2; the sending unit is used to send to the network device on the K 1 ⁇ K 2 SR resources The SR of the terminal device.
  • the j-th SR resource for the i-th time slot in the K 1 time slot, for the j-th SR resource out of the K 2 SR resources in the i-th time slot, the j-th SR resource
  • the SR cyclic shift value of the terminal device transmitted on SR resources is determined according to i and j; where i is an integer greater than or equal to 0 and less than or equal to K 1 -1, and j is greater than or equal to 0 and less than or equal to K Integer of 2 -1.
  • the cyclic shift value of the SR of the terminal device transmitted on the j-th SR resource is determined according to i, j and the identifier of the terminal device; or, the apparatus further includes receiving Unit for receiving the cyclic shift parameter of the terminal device from the network device, the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource is determined according to i, j and the cyclic shift parameter .
  • the number of bits in the information field used to indicate the cyclic shift parameter is determined according to K 1 , K 2 and a number of cyclic shifts that the SR resource can support.
  • the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource is determined according to i, j and a pseudo-random sequence; wherein, the initialization value of the pseudo-random sequence Is determined according to the identity of the terminal device, or the value of the pseudo-random sequence is determined according to the cell identity of the cell where the terminal device is located and the identity of the terminal device.
  • the sending unit is specifically configured to send the SR of the terminal device to the network device on K 1 ⁇ K 2 ⁇ K 3 SR resources, and the K 1 ⁇ K 2 ⁇ K 3 SRs
  • the resource is K 3 repetitions of the K 1 ⁇ K 2 SR resources; where K 3 is an integer greater than or equal to 2.
  • an embodiment of the present application provides an apparatus, which may be a network device or an apparatus that can support a network device to implement any of the methods of the second aspect above, for example, the apparatus may be an apparatus in a network device
  • the device may include: a determining unit and a receiving unit; these units may perform the corresponding functions performed by the network device in any of the design examples of the second aspect above, specifically: the determining unit is used to determine the terminal device for transmission K 1 time slots of the scheduling request SR of which K 1 is an integer greater than or equal to 2; the determining unit is also used to determine the SR used to transmit the terminal device in each time slot of the K 1 time slots K 2 SR resources, where one SR resource corresponds to one or more symbols, K 2 is an integer greater than or equal to 2; the receiving unit is used to receive the terminal device on the K 1 ⁇ K 2 SR resources SR.
  • the j-th SR resource for the i-th time slot in the K 1 time slot, for the j-th SR resource out of the K 2 SR resources in the i-th time slot, the j-th SR resource
  • the SR cyclic shift value of the terminal device transmitted on SR resources is determined according to i and j; where i is an integer greater than or equal to 0 and less than or equal to K 1 -1, and j is greater than or equal to 0 and less than or equal to K Integer of 2 -1.
  • the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource is determined according to i, j and the identifier of the terminal device; or, the apparatus further includes sending A unit, configured to send a cyclic shift parameter to the terminal device, and the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource is determined according to i, j and the cyclic shift parameter.
  • the number of bits in the information field used to indicate the cyclic shift parameter is determined according to K 1 , K 2 and a number of cyclic shifts that the SR resource can support.
  • the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource is determined according to i, j and a pseudo-random sequence; wherein, the initialization value of the pseudo-random sequence Is determined according to the identity of the terminal device, or the value of the pseudo-random sequence is determined according to the cell identity of the cell where the terminal device is located and the identity of the terminal device.
  • the receiving unit is specifically configured to: receive the SR terminal device on the K 1 ⁇ K 2 ⁇ K 3 th SR resources, the K 1 ⁇ K 2 ⁇ K 3 is the SR resources th K 1 ⁇ K 2 K SR resources are repeated 3 times; K 3 is an integer greater than or equal to 2.
  • an embodiment of the present application further provides an apparatus, the apparatus including a processor, configured to implement the function of the terminal device in the method described in the first aspect above.
  • the device may also include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory to implement the functions of the terminal device in the method described in the first aspect.
  • the apparatus may further include a communication interface, and the communication interface is used for the apparatus to communicate with other devices.
  • the other device is a network device.
  • the apparatus includes:
  • the communication interface is used to support the communication between the device and other network elements.
  • Memory used to store program instructions
  • a processor configured to determine K 1 time slots for transmitting the scheduling request SR of the terminal device; wherein, K 1 is an integer greater than or equal to 2; determining that each time slot of the K 1 time slots is used to transmit the K 2 SR resources of the SR of the terminal device; one of the SR resources corresponds to one or more symbols, and K 2 is an integer greater than or equal to 2;
  • the processor may also use the communication interface to send the SR of the terminal device to the network device on the K 1 ⁇ K 2 SR resources.
  • the processor is used to: i and j determine the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource; where i is an integer greater than or equal to 0 and less than or equal to K 1 -1, and j is greater than or equal to 0 and less than or equal to Integer of K 2 -1.
  • the processor is used to determine the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource according to i, j and the identifier of the terminal device; or, the processor is used to The communication interface receives the cyclic shift parameter of the terminal device from the network device, and a cyclic shift value for determining the SR of the terminal device transmitted on the j-th SR resource according to i, j and the cyclic shift parameter.
  • the number of bits in the information field used to indicate the cyclic shift parameter is determined according to K 1 , K 2 and a number of cyclic shifts that the SR resource can support.
  • the processor is used to determine the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource according to i, j and the pseudo-random sequence; wherein, the initialization of the pseudo-random sequence The value is determined according to the identity of the terminal device, or the value of the pseudo-random sequence is determined according to the cell identity of the cell where the terminal device is located and the identity of the terminal device.
  • the processor is used to utilize the communication interface: send the SR of the terminal device to the network device on K 1 ⁇ K 2 ⁇ K 3 SR resources, and the K 1 ⁇ K 2 ⁇ K 3 SRs
  • the resource is K 3 repetitions of the K 1 ⁇ K 2 SR resources; where K 3 is an integer greater than or equal to 2.
  • an embodiment of the present invention provides a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute any method provided in the first aspect.
  • an embodiment of the present invention provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute any method provided in the first aspect.
  • an embodiment of the present application provides a chip system.
  • the chip system includes a processor, and may further include a memory, for implementing the function of the terminal device in the foregoing method.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • an embodiment of the present application further provides an apparatus, the apparatus including a processor, configured to implement the function of the network device in the method described in the second aspect above.
  • the device may also include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory to implement the functions of the network device in the method described in the second aspect above.
  • the apparatus may further include a communication interface, and the communication interface is used for the apparatus to communicate with other devices.
  • the other device is a terminal device.
  • the apparatus includes:
  • the communication interface is used to support the communication between the device and other network elements.
  • Memory used to store program instructions
  • a processor configured to determine K 1 time slots for transmitting the SR of the terminal device; wherein, K 1 is an integer greater than or equal to 2; determine that each time slot of the K 1 time slots is used to transmit the terminal device K 2 SR resources of the SR; where one SR resource corresponds to one or more symbols, K 2 is an integer greater than or equal to 2;
  • the processor can also use the communication interface to receive the SR of the terminal device on the K 1 ⁇ K 2 SR resources.
  • the processor is used to: i and j determine the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource; where i is an integer greater than or equal to 0 and less than or equal to K 1 -1, and j is greater than or equal to 0 and less than or equal to Integer of K 2 -1.
  • the processor is used to determine the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource according to i, j and the identifier of the terminal device; or, the processor is used to The communication interface sends a cyclic shift parameter to the terminal device, and a cyclic shift value for determining the SR of the terminal device transmitted on the j-th SR resource according to i, j and the cyclic shift parameter.
  • the number of bits in the information field used to indicate the cyclic shift parameter is determined according to K 1 , K 2 and a number of cyclic shifts that the SR resource can support.
  • the processor is used to determine the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource according to i, j and the pseudo-random sequence; wherein, the initialization of the pseudo-random sequence The value is determined according to the identity of the terminal device, or the value of the pseudo-random sequence is determined according to the cell identity of the cell where the terminal device is located and the identity of the terminal device.
  • the processor is used to utilize the communication interface: receiving SR sent by the terminal device on K 1 ⁇ K 2 ⁇ K 3 SR resources, the K 1 ⁇ K 2 ⁇ K 3 SR resources are the K 1 ⁇ K 2 K SR resources are repeated 3 times; K 3 is an integer greater than or equal to 2.
  • an embodiment of the present invention provides a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute any method provided in the second aspect.
  • an embodiment of the present invention provides a computer program product containing instructions, which, when run on a computer, causes the computer to execute any method provided in the second aspect.
  • an embodiment of the present application provides a chip system.
  • the chip system includes a processor, and may further include a memory, configured to implement the functions of the network device in the foregoing method.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • an embodiment of the present application provides a system including the device according to the third aspect or the fifth aspect, and the device according to the fourth aspect or the ninth aspect.
  • FIG. 1 is a schematic diagram of a system architecture to which a resource scheduling method provided by an embodiment of this application is applicable;
  • FIG. 2 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of signal interaction of a resource scheduling method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of K 1 ⁇ K 2 SR resources provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of signal interaction of a resource scheduling method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • Embodiments of the present application provide a resource scheduling method and apparatus, which are applied to a data transmission process, including one or more of the following processes for sending data: a process for a network device (for example, a base station) to send data to a terminal device, and the terminal device
  • the embodiments of the present application may be applied to, for example but not limited to, new radio access (new radio access technical, New RAT) system, LTE-Advanced, and machine type communication (MTC) systems.
  • New RAT new radio access technical
  • LTE-Advanced LTE-Advanced
  • MTC machine type communication
  • LTE-Advanced is the evolution of LTE.
  • New RAT or NR can also be called the fifth generation (the fifth generation, 5G) mobile communication system.
  • FIG. 1 is a schematic diagram of a communication system to which the technical solution provided by the embodiments of the present application is applicable.
  • the communication system may include a network device 100 and one or more terminal devices 200 connected to the network device 100 (FIG. 1 only shows 1). Data transmission can be performed between network equipment and terminal equipment.
  • the network device 100 may be a device that can communicate with the terminal device 200.
  • the network device 100 may be a base station, and the base station may be a global mobile communication (GSM) or code division multiple access (CDMA) base station (base transceiver) (BTS), or It can be NodeB (NBB) in wideband code division multiple access (WCDMA), evolved NodeB (evolved NodeB, eNB or eNodeB) in LTE, or NR
  • GSM global mobile communication
  • CDMA code division multiple access
  • BTS base transceiver
  • NBB wideband code division multiple access
  • WCDMA wideband code division multiple access
  • evolved NodeB evolved NodeB
  • eNB evolved NodeB
  • NR NR
  • the base station in NR can also be called a transmission and reception point (transmission reception point, TRP) or gNB.
  • the apparatus for implementing the function of the network device may be a network device, or may be an apparatus capable of supporting the network device to realize the function, such as a chip system.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the terminal device 200 in the embodiment of the present application may also be referred to as a terminal, which may be a device with wireless transceiver function.
  • the terminal may be deployed on land, including indoor or outdoor, handheld, or vehicle-mounted; or may be deployed on On the water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal device may be a user equipment (user equipment, UE).
  • the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with a wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • Terminal devices can also be virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented reality, AR) terminal devices, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, smart Wireless terminals in the power grid, wireless terminals in smart cities (smart cities), wireless terminals in smart homes (smart homes), etc.
  • the device for realizing the function of the terminal may be a terminal, or may be a device capable of supporting the terminal to realize the function, such as a chip system.
  • the technical solution provided by the embodiments of the present application is described by taking an example in which the device for implementing the functions of the terminal is a terminal device.
  • the network device 100 or the terminal device 200 in FIG. 1 may be implemented by one device, or may be a functional module in a device, which is not specifically limited in the embodiment of the present application. It is understandable that the above-mentioned functions may be network elements in hardware devices, or software functions running on dedicated hardware, or virtualized functions instantiated on platforms (for example, cloud platforms), or chip systems. . In the embodiment of the present application, the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • FIG. 2 is a schematic diagram of a hardware structure of an apparatus 200 provided by an embodiment of the present application.
  • the apparatus 200 includes at least one processor 201, configured to implement the functions of the terminal device provided in the embodiments of the present application.
  • the device 200 may further include a bus 202 and at least one communication interface 204.
  • the device 200 may further include a memory 203.
  • the processor may be a central processing unit (central processing unit, CPU), a general-purpose processor, a network processor (NP), a digital signal processor (digital signal processing, DSP), or a micro processor Device, microcontroller, programmable logic device (PLD) or any combination of them.
  • the processor may also be any other device with a processing function, such as a circuit, a device, or a software module.
  • the bus 202 can be used to transfer information between the aforementioned components.
  • the communication interface 204 is used to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area network (WLAN), etc.
  • the communication interface 204 may be an interface, a circuit, a transceiver, or other devices capable of implementing communication, and the application is not limited.
  • the communication interface 204 may be coupled with the processor 201.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the memory may be read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), or may store Other types of dynamic storage devices for information and instructions can also be electrically erasable programmable read-only memory (electrically erasable programmable-read-only memory (EEPROM), compact-disc read-only memory (CD-ROM) or Other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store the desired Program code and any other medium that can be accessed by the computer, but not limited to this.
  • the memory may exist independently, or may be coupled with the processor, for example, through the bus 202. The memory can also be integrated with the processor.
  • the memory 203 is used to store program instructions and can be controlled and executed by the processor 201, so as to implement the resource scheduling method provided by the following embodiments of the present application.
  • the processor 201 is used to call and execute the instructions stored in the memory 203, so as to implement the resource scheduling method provided in the following embodiments of the present application.
  • the computer execution instructions in the embodiments of the present application may also be called application program codes, which are not specifically limited in the embodiments of the present application.
  • the memory 203 may be included in the processor 201.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2.
  • the apparatus 200 may include multiple processors, such as the processor 201 and the processor 207 in FIG. 2. Each of these processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and / or processing cores for processing data (eg, computer program instructions).
  • the apparatus 200 may further include an output device 205 and an input device 206.
  • the output device 205 and the processor 201 are coupled and can display information in various ways.
  • the output device 205 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • the input device 206 and the processor 201 are coupled and can receive user input in various ways.
  • the input device 206 may be a mouse, a keyboard, a touch screen device, or a sensing device.
  • the above apparatus 200 may be a general-purpose device or a dedicated device.
  • the terminal device 200 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a similar structure in FIG. 2 device.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the device 200.
  • FIG. 3 is a schematic diagram of the hardware structure of an apparatus 300 provided by an embodiment of the present application.
  • the apparatus 300 includes at least one processor 301, configured to implement the functions of the terminal device provided in the embodiments of the present application.
  • the device 300 may further include a bus 302 and at least one communication interface 304.
  • the device 300 may further include a memory 303.
  • the bus 302 can be used to transfer information between the aforementioned components.
  • the communication interface 304 is used to communicate with other devices or communication networks, such as Ethernet, RAN, WLAN, etc.
  • the communication interface 304 may be an interface, a circuit, a transceiver, or other devices capable of achieving communication, and the application is not limited.
  • the communication interface 304 may be coupled with the processor 301.
  • the memory 303 is used to store program instructions and can be controlled and executed by the processor 301, so as to implement the resource scheduling method provided by the following embodiments of the present application.
  • the processor 301 is used to call and execute the instructions stored in the memory 303, so as to implement the resource scheduling method provided in the following embodiments of the present application.
  • the memory 303 may be included in the processor 301.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3.
  • the apparatus 300 may include multiple processors, such as the processor 301 and the processor 305 in FIG. 3. Each of these processors can be a single-core processor or a multi-core processor.
  • the processor here may refer to one or more devices, circuits, and / or processing cores for processing data (eg, computer program instructions).
  • An SR resource may include one or more resources in time domain resources, frequency domain resources, and code domain resources (code resources).
  • the time domain resource includes the time domain position and the symbol length.
  • the time domain position includes the start symbol position or the end symbol position of the SR resource, and the symbol length is the number of symbols contained in the SR resource.
  • the frequency domain resource includes the frequency domain location and frequency domain bandwidth of the SR resource.
  • the frequency domain location includes the starting resource block (RB) location or end resource block location of the SR resource.
  • the frequency domain bandwidth size is the continuous The number of resource blocks.
  • the code domain resource includes the cyclic shift value of the reference signal sequence and / or the orthogonal sequence (eg, orthogonal cover code (OCC) sequence) used by the reference signal sequence.
  • OFC orthogonal cover code
  • the reference signal includes a reference signal for carrying SR data and a demodulation reference signal (DMRS) for demodulating SR data.
  • the SR data may be represented by the value A.
  • the reference signal carrying SR data may be the reference signal multiplied by the value A.
  • the terminal device may send a reference signal carrying SR data and a demodulation reference signal to demodulate SR data to the base station.
  • the base station knows the information of the demodulation reference signal, and the base station can perform channel estimation according to the received demodulation reference signal, demodulate the reference signal carrying SR data according to the channel estimation result, and determine the user according to the demodulation result Whether the device sent SR.
  • Cyclic shift value The above reference signal sequence may correspond to a cyclic shift value, and the reference signal sequence may perform corresponding cyclic shift through the cyclic shift value.
  • the cyclic shift value of a reference signal sequence may be a preset value or a value configured by the base station, and the number of cyclic shift values that the reference signal sequence can adopt is limited.
  • the number of possible cyclic shift values that can be used for a reference signal sequence can be regarded as the number of cyclic shifts supported by an SR resource, or the number of cyclic shift values that can be selected by an SR resource.
  • the reference signal sequence can be cyclic shifted by ⁇ (1), and the nth value x (n) of the reference signal sequence can be multiplied by Phase factor If the cyclic shift value adopted by the reference signal sequence is ⁇ (3), the reference signal sequence can be cyclic shifted by ⁇ (3), and the nth value x (n) of the reference signal sequence can be multiplied Phase factor
  • the network device can configure the cyclic shift value for the terminal device. For example, different cyclic shift values may be allocated to different terminal devices, or the same cyclic shift value may be allocated to different terminal devices, which is not limited in this application.
  • SR orthogonal means that the base station does not interfere with the data of another user when demodulating the data of one user (for example, SR). Thus, the base station can distinguish different terminal devices.
  • the cyclic shift value corresponding to the reference signal sequence used by one SR resource is limited, that is, the number of cyclic shifts supported by one SR resource is limited.
  • the number of cyclic shifts that can be supported by one SR resource may be 3, 6, 9, 12, etc.
  • the reference signal sequence of the SR resource may correspond to any one of the 12 cyclic shift values. Therefore, the reference signal sequence of the SR resource Up to 12 different terminal devices can be distinguished.
  • the SRs of the 12 terminal devices have the same time domain resource and frequency domain resource, the orthogonal sequence used by the reference signal sequence in the code domain resource is the same, but the cyclic shift value of the reference signal sequence in the code domain resource is different .
  • an OOC sequence In order to further increase the number of terminal devices supported by SR resources, an OOC sequence can be used.
  • SR when multiple terminal devices correspond to the same reference signal sequence and the same cyclic shift value, multiplying the reference signal sequences by different OCC sequences can ensure that different terminal devices are orthogonal.
  • the reference signal sequence may include a reference signal sequence for carrying SR data and a demodulation reference signal sequence for demodulating SR data.
  • the demodulation reference signal sequence used to demodulate SR data as an example, assume that the DMRS sequence of terminal device 0 and terminal device 1 are the same, and include two consecutive symbols, each symbol corresponding to a bandwidth of 1 RB
  • the number of subcarriers included in the RB is 12, that is, each symbol corresponds to 12 resource elements (resource elements, REs).
  • Each RE can carry one data element in the reference signal sequence, and the length of the reference signal sequence can be 12, that is, the reference
  • the signal sequence includes 12 data elements.
  • Terminal device 0 uses the DMRS sequence at symbol 0 Use DMRS sequence at symbol 1
  • Terminal 1 uses the DMRS sequence at symbol 0
  • n represents the serial number of the data element in the reference signal sequence (the serial number may also be called an index or identification).
  • the OCC sequence of length 2 may include ⁇ 1, 1 ⁇ and ⁇ 1, -1 ⁇ , and the DMRS sequence of the terminal device 0 may be multiplied by the OCC sequence ⁇ 1, 1
  • the value in ⁇ that is, the DMRS sequence of symbol 0 is multiplied by 1, and the DMRS sequence of symbol 1 is multiplied by 1.
  • the DMRS sequence of the terminal device 1 may be multiplied by the value in ⁇ 1, -1 ⁇ , that is, the DMRS sequence of symbol 0 is multiplied by 1, and the DMRS sequence of symbol 1 is multiplied by -1.
  • terminal device 0 and terminal device 1 are orthogonal. That is, when the length of the OCC sequence is 2, two terminal devices can be supported (differentiated).
  • An embodiment of the present application provides a resource scheduling method, taking a network device as a base station for example for illustration, as shown in FIG. 4, including:
  • the base station determines K 1 time slots for transmitting the SR of the terminal device; where K 1 is an integer greater than or equal to 2.
  • the base station may determine the value of K 1 according to preset conditions.
  • the preset conditions include coverage requirements and / or access volume of terminal equipment to access the base station.
  • the value of K 1 may be pre-configured.
  • the base station determines K 2 SR resources used to transmit the SR of the terminal device in the one time slot; wherein, one SR resource corresponds to one or more symbols, and K 2 is An integer greater than or equal to 2.
  • the transmission may be uplink transmission, for example, the terminal device transmits data to the base station, or downlink transmission, for example, the base station transmits data to the terminal device.
  • the number of SR resources K 2 in any two time slots may be the same or different, which is not limited in this application.
  • the base station determines K 2 SR resources used to transmit the SR of the terminal device in each time slot of K 1 time slots; where one SR resource corresponds to one or more symbols, and K 2 is greater than or equal to 2. Integer.
  • the base station may determine the value of K 2 according to preset conditions.
  • the preset conditions include at least one of the following: coverage requirements and terminal device access volume requirements.
  • the value of K 2 may be pre-configured.
  • the base station sends the value of K 1 and / or K 2 to the terminal device.
  • the base station can send K 1 and K 2 to the terminal device through signaling.
  • the terminal device receives K 1 and / or K 2 sent by the base station.
  • K 1 and / or K 2 may be a control element (CE) controlled by the base station through high-level signaling (eg, RRC signaling, broadcast message, system message, medium access control (MAC)) )) Is configured for the terminal device, or may be configured by the base station for the terminal device through physical layer signaling, or may be a pre-configured fixed value (that is, step 403 and step 404 may not be performed), the embodiment of the present application does not Be limited.
  • the physical layer signaling may be signaling carried by downlink control information (downlink control information, DCI) or physical downlink shared channel (physical downlink shared channle, PDSCH).
  • DCI may be signaling sent by the base station to the terminal equipment through a physical downlink control channel (PDCCH), that is, the DCI may be signaling carried by the PDCCH.
  • PDCH physical downlink control channel
  • the terminal device determines K 1 time slots for transmitting the SR of the terminal device.
  • the terminal device may determine the starting time slot for transmitting the SR of the terminal device through the SR transmission period and the SR offset, and select K 1 time slots (including Start slot) Send SR. Any two adjacent time slots in the sequence of K 1 time slots may be continuous or discrete.
  • the K 1 time slots may be continuous, discontinuous, or not completely continuous, which is not limited in this application.
  • the terminal device determines K 2 SR resources used for transmitting the SR of the terminal device in the one time slot.
  • the terminal device determines K 2 SR resources for transmitting the SR of the terminal device in each time slot of K 1 time slots.
  • Each SR resource may include time domain resources, frequency domain resources, and code domain resources.
  • each time slot of K 1 time slots corresponds to K 2 SR resources
  • the terminal device may send an SR on K 2 SR resources corresponding to each time slot.
  • the terminal device can repeatedly send K 2 SR resources in a time slot K 1 times, thereby improving SR coverage.
  • K 2 SR resources within the i-th time slots arranged in successive time slots i.e. time-domain symbol K 2 SR resources are corresponding to continuously. That is, K 2 th SR resources for the i-th iteration, the i th sub-K 2 SR resources repeated continuously arranged within the slot, i.e. time-domain symbol K 2 corresponding to the SR resources are continuous.
  • each SR resource in the K 2 SR resources in the i-th repetition is L
  • the starting symbol position of the 0th SR resource in the i-th repetition is l 0
  • the starting symbol position of the j-th SR resource in the i-th repetition is l 0 + jL.
  • i is an integer greater than or equal to 0 and less than or equal to K 1 -1
  • j is an integer greater than or equal to 0 and less than or equal to K 2 -1.
  • the time slot sends SR. Any two adjacent time slots in the sequence of K 1 time slots may be continuous or discrete. Among them, a total of 10 symbols starting from the fourth symbol in each time slot of K 1 time slots can be used to transmit SR.
  • the terminal device For a time slot in K 1 time slots, the terminal device sends an SR to the base station on K 2 SR resources in the time slot.
  • the terminal device sends the SR of the terminal device to the base station on K 1 ⁇ K 2 SR resources.
  • the K 1 ⁇ K 2 SR resources of the terminal device may correspond to a cyclic shift pattern, and the cyclic shift pattern includes each SR of the K 1 ⁇ K 2 SR resources The cyclic shift value corresponding to the resource.
  • the i-th time slot for the two K 2 SR resources in the j-th SR resources the j-th SR resources
  • the cyclic shift value of the SR of the terminal device transmitted is determined according to i and j.
  • the terminal device may receive the cyclic shift parameter of the terminal device from the base station, that is, the cyclic shift parameter may be flexibly configured by higher layer signaling or physical layer signaling. Then, the terminal device may determine the cyclic shift value of the SR of the terminal device transmitted on the j-th SR resource according to i, j and the cyclic shift parameter.
  • the base station can configure an optimal cyclic shift pattern for each terminal device according to the number of terminal devices that need to be supported to reduce the probability of collision when multiple terminal devices simultaneously send an SR, thereby improving the performance of the network device in detecting SR .
  • the number of bits in the information field used to indicate the cyclic shift parameter may be determined according to K 1 , K 2 and the number of cyclic shifts that can be supported by one SR resource. For example, suppose the maximum values of K 1 and K 2 are with The number of cyclic shifts available in an SR resource is N cs , then The maximum number of cyclic shift patterns supported by an SR resource can be The number of bits of the cyclic shift parameter can be
  • the K 1 time slot for the i-th slot, the i-th time slot for the two K 2 SR resources in the j-th SR resources may be in accordance with the i, j and
  • the number of cyclic shifts that SR resources can support expands the cyclic shift parameters into polynomials.
  • the cyclic shift value of the j-th SR resource corresponding to the i-th time slot is determined according to the coefficient (variable) of the polynomial.
  • the cyclic shift value ⁇ i, j of the j-th SR resource in the i-th slot may be determined according to the variable m i, j .
  • m i, j satisfies formula (1):
  • I cs is a cyclic shift parameter (which may also be referred to as the value indicated by the cyclic shift parameter), and N cs is the number of cyclic shifts that can be supported in an SR resource.
  • equation (1) can be considered to expand the cyclic shift parameter I cs into K 1 ⁇ K 2 values using N cs as a base.
  • N cs 12 means that the cyclic shift parameters are expanded in hexadecimal.
  • the pattern corresponding to the value of mi, j is ⁇ 1, 0, 6, 4, 0, 0, 0, 0, 0 ⁇ .
  • the modulus operation can be omitted.
  • ⁇ i, j m i, j .
  • the relationship between ⁇ i, j and mi i, j can be expressed as formula (3) or formula (4):
  • Represents the number of subcarriers contained in a resource block; m 0 represents the initial value of cyclic shift (or cyclic shift offset) configured by the base station to the terminal device; n cs is a pseudo-random number; Represents the slot number (also called slot index or identifier) of the slot that sends the SR in a radio frame (Radio Frame); l represents the symbol of any one of the time domain symbols of the SR in the slot that sends the SR Sequence number; l 'represents the starting symbol position of the time domain symbol of the SR in the time slot in which the SR is transmitted.
  • the value of m cs can be 0, indicating that the SR of the terminal device is not sent with an acknowledgement (ACKnowledgement, ACK) of a hybrid automatic repeat request (HARQ).
  • the cyclic shift parameter instructs the terminal device to determine the cyclic shift pattern, which requires fewer bits and can reduce signaling overhead.
  • the i-th time slot for the two K 2 SR resources in the j-th SR resources, the j-th SR resources The cyclic shift value of the SR of the terminal equipment transmitted is determined according to i, j and the identity of the terminal equipment.
  • the identifier of the terminal device may include a cell radio network temporary identifier (C-RNTI), a temporary C-RNTI or other identifier of the terminal device.
  • the cyclic shift value ⁇ i, j of the j-th SR resource in the i-th slot can be determined by mi, j , and mi, j satisfies equations (5) and (6):
  • N scale is an integer greater than or equal to 1
  • N scale is a scale factor
  • the value of N scale may be pre-configured, or may be indicated by the base station to the terminal device through high-level signaling.
  • N cs is the number of cyclic shifts that can be supported in an SR resource.
  • formula (5) can be expressed as formula (7), that is , the values of mi and j obtained from formula (5) and formula (7) are the same:
  • ⁇ i, j m i, j .
  • the relationship between ⁇ i, j and mi, j can be referred to as formula (3) or formula (4).
  • the corresponding cyclic shift pattern can be determined for the terminal device through the identification of i, j and the terminal device. Further, if the identifications of two terminal devices are close, for example, one is 1000 and the other is 1001, the cyclic shift pattern directly generated using the identification of the terminal device may also be relatively close, so that it is difficult for the base station to distinguish different terminals during detection device. In the method provided by the embodiment of the present application, the identification of the terminal device can be multiplied by N scale to make the cyclic shift pattern distribution more uniform and not too close, so that the base station can better distinguish different terminal devices.
  • the i-th time slot for the two K 2 SR resources in the j-th SR resources, the j-th SR resources The cyclic shift value of the SR of the terminal device transmitted is determined according to i, j and the pseudo-random sequence, or the cyclic shift value of the SR of the terminal device transmitted on the jth SR resource is based on i, j and The value of the pseudo-random sequence is determined.
  • the initialization value of the pseudo-random sequence is determined according to the identity of the terminal device, and the initialization value of the pseudo-random sequence can be used to determine the value of the pseudo-random sequence; or the value of the pseudo-random sequence is based on the cell identity of the cell where the terminal device is located and the terminal The identification of the device is determined.
  • the sequence number of the pseudo-random sequence and the data can be determined according to i and j.
  • the pseudo-random sequence is a series of sequences, and the initial position of the random sequence can be used to determine the starting position of the data from the pseudo-random sequence, and the serial number of the pseudo-random sequence can be used to determine the relative start The offset of the position so that the data value actually taken from the pseudo-random sequence can be determined.
  • the pseudo-random sequence may use the pseudo-random sequence in the LTE protocol, or may use other PN sequences, Gold sequences, etc., which is not limited in this application.
  • the initialization value of the pseudo-random sequence It is the identification of the terminal device.
  • the cyclic shift value ⁇ i, j of the j-th SR resource in the i-th slot may be determined according to mi, j , and mi, j satisfies equation (8):
  • c (8 ⁇ K 2 ⁇ i + 8 ⁇ j + m) represents the data whose index is 8 ⁇ K 2 ⁇ i + 8 ⁇ j + m in the pseudo-random sequence.
  • c (5) represents the fifth data in the pseudo-random sequence.
  • the value of the pseudo-random sequence is determined according to the cell identity of the cell where the terminal device is located and the identity of the terminal device, where the initialization value of the pseudo-random sequence Is the cell identifier of the cell where the terminal device is located, the cyclic shift value ⁇ i, j of the j-th SR resource in the i-th time slot may be determined according to mi, j , and mi, j satisfies equation (9), among them, Identification of terminal equipment:
  • the i-th time slot is the i-th repetition of K 2 SR resources, and the symbol number of the j-th SR resource in the i-th repetition is determined.
  • the symbol number is the symbol index or identification. Therefore, determining the cyclic shift pattern of the terminal device according to i and j may be equivalent to determining the cyclic shift pattern according to the slot index corresponding to the i-th repetition and the symbol index where the j-th SR resource in the i-th repetition is located.
  • the starting symbol position of the 0th SR resource in the i-th repetition is l 0 and the number of symbols contained in each SR resource is L
  • the sequence number of the data of the pseudo-random sequence used to determine the cyclic shift value is determined by the slot number and the symbol sequence number where the SR resource is located.
  • ⁇ l is the cyclic shift value of the symbol number l corresponding to the i-th repetition.
  • the base station receives the SR of the terminal device on K 1 ⁇ K 2 SR resources.
  • each base station may SR each slot in the slot in the K 1
  • the resource detects the SR sent by the terminal device.
  • the cyclic shift value corresponding to each SR resource in the K 2 SR resources in the time slot is detected, thereby determining K 1 ⁇ K 2 sent by the terminal device
  • the cyclic shift pattern corresponding to each SR resource determines the (identity) of the terminal device that sends the SR according to the detection result.
  • the slot number of the time slots K 1 value of i is one to one; SR resources per symbol K 2 th SR resources per slot corresponding to K 1 in the time slot
  • the serial number corresponds to the value of j.
  • the base station can determine the corresponding values of i and j according to the slot number and symbol number of the SR during detection, so as to determine the detected cyclic shift pattern containing K 1 K 2 cyclic shift values, which can be detected
  • the terminal device sending the SR.
  • K 1 and K 2 corresponding to the terminal device A are both 4, that is, the terminal device A may repeatedly transmit the SR 16 times on 16 SR resources when transmitting the SR.
  • the base station detects K 2 SR resources corresponding to each time slot in the K 1 time slots, and determines whether the cyclic shift pattern exists. For example, for the 0th SR resource in the 0th time slot, the base station can use the demodulation reference signal to perform channel estimation to obtain the channel estimation value of the reference signal used to carry the SR data of the SR resource, and then use the received The reference signal carrying the SR data is demodulated to obtain the demodulated reference signal for carrying the SR data. The base station can also perform correlation operations on the demodulated reference signal for carrying SR data (the corresponding cyclic shift value is 0) and the reference signal that can be sent by the user equipment for carrying SR data.
  • the base station can determine whether each cyclic shift value in the cyclic shift pattern exists, so as to determine whether its corresponding user equipment sends an SR.
  • the base station determines that the terminal device A has transmitted SR, so that the base station can send an uplink scheduling grant (UL Grant) to the terminal device A.
  • the base station can store the correspondence between the terminal device and the cyclic shift pattern, so as to determine the terminal device (identity) according to the detected cyclic shift pattern; or, the base station can determine based on i, j and the detected cyclic shift pattern
  • the terminal equipment (identification) is not limited in this application.
  • the base station needs to configure specific SR resources for each terminal device, resulting in a very large SR resource overhead, which cannot well support the requirements of wide coverage.
  • the terminal device may send the SR of the terminal device to the base station on K 1 ⁇ K 2 SR resources, that is, repeatedly sending K 2 SR resources in a time slot K 1 times, which can improve the SR of the terminal device Coverage.
  • the K 1 ⁇ K 2 SR resources of the terminal device may correspond to a cyclic shift pattern, and the cyclic shift pattern includes a cyclic shift value corresponding to each SR resource in the K 1 ⁇ K 2 SR resources.
  • the maximum values of K 1 and K 2 are with The number of cyclic shifts that can be supported in one SR resource is N cs (that is, one SR resource can correspond to N cs different cyclic shift values), then The maximum number of cyclic shift patterns supported by an SR resource is an exponential multiple of N cs , which can be This can support a very large number of terminal device connections.
  • Yet another embodiment of the present application provides a resource scheduling method, taking a network device as a base station as an example for illustration, as shown in FIG. 6, including:
  • the base station determines K 1 time slots for transmitting the SR of the terminal device.
  • step 401 in the embodiment shown in FIG. 4.
  • the base station determines K 2 SR resources used for transmitting the SR of the terminal device in the one time slot; wherein, one SR resource corresponds to one or more symbols, and K 2 is greater than An integer equal to 2.
  • the base station determines the number of repetitions K 3 of K 1 ⁇ K 2 SR resources, where K 3 is an integer greater than or equal to 2.
  • the base station may determine the value of K 3 according to preset conditions.
  • the preset conditions include at least one of the following: coverage requirements and terminal device access volume requirements.
  • the value of K 3 may be determined according to the pre-configuration.
  • the base station sends K 1 , K 2, and K 3 to the terminal device.
  • the base station may send K 1 , K 2 and K 3 to the terminal equipment through signaling.
  • the terminal device receives K 1 , K 2, and K 3 sent by the base station.
  • K 1 , K 2 or K 3 may be configured by high layer signaling or physical layer signaling, or may be a pre-configured value, which is not limited in the embodiments of the present application.
  • K 1 , K 2, and K 3 are all configured by high-level signaling; or, K 1 , K 2, and K 3 are all pre-configured values (that is, steps 604 and 605 may not be executed); or, K 1 and K 2 may be configured by high-level signaling, K 3 may be a pre-configured value; or, K 1 and K 3 may be configured by high-level signaling, K 2 may be a pre-configured value; or, K 2 and K 3 may be configured by high-level signaling, and K 1 may be a pre-configured value; this application is not limited.
  • the terminal device determines K 1 time slots for transmitting the SR of the terminal device.
  • the terminal device determines K 2 SR resources used for transmitting the SR of the terminal device in the one time slot.
  • the terminal device determines the number of repetitions K 3 of K 1 ⁇ K 2 SR resources.
  • the terminal device For one of the K 3 repetitions, and for one of the K 1 time slots in one repetition, the terminal device sends an SR to the base station on the K 2 SR resources in the time slot.
  • the terminal device sends the SR of the terminal device to the base station on the K 1 ⁇ K 2 ⁇ K 3 SR resources .
  • the terminal device can send the SR of the terminal device in K 1 ⁇ K 3 time slots.
  • each of K 1 ⁇ K 3 time slots corresponds to K 2 SR resources.
  • K 2 ⁇ L symbols start from l 0 as uplink symbols
  • l 0 represents the starting symbol position of the 0th SR resource in each time slot
  • L represents the number of symbols contained in each SR resource.
  • the terminal device may transmit the SR on the time slot K 1 K 2 th SR resources in each time slot, K and K 1 in the time slot 1 ⁇ K 2 K 3 th SR resources repeated times .
  • the SR cycle of the terminal device transmitted on the j-th SR resource For the method of determining the shift value, reference may be made to the relevant description in step 407.
  • K 1 ⁇ K 2 K 3 th SR resources replicates contained in any two repetition may be the same, i.e., K 3 K repetitions of any duplicate contained 1 ⁇ K 2 th
  • K 1 2 time slots are sent K 3 times repeatedly, and the number of time slots for one SR transmission is K 1 ⁇ K 3 times.
  • the base station may repeatedly receive the uplink resource scheduling request sent by the terminal device in K 1 ⁇ K 3 time slots; where each of the K 1 ⁇ K 3 time slots corresponds to K 2 SR resources.
  • the base station needs to configure specific SR resources for each terminal device, resulting in a very large SR resource overhead, which cannot well support the requirements of wide coverage.
  • the terminal device may send the terminal apparatus to the base station SR at the K 1 ⁇ K 2 ⁇ K 3 th SR resources, i.e. K K 1 ⁇ K 2 th SR resources in one slot is repeatedly transmitted K 3 Secondly, the SR coverage of the terminal equipment can be improved. Moreover, since the K 1 ⁇ K 2 SR resources included in any two repetitions of the K 3 repetitions of the K 1 ⁇ K 2 SR resources are consistent, the receiver detection complexity is low, the detection performance is good, and the high-level The signaling indication overhead is also small.
  • K 1 ⁇ K 2 SR resources included in any one of K 3 repetitions can correspond to one cyclic shift pattern, and each cyclic shift pattern includes K 1 ⁇ K 2 SR resources corresponding to each SR resource. Cyclic shift value. Moreover, any two repetitions among the K three repetitions correspond to the same cyclic shift pattern. For example, suppose the maximum values of K 1 and K 2 are with The number of cyclic shifts that can be supported in one SR resource is N cs (that is, one SR resource can correspond to N cs different cyclic shift values), then The maximum number of cyclic shift patterns supported by an SR resource is an exponential multiple of N cs , which can be This can support a very large number of connected terminal devices.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of the terminal device, the network device, and the interaction between the terminal device and the network device.
  • the terminal device and the network device may include a hardware structure and / or a software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application of the technical solution and design constraints.
  • FIG. 8 shows a possible structural schematic diagram of the apparatus 8 involved in the above embodiment.
  • the apparatus may be a terminal device.
  • the terminal device includes: a determining unit 801 ⁇ ⁇ ⁇ 802.
  • the determining unit 801 may be used to determine K 1 time slots for transmitting the scheduling request SR of the terminal device; where K 1 is an integer greater than or equal to 2; and also used to determine K 1 time slots K 2 SR resources used for transmitting the SR of the terminal device in each time slot of the; where one SR resource corresponds to one or more symbols, and K 2 is an integer greater than or equal to 2.
  • the sending unit 802 is configured to send the SR of the terminal device to the base station on K 1 ⁇ K 2 SR resources.
  • the determining unit 801 is used to support the terminal device to perform the processes 405 and 406 in FIG. 4 and the processes 606-608 in FIG. 6.
  • the sending unit 802 is used to support the terminal device to perform the process 407 in FIG. 4 and the process 609 in FIG. 6.
  • the terminal device may further include a receiving unit 803 for supporting the terminal device to perform the process 404 in FIG. 4 and the process 605 in FIG. 6.
  • all relevant content of each step involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • FIG. 9 shows a possible structural schematic diagram of the apparatus 9 involved in the foregoing embodiment.
  • the apparatus may be a network device.
  • the determining unit 901 may be used to determine K 1 time slots for transmitting the scheduling request SR of the terminal device; where K 1 is an integer greater than or equal to 2; and also used to determine the K 1 time slots K 2 SR resources used for transmitting the SR of the terminal device in each time slot of the time slot; wherein one SR resource corresponds to one or more symbols, and K 2 is an integer greater than or equal to 2.
  • the receiving unit 902 is configured to receive the SR of the terminal device on the K 1 ⁇ K 2 SR resources.
  • the receiving unit 902 is configured to receive the SR of the terminal device on K 1 ⁇ K 2 SR resources.
  • the determining unit 901 is used to support the network device to perform the processes 401 and 402 in FIG. 4 and the processes 601-603 in FIG. 6.
  • the receiving unit 902 is used to support the network device to perform the process 408 in FIG. 4 and the process 610 in FIG. 6.
  • the network device may further include a sending unit 903 for supporting the network device to perform the process 403 in FIG. 4 and the process 604 in FIG. 6.
  • all relevant content of each step involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another way of dividing.
  • the functional modules in the embodiments of the present application may be integrated in one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software function modules.
  • the receiving unit and the sending unit may be integrated into the transceiver unit.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present invention are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, a network device, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, solid state drives (SSD)) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, and a magnetic tape
  • an optical medium for example, a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state drives

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种资源调度方法和装置,涉及通信领域,能够增强终端设备的SR的覆盖。其方法为:终端设备确定用于传输SR的K 1个时隙,其中,K 1为大于等于2的整数;确定该K 1个时隙的每个时隙中用于传输SR的K 2个SR资源;其中,一个SR资源对应一个或多个符号,K 2为大于等于2的整数;在该K 1×K 2个SR资源上向基站发送SR。本申请实施例应用于数据传输的过程。

Description

一种资源调度方法和装置
本申请要求于2018年10月31日提交国家知识产权局、申请号为201811289855.5、申请名称为“一种资源调度方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种资源调度方法和装置。
背景技术
在无线通信系统中,终端设备需要向基站进行上行传输时,可以通过基站配置的特定的调度请求(scheduling request,SR)资源向基站发送SR,SR用于请求基站为终端设备分配上行传输资源。基站接收到终端设备发送的SR后,可以为该终端设备配置特定的频域资源以发送上行数据。
目前,在新无线(new radio,NR)系统中,对于物联网(internet of things,IoT)和机器类型通信(machine type communication,MTC)等场景,需要增强终端设备的SR的覆盖和支持超大连接终端设备数。此时,如果为每个终端设备分别配置特定的SR资源会导致SR资源的开销非常大,不能很好的满足广覆盖和超大连接终端设备数等要求。
发明内容
本申请实施例提供一种资源调度方法和装置,能够增强终端设备的SR的覆盖。
第一方面,本申请实施例提供一种资源调度方法,包括:确定用于传输终端设备的调度请求SR的K 1个时隙;其中,K 1为大于等于2的整数;确定该K 1个时隙的每个时隙中用于传输该终端设备的SR的K 2个SR资源;其中,一个该SR资源对应一个或多个符号,K 2为大于等于2的整数;在该K 1×K 2个SR资源上向网络设备发送该终端设备的SR。
现有技术中,基站需要为每个终端设备分别配置特定的SR资源,导致SR资源的开销非常大,无法很好的支持广覆盖的要求。本申请实施例中,终端设备可以在K 1×K 2个SR资源上向网络设备发送终端设备的SR,即可以将一个时隙内的K 2个SR资源重复发送K 1次,可以提高终端设备的SR的覆盖。
在一种可能的实现方式中,对于该K 1个时隙中的第i个时隙,对于该第i个时隙中的K 2个SR资源中的第j个SR资源,在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i和j确定的;其中,i为大于等于0且小于等于K 1-1的整数,j为大于等于0且小于等于K 2-1的整数。可以理解的是,第i个时隙即K 2个SR资源的第i次重复,并且第i次重复内的第j个SR资源的符号序号是确定的。因此,根据i和j确定终端设备的SR的循环移位值,可以等效为由第i次重复对应的时隙序号以及第i次重复中第j个SR资源所在的符号序号确定循环移位值。基于该方案,不同的终端设备的SR资源可以对应各自的循环移位值,从而可以支持更多的终端设备连接数。
在一种可能的实现方式中,在该第j个SR资源上传输的该终端设备的SR的循环移位 值是根据i和j确定的,包括:在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i、j和该终端设备的标识确定的。也就是说,可以通过i、j和终端设备的标识为终端设备对应的多个SR资源上传输的SR确定相应的循环移位值。这样一来,当多个终端设备的SR资源相同时,可以根据SR资源对应的循环移位值区分不同的终端设备,从而可以支持更多的终端设备连接数。或者,可以从网络设备接收该终端设备的循环移位参数,在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i、j和该循环移位参数确定的。这样一来,不同的终端设备可以配置各自的循环移位参数,例如不同的终端设备可以对应不同的循环移位值,从而可以支持更多的终端设备连接数。
在一种可能的实现方式中,用于指示循环移位参数的信息域的比特数目是根据K 1、K 2和一个SR资源可支持的(可用的)循环移位数目确定的。具体的,终端设备的K 1×K 2个SR资源可以对应一个循环移位图案,该循环移位图案包括K 1×K 2个SR资源中每个SR资源对应的循环移位值。举例来说,假设K 1和K 2的最大取值为
Figure PCTCN2019113070-appb-000001
Figure PCTCN2019113070-appb-000002
一个SR资源中可支持的循环移位数目为N cs,则
Figure PCTCN2019113070-appb-000003
个SR资源最多能支持的循环移位图案的数目可以为
Figure PCTCN2019113070-appb-000004
从而用于指示循环移位参数的信息域的比特数目最少可以为
Figure PCTCN2019113070-appb-000005
该方法中,通过循环移位参数指示终端设备确定循环移位图案,需要的比特数目更少,可以降低信令开销。
在一种可能的实现方式中,在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i和j确定的,包括:在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i、j和伪随机序列确定的;其中,该伪随机序列的初始化值是根据该终端设备的标识确定的,或者,该伪随机序列的值是根据该终端设备所在小区的小区标识和该终端设备的标识确定的。基于该方案,不同的终端设备的SR资源可以对应各自的循环移位值,从而可以支持更多的终端设备连接数。
其中,伪随机序列可以采用长期演进(long term evolution,LTE)协议中的伪随机序列,也可以采用其他伪噪声序列(Pseudo-noise Sequence,PN)序列、Gold序列(由R.Gold在m序列基础上提出的一种伪随机序列)等,本申请不做限定。
在一种可能的实现方式中,在该K 1×K 2个SR资源上向网络设备发送该终端设备的SR,包括:在K 1×K 2×K 3个SR资源上向网络设备发送该终端设备的SR,该K 1×K 2×K 3个SR资源是该K 1×K 2个SR资源的K 3次重复;其中,K 3为大于等于2的整数。
现有技术中,基站需要为每个终端设备分别配置特定的SR资源,导致SR资源的开销非常大,无法很好的支持广覆盖的要求。本申请中,终端设备可以在K 1×K 2×K 3个SR资源上向网络设备发送终端设备的SR,即将K 1个时隙内的K 1×K 2个SR资源重复发送K 3次,可以提高终端设备的SR的覆盖。并且,由于K 1×K 2个SR资源的K 3次重复中任意两次重复所包含的K 1×K 2个SR资源是相同的,因此接收机检测复杂度低,检测性能好,同时高层信令指示开销也小。
第二方面,本申请实施例提供一种资源调度方法,包括:确定用于传输终端设备的调度请求SR的K 1个时隙,其中,K 1为大于等于2的整数;确定该K 1个时隙的每个时隙中用于传输该终端设备的SR的K 2个SR资源,其中,一个该SR资源对应一个或多个符号,K 2为大于等于2的整数;在该K 1×K 2个SR资源上接收该终端设备的SR。
第三方面,本申请实施例提供一种装置,该装置可以是终端设备,也可以是能够支持 终端设备实现上述第一方面的任一种方法的装置,例如该装置可以是终端设备中的装置,该装置可以包括:确定单元和发送单元;这些单元可以执行上述第一方面任一种设计示例中的终端设备所执行的相应功能,具体的:该确定单元,用于确定用于传输终端设备的调度请求SR的K 1个时隙,其中,K 1为大于等于2的整数;该确定单元,还用于确定该K 1个时隙的每个时隙中用于传输该终端设备的SR的K 2个SR资源,其中,一个该SR资源对应一个或多个符号,K 2为大于等于2的整数;该发送单元,用于在该K 1×K 2个SR资源上向网络设备发送该终端设备的SR。
在一种可能的实现方式中,对于该K 1个时隙中的第i个时隙,对于该第i个时隙中的K 2个SR资源中的第j个SR资源,在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i和j确定的;其中,i为大于等于0且小于等于K 1-1的整数,j为大于等于0且小于等于K 2-1的整数。
在一种可能的实现方式中,在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i、j和该终端设备的标识确定的;或者,该装置还包括接收单元,用于从网络设备接收该终端设备的循环移位参数,在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i、j和该循环移位参数确定的。
在一种可能的实现方式中,用于指示循环移位参数的信息域的比特数目是根据K 1、K 2和一个该SR资源可支持的循环移位数目确定的。
在一种可能的实现方式中,在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i、j和伪随机序列确定的;其中,该伪随机序列的初始化值是根据该终端设备的标识确定的,或者该伪随机序列的值是根据该终端设备所在小区的小区标识和该终端设备的标识确定的。
在一种可能的实现方式中,该发送单元具体用于:在K 1×K 2×K 3个SR资源上向网络设备发送该终端设备的SR,该K 1×K 2×K 3个SR资源是该K 1×K 2个SR资源的K 3次重复;其中,K 3为大于等于2的整数。
第四方面,本申请实施例提供一种装置,该装置可以是网络设备,也可以是能够支持网络设备实现上述第二方面的任一种方法的装置,例如该装置可以是网络设备中的装置,该装置可以包括:确定单元和接收单元;这些单元可以执行上述第二方面任一种设计示例中的网络设备所执行的相应功能,具体的:该确定单元,用于确定用于传输终端设备的调度请求SR的K 1个时隙,其中,K 1为大于等于2的整数;该确定单元,还用于确定该K 1个时隙的每个时隙中用于传输该终端设备的SR的K 2个SR资源,其中,一个该SR资源对应一个或多个符号,K 2为大于等于2的整数;该接收单元,用于在该K 1×K 2个SR资源上接收该终端设备的SR。
在一种可能的实现方式中,对于该K 1个时隙中的第i个时隙,对于该第i个时隙中的K 2个SR资源中的第j个SR资源,在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i和j确定的;其中,i为大于等于0且小于等于K 1-1的整数,j为大于等于0且小于等于K 2-1的整数。
在一种可能的实现方式中,在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i、j和该终端设备的标识确定的;或者,该装置还包括发送单元,用于向该终端设备发送循环移位参数,在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i、 j和该循环移位参数确定的。
在一种可能的实现方式中,用于指示循环移位参数的信息域的比特数目是根据K 1、K 2和一个该SR资源可支持的循环移位数目确定的。
在一种可能的实现方式中,在该第j个SR资源上传输的该终端设备的SR的循环移位值是根据i、j和伪随机序列确定的;其中,该伪随机序列的初始化值是根据该终端设备的标识确定的,或者该伪随机序列的值是根据该终端设备所在小区的小区标识和该终端设备的标识确定的。
在一种可能的实现方式中,该接收单元具体用于:在K 1×K 2×K 3个SR资源上接收该终端设备的SR,该K 1×K 2×K 3个SR资源是该K 1×K 2个SR资源的K 3次重复;其中,K 3为大于等于2的整数。
第五方面,本申请实施例还提供了一种装置,所述装置包括处理器,用于实现上述第一方面描述的方法中终端设备的功能。所述装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第一方面描述的方法中终端设备的功能。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。示例性地,该其它设备为网络设备。
在一种可能的设备中,该装置包括:
通信接口,用于支持该装置与其他网元之间的通信。
存储器,用于存储程序指令;
处理器,用于确定用于传输终端设备的调度请求SR的K 1个时隙;其中,K 1为大于等于2的整数;确定该K 1个时隙的每个时隙中用于传输该终端设备的SR的K 2个SR资源;其中,一个该SR资源对应一个或多个符号,K 2为大于等于2的整数;
处理器还可以利用通信接口在该K 1×K 2个SR资源上向网络设备发送该终端设备的SR。
在一种可能的实现方式中,对于该K 1个时隙中的第i个时隙,对于该第i个时隙中的K 2个SR资源中的第j个SR资源,处理器用于根据i和j确定在该第j个SR资源上传输的该终端设备的SR的循环移位值;其中,i为大于等于0且小于等于K 1-1的整数,j为大于等于0且小于等于K 2-1的整数。
在一种可能的实现方式中,处理器用于根据i、j和该终端设备的标识确定在该第j个SR资源上传输的该终端设备的SR的循环移位值;或者,处理器用于利用通信接口从网络设备接收该终端设备的循环移位参数,以及用于根据i、j和该循环移位参数确定在该第j个SR资源上传输的该终端设备的SR的循环移位值。
在一种可能的实现方式中,用于指示循环移位参数的信息域的比特数目是根据K 1、K 2和一个该SR资源可支持的循环移位数目确定的。
在一种可能的实现方式中,处理器用于根据i、j和伪随机序列确定在该第j个SR资源上传输的该终端设备的SR的循环移位值;其中,该伪随机序列的初始化值是根据该终端设备的标识确定的,或者该伪随机序列的值是根据该终端设备所在小区的小区标识和该终端设备的标识确定的。
在一种可能的实现方式中,处理器用于利用通信接口:在K 1×K 2×K 3个SR资源上向网络设备发送该终端设备的SR,该K 1×K 2×K 3个SR资源是该K 1×K 2个SR资源的K 3次重复;其中,K 3为大于等于2的整数。
第六方面,本发明实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面提供的任意一种方法。
第七方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面提供的任意一种方法。
第八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述方法中终端设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例还提供了一种装置,所述装置包括处理器,用于实现上述第二方面描述的方法中网络设备的功能。所述装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第二方面描述的方法中网络设备的功能。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。示例性地,该其它设备为终端设备。
在一种可能的设备中,该装置包括:
通信接口,用于支持该装置与其他网元之间的通信。
存储器,用于存储程序指令;
处理器,用于确定用于传输终端设备的SR的K 1个时隙;其中,K 1为大于等于2的整数;确定该K 1个时隙的每个时隙中用于传输该终端设备的SR的K 2个SR资源;其中,一个该SR资源对应一个或多个符号,K 2为大于等于2的整数;
处理器还可以利用通信接口在该K 1×K 2个SR资源上接收终端设备的SR。
在一种可能的实现方式中,对于该K 1个时隙中的第i个时隙,对于该第i个时隙中的K 2个SR资源中的第j个SR资源,处理器用于根据i和j确定在该第j个SR资源上传输的该终端设备的SR的循环移位值;其中,i为大于等于0且小于等于K 1-1的整数,j为大于等于0且小于等于K 2-1的整数。
在一种可能的实现方式中,处理器用于根据i、j和该终端设备的标识确定在该第j个SR资源上传输的该终端设备的SR的循环移位值;或者,处理器用于利用通信接口向终端设备发送循环移位参数,以及用于根据i、j和该循环移位参数确定在该第j个SR资源上传输的该终端设备的SR的循环移位值。
在一种可能的实现方式中,用于指示循环移位参数的信息域的比特数目是根据K 1、K 2和一个该SR资源可支持的循环移位数目确定的。
在一种可能的实现方式中,处理器用于根据i、j和伪随机序列确定在该第j个SR资源上传输的该终端设备的SR的循环移位值;其中,该伪随机序列的初始化值是根据该终端设备的标识确定的,或者该伪随机序列的值是根据该终端设备所在小区的小区标识和该终端设备的标识确定的。
在一种可能的实现方式中,处理器用于利用通信接口:在K 1×K 2×K 3个SR资源上接收终端设备发送的SR,该K 1×K 2×K 3个SR资源是该K 1×K 2个SR资源的K 3次重复;其中,K 3为大于等于2的整数。
第十方面,本发明实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第二方面提供的任意一种方法。
第十一方面,本发明实施例提供了一种包含指令的计算机程序产品,当其在计算机上 运行时,使得计算机执行第二方面提供的任意一种方法。
第十二方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述方法中网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十三方面,本申请实施例提供了一种系统,所述系统包括第三方面或者第五方面所述的装置,和第四方面或者第九方面所述的装置。
附图说明
图1为本申请实施例提供的资源调度方法适用的系统架构示意图;
图2为本申请实施例提供的一种装置的结构示意图;
图3为本申请实施例提供的一种装置的结构示意图;
图4为本申请实施例提供的一种资源调度方法的信号交互示意图;
图5为本申请实施例提供的一种K 1×K 2个SR资源的示意图;
图6为本申请实施例提供的一种资源调度方法的信号交互示意图;
图7为本申请实施例提供的一种K 1×K 2×K 3个SR资源的示意图;
图8为本申请实施例提供的一种装置的结构示意图;
图9为本申请实施例提供的一种装置的结构示意图。
具体实施方式
本申请实施例提供一种资源调度方法和装置,应用于数据传输的过程,包括以下一种或多种发送数据的过程:网络设备(例如,基站)向终端设备发送数据的过程,终端设备向网络设备发送数据的过程,终端设备向终端设备发送数据的过程,网络设备(例如,微基站)向网络设备(例如,宏基站)发送数据的过程。本申请实施例可以例如但不限于应用于新无线接入(new radio access technical,New RAT)系统、LTE-Advanced和机器类型通信(machine type communication,MTC)等系统。其中,LTE-Advanced是LTE的演进。其中,New RAT或NR还可以称为第五代(the fifth generation,5G)移动通信系统。
图1给出了本申请实施例提供的技术方案所适用的一种通信系统示意图,该通信系统可以包括网络设备100以及与网络设备100连接的一个或多个终端设备200(图1仅示出1个)。网络设备和终端设备之间可以进行数据传输。
网络设备100可以是能和终端设备200通信的设备。例如,网络设备100可以为基站,该基站可以是全球移动通讯(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的节点B(NodeB,NB),还可以是LTE中的演进型节点B(evolved NodeB,eNB或eNodeB),还可以是NR中的基站,或者中继站或接入点,或者未来网络中的基站等,本申请实施例不做限定。其中,NR中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述 本申请实施例提供的技术方案。
其中,本申请实施例中的终端设备200还可以称为终端,可以是一种具有无线收发功能的设备,终端可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
本申请实施例图1中的网络设备100或终端设备200,可以由一个设备实现,也可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,或者是芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
例如,用于实现本申请实施例提供的终端设备的功能的装置可以通过图2中的装置200来实现。图2所示为本申请实施例提供的装置200的硬件结构示意图。该装置200中包括至少一个处理器201,用于实现本申请实施例提供的终端设备的功能。装置200中还可以包括总线202以及至少一个通信接口204。装置200中还可以包括存储器203。
在本申请实施例中,处理器可以是中央处理器(central processing unit,CPU),通用处理器、网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器还可以是其它任意具有处理功能的装置,例如电路、器件或软件模块。
总线202可用于在上述组件之间传送信息。
通信接口204,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口204可以是接口、电路、收发器或者其它能够实现通信的装置,本申请不做限制。通信接口204可以和处理器201耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
在本申请实施例中,存储器可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他 介质,但不限于此。存储器可以是独立存在,也可以与处理器耦合,例如通过总线202。存储器也可以和处理器集成在一起。
其中,存储器203用于存储程序指令,并可以由处理器201来控制执行,从而实现本申请下述实施例提供的资源调度方法。处理器201用于调用并执行存储器203中存储的指令,从而实现本申请下述实施例提供的资源调度方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
可选地,存储器203可以包括于处理器201中。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置200可以包括多个处理器,例如图2中的处理器201和处理器207。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,装置200还可以包括输出设备205和输入设备206。输出设备205和处理器201耦合,可以以多种方式来显示信息。例如,输出设备205可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备206和处理器201耦合,可以以多种方式接收用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的装置200可以是一个通用设备或者是一个专用设备。在具体实现中,终端设备200可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图2中类似结构的设备。本申请实施例不限定装置200的类型。
例如,用于实现本申请实施例提供的网络设备的功能的装置可以通过图3中的装置300来实现。图3所示为本申请实施例提供的装置300的硬件结构示意图。该装置300中包括至少一个处理器301,用于实现本申请实施例提供的终端设备的功能。装置300中还可以包括总线302以及至少一个通信接口304。装置300中还可以包括存储器303。
总线302可用于在上述组件之间传送信息。
通信接口304,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。通信接口304可以是接口、电路、收发器或者其它能够实现通信的装置,本申请不做限制。通信接口304可以和处理器301耦合。
其中,存储器303用于存储程序指令,并可以由处理器301来控制执行,从而实现本申请下述实施例提供的资源调度方法。例如,处理器301用于调用并执行存储器303中存储的指令,从而实现本申请下述实施例提供的资源调度方法。
可选地,存储器303可以包括于处理器301中。
在具体实现中,作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置300可以包括多个处理器,例如图3中的处理 器301和处理器305。这些处理器中的每一个可以是一个单核处理器,也可以是一个多核处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
为了下述各实施例的描述清楚简洁,首先给出相关概念或技术的简要介绍:
SR资源:一个SR资源可以包括时域资源、频域资源和码域资源(码资源)中的一种或多种资源。其中,时域资源包括时域位置和符号长度。时域位置包括SR资源的起始符号位置或终止符号位置,符号长度为SR资源包含的符号的数目。频域资源包括SR资源的频域位置和频域带宽大小,频域位置包括SR资源的起始资源块(resource block,RB)位置或终止资源块位置,频域带宽大小为SR资源包含的连续的资源块的数目。码域资源包括参考信号序列的循环移位值和/或参考信号序列采用的正交序列(如正交覆盖码(orthogonal cover code,OCC)序列)。参考信号包括用于承载SR数据的参考信号和用于解调SR数据的解调参考信号(demodulation reference signal,DMRS)。举例来说,SR数据可以用数值A表示,例如A=1表示用户设备发送了SR,以请求上行数据信道(例如物理上行共享信道(physical uplink shared channel,PUSCH))的上行资源。参考信号承载SR数据可以是将该参考信号乘以数值A。终端设备可以向基站发送承载SR数据的参考信号和解调SR数据的解调参考信号。示例性地,基站已知解调参考信号的信息,基站可以根据接收到的解调参考信号进行信道估计,根据该信道估计结果对承载SR数据的参考信号进行解调,根据解调结果判断用户设备是否发送了SR。
循环移位值:上述参考信号序列可以对应循环移位值,参考信号序列可以通过循环移位值进行相应的循环移位。一个参考信号序列的循环移位值可以是预设的值或者基站配置的值,该参考信号序列能采用的循环移位值的数目是有限的。一个参考信号序列所能采用的循环移位值可能的取值数目可以看做一个SR资源可支持的循环移位数目,或者称为一个SR资源可选取的循环移位值的数目。举例来说,假设参考信号序列的长度为N,循环移位前可以表示为x(n),n=0,1,2,...,N-1。一个参考信号序列所能采用的循环移位值可能的取值数目为5,例如为α(p),p=0,1,2,3,4。若该参考信号序列采用的循环移位值为α(1),参考信号序列可以通过α(1)进行相应的循环移位,可以将该参考信号序列的第n个值x(n)点乘相位因子
Figure PCTCN2019113070-appb-000006
若该参考信号序列采用的循环移位值为α(3),参考信号序列可以通过α(3)进行相应的循环移位,可以将该参考信号序列的第n个值x(n)点乘相位因子
Figure PCTCN2019113070-appb-000007
网络设备可以为终端设备配置循环移位值。例如不同的循环移位值可以分配给不同的终端设备,或者相同的循环移位值可以分配给不同的终端设备,本申请不做限制。当多个终端设备在相同的时频资源传输SR时,且循环移位前多个终端设备采用相同的参考信号序列时,采用不同的循环移位值可以使不同的终端设备的SR正交。其中,SR正交表示基站解调一个用户的数据(例如SR)时不受到另一个用户的数据的干扰。从而,基站可以区分不同的终端设备。一般而言,为了保证正交性能,一个SR资源采用的参考信号序列所对应的循环移位值是有限的,即一个SR资源可支持的循环移位数目是有限的。示例性地,一个SR资源可支持的循环移位数目可以为3,6,9,12等数值。例如,当一个SR资源可支持的循环移位数目为12时,该SR资源的参考信号序列可以对应12个循环移位值中的 任一个循环移位值,因此,该SR资源的参考信号序列最多可以区分12个不同的终端设备。示例性地,该12个终端设备的SR的时域资源、频域资源相同,码域资源中参考信号序列所采用的正交序列相同,但码域资源中参考信号序列的循环移位值不同。
OOC序列:为了进一步提高SR资源支持的终端设备的数目,可以采用OOC序列。针对SR,多个终端设备对应相同的参考信号序列和相同的循环移位值时,使参考信号序列分别乘以不同的OCC序列可以保证不同的终端设备正交。其中,该参考信号序列可以包括用于承载SR数据的参考信号序列和用于解调SR数据的解调参考信号序列。以用于解调SR数据的解调参考信号序列举例来说,假设终端设备0和终端设备1的DMRS序列相同,都包括连续的两个符号,每个符号对应1个RB的带宽,1个RB包含的子载波数目为12,即每个符号对应12个资源元素(resource element,RE),每个RE可以承载参考信号序列中的一个数据元素,则参考信号序列长度可以为12,即参考信号序列中包括12个数据元素。终端设备0在符号0采用DMRS序列
Figure PCTCN2019113070-appb-000008
在符号1采用DMRS序列
Figure PCTCN2019113070-appb-000009
终端设备1在符号0采用DMRS序列
Figure PCTCN2019113070-appb-000010
在符号1采用DMRS序列
Figure PCTCN2019113070-appb-000011
假设
Figure PCTCN2019113070-appb-000012
其中,
Figure PCTCN2019113070-appb-000013
n表示参考信号序列中的数据元素的序号(序号也可以称为索引或标识)。当采用长度为2的OCC序列时,示例性地,长度为2的OCC序列可以包括{1,1}和{1,-1},终端设备0的DMRS序列可以乘以OCC序列{1,1}中的值,即符号0的DMRS序列乘以1,符号1的DMRS序列乘以1。终端设备1的DMRS序列可以乘以{1,-1}中的值,即符号0的DMRS序列乘以1,符号1的DMRS序列乘以-1。此时,终端设备0和终端设备1正交。即OCC序列长度为2时,可以支持(区分)2个终端设备。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例提供一种资源调度方法,以网络设备为基站为例进行说明,如图4所示,包括:
401、基站确定用于传输终端设备的SR的K 1个时隙;其中,K 1为大于等于2的整数。
在一种可能的设计中,基站可以根据预设条件确定K 1的数值。预设条件包括覆盖需求和/或接入基站的终端设备接入量等。
在另一种可能的设计中,可以预配置K 1的数值。
402、对于K 1个时隙中的一个时隙,基站确定该一个时隙中用于传输终端设备的SR的K 2个SR资源;其中,一个SR资源对应一个或多个符号,K 2为大于等于2的整数。
在本申请实施例中,传输既可以是上行传输,例如终端设备向基站传输数据,也可以是下行传输,例如基站向终端设备传输数据。
对于K 1个时隙的中的任意两个时隙,该任意两个时隙中的SR资源的数目K 2可以相同也可以不同,本申请不做限制。示例性地,基站确定K 1个时隙的每个时隙中用于传输终端设备的SR的K 2个SR资源;其中,一个SR资源对应一个或多个符号,K 2为大于等于2的整数。
在一种可能的设计中,基站可以根据预设条件确定K 2的数值。预设条件包括以下至少一个:覆盖需求和终端设备接入量要求等。在另一种可能的设计中,可以预配置K 2的数值。
403、可选的,基站向终端设备发送K 1和/或K 2的数值。
举例来说,基站可以通过信令向终端设备发送K 1和K 2
404、可选的,终端设备接收基站发送的K 1和/或K 2
需要说明的是,K 1和/或K 2可以是由基站通过高层信令(例如RRC信令、广播消息、系统消息、媒体接入控制(medium access control,MAC)控制元素(control element,CE))为终端设备配置的,也可以是由基站通过物理层信令为终端设备配置的,还可以是预配置的固定的值(即步骤403和步骤404可以不执行),本申请实施例不做限定。其中,物理层信令可以是下行控制信息(downlink control information,DCI)或物理下行共享信道(physical downlink shared channle,PDSCH)携带的信令。其中,DCI可以是由基站通过物理下行控制信道(physical downlink control channel,PDCCH)发送至终端设备的信令,即DCI可以是由PDCCH携带的信令。
405、终端设备确定用于传输终端设备的SR的K 1个时隙。
在一种可能的设计中,终端设备可以通过SR发送周期与SR偏移确定用于传输终端设备的SR的起始时隙,从起始时隙开始选取顺序的K 1个时隙(包括起始时隙)发送SR。该顺序的K 1个时隙中的任意两个相邻时隙可以是连续的或者离散的。例如,这K 1个时隙可以是连续的、不连续的或者不完全连续的,本申请对此不做限定。
其中,SR发送周期与SR偏移可以由信令指示,对此不做限定。以NR为例,假设SR发送周期为40个时隙,SR偏移为10,则用于发送SR的起始时隙为每40个时隙中的第9个时隙(从第0个时隙起始)。如果K 1=10,且这K 1个时隙可以是连续的,则终端设备可以在每40个时隙中的第9个时隙~第18个时隙发送SR。
406、对于K 1个时隙中的一个时隙,终端设备确定该一个时隙中用于传输终端设备的SR的K 2个SR资源。
示例性地,终端设备确定K 1个时隙的每个时隙中用于传输终端设备的SR的K 2个SR资源。其中,每个SR资源可以包括时域资源、频域资源和码域资源。
其中,K 1个时隙的每个时隙对应K 2个SR资源,终端设备可以在每个时隙对应的K 2个SR资源上发送SR。也就是说,终端设备可以将一个时隙内的K 2个SR资源重复发送K 1次,从而可以提高SR的覆盖。
可选地,对于K 1个时隙中的第i个时隙,该第i个时隙内的K 2个SR资源在时隙内连续排列,即K 2个SR资源对应的时域符号是连续的。也就是说,对于K 2个SR资源的第i次重复,该第i次重复内的K 2个SR资源在时隙内连续排列,即K 2个SR资源对应的时域符号是连续的。示例性地,假设第i次重复内的K 2个SR资源中的每个SR资源的时域符号长度为L,且第i次重复内的第0个SR资源的起始符号位置为l 0,则第i次重复内的第j个SR资源的起始符号位置为l 0+jL。其中,i为大于等于0且小于等于K 1-1的整数;j为大于等于0且小于等于K 2-1的整数。
举例来说,如图5所示,假设终端设备A在K 1个时隙中的每个时隙中有5个SR资源,即K 2=5。每个时隙包含14个符号,每个SR资源的符号长度L=2,每个时隙内第0个SR资源的起始符号位置l 0=4,则终端设备可以在顺序的K 1个时隙发送SR,该顺序的K 1个时隙中的任意两个相邻时隙可以是连续的或者离散的。其中,K 1个时隙的每个时隙从第4个符号起始的共10个符号可以用于传输SR。
407、对于K 1个时隙中的一个时隙,终端设备在该时隙中的K 2个SR资源上向基站发送SR。
示例性地,如果该K 1个时隙中的每个时隙中包括相同个数的K 2个SR资源,终端设备在K 1×K 2个SR资源上向基站发送终端设备的SR。
在一种可能的设计中,终端设备的K 1×K 2个SR资源可以对应一个循环移位图案(cyclic shift pattern),该循环移位图案包括K 1×K 2个SR资源中每个SR资源对应的循环移位值。
示例性地,该循环移位图案可以表示为α cs,pattern(iK 2+j)=α i,j,即
Figure PCTCN2019113070-appb-000014
其中,α i,j为第i个时隙内的第j个SR资源的循环移位值。
在一种可能的设计中,对于K 1个时隙中的第i个时隙,对于第i个时隙中的K 2个SR资源中的第j个SR资源,在该第j个SR资源上传输的终端设备的SR的循环移位值是根据i和j确定的。
在一种可能的设计中,终端设备可以从基站接收终端设备的循环移位参数,即循环移位参数可以由高层信令或物理层信令灵活配置。而后,终端设备可以根据i、j和循环移位参数确定第j个SR资源上传输的终端设备的SR的循环移位值。该方法中,基站可以根据需要支持的终端设备连接数目针对每个终端设备配置最优的循环移位图案,降低多个终端设备同时发送SR时的碰撞概率,从而可以提高网络设备检测SR的性能。
其中,基站为终端设备指示循环移位参数时,用于指示循环移位参数的信息域的比特数目可以是根据K 1、K 2和一个SR资源可支持的循环移位数目确定的。举例来说,假设K 1和K 2的最大取值为
Figure PCTCN2019113070-appb-000015
Figure PCTCN2019113070-appb-000016
一个SR资源中可用的循环移位数目为N cs,则
Figure PCTCN2019113070-appb-000017
个SR资源最多能支持的循环移位图案的数目可以为
Figure PCTCN2019113070-appb-000018
循环移位参数的比特数目可以为
Figure PCTCN2019113070-appb-000019
在一种可能的设计中,对于K 1个时隙中的第i个时隙,对于第i个时隙中的K 2个SR资源中的第j个SR资源,可以根据i、j和该SR资源可支持的循环移位数目将循环移位参数展开成多项式。其中,第i个时隙对应的第j个SR资源的循环移位值是根据多项式的系数(变量)确定的。
示例性地,第i个时隙内的第j个SR资源的循环移位值α i,j可以根据变量m i,j确定。其中,m i,j满足式(1):
Figure PCTCN2019113070-appb-000020
其中,I cs为循环移位参数(也可以称为循环移位参数指示的数值),N cs为一个SR资源中可支持的循环移位数目。
可以理解的是,可以认为式(1)是将循环移位参数I cs以N cs为进制展开成K 1×K 2个数值。例如,N cs=12时,表示将循环移位参数进行12进制展开。举例来说,假设K 1=2,K 2=4,I cs=7777,将7777进行12进制展开即7777=1+0×12+6×12 2+4×12 3+0×12 4+0×12 5+0×12 6+0×12 7,展开后得到的相应系数从低位到高位排列为10640000,即m 0,0=1,m 0,1=0,m 0,2=6,m 0,3=4,m 1,0=0,m 1,1=0,m 1,2=0,m 1,3=0。也就是说,m i,j的值对应的图案为{1,0,6,4,0,0,0,0}。
式(1)的另一种实现方式为:
Figure PCTCN2019113070-appb-000021
其中,取模运算可以省略。
可选的,α i,j=m i,j。或者,以LTE系统为例,α i,j与m i,j的关系可以表示为式(3)或者式(4):
Figure PCTCN2019113070-appb-000022
Figure PCTCN2019113070-appb-000023
其中,
Figure PCTCN2019113070-appb-000024
表示一个资源块包含的子载波(subcarrier)数目;m 0表示基站配置给终端设备的循环移位初始值(或者称为循环移位偏移);n cs为伪随机数;
Figure PCTCN2019113070-appb-000025
表示发送SR的时隙在一个无线帧(Radio Frame)内的时隙序号(也可以称为时隙索引或标识);l表示发送SR的时隙内SR的时域符号中的任一个符号的序号;l′表示发送SR的时隙内SR的时域符号的起始符号位置。m cs的取值可以为0,表示终端设备的SR不与混合自动重传请求(hybrid automatic repeat request,HARQ)的确认字符(acknowledgement,ACK)一起发送。
通过循环移位参数指示终端设备确定循环移位图案,需要的比特数目更少,可以降低信令开销。
在一种可能的设计中,对于K 1个时隙中的第i个时隙,对于第i个时隙中的K 2个SR资源中的第j个SR资源,在该第j个SR资源上传输的终端设备的SR的循环移位值是根据i、j和终端设备的标识确定的。其中,终端设备的标识可以包括小区无线网络临时标识(cell radio network temporary identifier,C-RNTI),临时的(temporary)C-RNTI或者该终端设备的其它标识。
例如,假设终端设备的标识表示为
Figure PCTCN2019113070-appb-000026
第i个时隙内的第j个SR资源的循环移位值α i,j可以由m i,j确定,m i,j满足式(5)和式(6):
Figure PCTCN2019113070-appb-000027
Figure PCTCN2019113070-appb-000028
其中,N scale为大于等于1的整数,N scale为比例因子,N scale的值可以是预配置的,也可以由基站通过高层信令为终端设备指示。N cs为一个SR资源中可支持的循环移位数目。
式(5)的另一种实现方式可以表示为式(7),即根据式(5)和式(7)得到的m i,j值是相同的:
Figure PCTCN2019113070-appb-000029
可选的,α i,j=m i,j。或者,α i,j与m i,j的关系可以参考式(3)或者式(4)所示。
由此,通过i、j和终端设备的标识可以为终端设备确定相应的循环移位图案。进一步的,如果两个终端设备的标识接近,比如一个是1000,另一个是1001,那么使用终端设备的标识直接生成的循环移位图案可能也比较接近,这样基站在检测时难以分辨不同的终端设备。本申请实施例提供的方法中,可以为终端设备的标识乘以N scale可使得循环移位图案分布更均匀,不会太接近,以便基站可以更好的分辨不同的终端设备。
在一种可能的设计中,对于K 1个时隙中的第i个时隙,对于第i个时隙中的K 2个SR资源中的第j个SR资源,在该第j个SR资源上传输的终端设备的SR的循环移位值是根 据i、j和伪随机序列确定的,或者在该第j个SR资源上传输的终端设备的SR的循环移位值是根据i、j和伪随机序列的值确定的。其中,伪随机序列的初始化值是根据终端设备的标识确定的,伪随机序列的初始化值可以用于确定伪随机序列的值;或者伪随机序列的值是根据终端设备所在小区的小区标识和终端设备的标识确定的。伪随机序列取数据的序号可以是根据i和j确定的。可以理解的是,伪随机序列是一串序列,通过随机序列的初始化值可以确定从伪随机序列中取数据的起始位置,通过伪随机序列取数据的序号可以确定相对于取数据的起始位置的偏移,从而可以确定实际从伪随机序列中取出的数据值。伪随机序列可以采用LTE协议中的伪随机序列,也可以采用其他PN序列、Gold序列等,本申请不做限定。
可选地,伪随机序列的初始化值
Figure PCTCN2019113070-appb-000030
为终端设备的标识。第i个时隙内的第j个SR资源的循环移位值α i,j可以是根据m i,j确定的,m i,j满足式(8):
Figure PCTCN2019113070-appb-000031
其中,c(8×K 2×i+8×j+m)表示伪随机序列中索引为8×K 2×i+8×j+m的数据。例如,c(5)表示伪随机序列中第5个数据。
可选地,伪随机序列的值是根据终端设备所在小区的小区标识和终端设备的标识确定的,其中,伪随机序列的初始化值
Figure PCTCN2019113070-appb-000032
为终端设备所在小区的小区标识,第i个时隙内的第j个SR资源的循环移位值α i,j可以是根据m i,j确定的,m i,j满足式(9),其中,
Figure PCTCN2019113070-appb-000033
为终端设备的标识:
Figure PCTCN2019113070-appb-000034
其中,
Figure PCTCN2019113070-appb-000035
表示伪随机序列中索引为
Figure PCTCN2019113070-appb-000036
的数据。
可以理解的是,第i个时隙是K 2个SR资源的第i次重复,并且第i次重复内的第j个SR资源的符号序号是确定的。其中,符号序号即符号索引或者标识。因此,根据i和j确定终端设备的循环移位图案,可以等效为根据第i次重复对应的时隙索引以及第i次重复中第j个SR资源所在的符号索引确定循环移位图案。假设第i次重复内的第0个SR资源的起始符号位置为l 0,每个SR资源包含的符号数目为L,则第i次重复内的第j个SR资源的起始符号位置为l 0+jL。因此通过符号索引可以确定所对应的j的值。例如L=1时,容易知道j=l idx-l 0,其中l idx为SR资源的符号索引,l idx的初值为l 0
示例性地,若伪随机序列的初始化值
Figure PCTCN2019113070-appb-000037
对于第i次重复内的第j个SR资源的循环移位值,用于确定该循环移位值的伪随机序列的数据的序号由该SR资源所在的时隙序号与符号序号确定。以NR中循环移位值确定为例,α l满足式(10):
Figure PCTCN2019113070-appb-000038
其中,
Figure PCTCN2019113070-appb-000039
其中,α l为第i次重复对应的符号序号l的循环移位值。其他各项参数的定义可以上文中相关描述,在此不做赘述。
408、基站在K 1×K 2个SR资源上接收终端设备的SR。
对于终端设备对应的K 1个时隙,对于该K 1个时隙中每个时隙对应的K 2个SR资源,基站可以在该K 1个时隙中的每个时隙的每个SR资源检测该终端设备发送的SR。示例性 地,对于K 1个时隙中的每个时隙,检测该时隙内K 2个SR资源中每个SR资源对应的循环移位数值,从而确定终端设备发送的K 1×K 2个SR资源对应的循环移位图案,根据检测结果确定发送SR的终端设备(的标识)。
示例性地,K 1个时隙的时隙序号与i的取值是一一对应的;K 1个时隙中的每个时隙对应的K 2个SR资源中的每个SR资源的符号序号与j的取值是一一对应的。基站在检测时可以根据SR的时隙序号与符号序号确定对应的i和j的取值,从而确定检测到的包含K 1K 2个循环移位取值的循环移位图案,进而可以检测出发送SR的终端设备。
示例性地,假设终端设备A对应的K 1和K 2都为4,即终端设备A在传输SR时可以在16个SR资源上重复传输16次SR。对于K 1个时隙中的第i个时隙,对于第i个时隙中的K 2个SR资源中的第j个SR资源,当i=0,j=0,1,2,3时,α i,j={0,1,3,4};当i=1,j=0,1,2,3时,α i,j={2,1,5,6};当i=2,j=0,1,2,3时,α i,j={4,2,1,3};当i=3,j=0,1,2,3时,α i,j={8,10,9,6};即该16个SR资源对应的循环移位图案为:{0,1,3,4,2,1,5,6,4,2,1,3,8,10,9,6}。基站检测K 1个时隙中每个时隙对应的K 2个SR资源,判断该循环移位图案是否存在。例如,对于第0个时隙中的第0个SR资源,基站可以利用解调参考信号进行信道估计得到用于承载该SR资源的SR数据的参考信号的信道估计值,然后对接收到的用于承载SR数据的参考信号进行解调,得到解调的用于承载SR数据的参考信号。基站还可以将解调的用于承载SR数据的参考信号(其对应的循环移位值为0)与用户设备可以发送的用于承载SR数据的参考信号进行相关运算。当相关运算的结果超过预设阈值时,可以确定第0个时隙中的第0个SR资源发送循环移位为0的参考序列是存在的,即第0个时隙中的第0个SR资源确定发送了SR。其他SR资源采用类似处理,基站便可以确定循环移位图案中的每一个循环移位值是否存在,从而判断其对应的用户设备是否发送SR。
当基站确定循环移位图案{0,1,3,4,2,1,5,6,4,2,1,3,8,10,9,6}存在时,基站确定终端设备A发送了SR,从而基站可以向终端设备A发送上行调度授权(UL Grant)。其中,基站可以存储终端设备与循环移位图案的对应关系,从而根据检测出的循环移位图案确定终端设备(的标识);或者,基站可以根据i、j和检测出的循环移位图案确定终端设备(的标识),本申请不做限定。
现有技术中,基站需要为每个终端设备分别配置特定的SR资源,导致SR资源的开销非常大,无法很好的支持广覆盖的要求。本申请实施例中,终端设备可以在K 1×K 2个SR资源上向基站发送终端设备的SR,即将一个时隙内的K 2个SR资源重复发送K 1次,可以提高终端设备的SR的覆盖。
进一步的,终端设备的K 1×K 2个SR资源可以对应一个循环移位图案,该循环移位图案包括K 1×K 2个SR资源中每个SR资源对应的循环移位值。举例来说,假设K 1和K 2的最大取值为
Figure PCTCN2019113070-appb-000040
Figure PCTCN2019113070-appb-000041
一个SR资源中可支持的循环移位数目为N cs(即一个SR资源可以对应N cs个不同的循环移位值),则
Figure PCTCN2019113070-appb-000042
个SR资源最多能支持的循环移位图案的数目为N cs的指数倍,可以为
Figure PCTCN2019113070-appb-000043
从而可以支持超大终端设备连接数。
本申请的又一实施例提供一种资源调度方法,以网络设备为基站为例进行说明,如图6所示,包括:
601、基站确定用于传输终端设备的SR的K 1个时隙。
具体过程可以参考图4所示实施例的步骤401。
602、对于K 1个时隙的一个时隙,基站确定该一个时隙中用于传输终端设备的SR的K 2个SR资源;其中,一个SR资源对应一个或多个符号,K 2为大于等于2的整数。
具体过程可以参考图4所示实施例的步骤402。
603、基站确定K 1×K 2个SR资源的重复次数K 3,其中,K 3为大于等于2的整数。
在一种可能的设计中,基站可以根据预设条件确定K 3的数值。预设条件包括以下至少一个:覆盖需求和终端设备接入量要求等。
在另一种可能的设计中,可以根据预配置确定K 3的数值。
604、可选的,基站向终端设备发送K 1、K 2和K 3
基站可以通过信令向终端设备发送K 1、K 2和K 3
605、可选的,终端设备接收基站发送的K 1、K 2和K 3
其中,K 1、K 2或K 3可以是由高层信令或物理层信令配置的,也可以是预配置的的值,本申请实施例不做限定。例如,K 1、K 2和K 3都是由高层信令配置的;或者,K 1、K 2和K 3都是预配置的值(即步骤604和步骤605可以不执行);或者,K 1和K 2可以是由高层信令配置的,K 3可以是预配置的值;或者,K 1和K 3可以是由高层信令配置的,K 2可以是预配置的值;或者,K 2和K 3可以是由高层信令配置的,K 1可以是预配置的值;本申请不做限定。
606、终端设备确定用于传输终端设备的SR的K 1个时隙。
具体过程可以参考图4所示实施例的步骤405。
607、对于K 1个时隙中的一个时隙,终端设备确定该一个时隙中用于传输终端设备的SR的K 2个SR资源。
具体过程可以参考图4所示实施例的步骤406。
608、终端设备确定K 1×K 2个SR资源的重复次数K 3
609、对于K 3次重复中的一次重复,对于一次重复中的K 1个时隙中的一个时隙,终端设备在该时隙中的K 2个SR资源上向基站发送SR。
示例性地,如果K 3次重复中的每一次重复包括相同个数的K 1×K 2个SR资源,终端设备在K 1×K 2×K 3个SR资源上向基站发送终端设备的SR。
即终端设备可以在K 1×K 3个时隙发送终端设备的SR。其中,K 1×K 3个时隙中的每个时隙对应K 2个SR资源。对于K 1×K 3个时隙的每个时隙,从l 0起始K 2×L个符号为上行符号,l 0表示每个时隙内第0个SR资源的起始符号位置,L表示每个SR资源包含的符号数目。换句话说,终端设备可以在K 1个时隙中每个时隙内的K 2个SR资源上发送SR,并将K 1个时隙内的K 1×K 2个SR资源重复K 3次。对于K 1个时隙中的第i个时隙,对于第i个时隙中的K 2个SR资源中的第j个SR资源,在第j个SR资源上传输的终端设备的SR的循环移位值的确定方法可以参考步骤407中的相关描述。
可以理解的是,K 3次重复中任意两次重复所包含的K 1×K 2个SR资源可以是相同的,即K 3次重复中中任意两次重复所包含的K 1×K 2个SR资源的频域资源和码域资源是相同的。例如,第a次重复的K 1×K 2个SR资源和第b次重复的K 1×K 2个SR资源相同,其中a≠b a,b=0,1,2,...,K 3-1。如图7所示,假设K 1=2,K 2=4,K 3=4;每个SR资源的符号长度为L=2,每个时隙包含14个符号(一个时隙符号序号从0起始),每个时隙内第0个SR资源的起始符号位置为l 0=6。第a次重复内包含2个时隙共8个SR资源,循环移位图案包括的循环移位值为K 1×K 2=8。将K 1=2个时隙进行K 3次重复发送,一次SR传输的时隙数目为K 1×K 3个。
610、基站在K 1×K 2×K 3个SR资源上接收终端设备的SR;K 1×K 2×K 3个SR资源是K 1×K 2个SR资源的K 3次重复。
即基站可以在K 1×K 3个时隙重复接收终端设备发送的上行资源调度请求;其中,K 1×K 3个时隙中的每个时隙对应K 2个SR资源。
现有技术中,基站需要为每个终端设备分别配置特定的SR资源,导致SR资源的开销非常大,无法很好的支持广覆盖的要求。本申请实施例中,终端设备可以在K 1×K 2×K 3个SR资源上向基站发送终端设备的SR,即将K 1个时隙内的K 1×K 2个SR资源重复发送K 3次,可以提高终端设备的SR的覆盖。并且,由于K 1×K 2个SR资源的K 3次重复中任意两次重复所包含的K 1×K 2个SR资源是一致的,因此接收机检测复杂度低,检测性能好,同时高层信令指示开销也较小。
其中,K 3次重复中任意一次重复包含的K 1×K 2个SR资源可以对应一个循环移位图案,每个循环移位图案包括K 1×K 2个SR资源中每个SR资源对应的循环移位值。并且,K 3次重复中任意两次重复对应循环移位图案相同。举例来说,假设K 1和K 2的最大取值为
Figure PCTCN2019113070-appb-000044
Figure PCTCN2019113070-appb-000045
一个SR资源中可支持的循环移位数目为N cs(即一个SR资源可以对应N cs个不同的循环移位值),则
Figure PCTCN2019113070-appb-000046
个SR资源最多能支持的循环移位图案的数目为N cs的指数倍,可以为
Figure PCTCN2019113070-appb-000047
从而可以支持超大连接终端设备数。
上述本申请提供的实施例中,分别从终端设备、网络设备以及终端设备和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
在采用对应各个功能划分各个功能模块的情况下,图8示出了上述实施例中所涉及的装置8的一种可能的结构示意图,该装置可以为终端设备,该终端设备包括:确定单元801和发送单元802。在本申请实施例中,确定单元801可以用于确定用于传输终端设备的调度请求SR的K 1个时隙;其中,K 1为大于等于2的整数;还用于确定K 1个时隙的每个时隙中用于传输终端设备的SR的K 2个SR资源;其中,一个SR资源对应一个或多个符号,K 2为大于等于2的整数。发送单元802,用于在K 1×K 2个SR资源上向基站发送终端设备的SR。在图4和图6所示的方法实施例中,确定单元801用于支持终端设备执行图4中的过程405和406,图6中的过程606-608。发送单元802用于支持终端设备执行图4中的过程407,图6中的过程609。可选的,终端设备还可以包括接收单元803,用于支持终端设备执行图4中的过程404,图6中的过程605。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述实施例中所涉及的装置9的一种可能的结构示意图,该装置可以为网络设备,该网络设备包括:确定单元901和接收单元902。在本申请实施例中,确定单元901可以用于确定用于传输终端设备的调度请求SR的K 1个时隙;其中,K 1为大于等于2的整数;还用于确定所述K 1个时隙的每个时隙中用于传输所述终端设备的SR的K 2个SR资源;其中,一个所述SR资源对应一个或多个符号,K 2为大于等于2的整数。接收单元902,用于在所述K 1×K 2个SR资源上 接收所述终端设备的SR。接收单元902,用于在K 1×K 2个SR资源上接收终端设备的SR。在图4和图6所示的方法实施例中,确定单元901用于支持网络设备执行图4中的过程401和402,图6中的过程601-603。接收单元902用于支持网络设备执行图4中的过程408,图6中的过程610。可选的,网络设备还可以包括发送单元903,用于支持网络设备执行图4中的过程403,图6中的过程604。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。示例性地,在本申请实施例中,接收单元和发送单元可以集成至收发单元中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drives,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种资源调度方法,其特征在于,包括:
    确定用于传输终端设备的调度请求SR的K 1个时隙,其中,K 1为大于等于2的整数;
    确定所述K 1个时隙的每个时隙中用于传输所述终端设备的SR的K 2个SR资源,其中,一个所述SR资源对应一个或多个符号,K 2为大于等于2的整数;
    在所述K 1×K 2个SR资源上向网络设备发送所述终端设备的SR。
  2. 根据权利要求1所述的资源调度方法,其特征在于,
    对于所述K 1个时隙中的第i个时隙,对于所述第i个时隙中的K 2个SR资源中的第j个SR资源,在所述第j个SR资源上传输的所述终端设备的SR的循环移位值是根据i和j确定的;
    其中,i为大于等于0且小于等于K 1-1的整数,j为大于等于0且小于等于K 2-1的整数。
  3. 根据权利要求2所述的资源调度方法,其特征在于,在所述第j个SR资源上传输的所述终端设备的SR的循环移位值是根据i和j确定的,包括:
    在所述第j个SR资源上传输的所述终端设备的SR的循环移位值是根据i、j和所述终端设备的标识确定的;或者
    从网络设备接收循环移位参数,在所述第j个SR资源上传输的所述终端设备的SR的循环移位值是根据i、j和所述循环移位参数确定的。
  4. 根据权利要求3所述的资源调度方法,其特征在于,
    用于指示所述循环移位参数的信息域的比特数目是根据K 1、K 2和一个所述SR资源可支持的循环移位数目确定的。
  5. 根据权利要求2所述的资源调度方法,其特征在于,在所述第j个SR资源上传输的所述终端设备的SR的循环移位值是根据i和j确定的,包括:
    在所述第j个SR资源上传输的所述终端设备的SR的循环移位值是根据i、j和伪随机序列确定的;
    其中,所述伪随机序列的初始化值是根据所述终端设备的标识确定的,或者所述伪随机序列的值是根据所述终端设备所在小区的小区标识和所述终端设备的标识确定的。
  6. 根据权利要求1-5任一项所述的资源调度方法,其特征在于,在所述K 1×K 2个SR资源上向网络设备发送所述终端设备的SR,包括:
    在K 1×K 2×K 3个SR资源上向网络设备发送所述终端设备的SR,所述K 1×K 2×K 3个SR资源是所述K 1×K 2个SR资源的K 3次重复;其中,K 3为大于等于2的整数。
  7. 一种资源调度方法,其特征在于,包括:
    确定用于传输终端设备的调度请求SR的K 1个时隙,其中,K 1为大于等于2的整数;
    确定所述K 1个时隙的每个时隙中用于传输所述终端设备的SR的K 2个SR资源,其中,一个所述SR资源对应一个或多个符号,K 2为大于等于2的整数;
    在所述K 1×K 2个SR资源上接收所述终端设备的SR。
  8. 根据权利要求7所述的资源调度方法,其特征在于,
    对于所述K 1个时隙中的第i个时隙,对于所述第i个时隙中的K 2个SR资源中的第j个SR资源,在所述第j个SR资源上传输的所述终端设备的SR的循环移位值是根据i和j确定的;
    其中,i为大于等于0且小于等于K 1-1的整数,j为大于等于0且小于等于K 2-1的整数。
  9. 根据权利要求8所述的资源调度方法,其特征在于,在所述第j个SR资源上传输 的所述终端设备的SR的循环移位值是根据i和j确定的,包括:
    在所述第j个SR资源上传输的所述终端设备的SR的循环移位值是根据i、j和所述终端设备的标识确定的;或者
    向所述终端设备发送循环移位参数,在所述第j个SR资源上传输的所述终端设备的SR的循环移位值是根据i、j和所述循环移位参数确定的。
  10. 根据权利要求9所述的资源调度方法,其特征在于,
    用于指示所述循环移位参数的信息域的比特数目是根据K 1、K 2和一个所述SR资源可支持的循环移位数目确定的。
  11. 根据权利要求8所述的资源调度方法,其特征在于,在所述第j个SR资源上传输的所述终端设备的SR的循环移位值是根据i和j确定的,包括:
    在所述第j个SR资源上传输的所述终端设备的SR的循环移位值是根据i、j和伪随机序列确定的;
    其中,所述伪随机序列的初始化值是根据所述终端设备的标识确定的,或者所述伪随机序列的值是根据所述终端设备所在小区的小区标识和所述终端设备的标识确定的。
  12. 根据权利要求7-11任一项所述的资源调度方法,其特征在于,在所述K 1×K 2个SR资源上接收所述终端设备的SR,包括:
    在K 1×K 2×K 3个SR资源上接收所述终端设备的SR,所述K 1×K 2×K 3个SR资源是所述K 1×K 2个SR资源的K 3次重复;其中,K 3为大于等于2的整数。
  13. 一种装置,其特征在于,用于实现如权利要求1至6中任一项所述的资源调度方法。
  14. 一种装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器调用并执行所述指令时,使所述装置执行权利要求1至6中任一项所述的资源调度方法。
  15. 一种装置,其特征在于,包括:
    确定单元,用于确定用于传输终端设备的调度请求SR的K 1个时隙,其中,K 1为大于等于2的整数;
    所述确定单元还用于确定所述K 1个时隙的每个时隙中用于传输所述终端设备的SR的K 2个SR资源,其中,一个所述SR资源对应一个或多个符号,K 2为大于等于2的整数;
    发送单元,用于在所述K 1×K 2个SR资源上向网络设备发送所述终端设备的SR。
  16. 一种装置,其特征在于,包括:处理器和通信接口;
    所述处理器用于确定用于传输终端设备的调度请求SR的K 1个时隙,其中,K 1为大于等于2的整数;
    所述处理器还用于确定所述K 1个时隙的每个时隙中用于传输所述终端设备的SR的K 2个SR资源,其中,一个所述SR资源对应一个或多个符号,K 2为大于等于2的整数;
    所述处理器利用所述通信接口在所述K 1×K 2个SR资源上向网络设备发送所述终端设备的SR。
  17. 一种装置,其特征在于,用于实现如权利要求7至12中任一项所述的资源调度方法。
  18. 一种装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述 处理器调用并执行所述指令时,使所述装置执行权利要求7至12中任一项所述的资源调度方法。
  19. 一种装置,其特征在于,包括:
    通信单元,用于确定用于传输终端设备的调度请求SR的K 1个时隙,其中,K 1为大于等于2的整数;
    所述通信单元还用于确定所述K 1个时隙的每个时隙中用于传输所述终端设备的SR的K 2个SR资源,其中,一个所述SR资源对应一个或多个符号,K 2为大于等于2的整数;
    接收单元,用于在所述K 1×K 2个SR资源上接收所述终端设备的SR。
  20. 一种装置,其特征在于,包括:处理器和通信接口;
    所述处理器用于确定用于传输终端设备的调度请求SR的K 1个时隙,其中,K 1为大于等于2的整数;
    所述处理器还用于确定所述K 1个时隙的每个时隙中用于传输所述终端设备的SR的K 2个SR资源,其中,一个所述SR资源对应一个或多个符号,K 2为大于等于2的整数;
    所述处理器利用所述通信接口在所述K 1×K 2个SR资源上接收所述终端设备的SR。
  21. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1至12中任一项所述的资源调度方法。
  22. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1至12中任一项所述的资源调度方法。
  23. 一种通信系统,其特征在于,包括权利要求13至16中任一项所述的装置和权利要求17至20中任一项所述的装置。
PCT/CN2019/113070 2018-10-31 2019-10-24 一种资源调度方法和装置 WO2020088342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811289855.5A CN111132318B (zh) 2018-10-31 2018-10-31 一种资源调度方法和装置
CN201811289855.5 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020088342A1 true WO2020088342A1 (zh) 2020-05-07

Family

ID=70462973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113070 WO2020088342A1 (zh) 2018-10-31 2019-10-24 一种资源调度方法和装置

Country Status (2)

Country Link
CN (1) CN111132318B (zh)
WO (1) WO2020088342A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11968044B2 (en) * 2022-03-24 2024-04-23 Qualcom Incorporated Interference mitigation by pseudo-random muting for sounding reference signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175159A1 (en) * 2008-01-04 2009-07-09 Pierre Bertrand Allocation and Logical to Physical Mapping of Scheduling Request Indicator Channel in Wireless Networks
CN103906242A (zh) * 2012-12-26 2014-07-02 华为技术有限公司 一种无线通信方法、系统及基站和用户设备
WO2017132788A1 (zh) * 2016-02-01 2017-08-10 华为技术有限公司 上行调度的方法、用户设备和基站
WO2017209416A1 (ko) * 2016-06-02 2017-12-07 엘지전자 주식회사 무선 통신 시스템에서 스케줄링 요청을 전송하는 방법 및 장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090006708A (ko) * 2007-07-12 2009-01-15 엘지전자 주식회사 스케줄링 요청 신호 전송 방법
KR20090015778A (ko) * 2007-08-08 2009-02-12 엘지전자 주식회사 스케줄링 요청 신호 전송 방법
KR101467567B1 (ko) * 2007-08-14 2014-12-04 엘지전자 주식회사 스케줄링 요청 신호의 전송방법
KR101441147B1 (ko) * 2008-08-12 2014-09-18 엘지전자 주식회사 무선 통신 시스템에서 sr 전송 방법
CN101877911B (zh) * 2009-04-30 2014-06-25 电信科学技术研究院 一种专用调度请求资源的分配方法及装置
CN102006107B (zh) * 2009-09-03 2014-12-03 电信科学技术研究院 一种发送和接收sr的方法、系统及装置
WO2011068358A2 (ko) * 2009-12-01 2011-06-09 엘지전자 주식회사 경쟁기반 물리 상향링크 데이터 채널을 통한 데이터의 송수신 방법 및 이를 위한 장치
CN102870388B (zh) * 2010-07-07 2015-05-20 Lg电子株式会社 在无线通信系统中发送控制信息的方法和装置
CN103026653B (zh) * 2010-07-26 2016-05-25 Lg电子株式会社 在无线通信系统中发送上行控制信息的方法和设备
KR101605843B1 (ko) * 2010-11-02 2016-03-23 퀄컴 인코포레이티드 스케줄링 요청 자원들을 이용한 다중 요소 반송파 통신 시스템에서의 하이브리드 자동 재전송 요청 피드백 송신
WO2012124980A2 (ko) * 2011-03-14 2012-09-20 엘지전자 주식회사 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2015012664A1 (ko) * 2013-07-26 2015-01-29 엘지전자 주식회사 Mtc를 위한 신호 전송 방법 및 이를 위한 장치
WO2016064218A2 (ko) * 2014-10-24 2016-04-28 엘지전자 주식회사 Mtc 기기의 상향링크 채널 및 복조 참조 신호 전송 방법
JP6746595B2 (ja) * 2015-03-26 2020-08-26 アップル インコーポレイテッドApple Inc. 低減されたシグナリングオーバヘッドでのアップリンク送信のためのシステム、方法およびデバイス
CN107889237B (zh) * 2016-09-29 2024-01-02 中兴通讯股份有限公司 一种信息传输方法及装置
CN108633092B (zh) * 2017-03-24 2023-04-18 中兴通讯股份有限公司 一种信息发送方法、装置及终端
CN108668367B (zh) * 2017-04-01 2020-06-02 华为技术有限公司 一种数据传输方法、网络设备和终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175159A1 (en) * 2008-01-04 2009-07-09 Pierre Bertrand Allocation and Logical to Physical Mapping of Scheduling Request Indicator Channel in Wireless Networks
CN103906242A (zh) * 2012-12-26 2014-07-02 华为技术有限公司 一种无线通信方法、系统及基站和用户设备
WO2017132788A1 (zh) * 2016-02-01 2017-08-10 华为技术有限公司 上行调度的方法、用户设备和基站
WO2017209416A1 (ko) * 2016-06-02 2017-12-07 엘지전자 주식회사 무선 통신 시스템에서 스케줄링 요청을 전송하는 방법 및 장치

Also Published As

Publication number Publication date
CN111132318B (zh) 2022-07-19
CN111132318A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
US11855922B2 (en) Reference signal transmission method and transmission apparatus
WO2019154425A1 (zh) 一种导频信号生成方法及装置
EP3493625A1 (en) Communication method and device
JP2021536713A (ja) 情報送信および受信方法、デバイス、および装置
CN110912658B (zh) 通信系统中用于参考信号配置的方法、装置和计算机存储介质
CN112968756B (zh) 参考信号配置方法和装置
JP2021503791A (ja) 検出ウィンドウ指示方法及び装置
WO2019201222A1 (zh) 一种数据信道传输方法、接收方法及装置
EP3565167B1 (en) Information transmission method and apparatus
WO2018228243A1 (zh) 一种发送解调参考信号的方法和装置、解调方法和装置
WO2019048483A1 (en) INDICATION OF SYNCHRONIZATION SIGNAL BLOCK FOR WIRELESS NETWORKS
CN108243503B (zh) 在未授权频谱中的无线电资源调度方法及使用其的基站
CN115473617A (zh) 参考信号配置方法和装置
WO2020088342A1 (zh) 一种资源调度方法和装置
WO2020098594A1 (zh) 一种序列的生成及处理方法和装置
CN113302867B (zh) 用于多种参数集的公共信号结构
JP7332041B2 (ja) 方法、及び、端末デバイス
WO2020143558A1 (zh) 信道测量方法和装置
CN113473641A (zh) 一种通信方法和通信装置
CN114451034A (zh) 一种信息处理方法和通信设备
WO2022143868A1 (zh) 资源映射方法、装置及设备
JP7509228B2 (ja) 通信のための方法、端末装置、及びネットワーク装置
WO2021062872A1 (zh) 一种通信方法及装置
WO2019096074A1 (zh) 通信方法及装置
WO2024146471A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878822

Country of ref document: EP

Kind code of ref document: A1