WO2020088253A1 - 用于无线回传网络的数据传输方法和装置 - Google Patents

用于无线回传网络的数据传输方法和装置 Download PDF

Info

Publication number
WO2020088253A1
WO2020088253A1 PCT/CN2019/111450 CN2019111450W WO2020088253A1 WO 2020088253 A1 WO2020088253 A1 WO 2020088253A1 CN 2019111450 W CN2019111450 W CN 2019111450W WO 2020088253 A1 WO2020088253 A1 WO 2020088253A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
data packet
transmission path
parameter
message
Prior art date
Application number
PCT/CN2019/111450
Other languages
English (en)
French (fr)
Inventor
卓义斌
朱元萍
刘菁
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020088253A1 publication Critical patent/WO2020088253A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the present application relates to the communication field, and more specifically, to a data transmission method and device for a wireless backhaul network in the communication field.
  • a wireless backhaul network for example, an integrated access backhaul (IAB) network includes a host node and a wireless backhaul node, and terminal devices are connected to the host node through the wireless backhaul node.
  • the IAB network supports multi-hop and multi-connection networking, therefore, there may be multiple transmission paths between the terminal device and the host node.
  • On a certain transmission path between the terminal device and the wireless backhaul node providing wireless access service for the terminal device, between the wireless backhaul nodes, the wireless backhaul node and the wireless backhaul node that provides backhaul service for the wireless backhaul node
  • the node providing the wireless backhaul node is called the wireless backhaul node or the parent node of the terminal device, or the node providing the access service for the terminal device is called As the parent node of the terminal device, the wireless backhaul node can be regarded as a child node of the parent node of the wireless backhaul node, and the terminal device can be regarded as a child node of the parent node of the terminal equipment.
  • the parent node schedules transmission resources for the child node, and the child node sends data to the parent node.
  • the child node maps the data to be transmitted to at least one data radio bearer (DRB) based on the quality of service (QoS) of the data to be transmitted, the at least one DRB corresponds to at least one logical channel, generally In this case, one DRB corresponds to one logical channel; the child node reports the amount of data in the at least one logical channel to the parent node of the child node through the buffer status report (BSR) to request transmission resources.
  • the parent node is The child node schedules transmission resources.
  • the child node can selectively prioritize the data in the logical channel with a higher priority according to factors such as the priority of each logical channel.
  • the parent node can determine the priority of the data of the child nodes (for example, Data-based QoS) determines which child nodes are preferentially scheduled for transmission resources.
  • the QoS of the data needs to be considered.
  • some of the QoS parameters that characterize the data represent the parameter requirements between the terminal device and the host node or between the user plane functional network elements in the core network.
  • the data packet delay budget indicates that the data packet is in The delay requirement between the terminal equipment and the user plane functional network element in the core network.
  • the IAB network there is at least one wireless backhaul node between most terminal devices and the host node, whether the child node determines which data is preferentially processed based on the existing QoS parameters, or the parent node of the child node is based on QoS parameters schedule resources, so that the final result may be inaccurate, which affects the data transmission performance.
  • the present application provides a data transmission method and device for a wireless backhaul network, which can effectively improve data transmission performance.
  • a data transmission method for a wireless backhaul network includes at least one wireless backhaul node and a host node.
  • the method includes:
  • the first node determines the first parameter of the first data packet.
  • the first parameter of the first data packet includes the remaining data packet delay budget of the first data packet.
  • the first node is a terminal-side device or the Any one of the at least one wireless backhaul node, the remaining data packet delay budget of the first data packet is when the first data packet is transmitted from the first node to the host node Extended demand
  • the first node sends the first data packet to the parent node of the first node according to the first parameter of the first data packet.
  • the remaining data packet delay budget of the data packet indicates that the data packet currently needs to send the node of the data packet (For example, the first node)
  • the delay requirement to be transmitted between the host node and the host node is not entirely the prior art, which means that the data packet is transmitted between the terminal device and the user plane functional network element in the core network
  • the delay requirement can more accurately characterize the transmission properties of the data packet from the node to the host node. Therefore, the node sends the data packet by determining the remaining data packet delay budget of the data packet, which can effectively Improve data transmission performance.
  • the first node sends the first data packet to the parent node of the first node according to the first parameter of the first data packet include:
  • the first node maps the first data packet on the first data radio bearer DRB corresponding to the first parameter of the first data packet
  • the first node sends the first data packet on the first DRB.
  • the first parameter of one data packet has a value of the first parameter, that is, multiple values of the first parameter
  • the value and multiple DRBs Each value of the first parameter corresponds to each DRB.
  • the first node may select the first parameter according to the first parameter of the first data packet.
  • the corresponding relationship between the multiple values of the parameters and the multiple DRBs determines the DRB (denoted as the first DRB) corresponding to the first parameter of the first data packet, so that the first node sends the DRB on the first DRB The first data packet.
  • the DRB may be indicated by an identifier used to identify the DRB.
  • the correspondence between the multiple values of the first parameter and the multiple DRBs can be expressed by the correspondence between the multiple values of the first parameter and the identifiers of the multiple DRBs.
  • the data transmission method for a wireless backhaul network corresponds to the QoS requirement on the current link of the data packet transmitted by the node (for example, the first node) on the DRB (for example, on the current link PDB requirements or PER requirements) are close, which can ensure that the data packets with similar QoS requirements in each DRB are processed in the same way during the data transmission, to avoid the business impact of a certain low latency or high reliability requirement in the DRB.
  • the node since the first parameter can more accurately characterize the transmission properties of the data packet between the node and the host node, the node further determines the data packet (eg, the first data packet)
  • a parameter determines the DRB (for example, the first DRB) corresponding to the data packet, and maps the data packet on the corresponding DRB, and further, sending the data packet on the DRB can further effectively improve the data transmission performance.
  • the method further includes:
  • the first node receives correspondence information from a parent node or a host node of the first node, and the correspondence information is used to indicate a relationship between the first parameter of the first data packet and the first DRB Correspondence.
  • the other wireless backhaul nodes may forward or transparently transmit the corresponding relationship information to the first node.
  • the other wireless backhaul node is a superior node of the first node (for example, a parent node of the first node, or a parent node of the first node's parent node).
  • the correspondence information may include not only the correspondence between the first parameter of the first data packet and the first DRB, but also the correspondence between other values of the first parameter and the DRB, that is, the
  • the corresponding relationship information may include a corresponding relationship between multiple values of the first parameter and multiple DRBs.
  • the first node sends the first data packet to the parent node of the first node according to the first parameter of the first data packet include:
  • the first node determines the priority of the first logical channel according to the first parameter of the first data packet, and the first data packet corresponds to the first logical channel;
  • the first node sends the first data packet according to the priority of the first logical channel.
  • the first node determines the corresponding DRB according to the QoS parameter of the first data packet, determines the corresponding first logical channel according to the DRB, and determines the first according to the first parameter of the first data packet The priority of the logical channel, so that the first data packet is sent according to the priority of the first logical channel.
  • the priority of the logical channel corresponding to the data packet of the larger remaining PDB is lower, and the priority of the logical channel corresponding to the data packet of the smaller value of the remaining PDB Higher.
  • the logical channel corresponding to the data packet with the larger remaining hops has a higher priority
  • the logical channel corresponding to the data packet with the smaller remaining hops has a higher priority Has a lower priority.
  • the priority of the logical channel corresponding to the data packet with a larger value of the remaining PDB / remaining hops ratio is lower, and the remaining PDB / remaining hops
  • the logical channel corresponding to the data packet with a smaller value in the ratio has a higher priority.
  • the priority of the logical channel can accurately characterize the QoS requirements (eg, delay requirements) of the data to be transmitted on the node (eg, the first node).
  • the first parameter can more accurately characterize the transmission attribute of the data packet between the node and the host node, therefore, the node determines the correspondence of the data packet according to the first parameter of the data packet (eg, the first data packet)
  • the priority of the logical channel (for example, the first logical channel), and furthermore, sending the data packet according to the priority of the first logical channel can further effectively improve the data transmission performance.
  • the first parameter of the first data packet further includes the hop count of the first transmission path, and the hop count of the first transmission path is the first The number of nodes through which data packets are transmitted on the first transmission path.
  • the first transmission path is between the first node and the host node.
  • the host node is the transmission path of the destination.
  • the number of hops on the first transmission path can represent the distance between the first node and the host node or between the first node and the terminal device.
  • the number of hops of the first transmission path may be the number of wireless backhaul nodes between the first node and the host node.
  • the number N can also be the number of wireless backhaul nodes between the first node and the host node and the sum of the first node N + 1, or the wireless between the first node and the host node.
  • the embodiments of the present application do not make any limitation.
  • the hop count of the first transmission path is the number of transmission links through which the first data packet is transmitted on the first transmission path.
  • the transmission link represents a link between two adjacent nodes
  • the number of transmission links included in the first transmission path may also represent the number of hops of the first transmission path.
  • the node since the number of hops of a data packet (for example, the first data packet) on a transmission path (for example, the first transmission path) can represent the node and the host node The distance between them can more accurately characterize the transmission properties of the data packet between the node and the host node. Therefore, the node further determines the number of hops of the data packet on the transmission path, and, based on the Sending data packets by hops can improve the data transmission performance more effectively.
  • a data packet for example, the first data packet
  • a transmission path for example, the first transmission path
  • the number of hops of the first transmission path is configured by the host node for the first node.
  • the first node is any one of the at least one wireless backhaul node; and, the method further includes:
  • the first node receives a first message from a child node of the first node, the first message includes information indicating the number of hops, and the number of hops in the first message is the first transmission path
  • the number of hops in the first message, or the number of hops in the first message is the number of nodes that the first data packet passes through while being transmitted on the second transmission path
  • the second transmission path is the first node A transmission path between the child node of the first node and the child node of the first node as a starting point and ending with the host node;
  • the first node determining the first parameter of the first data packet includes:
  • the first node determines the number of hops of the first transmission path according to the first message.
  • the first node is any one of the at least one wireless backhaul node.
  • the first node determining the first parameter of the first data packet includes:
  • the first node receives a second message from a child node of the first node, where the second message is used to determine the remaining data packet delay budget of the first data packet.
  • the second message includes time information and delay information, where the time information is used to indicate that a child node of the first node receives the The time of the first data packet or the time of sending the first data packet, the delay information is used to indicate the delay of the transmission of the first data packet from the child node of the first node to the host node demand.
  • the second message includes information indicating the time when the terminal-side device sends the first data packet.
  • the method further includes:
  • the first node sends a third message to the parent node of the first node, where the third message includes information used to characterize the first parameter of the first data packet.
  • the first parameter of the first data packet may reflect the priority of the logical channel corresponding to the first data packet.
  • the information for characterizing the first parameter may include the first parameter itself, and when the first parameter includes multiple parameters, the information for characterizing the first parameter may also include a quantized based on the multiple parameters A quantization parameter, which can comprehensively characterize the first parameter.
  • the third message further includes information indicating the data amount of a group of logical channels, where the group of logical channels includes the logical channel corresponding to the first data packet and the logical channel corresponding to other data packets.
  • the third message further includes the first parameter of each data packet in the data packets other than the first data packet in the set of logical channels.
  • the third information may be a buffer status report (buffer status report, BSR).
  • BSR buffer status report
  • the third message may also include information on the data amount of each logical channel among the multiple sets of logical channels.
  • the third message may further include the first parameter of each data packet in each logical channel of the multiple logical channels.
  • the first node may preferentially trigger the third channel of the logical channel group to which the logical channel corresponding to the first data packet belongs.
  • the action of the three messages enables the parent node of the first node to schedule transmission resources for the first node in advance.
  • a node for example, a first node
  • reports the first parameter of a data packet for example, a first data packet
  • the parent node of the node can schedule transmission resources for the node according to the first parameter of the data packet, which optimizes the way of uplink scheduling, which can effectively improve the accuracy of uplink scheduling and further improve the data transmission performance.
  • the first parameter of the first data packet further includes: a unit packet loss rate of the first data packet, and a unit packet loss rate of the first data packet Represents the packet loss rate of the first data packet between two adjacent nodes.
  • the packet loss rate represents the upper limit of the ratio of the number of incorrectly transmitted data packets to the sent data group.
  • the two adjacent nodes may be any two adjacent nodes in the wireless backhaul network. One of the two adjacent nodes is a child node, and the other node is a parent node of the child node.
  • the unit packet loss rate of a data packet indicates that the data packet is transmitted between two adjacent nodes
  • the packet loss rate is not exactly the packet loss rate of the prior art indicating that the data packet is transmitted between the terminal device and the host node, and can more accurately characterize the data packet between the two adjacent nodes Transmission attributes. Therefore, the node (for example, the first node) sends the data packet through the determined unit packet loss rate of the data packet, which can effectively improve the data transmission performance.
  • a data transmission method for a wireless backhaul network includes at least one wireless backhaul node and a host node.
  • the method includes:
  • the parent node of the first node receives a third message from the first node, the third message includes information characterizing the first parameter of the first data packet, and the first parameter of the first data packet includes all
  • the remaining data packet delay budget of the first data packet is the delay requirement for the first data packet to be transmitted from the first node to the host node;
  • the parent node of the first node schedules transmission resources for the first node according to the third message
  • the parent node of the first node receives the first data packet from the first node on the transmission resource.
  • the parent node of the first node when the first node reports a plurality of data packets to be transmitted including the first data packet, the parent node of the first node not only schedules transmission according to the first parameters of the first data packet
  • the resources also need to schedule transmission resources for the first node according to the first parameters of other data packets. Therefore, the transmission resources here are not only used for data transmission for transmitting the first data packet, but also for data transmission for other data packets.
  • a node for example, a first node
  • reports the first parameter of a data packet for example, a first data packet
  • the parent node of the node can schedule transmission resources for the node according to the first parameter of the data packet, which optimizes the way of uplink scheduling, which can effectively improve the accuracy of uplink scheduling and further improve the data transmission performance.
  • the first parameter of the first data packet further includes the hop count of the first transmission path, and the hop count of the first transmission path is the first The number of nodes through which data packets are transmitted on the first transmission path.
  • the first transmission path is between the first node and the host node.
  • the host node is the transmission path of the destination.
  • the method further includes:
  • the parent node of the first node sends correspondence information to the first node, where the correspondence information is used to indicate a correspondence between the first parameter of the first data packet and the first data radio bearer DRB,
  • the first DRB is used to carry the first data packet.
  • a data transmission method for a wireless backhaul network includes at least one wireless backhaul node and a host node.
  • the method is characterized in that the method includes:
  • the child node of the first node generates a second message, the second message is used to determine the remaining data packet delay budget of the first data packet, and the remaining data packet delay budget of the first data packet is the first data A delay requirement for the packet to be transmitted from the first node to the host node, the first node is a terminal-side device or any one of the at least one wireless backhaul node;
  • the child node of the first node sends a second message to the first node.
  • the second message includes time information and delay information, where the time information is used to indicate that a child node of the first node receives the The time of the first data packet or the time of sending the first data packet, the delay information is used to indicate the delay of the transmission of the first data packet from the child node of the first node to the host node demand.
  • the second message includes information indicating the time when the terminal-side device sends the first data packet.
  • the method further includes:
  • the child node of the first node sends a first message to the first node, the first message includes information indicating the number of hops, and the number of hops in the first message is the number of hops of the first transmission path Or, the number of hops in the first message is the number of nodes that the first data packet passes through during transmission on the second transmission path, and the first transmission path is the first node and the A transmission path between the host node that starts with the first node and ends with the host node, and the second transmission path is between a child node of the first node and the host node A transmission path where the child node of the first node is a starting point and ending with the host node.
  • a data transmission method for a wireless backhaul network includes at least one wireless backhaul node and a host node.
  • the method is characterized in that the method includes:
  • the first node determines the first parameter of the first data packet.
  • the first parameter of the first data packet is used to determine a unit data packet delay budget for characterizing the first data packet.
  • the unit data packet delay budget represents the delay requirement for the first data packet to be transmitted between two adjacent nodes.
  • the first node is either a terminal-side device or the at least one wireless backhaul node. Wireless backhaul node;
  • the first node sends the first data packet to the parent node of the first node according to the first parameter of the first data packet.
  • the two adjacent nodes may be any two adjacent nodes in the wireless backhaul network.
  • One of the two adjacent nodes is a child node, and the other node is a parent node of the child node.
  • the unit PDB of the first data packet may approximately represent the delay requirement for the first data packet to be transmitted between the first node and the parent node of the first node.
  • the unit data packet delay budget of a data packet represents that the data packet is in any two of the wireless backhaul network.
  • the delay requirement for the transmission of two adjacent nodes is not the delay requirement of the prior art to indicate that the data packet is transmitted between the terminal device and the host node, and can more accurately characterize the data packet at two adjacent nodes Therefore, the node can effectively improve the data transmission performance by determining the first parameter for determining the unit data packet delay budget of the data packet and sending the data packet according to the first parameter.
  • the first node sends the first data packet to the parent node of the first node according to the first parameter of the first data packet include:
  • the first node maps the first data packet on the first data radio bearer DRB corresponding to the first parameter of the first data packet
  • the first node sends the first data packet on the first DRB.
  • the method further includes:
  • the first node receives correspondence information from a parent node or a host node of the first node, and the correspondence information is used to indicate a relationship between the first parameter of the first data packet and the first DRB Correspondence.
  • the first node sends the first data packet to the parent node of the first node according to the first parameter of the first data packet include:
  • the first node determines the priority of the first logical channel according to the first parameter of the first data packet, and the first data packet corresponds to the first logical channel;
  • the first node sends the first data packet according to the priority of the first logical channel.
  • the first parameter of the first data packet includes:
  • the remaining data packet delay budget of the first data packet is a delay requirement for the first data packet to be transmitted from the first node to the host node, and the number of hops of the first transmission path is the The number of nodes that a first data packet passes through during transmission on the first transmission path.
  • the first transmission path is between the first node and the host node, starting from the first node And the transmission path that ends with the host node.
  • the number of hops of the first transmission path is configured by the host node for the first node.
  • the first node is any one of the at least one wireless backhaul node; and, the method further includes:
  • the first node receives a first message from a child node of the first node, the first message includes information indicating the number of hops, and the number of hops in the first message is the first transmission path
  • the number of hops in the first message, or the number of hops in the first message is the number of nodes that the first data packet passes through while being transmitted on the second transmission path
  • the second transmission path is the first node A transmission path between the child node of the first node and the child node of the first node as a starting point and ending with the host node;
  • the method also includes:
  • the first node determines the number of hops of the first transmission path according to the first message.
  • the first node is any one of the at least one wireless backhaul node.
  • the method also includes:
  • the first node receives a second message from a child node of the first node, where the second message is used to determine the remaining data packet delay budget of the first data packet.
  • the second message includes time information and delay information, where the time information is used to indicate that a child node of the first node receives the The time of the first data packet or the time when the first data packet is sent, the delay information is used to indicate the delay of the transmission of the first data packet from the child node of the first node to the host node demand.
  • the second message includes information indicating the time when the terminal-side device sends the first data packet.
  • the first parameter of the first data packet includes:
  • the total data packet delay budget of the first data packet is a delay requirement for the first data packet to be transmitted from the terminal-side device to the host node
  • the third transmission path is the terminal-side device A transmission path between the host node and the terminal device as the starting point and the host node as the end point, and the hop count of the third transmission path is that the first data packet is transmitted in the third The number of nodes on the path that were passed during transmission.
  • the method further includes:
  • the first node sends a third message to the parent node of the first node, where the third message includes information used to characterize the first parameter of the first data packet.
  • an apparatus for a wireless backhaul network for performing the method in any possible implementation manner in any of the above aspects.
  • the device includes a unit for performing the method in any possible implementation manner of any one of the above aspects.
  • the apparatus includes: a transceiver, a memory, and a processor.
  • the transceiver, the memory and the processor communicate with each other through an internal connection path, the memory is used to store instructions, the processor is used to execute the instructions stored in the memory to control the receiver to receive signals, and the transmitter to send signals And when the processor executes the instructions stored in the memory, the processor is caused to execute the method in any possible implementation manner of any one of the above aspects.
  • a computer program product comprising: computer program code, when the computer program code is run by a computer, causing the computer to execute the method in the above aspects.
  • a computer-readable medium for storing a computer program, the computer program including instructions for performing the method in the above aspects.
  • another chip including: an input interface, an output interface, a processor, and a memory, and the input interface, the output interface, the processor, and the memory are connected by an internal connection path, and the processing
  • the processor is used to execute the code in the memory, and when the code is executed, the processor is used to execute the methods in the above aspects.
  • FIG. 1 is a schematic diagram of a communication system applied to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another communication system applied to an embodiment of the present application.
  • FIG. 3 is a schematic interaction diagram of a data transmission method for a wireless backhaul network according to an embodiment of the present application.
  • FIG. 4 is a schematic interaction diagram of another data transmission method for a wireless backhaul network according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an apparatus for a wireless backhaul network according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another apparatus for a wireless backhaul network according to an embodiment of the present application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And / or” describes the relationship of related objects, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A, B can be singular or plural.
  • the character "/” generally indicates that the related object is a "or” relationship.
  • “At least one of the following” or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • At least one (a) of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c may be single or multiple.
  • the fifth generation mobile communication system 5th-generation, 5G
  • the capacity index has been increased by a factor of 1,000, wider coverage requirements, ultra-high reliability and ultra-low latency.
  • the capacity index has been increased by a factor of 1,000, wider coverage requirements, ultra-high reliability and ultra-low latency.
  • the use of high-frequency small station networking is becoming more and more popular.
  • the high-frequency carrier propagation characteristics are poor, the attenuation due to occlusion is severe, and the coverage is not wide. Therefore, a large number of densely deployed small stations are required.
  • 5G introduces integrated access and backhaul (IAB) technology, which uses both access links and backhaul links Wireless transmission solution to avoid fiber deployment.
  • IAB integrated access and backhaul
  • the IAB network includes a wireless backhaul node and a host node.
  • the terminal device can be connected to the host node through the wireless backhaul node.
  • the terminal device can also be connected to the wireless air interface. Host node connection.
  • uplink transmission the terminal device transmits data to the host node through the wireless backhaul node
  • downlink transmission the host node transmits data to the terminal device through the wireless backhaul node.
  • a node that supports integrated access and backhaul is called a wireless backhaul node.
  • the wireless backhaul node may be called a relay node (RN), and in 5G, the wireless backhaul node may also be called an IAB node (IAB node).
  • RN relay node
  • IAB node IAB node
  • the following uses the IAB node as an example.
  • the IAB node can provide wireless access services for the terminal device.
  • the data of the terminal device (which may include user plane data and control plane signaling) is transmitted by the IAB node to the host node through a wireless backhaul link.
  • the host node is also called an IAB host (IAB donor) or a host base station (donor gNodeB, DgNB).
  • the DgNB may be an access network element with a complete base station function, or may be an access network element that includes a centralized unit (CU) and a distributed unit (DU) in a separate form.
  • DgNB is connected to the core network element serving the terminal equipment, for example, to the 5G core network (5G Core (5GC), and provides wireless backhaul function for IAB nodes.
  • 5G Core (5GC) 5G Core
  • the centralized unit of the host node is simply referred to as the host CU (donor CU), and the distributed unit of the host node is simply referred to as the host DU (donor DU), where the donor CU may also be the control plane.
  • control plane, CP control plane
  • user plane user plane
  • a CU includes a CU-CP and a plurality of CU-UP, which is not limited in the embodiments of the present application.
  • Child node Child node
  • the IAB network can support multi-hop and multi-connection networking, therefore, there may be multiple transmission paths between the terminal device and the host node.
  • On a certain transmission path there is a certain level between the terminal device and the IAB node that provides wireless access services for the terminal device, between the IAB nodes, and between the IAB node and the host node that provides the backhaul service for the IAB node relationship.
  • the node that provides the wireless backhaul service for the IAB node is called the parent node of the IAB node, or the node that provides the wireless access service for the terminal device is called the parent node of the terminal device, and the IAB node can be regarded as the IAB
  • the terminal device may be regarded as a child node of the parent node of the terminal device.
  • the parent node of the IAB node may be another IAB node or a host node. When the IAB node and the host node communicate directly through a wireless air interface, the parent node of the IAB node is the host node.
  • the wireless link used by the terminal device and the node that provides it with wireless access services for communication includes uplink transmission and downlink transmission links.
  • the uplink transmission on the access link is also called the uplink transmission of the access link, and the transmission direction is from the terminal device to the node; the downlink transmission is also called the downlink transmission of the access link, and the transmission direction is From the node to the terminal device.
  • the backhaul link refers to a wireless link used by an IAB node to communicate with its parent node.
  • the parent node can be an IAB node or a host node, including uplink transmission and downlink transmission links.
  • the uplink transmission on the backhaul link is also called the uplink transmission of the backhaul link, and its transmission direction is from the IAB node to the parent node of the IAB node; the downlink transmission is also called the downlink transmission of the backhaul link.
  • the transmission direction is from the parent node of the IAB node to the IAB node.
  • the path is composed of at least one link (link).
  • the link represents a connection between adjacent nodes. That is to say, the transmission path is a transmission path between the sending node and the receiving node that starts with the sending node and ends with the receiving node. Subsequently, for convenience of description, the transmission path between the sending node and the receiving node, starting from the sending node and ending at the receiving node, may be described as the transmission path between the sending node and the receiving node.
  • any node other than the host node between the terminal device and the host node can be used as the sending node, and the parent node of the sending node (for example, the parent node of the sending node or the parent node of the parent node, etc.)
  • the sending node may be an IAB node
  • the receiving node may be the parent node of the IAB node, and the entire route between the IAB node and the IAB node's parent node represents a transmission path.
  • the sending node may be an IAB node
  • the receiving node may be a host node, and the whole route between the IAB node and the host node represents a transmission path.
  • the sending node may be any node other than the terminal device between the host node and the terminal device, and the receiving node may be a subordinate node of the sending node (for example, a child node of the sending node or the Children of children, etc.).
  • the sending node may be an IAB node
  • the receiving node may be a child node of the IAB node, and the whole route between the IAB node and the child node of the IAB node represents a transmission path.
  • the sending node may be an IAB node, and the receiving node may be a terminal device, and the entire route between the IAB node and the terminal device represents a transmission path.
  • NB-IoT narrow-band Internet of Things
  • WLAN wireless local area network
  • LTE long-term evolution
  • 5G mobile communication system such as new radio (NR) communication system.
  • NR new radio
  • FIG. 1 is a schematic diagram of a communication system applied to an embodiment of the present application.
  • the communication system supports a multi-hop and single connection scenario.
  • the communication system includes a host node, an IAB node A, an IAB node B, and UE1.
  • UE1 is any example of the terminal device in the embodiment of the present application.
  • the parent node of IAB node A is the host node
  • IAB node A is the parent node of IAB node B
  • IAB node B is the parent node of UE1.
  • the data of UE1 is sent to the host node through at least one IAB node, and then sent by the host node to the mobile gateway device (for example, the user plane functional (UPF) unit in the 5G core network).
  • the mobile gateway device for example, the user plane functional (UPF) unit in the 5G core network.
  • the sending node may be any node other than the host node between UE1 and the host node, and the receiving node may be a superior node of the sending node (for example, the sending node's parent node or the parent node's parent node Wait).
  • the sending node may be an IAB node B, and the receiving node may be a host node, and the transmission path between the IAB node B and the host node is: IAB node B ⁇ IAB node A ⁇ host node.
  • the sending node may be IAB node B, and the receiving node may be IAB node A, then the transmission path between IAB node B and IAB node A is: IAB node B ⁇ IAB node A.
  • the host node sends the downlink data received from the mobile gateway device to the UE1 through at least one IAB node.
  • the sending node may be any node other than the terminal device between the host node and the UE1, and the receiving node may be a subordinate node of the sending node (for example, a child node of the sending node or the child Children of the node, etc.).
  • the sending node may be IAB node A
  • the receiving node may be UE1
  • the transmission path between UE1 and IAB node A is: IAB node A ⁇ IAB node B ⁇ UE1.
  • FIG. 2 is a schematic diagram of another communication system applied to an embodiment of the present application.
  • the communication system of Figure 2 supports multi-hop and multi-connection scenarios.
  • the communication system includes a host node, an IAB node A, an IAB node B, an IAB node C, UE1 and UE2, and UE1 and UE2 are any two examples of terminal devices in the embodiments of the present application.
  • the parent node of IAB node A is the host node
  • IAB node A is the parent node of IAB node C and UE2
  • the parent node of IAB node B is the host node
  • IAB node B is the parent node of IAB node C
  • IAB node C is the parent node of UE1. Therefore, IAB node C has two parent nodes, namely, IAB node B and IAB node A.
  • the transmission path will be described below for the uplink data and downlink data of UE1 and the uplink data and downlink data for UE2, respectively.
  • Uplink data and downlink data for UE1 Uplink data and downlink data for UE1
  • the transmission path of uplink data from UE1 to the host node includes two available transmission paths, transmission path 1A: UE1 ⁇ IAB node C ⁇ IAB node A ⁇ host node, transmission path 2A: UE1 ⁇ IAB node C ⁇ IAB node B ⁇ host node; if the sending node is IAB node C, the transmission path from IAB node C to the host node includes two available transmission paths, transmission path 1B: IAB node C ⁇ IAB node A ⁇ Host node, transmission path 2B: IAB node C ⁇ IAB node B ⁇ host node; if the sending node is IAB node A, the transmission path from IAB node A to the host node is transmission path 1C: IAB node A ⁇ host node ; If the sending node is UE1, the transmission path of uplink data from UE1 to the host node includes two available transmission paths, transmission path 1A: UE1 ⁇ IAB node C ⁇ IAB
  • transmission path 3A host node ⁇ IAB node A ⁇ IAB node C ⁇ UE1
  • transmission path 4A host node ⁇ IAB node B ⁇ IAB node C ⁇ UE1; if the sending node is IAB node A, the transmission path between IAB node A and UE1 is transmission path 3B: IAB node A ⁇ IAB node C ⁇ UE1; if the sending node is IAB node B, the transmission path between IAB node B and UE1 is transmission path 3C: IAB node B ⁇ IAB node C ⁇ UE1; if the sending node is IAB node C, the transmission path between IAB node C and UE1 : IAB node C ⁇
  • Uplink data and downlink data for UE2 Uplink data and downlink data for UE2
  • the transmission path between different sending nodes and the host node is: UE2 ⁇ IAB node A ⁇ host node; if the sending node is IAB node A, the transmission path from IAB node A to the host node is IAB node A ⁇ host node.
  • the sending node is the host node
  • the transmission path between the host node and UE2 is: host node ⁇ IAB node A ⁇ UE2; if the sending node is IAB node A, the transmission path between IAB node A and UE2 is transmission Path 3B: IAB node A ⁇ UE 2.
  • FIG. 1 and FIG. 2 are merely exemplary, and should not be limited to the embodiments of the present application.
  • the host node and the IAB node under another host node form a dual connection or multiple connections to provide services for terminal devices, or A terminal device and two or more parent nodes form a dual connection or multiple connections, etc., which are not listed here one by one.
  • the host node may include but is not limited to: evolved node B (evolved node base, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station control Base station (BSC), base transceiver station (BTS), home base station (eg, home evolved NodeB, or home node B, HNB), baseband unit (BBU), eLTE (evolved LTE) , ELTE) base station, next generation base station (next generation node B, gNB), etc.
  • evolved node B evolved node base, eNB
  • RNC radio network controller
  • node B node B
  • BSC base station control Base station
  • BTS base transceiver station
  • home base station eg, home evolved NodeB, or home node B, HNB
  • BBU baseband unit
  • eLTE evolved LTE
  • ELTE next generation base station
  • the terminal device in the embodiment of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Terminal devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or public land mobile communication networks (PLMN) in the future evolution
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • wireless communication Functional handheld devices computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or public land mobile communication networks (PLMN) in the future evolution
  • PLMN public land mobile communication networks
  • the IAB node is a specific name for the relay node in the IAB network, and should not be limited to the embodiments of the present application.
  • the use of IAB nodes in the embodiments of the present application is for the sake of description only, and does not mean that the embodiments of the present application are only used in NR scenarios.
  • the IAB nodes may refer to any node or device with a relay function.
  • the IAB node may be any one of the foregoing base stations or terminal devices with a forwarding function, or may be an independent device form, which is not limited in this embodiment of the present application.
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer .
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the QoS of the data needs to be considered.
  • some of the parameters that characterize the QoS of the data represent the parameters of the terminal equipment and the host node or the user plane functional network element in the core network, for example, the data packet delay budget indicates that the data packet is in the terminal equipment to the core network The delay requirements between the network elements of the user plane function.
  • the IAB network there is at least one wireless backhaul node between most terminal equipment and the host node, so that between two adjacent nodes (for example, between the terminal equipment and the wireless backhaul node, between wireless backhaul nodes, The delay requirement between the wireless backhaul node and the host node is shorter than the delay requirement between the terminal device and the host node. Therefore, in the IAB network, whether the child node determines which data to preferentially process based on the existing QoS parameters or the parent node of the child node schedules resources based on the existing QoS parameters, the final result may be inaccurate, Affects the data transmission performance.
  • the embodiments of the present application provide a data transmission method for a wireless backhaul network, which can effectively improve data transmission performance.
  • any node in the wireless backhaul network determines at least one parameter of the data packet delay budget of the data packet, the number of hops of the transmission path, or the unit packet loss rate, thereby sending data according to the at least one parameter Package, because the at least one parameter represents a parameter between the node and the host node, compared to the prior art QoS parameter used to represent the terminal device and the host node or the user plane functional network element in the core network Between the parameters, can accurately characterize the attributes of the data packet, which can improve the data transmission performance.
  • one message may include one or more pieces of information (or signaling).
  • the device used to implement the method or step of the embodiment of the present application may be the device itself, or may be a chip or a processor configured in the device, which can implement the method or step of the embodiment of the present application.
  • the embodiments of the present application are not limited to this.
  • the device may be a first node described below, a terminal-side device, a child node of the first node, or a parent node of the first node.
  • the terminal-side device described below may be the terminal device itself, or may be a chip or processor configured inside the terminal device. For the convenience of description, the terminal device description is adopted uniformly.
  • Method 100 is to describe the embodiments of the present application from the perspective of uplink transmission in a wireless backhaul network.
  • the first node and the first data packet are used as examples for description.
  • the first node determines a first parameter of the first data packet.
  • the first parameter of the first data packet includes a remaining data packet delay budget of the first data packet.
  • the first node is a terminal-side device or the at least one In any wireless backhaul node of the wireless backhaul node, the remaining data packet delay budget of the first data packet is a delay requirement for the first data packet to be transmitted from the first node to the host node.
  • the first node sends the first data packet according to the first parameter of the first data packet.
  • the first node may be any one of UE1, IAB node B, or IAB node A; in the communication system shown in FIG. 2, the first node It may be any one of UE1, UE2, IAB node C, IAB node A, and IAB node B.
  • the data packet delay budget may be referred to as PDB for short, and the full English name is packet delay.
  • the remaining PDB of the first data packet can be understood as the delay requirement of the first data packet between the current node (for example, the first node) and the host node.
  • the current node can It is understood that the node that currently needs to send the first data packet may be a terminal-side device, or may be any wireless backhaul node in at least one wireless backhaul node in the wireless backhaul network.
  • the smaller the remaining PDB of the first data packet is the higher the delay requirement of the first data packet is, and the larger the remaining PDB of the first data packet is, the greater the delay of the first data packet is. The lower the requirement.
  • the first node determines the remaining PDB of the first data packet.
  • the first data packet Before sending the first data packet, as an example and not a limitation, at the adaptation layer, the first data packet is mapped to the corresponding data wireless On the data (radio bearer, DRB), at the radio link layer control protocol (radio link control, RLC) layer, the DRB corresponding to the first data packet is mapped on the logical channel, so that the data channel is sent based on the priority of the logical channel The first data packet.
  • the first parameter may be used as a factor to send the first data packet.
  • the manner in which the first node determines the remaining PDB of the first data packet and the manner in which the first node sends the first data packet according to the first parameter refer to the following detailed description.
  • the remaining data packet delay budget of the data packet indicates that the data packet currently needs to send the node of the data packet (For example, the first node)
  • the delay requirement for transmission between the host node and the host node is not exactly when the traditional technology indicates that the data packet is transmitted between the terminal device and the user plane functional network element in the core network
  • the extension requirement can more accurately characterize the transmission properties of the data packet from the node to the host node. Therefore, the node sends the data packet by determining the remaining data packet delay budget of the data packet, which can effectively improve the data transmission performance.
  • the remaining PDBs may indicate the transmission attributes of the data packet between the current node and the host node, but other parameters may also indicate the transmission attributes of the data packet between the current node and the host node.
  • the above first data packet is used as an example for description.
  • the first parameter of the first data packet further includes the number of hops of the first transmission path, and the number of hops of the first transmission path is the time when the first data packet is transmitted on the first transmission path
  • the number of nodes, and the first transmission path is a transmission path between the first node and the host node that starts with the first node and ends with the host node.
  • the number of hops on the first transmission path can represent the distance between the first node and the host node or between the first node and the terminal device.
  • the first transmission path is This is the only transmission path.
  • the first transmission path may be any one of the two transmission paths.
  • the first transmission path is the only transmission path; if there are multiple transmission paths between the first node and the host node , Then the first transmission path is any one of the multiple transmission paths.
  • the number of hops of the first transmission path may be the number of wireless backhaul nodes between the first node and the host node.
  • the number N can also be the number of wireless backhaul nodes between the first node and the host node and the sum of the first node N + 1, or the wireless between the first node and the host node The sum of the number of backhaul nodes and the host node N + 1, or the sum of the number of wireless backhaul nodes between the first node, the host node, and the first node and the host node N + 2.
  • FIG. 1 Taking FIG. 1 as an example, assuming that the first node is IAB Node B, and the number of IABs between IAB Node B and the host node is 1, then the number of hops on the transmission path between IAB Node B and the host node is 1 or 2 or 3.
  • the hop count of the first transmission path is the number of transmission links through which the first data packet is transmitted on the first transmission path.
  • the transmission link represents a link between two adjacent nodes
  • the number of transmission links included in the first transmission path may also represent the hop count of the first transmission path
  • the first transmission path includes M links, and the number of hops of the first transmission path is M. Taking FIG. 1 as an example, if the transmission path between UE1 and the host node includes 3 transmission links, the number of hops on the transmission path is 3.
  • any node for example, the first node
  • the hop count of a certain transmission path (eg, the first transmission path) between the nodes is simply referred to as the remaining hop count, and the hop count on the certain transmission path between the terminal device and the host node is simply referred to as the total hop count.
  • a node on a transmission path between the terminal device and the host node includes a node on a transmission path between the any node and the host node, or, between the terminal device and the host node There is a transmission path between any one node and a transmission path between the host node and the host node, or that is, all nodes configured on a transmission path between the terminal device and the host node include the All nodes where a certain transmission path between any node and the host node is configured.
  • the node since the number of hops of a data packet (for example, the first data packet) on a transmission path (for example, the first transmission path) can represent the node and the host node The distance between them can more accurately characterize the transmission properties of the data packet between the node and the host node. Therefore, the node further determines the number of hops of the data packet on the transmission path, and, based on the Sending data packets by hops can improve the data transmission performance more effectively.
  • a data packet for example, the first data packet
  • a transmission path for example, the first transmission path
  • the first parameter of the first data packet further includes: a unit packet loss rate of the first data packet, and a unit packet loss rate of the first data packet indicates that the first data packet is between two adjacent nodes Packet loss rate.
  • the packet loss rate represents the upper limit of the ratio of the number of incorrectly transmitted data packets to the sent data group.
  • the two adjacent nodes may be any two adjacent nodes in the wireless backhaul network. One of the two adjacent nodes is a child node of the other node, and the other node is a parent node of the child node.
  • the packet loss rate may be simply referred to as PER, and the entire English name is packet error.
  • the unit packet loss rate of a data packet indicates that the data packet is transmitted between two adjacent nodes
  • the packet loss rate is not exactly the packet loss rate of the prior art indicating that the data packet is transmitted between the terminal device and the host node, and can more accurately characterize the data packet between the two adjacent nodes Transmission attributes. Therefore, the node (for example, the first node) sends the data packet through the determined unit packet loss rate of the data packet, which can effectively improve the data transmission performance.
  • the first node may send the first data packet in the following two ways (denoted as way A and way B). Hereinafter, these two methods will be described in detail.
  • the first node maps the first data packet on the first data radio bearer DRB corresponding to the first parameter of the first data packet
  • the first node sends the first data packet on the first DRB.
  • the first parameter of one data packet has a value of the first parameter, that is, the multiple values of the first parameter and the multiple
  • each value of the first parameter corresponds to each DRB.
  • the first node may select the number of the first parameter according to the first parameter of the first data packet.
  • the corresponding relationship between the values and the multiple DRBs determines the DRB (denoted as the first DRB) corresponding to the first parameter of the first data packet, so that the first node sends the first data on the first DRB package.
  • the DRB may be indicated by an identifier used for DRB.
  • the correspondence between the multiple values of the first parameter and the multiple DRBs can be expressed by the correspondence between the multiple values of the first parameter and the identifiers of the multiple DRBs.
  • Table 1 shows the correspondence between multiple values of the first parameter and multiple DRBs, where the first parameter includes at least one of remaining PDB, remaining hops, or remaining packet loss rate.
  • the first parameter includes the remaining PDB
  • DRB refers to the correspondence between the remaining PDB and DRB in Table 1.
  • Each remaining PDB belongs to a specific value range, and it can also be considered that each DRB corresponds to a value range related to the remaining PDB.
  • the first data packet if the remaining PDB of the first data packet satisfies a certain value range (recorded as the first value range), the first data packet is mapped to the DRB corresponding to the first data range (i.e. , The first DRB).
  • the first DRB may be a DRB identified by any DRB ID in Table 1.
  • the first parameter includes the remaining hops
  • DRB corresponds to a group of remaining hops, and each group of remaining hops includes at least one remaining hop.
  • the first data packet if the remaining hops of the first data packet satisfy the remaining hops of any group of remaining hops, the first data packet is mapped to the DRB corresponding to the remaining hops of the group (that is, , The first DRB).
  • the first DRB may be a DRB identified by any DRB ID in Table 1.
  • each DRB may also correspond to a specific value range, or each DRB may be considered to correspond to a value range related to the remaining hops. If the remaining hop count of the first data packet satisfies a certain value range (recorded as the second value range), the first data packet is mapped to the DRB corresponding to the second data range (ie, the first DRB).
  • each unit PER belongs to a specific value range, and it can also be considered that each DRB corresponds to a value range related to the unit PER.
  • the first data packet if the unit PER of the first data packet satisfies a certain value range (recorded as the third value range), the first data packet is mapped to the DRB corresponding to the third data range (ie , The first DRB).
  • the first DRB may be a DRB identified by any DRB ID in Table 1.
  • the first parameter includes at least two of the above three parameters
  • the first parameter includes the remaining PDB and the remaining hops
  • the corresponding relationship between the remaining PDB and the DRB, and the corresponding relationship between the remaining hops and the DRB are simultaneously referenced
  • the first data packet is mapped to the DRB that simultaneously satisfies the above conditions
  • the first parameter includes the remaining PDB, the remaining hops, and the unit PER
  • the corresponding relationship between the remaining PDB and DRB, the corresponding relationship between the remaining hops and DRB, and the corresponding relationship between the unit PER and DRB need to be simultaneously referenced.
  • the first data packet is mapped onto the DRB that simultaneously satisfies, for example, the above conditions.
  • the remaining PDB and the remaining hops in a proportional relationship can be combined, for example, the remaining PDB with a larger value and the remaining hops with a larger value are placed in the same group , The remaining PDB with a smaller value and the remaining hops with a smaller value are placed in the same group. In this way, data packets with a similar ratio of the remaining PDB to the remaining hops can be mapped to the same DRB.
  • a DRB corresponds to one or more groups, and each group includes a remaining PDB and a remaining hop count.
  • a DRB corresponds to multiple groups
  • the ratio of the two parameters in each group in any two groups is similar. It can be understood that the two parameters in a group become approximately proportional, and the ratio of the two parameters can approximately represent the PDB of two adjacent nodes, which can effectively represent the relevant attributes of the data packet at the two adjacent nodes, and then can Improve data transmission performance.
  • Table 3 shows the correspondence between multiple values of the first parameter and multiple DRBs, where the first parameter includes the unit PER and the remaining hops.
  • the first parameter includes the unit PER and the remaining hops.
  • different units of PER and remaining hops can be combined.
  • One combination corresponds to one DRB. It is also possible to map packets with a similar ratio of PER to remaining hops to the same DRB, that is, , A DRB can correspond to multiple groups.
  • Table 4 shows the correspondence between multiple values of the first parameter and multiple DRBs, where the first parameter includes the unit PER, remaining hops, and remaining PDB.
  • the first parameter includes the unit PER, remaining hops, and remaining PDB.
  • Table 4 combining different units of PER, remaining hops, and remaining PDBs, you can map packets with similar ratios of any two parameters in different groups to the same DRB, that is, one DRB can Correspond to multiple groups.
  • the first node may not only send the first data packet according to the first parameter of the first data packet, but also send the first data packet according to the QoS parameter.
  • the QoS parameters include multiple parameters, each of which has a corresponding relationship with 5QI (refer to Table 5), 5G QoS identifier (5G QoS identifier, 5QI) has a corresponding relationship with DRB, and QoS parameters Multiple values of each parameter correspond to multiple values of 5QI, and multiple values of 5QI correspond to multiple DRBs.
  • at least one value of 5QI may correspond to one DRB, that is, at least one data packet corresponding to 5QI It can be mapped to a DRB for transmission.
  • the first node determines a DRB according to the correspondence between the OoS parameter of the first data packet and DRB and the correspondence between the first parameter and DRB. Sending the first data packet on the DRB.
  • Table 5 shows the correspondence between QoS parameters and 5QI in the embodiments of the present application. It should be understood that the correspondence relationship shown in Table 5 is only a schematic illustration, and any form indicating the correspondence relationship is within the protection scope of the embodiments of the present application. It should be noted that the data packet delay budget in Table 5 represents the data packet delay budget between the terminal device and the user plane functional network element in the core network.
  • At least one of the remaining PDB, remaining hops, or remaining packet loss rate may be used as a newly added parameter in the 5QI QoS parameter list to form a new QoS parameter list (refer to Table 6), including Multiple values of each parameter in QoS parameters including one parameter correspond to multiple values of 5QI, and multiple values of 5QI correspond to multiple DRBs.
  • a new QoS parameter list (refer to Table 6), including Multiple values of each parameter in QoS parameters including one parameter correspond to multiple values of 5QI, and multiple values of 5QI correspond to multiple DRBs.
  • Table 6 shows the correspondence between the new QoS parameters and 5QI in the embodiments of the present application.
  • the first parameter includes remaining PDB, remaining hops, and remaining packet loss rate.
  • the first parameter may also include any one or any two of the remaining PDB, remaining hops, or remaining packet loss rate, or the first parameter may also include other parameters. Make any restrictions. It should be understood that the corresponding relationship shown in Table 6 is only a schematic illustration, and any form indicating the corresponding relationship is within the protection scope of the embodiments of the present application. It should be noted that the data packet delay budget in Table 6 represents the data packet delay budget between the terminal device and the user plane functional network element in the core network.
  • the multiple parameters may be quantified as A quantized parameter, when representing the correspondence between the first parameter and DRB, the correspondence between each parameter and DRB in Table 1, Table 2, Table 3, Table 4, or Table 6 may not be required to represent the first parameter and DRB
  • the corresponding relationship of can be characterized by a quantization parameter, so that the correspondence between the first parameter and DRB can be simply expressed as the correspondence between the quantization parameter and DRB.
  • the first parameter includes the remaining PDB and the remaining hops.
  • the first node receives correspondence information from the parent node or the host node of the first node, the The correspondence information is used to indicate the correspondence between the first parameter of the first data packet and the first DRB.
  • the other wireless backhaul nodes may forward or transparently transmit the corresponding relationship information to the first node.
  • the other wireless backhaul node is a superior node of the first node (for example, a parent node of the first node, or a parent node of the first node's parent node).
  • the correspondence information may include not only the correspondence between the first parameter of the first data packet and the first DRB, but also the correspondence between other values of the first parameter and the DRB, that is, the
  • the corresponding relationship information may include the corresponding relationship between multiple values of the first parameter and multiple DRBs, as an example and not a limitation, the corresponding relationship between the multiple values of the first parameter and multiple DRBs may be Table 1, Any one of Table 2, Table 3, Table 4, or Table 6.
  • each data packet on the DRB corresponds to a priority, which can be expressed by the priority of the logical channel.
  • One DRB corresponds to one logical channel.
  • one DRB can correspond to multiple logical channels. For example, in a duplication transmission scenario, one DRB corresponds to two logical channels. The priority of the two logical channels the same.
  • the data packet is mapped to the DRB in the adaptation layer, and in the radio link control layer (radio link control, RLC), the DRB can be further mapped to the logical channel, and then, based on the DRB The priority of the corresponding logical channel sends the data packet.
  • RLC radio link control
  • the first DRB corresponds to a logical channel (denoted as the second logical channel), and the priority of the second logical channel also indicates the priority of the first DRB. Therefore, the first A node may send the first data packet according to the priority of the second logical channel corresponding to the first DRB. More specifically, the first node may fill a group of logical channels including the second logical channel according to the priority order of all logical channels in the group of logical channels, and sequentially send the group of logical channels according to the priority order In the packet.
  • the data transmission method for a wireless backhaul network corresponds to the QoS requirement on the current link of the data packet transmitted by the node (for example, the first node) on the DRB (for example, on the current link PDB requirements or PER requirements) are close, which can ensure that the data packets with similar QoS requirements in each DRB are processed in the same way during the data transmission, to avoid the business impact of a certain low latency or high reliability requirement in the DRB.
  • the node since the first parameter can more accurately characterize the transmission properties of the data packet between the node and the host node, the node further determines the data packet (eg, the first data packet)
  • a parameter determines the DRB (for example, the first DRB) corresponding to the data packet, and maps the data packet on the corresponding DRB, and further, sending the data packet on the DRB can further effectively improve the data transmission performance.
  • the first node determines the priority of the first logical channel according to the first parameter of the first data packet, and the first data packet corresponds to the first logical channel;
  • the first node sends the first data packet according to the priority of the first logical channel.
  • the QoS parameters of the data packet have a corresponding relationship with the DRB, and the DRB has a corresponding relationship with the logical channel. In this way, the QoS parameters of the data packet have a corresponding relationship with the logical channel.
  • the QoS parameter and the DRB reference may be made to the relevant description of the correspondence in the manner A, and for the sake of brevity, no further description will be given here.
  • the first node determines the corresponding DRB (denoted as the second DRB) according to the QoS parameters of the first data packet, and determines the corresponding logical channel (denoted as the first logical channel) according to the second DRB, according to the The first parameter of the first data packet determines the priority of the first logical channel, so that the first data packet is sent according to the priority of the first logical channel.
  • the first node may perform a group of logical channels including the first logical channel according to the priority order of all logical channels in the group of logical channels based on the resource size given by the uplink scheduling Fill the group packet, and then send the data packet in the logical channel of the group.
  • the first data packet When the priority of the first logical channel is high, the first data packet may be grouped first, and when the priority of the first logical channel is low, the first data packet may be grouped subsequently, Until all the data packets in the logical channel have completed grouping or the resources allocated for uplink scheduling are used up, one of the above two conditions is met to complete the grouping operation and send the grouped data packet.
  • the sending of the first data packet according to the priority of the first logical channel described in the embodiment of the present application not only indicates the action of sending the first data packet, but also indicates the related process of sending the first data packet. Processing, for example, the above-mentioned grouping of the first data packet according to the priority of the first logical channel.
  • the first node may first determine a group of logical channels with the highest priority according to the priority of each group of logical channels, and fill the group of logical channels in the logical channel priority order Packet, if the transmission resources allocated by the parent node of the first node to the first node can transmit the data packets in all logical channels of the group of logical channels and there are remaining transmission resources, continue to select a group of logic with the second highest priority Channel, continue to fill the group packet according to the above rules until the transmission resources are used up or the data packets in all logical channels are sent.
  • the priority of each group of logical channels can be determined comprehensively according to the first parameters of multiple data packets in each group of logical channels. For example, when the first parameter includes a parameter, the first node may generate a quantization parameter according to the first parameters of multiple data packets in each group of logical channels, and determine the value of each group of logical channels based on the quantization parameter value of each group of logical channels Priority; for another example, when the first parameter includes multiple parameters, the first node may quantize multiple parameters of each data packet in each group of logical channels into one quantization parameter, and then according to the quantization parameters of multiple data packets A final quantization parameter is generated, and the priority of each group of logical channels is determined based on the final quantization parameter of each group of logical channels.
  • the priority of the logical channel corresponding to the data packet of the larger remaining PDB is lower, and the priority of the logical channel corresponding to the data packet of the smaller remaining PDB is The priority is higher.
  • the logical channel corresponding to the data packet with a larger value of the remaining hops has a higher priority, and the data packet with a smaller value of the remaining hops corresponds to The priority of the logical channel is lower.
  • the logical channel corresponding to the packet with a larger value of the remaining PDB / remaining hops ratio has a lower priority
  • the remaining PDB / remaining hops The logical channel corresponding to the data packet with a smaller value in the ratio has a higher priority.
  • the remaining PDB / remaining hops is the above-mentioned quantization parameter.
  • the priority of the logical channel can accurately characterize the QoS requirements (for example, delay requirements) of the data to be transmitted on the node (for example, the first node).
  • the first parameter can more accurately characterize the transmission attribute of the data packet between the node and the host node, therefore, the node determines the correspondence of the data packet according to the first parameter of the data packet (eg, the first data packet)
  • the priority of the logical channel (for example, the first logical channel), and furthermore, sending the data packet according to the priority of the first logical channel can further effectively improve the data transmission performance.
  • the transmission resource used by the first node to send the first data packet is scheduled by the parent node of the first node for the first node based on the amount of data to be sent by the first node.
  • the first node sends information indicating the amount of data in at least one group of logical channels to the parent node of the first node, and the parent node of the first node according to the data in the at least one group of logical channels The amount is the transmission resources scheduled by the first node.
  • the parent node can further determine which node has priority to schedule transmission according to the priority of the logical channel corresponding to the data reported by the first node and the other node Resources. Especially in the case of limited transmission resources that need to be scheduled, this method can ensure that data with higher priority is sent preferentially and improve data transmission performance.
  • the embodiments of the present application provide an optional implementation manner:
  • the first node sends a third message to the parent node of the first node, where the third message includes information used to characterize the first parameter of the first data packet;
  • the parent node of the first node schedules transmission resources for the first node according to the third message.
  • the parent node of the first node sends information indicating the transmission resource to the first node.
  • the first parameter of the first data packet may reflect the priority of the logical channel corresponding to the first data packet.
  • the information for characterizing the first parameter may include the first parameter itself, and when the first parameter includes multiple parameters, the information for characterizing the first parameter may also include a quantized based on the multiple parameters A quantization parameter, which can comprehensively characterize the first parameter.
  • the third message further includes information indicating the data amount of a group of logical channels, where the group of logical channels includes the logical channel corresponding to the first data packet and the logical channel corresponding to other data packets.
  • the third message further includes the first parameter of each data packet in the data packets other than the first data packet in the set of logical channels.
  • the third information may be a buffer status report (buffer status report, BSR).
  • the third message may further include information on the data amount of each logical channel among the multiple groups of logical channels.
  • the third message may further include the first parameter of each data packet in each logical channel of the multiple logical channels.
  • the first node may preferentially trigger the third channel of the logical channel group to which the logical channel corresponding to the first data packet belongs.
  • the action of the three messages enables the parent node of the first node to schedule transmission resources for the first node in advance.
  • the parent node of the first node not only schedules transmission resources according to the first parameters of the first data packet, It is also necessary to schedule transmission resources for the first node according to the first parameters of other data packets. Therefore, the transmission resources here are not only used for data transmission for transmitting the first data packet, but also for data transmission for other data packets.
  • the first parameters of the multiple data packets may be carried in the third message in any one of the above manners, and the embodiment of the present application does not make any limitation.
  • the communication system shown in FIG. 2 is used as an example for an explanation.
  • the first node is an IAB node B
  • the other nodes are IAB node A.
  • Each node has multiple data packets to be transmitted.
  • the multiple data packets of each node correspond to at least one set of logical channels.
  • Each set of logical channels Corresponds to at least one data packet.
  • the host node may determine the priority of each logical channel group according to the first parameters of multiple data packets in each logical channel.
  • each logical group The first parameter of multiple data packets in the channel is quantized as a parameter (denoted as parameter A), and then the quantized parameter 1 of each logical channel in the multiple sets of logical channels is quantized as a parameter (denoted as parameter B),
  • the parameter B is used to indicate the priority of the logical channel in the IAB node B; the same processing method is used for the IAB node A to generate the parameter B of the IAB node A.
  • the host node compares the parameter B of IAB node B with the parameter B of IAB node A.
  • the parameter B of IAB node B is greater than the parameter B of IAB node A, it means that the If the priority of the logical channel is high, the host node preferentially schedules transmission resources for the IAB Node B. It should be noted that if a node has only one set of logical channels, parameter B does not need to be generated.
  • the host node can directly quantize the first parameter of the data packets in all logical channel groups into one parameter ( Is the parameter C), the host node compares the parameter B of the IAB node B with the parameter C of the IAB node A. As an example and not a limitation, if the parameter C of the IAB node B is greater than the parameter C of the IAB node A, it means the IAB node If the priority of the logical channel in B is high, the host node preferentially schedules transmission resources for IAB node B.
  • the first node reports the first parameter of the data packet to the parent node of the first node, so that the parent node of the first node can
  • the first parameter is scheduling transmission resources for the first node, which optimizes the way of uplink scheduling, which can effectively improve the accuracy of uplink scheduling, and further improve the data transmission performance.
  • the first node sends the data packet according to the first parameter and the uplink scheduling of the host node of the first node has been described in detail.
  • the first data packet is also used as an example, based on the first parameter
  • the manner in which the first node determines the first parameter is described in each case.
  • the first parameter of the first data packet includes the remaining PDB of the first data packet
  • the first node When the first node is a terminal device, in an optional implementation manner, the first node may be based on a PDB (denoted as denoted as the delay requirement of the first data packet between the terminal device and the UPF network element PDB1) and the PDB (denoted as PDB2) difference between the host node and the UPF network element that represents the delay requirement of the first data packet determines the remaining PDB of the first data packet, where PDB1 can be Some pre-configured QoS parameters are obtained, and PDB2 can be obtained through signaling sent by the host node to the first node.
  • the remaining PDBs of the first data packet may be obtained based on the reconfigured QoS parameters in this embodiment of the present application.
  • the first node When the first node is any wireless backhaul node of at least one wireless backhaul node, optionally, in S101, the first node receives a second message from a child node of the first node, the first The second message is used to determine the remaining data packet delay budget of the first data packet.
  • the second message may include all information used to determine the remaining PDB of the first data packet, or may include partial information used to determine the remaining PDB of the first data packet.
  • the second message may be carried in the header of the first data packet sent by the child node of the first node.
  • the second message may be carried in a header of the first data packet in a medium access control (MAC) layer, an RLC layer, or an adaptation layer.
  • MAC medium access control
  • the second message may also be an independent message, and the second message is sent through a child node of the first node, which is not limited in this embodiment of the present application.
  • the second message includes time information (denoted as time information 1) and delay information (denoted as delay information 1), where the time information 1 is used to indicate that the child node of the first node receives the first data packet Time or the time when the first data packet is sent, the delay information 1 is used to indicate the delay requirement for the first data packet to be transmitted from the child node of the first node to the host node (recorded as historical remaining PDB1) .
  • the time information 1 is used to indicate the time when the child node of the first node sends the first data packet, and when the child node of the first node is wireless backhaul At node time, the time information 1 is used to indicate the time when the child node of the first node receives the first data packet.
  • the first node determines the remaining PDB of the first data packet according to the second message and the time when the first node receives the first data packet.
  • the child node of the first node as a wireless backhaul node as an example, specifically, according to the time when the first node receives the first data packet and the child node of the first node receiving the first data packet The difference in time determines the delay used in the process of transmitting the first data packet from the child node of the first node to the first node.
  • the historical remaining PDB1 is used to obtain the child node of the first data packet from the first node.
  • the difference between the delays used in the process of being transmitted to the first node determines the remaining PDB of the first data packet.
  • the child node of the first node receives the first data packet at 8:00 5ms
  • the historical remaining PDB1 is 15ms
  • the first node receives the first data packet at 8 Point zero 10ms
  • the second message includes information indicating the time when the terminal-side device sends the first data packet.
  • the first node determines the remaining PDB of the first data packet based on the second message, the time when the first node received the first data packet, and the total PDB of the first data packet, where, The total PDB of the first data packet is the delay requirement for the first data packet to be transmitted from the terminal device to the host node. Specifically, it is determined that the first data packet is transmitted from the terminal device to the first node according to the difference between the time when the first node receives the first data packet and the time when the terminal device sends the first data packet , The remaining PDB of the first data packet can be determined by subtracting the delay used by the first data packet transmitted from the terminal device to the first node by the total PDB.
  • the total PDB is 20 ms
  • the time that the first node receives the first data packet is 8:00 10 ms
  • the time that the terminal device sends the first data packet is 8:00
  • the total PDB is 20 ms
  • the total PDB may be based on the PDB (that is, the above-mentioned PDB1) used to indicate the delay requirement of the first data packet between the terminal device and the UPF network element and the The total PDB is determined by the difference of the PDB (ie, the above-mentioned PDB2) between the time delay requirements, where PDB1 can be obtained from the existing pre-configured QoS parameters, and PDB2 can send a message to the first node through the host node Obtained in order.
  • the total PDB may be obtained based on the reconfigured QoS parameters in the embodiments of the present application.
  • the first parameter of the first data packet includes the hop count of the first transmission path
  • the hop count of the first transmission path is configured by the host node for the first node.
  • the host node may send other air interface signaling such as radio resource control layer (radio resource control (RRC) signaling, media access control layer control unit (medium access control control element, MAC), etc. for Information indicating the number of hops of the first transmission path.
  • RRC radio resource control
  • MAC media access control control element
  • the other wireless backhaul node may indicate the first transmission path sent by the host node
  • the hop count information is forwarded or transparently transmitted to the first node.
  • the host node configures the hop number of each transmission path for the first node.
  • the first node is any wireless backhaul node of at least one wireless backhaul node, optionally,
  • the first node receives a first message from a child node of the first node, the first message includes information indicating the number of hops, and the number of hops in the first message is of the first transmission path
  • the number of hops, or, the number of hops in the first message is the number of nodes that the first data packet passes through during transmission on the second transmission path, and the second transmission path is a child node of the first node and the A transmission path between the host node starting with the child node of the first node and ending with the host node;
  • the first node determines the number of hops of the first transmission path according to the first message.
  • S102 may be executed at the same time as S101, or may not be executed at the same time, which is not limited here.
  • the second transmission path includes the first transmission path, or all nodes configured on the second transmission path include all nodes configured on the first transmission path, that is, the second transmission path is configured
  • the node of includes the first node, the node between the first node and the host node, the host node and the child nodes of the first node.
  • the first node is IAB node B
  • the first transmission path is IAB node B ⁇ host node
  • the second transmission path is IAB node C ⁇ IAB node B ⁇ host node.
  • the host node or system may only configure the terminal device for the number of hops on a transmission path between the terminal device and the host node (total number of hops for short).
  • the host node or system may configure for the terminal device the total number of hops of each transmission path on multiple transmission paths between the terminal device and the host node.
  • the first data packet is transmitted from the terminal device to the parent node of the terminal device, minus 1 from the total number of hops to obtain the number of hops on the transmission path between the parent node of the terminal device and the host node, and continue to uplink During transmission, the first data packet is transmitted from the terminal node's parent node to the terminal device's parent node's parent node, and continues to subtract 1 from the remaining hops to obtain the terminal device's parent node's parent node and the The number of hops on the transmission path between host nodes.
  • each node operates until the first data packet is transmitted to the host node.
  • the child node of the first node subtracts 1 from the number of hops on the second transmission path to obtain the The number of hops of the first transmission path is sent to the first node through the first message; when the number of hops in the first message is the number of hops on the second transmission path, the first node The hop number of the first transmission path is obtained by subtracting 1 from the hop number of the transmission path.
  • the first parameter includes the unit packet loss rate of the first data packet
  • the unit packet loss of the first data packet can be determined according to the total packet loss rate of the first data packet and the number of hops of the transmission path (denoted as the second transmission path) between the terminal device and the host node rate.
  • the total packet loss rate of the first data packet represents the packet loss rate of the first data packet between the terminal device and the host node
  • the hop count of the second transmission path is that the first data packet is in the first The number of nodes that are traversed in the transmission process on the second transmission path.
  • the second transmission path is a transmission path between the terminal-side device and the host node, starting from the terminal-side device and ending with the host node.
  • the second transmission path is any one of at least one transmission path between the terminal device and the host node, and the above-mentioned first transmission path between the terminal device and the host node may communicate with the second transmission There are overlapping paths. When there is a multi-hop transmission path between the terminal device and the host node, the first transmission path and the second transmission path may not overlap.
  • s 1 unit packet loss rate of a data packet 0 represents the total packet loss rate of the data packet
  • t represents the hop count of the transmission path
  • represents the power calculation.
  • the data transmission method 100 for a wireless backhaul network according to an embodiment of the present application has been described in detail.
  • another data transmission method 200 for a wireless backhaul network according to an embodiment of the present application will be described.
  • the difference between the method 200 and the method 100 is that the parameter acquired in the method 200 is the delay requirement for the data packet to be transmitted between two adjacent nodes.
  • the method 200 will be described by taking the first data packet as an example.
  • the first node determines the first parameter of the first data packet.
  • the first parameter of the first data packet is used to determine a unit data packet delay budget that characterizes the first data packet.
  • the unit data packet delay budget indicates the A delay requirement for the first data packet to be transmitted between two adjacent nodes, where the first node is a terminal-side device or any one of the at least one wireless backhaul node;
  • the first node sends the first data packet to the parent node of the first node according to the first parameter of the first data packet.
  • the first parameter may be the unit PDB itself, or may be a parameter used to determine the unit PDB.
  • the unit PDB characterizing the first data packet may be a unit PDB or a parameter capable of characterizing the unit PDB.
  • the two adjacent nodes may be any two adjacent nodes in the wireless backhaul network, one of the two adjacent nodes is a child node, and the other node is a parent node of the child node.
  • first node For the specific description of the first node, reference may be made to the description of the first node in the method 100, and for the sake of brevity, no further description is provided here.
  • the unit PDB of the first data packet can approximately represent that the first data packet is between the first node and the first node The delay requirement to be transmitted between the parent nodes of the first node.
  • the first node determines the first parameter of the first data packet.
  • the first data packet Before sending the first data packet, as an example and not a limitation, at the adaptation layer, the first data packet is mapped to the corresponding DRB On the radio link layer control protocol (radio link control, RLC) layer, the DRB corresponding to the first data packet is mapped on the logical channel, so that the first data packet is sent based on the priority of the logical channel.
  • the first parameter of the first data packet may be used as a consideration to send the first data packet.
  • the manner in which the first node determines the first parameter of the first data packet and the manner in which the first node sends the first data packet according to the first parameter of the first data packet refer to the following detailed description.
  • the unit data packet delay budget of a data packet represents that the data packet is in any two of the wireless backhaul network.
  • the delay requirement for the transmission of two adjacent nodes is not the delay requirement of the prior art to indicate that the data packet is transmitted between the terminal device and the host node, and can more accurately characterize the data packet at two adjacent nodes Therefore, the node can effectively improve the data transmission performance by determining the first parameter for determining the unit data packet delay budget of the data packet and sending the data packet according to the first parameter.
  • the first parameter of the embodiment of the present application will be described in detail, and the manner of determining the unit PDB according to the first parameter will be described.
  • the first parameter of the first data packet includes: the remaining data packet delay budget of the first data packet and the hop count of the first transmission path, wherein the remaining data packet delay budget of the first data packet is the first The delay requirement for the data packet to be transmitted from the first node to the host node.
  • the first transmission path is between the first node and the host node starting from the first node and ending at the host node
  • the hop count of the first transmission path is the number of nodes that the first data packet passes through in the transmission process on the first transmission path.
  • the first node may further determine the unit PDB of the first data packet based on the first parameter of the first data packet.
  • the ratio of the remaining PDB of the first data packet to the number of hops of the first transmission path can be used as the unit PDB that characterizes the first data packet, and the remaining PDB of the first data packet is divided by the first transmission
  • the quotient of the number of hops of a path represents the unit PDB.
  • the quotient of the number of hops of the first transmission path divided by the remaining PDBs of the first data packet represents a parameter that can characterize the unit PDB. It means that the smaller the unit PDB.
  • the first node determines the first parameter of the first data packet
  • the unit of the packet is PDB. Therefore, the first data packet can be directly sent using the first parameter of the first data packet.
  • the first node When the first node is any wireless backhaul node of at least one wireless backhaul node, optionally, in S202, the first node receives a second message from a child node of the first node, the first The second message is used to determine the remaining data packet delay budget of the first data packet.
  • the second message includes time information (ie, time information 1) and delay information (ie, delay information 1), where the time information 1 is used to indicate that a child node of the first node receives the first data packet Or the time when the first data packet is sent, the delay information 1 is used to indicate the delay requirement for the first data packet to be transmitted from the child node of the first node to the host node.
  • time information ie, time information 1
  • delay information ie, delay information 1
  • the process of the first node determining the remaining PDB of the first data packet based on the method A1 can refer to the process of determining the remaining PDB of the first data packet based on the method 1A of the first node in method 100. .
  • the second message includes information indicating the time when the terminal-side device sends the first data packet.
  • the process of the first node determining the remaining PDBs of the first data packet based on the method A2 can refer to the process of determining the remaining PDBs of the first data packet based on the method 1B of the method 100 in method 100. .
  • the hop count of the first transmission path is configured by the host node for the first node.
  • the first node is any one of the at least one wireless backhaul node; and, the method further includes:
  • the first node receives a first message from a child node of the first node, the first message includes information indicating the number of hops, the number of hops in the first message is the number of hops of the first transmission path, or ,
  • the number of hops in the first message is the number of nodes that the first data packet passes through during transmission on the second transmission path, and the second transmission path is between the child node of the first node and the host node The transmission path starting from the child node of the first node and ending at the host node; and,
  • the method also includes, including:
  • the first node determines the number of hops of the first transmission path according to the first message.
  • the process of the first node determining the number of hops of the first transmission path based on the method A4 may refer to the process of determining the number of hops of the first transmission path based on the method 2B of the first node in the method 100. .
  • the first parameter of the first data packet includes: the total data packet delay budget of the first data packet and the hop count of the third transmission path, wherein the total data packet delay budget of the first data packet is the first The delay requirement for the data packet to be transmitted from the terminal-side device to the host node.
  • the hop count of the third transmission path is the number of nodes that the first data packet passes through during transmission on the third transmission path.
  • the third transmission path is a transmission path between the terminal-side device and the host node starting from the terminal-side device and ending at the host node.
  • the third transmission path is any one of at least one transmission path between the terminal device and the host node, and the first transmission path between the terminal device and the host node may be connected to the third transmission There are overlapping paths. When there is a multi-hop transmission path between the terminal device and the host node, the first transmission path and the third transmission path may not overlap.
  • the first node may further determine the unit PDB of the first data packet based on the first parameter of the first data packet.
  • the ratio of the total PDB to the number of hops of the third transmission path can be used as the unit PDB that characterizes the first data packet, and the quotient of the total PDB divided by the number of hops of the third transmission path indicates the unit PDB, the quotient of the number of hops of the third transmission path divided by the total PDB indicates a parameter that can characterize the unit PDB, and the larger the value of the parameter, the smaller the unit PDB.
  • the first node determines the first parameter of the first data packet
  • the unit of the packet is PDB. Therefore, the first data packet can be directly sent using the first parameter of the first data packet.
  • the total PDB may be based on a PDB (denoted as PDB1) indicating the delay requirement of the first data packet between the terminal device and the UPF network element and used to indicate that the first data packet is between the host node and the UPF network
  • PDB1 can be obtained from the existing pre-configured QoS parameters
  • PDB2 can be sent to the first node by the host node Obtained in signaling.
  • the total PDB may be obtained based on the reconfigured QoS parameters in the embodiments of the present application.
  • the number of hops of the third transmission path may be obtained from signaling sent by the host node.
  • the first parameter of the first data packet includes a unit data packet delay budget used to characterize the first data packet.
  • the first parameter of the first data packet itself is a unit data packet delay budget used to characterize the first data packet.
  • the first node may obtain the first parameter of the first data packet from the signaling sent by the host node.
  • the host node may send other air interface signaling such as radio resource control layer (radio resource control (RRC) signaling, media access control layer control unit (medium access control control element, MAC), etc. for Information indicating the PDB of the unit.
  • RRC radio resource control
  • MAC media access control control element
  • the first node may send the first data packet in two ways (denoted as mode C and mode D). Based on the above-mentioned first parameter, the process of sending the first data packet by the first node will be described.
  • the first node maps the first data packet on the first data radio bearer DRB corresponding to the first parameter
  • the first node sends the first data packet on the first DRB.
  • the first parameter of one data packet has a value of the first parameter, that is, the multiple values of the first parameter and the multiple
  • each value of the first parameter corresponds to each DRB.
  • the first node may select the number of the first parameter according to the first parameter of the first data packet.
  • the corresponding relationship between the values and the multiple DRBs determines the DRB (denoted as the first DRB) corresponding to the first parameter of the first data packet, so that the first node sends the first data on the first DRB package.
  • the DRB may be indicated by an identifier used to identify the DRB.
  • the correspondence between the multiple values of the first parameter and the multiple DRBs can be expressed by the correspondence between the multiple values of the first parameter and the identifiers of the multiple DRBs.
  • the first parameter includes the remaining PDB and the remaining hops
  • the first parameter includes the total PDB and the total number of hops
  • the corresponding relationship between the first parameter and the DRB for example, similar to the corresponding relationship between the two parameters and DRB presented in Table 1, or similar to that shown in Table 2 (The correspondence between two parameters in a group and DRB) can refer to the description of Table 1 or Table 2 in Method 100, the difference is that the remaining PDB and remaining hops in Table 1 or Table 2 and the corresponding values
  • the range is replaced with the total PDB and total hops and the corresponding value range.
  • the first parameter includes the unit PDB
  • the first parameter includes the remaining PDB and the remaining hops and the unit PDB can be further determined
  • the first parameter includes the total PDB and the total hops and the unit can be further determined
  • PDB you can refer to the correspondence between the unit PDB and DRB in Table 7.
  • each unit PDB belongs to a specific value range, and it can also be considered that each DRB corresponds to a value range related to the unit PDB.
  • the first data packet if the unit PDB of the first data packet satisfies a certain value range, the first data packet is mapped to the DRB corresponding to the data range (ie, the first DRB).
  • the first DRB may be the DRB identified by any DRB ID in Table 7.
  • the first parameter can be used as a newly added parameter in the 5QI QoS parameter list to form a new QoS parameter list, where the first parameter includes remaining PDB and remaining hops or total PDB Any one of the total hops or the unit PDB.
  • the multiple values of each parameter in the QoS parameters including the first parameter correspond to multiple values of 5QI, and the multiple values of 5QI correspond to multiple DRBs. In this way, based on the correspondence between the modified QoS parameters and 5QI With the correspondence between 5QI and DRB, the DRB corresponding to the data packet can be determined.
  • the first node receives correspondence information from the parent node or the host node of the first node, the The correspondence information is used to indicate the correspondence between the first parameter of the first data packet and the first DRB.
  • the relevant description may refer to the relevant description in the method 100, which will not be repeated here.
  • the first node sends the first data packet according to the first parameter, including:
  • the first node determines the priority of the first logical channel according to the first parameter, and the first data packet corresponds to the first logical channel;
  • the first node sends the first data packet according to the priority of the first logical channel.
  • the first node determines the corresponding DRB according to the QoS parameters of the first data packet, determines the corresponding logical channel (denoted as the first logical channel) according to the DRB, and determines the first parameter according to the first data packet The priority of the first logical channel.
  • the first data packet is sent according to the priority of the first logical channel.
  • the logical channel corresponding to the packet with a larger value of the remaining PDB / remaining hops ratio has a lower priority
  • the remaining PDB / remaining hops The logical channel corresponding to the data packet with a smaller value in the ratio has a higher priority.
  • different values of remaining PDB / remaining hops correspond to priorities of different logical channels.
  • the logical channel corresponding to the packet with a larger value of the ratio of the total PDB / total number of hops has a lower priority
  • the total PDB / total number of hops The logical channel corresponding to the data packet with a smaller value in the ratio has a higher priority.
  • different values of total PDB / total hops correspond to priorities of different logical channels.
  • the priority of the data packet of the unit PDB with a larger value is lower than the priority of the data packet of the unit PDB with a smaller value.
  • the first parameter when the first parameter includes the remaining PDB and the remaining hops, or the first parameter includes the total hops and the total PDB, in order to achieve less complexity and signaling overhead, the first parameter may be converted into a quantization parameter
  • the correspondence between the first parameter and DRB can be simply expressed as the correspondence between the quantization parameter and DRB.
  • the quantization parameter may be the unit PDB in the embodiment of the present application, or may be a quantization parameter generated based on other methods.
  • the first parameter includes the remaining PDB and the remaining hops.
  • the first node may fill a group of logical channels including the first logical channel in the order of priority of all logical channels in the group of logical channels, in order of priority Send the data packets in the logical channel of the group.
  • the priority of the first logical channel is higher, the first data packet is preferentially sent, and when the priority of the first logical channel is lower, the first data packet is delayed.
  • the method further includes:
  • the first node sends a third message to the parent node of the first node, where the third message includes information used to characterize the first parameter of the first data packet.
  • the parent node of the first node schedules transmission resources for the first node according to the third message.
  • the parent node of the first node sends information indicating the transmission resource to the first node.
  • the relevant description may refer to the description about uplink scheduling in the method 100, which will not be repeated here.
  • the second node is used as an example of a node that needs to send a data packet in downlink transmission
  • the second data packet is used as any example of a downlink data packet
  • the fourth transmission path is used as any task between the second node and the terminal device
  • a transmission path is used to describe the embodiments of the present application.
  • the second node is the host node or any one of the at least one wireless backhaul node.
  • the second node may determine the second parameter of the second data packet, where the second parameter of the second data packet includes the remaining PDB, the unit PER, or the second data packet of the second data packet. At least one of the hop counts of the four transmission paths, and then perform downlink scheduling on the second data packet according to the second parameter of the second data packet.
  • the remaining data packet delay budget of the second data packet is the delay requirement for the second data packet to be transmitted from the second node to the terminal device
  • the unit PER of the second data packet is the second data packet
  • the packet loss rate between two adjacent nodes, the number of hops of the fourth transmission path is the number of nodes that the second data packet passes through during transmission on the fourth transmission path, and the fourth transmission path is A transmission path between the second node and the terminal device starting from the second node and ending at the terminal device.
  • the second node not only performs downlink scheduling based on the second parameter of the second data packet, when the second node has multiple data packets to be sent, the second node also combines other information (eg, channel conditions , The amount of data that the second node needs to send, etc.) performs downlink scheduling.
  • the specific scheduling method can be implemented by a downlink scheduling algorithm.
  • the multiple data packets correspond to multiple logical channels, and each logical channel corresponds to at least one data packet.
  • Downlink scheduling behavior can be determined by the priority of the multiple logical channels, where the priority of each logical channel can be determined by
  • the first parameter of the data packet corresponding to the logical channel is characterized.
  • the first parameter of the multiple data packets may be quantized as a quantization parameter. For a specific method, reference may be made to the description of the quantization parameter in the uplink transmission.
  • the second parameter of the second data packet includes the remaining PDB of the second data packet
  • the second node may be based on a PDB (denoted as denoted as the delay requirement of the second data packet between the terminal device and the UPF network element PDB3) and the PDB (denoted as PDB4) difference between the host node and the UPF network element that represents the delay requirement of the second data packet determines the remaining PDB of the second data packet, where PDB3 can be Some pre-configured QoS parameters are obtained, and PDB4 can be obtained through signaling sent by the host node to the second node.
  • the remaining PDB of the second data packet may be obtained based on the reconfigured QoS parameters in the embodiment of the present application.
  • the second node When the second node is any wireless backhaul node of at least one wireless backhaul node, optionally, the second node receives a message from the parent node of the second node (marked as a fourth message), the The fourth message is used to determine the remaining data packet delay budget of the second data packet.
  • the fourth message may include all information for determining the remaining PDB of the second data packet, or may include partial information for determining the remaining PDB of the second data packet.
  • the fourth message may be carried in the header of the second data packet sent by the parent node of the second node.
  • the fourth message may be carried in a header of the second data packet in a medium access control (MAC) layer, an RLC layer, or an adaptation layer.
  • MAC medium access control
  • the fourth message may also be an independent message, and the fourth message is sent through the parent node of the second node, which is not limited in this embodiment of the present application.
  • the fourth message includes time information (denoted as time information 2) and delay information (denoted as delay information 2), where the time information 2 is used to indicate that the parent node of the second node receives the The time of the second data packet, and the delay information 2 is used to indicate the delay requirement of the second data packet transmitted from the parent node of the second node to the terminal device (recorded as historical remaining PDB2).
  • time information 2 is used to indicate that the parent node of the second node receives the The time of the second data packet
  • the delay information 2 is used to indicate the delay requirement of the second data packet transmitted from the parent node of the second node to the terminal device (recorded as historical remaining PDB2).
  • the parent node of the second node may be a host node or a wireless backhaul node.
  • the host node receives the second data packet when the host node receives The time when the mobile gateway receives the second data packet.
  • the second node determines the remaining PDB of the second data packet according to the fourth message and the time when the second node receives the second data packet.
  • the second data packet is determined from the second node's parent node according to the difference between the time when the second node receives the second data packet and the time when the second node's parent node receives the second data packet.
  • the delay used in the process of being transmitted to the terminal device, the difference between the remaining PDB2 through the history and the delay used in the process of obtaining the second data packet from the parent node of the second node to the terminal device The value determines the remaining PDB of the second data packet.
  • the parent node of the second node receives the second data packet at 8:00 5ms
  • the historical remaining PDB2 is 15ms
  • the second node receives the second data packet at 8 Point 10ms
  • the fourth message includes information indicating the time when the host node sends the second data packet.
  • the second node determines the remaining PDB of the second data packet based on the fourth message, the time when the second node received the second data packet, and the total PDB of the second data packet, where,
  • the total PDB of the second data packet is the delay requirement for the first data packet to be transmitted from the host node to the terminal device. Specifically, it is determined that the second data packet is transmitted from the host node to the second node according to the difference between the time when the second node receives the second data packet and the time when the host node sends the second data packet
  • the used delay can be determined by subtracting the delay used by the second data packet from the host node to the second node by subtracting the total PDB from the total PDB.
  • the total PDB is 20 ms
  • the time the second node receives the second data packet is 8:00 10 ms
  • the time the host node sends the second data packet is 8:00
  • the total PDB is 20 ms
  • the second parameter of the second data packet includes the number of hops of the fourth transmission path
  • the number of hops of the fourth transmission path is configured by the host node for the second node.
  • the host node may send information indicating the number of hops of the fourth transmission path through RRC signaling, MAC CE, and other air interface signaling.
  • the other wireless backhaul nodes may send the host node a message indicating the fourth transmission path
  • the hop count information is forwarded or transparently transmitted to the second node.
  • the host node configures the hop number of each transmission path for the second node.
  • the second node determines the hops on the fourth transmission path according to the hop count (denoted as the total hop count) and the cumulative hop count of the transmission path (denoted as the fifth transmission path) between the host node and the terminal device Number (recorded as remaining hops).
  • the fifth transmission path is a path starting from the host node and ending at the terminal device. All nodes configured on the fifth transmission path include all nodes configured on the fourth transmission path, that is, the The node where the fifth transmission path is configured includes the terminal device, the node between the terminal device and the second node, the second node, the node between the second node and the host node, and the host node.
  • the cumulative hop count is the number of nodes that the third data packet passes through from the host node.
  • each node passing through needs to maintain another piece of information representing the cumulative hop count.
  • the second data packet passes through a node, it needs to be The cumulative hop count increases by one. In this way, the second node can determine the remaining hops according to the accumulated hops and the total hops.
  • the second node receives a fifth message from the parent node of the second node, and determines the number of hops of the fourth transmission path according to the fifth message, where the fifth message includes Information, the number of hops in the fifth message is the number of hops in the fourth transmission path, or the number of hops in the fifth message is the node that the second data packet passed through during the transmission on the sixth transmission path
  • the sixth transmission path is a transmission path between the parent node of the second node and the terminal device, starting from the parent node of the second node and ending at the terminal device.
  • the host node or system may only configure the number of hops on a transmission path between the terminal device and the host node (total number of hops for short).
  • the host node or the system may configure the total hops of each transmission path on the multiple transmission paths between the terminal device and the host node.
  • the second data packet is transmitted from the host node to the child node of the host node, minus 1 from the total number of hops, to obtain the hop number of the transmission path between the child node of the host node and the terminal device, and continue the downlink transmission
  • the second data packet is transmitted from the child node of the host node to the child node of the child node of the final host node, and continues to subtract 1 from the remaining hops to obtain the child node of the child node of the host node and the The number of hops in the transmission path between terminal devices.
  • each node operates in this manner until the second data packet is transmitted to the terminal device.
  • the parent node of the second node subtracts 1 from the number of hops on the sixth transmission path to obtain the The hop number of the fourth transmission path is sent to the second node through the fifth message; when the hop number in the fifth message is the hop number on the sixth transmission path, the second node The hop count of the fourth transmission path is obtained by subtracting 1 from the hop count of the transmission path.
  • FIG. 5 shows an apparatus 500 for a wireless backhaul network provided by an embodiment of the present application.
  • the apparatus 500 may be a first node, a child node of the first node, or a parent node of the first node, or may be a A chip in a node, a chip in a child node of the first node, or a chip in a parent node of the first node.
  • the device 500 includes a transceiver unit 510 and a processing unit 520.
  • the apparatus 500 is used to execute various processes and steps corresponding to the first node in the method 100 described above.
  • the processing unit 520 is configured to determine a first parameter of the first data packet.
  • the first parameter of the first data packet includes a remaining data packet delay budget of the first data packet.
  • the device is a terminal-side device or the at least one wireless device.
  • the remaining data packet delay budget of the first data packet is the delay requirement for the first data packet to be transmitted from the device to the host node;
  • the transceiver unit 510 is configured to send the first data packet to the parent node of the device according to the first parameter of the first data packet.
  • the processing unit 520 may be used to perform steps S110 and S120 in the method 100, and the transceiver unit 510 may be used to perform steps S101, S131, and S133 in the method 100.
  • the apparatus 500 is used to execute various processes and steps corresponding to the parent node of the first node in the above method 100.
  • the transceiver unit 510 is configured to receive a third message from the first node, where the third message includes information characterizing the first parameter of the first data packet, and the first parameter of the first data packet includes the first data packet
  • the remaining data packet delay budget the first node is a terminal-side device or any one of the at least one wireless backhaul node, and the remaining data packet delay budget of the first data packet is the first data The delay requirement for the packet to be transmitted from the first node to the host node;
  • the processing unit 520 is configured to schedule transmission resources for the first node according to the third message
  • the transceiver unit 510 is further configured to: receive the first data packet from the first node on the transmission resource.
  • the processing unit 520 may be used to perform step S132 in the method 100, and the transceiver unit 510 may be used to perform steps S131 and S133 in the method 100.
  • the apparatus 500 is used to execute various processes and steps corresponding to the child nodes of the first node in the above method 100.
  • the processing unit 520 is configured to generate a second message, and the second message is used to determine a remaining data packet delay budget of the first data packet.
  • the remaining data packet delay budget of the first data packet is A node is transmitted to the delay requirement of the host node, the first node is a terminal-side device or any one of the at least one wireless backhaul node;
  • the transceiver unit 510 is configured to send a second message to the first node.
  • the transceiver unit 510 may be used to execute step S101 in the method 100.
  • the apparatus 500 is used to execute various processes and steps corresponding to the first node in the above method 200.
  • the processing unit 520 is configured to determine a first parameter of the first data packet, and the first parameter of the first data packet is used to determine a unit data packet delay budget used to characterize the first data packet.
  • the unit data packet delay budget represents the delay requirement for the first data packet to be transmitted between two adjacent nodes.
  • the device is a terminal-side device or any one of the at least one wireless backhaul node;
  • the transceiver unit 510 is configured to send the first data packet to the parent node of the device according to the first parameter of the first data packet.
  • the processing unit 520 may be used to perform steps S210 and S220 in the method 200, and the transceiver unit 510 may be used to perform steps S201, S202, S231, and S233 in the method 200.
  • the device 500 here is embodied in the form of a functional unit.
  • the term "unit” here may refer to an application-specific integrated circuit (application specific integrated circuit, ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor or a group) for executing one or more software or firmware programs Processor, etc.) and memory, merge logic, and / or other suitable components that support the described functions.
  • ASIC application-specific integrated circuit
  • the apparatus 500 may specifically be the first node, the parent node of the first node, or the child node of the first node in the foregoing embodiment.
  • the apparatus 500 may be used to perform the above method implementation In the example, the various processes and / or steps corresponding to the first node, the parent node of the first node, or the child nodes of the first node are not repeated here to avoid repetition.
  • the device 500 of each of the above solutions has the function of implementing the corresponding steps performed by the first node, the parent node of the first node, or the child nodes of the first node in the above method; the functions may be implemented by hardware, or the corresponding steps may be performed by hardware Software Implementation.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit may be replaced by a transmitter and a receiver, and other units, such as a processing unit, may be replaced by a processor, and each method embodiment is executed separately.
  • the transceiver unit in the device 500 may also be composed of a sending unit and a receiving unit. For performing operations related to receiving, the function of the sending and receiving unit may be understood as a receiving operation performed by the receiving unit, and for performing operations related to sending, The function of the transceiver unit can be understood as the sending operation performed by the sending unit.
  • the device in FIG. 5 may also be a chip or a chip system, for example, a system on chip (SoC).
  • the transceiver unit may be a transceiver circuit of the chip, which is not limited herein.
  • FIG. 6 shows another apparatus 600 for an Ethernet data communication method provided by an embodiment of the present application.
  • the apparatus 600 may specifically be the first node, the parent node of the first node, or the child node of the first node in the foregoing embodiments, and may be used to perform the operations with the first node and the first node in the foregoing method embodiments.
  • the device 600 includes a processor 610, a transceiver 620, and a memory 630.
  • the processor 610, the transceiver 620 and the memory 630 communicate with each other through an internal connection path, the processor 610 can implement the function of the processing unit 520 in various possible implementation manners in the apparatus 500, and the transceiver 620 can implement various in the apparatus 500 The function of the transceiver unit 510 in a possible implementation manner.
  • the memory 630 is used to store instructions, and the processor 610 is used to execute the instructions stored in the memory 630, or the processor 610 can call these stored instructions to implement the functions of the processor 520 in the apparatus 500 to control the transceiver 620 to send signals and / or receive signal.
  • the memory 630 may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor 610 may be used to execute the instructions stored in the memory, and when the processor 610 executes the instructions stored in the memory, the processor 610 is used to execute the above-mentioned first node, the parent node of the first node or the first node Each step and / or process of the method embodiment corresponding to the child node of a node.
  • the processor of the above device may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits. (ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software units in the processor.
  • the software unit may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor executes the instructions in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they will not be described in detail here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线回传网络的数据传输方法和装置。在该方法中,第一节点确定表示第一数据包从该第一节点被传输至宿主节点的时延需求的剩余数据包时延预算,进而,根据该第一数据包的剩余数据包时延预算发送该第一数据包。由于第一数据包的剩余数据包时延预算能够较为准确地表征该第一数据包在该第一节点到该宿主节点之间的传输属性,因此,该第一节点通过确定的该第一数据包的剩余数据包时延预算发送该数据包,可以有效地提高数据的传输性能。

Description

用于无线回传网络的数据传输方法和装置
本申请要求于2018年10月29日提交中国专利局、申请号为201811267452.0、申请名称为“用于无线回传网络的数据传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及通信领域中用于无线回传网络的数据传输方法和装置。
背景技术
无线回传网络例如接入回传一体化(integrated access and backhaul,IAB)网络包括宿主节点和无线回传节点,终端设备通过无线回传节点与宿主节点连接。IAB网络支持多跳和多连接组网,因此,在终端设备和宿主节点之间可能存在多条传输路径。在某一条传输路径上,终端设备和为该终端设备提供无线接入服务的无线回传节点之间、无线回传节点之间、无线回传节点和为该无线回传节点提供回传服务的宿主节点之间有确定的层级关系,其中,为无线回传节点提供回传服务的节点称为该无线回传节点或该终端设备的父节点,或,为终端设备提供接入服务的节点称为该终端设备的父节点,无线回传节点可视为该无线回传节点的父节点的子节点,终端设备可视为该终端设备的父节点的子节点。
在IAB网络的上行传输中,父节点为子节点调度传输资源,子节点向父节点发送数据。子节点基于待传输的数据的服务质量(quality of service,QoS)将该待传输的数据映射至至少一个数据无线承载(data radio bearer,DRB)上,该至少一个DRB对应至少一个逻辑信道,一般情况下,一个DRB对应一个逻辑信道;子节点通过缓存状态上报(buffer status report,BSR)将该至少一个逻辑信道中的数据量上报给该子节点的父节点来请求传输资源,该父节点为该子节点调度传输资源。在该传输资源有限的情况下,该子节点可以根据每个逻辑信道的优先级等因素有选择性地优先处理优先级较高的逻辑信道中的数据。此外,若该父节点与包括该子节点在内的多个子节点连接,该多个子节点同时向该父节点请求传输资源,则该父节点可以根据该多个子节点的数据的优先级(例如,基于数据的QoS)确定优先为哪些子节点调度传输资源。
综上,无论是子节点确定优先处理哪些数据,还是父节点确定优先为哪些子节点调度传输资源,都需要考虑数据的QoS。但是,表征数据的QoS参数中的有些参数表示的是终端设备与宿主节点之间或与核心网中的用户面功能网元之间的参数需求,例如,数据包时延预算表示的是数据包在终端设备到核心网中的用户面功能网元之间的时延需求。在IAB网络中,大部分终端设备与宿主节点之间存在至少一个无线回传节点,无论是子节点基于现有的QoS的参数确定优先处理哪些数据,还是该子节点的父节点基于现有的QoS的参数调度资源,使得最终的结果可能都不准确,影响了数据的传输性能。
因此,需要提供一种技术,可以有效地提高数据的传输性能。
发明内容
本申请提供一种用于无线回传网络的数据传输方法和装置,可以有效地提高数据的传输性能。
第一方面,提供了一种用于无线回传网络的数据传输方法,所述无线回传网络包括至少一个无线回传节点和宿主节点,所述方法包括:
第一节点确定第一数据包的第一参数,所述第一数据包的第一参数包括所述第一数据包的剩余数据包时延预算,所述第一节点是终端侧设备或所述至少一个无线回传节点中的任一个无线回传节点,所述第一数据包的剩余数据包时延预算是所述第一数据包从所述第一节点被传输至所述宿主节点的时延需求;
所述第一节点根据所述第一数据包的第一参数,向所述第一节点的父节点发送所述第一数据包。
因此,本申请实施例的用于无线回传网络的数据传输方法,数据包(例如,第一数据包)的剩余数据包时延预算表示的是该数据包在当前需要发送该数据包的节点(例如,第一节点)与宿主节点之间被传输的时延需求,并不完全是现有技术的表示该数据包在该终端设备与核心网中的用户面功能网元之间被传输的时延需求,能够较为准确地表征该数据包在该节点到该宿主节点之间的传输属性,因此,该节点通过确定的该数据包的剩余数据包时延预算发送该数据包,可以有效地提高数据的传输性能。
结合第一方面,在第一方面的某些实现方式中,所述第一节点根据所述第一数据包的第一参数,向所述第一节点的父节点发送所述第一数据包,包括:
所述第一节点将所述第一数据包映射在对应于所述第一数据包的第一参数的第一数据无线承载DRB上;
所述第一节点在所述第一DRB上发送所述第一数据包。
在本申请实施例中,多个数据包的第一参数与多个DRB存在对应关系,一个数据包的第一参数具有第一参数的一个取值,也就是说,第一参数的多个取值与多个DRB存在对应关系,第一参数的每个取值对应每个DRB,该第一节点在发送该第一数据包之前,可以根据该第一数据包的第一参数,从第一参数的多个取值与多个DRB的对应关系中确定与该第一数据包的第一参数对应的DRB(记为第一DRB),从而,该第一节点在该第一DRB上发送该第一数据包。
可选地,DRB可以通过用于标识DRB的标识来指示。
因此,第一参数的多个取值与多个DRB的对应关系可以通过第一参数的多个取值与多个DRB的标识的对应关系表示。
本申请实施例的用于无线回传网络的数据传输方法,由于节点(例如,第一节点)在DRB上所传输的数据包在当前链路上对应的QoS需求(例如,当前链路上的PDB需求或PER需求)相接近,从而可以保证每个DRB中具有相近QoS需求的数据包在数据传输过程中做相同的处理,避免DRB中存在某个低时延或高可靠需求的业务影响其他数据的传输性能,此外,由于第一参数能够较为准确地表征该数据包在该节点到该宿主节点之间的传输属性,因此,该节点进一步根据数据包(例如,第一数据包)的第一参数确定该数据 包对应的DRB(例如,第一DRB),将该数据包映射在对应的DRB上,进而,在该DRB上发送该数据包,可以进一步有效地提高数据的传输性能。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述第一节点接收来自所述第一节点的父节点或宿主节点的对应关系信息,所述对应关系信息用于指示所述第一数据包的第一参数与所述第一DRB之间的对应关系。
其中,若宿主节点发送该对应关系信息,该第一节点与该宿主节点之间存在其他无线回传节点,则其他无线回传节点可以将该对应关系信息转发或透传给该第一节点。该其他无线回传节点为该第一节点的上级节点(例如,该第一节点的父节点,或,该第一节点父节点的父节点)。
此外,该对应关系信息中不仅可以包括第一数据包的第一参数与该第一DRB之间的对应关系,还可以包括第一参数的其他取值与DRB之间的对应关系,即,该对应关系信息可以包括第一参数的多个取值与多个DRB的对应关系。
结合第一方面,在第一方面的某些实现方式中,所述第一节点根据所述第一数据包的第一参数,向所述第一节点的父节点发送所述第一数据包,包括:
所述第一节点根据所述第一数据包的第一参数确定第一逻辑信道的优先级,所述第一数据包对应所述第一逻辑信道;
所述第一节点根据所述第一逻辑信道的优先级发送所述第一数据包。
在本申请实施例中,该第一节点根据该第一数据包的QoS参数确定对应的DRB,根据该DRB确定对应的第一逻辑信道,根据该第一数据包的第一参数确定该第一逻辑信道的优先级,从而,根据该第一逻辑信道的优先级发送该第一数据包。
可选地,当第一参数包括剩余PDB时,取值较大的剩余PDB的数据包对应的逻辑信道的优先级较低,取值较小的剩余PDB的数据包对应的逻辑信道的优先级较高。
可选地,当第一参数包括剩余跳数时,取值较大的剩余跳数的数据包对应的逻辑信道的优先级较高,取值较小的剩余跳数的数据包对应的逻辑信道的优先级较低。
可选地,当第一参数包括剩余PDB和剩余跳数时,剩余PDB/剩余跳数的比值中取值较大的数据包对应的逻辑信道的优先级较低,剩余PDB/剩余跳数的比值中取值较小的数据包对应的逻辑信道的优先级较高。
本申请实施例的用于无线回传网络的数据传输方法,由于逻辑信道的优先级可以准确地表征节点(例如,第一节点)上待传输的数据的QoS需求(例如,时延需求),此外,第一参数能够较为准确地表征该数据包在该节点到该宿主节点之间的传输属性,因此,该节点根据数据包(例如,第一数据包)的第一参数确定该数据包对应的逻辑信道(例如,第一逻辑信道)的优先级,进而,根据该第一逻辑信道的优先级发送该数据包,可以进一步有效地提高数据的传输性能。
结合第一方面,在第一方面的某些实现方式中,所述第一数据包的第一参数还包括第一传输路径的跳数,所述第一传输路径的跳数是所述第一数据包在所述第一传输路径上被传输过程中经过的节点的数量,所述第一传输路径是所述第一节点与所述宿主节点之间的以所述第一节点为起点且以所述宿主节点为终点的传输路径。
其中,该第一传输路径上的跳数能够表示该第一节点与宿主节点之间或该第一节点与终端设备之间的距离。
在本申请实施例中,该第一传输路径的跳数有多种解释。假设该第一节点与该宿主节点之间的无线回传节点的个数为N,则该第一传输路径的跳数可以是该第一节点与该宿主节点之间的无线回传节点的个数N,也可以是该第一节点与该宿主节点之间的无线回传节点的个数和该第一节点之和N+1,也可以是该第一节点与该宿主节点之间的无线回传节点的个数和该宿主节点之和N+1,也可以是该第一节点、该宿主节点以及该第一节点与该宿主节点之间的无线回传节点的个数之和N+2,本申请实施例不做任何限定。
可选地,该第一传输路径的跳数是该第一数据包在该第一传输路径上被传输过程中经过的传输链路的数量。
其中,传输链路表示的相邻两个节点之间的链路,该第一传输路径包括的传输链路的数量也可以表示该第一传输路径的跳数。
本申请实施例的用于无线回传网络的数据传输方法,由于数据包(例如,第一数据包)在某条传输路径(例如,第一传输路径)上的跳数能够表示节点与宿主节点之间的距离,能够较为准确地表征数据包在该节点与该宿主节点之间的传输属性,因此,该节点通过进一步确定数据包在传输路径上的跳数,并且,基于该传输路径上的跳数发送数据包,可以更有效地提高数据的传输性能。
结合第一方面,在第一方面的某些实现方式中,所述第一传输路径的跳数是所述宿主节点为所述第一节点配置的。
结合第一方面,在第一方面的某些实现方式中,所述第一节点为所述至少一个无线回传节点中的任一个无线回传节点;以及,所述方法还包括:
所述第一节点接收来自所述第一节点的子节点的第一消息,所述第一消息包括用于指示跳数的信息,所述第一消息中的跳数是所述第一传输路径的跳数,或,所述第一消息中的跳数是所述第一数据包在第二传输路径上被传输过程中经过的节点的数量,所述第二传输路径是所述第一节点的子节点与所述宿主节点之间的以所述第一节点的子节点为起点且以所述宿主节点为终点的传输路径;以及,
所述第一节点确定第一数据包的第一参数,包括:
所述第一节点根据所述第一消息确定所述第一传输路径的跳数。
结合第一方面,在第一方面的某些实现方式中,所述第一节点为所述至少一个无线回传节点中的任一个无线回传节点;以及,
所述第一节点确定第一数据包的第一参数,包括:
所述第一节点接收来自所述第一节点的子节点的第二消息,所述第二消息用于确定所述第一数据包的剩余数据包时延预算。
结合第一方面,在第一方面的某些实现方式中,所述第二消息包括时间信息和时延信息,其中,所述时间信息用于指示所述第一节点的子节点接收到所述第一数据包的时间或发送所述第一数据包的时间,所述时延信息用于指示所述第一数据包从所述第一节点的子节点被传输至所述宿主节点的时延需求。
结合第一方面,在第一方面的某些实现方式中,所述第二消息包括用于指示所述终端侧设备发送所述第一数据包的时间的信息。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述第一节点向所述第一节点的父节点发送第三消息,所述第三消息包括用于表征所 述第一数据包的第一参数的信息。
该第一数据包的第一参数可以反映该第一数据包对应的逻辑信道的优先级。
其中,用于表征该第一参数的信息可以包括该第一参数本身,当该第一参数包括多个参数时,用于表征该第一参数的信息也可以包括基于该多个参数量化的一个量化参数,该量化参数可以综合表征该第一参数。
可选地,该第三消息还包括用于指示一组逻辑信道的数据量的信息,其中,该组逻辑信道包括该第一数据包对应的逻辑信道以及其他数据包对应的逻辑信道。
可选地,该第三消息还包括该组逻辑信道中除该第一数据包以外的其他数据包中每个数据包的第一参数。
可选地,该第三信息可以是缓存状态上报(buffer status report,BSR)。
可选地,当该第一节点具有多组逻辑信道时,该第三消息还可以包括多组逻辑信道中每组逻辑信道的数据量的信息。此种情况下,该第三消息还可以包括该多组逻辑信道中每组逻辑信道中每个数据包的第一参数。
可选地,当该第一节点判断该第一数据包的第一参数低于预设阈值时,该第一节点可以优先触发发送该第一数据包对应的逻辑信道所属的逻辑信道组的第三消息的动作,使得该第一节点的父节点可以提前为该第一节点调度传输资源。
因此,本申请实施例的用无线回传网络的数据传输方法,节点(例如,第一节点)通过向该节点的父节点上报数据包(例如,第一数据包)的第一参数,使得该节点的父节点可以根据该数据包的第一参数为该节点调度传输资源,优化了上行调度的方式,可以有效地提高上行调度的准确性,进而,提高数据的传输性能。
结合第一方面,在第一方面的某些实现方式中,所述第一数据包的第一参数还包括:第一数据包的单位丢包率,所述第一数据包的单位丢包率表示所述第一数据包在相邻两个节点之间的丢包率。
其中,丢包率表示未正确传输的数据包的数量占发送数据组的比率上限。此外,相邻两个节点可以是无线回传网络中任意两个相邻节点,该两个相邻节点中一个节点为子节点,另一个节点为该子节点的父节点。
因此,本申请实施例的用于无线回传网络的数据传输方法,数据包(例如,第一数据包)的单位丢包率表示的是该数据包在相邻两个节点之间被传输的丢包率,并不完全是现有技术的表示该数据包在该终端设备与宿主节点之间被传输的丢包率,能够较为准确地表征该数据包在该相邻两个节点之间的传输属性,因此,节点(例如,第一节点)通过确定的该数据包的单位丢包率发送该数据包,可以有效地提高数据的传输性能。
第二方面,提供了一种用于无线回传网络的数据传输方法,所述无线回传网络包括至少一个无线回传节点和宿主节点,所述方法包括:
第一节点的父节点接收来自所述第一节点的第三消息,所述第三消息包括用于表征第一数据包的第一参数的信息,所述第一数据包的第一参数包括所述第一数据包的剩余数据包时延预算,所述第一节点是终端侧设备或所述至少一个无线回传节点中的任一个无线回传节点,所述第一数据包的剩余数据包时延预算是所述第一数据包从所述第一节点被传输至所述宿主节点的时延需求;
所述第一节点的父节点根据所述第三消息,为所述第一节点调度传输资源;
所述第一节点的父节点在所述传输资源上接收来自所述第一节点的所述第一数据包。
在本申请实施例张,当第一节点上报包括该第一数据包在内的多个待传输的数据包时,该第一节点的父节点不仅根据该第一数据包的第一参数调度传输资源,也需要根据其他数据包的第一参数为该第一节点调度传输资源。因此,这里的传输资源不仅仅用于传输第一数据包的数据传输,也用于其他数据包的数据传输。
因此,本申请实施例的用无线回传网络的数据传输方法,节点(例如,第一节点)通过向该节点的父节点上报数据包(例如,第一数据包)的第一参数,使得该节点的父节点可以根据该数据包的第一参数为该节点调度传输资源,优化了上行调度的方式,可以有效地提高上行调度的准确性,进而,提高数据的传输性能。
结合第二方面,在第二方面的某些实现方式中,所述第一数据包的第一参数还包括第一传输路径的跳数,所述第一传输路径的跳数是所述第一数据包在所述第一传输路径上被传输过程中经过的节点的数量,所述第一传输路径是所述第一节点与所述宿主节点之间的以所述第一节点为起点且以所述宿主节点为终点的传输路径。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述第一节点的父节点向所述第一节点发送对应关系信息,所述对应关系信息用于指示所述第一数据包的第一参数与第一数据无线承载DRB之间的对应关系,所述第一DRB用于承载所述第一数据包。
第三方面,提供了一种用于无线回传网络的数据传输方法,所述无线回传网络包括至少一个无线回传节点和宿主节点,其特征在于,所述方法包括:
第一节点的子节点生成第二消息,所述第二消息用于确定第一数据包的剩余数据包时延预算,所述第一数据包的剩余数据包时延预算是所述第一数据包从所述第一节点被传输至所述宿主节点的时延需求,所述第一节点是终端侧设备或所述至少一个无线回传节点中的任一个无线回传节点;
所述第一节点的子节点向所述第一节点发送第二消息。
结合第三方面,在第三方面的某些实现方式中,所述第二消息包括时间信息和时延信息,其中,所述时间信息用于指示所述第一节点的子节点接收到所述第一数据包的时间或发送所述第一数据包的时间,所述时延信息用于指示所述第一数据包从所述第一节点的子节点被传输至所述宿主节点的时延需求。
结合第三方面,在第三方面的某些实现方式中,所述第二消息包括用于指示终端侧设备发送所述第一数据包的时间的信息。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:
所述第一节点的子节点向所述第一节点发送第一消息,所述第一消息包括用于指示跳数的信息,所述第一消息中的跳数是第一传输路径的跳数,或,所述第一消息中的跳数是所述第一数据包在第二传输路径上被传输过程中经过的节点的数量,所述第一传输路径是所述第一节点与所述宿主节点之间的以所述第一节点为起点且以所述宿主节点为终点的传输路径,所述第二传输路径是所述第一节点的子节点与所述宿主节点之间的以所述第一节点的子节点为起点且以所述宿主节点为终点的传输路径。
第四方面,提供了一种用于无线回传网络的数据传输方法,所述无线回传网络包括至少一个无线回传节点和宿主节点,其特征在于,所述方法包括:
第一节点确定第一数据包的第一参数,所述第一数据包的第一参数用于确定用于表征所述第一数据包的单位数据包时延预算,所述第一数据包的单位数据包时延预算表示所述第一数据包在相邻两个节点之间被传输的时延需求,所述第一节点是终端侧设备或所述至少一个无线回传节点中的任一个无线回传节点;
所述第一节点根据所述第一数据包的第一参数,向所述第一节点的父节点发送所述第一数据包。
其中,相邻两个节点可以是无线回传网络中任意两个相邻节点,该两个相邻节点中一个节点为子节点,另一个节点为该子节点的父节点。该第一数据包的单位PDB可以近似表示该第一数据包在该第一节点与该第一节点的父节点之间被传输的时延需求。
因此,本申请实施例的用于无线回传网络的数据传输方法,数据包(例如,第一数据包)的单位数据包时延预算的表示的是该数据包在无线回传网络中任意两个相邻节点被传输的时延需求,并不是现有技术的表示该数据包在终端设备与宿主节点之间被传输的时延需求,能够较为准确地表征该数据包在相邻两个节点之间的传输属性,因此,节点通过确定用于确定该数据包的单位数据包时延预算的第一参数,根据该第一参数发送该数据包,可以有效地提高数据的传输性能。
结合第四方面,在第四方面的某些实现方式中,所述第一节点根据所述第一数据包的第一参数,向所述第一节点的父节点发送所述第一数据包,包括:
所述第一节点将所述第一数据包映射在对应于所述第一数据包的第一参数的第一数据无线承载DRB上;
所述第一节点在所述第一DRB上发送所述第一数据包。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:
所述第一节点接收来自所述第一节点的父节点或宿主节点的对应关系信息,所述对应关系信息用于指示所述第一数据包的第一参数与所述第一DRB之间的对应关系。
结合第四方面,在第四方面的某些实现方式中,所述第一节点根据所述第一数据包的第一参数,向所述第一节点的父节点发送所述第一数据包,包括:
所述第一节点根据所述第一数据包的第一参数确定第一逻辑信道的优先级,所述第一数据包对应所述第一逻辑信道;
所述第一节点根据所述第一逻辑信道的优先级发送所述第一数据包。
结合第四方面,在第四方面的某些实现方式中,所述第一数据包的第一参数包括:
所述第一数据包的剩余数据包时延预算和第一传输路径的跳数,其中,
所述第一数据包的剩余数据包时延预算是所述第一数据包从所述第一节点被传输至所述宿主节点的时延需求,所述第一传输路径的跳数是所述第一数据包在所述第一传输路径上被传输过程中经过的节点的数量,所述第一传输路径是所述第一节点与所述宿主节点之间的以所述第一节点为起点且以所述宿主节点为终点的传输路径。
结合第四方面,在第四方面的某些实现方式中,所述第一传输路径的跳数是所述宿主节点为所述第一节点配置的。
结合第四方面,在第四方面的某些实现方式中,所述第一节点为所述至少一个无线回传节点中的任一个无线回传节点;以及,所述方法还包括:
所述第一节点接收来自所述第一节点的子节点的第一消息,所述第一消息包括用于指 示跳数的信息,所述第一消息中的跳数是所述第一传输路径的跳数,或,所述第一消息中的跳数是所述第一数据包在第二传输路径上被传输过程中经过的节点的数量,所述第二传输路径是所述第一节点的子节点与所述宿主节点之间的以所述第一节点的子节点为起点且以所述宿主节点为终点的传输路径;以及,
所述方法还包括,包括:
所述第一节点根据所述第一消息确定所述第一传输路径的跳数。
结合第四方面,在第四方面的某些实现方式中,所述第一节点为所述至少一个无线回传节点中的任一个无线回传节点;以及,
所述方法还包括:
所述第一节点接收来自所述第一节点的子节点的第二消息,所述第二消息用于确定所述第一数据包的剩余数据包时延预算。
结合第四方面,在第四方面的某些实现方式中,所述第二消息包括时间信息和时延信息,其中,所述时间信息用于指示所述第一节点的子节点接收到所述第一数据包的时间间或发送所述第一数据包的时间,所述时延信息用于指示所述第一数据包从所述第一节点的子节点被传输至所述宿主节点的时延需求。
结合第四方面,在第四方面的某些实现方式中,所述第二消息包括用于指示所述终端侧设备发送所述第一数据包的时间的信息。
结合第四方面,在第四方面的某些实现方式中,所述第一数据包的第一参数包括:
所述第一数据包的总数据包时延预算和第三传输路径上的跳数,其中,
所述第一数据包的总数据包时延预算是所述第一数据包从所述终端侧设备被传输至所述宿主节点的时延需求,所述第三传输路径是所述终端侧设备与所述宿主节点之间的以所述终端侧设备为起点且以所述宿主节点为终点的传输路径,所述第三传输路径的跳数是所述第一数据包在所述第三传输路径上被传输过程中经过的节点的数量。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:
所述第一节点向所述第一节点的父节点发送第三消息,所述第三消息包括用于表征所述第一数据包的第一参数的信息。
第五方面,提供了一种用于无线回传网络的装置,用于执行上述任一方面中任意可能的实现方式中的方法。具体地,该装置包括用于执行上述任一方面中的任一种可能的实现方式中的方法的单元。
第六方面,提供了另一种用于无线回传网络的装置,该装置包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,使得该处理器执行上述任一方面中的任一种可能的实现方式中的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述各方面中的方法。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述各方面中的方法的指令。
第九方面,提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输 入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各方面中的方法。
附图说明
图1是应用于本申请实施例的一种通信系统的示意图。
图2是应用于本申请实施例的另一种通信系统的示意图。
图3是本申请实施例的用于无线回传网络的数据传输方法的示意性交互图。
图4是本申请实施例的另一用于无线回传网络的数据传输方法的示意性交互图。
图5是本申请实施例的用于无线回传网络的装置的示意性框图。
图6是本申请实施例的另一用于无线回传网络的装置的示意图结构图。
具体实施方式
在本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
下面将结合附图,对本申请中的技术方案进行描述。
相较于第四代移动通信系统,第五代移动通信系统(5th-generation,5G)针对网络各项性能指标,全方位得都提出了更严苛的要求。例如,容量指标提升1000倍,更广的覆盖需求、超高可靠超低时延等。一方面,考虑到高频载波频率资源丰富,在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署小站,相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案;另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。
为了进一步降低部署成本,提高部署灵活性,5G引入了接入回传一体化(integrated access and backhaul,IAB)技术,其接入链路(access link)和回传链路(backhaul link)皆采用无线传输方案,避免光纤部署。
基于IAB技术的无线回传网络例如IAB网络包括无线回传节点和宿主节点,终端设备可以通过无线回传节点与宿主节点连接,在IAB网络的部分链路中,终端设备也可以通过无线空口与宿主节点连接。在上行传输中,终端设备通过无线回传节点将数据传输至宿主节点,在下行传输中,宿主节点通过无线回传节点将数据传输至终端设备。下面,对本申请实施例的IAB网络中的相关术语做一介绍。
无线回传节点、宿主节点
本申请实施例中,将支持一体化的接入和回传的节点称为无线回传节点。在LTE通 信系统中,该无线回传节点又可以称为中继节点(relay node,RN),在5G中,无线回传节点又可以称为IAB节点(IAB node)。为便于描述,下面以IAB节点为例进行说明。
IAB节点可以为终端设备提供无线接入服务,该终端设备的数据(可以包括用户面数据和控制面信令)由IAB节点通过无线回传链路连接到宿主节点传输。
在本申请实施例中,宿主节点又称为IAB宿主(IAB donor)或者宿主基站(donor gNodeB,DgNB)。具体地,DgNB可以是一个具有完整基站功能的接入网网元,也可以是包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离形态的接入网网元。DgNB连接到为终端设备服务的核心网网元,例如,连接到5G核心网(5G core,5GC),并为IAB节点提供无线回传功能。为便于表述,本申请实施例将宿主节点的集中式单元简称为宿主CU(donor CU),将宿主节点的分布式单元简称为宿主DU(donor DU),其中,donor CU还有可能是控制面(control plane,CP)或用户面(user plane,UP)分离的形态,例如,一个CU包括一个CU-CP和多个CU-UP组成,本申请实施例对此不作限定。
父节点、子节点
IAB网络可以支持多跳和多连接组网,因此,在终端设备和宿主节点之间可能存在多条传输路径。在某一条传输路径上,终端设备和为该终端设备提供无线接入服务的IAB节点之间、IAB节点之间、IAB节点和为该IAB节点提供回传服务的宿主节点之间有确定的层级关系。其中,为IAB节点提供无线回传服务的节点称为该IAB节点的父节点,或,为终端设备提供无线接入服务的节点称为该终端设备的父节点,该IAB节点可视为该IAB节点的父节点的子节点,该终端设备可视为该终端设备的父节点的子节点。这里,该IAB节点的父节点可以是其他IAB节点,也可以是宿主节点,当该IAB节点与宿主节点直接通过无线空口进行通信时,该IAB节点的父节点即为宿主节点。
接入链路(access link,AL)
终端设备和为它提供无线接入服务的节点(例如,IAB节点、宿主节点或者宿主DU)进行通信时所使用的无线链路,包括上行传输和下行传输的链路。接入链路上的上行传输也被称为接入链路的上行传输,其传输方向是从该终端设备至该节点;下行传输也被称为接入链路的下行传输,其传输方向是从该节点至该终端设备。
回传链路(backhaul link,BL)
回传链路是指某个IAB节点和它的父节点进行通信时所使用的无线链路,其父节点可以是一个IAB节点也可以是宿主节点,包括上行传输和下行传输的链路。回传链路上的上行传输也被称为回传链路的上行传输,其传输方向是从该IAB节点至该IAB节点的父节点;下行传输也被称为回传链路的下行传输,其传输方向是该IAB节点的父节点至该IAB节点。
传输路径
从发送节点至接收节点的全程路由,路径由至少一段链路(link)组成,在本申请实施例中,链路表示相邻节点之间的连接。也就是说,传输路径为发送节点与接收节点之间的以该发送节点为起点且以该接收节点为终点的传输路径。后续,为了描述方便,可以将发送节点与接收节点之间的以该发送节点为起点且以该接收节点为终点的传输路径描述为发送节点与接收节点之间的传输路径。
在上行传输中,可以将终端设备与宿主节点之间除宿主节点以外的任一个节点作为发送节点,将发送节点的上级节点(例如,该发送节点的父节点或该父节点的父节点等)作为接收节点。例如,发送节点可以是某个IAB节点,接收节点可以是该IAB节点的父节点,在该IAB节点与该IAB节点的父节点之间的全程路由表示一条传输路径。再例如,发送节点可以是某个IAB节点,接收节点可以是宿主节点,在该IAB节点与该宿主节点之间的全程路由表示一条传输路径。
同理,在下行传输中,发送节点可以是宿主节点与该终端设备之间除终端设备以外的任一个节点,接收节点可以是该发送节点的下级节点(例如,该发送节点的子节点或该子节点的子节点等)。例如,发送节点可以是某个IAB节点,接收节点可以是该IAB节点的子节点,在该IAB节点与该IAB节点的子节点之间的全程路由表示一条传输路径。再例如,发送节点可以是某个IAB节点,接收节点可以终端设备,在该IAB节点与该终端设备之间的全程路由表示一条传输路径。
为了更好地理解本申请实施例,下面,首先结合图1和图2对本申请实施例应用的通信系统进行描述。
需要说明的是,本申请实施例适用的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、长期演进(Long Term Evolution,LTE)系统、下一代5G移动通信系统或者后续演进的通信系统,如新无线(new radio,NR)通信系统。
图1所示为应用于本申请实施例的一种通信系统的示意图。在图1中,该通信系统支持多跳且单连接场景,该通信系统包括宿主节点、IAB节点A、IAB节点B和UE1,UE1是本申请实施例的终端设备的任意一例。其中,IAB节点A的父节点为宿主节点,IAB节点A又为IAB节点B的父节点,IAB节点B又为UE1的父节点。
在上行传输中,UE1的数据通过至少一个IAB节点发送至宿主节点,再由宿主节点发送至移动网关设备(例如,5G核心网中的用户面功能(user plane functional unit,UPF)单元)。
如前所述,发送节点可以是UE1与宿主节点之间除宿主节点以外的任一个节点,接收节点可以是该发送节点的上级节点(例如,该发送节点的父节点或该父节点的父节点等)。例如,发送节点可以是IAB节点B,接收节点可以为宿主节点,则IAB节点B与宿主节点之间的传输路径为:IAB节点B→IAB节点A→宿主节点。再例如,发送节点可以为IAB节点B,接收节点可以为IAB节点A,则IAB节点B与IAB节点A之间的传输路径为:IAB节点B→IAB节点A。
在下行传输中,宿主节点将从移动网关设备接收的下行数据通过至少一个IAB节点将下行数据发送至UE1。
同理,在下行传输中,发送节点可以是宿主节点与该UE1之间除终端设备以外的任一个节点,接收节点可以是该发送节点的下级节点(例如,该发送节点的子节点或该子节点的子节点等)。例如,发送节点可以是IAB节点A,接收节点可以是UE1,则UE1与IAB节点A之间的传输路径为:IAB节点A→IAB节点B→UE1。
图2所示为应用于本申请实施例的另一种通信系统的示意图。图2的通信系统支持多跳和多连接场景。该通信系统包括宿主节点、IAB节点A、IAB节点B、IAB节点C、UE1 和UE2,UE1和UE2是本申请实施例的终端设备的任意两例。其中,IAB节点A的父节点为宿主节点,IAB节点A又为IAB节点C和UE2的父节点;IAB节点B的父节点为宿主节点,IAB节点B又为IAB节点C的父节点;IAB节点C为UE1的父节点。因此,IAB节点C具有两个父节点,即,IAB节点B和IAB节点A。
下面,分别针对UE1的上行数据和下行数据以及针对UE2的上行数据和下行数据,对传输路径做一说明。
针对UE1的上行数据和下行数据
在上行传输中,以接收节点为宿主节点为例,对不同发送节点与宿主节点之间的传输路径做一说明。若发送节点为UE1,则上行数据从UE1到宿主节点的传输路径包括两条可用的传输路径,传输路径1A:UE 1→IAB节点C→IAB节点A→宿主节点,传输路径2A:UE 1→IAB节点C→IAB节点B→宿主节点;若发送节点为IAB节点C,则IAB节点C到宿主节点之间的传输路径包括两条可用的传输路径,传输路径1B:IAB节点C→IAB节点A→宿主节点,传输路径2B:IAB节点C→IAB节点B→宿主节点;若发送节点为IAB节点A,则IAB节点A到宿主节点之间的传输路径为传输路径1C:IAB节点A→宿主节点;若发送节点为IAB节点B,则IAB节点B到宿主节点之间的传输路径为传输路径2C:IAB节点B→宿主节点。
在下行传输中,以接收节点为UE1为例,对不同发送节点与UE1之间的传输路径做一说明。若发送节点为宿主节点,则宿主节点与UE1之间的传输路径包括两条可用的传输路径:传输路径3A:宿主节点→IAB节点A→IAB节点C→UE 1,传输路径4A:宿主节点→IAB节点B→IAB节点C→UE 1;若发送节点为IAB节点A,则IAB节点A与UE1之间的传输路径为传输路径3B:IAB节点A→IAB节点C→UE 1;若发送节点为IAB节点B,则IAB节点B与UE1之间的传输路径为传输路径3C:IAB节点B→IAB节点C→UE 1;若发送节点为IAB节点C,则IAB节点C与UE1之间的传输路径:IAB节点C→UE 1。
针对UE2的上行数据和下行数据
在上行传输中,以接收节点为宿主节点为例,对不同发送节点与宿主节点之间的传输路径做一说明。若发送节点为UE2,则上行数据从UE2到宿主节点的传输路径为:UE 2→IAB节点A→宿主节点;若发送节点为IAB节点A,则IAB节点A到宿主节点之间的传输路径为IAB节点A→宿主节点。
在下行传输中,以接收节点为UE2为例,对不同发送节点与UE2之间的传输路径做一说明。若发送节点为宿主节点,则宿主节点与UE2之间的传输路径为:宿主节点→IAB节点A→UE 2;若发送节点为IAB节点A,则IAB节点A与UE2之间的传输路径为传输路径3B:IAB节点A→UE 2。
应理解,图1和图2所示的通信系统仅仅是示例性的,不应对本申请实施例构成限定。例如,在在多跳和多连接结合的IAB场景中,还有更多其他的可能性,例如,宿主节点和另一宿主节点下的IAB节点组成双连接或多连接为终端设备提供服务,或者某个终端设备与两个或多个父节点组成双连接或多连接等等,此处不再一一列举。
在本申请实施例中,宿主节点可以包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基 站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、eLTE(evolved LTE,eLTE)基站、下一代基站(next generation node B,gNB)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
IAB节点是在IAB网络中对中继节点的特定称呼,不应对本申请实施例构成限定。本申请实施例中用IAB节点仅仅出于描述的需要,并不表示本申请实施例仅用于NR的场景,在本申请实施例中,IAB节点可以泛指任何具有中继功能的节点或设备,具体地,IAB节点可以是一种具有转发功能的上述基站或者终端设备中的任意一种,也可以是一种独立的设备形态,本申请实施例对此不作限定。
在本申请实施例中,终端设备或网络设备(例如,网络设备可以为IAB节点或宿主节点)包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
如背景技术所述,在IAB网络的上行传输中,无论是子节点确定优先处理哪些数据,还是该子节点的父节点确定优先为哪些子节点调度传输资源,都需要考虑数据的QoS。但是,表征数据的QoS的参数中的有些参数表示的是终端设备与宿主节点或核心网中的用户面功能网元的参数,例如,数据包时延预算表示数据包在终端设备到核心网中的用户面功能网元之间的时延需求。在IAB网络中,大部分终端设备与宿主节点之间存在至少一个无线回传节点,使得相邻两个节点之间(例如,终端设备与无线回传节点之间、无线回传节点之间、无线回传节点与宿主节点之间)的时延需求比终端设备到宿主节点之间的时延需求短。因此,在IAB网络中,无论是子节点基于现有的QoS的参数确定优先处理哪些数据,还是该子节点的父节点基于现有的QoS的参数调度资源,使得最终的结果可能都不准确,影响了数据的传输性能。
基于上述问题,本申请实施例提供了一种用于无线回传网络的数据传输方法,可以有 效地提高数据的传输性能。
在本申请实施例中,无线回传网络中的任一个节点确定数据包的数据包时延预算、传输路径的跳数或单位丢包率中的至少一个参数,从而根据该至少一个参数发送数据包,由于该至少一个参数表示的是该节点与宿主节点之间的参数,相较于现有技术的QoS参数中的用于表示终端设备与宿主节点或核心网中的用户面功能网元之间的参数,能够较为准确表征数据包的属性,从而可以提高数据的传输性能。
应理解,本申请实施例中所有节点、消息、参数的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息、参数的名称,相反,任何具有和本申请中用到的节点或消息或参数具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。此外,在申请实施例中,一个消息可以包括一个或多个信息(或信令)。
在本申请实施例中,用于实现本申请实施例的方法或步骤的设备可以是设备本身,也可以是配置在设备中的芯片或处理器等能够实现本申请实施例的方法或步骤的装置,本申请实施例不限于此。例如,该设备可以是下文描述的第一节点、终端侧设备、该第一节点的子节点或该第一节点的父节点。下文所述的终端侧设备可以是终端设备本身,也可以是配置在终端设备内部的芯片或处理器。为了便于描述,统一采用终端设备描述。
下面,结合图3,对本申请实施例的用于无线回传网络的数据传输方法100进行说明。方法100是从无线回传网络中的上行传输的角度描述本申请实施例。为了便于描述,以第一节点和第一数据包为例进行说明。
S110,第一节点确定第一数据包的第一参数,该第一数据包的第一参数包括该第一数据包的剩余数据包时延预算,该第一节点是终端侧设备或该至少一个无线回传节点中的任一个无线回传节点,该第一数据包的剩余数据包时延预算是该第一数据包从该第一节点被传输至该宿主节点的时延需求。
S120,该第一节点根据该第一数据包的第一参数,发送该第一数据包。
作为示例而非限定,在图1所示的通信系统中,该第一节点可以为UE1、IAB节点B或IAB节点A中的任一个;在图2所示的通信系统中,该第一节点可以是UE 1、UE 2、IAB节点C、IAB节点A、IAB节点B中的任一个。
为了方便描述,作为示例而非限定,在本申请实施例中,可以将数据包时延预算简称为PDB,英文全称为packet delay budget。
由于无线回传网络支持多跳场景,该第一数据包的剩余PDB可以理解为该第一数据包在当前节点(例如,第一节点)到宿主节点之间的时延需求,该当前节点可以理解为当前需要发送该第一数据包的节点,可以是终端侧设备,可以是无线回传网络中的至少一个无线回传节点中的任一个无线回传节点。一般情况下,该第一数据包的剩余PDB越小,则表示该第一数据包对时延要求越高,该第一数据包的剩余PDB越大,则表示该第一数据包对时延要求越低。
具体而言,该第一节点确定该第一数据包的剩余PDB,在发送该第一数据包之前,作为示例而非限定,在适配层,将该第一数据包映射在对应的数据无线承载(data radio bearer,DRB)上,在无线链路层控制协议(radio link control,RLC)层,将该第一数据包对应的DRB映射在逻辑信道上,从而基于逻辑信道的优先级发送该第一数据包。在数 据包映射过程中,可以将该第一参数作为考虑因素来发送该第一数据包。其中,该第一节点确定该第一数据包的剩余PDB的方式以及该第一节点根据该第一参数发送该第一数据包的方式参考下文的详细描述。
因此,本申请实施例的用于无线回传网络的数据传输方法,数据包(例如,第一数据包)的剩余数据包时延预算表示的是该数据包在当前需要发送该数据包的节点(例如,第一节点)与宿主节点之间被传输的时延需求,并不完全是传统技术中表示该数据包在该终端设备与核心网中的用户面功能网元之间被传输的时延需求,能够较为准确地表征该数据包在该节点到该宿主节点之间的传输属性。因此,该节点通过确定的该数据包的剩余数据包时延预算发送该数据包,可以有效地提高数据的传输性能。
在本申请实施例中,不仅剩余PDB可以表示数据包在当前节点与宿主节点之间的传输属性,其他参数也可以表示数据包在当前节点与宿主节点之间的传输属性。同理,以上述第一数据包为例进行说明。
可选地,该第一数据包的第一参数还包括第一传输路径的跳数,该第一传输路径的跳数是该第一数据包在该第一传输路径上被传输过程中经过的节点的数量,该第一传输路径是该第一节点与该宿主节点之间的以该第一节点为起点且以该宿主节点为终点的传输路径。
可以这么理解,该第一传输路径上的跳数能够表示该第一节点与宿主节点之间或该第一节点与终端设备之间的距离。
在单连接场景中,该第一节点到宿主节点之间的传输路径只有一条,可以参考上文针对图1中的不同发送节点到宿主节点之间的传输路径的描述,该第一传输路径即为这条唯一的传输路径。在多连接场景中,某些节点到宿主节点之间的传输路径可能有一条或多条,参考图2,若该第一节点为IAB节点B或IAB节点A,则IAB节点B或IAB节点A与宿主节点之间的传输路径有一条,若该第一节点为IAB节点C,则IAB节点C与宿主节点之间的传输路径有两条,相关具体描述可以参考上文针对图2的描述,在这种情况中,该第一传输路径可以为这两条传输路径中的任一条。总结来说,若该第一节点与该宿主节点之间仅具有一条传输路径,则该第一传输路径即为唯一的传输路径;若该第一节点与该宿主节点之间具有多条传输路径,则该第一传输路径是该多条传输路径中的任一条传输路径。
在本申请实施例中,该第一传输路径的跳数有多种解释。假设该第一节点与该宿主节点之间的无线回传节点的个数为N,则该第一传输路径的跳数可以是该第一节点与该宿主节点之间的无线回传节点的个数N,也可以是该第一节点与该宿主节点之间的无线回传节点的个数和该第一节点之和N+1,也可以是该第一节点与该宿主节点之间的无线回传节点的个数和该宿主节点之和N+1,也可以是该第一节点、该宿主节点以及该第一节点与该宿主节点之间的无线回传节点的个数之和N+2,本申请实施例不做任何限定。以图1为例,假设该第一节点为IAB节点B,在IAB节点B与宿主节点之间的IAB的个数为1,则IAB节点B与宿主节点之间的传输路径上的跳数为1或2或3。
可选地,该第一传输路径的跳数是该第一数据包在该第一传输路径上被传输过程中经过的传输链路的数量。
其中,传输链路表示的相邻两个节点之间的链路,该第一传输路径包括的传输链路的 数量也可以表示该第一传输路径的跳数。
该第一传输路径包括M条链路,则该第一传输路径的跳数为M。以图1为例,在UE1与宿主节点之间的传输路径上包括3条传输链路,则该传输路径上的跳数为3。
需要说明的是,为了便于说明,相比于在终端设备与宿主节点之间的传输路径上的跳数,在本申请实施例中,可以将任一个节点(例如,第一节点)与该宿主节点之间的某条传输路径(例如,第一传输路径)的跳数简称为剩余跳数,将该终端设备与该宿主节点之间的某条传输路径上的跳数简称为总跳数。其中,该终端设备与该宿主节点之间的某条传输路径上的节点包括该任一个节点与该宿主节点之间的某条传输路径上的节点,或者说,该终端设备与该宿主节点之间的某条传输路径与该任一个节点与该宿主节点之间的某条传输路径存在重合,或者说,该终端设备与该宿主节点之间的某条传输路径上被配置的所有节点包括该任一个节点与该宿主节点之间的某条传输路径被配置的所有节点。
本申请实施例的用于无线回传网络的数据传输方法,由于数据包(例如,第一数据包)在某条传输路径(例如,第一传输路径)上的跳数能够表示节点与宿主节点之间的距离,能够较为准确地表征数据包在该节点与该宿主节点之间的传输属性,因此,该节点通过进一步确定数据包在传输路径上的跳数,并且,基于该传输路径上的跳数发送数据包,可以更有效地提高数据的传输性能。
可选地,该第一数据包的第一参数还包括:第一数据包的单位丢包率,该第一数据包的单位丢包率表示该第一数据包在相邻两个节点之间的丢包率。
其中,丢包率表示未正确传输的数据包的数量占发送数据组的比率上限。此外,相邻两个节点可以是无线回传网络中任意两个相邻节点,该两个相邻节点中一个节点为另一个节点的子节点,另一个节点为该子节点的父节点。
为了方便描述,作为示例而非限定,在本申请实施例中,可以将丢包率简称为PER,英文全称为packet error rate。
因此,本申请实施例的用于无线回传网络的数据传输方法,数据包(例如,第一数据包)的单位丢包率表示的是该数据包在相邻两个节点之间被传输的丢包率,并不完全是现有技术的表示该数据包在该终端设备与宿主节点之间被传输的丢包率,能够较为准确地表征该数据包在该相邻两个节点之间的传输属性,因此,节点(例如,第一节点)通过确定的该数据包的单位丢包率发送该数据包,可以有效地提高数据的传输性能。
在本申请实施例中,该第一节点可以通过如下两种方式(记为方式A和方式B)发送该第一数据包。下面,对这两种方式进行详细说明。
方式A
该第一节点将该第一数据包映射在对应于该第一数据包的第一参数的第一数据无线承载DRB上;
该第一节点在该第一DRB上发送该第一数据包。
具体而言,多个数据包的第一参数与多个DRB存在对应关系,一个数据包的第一参数具有第一参数的一个取值,也就是说,第一参数的多个取值与多个DRB存在对应关系,第一参数的每个取值对应每个DRB,该第一节点在发送该第一数据包之前,可以根据该第一数据包的第一参数,从第一参数的多个取值与多个DRB的对应关系中确定与该第一数据包的第一参数对应的DRB(记为第一DRB),从而,该第一节点在该第一DRB上发 送该第一数据包。
可选地,DRB可以通过用于DRB的标识来指示。
因此,第一参数的多个取值与多个DRB的对应关系可以通过第一参数的多个取值与多个DRB的标识的对应关系表示。
作为示例而非限定,下面,结合表1、表2、表3和表4,对第一参数的多个取值与多个DRB之间的对应关系进行说明。应理解,表1、表2、表3和表4所示的对应关系仅为示意性说明,任何表示该对应关系的形式都在本申请实施例的保护范围内。
表1所示为第一参数的多个取值与多个DRB之间的对应关系,其中,第一参数包括剩余PDB、剩余跳数或剩余丢包率中的至少一个。
当第一参数包括剩余PDB时,可以参考表1中剩余PDB与DRB之间的对应关系。其中,每个剩余PDB都属于一个特定的数值范围,也可以认为每个DRB都对应一个与剩余PDB有关的数值范围。对于第一数据包而言,若该第一数据包的剩余PDB满足某个数值范围(记为第一数值范围),则将该第一数据包映射至该第一数据范围对应的DRB(即,第一DRB)。该第一DRB可以是表1中的任一个DRB ID所标识的DRB。
当第一参数包括剩余跳数时,可以参考表1中剩余跳数与DRB之间的对应关系。其中,每个DRB都对应一组剩余跳数,每组剩余跳数包括至少一个剩余跳数。对于第一数据包而言,若该第一数据包的剩余跳数满足任一组剩余跳数中的剩余跳数,则将该第一数据包映射至该组剩余跳数对应的DRB(即,第一DRB)。该第一DRB可以是表1中的任一个DRB ID所标识的DRB。
作为示例而非限定,每个DRB也可以对应一个特定的数值范围,也可以认为每个DRB都对应一个与剩余跳数有关的数值范围。若该第一数据包的剩余跳数满足某个数值范围(记为第二数值范围),则将该第一数据包映射至该第二数据范围对应的DRB(即,第一DRB)。
当第一参数包括单位丢包率时,可以参考表1中单位PER与DRB之间的对应关系。其中,每个单位PER都属于一个特定的数值范围,也可以认为每个DRB都对应一个与单位PER有关的数值范围。对于第一数据包而言,若该第一数据包的单位PER满足某个数值范围(记为第三数值范围),则将该第一数据包映射至该第三数据范围对应的DRB(即,第一DRB)。该第一DRB可以是表1中的任一个DRB ID所标识的DRB。
当第一参数包括上述三个参数中至少两个参数时,需要同时参考该至少两个参数中每个参数与DRB之间的对应关系,将该第一数据包映射至同时满足上述条件的DRB上。例如,当第一参数包括剩余PDB和剩余跳数时,同时参考剩余PDB与DRB的对应关系、剩余跳数与DRB的对应关系,将该第一数据包映射至同时满足例如上述条件的DRB上;再例如,当第一参数包括剩余PDB、剩余跳数和单位PER时,需要同时参考剩余PDB与DRB的对应关系、剩余跳数与DRB的对应关系和单位PER与DRB的对应关系,将该第一数据包映射至同时满足例如上述条件的DRB上。
表1
DRB ID 剩余PDB 剩余跳数 单位丢包率
1 A<剩余PDB<B n1,n2 D<单位PER<E
2 B<剩余PDB<C n3 E<单位PER<F
…… …… …… ……
表2所述第一参数的多个取值与多个DRB之间的对应关系,其中,第一参数包括PDB和剩余跳数。在表2中,作为示例而非限定,可以将成为正比关系的剩余PDB和剩余跳数进行组合,例如,将取值较大的剩余PDB和取值较大的剩余跳数放在同一组中,将取值较小的剩余PDB与取值较小的剩余跳数放在同一组中,这样,可以将剩余PDB和剩余跳数的比值相接近的数据包映射至同一个DRB上。一个DRB对应一个或多个组,每组包括一个剩余PDB和一个剩余跳数,当一个DRB对应多个组时,表示的是任意两个组中每组中的两个参数的比值相接近。可以这么理解,一组中的两个参数成为近似正比关系,两个参数的比值可以近似表示相邻两个节点的PDB,能有效地表示数据包在相邻两个节点的相关属性,进而可以提高数据的传输性能。
表2
Figure PCTCN2019111450-appb-000001
表3所示为第一参数的多个取值与多个DRB之间的对应关系,其中,第一参数包括单位PER和剩余跳数。在表3中,可以将不同取值的单位PER和剩余跳数进行组合,一个组合对应一个DRB,也可以将单位PER和剩余跳数的比值相接近的数据包映射至同一个DRB上,即,一个DRB可以对应多个组。
表3
Figure PCTCN2019111450-appb-000002
Figure PCTCN2019111450-appb-000003
表4所示为第一参数的多个取值与多个DRB之间的对应关系,其中,第一参数包括单位PER、剩余跳数和剩余PDB。在表4中,将不同取值的单位PER、剩余跳数和剩余PDB进行组合,可以将不同组中任意两个参数的比值相接近的数据包映射至同一个DRB上,即,一个DRB可以对应多个组。
表4
Figure PCTCN2019111450-appb-000004
应理解,在实际数据传输中,第一节点不仅可以根据第一数据包的第一参数发送第一数据包,也可以根据QoS参数发送该第一数据包。具体而言,QoS参数包括多个参数,该多个参数中每个参数与5QI具有对应关系(可以参考表5),5G QoS标识(5G QoS identifier,5QI)与DRB具有对应关系,QoS参数中每个参数的多个取值对应5QI的多个取值,5QI的多个取值对应多个DRB,具体地,5QI的至少一个取值可以对应一个DRB,即,至少一个5QI对应的数据包可以映射至一个DRB上进行传输,QoS参数与DRB存在对应关系,第一节点根据该第一数据包的OoS参数与DRB的对应关系和该第一参数与DRB的对应关系确定一个DRB,在确定的该DRB上发送该第一数据包。
表5所示为本申请实施例的QoS参数与5QI的对应关系。应理解,表5所示的对应关系仅是示意性说明,任何表示该对应关系的形式都在本申请实施例的保护范围内。需要说明的是,表5中的数据包时延预算表示的是数据包在终端设备与核心网中的用户面功能网元之间的数据包时延预算。
表5
Figure PCTCN2019111450-appb-000005
在本申请实施例中,可以将剩余PDB、剩余跳数或剩余丢包率中的至少一个参数作为5QI的QoS参数列表中新添加的参数形成新的QoS参数列表(参考表6),包括第一参数在内的QoS参数中每个参数的多个取值对应5QI的多个取值,5QI的多个取值对应多个DRB,这样,基于修改后的QoS参数与5QI的对应关系和5QI与DRB的对应关系,就可以确定数据包对应的DRB。
表6所示为本申请实施例的新的QoS参数与5QI的对应关系。其中,该第一参数包括剩余PDB、剩余跳数和剩余丢包率。作为示例而非限定,该第一参数也可以包括剩余PDB、剩余跳数或剩余丢包率中的任一个或任意两个,或者,该第一参数还可以包括其他参数,本申请实施例不做任何限定。应理解,表6所示的对应关系仅是示意性说明,任何表示该对应关系的形式都在本申请实施例的保护范围内。需要说明的是,表6中的数据包时延预算表示的是数据包在终端设备与核心网中的用户面功能网元之间的数据包时延预算。
表6
Figure PCTCN2019111450-appb-000006
当第一参数包括多个参数(例如,剩余PDB、剩余跳数或单位丢包率中的至少两个参数)时,为了较少实现复杂度以及信令开销,可以将该多个参数量化为一个量化参数,在 表示第一参数与DRB的对应关系时,可以不需要类似表1、表2、表3、表4或表6中每个参数与DRB的对应关系来表示第一参数与DRB的对应关系,可以采用量化参数表征第一参数,这样,第一参数与DRB的对应关系可以简单表示为量化参数与DRB的对应关系。
例如,该第一参数包括剩余PDB和剩余跳数,作为示例而非限定,可以通过如下公式确定该量化参数,c=a*i+b*j,其中,c表示量化参数,i表示剩余PDB,j表示剩余跳数,a和b为常数。
关于获取该第一数据包的第一参数与该第一DRB之间的对应关系的方式,可选地,该第一节点接收来自该第一节点的父节点或宿主节点的对应关系信息,该对应关系信息用于指示该第一数据包的第一参数与该第一DRB之间的对应关系。
其中,若宿主节点发送该对应关系信息,该第一节点与该宿主节点之间存在其他无线回传节点,则其他无线回传节点可以将该对应关系信息转发或透传给该第一节点。该其他无线回传节点为该第一节点的上级节点(例如,该第一节点的父节点,或,该第一节点父节点的父节点)。
此外,该对应关系信息中不仅可以包括第一数据包的第一参数与该第一DRB之间的对应关系,还可以包括第一参数的其他取值与DRB之间的对应关系,即,该对应关系信息可以包括第一参数的多个取值与多个DRB的对应关系,作为示例而非限定,该第一参数的多个取值与多个DRB之间的对应关系可以是表1、表2、表3、表4或表6中的任一种形式。
需要说明的是,由于不同DRB的数据包具有不同的QoS需求,也就是说,每个DRB上的数据包都对应着一个优先级,这个优先级可以采用逻辑信道的优先级表示,一般情况下,一个DRB对应一个逻辑信道,在某些情况下,一个DRB可以对应多个逻辑信道,例如,在重复(duplication)传输场景中,一个DRB对应两个逻辑信道,这两个逻辑信道的优先级相同。因此,实际数据传输过程中,在适配层中将数据包映射至DRB上,在无线链路控制层(radio link control,RLC)中,可以进一步将DRB映射至逻辑信道上,进而,基于DRB对应的逻辑信道的优先级发送数据包。
具体而言,针对该第一数据包,该第一DRB对应一个逻辑信道(记为第二逻辑信道),该第二逻辑信道的优先级也表示该第一DRB的优先级,因此,该第一节点可以根据该第一DRB对应的第二逻辑信道的优先级发送该第一数据包。更具体地,该第一节点可以将包括该第二逻辑信道在内的一组逻辑信道按照该组逻辑信道中所有逻辑信道的优先级顺序填充组包,按照优先级顺序依次发送该组逻辑信道中的数据包。
本申请实施例的用于无线回传网络的数据传输方法,由于节点(例如,第一节点)在DRB上所传输的数据包在当前链路上对应的QoS需求(例如,当前链路上的PDB需求或PER需求)相接近,从而可以保证每个DRB中具有相近QoS需求的数据包在数据传输过程中做相同的处理,避免DRB中存在某个低时延或高可靠需求的业务影响其他数据的传输性能,此外,由于第一参数能够较为准确地表征该数据包在该节点到该宿主节点之间的传输属性,因此,该节点进一步根据数据包(例如,第一数据包)的第一参数确定该数据包对应的DRB(例如,第一DRB),将该数据包映射在对应的DRB上,进而,在该DRB上发送该数据包,可以进一步有效地提高数据的传输性能。
方式B
该第一节点根据该第一数据包的第一参数确定第一逻辑信道的优先级,该第一数据包对应该第一逻辑信道;
该第一节点根据该第一逻辑信道的优先级发送该第一数据包。
如前所述,数据包的QoS参数与DRB具有对应关系,DRB与逻辑信道具有对应关系,这样,数据包的QoS参数与逻辑信道具有对应关系。其中,QoS参数与DRB之间的对应关系可以参考方式A中对该对应关系的相关描述,为了简洁,此处不再赘述。
具体而言,该第一节点根据该第一数据包的QoS参数确定对应的DRB(记为第二DRB),根据该第二DRB确定对应的逻辑信道(记为第一逻辑信道),根据该第一数据包的第一参数确定该第一逻辑信道的优先级,从而,根据该第一逻辑信道的优先级发送该第一数据包。如前所述,实际传输中,该第一节点可以将包括该第一逻辑信道在内的一组逻辑信道按照该组逻辑信道中所有逻辑信道的优先级顺序基于上行调度给定的资源大小进行填充组包,进而发送该组逻辑信道中的数据包。当该第一逻辑信道的优先级较高时,可以优先对该第一数据包进行组包,当该第一逻辑信道的优先级较低时,可以后续对该第一数据包进行组包,直至所有逻辑信道中的数据包都已完成组包或上行调度所分配的资源用完,上述两种条件满足其中一个即完成组包操作,并发送组好的数据包。
需要说明的是,本申请实施例所说的根据该第一逻辑信道的优先级发送该第一数据包不仅表示发送该第一数据包的动作,还可以表示发送该第一数据包进行的相关处理,例如,上述所说的根据第一逻辑信道的优先级对该第一数据包进行组包。
可选地,当存在多组逻辑信道时,该第一节点可以先根据每组逻辑信道的优先级,确定优先级最高的一组逻辑信道,将该组逻辑信道按照逻辑信道优先级顺序填充组包,如果该第一节点的父节点为该第一节点分配的传输资源能够传输该组逻辑信道中所有逻辑信道里的数据包且有剩余传输资源时,继续选择次优先级高的一组逻辑信道,继续按照上述规则进行填充组包,直至将传输资源使用完毕或将所有逻辑信道中的数据包发送完毕。
其中,每组逻辑信道的优先级可以根据每组逻辑信道中多个数据包的第一参数综合确定。例如,当第一参数包括一个参数时,该第一节点可以根据每组逻辑信道中多个数据包的第一参数生成一个量化参数,基于每组逻辑信道的量化参数值确定每组逻辑信道的优先级;再例如,当第一参数包括多个参数时,该第一节点可以将每组逻辑信道中每个数据包的多个参数量化为一个量化参数,进而根据多个数据包的量化参数生成一个最终的量化参数,基于每组逻辑信道的最终的量化参数确定每组逻辑信道的优先级。
当第一参数包括剩余PDB时,作为示例而非限定,取值较大的剩余PDB的数据包对应的逻辑信道的优先级较低,取值较小的剩余PDB的数据包对应的逻辑信道的优先级较高。
当第一参数包括剩余跳数时,作为示例而非限定,取值较大的剩余跳数的数据包对应的逻辑信道的优先级较高,取值较小的剩余跳数的数据包对应的逻辑信道的优先级较低。
当第一参数包括剩余PDB和剩余跳数时,作为示例而非限定,剩余PDB/剩余跳数的比值中取值较大的数据包对应的逻辑信道的优先级较低,剩余PDB/剩余跳数的比值中取值较小的数据包对应的逻辑信道的优先级较高。其中,剩余PDB/剩余跳数即为上述的量化参数。
本申请实施例的用于无线回传网络的数据传输方法,由于逻辑信道的优先级可以准确 地表征节点(例如,第一节点)上待传输的数据的QoS需求(例如,时延需求),此外,第一参数能够较为准确地表征该数据包在该节点到该宿主节点之间的传输属性,因此,该节点根据数据包(例如,第一数据包)的第一参数确定该数据包对应的逻辑信道(例如,第一逻辑信道)的优先级,进而,根据该第一逻辑信道的优先级发送该数据包,可以进一步有效地提高数据的传输性能。
在本申请实施例中,第一节点发送第一数据包使用的传输资源是该第一节点的父节点基于该第一节点待发送的数据量为该第一节点调度的。可选地,该第一节点向该第一节点的父节点发送用于指示至少一组逻辑信道中的数据量的信息,该第一节点的父节点根据该指示至少一组逻辑信道中的数据量为该第一节点调度传输资源。
当第一节点与其他节点都同时向其父节点请求传输资源时,该父节点可以进一步根据该第一节点和该其他节点上报的数据对应的逻辑信道的优先级,确定优先为哪个节点调度传输资源。尤其在需要调度的传输资源有限的情况下,这种方式,能有保证优先级较高的数据的优先发送,提高数据的传输性能。
因此,为了优化上行调度,使得上行调度的决策结果较为准确,本申请实施例提供了一种可选的实现方式:
在S131中,该第一节点向该第一节点的父节点发送第三消息,该第三消息包括用于表征该第一数据包的第一参数的信息;
在S132中,该第一节点的父节点根据该第三消息,为该第一节点调度传输资源。
在S133中,该第一节点的父节点向该第一节点发送用于指示该传输资源的信息。
可以这么理解,第一数据包的第一参数可以反映该第一数据包对应的逻辑信道的优先级。
其中,用于表征该第一参数的信息可以包括该第一参数本身,在该第一参数包括多个参数时,用于表征该第一参数的信息也可以包括一个基于该多个参数量化的一个量化参数,该量化参数可以综合表征该第一参数。
可选地,该第三消息还包括用于指示一组逻辑信道的数据量的信息,其中,该组逻辑信道包括该第一数据包对应的逻辑信道以及其他数据包对应的逻辑信道。
可选地,该第三消息还包括该组逻辑信道中除该第一数据包以外的其他数据包中每个数据包的第一参数。可选地,该第三信息可以是缓存状态上报(buffer status report,BSR)。
可选地,当该第一节点中具有多组逻辑信道时,该第三消息还可以包括多组逻辑信道中每组逻辑信道的数据量的信息。此种情况下,该第三消息还可以包括该多组逻辑信道中每组逻辑信道中每个数据包的第一参数。
可选地,当该第一节点判断该第一数据包的第一参数低于预设阈值时,该第一节点可以优先触发发送该第一数据包对应的逻辑信道所属的逻辑信道组的第三消息的动作,使得该第一节点的父节点可以提前为该第一节点调度传输资源。
需要说明的是,当第一节点上报包括该第一数据包在内的多个待传输的数据包时,该第一节点的父节点不仅根据该第一数据包的第一参数调度传输资源,也需要根据其他数据包的第一参数为该第一节点调度传输资源。因此,这里的传输资源不仅仅用于传输第一数据包的数据传输,也用于其他数据包的数据传输。
其中,该多个数据包的第一参数可以通过上述任一种方式的第三消息携带,本申请实 施例不做任何限定。
对于该第一节点的父节点根据第一参数为该第一节点调度传输资源的过程,有多种可能的实现方式,以图2所示的通信系统为例做一说明。假设,该第一节点为IAB节点B,其他节点为IAB节点A,每个节点都有多个待传输的数据包,每个节点的多个数据包对应至少一组逻辑信道,每组逻辑信道对应至少一个数据包。
在一种方式中,针对IAB节点B,宿主节点可以根据每组逻辑信道中的多个数据包的第一参数确定每组逻辑信道组的优先级,作为示例而非限定,可以将每组逻辑信道中的多个数据包的第一参数量化为一个参数(记为参数A),再将多组逻辑信道中每个逻辑信道量化后的参数1再量化为一个参数(记为参数B),采用参数B表示IAB节点B中的逻辑信道的优先级;对IAB节点A也采用相同的处理方式,生成IAB节点A的参数B。这样,该宿主节点将IAB节点B的参数B和IAB节点A的参数B进行比较,作为示例而非限定,若IAB节点B的参数B大于IAB节点A的参数B,则表示IAB节点B中的逻辑信道的优先级高,则,该宿主节点优先为IAB节点B调度传输资源。需要说明的是,若某个节点只有一组逻辑信道,则不必生成参数B。
在另一种方式中,针对每个节点,作为示例而非限定,不必执行上述生成参数A的过程,宿主节点可以直接将所有逻辑信道组中的数据包的第一参数量化为一个参数(记为参数C),该宿主节点将IAB节点B的参数B和IAB节点A的参数C进行比较,作为示例而非限定,若IAB节点B的参数C大于IAB节点A的参数C,则表示IAB节点B中的逻辑信道的优先级高,则,该宿主节点优先为IAB节点B调度传输资源。
因此,本申请实施例的用无线回传网络的数据传输方法,第一节点通过向该第一节点的父节点上报数据包的第一参数,使得该第一节点的父节点可以根据数据包的第一参数为该第一节点调度传输资源,优化了上行调度的方式,可以有效地提高上行调度的准确性,进而,提高数据的传输性能。
以上,对第一节点根据该第一参数发送数据包以及该第一节点的宿主节点的上行调度的方式都做了详细说明,下面,同样以第一数据包为例,基于该第一参数的不同种类,分情况描述该第一节点确定该第一参数的方式。
情况1:第一数据包的第一参数包括第一数据包的剩余PDB
当该第一节点为终端设备时,在一种可选的实现方式中,该第一节点可以基于用于表示该第一数据包在终端设备与UPF网元的时延需求的PDB(记为PDB1)和用于表示该第一数据包在宿主节点与UPF网元之间的时延需求的PDB(记为PDB2)的差值确定该第一数据包的剩余PDB,其中,PDB1可以从现有的预配置的QoS参数中获得,PDB2可以通过宿主节点向该第一节点发送的信令中获得。在另一种可选的实现方式中,该第一数据包的剩余PDB可以基于本申请实施例重新配置的QoS参数中获得。
当该第一节点为至少一个无线回传节点中的任一个无线回传节点时,可选地,在S101中,该第一节点接收来自该第一节点的子节点的第二消息,该第二消息用于确定该第一数据包的剩余数据包时延预算。
其中,该第二消息可以包括用于确定该第一数据包的剩余PDB的全部信息,也可以包括用于确定该第一数据包的剩余PDB的部分信息。
可选地,该第二消息可以携带在该第一节点的子节点发送的第一数据包的包头中。具 体地,该第二消息可以携带在该第一数据包在媒体接入控制层(medium access control,MAC)层、RLC层或适配层中的包头中。
作为示例而非限定,该第二消息也可以作为一个独立的消息,通过该第一节点的子节点发送该第二消息,本申请实施例不做任何限定。
下面,根据该第二消息中的内容,进一步对该第一节点根据该第二消息确定该第一数据包的剩余PDB的方式做一说明。
方式1A
该第二消息包括时间信息(记为时间信息1)和时延信息(记为时延信息1),其中,该时间信息1用于指示该第一节点的子节点接收到该第一数据包的时间或发送该第一数据包的时间,该时延信息1用于指示该第一数据包从该第一节点的子节点被传输至该宿主节点的时延需求(记为历史剩余PDB1)。
其中,当该第一节点的子节点为终端设备时,该时间信息1用于指示该第一节点的子节点发送该第一数据包的时间,当该第一节点的子节点为无线回传节点时,该时间信息1用于指示该第一节点的子节点接收到该第一数据包的时间。
此种情况下,该第一节点根据该第二消息和该第一节点接收到该第一数据包的时间,确定该第一数据包的剩余PDB。以该第一节点的子节点为无线回传节点为例,具体而言,根据该第一节点接收到该第一数据包的时间与该第一节点的子节点接收到该第一数据包的时间之差确定该第一数据包从第一节点的子节点被传输至该第一节点的过程中使用的时延,通过该历史剩余PDB1与得到该第一数据包从第一节点的子节点被传输至该第一节点的过程中使用的时延之间的差值确定该第一数据包的剩余PDB。
举例来说,假设,该第一节点的子节点接收到该第一数据包的时间为8点零5ms,该历史剩余PDB1为15ms,该第一节点接收到该第一数据包的时间为8点零10ms,则该第一数据包的剩余PDB=15-(10-5)=10(ms)。
方式1B
该第二消息包括用于指示该终端侧设备发送该第一数据包的时间的信息。
此种情况下,该第一节点根据该第二消息、该第一节点接收到该第一数据包的时间和该第一数据包的总PDB,确定该第一数据包的剩余PDB,其中,该第一数据包的总PDB是该第一数据包从该终端设备被传输至该宿主节点的时延需求。具体而言,根据该第一节点接收到该第一数据包的时间与终端设备发送该第一数据包的时间的差值确定该第一数据包从该终端设备被传输至该第一节点使用的时延,通过总PDB减去该第一数据包从该终端设备被传输至该第一节点使用的时延即可确定该第一数据包的剩余PDB。
举例来说,总PDB为20ms,该第一节点接收到该第一数据包的时间为8点零10ms,该终端设备发送该第一数据包的时间为8点整,总PDB为20ms,则该第一数据包的剩余PDB=20-(10-0)=10(ms)。
其中,总PDB可以基于用于表示该第一数据包在终端设备与UPF网元的时延需求的PDB(即为上述PDB1)和用于表示该第一数据包在宿主节点与UPF网元之间的时延需求的PDB(即为上述PDB2)的差值确定该总PDB,其中,PDB1可以从现有的预配置的QoS参数中获得,PDB2可以通过宿主节点向该第一节点发送的信令中获得。在另一种可选的实现方式中,该总PDB可以基于本申请实施例重新配置的QoS参数中获得。
情况2:第一数据包的第一参数包括第一传输路径的跳数
方式2A
该第一传输路径的跳数是该宿主节点为所述第一节点配置的。
作为示例而非限定,该宿主节点可以通过无线资源控制层(radio resource control,RRC)信令、媒体接入控制层控制单元(medium access control control element,MAC CE)等其他空口信令发送用于指示该第一传输路径的跳数的信息。
此外,在该第一传输路径上,当该第一节点与该宿主节点之间存在其他无线回传节点,则其他无线回传节点可以将该宿主节点发送的用于指示该第一传输路径的跳数的信息转发或透传给该第一节点。
应理解,当该第一节点与该宿主节点之间存在多条传输路径时,宿主节点会为该第一节点配置每条传输路径的跳数。
方式2B
当该第一节点为至少一个无线回传节点中的任一个无线回传节点时,可选地,
在S102中,该第一节点接收来自该第一节点的子节点的第一消息,该第一消息包括用于指示跳数的信息,该第一消息中的跳数是该第一传输路径的跳数,或,该第一消息中的跳数是该第一数据包在第二传输路径上被传输过程中经过的节点的数量,该第二传输路径是该第一节点的子节点与该宿主节点之间的以该第一节点的子节点为起点且以该宿主节点为终点的传输路径;
该第一节点根据该第一消息确定该第一传输路径的跳数。
这里,S102可以和S101同时执行,也可以不同时执行,此处不做任何限定。
其中,该第二传输路径包括该第一传输路径,或者说,该第二传输路径上被配置的所有节点包括该第一传输路径上被配置的所有节点,即,该第二传输路径被配置的节点包括该第一节点、该第一节点与该宿主节点之间的节点,该宿主节点以及该第一节点的子节点。
以图2所示的通信系统为例,假设第一节点为IAB节点B,则该第一传输路径为IAB节点B→宿主节点,则该第二传输路径为IAB节点C→IAB节点B→宿主节点。
具体而言,在多跳且单连接的场景中,宿主节点或系统可以仅为终端设备配置该终端设备与该宿主节点之间的一条传输路径上的跳数(简称总跳数),在多跳且多连接的场景中,宿主节点或系统可以为终端设备配置该终端设备与该宿主节点之间的多条传输路径上每条传输路径的总跳数。该第一数据包被从该终端设备传输至该终端设备的父节点,从总跳数中减1,获得该终端设备的父节点与该宿主节点之间的传输路径上的跳数,继续上行传输中,该第一数据包从该终端设备的父节点被传输至该终端设备的父节点的父节点,继续从剩余的跳数中减1,获得该终端设备的父节点的父节点与该宿主节点之间的传输路径上的跳数。以此类推,每个节点都如此操作,直至将该第一数据包传输至该宿主节点。
以该第一节点为例,当该第一消息中的跳数是该第一传输路径上的跳数时,该第一节点的子节点从该第二传输路径的跳数中减1获得该第一传输路径的跳数,通过该第一消息发送给该第一节点;当该第一消息中的跳数是该第二传输路径上的跳数时,该第一节点从从该第二传输路径的跳数中减1获得该第一传输路径的跳数。
情况3:第一参数包括第一数据包的单位丢包率
这种情况中,可以根据该第一数据包的总丢包率和在终端设备与宿主节点之间的传输 路径(记为第二传输路径)的跳数确定该第一数据包的单位丢包率。其中,该第一数据包的总丢包率表示该第一数据包在终端侧设备与该宿主节点之间的丢包率,该第二传输路径的跳数是该第一数据包在该第二传输路径上被传输过程中经过的节点的数量,该第二传输路径是该终端侧设备与该宿主节点之间的以该终端侧设备为起点且以该宿主节点为终点的传输路径。
其中,该第二传输路径为该终端设备与该宿主节点之间的至少一条传输路径中的任一条传输路径,上述该终端设备与该宿主节点之间的第一传输路径可以和该第二传输路径存在重合路径,当该终端设备与该宿主节点之间存在多跳传输路径时,该第一传输路径与该第二传输路径也可以不重合。
作为示例而非限定,可以通过如下公式获得数据包的单位丢包率:s 1=1-(1-s 0)^(1/t),其中,s 1数据包的单位丢包率,s 0表示数据包的总丢包率,t表示传输路径的跳数,^代表次方运算。以图1所示的通信系统为例,假设,UE1和宿主节点之间的跳数为3,第一数据包从UE1到宿主节点的总丢包率为0.271,则该第一数据包的单位丢包率为:1-(1-0.271)^(1/3)=0.1。
以上,对本申请实施例的用于无线回传网络的数据传输方法100做了详细说明,下面,结合图3,对本申请实施例的另一个用于无线回传网络的数据传输方法200进行说明。方法200与方法100的区别在于,方法200中获取的参数是数据包在相邻两个节点之间被传输的时延需求。同理,以第一数据包为例对方法200进行说明。
S210,第一节点确定第一数据包的第一参数,该第一数据包的第一参数用于确定表征该第一数据包的单位数据包时延预算,该单位数据包时延预算表示该第一数据包在相邻两个节点之间被传输的时延需求,该第一节点是终端侧设备或该至少一个无线回传节点中的任一个无线回传节点;
S220,该第一节点根据该第一数据包的第一参数,向该第一节点的父节点发送该第一数据包。
其中,该第一参数可以本身为单位PDB,也可以是用于确定表征单位PDB的参数。表征该第一数据包的单位PDB可以是单位PDB,也可以是一个能够表征单位PDB的参数。
这里,相邻两个节点可以是无线回传网络中任意两个相邻节点,该两个相邻节点中一个节点为子节点,另一个节点为该子节点的父节点。
关于该第一节点的具体描述的可以参考方法100中关于该第一节点的描述,为了简洁,此处不再赘述。
由于无线回传网络支持多跳场景,该第一节点与该第一节点的父节点之间数据传输,该第一数据包的单位PDB可以近似表示该第一数据包在该第一节点与该第一节点的父节点之间被传输的时延需求。
具体而言,该第一节点确定该第一数据包的第一参数,在发送该第一数据包之前,作为示例而非限定,在适配层,将该第一数据包映射在对应的DRB上,在无线链路层控制协议(radio link control,RLC)层,将该第一数据包对应的DRB映射在逻辑信道上,从而基于逻辑信道的优先级发送该第一数据包。在数据包映射过程中,可以将该第一数据包的第一参数作为考虑因素来发送该第一数据包。其中,该第一节点确定该第一数据包的第一参数的方式以及该第一节点根据该第一数据包的第一参数发送该第一数据包的方式参 考下文的详细描述。
因此,本申请实施例的用于无线回传网络的数据传输方法,数据包(例如,第一数据包)的单位数据包时延预算的表示的是该数据包在无线回传网络中任意两个相邻节点被传输的时延需求,并不是现有技术的表示该数据包在终端设备与宿主节点之间被传输的时延需求,能够较为准确地表征该数据包在相邻两个节点之间的传输属性,因此,节点通过确定用于确定该数据包的单位数据包时延预算的第一参数,根据该第一参数发送该数据包,可以有效地提高数据的传输性能。
下面,基于不同情况,对本申请实施例的第一参数进行详细说明,以及,根据该第一参数确定单位PDB的方式进行说明。
情况A
该第一数据包的第一参数包括:该第一数据包的剩余数据包时延预算和第一传输路径的跳数,其中,该第一数据包的剩余数据包时延预算是该第一数据包从该第一节点被传输至该宿主节点的时延需求,该第一传输路径是该第一节点与该宿主节点之间的以该第一节点为起点且以该宿主节点为终点的传输路径,该第一传输路径的跳数是该第一数据包在该第一传输路径上被传输过程中经过的节点的数量。
其中,关于该第一数据包的剩余PDB与该第一传输路径的跳数的相关描述,可以参考方法100中的相关描述,为了简洁,此处不再赘述。
可选地,该第一节点确定该第一数据包的第一参数后,可以进一步基于该第一数据包的第一参数确定第一数据包的单位PDB。具体而言,可以将该第一数据包的剩余PDB与该第一传输路径的跳数的比值作为表征该第一数据包的单位PDB,该第一数据包的剩余PDB除以该第一传输路径的跳数的商表示的是单位PDB,该第一传输路径的跳数除以该第一数据包的剩余PDB的商表示的是能够表征单位PDB的参数,该参数的取值越大,则表示单位PDB越小。
作为示例而非限定,该第一节点确定第一数据包的第一参数后,也可以不需要确定该第一数据包的单位PDB,因为这两个参数的组合就能够近似表示该第一数据包的单位PDB,因此,可以直接使用该第一数据包的第一参数发送该第一数据包。
下面,分别对该第一节点确定第一数据包的剩余PDB和第一传输路径的跳数的方式进行说明。
第一节点确定第一数据包的剩余PDB的方式
当该第一节点为至少一个无线回传节点中的任一个无线回传节点时,可选地,在S202中,该第一节点接收来自该第一节点的子节点的第二消息,该第二消息用于确定该第一数据包的剩余数据包时延预算。
下面,根据该第二消息中的内容,进一步对该第一节点根据该第二消息确定该第一数据包的剩余PDB的方式做一说明
方式A1
该第二消息包括时间信息(即,时间信息1)和时延信息(即,时延信息1),其中,该时间信息1用于指示该第一节点的子节点接收到该第一数据包的时间或发送该第一数据包的时间,该时延信息1用于指示该第一数据包从该第一节点的子节点被传输至该宿主节点的时延需求。
其中,该第一节点基于方式A1确定第一数据包的剩余PDB的过程可以参考方法100中该第一节点基于方式1A确定第一数据包的剩余PDB的过程,为了简洁,此处不再赘述。
方式A2
该第二消息包括用于指示该终端侧设备发送该第一数据包的时间的信息。
其中,该第一节点基于方式A2确定第一数据包的剩余PDB的过程可以参考方法100中该第一节点基于方式1B确定第一数据包的剩余PDB的过程,为了简洁,此处不再赘述。
第一节点确定第一传输路径的跳数的方式
方式A3
该第一传输路径的跳数是该宿主节点为该第一节点配置的。
其中,该第一节点基于方式A3确定第一传输路径的跳数的过程可以参考方法100中该第一节点基于方式2A确定第一传输路径的跳数的过程,为了简洁,此处不再赘述。
方式A4
该第一节点为该至少一个无线回传节点中的任一个无线回传节点;以及,该方法还包括:
该第一节点接收来自该第一节点的子节点的第一消息,该第一消息包括用于指示跳数的信息,该第一消息中的跳数是该第一传输路径的跳数,或,该第一消息中的跳数是该第一数据包在第二传输路径上被传输过程中经过的节点的数量,该第二传输路径是该第一节点的子节点与该宿主节点之间的以该第一节点的子节点为起点且以该宿主节点为终点的传输路径;以及,
该方法还包括,包括:
该第一节点根据该第一消息确定该第一传输路径的跳数。
其中,该第一节点基于方式A4确定第一传输路径的跳数的过程可以参考方法100中该第一节点基于方式2B确定第一传输路径的跳数的过程,为了简洁,此处不再赘述。
情况B
该第一数据包的第一参数包括:该第一数据包的总数据包时延预算和第三传输路径的跳数,其中,该第一数据包的总数据包时延预算是该第一数据包从该终端侧设备被传输至该宿主节点的时延需求,该第三传输路径的跳数是该第一数据包在该第三传输路径上被传输过程中经过的节点的数量,该第三传输路径是该终端侧设备与该宿主节点之间的以该终端侧设备为起点且以该宿主节点为终点的传输路径。
其中,该第三传输路径为该终端设备与该宿主节点之间的至少一条传输路径中的任一条传输路径,上述该终端设备与该宿主节点之间的第一传输路径可以和该第三传输路径存在重合路径,当该终端设备与该宿主节点之间存在多跳传输路径时,该第一传输路径与该第三传输路径也可以不重合。
可选地,该第一节点确定该第一数据包的第一参数后,可以进一步基于该第一数据包的第一参数确定该第一数据包的单位PDB。具体而言,可以将该总PDB与该第三传输路径的跳数的比值作为表征该第一数据包的单位PDB,该总PDB除以该第三传输路径的跳数的商表示的是单位PDB,该第三传输路径的跳数除以该总PDB的商表示的是能够表征单位PDB的参数,该参数的取值越大,则表示单位PDB越小。
作为示例而非限定,该第一节点确定第一数据包的第一参数后,也可以不需要确定该 第一数据包的单位PDB,因为这两个参数的组合就能够近似表示该第一数据包的单位PDB,因此,可以直接使用该第一数据包的第一参数发送该第一数据包。
可选地,该总PDB可以基于用于表示该第一数据包在终端设备与UPF网元的时延需求的PDB(记为PDB1)和用于表示该第一数据包在宿主节点与UPF网元之间的时延需求的PDB(记为PDB2)的差值确定该总PDB,其中,PDB1可以从现有的预配置的QoS参数中获得,PDB2可以通过宿主节点向该第一节点发送的信令中获得。在另一种可选的实现方式中,该总PDB可以基于本申请实施例重新配置的QoS参数中获得。
可选地,该第三传输路径的跳数可以从宿主节点发送的信令获得。
情况C
该第一数据包的第一参数包括用于表征该第一数据包的单位数据包时延预算。
也就是说,该第一数据包的第一参数本身为用于表征该第一数据包的单位数据包时延预算。作为示例而非限定,该第一节点可以从该宿主节点发送的信令获得该第一数据包的第一参数。
作为示例而非限定,该宿主节点可以通过无线资源控制层(radio resource control,RRC)信令、媒体接入控制层控制单元(medium access control control element,MAC CE)等其他空口信令发送用于指示该单位PDB的信息。
上述对本申请实施例的第一参数的做了详细说明,在本申请实施例中,同方法100,第一节点可以通过两种方式(记为方式C和方式D)发送第一数据包,下面,基于上述第一参数,对第一节点发送第一数据包的过程做一说明。
方式C
该第一节点将该第一数据包映射在对应于该第一参数的第一数据无线承载DRB上;
该第一节点在该第一DRB上发送该第一数据包。
具体而言,多个数据包的第一参数与多个DRB存在对应关系,一个数据包的第一参数具有第一参数的一个取值,也就是说,第一参数的多个取值与多个DRB存在对应关系,第一参数的每个取值对应每个DRB,该第一节点在发送该第一数据包之前,可以根据该第一数据包的第一参数,从第一参数的多个取值与多个DRB的对应关系中确定与该第一数据包的第一参数对应的DRB(记为第一DRB),从而,该第一节点在该第一DRB上发送该第一数据包。
可选地,DRB可以通过用于标识DRB的标识来指示。
因此,第一参数的多个取值与多个DRB的对应关系可以通过第一参数的多个取值与多个DRB的标识的对应关系表示。
作为示例而非限定,下面,结合表7,以及,上述表1和表2,对第一参数的多个取值与多个DRB之间的对应关系进行说明。应理解,表7所示的对应关系仅为示意性说明,任何表示该对应关系的形式都在本申请实施例的保护范围内。
当第一参数包括剩余PDB和剩余跳数时,可以参考方法100中对表1和2的描述,为了简洁,此处不再赘述。当第一参数包括总PDB和总跳数时,第一参数与DRB之间的对应关系的方式(例如,类似表1中分别呈现两个参数与DRB的对应关系,或者,类似表2呈现的一组中的两个参数与DRB的对应关系)可以参考方法100中对表1或表2的描述,不同之处在于,将表1或表2中的剩余PDB和剩余跳数以及对应的数值范围替换 为总PDB和总跳数以及对应的数值范围。
当第一参数包括单位PDB时,或者,当该第一参数包括剩余PDB和剩余跳数且可以进一步确定单位PDB时,或者,当该第一参数包括总PDB和总跳数且可以进一步确定单位PDB时,可以参考表7中单位PDB与DRB之间的对应关系。其中,每个单位PDB都属于一个特定的数值范围,也可以认为每个DRB都对应一个与单位PDB有关的数值范围。对于第一数据包而言,若该第一数据包的单位PDB满足某个数值范围,则将该第一数据包映射至该数据范围对应的DRB(即,第一DRB)。该第一DRB可以是表7中的任一个DRB ID所标识的DRB。
表7
DRB ID 单位PDB 单位PDB ……
1 A<单位PDB<B C<单位PDB<D ……
2 E<单位PDB<F   ……
…… …… …… ……
同方法100,在本申请实施例中,可以将第一参数作为5QI的QoS参数列表中新添加的参数形成新的QoS参数列表,其中,该第一参数包括剩余PDB和剩余跳数或总PDB和总跳数或单位PDB中的任一个。包括第一参数在内的QoS参数中每个参数的多个取值对应5QI的多个取值,5QI的多个取值对应多个DRB,这样,基于修改后的QoS参数与5QI的对应关系和5QI与DRB的对应关系,就可以确定数据包对应的DRB。
关于获取该第一数据包的第一参数与该第一DRB之间的对应关系的方式,可选地,该第一节点接收来自该第一节点的父节点或宿主节点的对应关系信息,该对应关系信息用于指示该第一数据包的第一参数与该第一DRB之间的对应关系。为了简洁,相关描述可以参考方法100中的相关描述,此处不再赘述。
方式D
该第一节点根据该第一参数,发送该第一数据包,包括:
该第一节点根据该第一参数确定第一逻辑信道的优先级,该第一数据包对应该第一逻辑信道;
该第一节点根据该第一逻辑信道的优先级发送该第一数据包。
具体而言,该第一节点根据该第一数据包的QoS参数确定对应的DRB,根据该DRB确定对应的逻辑信道(记为第一逻辑信道),根据该第一数据包的第一参数确定该第一逻辑信道的优先级。从而,根据该第一逻辑信道的优先级发送该第一数据包。
当第一参数包括剩余PDB和剩余跳数时,作为示例而非限定,剩余PDB/剩余跳数的比值中取值较大的数据包对应的逻辑信道的优先级较低,剩余PDB/剩余跳数的比值中取值较小的数据包对应的逻辑信道的优先级较高。其中,剩余PDB/剩余跳数的不同取值对应不同逻辑信道的优先级。
当第一参数包括总PDB和总跳数时,作为示例而非限定,总PDB/总跳数的比值中取值较大的数据包对应的逻辑信道的优先级较低,总PDB/总跳数的比值中取值较小的数据包对应的逻辑信道的优先级较高。其中,总PDB/总跳数的不同取值对应不同逻辑信道的优先级。
当第一参数包括单位PDB时,作为示例而非限定,取值较大的单位PDB的数据包的优先级比取值较小的单位PDB的数据包的优先级低。
此外,当第一参数包括剩余PDB和剩余跳数,或,第一参数包括总跳数和总PDB时,为了较少实现复杂度以及信令开销,可以将该第一参数化为一个量化参数,第一参数与DRB的对应关系可以简单表示为量化参数与DRB的对应关系。其中,该量化参数可以是本申请实施例的单位PDB,也可以是基于其他方式生成的量化参数。例如,该第一参数包括剩余PDB和剩余跳数,作为示例而非限定,可以通过如下公式确定该量化参数,c=a*i+b*j,其中,c表示量化参数,i表示剩余PDB,j表示剩余跳数,a和b为常数。
如前所述,实际传输中,该第一节点可以将包括该第一逻辑信道在内的一组逻辑信道按照该组逻辑信道中所有逻辑信道的优先级顺序填充组包,按照优先级顺序依次发送该组逻辑信道中的数据包。当该第一逻辑信道的优先级较高时,优先发送该第一数据包,当该第一逻辑信道的优先级较低时,延后发送该第一数据包。
在方法200的上行调度中,可选地,该方法还包括:
S231,该第一节点向该第一节点的父节点发送第三消息,该第三消息包括用于表征该第一数据包的第一参数的信息。
S232,该第一节点的父节点根据该第三消息,为该第一节点调度传输资源。
S233,该第一节点的父节点向该第一节点发送用于指示该传输资源的信息。
其中,为了简洁,相关描述可以参考方法100中关于上行调度的描述,此处不再赘述。
以上,结合图3和图4,从上行传输的角度对本申请实施例做了详细说明,下面,从下行传输的角度对本申请实施例做详细说明。
为了描述方便,以第二节点作为下行传输中需要发送数据包的节点的一例,以第二数据包作为下行数据包的任一例,以第四传输路径作为第二节点与终端设备之间的任一条传输路径,对本申请实施例进行说明。其中,该第二节点是宿主节点或该至少一个无线回传节点中的任一个无线回传节点。
在下行传输中,为了优化下行调度的性能,第二节点可以确定第二数据包的第二参数,其中,该第二数据包第二参数包括该第二数据包的剩余PDB、单位PER或第四传输路径的跳数中的至少一个,进而根据该第二数据包的第二参数,对该第二数据包进行下行调度。其中,该第二数据包的剩余数据包时延预算是该第二数据包从所述第二节点被传输至终端设备的时延需求,该第二数据包的单位PER是该第二数据包在相邻两个节点之间的丢包率,该第四传输路径的跳数是该第二数据包在该第四传输路径上被传输过程中经过的节点的数量,该第四传输路径是该第二节点与终端设备之间的以该第二节点为起点且以该终端 设备为终点的传输路径。
具体而言,当第二数据包的剩余PDB少或剩余跳数多时,表示该第二数据包要求低时延,因此,尽量为该第二数据包优先调度传输资源,当该第二数据包的单位PER小时,表示该第二数据包要求高可靠性,因此,优先为该第二数据包分配信道质量较好的传输资源。其中,该第二节点不仅基于该第二数据包的第二参数进行下行调度,当该第二节点有多个待发送的数据包时,该第二节点也会结合其他信息(例如,信道条件,该第二节点需要发送的数据量等)进行下行调度。具体的调度方式可以通过下行调度算法实现。
例如,该多个数据包对应多个逻辑信道,每个逻辑信道对应至少一个数据包,可以通过该多个逻辑信道的优先级确定下行调度行为,其中,每个逻辑信道的优先级可以通过该逻辑信道对应的数据包的第一参数来表征。此外,当一个逻辑信道对应多个数据包时,可以该多个数据包的第一参数量化为一个量化参数,具体方式可以参考上行传输中关于量化参数的描述,为了简洁,不再赘述。
下面,基于该第二参数的内容,分情况对该第二节点确定该第二数据包的第二参数的方式做详细说明。
第二数据包的第二参数包括第二数据包的剩余PDB
当该第二节点为宿主节点时,在一种可选的实现方式中,该第二节点可以基于用于表示该第二数据包在终端设备与UPF网元的时延需求的PDB(记为PDB3)和用于表示该第二数据包在宿主节点与UPF网元之间的时延需求的PDB(记为PDB4)的差值确定该第二数据包的剩余PDB,其中,PDB3可以从现有的预配置的QoS参数中获得,PDB4可以通过宿主节点向该第二节点发送的信令中获得。在另一种可选的实现方式中,该第二数据包的剩余PDB可以基于本申请实施例重新配置的QoS参数中获得。
当该第二节点为至少一个无线回传节点中的任一个无线回传节点时,可选地,该第二节点接收来自该第二节点的父节点的消息(记为第四消息),该第四消息用于确定该第二数据包的剩余数据包时延预算。
其中,该第四消息可以包括用于确定该第二数据包的剩余PDB的全部信息,也可以包括用于确定该第二数据包的剩余PDB的部分信息。
可选地,该第四消息可以携带在该第二节点的父节点发送的第二数据包的包头中。具体地,该第四消息可以携带在该第二数据包在媒体接入控制层(medium access control,MAC)层、RLC层或适配层中的包头中。
作为示例而非限定,该第四消息也可以作为一个独立的消息,通过该第二节点的父节点发送该第四消息,本申请实施例不做任何限定。
下面,根据该第四消息中的内容,进一步对该第二节点根据该第四消息确定该第二数据包的剩余PDB的方式做一说明。
可选地,该第四消息包括时间信息(记为时间信息2)和时延信息(记为时延信息2),其中,该时间信息2用于指示该第二节点的父节点接收到该第二数据包的时间,该时延信息2用于指示该第二数据包从该第二节点的父节点被传输至该终端设备的时延需求(记为历史剩余PDB2)。
其中,该第二节点的父节点可以为宿主节点或无线回传节点,当该第二节点的父节点为该宿主节点时,该宿主节点接收到该第二数据包的时间为该宿主节点从移动网关接收到 该第二数据包的时间。
此种情况下,该第二节点根据该第四消息和该第二节点接收到该第二数据包的时间,确定该第二数据包的剩余PDB。具体而言,根据该第二节点接收到该第二数据包的时间与该第二节点的父节点接收到该第二数据包的时间之差确定该第二数据包从第二节点的父节点被传输至该终端设备的过程中使用的时延,通过该历史剩余PDB2与得到该第二数据包从第二节点的父节点被传输至该终端设备的过程中使用的时延之间的差值确定该第二数据包的剩余PDB。
举例来说,假设,该第二节点的父节点接收到该第二数据包的时间为8点零5ms,该历史剩余PDB2为15ms,该第二节点接收到该第二数据包的时间为8点零10ms,则该第二数据包的剩余PDB=15-(10-5)=10(ms)。
可选地,该第四消息包括用于指示该宿主节点发送该第二数据包的时间的信息。
此种情况下,该第二节点根据该第四消息、该第二节点接收到该第二数据包的时间和该第二数据包的总PDB,确定该第二数据包的剩余PDB,其中,该第二数据包的总PDB是该第一数据包从该宿主节点被传输至终端设备的时延需求。具体而言,根据该第二节点接收到该第二数据包的时间与该宿主节点发送该第二数据包的时间的差值确定该第二数据包从该宿主节点被传输至该第二节点使用的时延,通过总PDB减去该第二数据包从该宿主节点被传输至该第二节点使用的时延即可确定该第数据包的剩余PDB。
举例来说,总PDB为20ms,该第二节点接收到该第二数据包的时间为8点零10ms,该宿主节点发送该第二数据包的时间为8点整,总PDB为20ms,则该第二数据包的剩余PDB=20-(10-0)=10(ms)。
第二数据包的第二参数包括第四传输路径的跳数
可选地,第四传输路径的跳数是该宿主节点为该第二节点配置的。
作为示例而非限定,该宿主节点可以通过RRC信令、MAC CE等其他空口信令发送用于指示该第四传输路径的跳数的信息。
此外,在该第四传输路径上,当该第二节点与该宿主节点之间存在其他无线回传节点,则其他无线回传节点可以将该宿主节点发送的用于指示该第四传输路径的跳数的信息转发或透传给该第二节点。
应理解,当该第二节点与该宿主节点之间存在多条传输路径时,宿主节点会为该第二节点配置每条传输路径的跳数。
可选地,该第二节点根据宿主节点与终端设备之间的传输路径(记为第五传输路径)的跳数(记为总跳数)和累积跳数确定该第四传输路径上的跳数(记为剩余跳数)。其中,该第五传输路径是以该宿主节点为起点以该终端设备为终点的路径,该第五传输路径上被配置的所有节点包括该第四传输路径上被配置的所有节点,即,该第五传输路径被配置的节点包括该终端设备、该终端设备与该第二节点之间的节点、该第二节点、该第二节点与该宿主节点之间的节点和该宿主节点。累积跳数为该第三数据包从宿主节点开始经过的节点的数量。
具体而言,当该的第二数据包从宿主节点开始传输时,每经过一个节点需要另外维护一个用于表示累积跳数的信息,当该第二数据包每经过一个节点时,需要为该累积跳数加一。这样,该第二节点可以根据累积跳数和总跳数确定剩余跳数。
举例来说,假设,与图2中的通信系统为例,以一条传输路径上的所有节点数作为这条传输路径的跳数,假设第二节点为IAB节点C,第五传输路径为宿主节点→IAB节点B→IAB节点C→终端设备,则该第四传输路径为IAB节点C→终端设备,总跳数为4,当第三数据包经过宿主节点时,累积跳数由0变为1,当第三数据包经过IAB节点B时,累积跳数由1变为2,对于IAB节点C来说,剩余跳数为4-2=2。
可选地,该第二节点接收来自该第二节点的父节点的第五消息,根据该第五消息确定该第四传输路径的跳数,其中,该第五消息包括用于指示跳数的信息,该第五消息中的跳数是该第四传输路径的跳数,或,该第五消息中的跳数是该第二数据包在第六传输路径上被传输过程中经过的节点的数量,该第六传输路径是该第二节点的父节点与该终端设备之间的以该第二节点的父节点为起点且以该终端设备为终点的传输路径。
具体而言,在多跳且单连接的场景中,宿主节点或系统可以仅配置该终端设备与该宿主节点之间的一条传输路径上的跳数(简称总跳数),在多跳且多连接的场景中,宿主节点或系统可以配置该终端设备与该宿主节点之间的多条传输路径上每条传输路径的总跳数。该第二数据包被从该宿主节点传输至该宿主节点的子节点,从总跳数中减1,获得该宿主节点的子节点与该终端设备之间的传输路径的跳数,继续下行传输中,该第二数据包从该宿主节点的子节点被传输至该终宿主节点的子节点的子节点,继续从剩余的跳数中减1,获得该宿主节点的子节点的子节点与该终端设备之间的传输路径的跳数。以此类推,每个节点都如此操作,直至将该第二数据包传输至该终端设备。
以该第二节点为例,当该第五消息中的跳数是该第四传输路径上的跳数时,该第二节点的父节点从该第六传输路径的跳数中减1获得该第四传输路径的跳数,通过该第五消息发送给该第二节点;当该第五消息中的跳数是该第六传输路径上的跳数时,该第二节点从从该第六传输路径的跳数中减1获得该第四传输路径的跳数。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图4,详细描述了根据本申请实施例的用于无线回传网络的数据传输方法,下面将结合图5至图6,详细描述根据本申请实施例的用于无线回传网络的装置。
图5示出了本申请实施例提供的用于无线回传网络的装置500,该装置500可以是第一节点、该第一节点的子节点或该第一节点的父节点,也可以为第一节点中的芯片、该第一节点的子节点中的芯片或该第一节点的父节点中的芯片。该装置500包括:收发单元510和处理单元520。
在一种可能的实现方式中,装置500用于执行上述方法100中第一节点对应的各个流程和步骤。
处理单元520,用于确定第一数据包的第一参数,该第一数据包的第一参数包括该第一数据包的剩余数据包时延预算,该装置是终端侧设备或该至少一个无线回传节点中的任一个无线回传节点,该第一数据包的剩余数据包时延预算是该第一数据包从该装置被传输至该宿主节点的时延需求;
收发单元510,用于根据该第一数据包的第一参数,向该装置的父节点发送该第一数据包。
其中,处理单元520可用于执行方法100中的步骤S110和步骤S120,收发单元510 可用于执行方法100中的步骤S101、S131和S133。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,此处不再赘述。
在另一种可能的实现方式中,装置500用于执行上述方法100中第一节点的父节点对应的各个流程和步骤。
收发单元510,用于接收来自第一节点的第三消息,该第三消息包括用于表征第一数据包的第一参数的信息,该第一数据包的第一参数包括该第一数据包的剩余数据包时延预算,该第一节点是终端侧设备或该至少一个无线回传节点中的任一个无线回传节点,该第一数据包的剩余数据包时延预算是该第一数据包从该第一节点被传输至该宿主节点的时延需求;
处理单元520,用于根据该第三消息,为该第一节点调度传输资源;
该收发单元510还用于:在该传输资源上接收来自该第一节点的该第一数据包。
其中,处理单元520可用于执行方法100中的步骤S132,收发单元510可用于执行方法100中的步骤S131和S133。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,此处不再赘述。
在另一种可能的实现方式中,装置500用于执行上述方法100中第一节点的子节点对应的各个流程和步骤。
处理单元520,用于生成第二消息,该第二消息用于确定第一数据包的剩余数据包时延预算,该第一数据包的剩余数据包时延预算是该第一数据包从第一节点被传输至该宿主节点的时延需求,该第一节点是终端侧设备或该至少一个无线回传节点中的任一个无线回传节点;
收发单元510,用于向该第一节点发送第二消息。
其中,收发单元510可用于执行方法100中的步骤S101。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,此处不再赘述。
在另一种可能的实现方式中,装置500用于执行上述方法200中第一节点对应的各个流程和步骤。
处理单元520用于,确定第一数据包的第一参数,该第一数据包的第一参数用于确定用于表征该第一数据包的单位数据包时延预算,该第一数据包的单位数据包时延预算表示该第一数据包在相邻两个节点之间被传输的时延需求,该装置是终端侧设备或该至少一个无线回传节点中的任一个无线回传节点;
收发单元510用于,根据该第一数据包的第一参数,向该装置的父节点发送该第一数据包。
其中,处理单元520可用于执行方法200中的步骤S210和步骤S220,收发单元510可用于执行方法200中的步骤S201、S202、S231和S233。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,此处不再赘述。
应理解,这里的装置500以功能单元的形式体现。这里的术语“单元”可以指应用特 有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置500可以具体为上述实施例中的第一节点、第一节点的父节点或第一节点的子节点装置500可以用于执行上述方法实施例中与第一节点、第一节点的父节点或第一节点的子节点对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置500具有实现上述方法中第一节点、第一节点的父节点或第一节点的子节点执行的相应步骤的功能;所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由发射机和接收机替代,其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。此外,装置500中的收发单元也可以由发送单元和接收单元组成,对于执行与接收相关的操作,可以将该收发单元的功能理解为接收单元执行的接收操作,对于执行与发送相关的操作,可以将该收发单元的功能理解为发送单元执行的发送操作。
在本申请的实施例,图5中的装置也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。对应的,收发单元可以是该芯片的收发电路,在此不做限定。
图6示出了本申请实施例提供的另一用于以太网数据的通信方法的装置600。应理解,装置600可以具体为上述实施例中的第一节点、第一节点的父节点或第一节点的子节点,并且可以用于执行上述方法实施例中与第一节点、第一节点的父节点或第一节点的子节点对应的各个步骤和/或流程。
装置600包括处理器610、收发器620和存储器630。其中,处理器610、收发器620和存储器630通过内部连接通路互相通信,处理器610可以实现装置500中各种可能的实现方式中处理单元520的功能,收发器620可以实现装置500中各种可能的实现方式中收发单元510的功能。存储器630用于存储指令,处理器610用于执行存储器630存储的指令,或者说,处理器610可以调用这些存储指令实现装置500中处理器520的功能,以控制收发器620发送信号和/或接收信号。
可选地,该存储器630可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器610可以用于执行存储器中存储的指令,并且当该处理器610执行存储器中存储的指令时,该处理器610用于执行上述与该第一节点、第一节点的父节点或第一节点的子节点对应的方法实施例的各个步骤和/或流程。
应理解,在本申请实施例中,上述装置的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器, 闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种用于无线回传网络的数据传输方法,所述无线回传网络包括至少一个无线回传节点和宿主节点,其特征在于,所述方法包括:
    第一节点确定第一数据包的第一参数,所述第一数据包的第一参数包括所述第一数据包的剩余数据包时延预算,所述第一节点是终端侧设备或所述至少一个无线回传节点中的任一个无线回传节点,所述第一数据包的剩余数据包时延预算是所述第一数据包从所述第一节点被传输至所述宿主节点的时延需求;
    所述第一节点根据所述第一数据包的第一参数,向所述第一节点的父节点发送所述第一数据包。
  2. 根据权利要求1所述的方法,其特征在于,所述第一节点根据所述第一数据包的第一参数,向所述第一节点的父节点发送所述第一数据包,包括:
    所述第一节点将所述第一数据包映射在对应于所述第一数据包的第一参数的第一数据无线承载DRB上;
    所述第一节点在所述第一DRB上发送所述第一数据包。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收来自所述第一节点的父节点或宿主节点的对应关系信息,所述对应关系信息用于指示所述第一数据包的第一参数与所述第一DRB之间的对应关系。
  4. 根据权利要求1所述的方法,其特征在于,所述第一节点根据所述第一数据包的第一参数,向所述第一节点的父节点发送所述第一数据包,包括:
    所述第一节点根据所述第一数据包的第一参数确定第一逻辑信道的优先级,所述第一数据包对应所述第一逻辑信道;
    所述第一节点根据所述第一逻辑信道的优先级发送所述第一数据包。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一数据包的第一参数还包括第一传输路径的跳数,所述第一传输路径的跳数是所述第一数据包在所述第一传输路径上被传输过程中经过的节点的数量,所述第一传输路径是所述第一节点与所述宿主节点之间的以所述第一节点为起点且以所述宿主节点为终点的传输路径。
  6. 根据权利要求5所述的方法,其特征在于,所述第一传输路径的跳数是所述宿主节点为所述第一节点配置的。
  7. 根据权利要求5所述的方法,其特征在于,所述第一节点为所述至少一个无线回传节点中的任一个无线回传节点;以及,所述方法还包括:
    所述第一节点接收来自所述第一节点的子节点的第一消息,所述第一消息包括用于指示跳数的信息,所述第一消息中的跳数是所述第一传输路径的跳数,或,所述第一消息中的跳数是所述第一数据包在第二传输路径上被传输过程中经过的节点的数量,所述第二传输路径是所述第一节点的子节点与所述宿主节点之间的以所述第一节点的子节点为起点且以所述宿主节点为终点的传输路径;以及,
    所述第一节点确定第一数据包的第一参数,包括:
    所述第一节点根据所述第一消息确定所述第一传输路径的跳数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一节点为所述至少一个无线回传节点中的任一个无线回传节点;以及,
    所述第一节点确定第一数据包的第一参数,包括:
    所述第一节点接收来自所述第一节点的子节点的第二消息,所述第二消息用于确定所述第一数据包的剩余数据包时延预算。
  9. 根据权利要求8所述的方法,其特征在于,所述第二消息包括时间信息和时延信息,其中,所述时间信息用于指示所述第一节点的子节点接收到所述第一数据包的时间或发送所述第一数据包的时间,所述时延信息用于指示所述第一数据包从所述第一节点的子节点被传输至所述宿主节点的时延需求。
  10. 根据权利要求8所述的方法,其特征在于,所述第二消息包括用于指示所述终端侧设备发送所述第一数据包的时间的信息。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点向所述第一节点的父节点发送第三消息,所述第三消息包括用于表征所述第一数据包的第一参数的信息。
  12. 一种用于无线回传网络的数据传输方法,所述无线回传网络包括至少一个无线回传节点和宿主节点,其特征在于,所述方法包括:
    第一节点的父节点接收来自所述第一节点的第三消息,所述第三消息包括用于表征第一数据包的第一参数的信息,所述第一数据包的第一参数包括所述第一数据包的剩余数据包时延预算,所述第一节点是终端侧设备或所述至少一个无线回传节点中的任一个无线回传节点,所述第一数据包的剩余数据包时延预算是所述第一数据包从所述第一节点被传输至所述宿主节点的时延需求;
    所述第一节点的父节点根据所述第三消息,为所述第一节点调度传输资源;
    所述第一节点的父节点在所述传输资源上接收来自所述第一节点的所述第一数据包。
  13. 根据权利要求12所述的方法,其特征在于,所述第一数据包的第一参数还包括第一传输路径的跳数,所述第一传输路径的跳数是所述第一数据包在所述第一传输路径上被传输过程中经过的节点的数量,所述第一传输路径是所述第一节点与所述宿主节点之间的以所述第一节点为起点且以所述宿主节点为终点的传输路径。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述第一节点的父节点向所述第一节点发送对应关系信息,所述对应关系信息用于指示所述第一数据包的第一参数与第一数据无线承载DRB之间的对应关系,所述第一DRB用于承载所述第一数据包。
  15. 一种用于无线回传网络的数据传输方法,所述无线回传网络包括至少一个无线回传节点和宿主节点,其特征在于,所述方法包括:
    第一节点的子节点生成第二消息,所述第二消息用于确定第一数据包的剩余数据包时延预算,所述第一数据包的剩余数据包时延预算是所述第一数据包从所述第一节点被传输至所述宿主节点的时延需求,所述第一节点是终端侧设备或所述至少一个无线回传节点中的任一个无线回传节点;
    所述第一节点的子节点向所述第一节点发送第二消息。
  16. 根据权利要求15所述的方法,其特征在于,所述第二消息包括时间信息和时延 信息,其中,所述时间信息用于指示所述第一节点的子节点接收到所述第一数据包的时间或发送所述第一数据包的时间,所述时延信息用于指示所述第一数据包从所述第一节点的子节点被传输至所述宿主节点的时延需求。
  17. 根据权利要求15所述的方法,其特征在于,所述第二消息包括用于指示终端侧设备发送所述第一数据包的时间的信息。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点的子节点向所述第一节点发送第一消息,所述第一消息包括用于指示跳数的信息,所述第一消息中的跳数是第一传输路径的跳数,或,所述第一消息中的跳数是所述第一数据包在第二传输路径上被传输过程中经过的节点的数量,所述第一传输路径是所述第一节点与所述宿主节点之间的以所述第一节点为起点且以所述宿主节点为终点的传输路径,所述第二传输路径是所述第一节点的子节点与所述宿主节点之间的以所述第一节点的子节点为起点且以所述宿主节点为终点的传输路径。
  19. 一种用于无线回传网络的装置,所述无线回传网络包括至少一个无线回传节点和宿主节点,其特征在于,所述装置包括:
    处理单元,用于确定第一数据包的第一参数,所述第一数据包的第一参数包括所述第一数据包的剩余数据包时延预算,所述装置是终端侧设备或所述至少一个无线回传节点中的任一个无线回传节点,所述第一数据包的剩余数据包时延预算是所述第一数据包从所述装置被传输至所述宿主节点的时延需求;
    收发单元,用于根据所述第一数据包的第一参数,向所述装置的父节点发送所述第一数据包。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元还用于:
    将所述第一数据包映射在对应于所述第一数据包的第一参数的第一数据无线承载
    DRB上;以及,
    所述收发单元具体用于:
    在所述第一DRB上发送所述第一数据包。
  21. 根据权利要求20所述的装置,其特征在于,所述收发单元还用于:
    接收来自所述装置的父节点或宿主节点的对应关系信息,所述对应关系信息用于指示所述第一数据包的第一参数与所述第一DRB之间的对应关系。
  22. 根据权利要求19所述的装置,其特征在于,所述处理单元还用于:
    根据所述第一数据包的第一参数确定第一逻辑信道的优先级,所述第一数据包对应所述第一逻辑信道;以及,
    所述收发单元具体用于:
    根据所述第一逻辑信道的优先级发送所述第一数据包。
  23. 根据权利要求19至22中任一项所述的装置,其特征在于,所述第一数据包的第一参数还包括第一传输路径的跳数,所述第一传输路径的跳数是所述第一数据包在所述第一传输路径上被传输过程中经过的节点的数量,所述第一传输路径是所述装置与所述宿主节点之间的以所述装置为起点且以所述宿主节点为终点的传输路径。
  24. 根据权利要求23所述的装置,其特征在于,所述第一传输路径的跳数是所述宿主节点为所述装置配置的。
  25. 根据权利要求23所述的装置,其特征在于,所述装置为所述至少一个无线回传节点中的任一个无线回传节点;以及,
    所述收发单元还用于,接收来自所述装置的子节点的第一消息,所述第一消息包括用于指示跳数的信息,所述第一消息中的跳数是所述第一传输路径的跳数,或,所述第一消息中的跳数是所述第一数据包在第二传输路径上被传输过程中经过的节点的数量,所述第二传输路径是所述装置的子节点与所述宿主节点之间的以所述装置的子节点为起点且以所述宿主节点为终点的传输路径;以及,
    所述处理单元具体用于:
    根据所述第一消息确定所述第一传输路径的跳数。
  26. 根据权利要求19至25中任一项所述的装置,其特征在于,所述装置为所述至少一个无线回传节点中的任一个无线回传节点;以及,
    所述收发单元还用于:接收来自所述装置的子节点的第二消息,所述第二消息用于确定所述第一数据包的剩余数据包时延预算。
  27. 根据权利要求26所述的装置,其特征在于,所述第二消息包括时间信息和时延信息,其中,所述时间信息用于指示所述装置的子节点接收到所述第一数据包的时间或发送所述第一数据包的时间,所述时延信息用于指示所述第一数据包从所述装置的子节点被传输至所述宿主节点的时延需求。
  28. 根据权利要求26所述的装置,其特征在于,所述第二消息包括用于指示所述终端侧设备发送所述第一数据包的时间的信息。
  29. 根据权利要求19至28中任一项所述的装置,其特征在于,所述收发单元还用于:
    向所述装置的父节点发送第三消息,所述第三消息包括用于表征所述第一数据包的第一参数的信息。
  30. 一种用于无线回传网络的装置,所述无线回传网络包括至少一个无线回传节点和宿主节点,其特征在于,所述装置包括:
    收发单元,用于接收来自第一节点的第三消息,所述第三消息包括用于表征第一数据包的第一参数的信息,所述第一数据包的第一参数包括所述第一数据包的剩余数据包时延预算,所述第一节点是终端侧设备或所述至少一个无线回传节点中的任一个无线回传节点,所述第一数据包的剩余数据包时延预算是所述第一数据包从所述第一节点被传输至所述宿主节点的时延需求;
    处理单元,用于根据所述第三消息,为所述第一节点调度传输资源;
    所述收发单元还用于:在所述传输资源上接收来自所述第一节点的所述第一数据包。
  31. 根据权利要求30所述的装置,其特征在于,所述第一数据包的第一参数还包括第一传输路径的跳数,所述第一传输路径的跳数是所述第一数据包在所述第一传输路径上被传输过程中经过的节点的数量,所述第一传输路径是所述第一节点与所述宿主节点之间的以所述第一节点为起点且以所述宿主节点为终点的传输路径。
  32. 根据权利要求30或31所述的装置,其特征在于,所述收发单元还用于:
    向所述第一节点发送对应关系信息,所述对应关系信息用于指示所述第一数据包的第一参数与第一数据无线承载DRB之间的对应关系,所述第一DRB用于承载所述第一数据包。
  33. 一种用于无线回传网络的装置,所述无线回传网络包括至少一个无线回传节点和宿主节点,其特征在于,所述装置包括:
    处理单元,用于生成第二消息,所述第二消息用于确定第一数据包的剩余数据包时延预算,所述第一数据包的剩余数据包时延预算是所述第一数据包从第一节点被传输至所述宿主节点的时延需求,所述第一节点是终端侧设备或所述至少一个无线回传节点中的任一个无线回传节点;
    收发单元,用于向所述第一节点发送第二消息。
  34. 根据权利要求33所述的装置,其特征在于,所述第二消息包括时间信息和时延信息,其中,所述时间信息用于指示所述装置接收到所述第一数据包的时间或发送所述第一数据包的时间,所述时延信息用于指示所述第一数据包从所述装置被传输至所述宿主节点的时延需求。
  35. 根据权利要求33所述的装置,其特征在于,所述第二消息包括用于指示终端侧设备发送所述第一数据包的时间的信息。
  36. 根据权利要求33至35中任一项所述的装置,其特征在于,所述收发单元还用于:
    向所述第一节点发送第一消息,所述第一消息包括用于指示跳数的信息,所述第一消息中的跳数是第一传输路径的跳数,或,所述第一消息中的跳数是所述第一数据包在第二传输路径上被传输过程中经过的节点的数量,所述第一传输路径是所述第一节点与所述宿主节点之间的以所述第一节点为起点且以所述宿主节点为终点的传输路径,所述第二传输路径是所述装置与所述宿主节点之间的以所述装置为起点且以所述宿主节点为终点的传输路径。
PCT/CN2019/111450 2018-10-29 2019-10-16 用于无线回传网络的数据传输方法和装置 WO2020088253A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811267452.0 2018-10-29
CN201811267452.0A CN111107634B (zh) 2018-10-29 2018-10-29 用于无线回传网络的数据传输方法和装置

Publications (1)

Publication Number Publication Date
WO2020088253A1 true WO2020088253A1 (zh) 2020-05-07

Family

ID=70420261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111450 WO2020088253A1 (zh) 2018-10-29 2019-10-16 用于无线回传网络的数据传输方法和装置

Country Status (2)

Country Link
CN (1) CN111107634B (zh)
WO (1) WO2020088253A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133714A1 (zh) * 2020-12-22 2022-06-30 华为技术有限公司 节点调度方法及装置
US11540211B2 (en) * 2019-09-25 2022-12-27 Qualcomm Incorporated Techniques for integrated access and backhaul capability indication
GB2622464A (en) * 2020-10-15 2024-03-20 Samsung Electronics Co Ltd QOS management framework
GB2600098B (en) * 2020-10-15 2024-03-27 Samsung Electronics Co Ltd QoS management framework

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113950074B (zh) * 2020-07-16 2024-05-14 维沃移动通信有限公司 延时指示的方法、配置方法及装置
WO2022151295A1 (zh) * 2021-01-14 2022-07-21 富士通株式会社 数据包时延预算的配置方法、装置和系统
CN115134871A (zh) * 2021-03-26 2022-09-30 维沃移动通信有限公司 数据传输方法、装置、iab节点及可读存储介质
CN116419312A (zh) * 2021-12-29 2023-07-11 中国移动通信有限公司研究院 一种服务质量流的配置信息及数据的传输方法及设备
CN117081971A (zh) * 2022-05-10 2023-11-17 华为技术有限公司 多跳传输方法、通信装置及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170005913A1 (en) * 2015-06-30 2017-01-05 Qualcomm Incorporated Management of network routing domains in communication networks
CN108513323A (zh) * 2018-06-28 2018-09-07 武汉虹信通信技术有限责任公司 一种iab基站协助ue进行小区选择的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8027284B2 (en) * 2006-11-27 2011-09-27 Ntt Docomo, Inc. Method and apparatus for reliable multicasting in wireless relay networks
CN102740395A (zh) * 2012-07-12 2012-10-17 南京邮电大学 一种面向移动传感器网络的自组织路由方法
WO2015127598A1 (zh) * 2014-02-26 2015-09-03 华为技术有限公司 网络设备和一种实现数据回传的系统及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170005913A1 (en) * 2015-06-30 2017-01-05 Qualcomm Incorporated Management of network routing domains in communication networks
CN108513323A (zh) * 2018-06-28 2018-09-07 武汉虹信通信技术有限责任公司 一种iab基站协助ue进行小区选择的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZTE: "Latency analysis for IAB network", 3GPP DRAFT; R2-1812465, 10 August 2018 (2018-08-10), Gothenburg, Sweden, pages 1 - 5, XP051522063 *
ZTE: "Latency analysis for IAB network", 3GPP DRAFT; R2-1814722, 28 September 2018 (2018-09-28), Chengdu, China, pages 1 - 5, XP051524113 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11540211B2 (en) * 2019-09-25 2022-12-27 Qualcomm Incorporated Techniques for integrated access and backhaul capability indication
GB2622464A (en) * 2020-10-15 2024-03-20 Samsung Electronics Co Ltd QOS management framework
GB2600098B (en) * 2020-10-15 2024-03-27 Samsung Electronics Co Ltd QoS management framework
WO2022133714A1 (zh) * 2020-12-22 2022-06-30 华为技术有限公司 节点调度方法及装置

Also Published As

Publication number Publication date
CN111107634B (zh) 2022-12-30
CN111107634A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2020088253A1 (zh) 用于无线回传网络的数据传输方法和装置
TW201919431A (zh) D2d通訊中資源配置的方法、終端設備和網路設備
CN111586749B (zh) 一种下行缓存状态反馈方法及装置
CN110636555B (zh) 一种数据调度的方法及装置
US20110003545A1 (en) Relay Node Connection Management
US20210243636A1 (en) Communication Control Method And Apparatus
WO2020164615A1 (zh) 一种通信方法及相关设备
JP7367838B2 (ja) サイドリンクスケジューリングリクエストのトリガー方法、装置及びシステム
WO2020199829A1 (zh) 一种缓冲区状态报告传输方法及装置
WO2020221296A1 (zh) 数据传输的方法和装置
WO2020221246A1 (zh) 取消待处理sr的方法及装置
JP2022516899A (ja) 無線通信方法及び装置
WO2020088400A1 (zh) 资源调度方法、装置及设备
US10433201B2 (en) Method for transmitting and receiving packet in transport network
WO2020082218A1 (zh) 无线通信的方法和网络设备
JP6468196B2 (ja) 割り当て方法、無線通信システム、割り当て装置及びそのプログラム
US20220167382A1 (en) Method for determining association between logical channel groups, apparatus, and system
WO2020199034A1 (zh) 用于中继通信的方法和装置
WO2018098762A1 (zh) 信息传输方法、基站和终端设备
JP2024502372A (ja) バッファ状態レポートの方法、バッファ状態レポートの構成方法及び装置
WO2021062717A1 (zh) 一种缓冲区状态报告传输方法及装置
WO2019192465A1 (zh) 中继资源的请求方法、调度方法及设备
WO2019129164A1 (zh) 一种传输时间处理方法及相关设备
CN111757499A (zh) 资源管理方法、控制信息传输方法、以及信息配置方法
WO2022193127A1 (zh) 业务调度方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879128

Country of ref document: EP

Kind code of ref document: A1