WO2022151295A1 - 数据包时延预算的配置方法、装置和系统 - Google Patents

数据包时延预算的配置方法、装置和系统 Download PDF

Info

Publication number
WO2022151295A1
WO2022151295A1 PCT/CN2021/071953 CN2021071953W WO2022151295A1 WO 2022151295 A1 WO2022151295 A1 WO 2022151295A1 CN 2021071953 W CN2021071953 W CN 2021071953W WO 2022151295 A1 WO2022151295 A1 WO 2022151295A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
iab
uplink
pdb
average
Prior art date
Application number
PCT/CN2021/071953
Other languages
English (en)
French (fr)
Inventor
路杨
易粟
贾美艺
李国荣
Original Assignee
富士通株式会社
路杨
易粟
贾美艺
李国荣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 路杨, 易粟, 贾美艺, 李国荣 filed Critical 富士通株式会社
Priority to PCT/CN2021/071953 priority Critical patent/WO2022151295A1/zh
Publication of WO2022151295A1 publication Critical patent/WO2022151295A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications.
  • Ultra-dense network is one of the goals of 5G. Deploying an NR network without wired backhaul is very important to realize 5G's ultra-dense network. As 5G millimeter wave reduces the cell coverage, the wireless self-backhaul system also needs to be multi-hop to meet the deployment requirements. 5G's high bandwidth, massive MIMO and beam systems make 5G easier than LTE to develop wireless self-backhaul systems for ultra-dense NR cells, in order to develop this multi-hop system with wireless self-backhaul, 3GPP started IAB in R16 (Integrated access and backhaul, access and backhaul integration) project research and standardization.
  • R16 Integrated access and backhaul, access and backhaul integration
  • Figure 1 is a schematic diagram of the IAB system.
  • the relay node supports both access and backhaul functions, and the wireless transmission link of the relay node is in the time domain,
  • the access link and the backhaul link are multiplexed in the frequency domain or the space domain, and the access link and the backhaul link can use the same or different frequency bands.
  • the relay node refers to an IAB-node (IAB node), which supports both access and backhaul functions.
  • IAB node The last hop access node on the network side is called IAB-donnor (IAB host), which supports the gNB function and supports IAB-node access. All UE data can be sent back to IAB-donor via IAB-node through one or more hops.
  • the function of the IAB-node is divided into two parts, one part is the gNB-DU function, called IAB-DU, and the other part is the terminal function, called IAB-MT.
  • the IAB-DU realizes the function of the network side device, connects to the downstream child IAB-node (child IAB node), provides NR air interface access to the UE and the downstream child IAB-node, and establishes an F1 connection with the IAB donor-CU.
  • IAB-MT implements some terminal equipment functions and is connected to the upstream parent IAB-node (parent IAB node) or IAB-donor DU.
  • IAB-MT includes physical layer, layer 2, RRC (Radio Resource Control, Radio Resource Control) and NAS (Non-Access Stratum, non-access layer) layer function, also indirectly connected to IAB donor-CU and core network (Core Network, CN).
  • the IAB-node can access the network in an independent networking (SA, Standalone) mode or a non-independent networking mode (EN-DC, E-UTRA-NRDualConnectivity) mode.
  • SA independent networking
  • EN-DC non-independent networking mode
  • Figure 2 is a schematic diagram of the IAB architecture in SA mode.
  • Figure 3 is a schematic diagram of an IAB architecture in EN-DC mode.
  • FIG. 4 is a schematic diagram of an IAB node (IAB-node), a parent node (parent IAB-node) and a child node (child IAB-node).
  • IAB-node IAB node
  • parent IAB-node parent node
  • child IAB-node child node
  • the IAB-DU of the IAB node is connected to the IAB-MT of the child node as the network side
  • the IAB-MT of the IAB node is connected to the IAB-DU of the parent node as the terminal side.
  • Figure 5 is a schematic diagram of the F1 user plane (F1-U) protocol stack between the IAB-DU and the IAB-donor CU.
  • Figure 6 is a schematic diagram of the F1 control plane (F1-C) protocol stack between the IAB-DU and the IAB-donor CU.
  • F1-U and F1-C are built on the transport (IP) layer between IAB-DU and IAB-donor-CU. and one-hop wired backhaul.
  • IP transport
  • BAP backhaul adaptation protocol
  • BAP PDUs Protocol Data Units
  • RLC Radio Link Control
  • multiple RLC channels of the backhaul link can be configured by the IAB-donor to carry different priorities and QoS (Quality of Service) ) service
  • the BAP entity maps BAP PDUs to different return RLC channels.
  • the access node of the terminal device is the donor DU, which is different from the traditional access network.
  • the IAB network there is a multi-hop wireless backhaul between the access node of the terminal device and the donor DU.
  • the transmission link which brings multi-hop backhaul delay to the service of the terminal device.
  • the latency requirement of the bearer of the terminal equipment (referred to as UE bearer) is fixed, that is, the terminal equipment is required to meet the latency requirement of the bearer when accessing any node of the IAB network, that is, the wireless backhaul of different hops is required. It can be guaranteed to meet the delay requirement under all conditions, and the existing technology cannot solve this problem.
  • embodiments of the present application provide a method, apparatus and system for configuring a data packet delay budget.
  • a device for configuring a packet delay budget is provided, which is configured on a Donor device of an IAB system, where the IAB system includes a Donor device, an access IAB node, an intermediate IAB node, and a UE , wherein the device includes:
  • a sending unit which sends first configuration information to the access IAB node, and indicates the access link PDB carried by the UE through the first configuration information
  • the first configuration information includes at least one of the following:
  • the core network PDB represents the maximum delay requirement for the UE to be carried between the access IAB node and the N6 interface termination point of the UPF of the core network;
  • the number of radio transmission hops carried by the UE The number of radio transmission hops carried by the UE.
  • a mapping apparatus carried by a UE is provided, which is configured on a Donor device of an IAB system, where the IAB system includes a Donor device, an access IAB node, an intermediate IAB node, and a UE, wherein the device include:
  • a mapping unit which maps the same UE bearer to the same backhaul RLC channel required by the maximum delay of single-hop wireless backhaul.
  • a delay measurement and reporting device is provided, which is configured on an intermediate IAB node of an IAB system, where the IAB system includes a Donor device, an access IAB node, an intermediate IAB node, and a UE, wherein the The device includes:
  • a processing unit which measures the average IAB-DU delay and downlink air interface transmission average delay of single-hop wireless backhaul for UE bearer, backhaul RLC channel or forwarding route on the IAB-DU side of the intermediate IAB node;
  • the average IAB-DU delay of the single-hop wireless backhaul includes the time from when the data packet arrives at the BAP layer of the IAB-DU until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the downlink air interface. Average time delay.
  • the terminal device can meet the bearer delay requirement when accessing any node of the IAB network, that is, the wireless backhaul with different hops can ensure that the delay requirement can be met .
  • Fig. 1 is a schematic diagram of the IAB system
  • Fig. 2 is the schematic diagram of the IAB architecture of SA mode
  • Fig. 3 is the schematic diagram of the IAB framework of EN-DC mode
  • Fig. 4 is the schematic diagram of parent node and child node
  • Fig. 5 is the schematic diagram of the F1-U protocol stack of the IAB system
  • Fig. 6 is the schematic diagram of the F1-C protocol stack of the IAB system
  • Fig. 7 is a schematic diagram of AN PDB and CN PDB
  • FIG. 8 is a schematic diagram of a method for configuring a packet delay budget according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of CN PDB
  • FIG. 10 is a schematic diagram of the access PDB
  • FIG. 11 is another schematic diagram of the access PDB
  • Figure 12 is another schematic diagram of the access PDB
  • FIG. 13 is another schematic diagram of a method for configuring a packet delay budget according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an example in which a Donor CU sends a backhaul PDB for a UE DRB to an intermediate IAB node;
  • Figure 15 is a schematic diagram of an example in which the Donor CU sends the single-hop wireless backhaul PDB for different forwarding routes to the intermediate IAB-node;
  • 16 is a schematic diagram of a method for mapping a UE bearer according to an embodiment of the present application.
  • Figure 20 is a schematic diagram of an example of the above-described embodiment
  • FIG. 21 is a schematic diagram of a delay measurement and reporting method according to an embodiment of the present application.
  • FIG. 22 is another schematic diagram of the delay measurement and reporting method according to an embodiment of the present application.
  • FIG. 23 is another schematic diagram of the delay measurement and reporting method according to an embodiment of the present application.
  • Figure 24 is a schematic diagram of the protocol stack structure of the IAB system
  • Figure 25 is another schematic diagram of the protocol stack structure of the IAB system.
  • Figure 26 is another schematic diagram of the protocol stack structure of the IAB system.
  • FIG. 27 is a schematic diagram of a data scheduling method according to an embodiment of the present application.
  • FIG. 28 is another schematic diagram of a data scheduling method according to an embodiment of the present application.
  • 29 is a schematic diagram of an apparatus for configuring a packet delay budget according to an embodiment of the present application.
  • FIG. 30 is another schematic diagram of an apparatus for configuring a packet delay budget according to an embodiment of the present application.
  • FIG. 31 is a schematic diagram of a mapping apparatus carried by a UE according to an embodiment of the present application.
  • 32 is a schematic diagram of a delay measurement and reporting device according to an embodiment of the present application.
  • 33 is a schematic diagram of a delay measurement and reporting device according to an embodiment of the present application.
  • 34 is a schematic diagram of a delay measurement and reporting device according to an embodiment of the present application.
  • 35 is a schematic diagram of a data scheduling apparatus according to an embodiment of the present application.
  • FIG. 36 is another schematic diagram of a data scheduling apparatus according to an embodiment of the present application.
  • FIG. 37 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 38 is a schematic diagram of a Donor device according to an embodiment of the present application.
  • FIG. 40 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelation, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having”, etc. refer to the presence of stated features, elements, elements or components, but do not preclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as New Radio (NR, New Radio), Long Term Evolution (LTE, Long Term Evolution), enhanced Long Term Evolution (LTE-A, LTE-Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to communication protocols at any stage, for example, including but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, 6G, etc., and/or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G, 2.75G
  • 3G 3G
  • 4G 4.5G
  • future 5G, 6G, etc. and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network devices may include but are not limited to the following devices: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobility management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include a remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low power node (eg femto, pico, etc.).
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low power node eg femto, pico, etc.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to a device that accesses a communication network through a network device and receives network services, and may also be called “Terminal Equipment” (TE, Terminal Equipment).
  • a terminal device may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), a terminal, a user, a subscriber station (SS, Subscriber Station), an access terminal (AT, Access Terminal), a station, etc. Wait.
  • the terminal device may include but is not limited to the following devices: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication device, handheld device, machine type communication device, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine type communication device
  • laptop computer Cordless phones, smartphones, smart watches, digital cameras, and more.
  • the terminal device may also be a machine or device that performs monitoring or measurement, such as but not limited to: Machine Type Communication (MTC, Machine Type Communication) terminals, In-vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • PDB Packet Delay Budget, data packet delay budget
  • QoS Quality of Service
  • CN PDB core network PDB
  • the DU of the access point usually sets the scheduling priority of each UE carried according to the AN PDB carried by the UE.
  • the QoS parameters of the bearer (including PDB and CN PDB) are sent to the DU of the access point through F1 signaling.
  • the DU of the access point can subtract the CN PDB from the PDB to obtain the AN PDB.
  • FIG. 7 is a schematic diagram of the AN PDB and the CN PDB.
  • the AN PDB represents the wireless transmission delay requirement between the UE and the donor DU
  • the CN PDB is from the donor DU to the UPF.
  • F1 signaling supports configuring the QoS parameters of the BH RLC channel (including single-hop PDB) for the DU of the intermediate IAB-node, that is, when a data packet of a BH link is transmitted between the DU of the intermediate IAB-node and the MT of the child node extension request.
  • the AN PDB is the upper limit of the wireless transmission delay of data from the UE to the donor DU, representing the total delay requirement of the access link and the backhaul link of the UE.
  • the access IAB-node needs to know the PDB of the UE's access link, and the intermediate IAB-node needs to know the PDB of the backhaul link of the UE, but the existing technology does not support it.
  • the intermediate IAB-node needs to know the single-hop PDB of the backhaul link.
  • the intermediate node can obtain the single-hop PDB of the BH RLC channel of the next-hop node.
  • the same UE bearer in the radio access part PDB ie AN PDB
  • the same UE bearer on the same BH RLC channel may have different requirements for the single-hop delay of the backhaul link, so the current PDB for the BH RLC channel cannot represent the PDB mapped to the BH RLC channel carried by each UE.
  • Wireless backhaul link latency requirements are examples of the single-hop PDB of the backhaul link.
  • the embodiment of the present application provides a method for configuring a data packet delay budget.
  • FIG. 8 is a schematic diagram of a method for configuring a data packet delay budget according to an embodiment of the present application, which is described from the side of the Donor device. The method is applied to the IAB system.
  • the IAB system in addition to the Donor device, the IAB system also includes an access IAB node, an intermediate IAB node and a terminal device. As shown in Figure 8, the method includes:
  • the Donor device sends first configuration information to the access IAB node, where the first configuration information indicates an access link PDB borne by the UE, where the first configuration information includes at least one of the following:
  • the core network PDB represents the maximum delay requirement for the UE to be carried between the access IAB node and the N6 interface termination point of the UPF of the core network;
  • the number of radio transmission hops carried by the UE that is, the number of hops between the UE and the Donor-DU;
  • the wireless backhaul PDB carried by the UE that is, the maximum delay requirement between the UE's access IAB-node and the Donor-DU;
  • the single-hop wireless backhaul PDB carried by the UE and the wireless backhaul hop count are the hop count between the UE's access IAB-node and the Donor-DU.
  • the Donor device can directly or indirectly indicate the access link PDB for the UE to the access IAB node, so that the access IAB node performs priority scheduling according to the access link PDB, thereby ensuring that the UE bears Delay on the access link.
  • the above-mentioned first configuration information is included in the DRB quality of service parameter list and/or the DRB configuration parameter list of the UE context setup (UE context setup) message or the UE context modification (UE context modification) message, but this application Not limited to this.
  • the core network (CN PDB) in the DRB QoS parameter list of the UE context setup/modification message represents a UE bearer at the N6 interface termination point of the access IAB-node and UPF
  • the delay requirement of the transmission between them, that is, the CN PDB includes the sum of the wireless backhaul delay and the delay of the wired transmission link from the Donor DU to the UPF.
  • Figure 9 is a schematic diagram of the CN PDB of this example.
  • Donor CU establishes UE 1 DRB1 in IAB-node 3, and configures the PDB of UE 1 DRB1 to be 100ms and CN PDB to 80ms through the F1AP message, then the Access link PDB is calculated to be 20ms according to the above formula.
  • the UE DRB in the IAB system add the Access link PDB configuration to the DRB configuration parameter list of the UE context setup/modification message, or use the existing PDB field to indicate the Access link PDB.
  • Figure 10 is a schematic diagram of the Access link PDB of this example.
  • Donor CU when Donor CU establishes UE 1 DRB1 in IAB-node 3, it configures the PDB of UE1 DRB1 to 100ms and CN PDB to 20ms for IAB-node3 through the F1AP message, and also configures the Access link PDB of DRB1 to 20ms; Some PDB domains configure the Access link PDB to be 20ms.
  • Figure 11 is a schematic diagram of the Access link PDB of this example.
  • the PDB configured by F1AP is 100ms
  • the CN PDB is 20ms
  • the BH PDB of DRB1 is also configured to be 60ms
  • the Access link PDB is 20ms calculated according to the above formula.
  • the DRB configuration of the UE context setup/modification message increases the wireless transmission hop number (hop number), that is, the hop number between the UE and the Donor DU.
  • hop number the wireless transmission hop number between the UE and the Donor DU.
  • the Access link PDB is 20ms calculated according to the above formula .
  • the one-hop wireless backhaul PDB (one-hop BH PDB) can be configured in the DRB configuration or QoS parameters of the UE context setup/modification message, that is, the intermediate IAB-node and the sub-IAB-node. It also configures the total number of wireless backhaul hops (BH hop number) of the DRB, that is, the number of wireless backhaul hops from the UE's access IAB-node to the Donor-DU.
  • Figure 12 is a schematic diagram of the Access link PDB of this example.
  • the PDB configured through F1AP is 100ms
  • the CN PDB is 20ms
  • the one-hop BH PDB of DRB1 is also configured to be 20ms and BH hop number to 3, according to the above formula It is calculated that the Access link PDB is 20ms.
  • the Donor CU can directly or indirectly indicate the access PDB carried by the UE to the access IAB-node, and the access IAB-node performs priority scheduling on the UE DRB based on the access PDB, ensuring that the UE DRB is in the access Latency requirements for the access link.
  • the embodiment of the present application provides a method for configuring a data packet delay budget.
  • FIG. 13 is a schematic diagram of a method for configuring a data packet delay budget according to an embodiment of the present application, which is described from the side of the Donor device. The method is applied to the IAB system.
  • the IAB system in addition to the Donor device, the IAB system also includes an access IAB node, an intermediate IAB node and a terminal device. As shown in Figure 13, the method includes:
  • the Donor device sends second configuration information to the intermediate IAB node, and the second configuration information indicates a single-hop wireless backhaul PDB for the UE bearer or for a forwarding route; the forwarding route includes a forwarding path and/or target BAP address.
  • the Donor CU sends the BH PDB for the UE bearer or for the forwarding route to the intermediate IAB-node, and the intermediate IAB-node performs priority scheduling on the UE bearer or the forwarding route based on the BH PDB, ensuring that the UE bearer is in the backhaul. The delay requirement of the link.
  • the second configuration information includes at least one of the following:
  • the wireless transmission PDB carried by the UE or the forwarding route, the wireless transmission PDB is the maximum delay requirement between the UE and the Donor-DU;
  • the remaining PDB of the downlink wireless transmission is the maximum delay requirement from the current IAB-node to the UE; the remaining PDB of the uplink wireless transmission is the maximum delay requirement from the current IAB-node to the Donor-DU;
  • the remaining number of hops in wireless transmission is the number of hops from the current IAB-node to the UE; the remaining number of hops in the uplink wireless transmission is the number of hops from the current IAB-node to the Donor-DU.
  • the second configuration information may be included in the backhaul RLC channel configuration parameter of the UE context setup (UE context setup) message or the UE context modification (UE context modification) message.
  • the present application is not limited to this, and the second configuration information may also be included in other messages or parameters.
  • FIG. 14 is a schematic diagram of an example of a Donor CU sending a backhaul PDB for the UE DRB to an intermediate IAB node.
  • a single-hop wireless backhaul PDB (one-hop BH PDB) for the UE DRB is added to the BH RLC channel configuration of the UE context setup/modification message, that is, the UE's DRB data packet is in the middle The transmission delay requirement between an IAB-node and its child IAB-nodes.
  • the BH RLC channel configuration includes one-hop BH PDB for UE1 DRB1 and one-hop BH for UE2 DRB2 pdb.
  • the BH RLC channel configuration of the UE context setup/modification message includes the wireless transmission PDB (AN PDB) and the wireless transmission hop number (hop number) for the UE DRB.
  • the BH RLC channel configuration includes the AN PDB and hop number for UE1 DRB1 and the AN PDB and hop number for UE2 DRB2 number
  • the single-hop BH PDB for UE1 DRB1 and the single-hop BH PDB for UE2 DRB2 can be obtained by calculation according to the previous formula.
  • the BH RLC channel configuration of the UE context setup/modification message includes the remaining PDB (remaining PDB) of the UE DRB and the remaining hops of the wireless transmission (remaining hops).
  • the remaining PDB of the downlink wireless transmission is the maximum delay requirement of the UE's DRB data packet from the current IAB-node to the UE; the remaining PDB of the uplink wireless transmission is the distance between the UE's DRB data packet from the current IAB-node to the Donor DU.
  • Donor CU establishes or modifies the BH RLC channel between IAB-node2 and IAB-node1 for IAB-node1.
  • the BH RLC channel configuration includes the remaining PDB and remaining hops for UE1 DRB1 and the remaining PDB and remaining hops for UE2 DRB2 , the single-hop BH PDB for UE1 DRB1 and the single-hop BH PDB for UE2 DRB2 can be obtained by calculation according to the previous formula.
  • the UE bearer in the above-mentioned backhaul RLC channel configuration parameter, may be identified by GTP-U TEID and/or IP address.
  • the GTP-U TEID and/or IP address are used to identify different UE DRBs in the BH RLC channel configuration of the UE context setup/modification message. Because the UE DRB data is transmitted through the GTP-U tunnel, the intermediate IAB-node can identify different DRBs through the GTP-U TEID and IP address, and perform priority scheduling according to the one-hop BH PDB of the DRB, which can ensure that different DRBs are in the backhaul chain. Delay requirements on the road.
  • Figure 15 is a schematic diagram of an example in which the Donor CU sends single-hop wireless backhaul PDBs for different forwarding routes to an intermediate IAB-node.
  • the BH RLC channel configuration parameters of the UE context setup/modification message include the single-hop wireless backhaul PDB for the forwarding route, that is, the data packets belonging to the route are transmitted between the intermediate IAB-node and the sub-IAB. -Maximum latency requirement between nodes.
  • the BH RLC channel configuration includes one-hop BH PDB for routing 1 and one-hop BH for routing 2 pdb.
  • the wireless transmission PDB (AN PDB) and the wireless transmission hop number (hop number) for the forwarding route are added to the BH RLC channel configuration parameters of the UE context setup/modification message.
  • the AN PDB is the transmission delay requirement of the data packets belonging to the forwarding route between the UE and the donor DU
  • the hop number for the forwarding route is the hop number of the forwarding route between the UE and the donor DU.
  • the BH RLC channel configuration includes the AN PDB and hop number for routing 1 and the AN for routing 2 PDB and hop number.
  • the one-hop BH PDB for UE1 DRB1 and the one-hop BH PDB for UE2 DRB2 can be obtained by calculation.
  • the BH RLC channel configuration parameters of the UE context setup/modification message include the remaining PDB (remaining PDB) and the remaining hops (remaining hop) of wireless transmission for the forwarding route.
  • the remaining PDB of the wireless transmission is the transmission delay requirement of the data packets belonging to the forwarding route from the current IAB-node to the UE; the remaining PDBs of the uplink wireless transmission are the data packets belonging to the forwarding route from the current IAB-node to the UE.
  • the maximum delay requirement between Donor-DUs; the remaining hops of the downlink wireless transmission is the number of hops between the data packets belonging to the forwarding route from the intermediate IAB-node to the UE; the remaining hops of the uplink wireless transmission is the number of hops belonging to the forwarding route.
  • the BH RLC channel configuration includes the remaining PDB and remaining hop for routing 1 and the remaining PDB and remaining for routing 2. hop.
  • the one-hop BH PDB for UE1 DRB1 and the one-hop BH PDB for UE2 DRB2 can be obtained by calculation.
  • the bearer of each UE will be assigned a forwarding route identifier. If the UE bearer with the same radio transmission delay requirement is mapped to the same BH RLC channel, then in the same BH RLC channel, the UE bearer with the same forwarding route has the same requirement for the single-hop backhaul link delay.
  • the one-hop BH PDB for the forwarding route can be used to represent the delay requirement of the one-hop backhaul link carried by the corresponding UE. Because the BAP layer protocol header of the data contains the routing ID, the intermediate IAB-node can perform priority scheduling according to the one-hop BH PDB of the forwarding route to ensure the DRB delay requirements mapped to different routes.
  • the paths of UE1 DRB1 and UE2 DRB2 are different, the forwarding route identifiers are routing 1 and routing 2 respectively, and the air interface PDBs carried by the two UEs are both 80ms, which are mapped to the same BH between IAB-node 2 and IAB-node 1 on the RLC channel.
  • the Donor-CU sends the single-hop wireless backhaul PDB for the UE DRB or the forwarding route to the intermediate IAB-node, and the intermediate IAB-node sends the data of the UE DRB or forwarding route based on the single-hop wireless backhaul PDB to the UE DRB or forwarding route. Packets are scheduled with priority to ensure the delay requirement of UE DRB on the backhaul link.
  • An embodiment of the present application provides a method for mapping a UE bearer.
  • FIG. 16 is a schematic diagram of a method for mapping a UE bearer according to an embodiment of the present application, which is described from the side of the Donor device. The method is applied to an IAB system. As mentioned above, in addition to the Donor device, the IAB system also includes an access IAB node, an intermediate IAB node and a terminal device. As shown in Figure 16, the method includes:
  • the Donor device maps UE bearers with the same or similar maximum delay requirements for single-hop wireless backhaul to the same backhaul RLC channel.
  • the Donor CU maps the same UE bearer with the same single-hop wireless backhaul delay requirement to the same BH RLC channel, and sends the BH PDB for the BH RLC channel to the intermediate IAB-node, and the intermediate IAB-node maps the BH to the BH RLC channel.
  • the RLC channel is prioritized to ensure the delay requirement of the UE DRB on the backhaul link.
  • the Donor device maps the radio transmission PDB (AN PDB) and the UE bearer with the same or similar radio transmission hop number to the same BH RLC channel.
  • FIG. 17 is a schematic diagram of an example of the above-mentioned embodiment.
  • the AN PDB of UE1 DRB1 is 80ms
  • the AN PDB of UE2 DRB2 is 60ms
  • the AN PDB of UE3 DRB3 is 80ms.
  • the hop number is the same, but different from DRB2, DRB1, DRB3 are mapped to one BH RLC channel, and DRB2 is mapped to another BH RLC channel.
  • the Donor device maps UE bearers with the same or similar ratio of the radio transmission PDB (AN PDB) to the radio transmission hop number to the same BH RLC channel. That is, the Donor CU maps UE bearers with the same value of AN PDB/hop number to the same BH RLC channel.
  • AN PDB radio transmission PDB
  • FIG. 18 is a schematic diagram of an example of the above embodiment.
  • the AN PDB of UE1 DRB1 is 80ms
  • the AN PDB of UE2 DRB2 is 60ms
  • the AN PDB of UE3 DRB3 is 80ms, because the AN PDB of these three DRBs is 80ms
  • the /hop number is the same, so these three DRBs, namely DRB1, DRB2 and DRB3, can be mapped to the same BH RLC channel.
  • the Donor device maps UE bearers whose radio transmission remaining PDB (remaining PDB) and radio transmission remaining hops are the same or similar to the same BH RLC channel.
  • FIG. 19 is a schematic diagram of an example of the above-mentioned embodiment. As shown in FIG. 19 , the AN PDB of UE1 DRB1 is 80ms, the AN PDB of UE2 DRB2 is 60ms, and the AN PDB of UE3 DRB3 is 80ms.
  • the remaining PDB of UE1 DRB1 is 60ms, and the remaining hops is 3; the remaining PDB of UE2 DRB2 is 40ms, and the remaining hops is 2; the remaining PDB of UE3 DRB3 is 60ms, and the remaining hops is 3, then in On the BH between IAB-node1 and IAB-node2, map DRB1 and DRB3 to the same BH RLC channel, and map DRB2 to another BH RLC channel.
  • the Donor device maps UE bearers with the same or similar ratio of the remaining PDB of the wireless transmission to the remaining hop of the wireless transmission to the same BH RLC channel. That is, the Donor CU maps UE bearers with the same remaining PDB/remaining hops to the same BH RLC channel.
  • FIG. 20 is a schematic diagram of an example of the above embodiment.
  • the AN PDB of UE1 DRB1 is 80ms
  • the AN PDB of UE2 DRB2 is 60ms
  • the AN PDB of UE3 DRB3 is 80ms.
  • the remaining PDB of UE1 DRB1 is 60ms, and the remaining hops is 3
  • the remaining PDB of UE2 DRB2 is 40ms, and the remaining hops is 2
  • the remaining PDB of UE3 DRB3 is 60ms, and the remaining hops is 3.
  • the Donor CU maps the same UE bearer with the same single-hop wireless backhaul delay requirement to the same BH RLC channel, and sends the BH PDB for the BH RLC channel to the intermediate IAB-node, and the intermediate IAB-node pairs
  • the BH RLC channel performs priority scheduling to ensure the delay requirement of the UE DRB in the backhaul link.
  • the Donor device may also receive the access link delay reported by the UE and the access IAB node, and receive the access
  • the single-hop wireless backhaul delay reported by the IAB node or the above-mentioned intermediate IAB node is used to determine the forwarding route, access link PDB and PDB carried by each UE according to the access link delay and the single-hop wireless backhaul delay.
  • Single-hop wireless backhaul PDB is used to determine the forwarding route, access link PDB and PDB carried by each UE according to the access link delay and the single-hop wireless backhaul delay.
  • the access link delay includes an uplink delay of the access link and a downlink delay of the access link
  • the uplink delay of the access link includes an uplink PDCP average delay, an uplink RLC Average delay and uplink air interface transmission average delay
  • the downlink delay of the access link includes the IAB-DU average delay and the downlink air interface transmission average delay.
  • the average uplink PDCP delay is measured by the UE; the average uplink RLC delay, the average uplink air interface transmission delay, the IAB-DU average delay and the downlink air interface transmission average delay are measured by the IAB-DU accessing the IAB node.
  • the single-hop wireless backhaul delay includes a downlink delay of the single-hop wireless backhaul
  • the downlink delay of the single-hop wireless backhaul includes an average IAB-DU delay and an average downlink air interface transmission delay.
  • the average delay of IAB-DU and the average delay of downlink air interface transmission are measured by the IAB-DU of the intermediate IAB node.
  • the single-hop wireless backhaul delay includes an uplink delay of the single-hop wireless backhaul
  • the single-hop wireless backhaul uplink delay includes an IAB-MT average delay and an uplink air interface transmission average delay.
  • the IAB-MT average delay and the uplink air interface transmission average delay are measured by the IAB-MT accessing the IAB node or the intermediate IAB node.
  • the single-hop wireless backhaul delay includes the uplink delay of the single-hop wireless backhaul
  • the uplink delay of the single-hop wireless backhaul includes the uplink BAP average delay or the uplink GTP average delay
  • the uplink delay RLC average delay and uplink air interface average delay are determined by The parent IAB node IAB-DU measurement of the IAB node.
  • the embodiment of the present application provides a method for measuring and reporting time delay.
  • FIG. 21 is a schematic diagram of a delay measurement and reporting method according to an embodiment of the present application, which is described from the UE side. The method is applied to the IAB system.
  • the IAB system also includes: a Donor device, an access IAB node and an intermediate IAB node.
  • the method includes:
  • the UE measures the average uplink PDCP delay for the UE bearer, and reports it to the Donor device; wherein the average uplink PDCP delay includes the time when the data packet arrives at the PDCP layer of the UE until the first time when the data packet is sent. The delay of an uplink air interface grant time.
  • the UE may send the uplink PDCP average delay to the Donor device through an RRC message.
  • FIG. 22 is another schematic diagram of the method for measuring and reporting time delay according to an embodiment of the present application, which is described from the side accessing the IAB node.
  • the method is applied to an IAB system.
  • the IAB system in addition to the access IAB node, the IAB system further includes: a Donor device, a UE, and an intermediate IAB node.
  • the method includes:
  • the IAB-DU of the access IAB node measures the average uplink RLC delay of the access link and the average transmission delay of the uplink air interface for the UE bearer;
  • the IAB-DU of the access IAB node measures the average IAB-DU delay and the average downlink air interface transmission delay for UE bearer, backhaul RLC channel or forwarding route;
  • the average delay of the IAB-DU includes the average value of the time from the arrival of the data packet at the RLC layer of the IAB-DU until the last RLC PDU of the data packet is sent to the MAC and transmitted by the downlink air interface.
  • the access IAB node may transmit the average uplink RLC delay, the average uplink air interface transmission delay, the IAB-DU average delay or the downlink air interface transmission of the access link through an RRC message or an F1AP message.
  • the average delay is sent to the Donor device.
  • the method further includes:
  • the IAB-MT accessing the IAB node measures the IAB-MT average delay of single-hop wireless backhaul and the average uplink air interface transmission delay for UE bearer, backhaul RLC channel or forwarding route;
  • the IAB-MT average delay of the single-hop wireless backhaul includes the time from when the data packet arrives at the BAP layer of the IAB-MT until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink air interface.
  • the average of the time, or the average of the time from the arrival of the data packet to the GTP-U layer until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink.
  • the access IAB node may send the IAB-MT average delay and uplink air interface transmission average delay of the single-hop wireless backhaul to the Donor device through an RRC message or an F1AP message.
  • the method further includes:
  • the IAB-MT accessing the IAB node measures the uplink BAP average delay or the uplink GTP average delay of the single-hop wireless backhaul for the UE bearer, backhaul RLC channel or forwarding route;
  • the average uplink BAP delay of the single-hop wireless backhaul includes the average value of the time from when the data packet arrives at the BAP layer of the IAB-MT until the moment when the first uplink air interface of the data packet is authorized;
  • the uplink The average GTP delay includes the average value of the time from when the data packet arrives at the BAP layer of the IAB-MT until the moment when the first uplink air interface of the data packet is granted.
  • the access IAB node may send the average uplink BAP delay or uplink GTP average delay of the single-hop wireless backhaul to the Donor device through an RRC message or an F1AP message.
  • FIG. 23 is another schematic diagram of the method for measuring and reporting time delay according to an embodiment of the present application, which is described from the side of the intermediate IAB node.
  • the method is applied to an IAB system.
  • the IAB system in addition to the intermediate IAB node, the IAB system further includes: a Donor device, an access IAB node, and a UE.
  • the method includes:
  • the IAB-DU of the intermediate IAB node measures the average IAB-DU delay and downlink air interface transmission average delay of single-hop wireless backhaul for UE bearer, backhaul RLC channel or forwarding route;
  • the average IAB-DU delay of the single-hop wireless backhaul includes the time from when the data packet arrives at the BAP layer of the IAB-DU until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the downlink air interface. Average time delay.
  • the intermediate IAB node may send the average IAB-DU delay or downlink air interface transmission average delay of the single-hop wireless backhaul to the Donor device through an F1AP message or an RRC message.
  • the method further includes:
  • the IAB-MT of the intermediate IAB node measures the IAB-MT average delay of single-hop wireless backhaul and the average uplink air interface transmission delay for UE bearer, backhaul RLC channel or forwarding route;
  • the IAB-MT average delay of the single-hop wireless backhaul includes the time from when the data packet arrives at the BAP layer of the IAB-MT until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink air interface. time average.
  • the intermediate IAB node may send the IAB-MT average delay or uplink air interface transmission average delay of the single-hop wireless backhaul to the Donor device through an F1AP message or an RRC message.
  • the method further includes:
  • the IAB-MT of the intermediate IAB node measures the uplink BAP average delay of single-hop wireless backhaul for UE bearer, backhaul RLC channel or forwarding route; wherein, the uplink BAP average delay of single-hop wireless backhaul includes from The average value of the time until the data packet reaches the BAP layer of the IAB-MT until the moment when the first uplink air interface of the data packet is authorized;
  • the IAB-DU of the intermediate IAB node also measures the average uplink RLC delay and uplink air interface transmission average delay of single-hop wireless backhaul for the UE bearer, backhaul RLC channel or forwarding route.
  • the intermediate IAB node can use the F1AP message or the RRC message to calculate the average uplink BAP delay of the single-hop wireless backhaul, the uplink RLC average delay of the single-hop wireless backhaul, or the average transmission time of the uplink air interface sent to the Donor device.
  • the UE and the access IAB-node can count the access link delay and report it to the Donor CU, and the access IAB-node or the intermediate IAB-node can count the single-hop delay of the backhaul link and report it To the Donor CU, the Donor CU selects a path for the UE DRB according to the above-mentioned delay statistics, so as to ensure that the total delay of the selected path does not exceed the delay requirement of the wireless transmission part carried by the UE. In addition, the Donor CU can also determine the allocation of each hop PDB on the bearer path of the UE according to the access link delay and the backhaul link delay, so as to configure the appropriate access link PDB and backhaul link PDB.
  • FIG. 24 is a schematic diagram of the protocol stack structure of the IAB system, showing the access link uplink (UL) delay and the access link downlink (DL) delay.
  • the access link UL delay includes: uplink PDCP delay, uplink RLC, and uplink air interface transmission delay.
  • the UE counts the average value of the uplink PDCP delay in a period of time and reports it to the Donor CU.
  • the DUs accessing the IAB node count the average value of the uplink RLC delay and the average value of the uplink air interface transmission delay within a period of time and report it to the Donor CU.
  • the uplink PDCP delay is the queuing delay after the data packet arrives at the PDCP, that is, the delay from the time when the data packet arrives at the PDCP of the UE until the time when the first uplink air interface authorization for sending the data packet arrives.
  • the uplink RLC delay refers to the delay from receiving the first RLC PDU of the data packet from the access IAB-node DU until the RLC SDU of the data packet is sent to the PDCP.
  • the uplink air interface transmission delay refers to the delay from when the MAC SDU of the data packet is authorized to be sent by the air interface until the MAC SDU is successfully received by the IAB-node DU.
  • the DL delay of the access link includes: the access delay of the IAB-DU and the transmission delay of the downlink air interface.
  • the DUs accessing the IAB node count the average value of the access delay of the IAB-DU and the average value of the transmission delay of the downlink air interface within a period of time and report it to the Donor CU.
  • the access IAB-DU delay includes the queuing delay after the data packet arrives at the RLC and the downlink RLC delay, which is from the time the data packet arrives at the RLC layer of the access IAB-DU until the last RLC PDU of the data packet is sent to the The delay for the MAC to be transmitted by the air interface.
  • the downlink air interface transmission delay is the delay from the last RLC PDU of the data packet to the MAC of the DU until the access IAB node determines that the RLC PDU is successfully received by the UE.
  • the measurement of the access link is carried for each UE.
  • the average uplink PDCP delay counted by the UE can be sent to the DonorCU through an RRC message, and the average uplink RLC delay counted by the DUs accessing the IAB node, the average uplink air interface transmission delay, and the access IAB-DU delay
  • the average value of , and the average value of downlink air interface transmission delay can be sent to the Donor CU through RRC or F1AP messages.
  • FIG. 25 is another schematic diagram of the protocol stack structure of the IAB system, showing the downlink (DL) delay and the uplink (UL) delay of the backhaul link.
  • FIG. 26 is yet another schematic diagram of the protocol stack structure of the IAB system, showing the downlink (DL) delay and the uplink (UL) delay of the backhaul link.
  • the DL delay of the backhaul link includes: IAB-DU delay and downlink air interface transmission delay.
  • the DU of the intermediate IAB node counts the average IAB-DU delay and the average transmission delay of the downlink air interface within a period of time and reports it to the Donor CU.
  • the IAB-DU delay includes the queuing delay after the data packet arrives at the BAP and the downlink RLC delay, which is from the BAP layer of the data packet reaching the DU of the intermediate IAB node until the last RLC PDU of the data packet is sent to the MAC layer. And the delay transmitted by the air interface.
  • the downlink air interface transmission delay is the delay from the last RLC PDU of the data packet reaching the MAC layer of the DU of the intermediate IAB node until the access IAB node determines that the RLC PDU is successfully received by the UE.
  • the UL delay of the backhaul link includes: IAB-MT delay and uplink air interface transmission delay.
  • the MT of the IAB node collects the average value of the IAB-MT delay and the uplink air interface transmission delay in a period of time, and reports it to the UE.
  • the IAB-MT delay includes the queuing delay and the uplink RLC delay after the data packet reaches the BAP or GTP-U, for example, from the time when the data packet arrives at the BAP layer of the MT until the last of the data packet.
  • the IAB-MT delay includes the queuing delay and the uplink RLC delay after the data packet arrives at the BAP, for example, from the time when the data packet arrives at the BAP layer of the MT until the last RLC PDU of the data packet is sent to the The delay for the MAC to be transmitted by the air interface.
  • the uplink air interface transmission delay is the delay from the last RLC PDU of the data packet to the MAC of the MT until the MT determines that the RLC PDU is successfully received by the DU of the parent IAB node.
  • the UL delay of the backhaul link includes: uplink BAP delay, uplink RLC delay, and uplink air interface delay, or includes: GTP delay , uplink RLC delay and uplink air interface delay.
  • the MT accessing the IAB node can collect statistics on the average value of the uplink BAP delay and report it to the Donor CU, or count the average value of the GTP delay and report it to the Donor CU.
  • the MT of the intermediate IAB node can count the average uplink BAP delay over a period of time and report it to the Donor CU.
  • the DU of the parent IAB node can count the average uplink RLC delay and the average uplink air interface delay over a period of time and send them to the Donor CU.
  • the upstream BAP delay is the queuing delay after the data packet arrives at the BAP, for example, the delay from the time when the data packet arrives at the BAP of the MT until the time when the first upstream air interface authorization of the data packet arrives.
  • the GTP delay is the queuing delay after the data packet arrives at the GTP-U, for example, the delay from the time when the data packet arrives at the GTP-U until the time when the first uplink air interface authorization of the data packet arrives.
  • the upstream RLC delay refers to the delay from the time when the DU of the parent IAB node receives the first RLC PDU of this data packet until the RLC SDU of the data packet is sent to the BAP layer.
  • the upstream air interface transmission delay refers to the delay from when the MAC SDU of the data packet is authorized to be sent by the air interface until the MAC SDU is successfully received by the DU of the parent IAB node.
  • the measurement of the backhaul link may be for each UE bearer or for the BHRLC channel or based on forwarding routes.
  • the IAB-DU delay, downlink air interface transmission delay, uplink RLC delay, and uplink air interface delay of the DU statistics of the IAB node can be sent to the Donor CU through F1AP or RRC messages.
  • the IAB-MT delay of the MT statistics of the IAB node, The uplink air interface delay, uplink BAP delay or GTP delay can be sent to the Donor CU through F1AP or RRC messages.
  • the UE and the access IAB-node can count the access link delay and report it to the Donor CU, and the access IAB-node or the intermediate IAB-node can count the single-hop delay of the backhaul link and report it To the Donor CU, the Donor CU selects a path for the UE DRB according to the above-mentioned delay statistics, so as to ensure that the total delay of the selected path does not exceed the delay requirement of the wireless transmission part carried by the UE.
  • the embodiments of the present application provide a data scheduling method.
  • FIG. 27 is a schematic diagram of a data scheduling method according to an embodiment of the present application, which is described from the side of the IAB node. The method is applied to the IAB system.
  • the IAB system also includes: a Donor device and a UE.
  • the method includes:
  • the IAB node obtains the remaining PDBs carried by the UE at the previous hop node and the last hop link delay carried by the UE;
  • the IAB node determines the remaining PDBs borne by the UE at the IAB node according to the remaining PDBs borne by the UE at the previous hop node and the last hop link delay borne by the UE;
  • the IAB node schedules the data packets carried by the UE according to the remaining PDBs carried by the UE at the IAB node.
  • the IAB node can estimate the delay requirement of the next hop by itself, which saves the F1AP signaling overhead.
  • the IAB node performs priority scheduling according to its estimated next-hop delay requirement, which ensures the delay requirement of each hop.
  • the IAB node obtains the remaining PDBs carried by the UE at the previous hop node, comprising: the IAB node receiving the information sent by the previous hop node that the UE is carried on the previous hop IAB node The remaining PDBs at , where the remaining PDBs include uplink remaining PDBs or downlink remaining PDBs, and the previous hop node is an IAB node.
  • the IAB node obtains the delay of the last hop link borne by the UE, including: the IAB-DU of the IAB node obtains the delay of the last hop link borne by the UE through measurement Upstream RLC delay and upstream air interface transmission delay.
  • the IAB node obtains the delay of the last hop link borne by the UE, including: the IAB-MT of the IAB node obtains the delay of the last hop link borne by the UE through measurement Downlink RLC delay and downlink air interface transmission delay.
  • the IAB node obtains the last-hop link delay of the UE bearer, including: the IAB node receives the UE bearer according to the BAP layer of the IAB-DU of the IAB node The difference between the time of the data packet and the time stamp added when the data packet reaches the BAP layer of the IAB-MT of the previous hop node, obtains the uplink delay of the previous hop link carried by the UE,
  • the previous hop node is an IAB node.
  • the IAB node obtains the last-hop link delay of the UE bearer, including: the IAB node receives the UE bearer according to the BAP layer of the IAB-MT of the IAB node The difference between the time of the data packet and the time stamp added when the data packet reaches the BAP layer of the IAB-DU of the previous hop node, obtains the downlink delay of the previous hop link carried by the UE, The previous hop node is an IAB node.
  • the IAB node acquiring the last-hop link delay borne by the UE includes: the IAB node receiving the last-hop link sent by the IAB-DU of the previous-hop node The IAB-DU delay; wherein, the IAB-DU delay includes the time from the arrival of the data packet at the BAP layer of the IAB-DU until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the downlink air interface. time, the previous hop node is the IAB node.
  • the IAB node acquiring the last hop link delay borne by the UE includes: the IAB node receiving the last hop link sent by the IAB-MT of the last hop node The IAB-MT delay; wherein, the IAB-MT delay includes the time from the arrival of the data packet to the BAP layer of the IAB-MT until the last RLC PDU of the data packet is sent to the MAC and transmitted by the uplink air interface , the previous hop node is an IAB node.
  • the IAB node may also send the remaining PDBs carried by the UE at the IAB node to the next-hop IAB node. Therefore, the next-hop IAB node can use the foregoing method to perform data scheduling.
  • the IAB node may obtain the remaining PDB (remaining PDB) of the last hop node from the last hop node, and measure or directly obtain the delay from the last hop node to the IAB node ( hop delay), the remaining PDB (remaining PDB') at the IAB node is obtained according to the remaining PDB and hop delay of the previous hop node.
  • the remaining PDB of the previous hop node may be sent to the IAB node by the previous hop node through the control PDU of the BAP layer.
  • the present application is not limited to this.
  • the IAB node can directly measure the above-mentioned hop delay, or can measure the above-mentioned hop delay by means of time stamping, for example, the BAP layer on the sending side adds a time stamp to the data packet, and the BAP layer on the receiving side calculates the current The time difference between the time and the timestamp gets the above hop delay.
  • time stamping for example, the BAP layer on the sending side adds a time stamp to the data packet, and the BAP layer on the receiving side calculates the current The time difference between the time and the timestamp gets the above hop delay.
  • the present application is not limited to this.
  • the access IAB node of the UE calculates the uplink remaining PDB, because the previous hop node of the access IAB node is the UE, the uplink remaining PDB at the previous hop node is the uplink AN PDB.
  • the access IAB node itself knows the AN PDB, so there is no need to obtain the uplink AN PDB from the UE.
  • the downlink first node (that is, the Donor DU) does not need to calculate the downlink residual PDB, because the downlink residual PDB at the Donor DU is the downlink AN PDB, which can be obtained from the Donor CU.
  • the downlink residual PDB calculated at the access IAB node of the UE is also the downlink access link PDB.
  • the IAB node can estimate the delay requirement of the next hop by itself, which saves the F1AP signaling overhead.
  • the IAB node performs priority scheduling according to its estimated next-hop delay requirement, which ensures the delay requirement of each hop.
  • FIG. 28 is another schematic diagram of a data scheduling method according to an embodiment of the present application, which is described from the side of the IAB node. The method is applied to the IAB system.
  • the IAB system also includes: a Donor device and a UE.
  • the method includes:
  • the IAB node obtains the remaining PDBs that the UE bears at the IAB node;
  • the IAB node schedules the data packets carried by the UE according to the remaining PDBs carried by the UE at the IAB node.
  • the IAB node estimates the delay requirement of the next hop by itself, which saves the F1AP signaling overhead.
  • the IAB node performs priority scheduling according to its estimated next-hop delay requirement, which ensures the delay requirement of each hop.
  • the IAB node obtains the remaining PDBs carried by the UE at the IAB node, comprising: the IAB node receiving the remaining PDBs carried by the UE at the IAB node and sent by a previous hop node PDB, the remaining PDB includes an uplink remaining PDB or a downlink remaining PDB, and the previous hop node is an IAB node.
  • the method further includes:
  • the IAB node obtains the next-hop link delay borne by the UE;
  • the IAB node determines the remaining PDBs borne by the UE at the next-hop IAB node according to the remaining PDBs borne by the UE at the IAB node and the next-hop link delay borne by the UE ;
  • the IAB node sends to the next-hop IAB node the remaining PDBs carried by the UE at the next-hop IAB node.
  • the IAB node obtains the next-hop link delay borne by the UE, including:
  • the IAB-DU of the IAB node obtains the IAB-DU delay and downlink air interface transmission delay of the next-hop link carried by the UE through measurement; wherein, the IAB-DU delay includes the time from the data packet to the The time from the BAP layer of the IAB-DU until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the downlink air interface.
  • the IAB node obtains the next-hop link delay borne by the UE, including:
  • the IAB-MT of the IAB node obtains the IAB-MT delay and uplink air interface transmission delay of the next-hop link carried by the UE through measurement; wherein, the IAB-MT delay includes the time from the data packet to the The time from the BAP layer of the IAB-MT until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink air interface.
  • FIG. 28 only schematically illustrates the embodiment of the present application, but the present application is not limited thereto.
  • the execution order of each operation can be adjusted appropriately, and other operations can be added or some of the operations can be reduced.
  • Those skilled in the art can make appropriate modifications according to the above content, and are not limited to the description of the above-mentioned FIG. 28 .
  • the remaining PDB at the above IAB node can be sent to the IAB node by the previous hop node through the control PDU of the BAP layer.
  • the present application is not limited to this.
  • the UE can measure the hop delay from the UE to the access IAB node, obtain the uplink remaining PDB at the access IAB node according to the remaining uplink PDB (ie UL AN PDB) and hop delay, and send it to the access IAB through an RRC message node.
  • the remaining uplink PDB ie UL AN PDB
  • the Donor DU does not need to obtain the remaining downlink PDB, because the remaining downlink PDB at the Donor DU is the DL AN PDB, and the AN PDB can be obtained from the Donor CU.
  • the previous hop node of the UE's access to the IAB node measures the hop delay of the access IAB node, and obtains the downlink residual PDB (ie downlink access link PDB) at the access IAB node according to the downlink residual PDB and the hop delay, And send it to the access IAB node.
  • the downlink residual PDB ie downlink access link PDB
  • the IAB node estimates the delay requirement of the next hop by itself, which saves the F1AP signaling overhead.
  • the IAB node performs priority scheduling according to its estimated next-hop delay requirement, which ensures the delay requirement of each hop.
  • the embodiments of the present application provide an apparatus for configuring a delay budget of a data packet and a mapping apparatus for a UE bearer.
  • the apparatus may be a Donor device in the IAB system, or may be one or some components or components configured in the Donor device.
  • the IAB system includes a Donor device, an access IAB node, an intermediate IAB node, and a UE, and the embodiments of this application are described from the side of the Donor device.
  • FIG. 29 is a schematic diagram of an apparatus for configuring a packet delay budget according to an embodiment of the present application. Its implementation principle is similar to that of the Donor device in the embodiment of the first aspect, and the same content will not be repeated.
  • an apparatus 2900 for configuring a packet delay budget includes:
  • a sending unit 2901 which sends first configuration information to the access IAB node, and indicates the access link PDB carried by the UE through the first configuration information
  • the first configuration information includes at least one of the following:
  • the core network PDB represents the maximum delay requirement for the UE to be carried between the access IAB node and the N6 interface termination point of the UPF of the core network;
  • the number of radio transmission hops carried by the UE The number of radio transmission hops carried by the UE.
  • the first configuration information is included in the DRB quality of service parameter list and/or the DRB configuration parameter list of the UE context establishment message or the UE context modification message.
  • FIG. 30 is another schematic diagram of an apparatus for configuring a packet delay budget according to an embodiment of the present application. Its implementation principle is similar to the implementation of the Donor device in the embodiment of the second aspect, and the same content will not be repeated.
  • an apparatus 3000 for configuring a packet delay budget includes:
  • a sending unit 3001 which sends second configuration information to the intermediate IAB node, and uses the second configuration information to indicate a single-hop wireless backhaul PDB for the UE bearer or for a forwarding route; wherein the forwarding route includes forwarding Path and/or target BAP address.
  • the second configuration information includes one of the following:
  • the remaining number of hops for wireless transmission carried by the UE or the forwarding route.
  • the second configuration information is included in the backhaul RLC channel configuration parameter of the UE context establishment message or the UE context modification message.
  • the UE bearer in the backhaul RLC channel configuration parameters, is identified by a GTP-U TEID and/or an IP address.
  • FIG. 31 is a schematic diagram of a mapping apparatus carried by a UE according to an embodiment of the present application. Its implementation principle is similar to that of the Donor device in the embodiment of the third aspect, and the same content will not be repeated.
  • the UE bearer mapping apparatus 3100 includes:
  • a mapping unit 3101 which maps the same UE bearer to the same backhaul RLC channel with the maximum delay requirement of single-hop wireless backhaul.
  • the Donor device maps the same UE bearer to the same backhaul RLC channel, which requires the maximum delay of single-hop wireless backhaul, including one of the following:
  • the mapping unit maps the radio transmission PDB and the UE bearer with the same radio transmission hop number to the same backhaul RLC channel;
  • the mapping unit maps the UE bearer with the same ratio of the wireless transmission PDB to the wireless transmission hop number to the same backhaul RLC channel;
  • the mapping unit maps UE bearers with the same radio transmission residual PDB and radio transmission residual number of hops to the same backhaul RLC channel;
  • the mapping unit maps the UE bearer with the same ratio of the remaining PDB of the wireless transmission to the remaining number of hops of the wireless transmission to the same backhaul RLC channel.
  • the apparatus 2900/3000/3100 may further include:
  • a receiving unit 2902/3002/3102 which receives the access link delay reported by the UE and the access IAB node, and receives the single-hop wireless backhaul reported by the access IAB node or the intermediate IAB node delay;
  • a determination unit 2903/3003/3103 which determines a forwarding route, an access link PDB and a single-hop wireless backhaul PDB carried by the UE according to the access link delay and the single-hop wireless backhaul delay.
  • the access link delay includes an uplink delay of the access link and a downlink delay of the access link
  • the uplink delay of the access link includes the uplink PDCP average delay, the uplink RLC average delay and the uplink air interface transmission average delay;
  • the downlink delay of the access link includes an average IAB-DU delay and an average downlink air interface transmission delay
  • the uplink PDCP average delay is measured by the UE; the uplink RLC average delay, the uplink air interface transmission average delay, the IAB-DU average delay and the downlink air interface transmission average delay are determined by the IAB-DU measurement of the access IAB node.
  • the single-hop wireless backhaul delay includes the downlink delay of the single-hop wireless backhaul
  • the downlink delay of the single-hop wireless backhaul includes an average IAB-DU delay and an average downlink air interface transmission delay
  • the IAB-DU average delay and the downlink air interface transmission average delay are measured by the IAB-DU of the intermediate IAB node.
  • the single-hop wireless backhaul delay includes an uplink delay of the single-hop wireless backhaul
  • the uplink delay of the single-hop wireless backhaul includes the IAB-MT average delay and the uplink air interface transmission average delay;
  • the IAB-MT average delay and the uplink air interface transmission average delay are measured by the IAB-MT of the access IAB node or the intermediate IAB node.
  • the single-hop wireless backhaul delay includes an uplink delay of single-hop wireless backhaul
  • the uplink delay of the single-hop wireless backhaul includes the uplink BAP average delay or the uplink GTP average delay, and the uplink RLC average delay and the uplink air interface average delay;
  • the uplink BAP average delay is measured by the IAB-MT of the access IAB node or the intermediate IAB node
  • the uplink GTP average delay is measured by the IAB-MT of the access IAB node
  • the uplink RLC The average delay and the average delay of the uplink air interface are measured by the parent IAB node IAB-DU of the IAB node.
  • the apparatus 2900/3000/3100 in this embodiment of the present application may further include other components or modules, and for the specific content of these components or modules, reference may be made to the related art.
  • FIG. 29 to FIG. 31 only exemplarily show the connection relationship or signal direction between the various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used .
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • the bearer delay requirement can be met, that is, the delay requirement can be guaranteed to be met under the wireless backhaul of different hops.
  • the embodiment of the present application provides a delay measurement and reporting device.
  • FIG. 32 is a schematic diagram of a delay measurement and reporting apparatus according to an embodiment of the present application.
  • the apparatus may be, for example, a UE in an IAB system, or may be one or some components or components configured in the UE.
  • the IAB system includes a Donor device, an access IAB node, an intermediate IAB node, and a UE, and the embodiments of this application are described from the side of the UE.
  • the implementation principle of the delay measurement and reporting apparatus in the embodiment of the present application is similar to the implementation of the UE in the embodiment of the fourth aspect, and the same content will not be repeated.
  • the apparatus 3200 for measuring and reporting the delay in this embodiment of the present application includes:
  • the processing unit 3201 which measures the average uplink PDCP delay for the UE bearer, and reports it to the Donor device; wherein, the average uplink PDCP delay includes that the data packet arrives at the PDCP layer of the UE until the first time of sending the data packet.
  • the delay of an uplink air interface grant time is not limited to 1
  • the processing unit 3201 sends the uplink PDCP average delay to the Donor device through an RRC message.
  • FIG. 33 is a schematic diagram of a delay measurement and reporting device according to an embodiment of the present application.
  • the device may be, for example, an access IAB node in an IAB system, or one or some components configured in the access IAB node. or components.
  • the IAB system includes a Donor device, an access IAB node, an intermediate IAB node, and a UE, and the embodiments of this application are described from the side of the access IAB node.
  • the implementation principle of the device for measuring and reporting the delay in the embodiment of the present application is similar to the implementation of the access IAB node in the embodiment of the fourth aspect, and the same content will not be repeated.
  • the apparatus 3300 for measuring and reporting the delay in this embodiment of the present application includes:
  • a processing unit 3301 which measures the average uplink RLC delay and uplink air interface transmission average delay of the access link for the UE bearer on the IAB-DU side of the access IAB node;
  • the processing unit 3301 also measures the average IAB-DU delay and the average downlink air interface transmission delay for the UE bearer, backhaul RLC channel or forwarding route on the IAB-DU side of the access IAB node;
  • the average delay of the IAB-DU includes the average value of the time from the arrival of the data packet at the RLC layer of the IAB-DU until the last RLC PDU of the data packet is sent to the MAC and transmitted by the downlink air interface.
  • the processing unit 3301 transmits the average uplink RLC delay, the average uplink air interface transmission delay, the IAB-DU average delay or the downlink air interface transmission average delay of the access link through an RRC message or an F1AP message. sent to the Donor device.
  • the processing unit 3301 measures the IAB-MT average delay and uplink air interface of single-hop wireless backhaul for UE bearer, backhaul RLC channel or forwarding route on the IAB-MT side of the access IAB node Average transmission delay;
  • the IAB-MT average delay of the single-hop wireless backhaul includes the time from when the data packet arrives at the BAP layer of the IAB-MT until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink air interface.
  • the average of the time, or the average of the time from the arrival of the data packet to the GTP-U layer until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink.
  • the processing unit 3301 sends the IAB-MT average delay and uplink air interface transmission average delay of the single-hop wireless backhaul to the Donor device through an RRC message or an F1AP message.
  • the processing unit 3301 measures, on the IAB-MT side of the access IAB node, the uplink BAP average delay or uplink GTP average delay of single-hop wireless backhaul for UE bearers, backhaul RLC channels or forwarding routes delay;
  • the uplink BAP average delay of the single-hop wireless backhaul includes the average value of the time from the arrival of the data packet to the BAP layer of the IAB-MT until the moment when the first uplink air interface of the data packet is authorized; the uplink The average GTP delay includes the average value of the time from when the data packet arrives at the BAP layer of the IAB-MT until the moment when the first uplink air interface of the data packet is granted.
  • the processing unit 3301 sends the average uplink BAP delay or uplink GTP average delay of the single-hop wireless backhaul to the Donor device through an RRC message or an F1AP message.
  • FIG. 34 is a schematic diagram of a delay measurement and reporting apparatus according to an embodiment of the present application.
  • the apparatus may be an intermediate IAB node in an IAB system, or may be one or some components or components configured in the intermediate IAB node.
  • the IAB system includes a Donor device, an access IAB node, an intermediate IAB node, and a UE, and the embodiments of this application are described from one side of the intermediate IAB node.
  • the implementation principle of the device for measuring and reporting the delay in the embodiment of the present application is similar to the implementation of the intermediate IAB node in the embodiment of the fourth aspect, and the same content will not be repeated.
  • the apparatus 3400 for measuring and reporting the delay in this embodiment of the present application includes:
  • a processing unit 3401 which measures the IAB-DU average delay and downlink air interface transmission average delay of single-hop wireless backhaul for UE bearer, backhaul RLC channel or forwarding route on the IAB-DU side of the intermediate IAB node;
  • the average IAB-DU delay of the single-hop wireless backhaul includes the time from when the data packet arrives at the BAP layer of the IAB-DU until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the downlink air interface. Average time delay.
  • the processing unit 3401 sends the IAB-DU average delay or downlink air interface transmission average delay of the single-hop wireless backhaul to the Donor device through an F1AP message or an RRC message.
  • the processing unit 3401 measures, on the IAB-MT side of the intermediate IAB node, the IAB-MT average delay and uplink air interface transmission of single-hop wireless backhaul for UE bearers, backhaul RLC channels or forwarding routes average delay;
  • the IAB-MT average delay of the single-hop wireless backhaul includes the time from when the data packet arrives at the BAP layer of the IAB-MT until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink air interface. time average.
  • the processing unit 3401 sends the IAB-MT average delay or uplink air interface transmission average delay of the single-hop wireless backhaul to the Donor device through an F1AP message or an RRC message.
  • the processing unit 3401 measures, on the IAB-MT side of the intermediate IAB node, the uplink BAP average delay of single-hop wireless backhaul for UE bearer, backhaul RLC channel or forwarding route; wherein the The uplink BAP average delay of the single-hop wireless backhaul includes the average value of the time from the arrival of the data packet to the BAP layer of the IAB-MT until the moment when the first uplink air interface of the data packet is authorized;
  • the processing unit 3401 also measures the average uplink RLC delay and uplink air interface transmission average delay of single-hop wireless backhaul for the UE bearer, backhaul RLC channel or forwarding route on the IAB-DU side of the intermediate IAB node.
  • the processing unit 3401 uses the F1AP message or the RRC message to calculate the uplink BAP average delay of single-hop wireless backhaul, the uplink RLC average delay of single-hop wireless backhaul, or the average uplink air interface transmission delay sent to the Donor device.
  • the delay measurement and reporting apparatus 3200/3300/3400 in this embodiment of the present application may further include other components or modules.
  • FIGS. 32 to 34 only exemplarily show the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used .
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • the bearer delay requirement can be met, that is, the delay requirement can be guaranteed to be met under the wireless backhaul of different hops.
  • Embodiments of the present application provide a data scheduling apparatus.
  • the apparatus may be, for example, an IAB node in an IAB system, or may be one or some components or components configured in the IAB node.
  • the IAB system includes a Donor device, an IAB node, and a UE, and the embodiments of this application are described from one side of the IAB node.
  • FIG. 35 is a schematic diagram of a data scheduling apparatus according to an embodiment of the present application.
  • the implementation principle of the data scheduling apparatus is similar to the implementation of FIG. 27 in the embodiment of the fifth aspect, and the same content will not be repeated.
  • the data scheduling apparatus 3500 in this embodiment of the present application includes:
  • Obtaining unit 3501 which obtains the remaining PDBs carried by the UE at the previous hop node and the last hop link delay carried by the UE;
  • a determining unit 3502 which determines the remaining PDBs carried by the UE at the IAB node according to the remaining PDBs carried by the UE at the previous hop node and the last hop link delay carried by the UE;
  • a scheduling unit 3503 which schedules the data packets carried by the UE according to the remaining PDBs carried by the UE at the IAB node.
  • the obtaining unit 3501 obtains the remaining PDBs carried by the UE at the previous hop node, including:
  • the obtaining unit 3501 receives the remaining PDBs that the UE bears at the last-hop IAB node sent by the last-hop node, the remaining PDBs include uplink remaining PDBs or downlink remaining PDBs, and the last-hop node is the IAB node.
  • the obtaining unit 3501 obtains the last-hop link delay carried by the UE, including:
  • the obtaining unit 3501 obtains the uplink RLC delay and the uplink air interface transmission delay of the previous hop link carried by the UE through measurement on the IAB-DU side of the IAB node; or,
  • the obtaining unit 3501 obtains the downlink RLC delay and the downlink air interface transmission delay of the previous hop link carried by the UE through measurement on the IAB-MT side of the IAB node.
  • the obtaining unit 3501 obtains the last-hop link delay carried by the UE, including:
  • the obtaining unit 3501 is added according to the time when the BAP layer of the IAB-DU of the IAB node receives the data packet carried by the UE and when the data packet reaches the BAP layer of the IAB-MT of the previous hop node.
  • the difference between the time stamps is to obtain the uplink delay of the last hop link carried by the UE, and the last hop node is the IAB node;
  • the obtaining unit 3501 may, according to the time when the BAP layer of the IAB-MT of the IAB node receives the data packet carried by the UE and the time when the data packet reaches the BAP layer of the IAB-DU of the previous hop node The time difference between the added timestamps is used to obtain the downlink delay of the previous hop link carried by the UE, and the previous hop node is the IAB node.
  • the obtaining unit 3501 obtains the last-hop link delay carried by the UE, including:
  • the obtaining unit 3501 receives the IAB-DU delay of the previous hop link sent by the IAB-DU of the previous hop node; wherein, the IAB-DU delay includes the time from the data packet to the IAB-DU. Until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the downlink air interface from the BAP layer, the previous hop node is the IAB node; or,
  • the acquiring unit 3501 receives the IAB-MT delay of the previous hop link sent by the IAB-MT of the previous hop node; wherein, the IAB-MT delay includes the BAP from the data packet to the IAB-MT layer until the last RLC PDU of the data packet is sent to the MAC and transmitted by the uplink air interface, the previous hop node is the IAB node.
  • the apparatus 3500 further includes:
  • a sending unit 3504 which sends the remaining PDBs carried by the UE at the IAB node to the next-hop IAB node.
  • FIG. 36 is another schematic diagram of the data scheduling apparatus according to the embodiment of the present application.
  • the implementation principle of the data scheduling apparatus is similar to the implementation of FIG. 28 in the embodiment of the fifth aspect, and the same content will not be repeated.
  • the data scheduling apparatus 3600 in this embodiment of the present application includes:
  • Obtaining unit 3601 which obtains the remaining PDBs carried by the UE at the IAB node;
  • a scheduling unit 3602 which schedules the data packets carried by the UE according to the remaining PDBs carried by the UE at the IAB node.
  • the obtaining unit 3601 obtains the remaining PDBs carried by the UE at the IAB node, including:
  • the obtaining unit 3601 receives the remaining PDBs carried by the UE at the IAB node sent by the previous hop node, the remaining PDBs include uplink remaining PDBs or downlink remaining PDBs, and the last hop node is the IAB node.
  • the apparatus 3600 further includes: a determining unit 3603 and a sending unit 3604 . in:
  • the obtaining unit 3601 obtains the next-hop link delay carried by the UE;
  • the determining unit 3603 determines the remaining PDBs borne by the UE at the next-hop IAB node according to the remaining PDBs borne by the UE at the IAB node and the next-hop link delay borne by the UE;
  • the sending unit 3604 sends to the next-hop IAB node the remaining PDBs carried by the UE at the next-hop IAB node.
  • the obtaining unit 3601 obtains the next-hop link delay borne by the UE, including:
  • the obtaining unit 3601 obtains the IAB-DU delay and downlink air interface transmission delay of the next-hop link carried by the UE through measurement on the IAB-DU side of the IAB node; wherein, the IAB-DU delay Including the time from when the data packet arrives at the BAP layer of the IAB-DU until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the downlink air interface; or,
  • the obtaining unit 3601 obtains the IAB-MT delay and uplink air interface transmission delay of the next-hop link carried by the UE through measurement on the IAB-MT side of the IAB node; wherein, the IAB-MT delay It includes the time from when the data packet arrives at the BAP layer of the IAB-MT until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink air interface.
  • the data scheduling apparatus 3500/3600 in this embodiment of the present application may further include other components or modules.
  • the specific content of these components or modules reference may be made to the related art.
  • FIG. 35 and FIG. 36 only exemplarily show the connection relationship or signal direction between the various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used .
  • the above-mentioned components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc. The implementation of this application does not limit this.
  • the bearer delay requirement can be met, that is, the delay requirement can be guaranteed to be met under the wireless backhaul of different hops.
  • FIG. 37 is a schematic diagram of the communication system 3700 .
  • the communication system 3700 includes Donor devices 3701 and 3702 , IAB nodes 3703 and 3704 , and a terminal device 3705 .
  • FIG. 37 only takes two Donro devices, two IAB nodes, and one terminal device as examples for description, but the embodiment of the present application is not limited to this.
  • the network architecture of the Donro device, the IAB node and the terminal device reference may be made to related technologies, and the description is omitted here.
  • the Donor devices 3701 and 3702 are configured to perform the method performed by the Donor device in the embodiments of any one of the first aspect to the third aspect, and may include the apparatus of FIG. 29 or FIG. 30 or 31 .
  • the terminal device 3705 is configured to perform the method performed by the UE in the embodiments of the fourth aspect, and may include the apparatus of FIG. 32 .
  • the IAB nodes 3703 and 3704 are configured to perform the method performed by the access IAB node or the intermediate IAB node in the implementation of the fourth aspect or the IAB node in the embodiment of the fifth aspect, which may include FIG. 33 or FIG. 34 or the apparatus of FIG. 35 or FIG. 36 .
  • the terminal device 3705 , and the IAB nodes 3703 and 3704 please refer to the embodiments of the first aspect to the fifth aspect, and the description is omitted here.
  • the embodiment of the present application also provides a Donor device.
  • FIG. 38 is a schematic diagram of a Donor device according to an embodiment of the present application.
  • the Donor device 3800 may include: a processor (e.g., central processing unit CPU) 3801 and a memory 3802; the memory 3802 is coupled to the processor 3801.
  • the memory 3802 can store various data; in addition, it also stores information processing programs, which are executed under the control of the central processing unit 3801 .
  • the processor 3801 may be configured to execute a program to implement the method performed by the Donor device in the embodiments of the first aspect or the second aspect or the third aspect.
  • the Donor device 3800 may further include: a transceiver 3803, an antenna 3804, etc.; wherein, the functions of the above components are similar to those in the prior art, and are not repeated here. It is worth noting that the Donor device 3800 does not necessarily include all the components shown in FIG. 38 ; in addition, the Donor device 3800 may also include components not shown in FIG. 38 , and reference may be made to the prior art.
  • the embodiment of the present application also provides an IAB node.
  • FIG. 39 is a schematic diagram of an IAB node according to an embodiment of the present application.
  • the IAB node 3900 may include a processor 3901 and a memory 3902; the memory 3902 stores data and programs, and is coupled to the processor 3901.
  • this figure is exemplary; other types of structures may be used in addition to or in place of this structure to implement telecommunication functions or other functions.
  • the processor 3901 may be configured to execute a program to implement the method performed by the access IAB node or the intermediate IAB node in the embodiment of the fourth aspect, or to implement the method performed by the access IAB node in the embodiment of the fifth aspect Methods.
  • the IAB node 3900 may further include: a communication module 3903 , an input unit 3904 , a display 3905 , and a power supply 3906 .
  • the functions of the above components are similar to those in the prior art, and details are not repeated here. It is worth noting that the IAB node 3900 does not necessarily include all the components shown in FIG. 39, and the above components are not required; in addition, the IAB node 3900 may also include components not shown in FIG. There is technology.
  • the embodiments of the present application also provide a terminal device.
  • FIG. 40 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 4000 may include a processor 4001 and a memory 4002 ; the memory 4002 stores data and programs, and is coupled to the processor 4001 .
  • this figure is exemplary; other types of structures may be used in addition to or in place of this structure to implement telecommunication functions or other functions.
  • the processor 4001 may be configured to execute a program to implement the method performed by the UE in the embodiment of the fourth aspect.
  • the terminal device 4000 may further include: a communication module 4003 , an input unit 4004 , a display 4005 , and a power supply 4006 .
  • the functions of the above components are similar to those in the prior art, and details are not repeated here. It is worth noting that the terminal device 4000 does not necessarily include all the components shown in FIG. 40 , and the above components are not required; in addition, the terminal device 4000 may also include components not shown in FIG. 40 . There is technology.
  • the embodiments of the present application also provide a computer-readable program, wherein when the program is executed in a Donor device, the program causes a computer to execute the implementation of the first aspect or the second aspect or the third aspect in the Donor device The method executed by the Donor device in the example.
  • the embodiments of the present application further provide a storage medium storing a computer-readable program, wherein the computer-readable program causes a computer to execute the first aspect or the second aspect or the third aspect in the Donor device in the Donor device. method of execution.
  • the embodiment of the present application further provides a computer-readable program, wherein when the program is executed in an IAB node, the program causes a computer to access the IAB node or an intermediate in the embodiment of the fourth aspect in the IAB node.
  • the method executed by the IAB node is not limited to:
  • Embodiments of the present application further provide a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to access the program executed by the IAB node or the intermediate IAB node in the embodiment of the fourth aspect in the IAB node. method.
  • the embodiments of the present application further provide a computer-readable program, wherein when the program is executed in a terminal device, the program causes the computer to execute the method performed by the UE in the embodiment of the fourth aspect in the terminal device.
  • the embodiment of the present application further provides a storage medium storing a computer-readable program, wherein the computer-readable program causes a computer to execute the method executed by the UE in the embodiment of the fourth aspect in a terminal device.
  • the apparatuses and methods above in the present application may be implemented by hardware, or may be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by logic components, enables the logic components to implement the above-described apparatus or constituent components, or causes the logic components to implement the above-described various methods or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present application also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, and the like.
  • the method/apparatus described in conjunction with the embodiments of this application may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figures may correspond to either software modules or hardware modules of the computer program flow.
  • These software modules may respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by, for example, solidifying these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor, such that the processor can read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • the functional blocks and/or one or more combinations of the functional blocks described in the figures can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application ), Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described with respect to the figures can also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • the Donor device sends first configuration information to the access IAB node, and indicates the access link PDB carried by the UE through the first configuration information,
  • the first configuration information includes at least one of the following:
  • the core network PDB represents the maximum delay requirement for the UE to be carried between the access IAB node and the N6 interface termination point of the UPF of the core network;
  • the number of radio transmission hops carried by the UE The number of radio transmission hops carried by the UE.
  • the forwarding route includes a forwarding path and/or a target BAP address.
  • the remaining number of hops for wireless transmission carried by the UE or the forwarding route.
  • a UE bearer mapping method applied to an IAB system, the IAB system comprising a Donor device, an access IAB node, an intermediate IAB node and a UE, wherein the method further comprises:
  • the Donor device maps the same UE bearer to the same backhaul RLC channel according to the maximum delay requirement of single-hop wireless backhaul.
  • the Donor device maps the wireless transmission PDB and the UE bearer with the same number of wireless transmission hops to the same backhaul RLC channel;
  • the Donor equipment maps the same UE bearer with the same ratio of the wireless transmission PDB to the wireless transmission hop number to the same backhaul RLC channel;
  • the Donor device maps UE bearers with the same radio transmission remaining PDB and radio transmission remaining hops to the same backhaul RLC channel;
  • the Donor device maps the UE bearer with the same ratio of the remaining PDB of the wireless transmission to the remaining number of hops of the wireless transmission to the same backhaul RLC channel.
  • the Donor device receives the access link delay reported by the UE and the access IAB node, and receives the single-hop wireless backhaul delay reported by the access IAB node or the intermediate IAB node;
  • the Donor device determines, according to the access link delay and the single-hop wireless backhaul delay, a forwarding route, an access link PDB and a single-hop wireless backhaul PDB carried by the UE.
  • the uplink delay of the access link includes the uplink PDCP average delay, the uplink RLC average delay and the uplink air interface transmission average delay;
  • the downlink delay of the access link includes an average IAB-DU delay and an average downlink air interface transmission delay
  • the uplink PDCP average delay is measured by the UE; the uplink RLC average delay, the uplink air interface transmission average delay, the IAB-DU average delay and the downlink air interface transmission average delay are determined by the IAB-DU measurement of the access IAB node.
  • the downlink delay of the single-hop wireless backhaul includes an average IAB-DU delay and an average downlink air interface transmission delay
  • the IAB-DU average delay and the downlink air interface transmission average delay are measured by the IAB-DU of the intermediate IAB node.
  • the uplink delay of the single-hop wireless backhaul includes the IAB-MT average delay and the uplink air interface transmission average delay;
  • the IAB-MT average delay and the uplink air interface transmission average delay are measured by the IAB-MT of the access IAB node or the intermediate IAB node.
  • the uplink delay of the single-hop wireless backhaul includes the uplink BAP average delay or the uplink GTP average delay, and the uplink RLC average delay and the uplink air interface average delay;
  • the uplink BAP average delay is measured by the IAB-MT of the access IAB node or the intermediate IAB node
  • the uplink GTP average delay is measured by the IAB-MT of the access IAB node
  • the uplink RLC The average delay and the average delay of the uplink air interface are measured by the parent IAB node IAB-DU of the IAB node.
  • a delay measurement and reporting method applied to an IAB system, the IAB system comprising a Donor device, an access IAB node, an intermediate IAB node and a UE, wherein the method comprises:
  • the UE measures the average uplink PDCP delay for the UE bearer, and reports it to the Donor device; wherein the average uplink PDCP delay includes data packets arriving at the PDCP layer of the UE until the first one of the data packets is sent.
  • the delay of the uplink air interface grant time is not limited to the UE bearer.
  • a delay measurement and reporting method applied to an IAB system, the IAB system comprising a Donor device, an access IAB node, an intermediate IAB node and a UE, wherein the method comprises:
  • the IAB-DU of the access IAB node measures the uplink RLC average delay of the access link and the uplink air interface transmission average delay for the UE bearer;
  • the IAB-DU of the access IAB node measures the average delay of the IAB-DU and the average delay of downlink air interface transmission for UE bearer, backhaul RLC channel or forwarding route;
  • the average delay of the IAB-DU includes the average value of the time from the arrival of the data packet at the RLC layer of the IAB-DU until the last RLC PDU of the data packet is sent to the MAC and transmitted by the downlink air interface.
  • the access IAB node transmits the average uplink RLC delay, uplink air interface transmission average delay, and IAB-DU average delay of the access link through an RRC message or an F1AP message.
  • the delay or the average delay of downlink air interface transmission is sent to the Donor device.
  • the IAB-MT accessing the IAB node measures the IAB-MT average delay of single-hop wireless backhaul and the average uplink air interface transmission delay for UE bearer, backhaul RLC channel or forwarding route;
  • the IAB-MT average delay of the single-hop wireless backhaul includes the time from when the data packet arrives at the BAP layer of the IAB-MT until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink air interface.
  • the average of the time, or the average of the time from the arrival of the data packet to the GTP-U layer until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink.
  • the IAB-MT accessing the IAB node measures the uplink BAP average delay or the uplink GTP average delay of the single-hop wireless backhaul for the UE bearer, backhaul RLC channel or forwarding route;
  • the average uplink BAP delay of the single-hop wireless backhaul includes the average value of the time from when the data packet arrives at the BAP layer of the IAB-MT until the moment when the first uplink air interface of the data packet is authorized;
  • the uplink The average GTP delay includes the average value of the time from when the data packet arrives at the BAP layer of the IAB-MT until the moment when the first uplink air interface of the data packet is granted.
  • a delay measurement and reporting method applied to an IAB system, the IAB system comprising a Donor device, an access IAB node, an intermediate IAB node and a UE, wherein the method comprises:
  • the IAB-DU of the intermediate IAB node measures the average IAB-DU delay and downlink air interface transmission average delay of single-hop wireless backhaul for UE bearer, backhaul RLC channel or forwarding route;
  • the average IAB-DU delay of the single-hop wireless backhaul includes the time from when the data packet arrives at the BAP layer of the IAB-DU until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the downlink air interface. Average time delay.
  • the IAB-MT of the intermediate IAB node measures the IAB-MT average delay of single-hop wireless backhaul and the average uplink air interface transmission delay for UE bearer, backhaul RLC channel or forwarding route;
  • the IAB-MT average delay of the single-hop wireless backhaul includes the time from when the data packet arrives at the BAP layer of the IAB-MT until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink air interface. time average.
  • the IAB-MT of the intermediate IAB node measures the uplink BAP average delay of single-hop wireless backhaul for UE bearer, backhaul RLC channel or forwarding route; wherein, the uplink BAP average delay of single-hop wireless backhaul includes from The average value of the time until the data packet reaches the BAP layer of the IAB-MT until the moment when the first uplink air interface of the data packet is authorized;
  • the IAB-DU of the intermediate IAB node also measures the average uplink RLC delay and uplink air interface transmission average delay of single-hop wireless backhaul for the UE bearer, backhaul RLC channel or forwarding route.
  • a data scheduling method applied to an IAB system, the IAB system comprising a Donor device, an IAB node and a UE, wherein the method comprises:
  • the IAB node obtains the remaining PDBs carried by the UE at the previous hop node and the last hop link delay carried by the UE;
  • the IAB node determines the remaining PDBs borne by the UE at the IAB node according to the remaining PDBs borne by the UE at the previous hop node and the last hop link delay borne by the UE;
  • the IAB node schedules the data packets carried by the UE according to the remaining PDBs carried by the UE at the IAB node.
  • the IAB node receives the remaining PDB carried by the UE at the previous hop IAB node and sent by the previous hop node, the remaining PDB includes an uplink remaining PDB or a downlink remaining PDB, and the last hop node is the IAB node .
  • the IAB-DU of the IAB node obtains the uplink RLC delay and uplink air interface transmission delay of the previous hop link carried by the UE through measurement; or,
  • the IAB-MT of the IAB node obtains the downlink RLC delay and the downlink air interface transmission delay of the previous hop link carried by the UE through measurement.
  • the difference between the time stamps is obtained, and the uplink delay of the last hop link carried by the UE is obtained, and the last hop node is the IAB node;
  • the IAB node joins the data packet according to the time when the BAP layer of the IAB-MT of the IAB node receives the data packet carried by the UE and when the data packet reaches the BAP layer of the IAB-DU of the previous hop node
  • the time difference between the time stamps of obtains the downlink delay of the last hop link carried by the UE, and the last hop node is the IAB node.
  • the IAB node receives the IAB-DU delay of the previous hop link sent by the IAB-DU of the previous hop node; wherein the IAB-DU delay includes the BAP from the data packet to the IAB-DU layer until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the downlink air interface, the previous hop node is the IAB node; or,
  • the IAB node receives the IAB-MT delay of the previous hop link sent by the IAB-MT of the previous hop node; wherein, the IAB-MT delay includes the BAP from the data packet to the IAB-MT layer until the last RLC PDU of the data packet is sent to the MAC and transmitted by the uplink air interface, the previous hop node is the IAB node.
  • the IAB node sends the remaining PDBs carried by the UE at the IAB node to the next-hop IAB node.
  • a data scheduling method applied to an IAB system, the IAB system comprising a Donor device, an IAB node and a UE, wherein the method comprises:
  • the IAB node schedules the data packets carried by the UE according to the remaining PDBs carried by the UE at the IAB node.
  • the IAB node receives the remaining PDBs carried by the UE at the IAB node and sent by the previous hop node, where the remaining PDBs include uplink remaining PDBs or downlink remaining PDBs, and the last hop node is the IAB node.
  • the IAB node determines the remaining PDBs carried by the UE at the next-hop IAB node according to the remaining PDBs carried by the UE at the IAB node and the next-hop link delay carried by the UE;
  • the IAB node sends the remaining PDBs that the UE carries at the next-hop IAB node to the next-hop IAB node.
  • the IAB-DU of the IAB node obtains the IAB-DU delay and downlink air interface transmission delay of the next-hop link carried by the UE through measurement; wherein, the IAB-DU delay includes the time from the data packet to the The time from the BAP layer of the IAB-DU until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the downlink air interface; or,
  • the IAB-MT of the IAB node obtains the IAB-MT delay and uplink air interface transmission delay of the next-hop link carried by the UE through measurement; wherein, the IAB-MT delay includes the time from the data packet to the The time from the BAP layer of the IAB-MT until the last RLC PDU of the data packet is sent to the MAC layer and transmitted by the uplink air interface.
  • a Donor device comprising a memory and a processor, wherein the memory stores a computer program, wherein the processor is configured to execute the computer program to implement the method according to any one of appendix 1 to 8.4 .
  • a terminal device comprising a memory and a processor, wherein the memory stores a computer program, wherein the processor is configured to execute the computer program to implement the method according to appendix 9 or 9.1.
  • An IAB node comprising a memory and a processor, wherein the memory stores a computer program, wherein the processor is configured to execute the computer program to implement the method according to any one of appendixes 10 to 21 .
  • a communication system comprising a Donor device, an IAB node, and a terminal device, wherein the Donor device is configured to execute the method described in any one of Supplementary Notes 1 to 8.4, and the terminal device is configured to execute Supplementary Note 1 to 8.4
  • the IAB node is configured to execute the method described in any one of Supplementary Notes 10 to 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据包时延预算的配置方法、装置和系统。所述方法应用于IAB系统,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,所述方法包括:所述Donor设备向所述接入IAB节点发送第一配置信息,通过所述第一配置信息指示UE承载的接入链路PDB,其中,所述第一配置信息包括以下至少之一:核心网PDB,所述核心网PDB代表所述UE承载在接入IAB节点与核心网的UPF的N6接口终结点之间传输的最大时延要求;所述UE承载的接入链路PDB;所述UE承载的无线传输跳数;所述UE承载的无线回传PDB;以及所述UE承载的单跳无线回传PDB以及无线回传跳数。

Description

数据包时延预算的配置方法、装置和系统 技术领域
本申请涉及通信领域。
背景技术
未来无缝的蜂窝网络部署需要非常灵活和超密集的NR小区部署,超密集网络是5G的目标之一,部署一个无需有线回传的NR网络对于实现5G的超密集网络非常重要。由于5G毫米波使小区覆盖范围缩小,无线自回传系统还需要是多跳的才能满足部署需求。5G的高带宽、大规模MIMO和波束系统使5G比LTE更容易开发超密集NR小区的无线自回传系统,为了开发这种带有无线自回传的多跳系统,3GPP在R16开始了IAB(Integrated access and backhaul,接入回传一体化)项目的研究和标准化。
图1是IAB系统的一个示意图,如图1所示,在IAB系统中,中继节点同时支持接入(access)和回传(backhaul)功能,中继节点的无线传输链路在时域、频域或空域上复用接入链路(access link)和回传链路(backhaul link),接入链路和回传链路可以使用相同或不同的频段。
在IAB网络架构如下,中继节点指的是IAB-node(IAB节点),其同时支持接入和回传功能。网络侧最后一跳接入节点称为IAB-donnor(IAB宿主),其支持gNB功能并支持IAB-node接入。所有的UE数据可以通过一跳或多跳经IAB-node回传到IAB-donor。
IAB-node的功能分为两部分,一部分是gNB-DU功能,称作IAB-DU,另一部分是终端功能,称作IAB-MT。IAB-DU实现网络侧设备功能,连接到下游的child IAB-node(子IAB节点),对UE以及下游child IAB-node提供NR空口接入并与IAB donor-CU之间建立有F1连接。IAB-MT实现部分终端设备功能,连接到上游的parent IAB-node(父IAB节点)或IAB-donor DU,IAB-MT包括物理层、层二、RRC(Radio Resource Control,无线资源控制)和NAS(Non-Access Stratum,非接入层)层功能,还间接的连接到IAB donor-CU以及核心网(Core Network,CN)。
在IAB系统中,IAB-node可以通过独立组网(SA,Standalone)模式或非独立组网模式(EN-DC,E-UTRA-NRDualConnectivity)模式接入网络。图2是SA模式 的IAB架构的示意图。图3是EN-DC模式的IAB架构的示意图。
图4是一个IAB节点(IAB-node)与父节点(parent IAB-node)和子节点(child IAB-node)的示意图。如图4所示,IAB节点的IAB-DU作为网络侧与子节点的IAB-MT连接,IAB节点的IAB-MT作为终端侧与父节点的IAB-DU连接。
图5是IAB-DU和IAB-donor CU之间的F1用户面(F1-U)协议栈的示意图。图6是IAB-DU和IAB-donor CU之间的F1控制面(F1-C)协议栈的示意图。
如图5和图6所示,F1-U和F1-C是建立在IAB-DU和IAB-donor-CU之间的传输(IP)层之上,图5和图6中经过两跳无线回传和一跳有线回传。在回传链路上,传输(IP)层承载在回传自适应协议(BAP)子层上,IAB-node中的BAP实体实现IAB系统的路由功能,由IAB-donor CU提供路由表。BAP PDU(协议数据单元)在回传链路的RLC(无线链路控制)信道中传输,回传链路的多个RLC信道可以被IAB-donor配置为承载不同的优先级和QoS(服务质量)的业务,由BAP实体将BAP PDU映射到不同的回传RLC信道上。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,在传统的接入网络中,终端设备的接入节点就是donor DU,不同于传统接入网络,在IAB网络中,终端设备的接入节点和donor DU之间存在多跳无线回传链路,这就给终端设备的业务带来多跳回传时延。但终端设备的承载(简称为UE承载)的时延要求是固定的,即要求终端设备在IAB网络的任意节点接入时都要满足承载的时延要求,即要求不同跳数的无线回传下都能保证满足时延要求,现有技术解决不了该问题。
为了解决上述问题的至少一种或其它类似问题,本申请实施例提供了一种数据包时延预算的配置方法、装置和系统。
根据本申请实施例的一方面,提供一种数据包时延预算(PDB)的配置装置,配置于IAB系统的Donor设备,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述装置包括:
发送单元,其向所述接入IAB节点发送第一配置信息,通过所述第一配置信息指示UE承载的接入链路PDB,
其中,所述第一配置信息包括以下至少之一:
核心网PDB,所述核心网PDB代表所述UE承载在接入IAB节点与核心网的UPF的N6接口终结点之间传输的最大时延要求;
所述UE承载的接入链路PDB;
所述UE承载的无线传输跳数;
所述UE承载的无线回传PDB;以及
所述UE承载的单跳无线回传PDB以及无线回传跳数。
根据本申请实施例的一方面,提供一种UE承载的映射装置,配置于IAB系统的Donor设备,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述装置包括:
映射单元,其将单跳无线回传的最大时延要求相同的UE承载映射到相同的回传RLC信道。
根据本申请实施例的一方面,提供一种时延测量和上报装置,配置于IAB系统的中间IAB节点,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述装置包括:
处理单元,其在所述中间IAB节点的IAB-DU侧针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-DU平均时延和下行空口传输平均时延;
其中,所述单跳无线回传的IAB-DU平均时延包括从数据包到达所述IAB-DU的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被下行空口传输的时延的平均值。
本申请实施例的有益效果之一在于:终端设备在IAB网络的任意节点接入时都可满足承载(bearer)的时延要求,即不同跳数的无线回传下都能保证满足时延要求。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的 特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是IAB系统的一个示意图;
图2是SA模式的IAB架构的示意图;
图3是EN-DC模式的IAB架构的示意图;
图4是父节点和子节点的示意图;
图5是IAB系统的F1-U协议栈的示意图;
图6是IAB系统的F1-C协议栈的示意图;
图7是AN PDB和CN PDB的一个示意图;
图8是本申请实施例的数据包时延预算的配置方法的一个示意图;
图9是CN PDB的一个示意图;
图10是access PDB的一个示意图;
图11是access PDB的另一个示意图;
图12是access PDB的再一个示意图;
图13是本申请实施例的数据包时延预算的配置方法的另一个示意图;
图14是Donor CU向中间IAB节点发送针对UE DRB的回传PDB的一个示例的示意图;
图15是Donor CU将针对不同转发路由的单跳无线回传PDB发送给中间IAB-node的一个示例的示意图;
图16是本申请实施例的UE承载的映射方法的一个示意图;
图17是上述实施例的一个示例的示意图;
图18是上述实施例的一个示例的示意图;
图19是上述实施例的一个示例的示意图;
图20是上述实施例的一个示例的示意图;
图21是本申请实施例的时延测量和上报方法的一个示意图;
图22是本申请实施例的时延测量和上报方法的另一个示意图;
图23是本申请实施例的时延测量和上报方法的又一个示意图;
图24是IAB系统的协议栈结构的一个示意图;
图25是IAB系统的协议栈结构的另一个示意图;
图26是IAB系统的协议栈结构的再一个示意图;
图27是本申请实施例的数据调度方法的一个示意图;
图28是本申请实施例的数据调度方法的另一个示意图;
图29是本申请实施例的数据包延迟预算的配置装置的一个示意图;
图30是本申请实施例的数据包延迟预算的配置装置的另一个示意图;
图31是本申请实施例的UE承载的映射装置的一个示意图;
图32是本申请实施例的时延测量和上报装置的一个示意图;
图33是本申请实施例的时延测量和上报装置的一个示意图;
图34是本申请实施例的时延测量和上报装置的一个示意图;
图35是本申请实施例的数据调度装置的一个示意图;
图36是本申请实施例的数据调度装置的另一个示意图;
图37是本申请实施例的通信系统的示意图;
图38是本申请实施例的Donor设备的示意图;
图39是本申请实施例的IAB节点的示意图;
图40是本申请实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原 则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如新无线(NR,New Radio)、长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、6G等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可 以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
需要说明的是,PDB(Packet Delay Budget,数据包时延预算)是5G业务承载的QoS(Quality of Service,服务质量)参数之一,定义了一个UE承载的数据包在UE和UPF(User Port Function,用户端口功能)的N6接口终结点之间传输的时延要求。PDB分为接入网部分和核心网部分,接入网部分的无线传输PDB(AN PDB)和核心网部分的核心网PDB(CN PDB)之和就是PDB。在传统的3GPP无线接入网中,接入点的DU通常根据UE承载的AN PDB设置每个UE承载的调度优先级。UE承载建立时,通过F1信令将承载的QoS参数(包括PDB和CN PDB)发送给接入点的DU,接入点的DU可以用PDB减去CN PDB得到AN PDB。
图7是AN PDB和CN PDB的一个示意图,如图7所示,在IAB系统中,AN PDB代表数据从UE到donor DU之间的无线传输时延要求,CN PDB是从donor DU到UPF之间的有线传输时延要求。F1信令支持给中间IAB-node的DU配置BH RLC信道的QoS参数(包括单跳PDB),即一个BH链路的数据包在这个中间IAB-node的DU和子节点的MT之间传输的时延要求。
发明人发现,在IAB系统中,AN PDB是数据从UE到donor DU之间的无线传 输时延上限,代表UE的接入链路、回传链路总的时延要求。但是要保证接入链路的时延,接入IAB-node需要知道UE的接入链路PDB,中间IAB-node需要知道UE的回传链路PDB,但现有技术不支持。
此外,要保证回传链路的时延,中间IAB-node需要知道回传链路的单跳PDB,目前中间节点可以获得到下一跳节点的BH RLC信道的单跳PDB。但由于UE可能从任意IAB-node接入IAB系统,无线接入部分PDB(即AN PDB)相同的UE承载到达Donor DU可能经历不同的无线回传跳数。因此,同一个BH RLC信道上的UE承载对回传链路的单跳时延的要求可能是不同的,所以目前针对BH RLC信道的PDB无法代表映射于该BH RLC信道的每个UE承载的无线回传链路时延要求。
至少针对以上问题,提出了本申请。下面结合附图对本申请的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
第一方面的实施例
本申请实施例提供一种数据包时延预算的配置方法。
图8是本申请实施例的数据包时延预算的配置方法的一个示意图,从Donor设备的一侧进行说明。该方法应用于IAB系统,如前所述,除了Donor设备,IAB系统还包括接入IAB节点、中间IAB节点和终端设备。如图8所示,该方法包括:
801:所述Donor设备向所述接入IAB节点发送第一配置信息,通过所述第一配置信息指示UE承载的接入链路PDB,其中,所述第一配置信息包括以下至少之一:
核心网PDB,所述核心网PDB代表所述UE承载在接入IAB节点与核心网的UPF的N6接口终结点之间传输的最大时延要求;
所述UE承载的接入链路PDB;
所述UE承载的无线传输跳数,即UE与Donor-DU之间的跳数;
所述UE承载的无线回传PDB,即UE的接入IAB-node与Donor-DU之间的最大时延要求;以及
所述UE承载的单跳无线回传PDB以及无线回传跳数,无线回传跳数即UE的接入IAB-node与Donor-DU之间的跳数。
根据上述实施例,Donor设备能够将针对UE承载的接入链路PDB直接或间接地指示给接入IAB节点,使得接入IAB节点根据接入链路PDB进行优先级调度,从而 保证了UE承载在接入链路上的时延。
在一些实施例中,上述第一配置信息包含于UE上下文建立(UE context setup)消息或者UE上下文修改(UE context modification)消息的DRB服务质量参数列表和/或DRB配置参数列表中,但本申请不限于此。
例如,对于IAB系统中的UE承载(UE DRB),UE context setup/modification消息的DRB QoS参数列表中的核心网(CN PDB)代表一个UE承载在接入IAB-node与UPF的N6接口终结点之间传输的时延要求,即CN PDB包括无线回传时延和从Donor DU到UPF的这段有线传输链路的时延之和。由此,接入链路PDB(Access link PDB)可以根据下面的公式计算获得,也即:Access link PDB=PDB–CN PDB。
图9是该示例的CN PDB的一个示意图。比如,Donor CU在IAB-node 3中建立UE 1 DRB1时,通过F1AP消息配置UE 1 DRB1的PDB为100ms,CN PDB为80ms,则根据上述公式计算得到Access link PDB为20ms。
再例如,对于IAB系统中的UE DRB,UE context setup/modification消息的DRB配置参数列表中增加Access link PDB配置,或者使用现有的PDB域指示Access link PDB。
图10是该示例的Access link PDB的一个示意图。比如,Donor CU在IAB-node 3中建立UE 1 DRB1时,通过F1AP消息为IAB-node3配置UE1 DRB1的PDB为100ms,CN PDB为20ms,另外还配置DRB1的Access link PDB为20ms;或者通过现有的PDB域配置Access link PDB为20ms。
再例如,对于IAB系统中的UE DRB,UE context setup/modification消息的DRB配置参数列表中增加无线回传PDB(BH PDB),即UE的接入IAB-node与donor-DU之间的时延要求。由此,接入链路PDB可以根据下面的公式计算获得,也即:Access link PDB=PDB–CN PDB–BH PDB。
图11是该示例的Access link PDB的一个示意图。比如,Donor CU在IAB-node3中建立UE1 DRB1时,通过F1AP配置的PDB为100ms,CN PDB为20ms,另外还配置DRB1的BH PDB为60ms,则根据上述公式计算得到Access link PDB为20ms。
再例如,对于IAB系统中的UE DRB,UE context setup/modification消息的DRB配置增加无线传输跳数(hop number),即UE与Donor DU之间的跳数。由此,接入链路PDB可以根据下面的公式计算获得,也即:Access link PDB=(PDB–CN  PDB)/hop number。
比如,Donor CU在IAB-node3中建立UE1 DRB1时,通过F1AP配置的PDB为100ms,CN PDB为20ms,另外还配置DRB1的无线传输跳数为4,则根据上述公式计算得到Access link PDB为20ms。
再例如,对于IAB系统中的UE DRB,UE context setup/modification消息的DRB配置或QoS参数中可配置单跳无线回传PDB(one-hop BH PDB),即中间IAB-node和子IAB-node之间的时延要求,并且还配置DRB的无线回传总跳数(BH hop number),也即,从UE的接入IAB-node到Donor-DU的无线回传跳数。由此,接入链路PDB可以根据下面的公式计算获得,也即:Access link PDB=PDB–CN PDB–one-hop BH PDB*BH hop number。
图12是该示例的Access link PDB的一个示意图。比如,Donor CU在IAB-node3中建立UE1 DRB1时,通过F1AP配置的PDB为100ms,CN PDB为20ms,另外还配置DRB1的one-hop BH PDB为20ms以及BH hop number为3,则根据上述公式计算得到Access link PDB为20ms。
根据本申请实施例,Donor CU可以将针对UE承载的access PDB直接或间接指示给接入IAB-node,接入IAB-node基于access PDB对UE DRB做优先级调度,保证了UE DRB在接入链路(access link)的时延要求。
第二方面的实施例
本申请实施例提供一种数据包时延预算的配置方法。
图13是本申请实施例的数据包时延预算的配置方法的一个示意图,从Donor设备的一侧进行说明。该方法应用于IAB系统,如前所述,除了Donor设备,IAB系统还包括接入IAB节点、中间IAB节点和终端设备。如图13所示,该方法包括:
1301:所述Donor设备向所述中间IAB节点发送第二配置信息,通过所述第二配置信息指示针对所述UE承载或针对转发路由的单跳无线回传PDB;所述转发路由包括转发路径和/或目标BAP地址。
根据上述实施例,Donor CU将针对UE承载或针对转发路由的BH PDB发送给中间IAB-node,中间IAB-node基于BH PDB对UE承载或转发路由做优先级调度,保证了UE承载在回传链路的时延要求。
在一些实施例中,第二配置信息包括以下至少之一:
所述UE承载或所述转发路由的单跳无线回传PDB;
所述UE承载或所述转发路由的无线传输PDB,无线传输PDB即UE与Donor-DU之间的最大时延要求;
所述UE承载或所述转发路由的无线传输跳数;
所述UE承载或所述转发路由的无线传输剩余PDB;
以及,所述UE承载或所述转发路由的无线传输剩余跳数;
其中,下行的无线传输剩余PDB即为从当前IAB-node到UE之间的最大时延要求;上行的无线传输剩余PDB即从当前IAB-node到Donor-DU之间的最大时延要求;下行的无线传输剩余跳数即从当前IAB-node到UE之间的跳数;上行的无线传输剩余跳数即从当前IAB-node到Donor-DU之间的跳数。
在上述实施例中,第二配置信息可以包含于UE上下文建立(UE context setup)消息或者UE上下文修改(UE context modification)消息的回传RLC信道配置参数中。但本申请不限于此,该第二配置信息也可以包含于其他消息或参数中。
图14是Donor CU向中间IAB节点发送针对UE DRB的回传PDB的一个示例的示意图。
如图14所示,在一个示例中,UE context setup/modification消息的BH RLC信道配置中增加针对UE DRB的单跳无线回传PDB(one-hop BH PDB),即UE的DRB数据包在中间IAB-node和其子IAB-node之间的传输时延要求。
例如,Donor CU为IAB-node1建立或修改IAB-node2和IAB-node1之间的BH RLC信道时,BH RLC信道配置中包含对UE1 DRB1的one-hop BH PDB以及对UE2 DRB2的one-hop BH PDB。
如图14所示,在另一个示例中,UE context setup/modification消息的BH RLC信道配置中包含针对UE DRB的无线传输PDB(AN PDB)以及无线传输跳数(hop number),针对UE DRB的AN PDB即为UE的DRB数据包在UE和donor DU之间的传输时延要求,由此,针对UE DRB的单跳无线回传PDB可以根据下面的公式计算获得:one-hop BH PDB=AN PDB/hop number。
例如,Donor CU为IAB-node1建立或修改IAB-node2和IAB-node1之间的BH RLC信道时,BH RLC信道配置中包含对UE1 DRB1的AN PDB和hop number以及对UE2  DRB2的AN PDB和hop number,根据前面的公式通过计算可以获得针对UE1 DRB1的单跳BH PDB和针对UE2 DRB2的单跳BH PDB。
如图14所示,再又一个示例中,UE context setup/modification消息的BH RLC信道配置中包含UE DRB的无线传输剩余PDB(remaining PDB)以及无线传输剩余跳数(remaining hops)。下行的无线传输剩余PDB即为UE的DRB数据包从当前IAB-node到UE之间的最大时延要求;上行的无线传输剩余PDB即为UE的DRB数据包从当前IAB-node到Donor DU之间的最大时延要求;下行的无线传输剩余跳数即为UE的DRB数据包从当前IAB-node到UE之间的跳数;上行的无线传输剩余跳数即为UE的DRB数据包从当前IAB-node到Donor DU之间的跳数。由此,针对UE DRB的单跳无线回传PDB可以根据下面的公式计算获得:one-hop BH PDB=remaining PDB/remaining hops。
例如,Donor CU为IAB-node1建立或修改IAB-node2和IAB-node1之间的BH RLC信道,BH RLC信道配置中包含对UE1 DRB1的remaining PDB和remaining hops以及对UE2 DRB2的remaining PDB和remaining hops,根据前面的公式通过计算可以获得针对UE1 DRB1的单跳BH PDB和针对UE2 DRB2的单跳BH PDB。
在上述实施例中,在上述回传RLC信道配置参数中,UE承载可以由GTP-U TEID和/或IP地址标识。
例如,UE context setup/modification消息的BH RLC信道配置中用GTP-U TEID和/或IP地址标识不同的UE DRB。因为UE DRB数据通过GTP-U隧道传输,中间IAB-node可通过GTP-U TEID和IP地址识别不同的DRB,根据DRB的one-hop BH PDB做优先级调度,可以保证不同DRB在回传链路上的时延要求。
图15是Donor CU将针对不同转发路由的单跳无线回传PDB发送给中间IAB-node的一个示例的示意图。
如图15所示,在一个示例中,UE context setup/modification消息的BH RLC信道配置参数中包含针对转发路由的单跳无线回传PDB,即属于该路径的数据包在中间IAB-node和子IAB-node之间的最大时延要求。
例如,Donor CU为IAB-node1建立或修改IAB-node2和IAB-node1之间的BH RLC信道时,BH RLC信道配置中包含对routing 1的one-hop BH PDB以及对routing 2的one-hop BH PDB。
如图15所示,在另一个示例中,UE context setup/modification消息的BH RLC信道配置参数中增加针对转发路由的无线传输PDB(AN PDB)以及无线传输跳数(hop number),针对转发路由的AN PDB即为属于该转发路由的数据包在UE和donor DU之间的传输时延要求,针对转发路由的hop number即为该转发路由在UE和donor DU之间的跳数。由此,针对UE DRB的one-hop BH PDB可以根据下面的公式计算获得:one-hop BH PDB=AN PDB/hop number。
例如,Donor CU为IAB-node 1建立或修改IAB-node 2和IAB-node 1之间的BH RLC信道时,BH RLC信道配置中包含对routing 1的AN PDB和hop number以及对routing 2的AN PDB和hop number。根据前面的公式通过计算可以获得针对UE1 DRB1的one-hop BH PDB和针对UE2 DRB2的one-hop BH PDB。
如图15所示,在另一个示例中,UE context setup/modification消息的BH RLC信道配置参数中包含针对转发路由的无线传输剩余PDB(remaining PDB)以及无线传输剩余跳数(remaining hop),下行的无线传输剩余PDB即为属于该转发路由的数据包从当前IAB-node到UE之间的传输时延要求;上行的无线传输剩余PDB即为属于该转发路由的数据包从当前IAB-node到Donor-DU之间的最大时延要求;下行的无线传输剩余跳数即为属于该转发路由的数据包从中间IAB-node到UE之间的跳数;上行的无线传输剩余跳数即为属于该路径的数据包从当前IAB-node到Donor-DU之间的跳数。由此,针对UE DRB的one-hop BH PDB可以根据下面的公式计算获得:one-hop BH PDB=remaining PDB/remaining hops。
例如,Donor CU为IAB-node1建立或修改IAB-node2和IAB-node1之间的BH RLC信道时,BH RLC信道配置中包含对routing 1的remaining PDB和remaining hop以及对routing 2的remaining PDB和remaining hop。根据前面的公式通过计算可以获得针对UE1 DRB1的one-hop BH PDB和针对UE2 DRB2的one-hop BH PDB。
在上述实施例中,因为不同的传输路径要经历不同的无线传输跳数,每个UE的承载会被分配一个转发路由标识。如果将无线传输时延要求相同的UE承载映射到同一个BH RLC信道上,则在同一个BH RLC信道中,转发路由相同的UE承载对于单跳回传链路时延的要求是相同的。针对转发路由的one-hop BH PDB可以用来代表相应UE承载的单跳回传链路的时延要求。因为数据的BAP层协议头包含有routing ID,中间IAB-node可根据转发路由的one-hop BH PDB做优先级调度,以保证映射于不同 路由的DRB时延要求。
例如,UE1 DRB1和UE2 DRB2的路径不同,转发路由标识分别为routing 1和routing 2,两个UE承载的空口PDB都是80ms,被映射到IAB-node 2和IAB-node 1之间同一个BH RLC信道上。
根据本申请实施例,Donor-CU将针对UE DRB或针对转发路由的单跳无线回传PDB发送给中间IAB-node,中间IAB-node基于单跳无线回传PDB对UE DRB或转发路由的数据包做优先级调度,保证了UE DRB在回传链路的时延要求。
第三方面的实施例
本申请实施例提供一种UE承载的映射方法。
图16是本申请实施例的UE承载的映射方法的一个示意图,从Donor设备的一侧进行说明。该方法应用于IAB系统,如前所述,除了Donor设备,该IAB系统还包括接入IAB节点、中间IAB节点和终端设备。如图16所示,该方法包括:
1601,所述Donor设备将单跳无线回传的最大时延要求相同或相近的UE承载映射到相同的回传RLC信道。
根据上述实施例,Donor CU将单跳无线回传时延要求相同的UE承载映射到相同的BH RLC信道,并将针对BH RLC信道的BH PDB发送给中间IAB-node,中间IAB-node对BH RLC信道做优先级调度,保证了UE DRB在回传链路上的时延要求。
在一些实施例中,Donor设备将无线传输PDB(AN PDB)和无线传输跳数(hop number)相同或相近的UE承载映射到相同的BH RLC信道。
图17是上述实施例的一个示例的示意图,如图17所示,UE1 DRB1的AN PDB为80ms,UE2 DRB2的AN PDB为60ms,UE3 DRB3的AN PDB为80ms,由于DRB1和DRB3的AN PDB和hop number相同,而与DRB2不同,则将DRB1、DRB3映射到一个BH RLC信道,并将DRB2映射到另一个BH RLC信道。
在一些实施例中,Donor设备将无线传输PDB(AN PDB)与无线传输跳数(hop number)的比值相同或相近的UE承载映射到相同的BH RLC信道。即Donor CU将AN PDB/hop number的值相同的UE承载映射到相同的BH RLC信道。
图18是上述实施例的一个示例的示意图,如图18所示,UE1 DRB1的AN PDB为80ms,UE2 DRB2的AN PDB为60ms,UE3 DRB3的AN PDB为80ms,因为这 三个DRB的AN PDB/hop number相同,所以这三个DRB,也即DRB1、DRB2和DRB3可以映射到同一个BH RLC信道。
在一些实施例中,Donor设备将无线传输剩余PDB(remaining PDB)和无线传输剩余跳数(remaining hop)相同或相近的UE承载映射到相同的BH RLC信道。
图19是上述实施例的一个示例的示意图,如图19所示,UE1 DRB1的AN PDB为80ms,UE2 DRB2的AN PDB为60ms,UE3 DRB3的AN PDB为80ms。在IAB-node1处,下行方向,UE1 DRB1的remaining PDB为60ms,remaining hops为3;UE2 DRB2的remaining PDB为40ms,remaining hops为2;UE3 DRB3的remaining PDB为60ms,remaining hops为3,则在IAB-node1和IAB-node2之间的BH上,将DRB1和DRB3映射到同一个BH RLC信道,而将DRB2映射到另一个BH RLC信道。
在一些实施例中,Donor设备将无线传输剩余PDB(remaining PDB)与无线传输剩余跳数(remaining hop)的比值相同或相近的UE承载映射到相同的BH RLC信道。即Donor CU将remaining PDB/remaining hops相同的UE承载映射到相同的BH RLC信道。
图20是上述实施例的一个示例的示意图,如图20所示,UE1 DRB1的AN PDB为80ms,UE2 DRB2的AN PDB为60ms,UE3 DRB3的AN PDB为80ms。在IAB-node1处,下行方向,UE1 DRB1的remaining PDB为60ms,remaining hops为3;UE2 DRB2的remaining PDB为40ms,remaining hops为2;UE3 DRB3的remaining PDB为60ms,remaining hops为3,由于这三个DRB的AN PDB/hop number相同,则在IAB-node1和IAB-node2之间的BH的下行方向上,将DRB1、DRB2以及DRB3映射到同一个BH RLC信道。
根据本申请实施例,Donor CU将单跳无线回传时延要求相同的UE承载映射到相同的BH RLC信道,并将针对BH RLC信道的BH PDB发送给中间IAB-node,中间IAB-node对BH RLC信道做优先级调度,保证了UE DRB在回传链路的时延要求。
以上各个实施例仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
在上述第一方面的实施例至第三方面的实施例中,在一些实施例中,Donor设备 还可以接收上述UE和上述接入IAB节点上报的接入链路时延,以及接收上述接入IAB节点或上述中间IAB节点上报的单跳无线回传时延,以根据该接入链路时延和该单跳无线回传时延确定每个UE承载的转发路由、接入链路PDB以及单跳无线回传PDB。
在一些实施例中,上述接入链路时延包括接入链路的上行时延和接入链路的下行时延,该接入链路的上行时延包括上行PDCP平均时延、上行RLC平均时延和上行空口传输平均时延;该接入链路的下行时延包括IAB-DU平均时延和下行空口传输平均时延。其中,上行PDCP平均时延由UE测量;上行RLC平均时延、上行空口传输平均时延、IAB-DU平均时延和下行空口传输平均时延由接入IAB节点的IAB-DU测量。
在一些实施例中,上述单跳无线回传时延包括单跳无线回传的下行时延,该单跳无线回传的下行时延包括IAB-DU平均时延和下行空口传输平均时延。其中,IAB-DU平均时延和下行空口传输平均时延由中间IAB节点的IAB-DU测量。
在一些实施例中,上述单跳无线回传时延包括单跳无线回传的上行时延,该单跳无线回传的上行时延包括IAB-MT平均时延和上行空口传输平均时延。其中,IAB-MT平均时延和上行空口传输平均时延由接入IAB节点或中间IAB节点的IAB-MT测量。
在一些实施例中,上述单跳无线回传时延包括单跳无线回传的上行时延,该单跳无线回传的上行时延包括上行BAP平均时延或上行GTP平均时延,以及上行RLC平均时延和上行空口平均时延。其中,上行BAP平均时延由接入IAB节点或中间IAB节点的IAB-MT测量,上行GTP平均时延由接入IAB节点的IAB-MT测量,上行RLC平均时延和上行空口平均时延由IAB节点的父IAB节点IAB-DU测量。
关于UE、接入IAB节点以及中间IAB节点的处理,将在第四方面的实施例中进行说明。
第四方面的实施例
本申请实施例提供一种时延测量和上报方法。
图21是本申请实施例的时延测量和上报方法的一个示意图,从UE侧进行说明。该方法应用于IAB系统,如前所述,除了UE,该IAB系统还包括:Donor设备、接 入IAB节点以及中间IAB节点。
如图21所示,该方法包括:
2101,所述UE针对UE承载测量上行PDCP平均时延,并上报给所述Donor设备;其中,所述上行PDCP平均时延包括数据包到达所述UE的PDCP层直至发送所述数据包的第一个上行空口授权时刻的时延。
在上述实施例中,所述UE可以通过RRC消息将所述上行PDCP平均时延发送给所述Donor设备。
图22是本申请实施例的时延测量和上报方法的另一个示意图,从接入IAB节点的一侧进行说明。该方法应用于IAB系统,如前所述,除了接入IAB节点,该IAB系统还包括:Donor设备、UE以及中间IAB节点。
如图22所示,该方法包括:
2201,所述接入IAB节点的IAB-DU针对UE承载测量接入链路的上行RLC平均时延、上行空口传输平均时延;
2202,所述接入IAB节点的IAB-DU针对UE承载、回传RLC信道或转发路由测量IAB-DU平均时延以及下行空口传输平均时延;
其中,所述IAB-DU平均时延包括从数据包到达所述IAB-DU的RLC层直到所述数据包的最后一个RLC PDU被发送到MAC并被下行空口传输的时间的平均值。
在上述实施例中,所述接入IAB节点可以通过RRC消息或者F1AP消息将所述接入链路的上行RLC平均时延、上行空口传输平均时延、IAB-DU平均时延或下行空口传输平均时延发送给所述Donor设备。
在一些实施例中,所述方法还包括:
所述接入IAB节点的IAB-MT针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-MT平均时延和上行空口传输平均时延;
其中,所述单跳无线回传的IAB-MT平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的时间的平均值,或从数据包到达GTP-U层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的时间的平均值。
在上述实施例中,所述接入IAB节点可以通过RRC消息或者F1AP消息将所述单跳无线回传的IAB-MT平均时延、上行空口传输平均时延发送给所述Donor设备。
在一些实施例中,所述方法还包括:
所述接入IAB节点的IAB-MT针对UE承载、回传RLC信道或转发路由测量单跳无线回传的上行BAP平均时延或上行GTP平均时延;
其中,所述单跳无线回传的上行BAP平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的第一个上行空口授权时刻的时间的平均值;所述上行GTP平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的第一个上行空口授权时刻的时间的平均值。
在上述实施例中,所述接入IAB节点可以通过RRC消息或者F1AP消息将所述单跳无线回传的上行BAP平均时延或上行GTP平均时延发送给所述Donor设备。
图23是本申请实施例的时延测量和上报方法的又一个示意图,从中间IAB节点的一侧进行说明。该方法应用于IAB系统,如前所述,除了中间IAB节点,该IAB系统还包括:Donor设备、接入IAB节点以及UE。
如图23所示,该方法包括:
2301,所述中间IAB节点的IAB-DU针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-DU平均时延和下行空口传输平均时延;
其中,所述单跳无线回传的IAB-DU平均时延包括从数据包到达所述IAB-DU的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被下行空口传输的时延的平均值。
在上述实施例中,所述中间IAB节点可以通过F1AP消息或者RRC消息将所述单跳无线回传的IAB-DU平均时延或下行空口传输平均时延发送给所述Donor设备。
在一些实施例中,所述方法还包括:
所述中间IAB节点的IAB-MT针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-MT平均时延和上行空口传输平均时延;
其中,所述单跳无线回传的IAB-MT平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的时间的平均值。
在上述实施例中,所述中间IAB节点可以通过F1AP消息或者RRC消息将所述单跳无线回传的IAB-MT平均时延或上行空口传输平均时延发送给所述Donor设备。
在一些实施例中,所述方法还包括:
所述中间IAB节点的IAB-MT针对UE承载、回传RLC信道或转发路由测量单跳无线回传的上行BAP平均时延;其中,所述单跳无线回传的上行BAP平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的第一个上行空口授权时刻的时间的平均值;
所述中间IAB节点的IAB-DU还针对UE承载、回传RLC信道或转发路由测量单跳无线回传的上行RLC平均时延和上行空口传输平均时延。
在上述实施例中,所述中间IAB节点可以通过F1AP消息或者RRC消息将所述单跳无线回传的上行BAP平均时延、单跳无线回传的上行RLC平均时延或上行空口传输平均时延发送给所述Donor设备。
根据本申请实施例,UE、接入IAB-node可以统计接入链路时延并上报给Donor CU,接入IAB-node或中间IAB-node可以统计回传链路的单跳时延并上报给Donor CU,Donor CU根据上述时延的统计值为UE DRB选择路径,从而保证所选择的路径的总时延不超过UE承载的无线传输部分的时延要求。此外,Donor CU还可以根据接入链路时延和回传链路时延确定UE承载路径上的每一跳PDB的分配,从而配置合适的接入链路PDB和回传链路PDB。
下面结合具体的示例对本申请实施例的时延测量和上报方法进行说明
图24是IAB系统的协议栈结构的一个示意图,示出了接入链路上行(UL)时延和接入链路下行(DL)时延。
在本申请实施例中,接入链路UL时延包括:上行PDCP时延、上行RLC和上行空口传输时延。
UE在一段时间内统计上行PDCP时延的平均值并上报给Donor CU。接入IAB节点的DU在一段时间内统计上行RLC时延的平均值和上行空口传输时延的平均值并上报给Donor CU。
其中,上行PDCP时延是数据包到达PDCP后的排队时延,即从数据包到达UE的PDCP直至发送这个数据包的第一个上行空口授权到来的时刻的时延。
其中,上行RLC时延是指从接入IAB-node DU接收到这个数据包的第一个RLC PDU直到数据包的RLC SDU被发送到PDCP的时延。
其中,上行空口传输时延是指从数据包的MAC SDU被空口授权发送直到该MAC SDU被接入IAB-node DU成功收到的时延。
在本申请实施例中,接入链路的DL时延包括:接入IAB-DU时延和下行空口传输时延。
接入IAB节点的DU在一段时间内统计接入IAB-DU时延的平均值和下行空口传输时延的平均值并上报给Donor CU。
其中,接入IAB-DU时延包括数据包到达RLC后的排队时延和下行RLC时延,是从数据包到达接入IAB-DU的RLC层直到该数据包的最后一个RLC PDU被发送到MAC并被空口传输的时延。
其中,下行空口传输时延是从数据包的最后一个RLC PDU到达DU的MAC直到接入IAB节点确定该RLC PDU被UE成功收到的时延。
在上述实施例中,接入链路的测量都是针对每个UE承载的。UE统计的上行PDCP时延的平均值可以通过RRC消息发给DonorCU,接入IAB节点的DU统计的上行RLC时延的平均值和上行空口传输时延的平均值、接入IAB-DU时延的平均值、以及下行空口传输时延的平均值可通过RRC或F1AP消息发送给Donor CU。
图25是IAB系统的协议栈结构的另一个示意图,示出了回传链路的下行(DL)时延和上行(UL)时延。图26是IAB系统的协议栈结构的又一个示意图,示出了回传链路的下行(DL)时延和上行(UL)时延。
在本申请实施例中,如图25所示和图26所示,回传链路的DL时延包括:IAB-DU时延和下行空口传输时延。中间IAB节点的DU在一段时间内统计IAB-DU时延的平均值和下行空口传输时延的平均值并上报给Donor CU。
其中,IAB-DU时延包括数据包到BAP后的排队时延和下行RLC时延,是从数据包到达中间IAB节点的DU的BAP层直到该数据包的最后一个RLC PDU被发送到MAC层并被空口传输的时延。
其中,下行空口传输时延是从数据包的最后一个RLC PDU到达中间IAB节点的DU的MAC层直到接入IAB节点确定该RLC PDU被UE成功收到的时延。
在本申请实施例中,在一些实施例中,如图25所示,回传链路的UL时延包括:IAB-MT时延和上行空口传输时延。IAB节点的MT统计一段时间内IAB-MT时延和上行空口传输时延的平均值,上报给UE。
其中,对于接入IAB节点,IAB-MT时延包括数据包到达BAP或GTP-U后的排队时延和上行RLC时延,例如,从数据包到达MT的BAP层直到该数据包的最后一 个RLC PDU被发送到MAC并被空口传输的时延,或者是从数据包到达GTP-U直到该数据包的最后一个RLC PDU被发送到MAC并被空口传输的时延。
其中,对于中间IAB节点,IAB-MT时延包括数据包到达BAP后的排队时延和上行RLC时延,例如,从数据包到达MT的BAP层直到该数据包的最后一个RLC PDU被发送到MAC并被空口传输的时延。
在上述实施例中,上行空口传输时延是从数据包的最后一个RLC PDU到达MT的MAC直到MT确定该RLC PDU被父IAB节点的DU成功收到的时延。
在本申请实施例中,在一些实施例中,如图26所示,回传链路的UL时延包括:上行BAP时延、上行RLC时延和上行空口时延,或者包括:GTP时延、上行RLC时延和上行空口时延。
其中,接入IAB节点的MT可以统计一段时间内上行BAP时延平均值上报给Donor CU,或统计GTP时延平均值上报给Donor CU。中间IAB节点的MT可以统计一段时间内上行BAP时延平均值上报给Donor CU。父IAB节点的DU可以统计一段时间内上行RLC时延平均值和上行空口时延平均值并发送给Donor CU。
其中,上行BAP时延是数据包到达BAP后的排队时延,例如,从数据包到达MT的BAP直到这个数据包的第一个上行空口授权到来时刻的时延。GTP时延是数据包到达GTP-U后的排队时延,例如,从数据包到达GTP-U直到这个数据包的第一个上行空口授权到来时刻的时延。上行RLC时延是指从父IAB节点的DU接收到这个数据包的第一个RLC PDU直到数据包的RLC SDU被发送到BAP层的时延。上行空口传输时延是指从数据包的MAC SDU被空口授权发送直到该MAC SDU被父IAB节点的DU成功收到的时延。
在上述实施例中,回传链路的测量可以针对每个UE承载或针对BH RLC信道或基于转发路由。IAB节点的DU统计的IAB-DU时延和下行空口传输时延、上行RLC时延、上行空口时延可以通过F1AP或RRC消息发给Donor CU,IAB节点的MT统计的IAB-MT时延、上行空口时延、上行BAP时延或GTP时延可以通过F1AP或RRC消息发给Donor CU。
根据本申请实施例,UE、接入IAB-node可以统计接入链路时延并上报给Donor CU,接入IAB-node或中间IAB-node可以统计回传链路的单跳时延并上报给Donor CU,Donor CU根据上述时延的统计值为UE DRB选择路径,从而保证所选择的路径 的总时延不超过UE承载的无线传输部分的时延要求。
第五方面的实施例
本申请实施例提供一种数据调度方法。
图27是本申请实施例的数据调度方法的一个示意图,从IAB节点的一侧进行说明。该方法应用于IAB系统,如前所述,除了IAB节点,该IAB系统还包括:Donor设备和UE。
如图27所示,该方法包括:
2701,所述IAB节点获取UE承载在上一跳节点处的剩余PDB以及所述UE承载的上一跳链路时延;
2702,所述IAB节点根据所述UE承载在上一跳节点处的剩余PDB以及所述UE承载的上一跳链路时延确定所述UE承载在所述IAB节点处的剩余PDB;
2703,所述IAB节点根据所述UE承载在所述IAB节点处的剩余PDB对所述UE承载的数据包进行调度。
根据本申请实施例,无需通过Donor CU配置接入链路PDB和回传链路PDB,IAB节点自己可以估算下一跳的时延要求,节省了F1AP信令开销。此外,IAB节点根据自己估算的下一跳时延要求做优先级调度,保证了每一跳的时延要求。
在一些实施例中,在2701中,IAB节点获取UE承载在上一跳节点处的剩余PDB,包括:所述IAB节点接收上一跳节点发送的所述UE承载在所述上一跳IAB节点处的剩余PDB,所述剩余PDB包括上行剩余PDB或下行剩余PDB,所述上一跳节点为IAB节点。
在一些实施例中,在2701中,IAB节点获取所述UE承载的上一跳链路时延,包括:所述IAB节点的IAB-DU通过测量获得所述UE承载的上一跳链路的上行RLC时延和上行空口传输时延。
在一些实施例中,在2701中,IAB节点获取所述UE承载的上一跳链路时延,包括:所述IAB节点的IAB-MT通过测量获得所述UE承载的上一跳链路的下行RLC时延和下行空口传输时延。
在一些实施例中,在2701中,IAB节点获取所述UE承载的上一跳链路时延,包括:所述IAB节点根据所述IAB节点的IAB-DU的BAP层收到所述UE承载的数据 包的时刻与所述数据包到达所述上一跳节点的IAB-MT的BAP层时加入的时间戳的时刻之差,得到所述UE承载的上一跳链路的上行时延,所述上一跳节点为IAB节点。
在一些实施例中,在2701中,IAB节点获取所述UE承载的上一跳链路时延,包括:所述IAB节点根据所述IAB节点的IAB-MT的BAP层收到所述UE承载的数据包的时刻与所述数据包到达所述上一跳节点的IAB-DU的BAP层时加入的时间戳的时刻之差,得到所述UE承载的上一跳链路的下行时延,所述上一跳节点为IAB节点。
在一些实施例中,在2701中,IAB节点获取所述UE承载的上一跳链路时延,包括:所述IAB节点接收所述上一跳节点的IAB-DU发送的上一跳链路的IAB-DU时延;其中,所述IAB-DU时延包括从数据包到达所述IAB-DU的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被下行空口传输的时间,所述上一跳节点为IAB节点。
在一些实施例中,在2701中,IAB节点获取所述UE承载的上一跳链路时延,包括:所述IAB节点接收所述上一跳节点的IAB-MT发送的上一跳链路的IAB-MT时延;其中,所述IAB-MT时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC并被上行空口传输的时间,所述上一跳节点为IAB节点。
在一些实施例中,IAB节点还可以将上述UE承载在该IAB节点处的剩余PDB发送给下一跳IAB节点。由此,下一跳IAB节点可以采用前述方法进行数据调度。
在本申请实施例中,IAB节点可以从上一跳节点获得上一跳节点的剩余PDB(remaining PDB),并测量或直接从上一跳节点获得上一跳节点到该IAB节点的时延(hop delay),根据上一跳节点的剩余PDB和hop delay得到IAB节点处的剩余PDB(remaining PDB’),例如,通过以下公式确定IAB节点处的剩余PDB:remaining PDB’=remaining PDB–hop delay。然后根据剩余跳数(remaing hops)估算下一跳PDB,从而根据下一跳PDB对数据包进行调度,例如,通过以下公式确定下一跳PDB:hop PDB=remaining PDB’/remaining hops。
在上述实施例中,上一跳节点的剩余PDB可以由上一跳节点通过BAP层的控制PDU发送给IAB节点。但本申请不限于此。
在上述实施例中,IAB节点可以直接测量上述hop delay,也可以通过打时间戳的方式测量上述hop delay,比如在发送侧的BAP层给数据包打上时间戳,到接收侧的 BAP层计算当前时间和时间戳的时间之差得到上述hop delay。但本申请不限于此。
在上述实施例中,对于上行方向,上行第一个节点(也即UE)不需要计算上行剩余PDB,因为UE处的上行剩余PDB就是上行AN PDB,UE处的上行剩余跳数也即无线传输跳数。则UE可以得到上行方向的下一跳PDB,也即上行接入链路PDB:UL Access link PDB=UL AN PDB/hop number。
此外,如果UE的接入IAB节点计算上行剩余PDB,因为该接入IAB节点的上一跳节点是UE,则上一跳节点处的上行剩余PDB就是上行AN PDB。接入IAB节点本身是知道AN PDB的,所以不需要从UE处获取上行AN PDB。
在上述实施例中,对于下行方向,下行第一个节点(也即Donor DU)不需要计算下行剩余PDB,因为Donor DU处的下行剩余PDB就是下行AN PDB,可以从Donor CU处获取。
此外,UE的接入IAB节点处计算的下行剩余PDB也就是下行接入链路PDB。
根据本申请实施例,无需通过Donor CU配置接入链路PDB和回传链路PDB,IAB节点自己可以估算下一跳的时延要求,节省了F1AP信令开销。此外,IAB节点根据自己估算的下一跳时延要求做优先级调度,保证了每一跳的时延要求。
图28是本申请实施例的数据调度方法的另一个示意图,从IAB节点的一侧进行说明。该方法应用于IAB系统,如前所述,除了IAB节点,该IAB系统还包括:Donor设备和UE。
如图28所示,该方法包括:
2801,所述IAB节点获取UE承载在所述IAB节点处的剩余PDB;
2802,所述IAB节点根据所述UE承载在所述IAB节点处的剩余PDB对所述UE承载的数据包进行调度。
根据本申请实施例,无需通过Donor CU配置接入链路PDB和回传链路PDB,IAB节点自己估算下一跳的时延要求,节省了F1AP信令开销。此外,IAB节点根据自己估算的下一跳时延要求做优先级调度,保证了每一跳的时延要求。
在一些实施例中,在2801中,IAB节点获取UE承载在所述IAB节点处的剩余PDB,包括:所述IAB节点接收上一跳节点发送的所述UE承载在所述IAB节点处的剩余PDB,所述剩余PDB包括上行剩余PDB或下行剩余PDB,所述上一跳节点为IAB节点。
在一些实施例中,如图28所示,可选的,所述方法还包括:
2803,所述IAB节点获取所述UE承载的下一跳链路时延;
2804,所述IAB节点根据所述UE承载在所述IAB节点处的剩余PDB以及所述UE承载的下一跳链路时延确定所述UE承载在所述下一跳IAB节点处的剩余PDB;
2805,所述IAB节点向下一跳IAB节点发送所述UE承载在下一跳IAB节点处的剩余PDB。
在上述实施例中,在2803的一些实施例中,所述IAB节点获取所述UE承载的下一跳链路时延,包括:
所述IAB节点的IAB-DU通过测量获得所述UE承载的下一跳链路的IAB-DU时延和下行空口传输时延;其中,所述IAB-DU时延包括从数据包到达所述IAB-DU的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被下行空口传输的时间。
在上述实施例中,在2803的一些实施例中,所述IAB节点获取所述UE承载的下一跳链路时延,包括:
所述IAB节点的IAB-MT通过测量获得所述UE承载的下一跳链路的IAB-MT时延和上行空口传输时延;其中,所述IAB-MT时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的时间。
值得注意的是,以上图28仅对本申请实施例进行了示意性说明,但本申请不限于此。例如可以适当地调整各个操作之间的执行顺序,此外还可以增加其他的一些操作,或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图28的记载。
在本申请实施例中,上一跳节点可以测量到IAB节点的时延(hop delay),根据上一跳节点处的剩余PDB(remaining PDB)和hop delay得到IAB节点处的剩余PDB(remaining PDB’),例如,通过以下公式确定IAB节点处的剩余PDB:remaining PDB’=remaining PDB–hop delay,并发送给IAB节点。然后IAB节点根据剩余跳数(remaing hops)估算下一跳PDB,从而根据下一跳PDB对数据包进行调度,例如,通过以下公式确定下一跳PDB:hop PDB=remaining PDB’/remaining hops。
在上述实施例中,上述IAB节点处的剩余PDB可以由上一跳节点通过BAP层的 控制PDU发送给IAB节点。但本申请不限于此。
在上述实施例中,对于上行方向,UE不需要获得上行剩余PDB,因为UE处的上行剩余PDB就是上行AN PDB。则UE可以得到下一跳PDB也即接入链路PDB:UL access link PDB=UL AN PDB/hop number。
此外,UE可以测量从UE到接入IAB节点的hop delay,根据上行剩余PDB(即UL AN PDB)和hop delay,得到接入IAB节点处的上行剩余PDB,并通过RRC消息发送给接入IAB节点。
在上述实施例中,对于下行方向,Donor DU不需要获得下行剩余PDB,因为Donor DU处的下行剩余PDB就是DL AN PDB,可以从Donor CU处获取AN PDB。
此外,UE的接入IAB节点的上一跳节点测量到接入IAB节点的hop delay,根据下行剩余PDB和hop delay得到接入IAB节点处的下行剩余PDB(即下行接入链路PDB),并发送给接入IAB节点。
根据本申请实施例,无需通过Donor CU配置接入链路PDB和回传链路PDB,IAB节点自己估算下一跳的时延要求,节省了F1AP信令开销。此外,IAB节点根据自己估算的下一跳时延要求做优先级调度,保证了每一跳的时延要求。
第六方面的实施例
本申请实施例提供一种数据包延迟预算的配置装置和一种UE承载的映射装置。该装置例如可以是IAB系统中的Donor设备,也可以是配置于该Donor设备中的某个或某些部件或者组件。该IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,本申请实施例从Donor设备的一侧进行说明。
图29是本申请实施例的数据包延迟预算的配置装置的一个示意图,其实施原理与第一方面的实施例中Donor设备的实施类似,内容相同之处不再重复说明。
如图29所示,本申请实施例的数据包延迟预算的配置装置2900包括:
发送单元2901,其向所述接入IAB节点发送第一配置信息,通过所述第一配置信息指示UE承载的接入链路PDB,
其中,所述第一配置信息包括以下至少之一:
核心网PDB,所述核心网PDB代表所述UE承载在接入IAB节点与核心网的UPF的N6接口终结点之间传输的最大时延要求;
所述UE承载的接入链路PDB;
所述UE承载的无线传输跳数;
所述UE承载的无线回传PDB;以及
所述UE承载的单跳无线回传PDB以及无线回传跳数。
在一些实施例中,所述第一配置信息包含于UE上下文建立消息或者UE上下文修改消息的DRB服务质量参数列表和/或DRB配置参数列表中。
图30是本申请实施例的数据包延迟预算的配置装置的另一个示意图,其实施原理与第二方面的实施例中Donor设备的实施类似,内容相同之处不再重复说明。
如图30所示,本申请实施例的数据包延迟预算的配置装置3000包括:
发送单元3001,其向所述中间IAB节点发送第二配置信息,通过所述第二配置信息指示针对所述UE承载或针对转发路由的单跳无线回传PDB;其中,所述转发路由包括转发路径和/或目标BAP地址。
在一些实施例中,所述第二配置信息包括以下之一:
所述UE承载或所述转发路由的单跳无线回传PDB;
所述UE承载或所述转发路由的无线传输PDB;
所述UE承载或所述转发路由的无线传输跳数;
所述UE承载或所述转发路由的无线传输剩余PDB;
所述UE承载或所述转发路由的无线传输剩余跳数。
在一些实施例中,所述第二配置信息包含于UE上下文建立消息或者UE上下文修改消息的回传RLC信道配置参数中。
在一些实施例中,在所述回传RLC信道配置参数中,所述UE承载由GTP-U TEID和/或IP地址标识。
图31是本申请实施例的UE承载的映射装置的一个示意图,其实施原理与第三方面的实施例中Donor设备的实施类似,内容相同之处不再重复说明。
如图31所示,本申请实施例的UE承载的映射装置3100包括:
映射单元3101,其将单跳无线回传的最大时延要求相同的UE承载映射到相同的回传RLC信道。
在一些实施例中,所述Donor设备将单跳无线回传的最大时延要求相同的UE承载映射到相同的回传RLC信道,包括以下之一:
所述映射单元将无线传输PDB和无线传输跳数相同的UE承载映射到相同的回传RLC信道;
所述映射单元将无线传输PDB与无线传输跳数的比值相同的UE承载映射到相同的回传RLC信道;
所述映射单元将无线传输剩余PDB和无线传输剩余跳数相同的UE承载映射到相同的回传RLC信道;
所述映射单元将无线传输剩余PDB与无线传输剩余跳数的比值相同的UE承载映射到相同的回传RLC信道。
在上述实施例中,如图29至31所示,装置2900/3000/3100还可以包括:
接收单元2902/3002/3102,其接收所述UE和所述接入IAB节点上报的接入链路时延,以及接收所述接入IAB节点或所述中间IAB节点上报的单跳无线回传时延;
确定单元2903/3003/3103,其根据所述接入链路时延和所述单跳无线回传时延确定所述UE承载的转发路由、接入链路PDB以及单跳无线回传PDB。
在一些实施例中,所述接入链路时延包括接入链路的上行时延和接入链路的下行时延,
所述接入链路的上行时延包括上行PDCP平均时延、上行RLC平均时延和上行空口传输平均时延;
所述接入链路的下行时延包括IAB-DU平均时延和下行空口传输平均时延;
其中,所述上行PDCP平均时延由所述UE测量;所述上行RLC平均时延、所述上行空口传输平均时延、所述IAB-DU平均时延和下行空口传输平均时延由所述接入IAB节点的IAB-DU测量。
在一些实施例中,所述单跳无线回传时延包括单跳无线回传的下行时延,
所述单跳无线回传的下行时延包括IAB-DU平均时延和下行空口传输平均时延;
其中,所述IAB-DU平均时延和所述下行空口传输平均时延由所述中间IAB节点的IAB-DU测量。
在一些实施例中,所述单跳无线回传时延包括单跳无线回传的上行时延,
所述单跳无线回传的上行时延包括IAB-MT平均时延和上行空口传输平均时延;
其中,所述IAB-MT平均时延和所述上行空口传输平均时延由所述接入IAB节点或所述中间IAB节点的IAB-MT测量。
在一些实施例中,所述单跳无线回传时延包括单跳无线回传的上行时延,
所述单跳无线回传的上行时延包括上行BAP平均时延或上行GTP平均时延,以及上行RLC平均时延和上行空口平均时延;
其中,所述上行BAP平均时延由所述接入IAB节点或所述中间IAB节点的IAB-MT测量,所述上行GTP平均时延由接入IAB节点的IAB-MT测量,所述上行RLC平均时延和上行空口平均时延由所述IAB节点的父IAB节点IAB-DU测量。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的装置2900/3000/3100还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图29至图31中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
根据本申请实施例,UE在IAB网络的任意节点接入时都可满足承载的时延要求,即不同跳数的无线回传下都能保证满足时延要求。
第七方面的实施例
本申请实施例提供一种时延测量和上报装置。
图32是本申请实施例的时延测量和上报装置的一个示意图,该装置例如可以是IAB系统中的UE,也可以是配置于该UE中的某个或某些部件或者组件。该IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,本申请实施例从该UE的一侧进行说明。其中,本申请实施例的时延测量和上报装置的实施原理与第四方面的实施例中的UE的实施类似,内容相同之处不再重复说明。
如图32所示,本申请实施例的时延测量和上报装置3200包括:
处理单元3201,其针对UE承载测量上行PDCP平均时延,并上报给所述Donor设备;其中,所述上行PDCP平均时延包括数据包到达所述UE的PDCP层直至发送所述数据包的第一个上行空口授权时刻的时延。
在一些实施例中,所述处理单元3201通过RRC消息将所述上行PDCP平均时延发送给所述Donor设备。
图33是本申请实施例的时延测量和上报装置的一个示意图,该装置例如可以是IAB系统中的接入IAB节点,也可以是配置于该接入IAB节点中的某个或某些部件或者组件。该IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,本申请实施例从该接入IAB节点的一侧进行说明。其中,本申请实施例的时延测量和上报装置的实施原理与第四方面的实施例中的接入IAB节点的实施类似,内容相同之处不再重复说明。
如图33所示,本申请实施例的时延测量和上报装置3300包括:
处理单元3301,其在所述接入IAB节点的IAB-DU侧针对UE承载测量接入链路的上行RLC平均时延、上行空口传输平均时延;
所述处理单元3301还在所述接入IAB节点的IAB-DU侧针对UE承载、回传RLC信道或转发路由测量IAB-DU平均时延以及下行空口传输平均时延;
其中,所述IAB-DU平均时延包括从数据包到达所述IAB-DU的RLC层直到所述数据包的最后一个RLC PDU被发送到MAC并被下行空口传输的时间的平均值。
在一些实施例中,所述处理单元3301通过RRC消息或者F1AP消息将所述接入链路的上行RLC平均时延、上行空口传输平均时延、IAB-DU平均时延或下行空口传输平均时延发送给所述Donor设备。
在一些实施例中,所述处理单元3301在所述接入IAB节点的IAB-MT侧针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-MT平均时延和上行空口传输平均时延;
其中,所述单跳无线回传的IAB-MT平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的时间的平均值,或从数据包到达GTP-U层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的时间的平均值。
在一些实施例中,所述处理单元3301通过RRC消息或者F1AP消息将所述单跳无线回传的IAB-MT平均时延、上行空口传输平均时延发送给所述Donor设备。
在一些实施例中,所述处理单元3301在所述接入IAB节点的IAB-MT侧针对UE承载、回传RLC信道或转发路由测量单跳无线回传的上行BAP平均时延或上行GTP平均时延;
其中,所述单跳无线回传的上行BAP平均时延包括从数据包到达所述IAB-MT 的BAP层直到所述数据包的第一个上行空口授权时刻的时间的平均值;所述上行GTP平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的第一个上行空口授权时刻的时间的平均值。
在一些实施例中,所述处理单元3301通过RRC消息或者F1AP消息将所述单跳无线回传的上行BAP平均时延或上行GTP平均时延发送给所述Donor设备。
图34是本申请实施例的时延测量和上报装置的一个示意图,该装置例如可以是IAB系统中的中间IAB节点,也可以是配置于该中间IAB节点中的某个或某些部件或者组件。该IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,本申请实施例从该中间IAB节点的一侧进行说明。其中,本申请实施例的时延测量和上报装置的实施原理与第四方面的实施例中的中间IAB节点的实施类似,内容相同之处不再重复说明。
如图34所示,本申请实施例的时延测量和上报装置3400包括:
处理单元3401,其在所述中间IAB节点的IAB-DU侧针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-DU平均时延和下行空口传输平均时延;
其中,所述单跳无线回传的IAB-DU平均时延包括从数据包到达所述IAB-DU的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被下行空口传输的时延的平均值。
在上述实施例中,所述处理单元3401通过F1AP消息或者RRC消息将所述单跳无线回传的IAB-DU平均时延或下行空口传输平均时延发送给所述Donor设备。
在一些实施例中,所述处理单元3401在所述中间IAB节点的IAB-MT侧针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-MT平均时延和上行空口传输平均时延;
其中,所述单跳无线回传的IAB-MT平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的时间的平均值。
在上述实施例中,所述处理单元3401通过F1AP消息或者RRC消息将所述单跳无线回传的IAB-MT平均时延或上行空口传输平均时延发送给所述Donor设备。
在一些实施例中,所述处理单元3401在所述中间IAB节点的IAB-MT侧针对UE承载、回传RLC信道或转发路由测量单跳无线回传的上行BAP平均时延;其中,所 述单跳无线回传的上行BAP平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的第一个上行空口授权时刻的时间的平均值;
处理单元3401还在所述中间IAB节点的IAB-DU侧针对UE承载、回传RLC信道或转发路由测量单跳无线回传的上行RLC平均时延和上行空口传输平均时延。
在上述实施例中,所述处理单元3401通过F1AP消息或者RRC消息将所述单跳无线回传的上行BAP平均时延、单跳无线回传的上行RLC平均时延或上行空口传输平均时延发送给所述Donor设备。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的时延测量和上报装置3200/3300/3400还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图32至图34中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
根据本申请实施例,UE在IAB网络的任意节点接入时都可满足承载的时延要求,即不同跳数的无线回传下都能保证满足时延要求。
第八方面的实施例
本申请实施例提供一种数据调度装置。该装置例如可以是IAB系统中的IAB节点,也可以是配置于该IAB节点中的某个或某些部件或者组件。该IAB系统包括Donor设备、IAB节点和UE,本申请实施例从IAB节点的一侧进行说明。
图35是本申请实施例的数据调度装置的一个示意图,该数据调度装置的实施原理与第五方面的实施例中图27的实施类似,内容相同之处不再重复说明。如图35所示,本申请实施例的数据调度装置3500包括:
获取单元3501,其获取UE承载在上一跳节点处的剩余PDB以及所述UE承载的上一跳链路时延;
确定单元3502,其根据所述UE承载在上一跳节点处的剩余PDB以及所述UE承载的上一跳链路时延确定所述UE承载在所述IAB节点处的剩余PDB;
调度单元3503,其根据所述UE承载在所述IAB节点处的剩余PDB对所述UE 承载的数据包进行调度。
在一些实施例中,所述获取单元3501获取UE承载在上一跳节点处的剩余PDB,包括:
所述获取单元3501接收上一跳节点发送的所述UE承载在所述上一跳IAB节点处的剩余PDB,所述剩余PDB包括上行剩余PDB或下行剩余PDB,所述上一跳节点为IAB节点。
在一些实施例中,所述获取单元3501获取所述UE承载的上一跳链路时延,包括:
所述获取单元3501在所述IAB节点的IAB-DU侧通过测量获得所述UE承载的上一跳链路的上行RLC时延和上行空口传输时延;或者,
所述获取单元3501在所述IAB节点的IAB-MT侧通过测量获得所述UE承载的上一跳链路的下行RLC时延和下行空口传输时延。
在一些实施例中,所述获取单元3501获取所述UE承载的上一跳链路时延,包括:
所述获取单元3501根据所述IAB节点的IAB-DU的BAP层收到所述UE承载的数据包的时刻与所述数据包到达所述上一跳节点的IAB-MT的BAP层时加入的时间戳的时刻之差,得到所述UE承载的上一跳链路的上行时延,所述上一跳节点为IAB节点;
或者,所述获取单元3501根据所述IAB节点的IAB-MT的BAP层收到所述UE承载的数据包的时刻与所述数据包到达所述上一跳节点的IAB-DU的BAP层时加入的时间戳的时刻之差,得到所述UE承载的上一跳链路的下行时延,所述上一跳节点为IAB节点。
在一些实施例中,所述获取单元3501获取所述UE承载的上一跳链路时延,包括:
所述获取单元3501接收所述上一跳节点的IAB-DU发送的上一跳链路的IAB-DU时延;其中,所述IAB-DU时延包括从数据包到达所述IAB-DU的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被下行空口传输的时间,所述上一跳节点为IAB节点;或者,
所获取单元3501接收所述上一跳节点的IAB-MT发送的上一跳链路的IAB-MT时延;其中,所述IAB-MT时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC并被上行空口传输的时间,所述上一跳节点为IAB节点。
在一些实施例中,如图35所示,所述装置3500还包括:
发送单元3504,其将所述UE承载在所述IAB节点处的剩余PDB发送给下一跳IAB节点。
图36是本申请实施例的数据调度装置的另一个示意图,该数据调度装置的实施原理与第五方面的实施例中图28的实施类似,内容相同之处不再重复说明。如图36所示,本申请实施例的数据调度装置3600包括:
获取单元3601,其获取UE承载在所述IAB节点处的剩余PDB;
调度单元3602,其根据所述UE承载在所述IAB节点处的剩余PDB对所述UE承载的数据包进行调度。
在一些实施例中,所述获取单元3601获取UE承载在所述IAB节点处的剩余PDB,包括:
所述获取单元3601接收上一跳节点发送的所述UE承载在所述IAB节点处的剩余PDB,所述剩余PDB包括上行剩余PDB或下行剩余PDB,所述上一跳节点为IAB节点。
在一些实施例中,如图36所示,所述装置3600还包括:确定单元3603和发送单元3604。其中:
所述获取单元3601获取所述UE承载的下一跳链路时延;
所述确定单元3603根据所述UE承载在所述IAB节点处的剩余PDB以及所述UE承载的下一跳链路时延确定所述UE承载在所述下一跳IAB节点处的剩余PDB;
所述发送单元3604向下一跳IAB节点发送所述UE承载在下一跳IAB节点处的剩余PDB。
在一些实施例,所述获取单元3601获取所述UE承载的下一跳链路时延,包括:
所述获取单元3601在所述IAB节点的IAB-DU侧通过测量获得所述UE承载的下一跳链路的IAB-DU时延和下行空口传输时延;其中,所述IAB-DU时延包括从数据包到达所述IAB-DU的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被下行空口传输的时间;或者,
所述获取单元3601在所述IAB节点的IAB-MT侧通过测量获得所述UE承载的下一跳链路的IAB-MT时延和上行空口传输时延;其中,所述IAB-MT时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到 MAC层并被上行空口传输的时间。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。本申请实施例的数据调度装置3500/3600还可以包括其它部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图35和图36中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
根据本申请实施例,UE在IAB网络的任意节点接入时都可满足承载的时延要求,即不同跳数的无线回传下都能保证满足时延要求。
第九方面的实施例
本申请实施例提供了一种通信系统,图37是该通信系统3700的示意图,如图37所示,该通信系统3700包括Donor设备3701和3702、IAB节点3703和3704,以及终端设备3705。
为简单起见,图37仅以两个Donro设备、两个IAB节点、一个终端设备为例进行说明,但本申请实施例不限于此。关于Donro设备、IAB节点以及该终端设备的网络架构可以参考相关技术,此处省略说明。
在一些实施例中,Donor设备3701、3702被配置为执行第一方面至第三方面任一方面的实施例中Donor设备所执行的方法,可以包含图29或图30或31的装置。在一些实施例中,终端设备3705被配置为执行第四方面的实施例中UE所执行的方法,可以包含图32的装置。在一些实施例中,IAB节点3703和3704被配置为执行第四方面的实施中接入IAB节点或中间IAB节点或第五方面的实施例中IAB节点所执行的方法,可以包括图33或图34或图35或图36的装置。关于Donor设备3701和3702、终端设备3705以及IAB节点3703和3704的相关内容请参见第一方面至第五方面的实施例,此处省略说明。
本申请实施例还提供一种Donor设备。
图38是本申请实施例的Donor设备的示意图。如图38所示,Donor设备3800可以包括:处理器(例如中央处理器CPU)3801和存储器3802;存储器3802耦合 到处理器3801。其中该存储器3802可存储各种数据;此外还存储信息处理的程序,并且在中央处理器3801的控制下执行该程序。
例如,处理器3801可以被配置为执行程序而实现如第一方面或第二方面或第三方面的实施例中Donor设备所执行的方法。
此外,如图38所示,Donor设备3800还可以包括:收发机3803和天线3804等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,Donor设备3800也并不是必须要包括图38中所示的所有部件;此外,Donor设备3800还可以包括图38中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种IAB节点。
图39是本申请实施例的IAB节点的示意图。如图39所示,该IAB节点3900可以包括处理器3901和存储器3902;存储器3902存储有数据和程序,并耦合到处理器3901。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
例如,处理器3901可以被配置为执行程序而实现如第四方面的实施例中接入IAB节点或中间IAB节点所执行的方法,或者实现如第五方面的实施例中接入IAB节点所执行的方法。
如图39所示,该IAB节点3900还可以包括:通信模块3903、输入单元3904、显示器3905、电源3906。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,IAB节点3900也并不是必须要包括图39中所示的所有部件,上述部件并不是必需的;此外,IAB节点3900还可以包括图39中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备。
图40是本申请实施例的终端设备的示意图。如图40所示,该终端设备4000可以包括处理器4001和存储器4002;存储器4002存储有数据和程序,并耦合到处理器4001。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
例如,处理器4001可以被配置为执行程序而实现如第四方面的实施例中UE所执行的方法。
如图40所示,该终端设备4000还可以包括:通信模块4003、输入单元4004、 显示器4005、电源4006。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备4000也并不是必须要包括图40中所示的所有部件,上述部件并不是必需的;此外,终端设备4000还可以包括图40中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种计算机可读程序,其中当在Donor设备中执行所述程序时,所述程序使得计算机在所述Donor设备中执行第一方面或第二方面或第三方面的实施例中Donor设备所执行的方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在Donor设备中执行第一方面或第二方面或第三方面的实施例中Donor设备所执行的方法。
本申请实施例还提供一种计算机可读程序,其中当在IAB节点中执行所述程序时,所述程序使得计算机在所述IAB节点中执行第四方面的实施例中接入IAB节点或者中间IAB节点所执行的方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在IAB节点中执行第四方面的实施例中接入IAB节点或者中间IAB节点所执行的方法。
本申请实施例还提供一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行第四方面的实施例中UE所执行的方法。
本申请实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行第四方面的实施例中UE所执行的方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用 现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
关于本实施例公开的上述实施方式,还公开了如下的附记:
1.一种数据包时延预算(PDB)的配置方法,应用于IAB系统,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述方法包括:
所述Donor设备向所述接入IAB节点发送第一配置信息,通过所述第一配置信息指示UE承载的接入链路PDB,
其中,所述第一配置信息包括以下至少之一:
核心网PDB,所述核心网PDB代表所述UE承载在接入IAB节点与核心网的UPF的N6接口终结点之间传输的最大时延要求;
所述UE承载的接入链路PDB;
所述UE承载的无线传输跳数;
所述UE承载的无线回传PDB;以及
所述UE承载的单跳无线回传PDB以及无线回传跳数。
1.1.根据附记1所述的方法,其中,所述第一配置信息包含于UE上下文建立消息或者UE上下文修改消息的DRB服务质量参数列表和/或DRB配置参数列表中。
2.一种数据包时延预算(PDB)的配置方法,应用于IAB系统,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述方法还包括:
所述Donor设备向所述中间IAB节点发送第二配置信息,通过所述第二配置信息指示针对所述UE承载或针对转发路由的单跳无线回传PDB;
其中,所述转发路由包括转发路径和/或目标BAP地址。
3.根据附记2所述的方法,其中,所述第二配置信息包括以下之一:
所述UE承载或所述转发路由的单跳无线回传PDB;
所述UE承载或所述转发路由的无线传输PDB;
所述UE承载或所述转发路由的无线传输跳数;
所述UE承载或所述转发路由的无线传输剩余PDB;
所述UE承载或所述转发路由的无线传输剩余跳数。
4.根据附记3所述的方法,其中,所述第二配置信息包含于UE上下文建立消息或者UE上下文修改消息的回传RLC信道配置参数中。
5.根据附记4所述的方法,其中,在所述回传RLC信道配置参数中,所述UE承载由GTP-U TEID和/或IP地址标识。
6.一种UE承载的映射方法,应用于IAB系统,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述方法还包括:
所述Donor设备将单跳无线回传的最大时延要求相同的UE承载映射到相同的回传RLC信道。
7.根据附记6所述的方法,其中,所述Donor设备将单跳无线回传的最大时延要求相同的UE承载映射到相同的回传RLC信道,包括以下之一:
所述Donor设备将无线传输PDB和无线传输跳数相同的UE承载映射到相同的回传RLC信道;
所述Donor设备将无线传输PDB与无线传输跳数的比值相同的UE承载映射到相 同的回传RLC信道;
所述Donor设备将无线传输剩余PDB和无线传输剩余跳数相同的UE承载映射到相同的回传RLC信道;
所述Donor设备将无线传输剩余PDB与无线传输剩余跳数的比值相同的UE承载映射到相同的回传RLC信道。
8.根据附记1至6任一项所述的方法,其中,所述方法还包括:
所述Donor设备接收所述UE和所述接入IAB节点上报的接入链路时延,以及接收所述接入IAB节点或所述中间IAB节点上报的单跳无线回传时延;
所述Donor设备根据所述接入链路时延和所述单跳无线回传时延确定所述UE承载的转发路由、接入链路PDB以及单跳无线回传PDB。
8.1.根据附记8所述的方法,其中,所述接入链路时延包括接入链路的上行时延和接入链路的下行时延,
所述接入链路的上行时延包括上行PDCP平均时延、上行RLC平均时延和上行空口传输平均时延;
所述接入链路的下行时延包括IAB-DU平均时延和下行空口传输平均时延;
其中,所述上行PDCP平均时延由所述UE测量;所述上行RLC平均时延、所述上行空口传输平均时延、所述IAB-DU平均时延和下行空口传输平均时延由所述接入IAB节点的IAB-DU测量。
8.2.根据附记8所述的方法,其中,所述单跳无线回传时延包括单跳无线回传的下行时延,
所述单跳无线回传的下行时延包括IAB-DU平均时延和下行空口传输平均时延;
其中,所述IAB-DU平均时延和所述下行空口传输平均时延由所述中间IAB节点的IAB-DU测量。
8.3.根据附记8所述的方法,其中,所述单跳无线回传时延包括单跳无线回传的上行时延,
所述单跳无线回传的上行时延包括IAB-MT平均时延和上行空口传输平均时延;
其中,所述IAB-MT平均时延和所述上行空口传输平均时延由所述接入IAB节点或所述中间IAB节点的IAB-MT测量。
8.4.根据附记8所述的方法,其中,所述单跳无线回传时延包括单跳无线回传的 上行时延,
所述单跳无线回传的上行时延包括上行BAP平均时延或上行GTP平均时延,以及上行RLC平均时延和上行空口平均时延;
其中,所述上行BAP平均时延由所述接入IAB节点或所述中间IAB节点的IAB-MT测量,所述上行GTP平均时延由接入IAB节点的IAB-MT测量,所述上行RLC平均时延和上行空口平均时延由所述IAB节点的父IAB节点IAB-DU测量。
9.一种时延测量和上报方法,应用于IAB系统,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述方法包括:
所述UE针对UE承载测量上行PDCP平均时延,并上报给所述Donor设备;其中,所述上行PDCP平均时延包括数据包到达所述UE的PDCP层直至发送所述数据包的第一个上行空口授权时刻的时延。
9.1.根据附记9所述的方法,其中,所述UE通过RRC消息将所述上行PDCP平均时延发送给所述Donor设备。
10.一种时延测量和上报方法,应用于IAB系统,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述方法包括:
所述接入IAB节点的IAB-DU针对UE承载测量接入链路的上行RLC平均时延、上行空口传输平均时延;
所述接入IAB节点的IAB-DU针对UE承载、回传RLC信道或转发路由测量IAB-DU平均时延以及下行空口传输平均时延;
其中,所述IAB-DU平均时延包括从数据包到达所述IAB-DU的RLC层直到所述数据包的最后一个RLC PDU被发送到MAC并被下行空口传输的时间的平均值。
10.1.根据附记10所述的方法,其中,所述接入IAB节点通过RRC消息或者F1AP消息将所述接入链路的上行RLC平均时延、上行空口传输平均时延、IAB-DU平均时延或下行空口传输平均时延发送给所述Donor设备。
10.2.根据附记10所述的方法,其中,所述方法还包括:
所述接入IAB节点的IAB-MT针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-MT平均时延和上行空口传输平均时延;
其中,所述单跳无线回传的IAB-MT平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的 时间的平均值,或从数据包到达GTP-U层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的时间的平均值。
10.2a.根据附记10.2所述的方法,其中,所述接入IAB节点通过RRC消息或者F1AP消息将所述单跳无线回传的IAB-MT平均时延、上行空口传输平均时延发送给所述Donor设备。
10.3.根据附记10所述的方法,其中,所述方法还包括:
所述接入IAB节点的IAB-MT针对UE承载、回传RLC信道或转发路由测量单跳无线回传的上行BAP平均时延或上行GTP平均时延;
其中,所述单跳无线回传的上行BAP平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的第一个上行空口授权时刻的时间的平均值;所述上行GTP平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的第一个上行空口授权时刻的时间的平均值。
10.3a.根据附记10.3所述的方法,其中,所述接入IAB节点通过RRC消息或者F1AP消息将所述单跳无线回传的上行BAP平均时延或上行GTP平均时延发送给所述Donor设备。
11.一种时延测量和上报方法,应用于IAB系统,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述方法包括:
所述中间IAB节点的IAB-DU针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-DU平均时延和下行空口传输平均时延;
其中,所述单跳无线回传的IAB-DU平均时延包括从数据包到达所述IAB-DU的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被下行空口传输的时延的平均值。
11.1.根据附记11所述的方法,其中,所述中间IAB节点通过F1AP消息或者RRC消息将所述单跳无线回传的IAB-DU平均时延或下行空口传输平均时延发送给所述Donor设备。
11.2.根据附记11所述的方法,其中,所述方法还包括:
所述中间IAB节点的IAB-MT针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-MT平均时延和上行空口传输平均时延;
其中,所述单跳无线回传的IAB-MT平均时延包括从数据包到达所述IAB-MT的 BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的时间的平均值。
11.2a.根据附记11.2所述的方法,其中,所述中间IAB节点通过F1AP消息或者RRC消息将所述单跳无线回传的IAB-MT平均时延或上行空口传输平均时延发送给所述Donor设备。
11.3.根据附记11所述的方法,其中,所述方法还包括:
所述中间IAB节点的IAB-MT针对UE承载、回传RLC信道或转发路由测量单跳无线回传的上行BAP平均时延;其中,所述单跳无线回传的上行BAP平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的第一个上行空口授权时刻的时间的平均值;
所述中间IAB节点的IAB-DU还针对UE承载、回传RLC信道或转发路由测量单跳无线回传的上行RLC平均时延和上行空口传输平均时延。
11.3a.根据附记11.3所述的方法,其中,所述中间IAB节点通过F1AP消息或者RRC消息将所述单跳无线回传的上行BAP平均时延、单跳无线回传的上行RLC平均时延或上行空口传输平均时延发送给所述Donor设备。
12.一种数据调度方法,应用于IAB系统,所述IAB系统包括Donor设备、IAB节点以及UE,其中,所述方法包括:
所述IAB节点获取UE承载在上一跳节点处的剩余PDB以及所述UE承载的上一跳链路时延;
所述IAB节点根据所述UE承载在上一跳节点处的剩余PDB以及所述UE承载的上一跳链路时延确定所述UE承载在所述IAB节点处的剩余PDB;
所述IAB节点根据所述UE承载在所述IAB节点处的剩余PDB对所述UE承载的数据包进行调度。
13.根据附记12所述的方法,其中,所述IAB节点获取UE承载在上一跳节点处的剩余PDB,包括:
所述IAB节点接收上一跳节点发送的所述UE承载在所述上一跳IAB节点处的剩余PDB,所述剩余PDB包括上行剩余PDB或下行剩余PDB,所述上一跳节点为IAB节点。
14.根据附记12所述的方法,其中,所述IAB节点获取所述UE承载的上一跳 链路时延,包括:
所述IAB节点的IAB-DU通过测量获得所述UE承载的上一跳链路的上行RLC时延和上行空口传输时延;或者,
所述IAB节点的IAB-MT通过测量获得所述UE承载的上一跳链路的下行RLC时延和下行空口传输时延。
15.根据附记12所述的方法,其中,所述IAB节点获取所述UE承载的上一跳链路时延,包括:
所述IAB节点根据所述IAB节点的IAB-DU的BAP层收到所述UE承载的数据包的时刻与所述数据包到达所述上一跳节点的IAB-MT的BAP层时加入的时间戳的时刻之差,得到所述UE承载的上一跳链路的上行时延,所述上一跳节点为IAB节点;
或者,所述IAB节点根据所述IAB节点的IAB-MT的BAP层收到所述UE承载的数据包的时刻与所述数据包到达所述上一跳节点的IAB-DU的BAP层时加入的时间戳的时刻之差,得到所述UE承载的上一跳链路的下行时延,所述上一跳节点为IAB节点。
16.根据附记12所述的方法,其中,所述IAB节点获取所述UE承载的上一跳链路时延,包括:
所述IAB节点接收所述上一跳节点的IAB-DU发送的上一跳链路的IAB-DU时延;其中,所述IAB-DU时延包括从数据包到达所述IAB-DU的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被下行空口传输的时间,所述上一跳节点为IAB节点;或者,
所述IAB节点接收所述上一跳节点的IAB-MT发送的上一跳链路的IAB-MT时延;其中,所述IAB-MT时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC并被上行空口传输的时间,所述上一跳节点为IAB节点。
17.根据附记12所述的方法,其中,所述方法还包括:
所述IAB节点将所述UE承载在所述IAB节点处的剩余PDB发送给下一跳IAB节点。
18.一种数据调度方法,应用于IAB系统,所述IAB系统包括Donor设备、IAB节点以及UE,其中,所述方法包括:
所述IAB节点获取UE承载在所述IAB节点处的剩余PDB;
所述IAB节点根据所述UE承载在所述IAB节点处的剩余PDB对所述UE承载的数据包进行调度。
19.根据附记18所述的方法,其中,所述IAB节点获取UE承载在所述IAB节点处的剩余PDB,包括:
所述IAB节点接收上一跳节点发送的所述UE承载在所述IAB节点处的剩余PDB,所述剩余PDB包括上行剩余PDB或下行剩余PDB,所述上一跳节点为IAB节点。
20.根据附记18所述的方法,其中,所述方法还包括:
所述IAB节点获取所述UE承载的下一跳链路时延;
所述IAB节点根据所述UE承载在所述IAB节点处的剩余PDB以及所述UE承载的下一跳链路时延确定所述UE承载在所述下一跳IAB节点处的剩余PDB;
所述IAB节点向下一跳IAB节点发送所述UE承载在下一跳IAB节点处的剩余PDB。
21.根据附记20所述的方法,所述IAB节点获取所述UE承载的下一跳链路时延,包括:
所述IAB节点的IAB-DU通过测量获得所述UE承载的下一跳链路的IAB-DU时延和下行空口传输时延;其中,所述IAB-DU时延包括从数据包到达所述IAB-DU的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被下行空口传输的时间;或者,
所述IAB节点的IAB-MT通过测量获得所述UE承载的下一跳链路的IAB-MT时延和上行空口传输时延;其中,所述IAB-MT时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的时间。
22.一种Donor设备,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器被配置为执行所述计算机程序而实现如附记1至8.4任一项所述的方法。
23.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,其中,所述处理器被配置为执行所述计算机程序而实现如附记9或9.1所述的方法。
24.一种IAB节点,包括存储器和处理器,所述存储器存储有计算机程序,其 中,所述处理器被配置为执行所述计算机程序而实现如附记10至21任一项所述的方法。
25.一种通信系统,包括Donor设备、IAB节点以及终端设备,其中,所述Donor设备被配置为执行附记1至8.4任一项所述的方法,所述终端设备被配置为执行附记9或9.1所述的方法,所述IAB节点被配置为执行附记10至21任一项所述的方法。

Claims (18)

  1. 一种数据包时延预算(PDB)的配置装置,配置于IAB系统的Donor设备,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述装置包括:
    发送单元,其向所述接入IAB节点发送第一配置信息,通过所述第一配置信息指示UE承载的接入链路PDB,
    其中,所述第一配置信息包括以下至少之一:
    核心网PDB,所述核心网PDB代表所述UE承载在接入IAB节点与核心网的UPF的N6接口终结点之间传输的最大时延要求;
    所述UE承载的接入链路PDB;
    所述UE承载的无线传输跳数;
    所述UE承载的无线回传PDB;以及
    所述UE承载的单跳无线回传PDB以及无线回传跳数。
  2. 根据权利要求1所述的装置,其中,所述第一配置信息包含于UE上下文建立消息或者UE上下文修改消息的DRB服务质量参数列表和/或DRB配置参数列表中。
  3. 根据权利要求1所述的装置,其中,所述装置还包括:
    接收单元,其接收所述UE和所述接入IAB节点上报的接入链路时延,以及接收所述接入IAB节点或所述中间IAB节点上报的单跳无线回传时延;
    确定单元,其根据所述接入链路时延和所述单跳无线回传时延确定所述UE承载的转发路由、接入链路PDB以及单跳无线回传PDB。
  4. 根据权利要求3所述的装置,其中,所述单跳无线回传时延包括单跳无线回传的下行时延,
    所述单跳无线回传的下行时延包括IAB-DU平均时延和下行空口传输平均时延;
    其中,所述IAB-DU平均时延和所述下行空口传输平均时延由所述中间IAB节点的IAB-DU测量。
  5. 根据权利要求3所述的装置,其中,所述单跳无线回传时延包括单跳无线回传的上行时延,
    所述单跳无线回传的上行时延包括IAB-MT平均时延和上行空口传输平均时延;
    其中,所述IAB-MT平均时延和所述上行空口传输平均时延由所述接入IAB节点或所述中间IAB节点的IAB-MT测量。
  6. 根据权利要求3所述的装置,其中,所述单跳无线回传时延包括单跳无线回传的上行时延,
    所述单跳无线回传的上行时延包括上行BAP平均时延或上行GTP平均时延,以及上行RLC平均时延和上行空口平均时延;
    其中,所述上行BAP平均时延由所述接入IAB节点或所述中间IAB节点的IAB-MT测量,所述上行GTP平均时延由接入IAB节点的IAB-MT测量,所述上行RLC平均时延和上行空口平均时延由所述IAB节点的父IAB节点IAB-DU测量。
  7. 一种UE承载的映射装置,配置于IAB系统的Donor设备,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述装置包括:
    映射单元,其将单跳无线回传的最大时延要求相同的UE承载映射到相同的回传RLC信道。
  8. 根据权利要求7所述的装置,其中,所述映射单元将单跳无线回传的最大时延要求相同的UE承载映射到相同的回传RLC信道,包括以下之一:
    所述映射单元将无线传输PDB和无线传输跳数相同的UE承载映射到相同的回传RLC信道;
    所述映射单元将无线传输PDB与无线传输跳数的比值相同的UE承载映射到相同的回传RLC信道;
    所述映射单元将无线传输剩余PDB和无线传输剩余跳数相同的UE承载映射到相同的回传RLC信道;
    所述映射单元将无线传输剩余PDB与无线传输剩余跳数的比值相同的UE承载映射到相同的回传RLC信道。
  9. 根据权利要求7所述的装置,其中,所述装置还包括:
    接收单元,其接收所述UE和所述接入IAB节点上报的接入链路时延,以及接收所述接入IAB节点或所述中间IAB节点上报的单跳无线回传时延;
    确定单元,其根据所述接入链路时延和所述单跳无线回传时延确定所述UE承载的转发路由、接入链路PDB以及单跳无线回传PDB。
  10. 根据权利要求9所述的装置,其中,所述单跳无线回传时延包括单跳无线回 传的下行时延,
    所述单跳无线回传的下行时延包括IAB-DU平均时延和下行空口传输平均时延;
    其中,所述IAB-DU平均时延和所述下行空口传输平均时延由所述中间IAB节点的IAB-DU测量。
  11. 根据权利要求9所述的装置,其中,所述单跳无线回传时延包括单跳无线回传的上行时延,
    所述单跳无线回传的上行时延包括IAB-MT平均时延和上行空口传输平均时延;
    其中,所述IAB-MT平均时延和所述上行空口传输平均时延由所述接入IAB节点或所述中间IAB节点的IAB-MT测量。
  12. 根据权利要求9所述的装置,其中,所述单跳无线回传时延包括单跳无线回传的上行时延,
    所述单跳无线回传的上行时延包括上行BAP平均时延或上行GTP平均时延,以及上行RLC平均时延和上行空口平均时延;
    其中,所述上行BAP平均时延由所述接入IAB节点或所述中间IAB节点的IAB-MT测量,所述上行GTP平均时延由接入IAB节点的IAB-MT测量,所述上行RLC平均时延和上行空口平均时延由所述IAB节点的父IAB节点IAB-DU测量。
  13. 一种时延测量和上报装置,配置于IAB系统的中间IAB节点,所述IAB系统包括Donor设备、接入IAB节点、中间IAB节点以及UE,其中,所述装置包括:
    处理单元,其在所述中间IAB节点的IAB-DU侧针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-DU平均时延和下行空口传输平均时延;
    其中,所述单跳无线回传的IAB-DU平均时延包括从数据包到达所述IAB-DU的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被下行空口传输的时延的平均值。
  14. 根据权利要求13所述的装置,其中,所述处理单元通过F1AP消息或者RRC消息将所述单跳无线回传的IAB-DU平均时延或下行空口传输平均时延发送给所述Donor设备。
  15. 根据权利要求13所述的装置,其中,所述处理单元在所述中间IAB节点的IAB-MT侧针对UE承载、回传RLC信道或转发路由测量单跳无线回传的IAB-MT平均时延和上行空口传输平均时延;
    其中,所述单跳无线回传的IAB-MT平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的最后一个RLC PDU被发送到MAC层并被上行空口传输的时间的平均值。
  16. 根据权利要求15所述的装置,其中,所述处理单元通过F1AP消息或者RRC消息将所述单跳无线回传的IAB-MT平均时延或上行空口传输平均时延发送给所述Donor设备。
  17. 根据权利要求13所述的装置,其中,所述处理单元在所述中间IAB节点的IAB-MT侧针对UE承载、回传RLC信道或转发路由测量单跳无线回传的上行BAP平均时延;
    其中,所述单跳无线回传的上行BAP平均时延包括从数据包到达所述IAB-MT的BAP层直到所述数据包的第一个上行空口授权时刻的时间的平均值;
    所述中间IAB节点的IAB-DU还针对UE承载、回传RLC信道或转发路由测量单跳无线回传的上行RLC平均时延和上行空口传输平均时延。
  18. 根据权利要求17所述的装置,其中,所述处理单元通过F1AP消息或者RRC消息将所述单跳无线回传的上行BAP平均时延、单跳无线回传的上行RLC平均时延或上行空口传输平均时延发送给所述Donor设备。
PCT/CN2021/071953 2021-01-14 2021-01-14 数据包时延预算的配置方法、装置和系统 WO2022151295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071953 WO2022151295A1 (zh) 2021-01-14 2021-01-14 数据包时延预算的配置方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/071953 WO2022151295A1 (zh) 2021-01-14 2021-01-14 数据包时延预算的配置方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2022151295A1 true WO2022151295A1 (zh) 2022-07-21

Family

ID=82446455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071953 WO2022151295A1 (zh) 2021-01-14 2021-01-14 数据包时延预算的配置方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2022151295A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582092A (zh) * 2018-06-08 2019-12-17 华为技术有限公司 路径时延信息获取方法及相关设备
US20200022061A1 (en) * 2017-03-24 2020-01-16 Huawei Technologies Co., Ltd. Handover Method in Mobile Network and Communications Apparatus
CN110809293A (zh) * 2018-08-06 2020-02-18 电信科学技术研究院有限公司 一种无线回程路径的资源调度方法和设备
CN110958642A (zh) * 2018-09-27 2020-04-03 华为技术有限公司 用于无线回传网络的数据传输方法和装置
CN111107634A (zh) * 2018-10-29 2020-05-05 华为技术有限公司 用于无线回传网络的数据传输方法和装置
CN111294836A (zh) * 2018-12-06 2020-06-16 财团法人工业技术研究院 集中管理节点、分布式节点以及包延迟控制方法
CN111901847A (zh) * 2020-02-13 2020-11-06 中兴通讯股份有限公司 sidelink中继通信方法、装置、设备及介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200022061A1 (en) * 2017-03-24 2020-01-16 Huawei Technologies Co., Ltd. Handover Method in Mobile Network and Communications Apparatus
CN110582092A (zh) * 2018-06-08 2019-12-17 华为技术有限公司 路径时延信息获取方法及相关设备
CN110809293A (zh) * 2018-08-06 2020-02-18 电信科学技术研究院有限公司 一种无线回程路径的资源调度方法和设备
CN110958642A (zh) * 2018-09-27 2020-04-03 华为技术有限公司 用于无线回传网络的数据传输方法和装置
CN111107634A (zh) * 2018-10-29 2020-05-05 华为技术有限公司 用于无线回传网络的数据传输方法和装置
CN111294836A (zh) * 2018-12-06 2020-06-16 财团法人工业技术研究院 集中管理节点、分布式节点以及包延迟控制方法
CN111901847A (zh) * 2020-02-13 2020-11-06 中兴通讯股份有限公司 sidelink中继通信方法、装置、设备及介质

Similar Documents

Publication Publication Date Title
JP7043506B2 (ja) ロングタームエボリューション通信システムのためのマルチテクノロジアグリゲーションアーキテクチャ
CN106537846B (zh) 通信系统
CN112335304B (zh) 一种数据发送方法、装置和通信系统
WO2016093166A1 (ja) 無線リソース制御システム、無線基地局、中継装置、無線リソース制御方法およびプログラム
TW201427447A (zh) 回載無線電資源及小胞元回載延遲估計自我最佳化
CN115362720A (zh) 用于发送定时信息的设备和方法
WO2021114107A1 (zh) 一种数据传输方法及装置
WO2021097808A1 (en) Methods and apparatus of adaptation handling for sidelink relay
US20220393966A1 (en) First node, second node, fourth node and methods performed thereby in a communications network
US20230171014A1 (en) Technique for determining radio device residence time and scheduling
US20240015580A1 (en) Communication control method
US11533769B2 (en) Multi-hop data transmission method and apparatus
US11503503B2 (en) Adding framing protocol header to downlink data
WO2022082690A1 (zh) 群组切换的方法、装置和系统
CN116349293A (zh) Iab节点的移植方法及装置
WO2022151295A1 (zh) 数据包时延预算的配置方法、装置和系统
KR101735317B1 (ko) 이동통신 시스템에서 기지국의 자원 할당 방법 및 장치
WO2022082798A1 (zh) 通信方法及装置
CN114073121B (zh) 用于流控制的方法和装置
WO2022021302A1 (zh) 层二测量量增强表示和报告方法及设备
WO2020259256A1 (en) Method and apparatus for flow control
WO2021163832A1 (zh) 数据传输的方法和装置
CN117796000A (zh) 集成的接入和回传的通信装置以及方法
CN115428362A (zh) 信息处理方法及装置
WO2022061757A1 (zh) 资源分配方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918503

Country of ref document: EP

Kind code of ref document: A1