WO2020088219A1 - 随机接入资源确定方法、终端及网络设备 - Google Patents

随机接入资源确定方法、终端及网络设备 Download PDF

Info

Publication number
WO2020088219A1
WO2020088219A1 PCT/CN2019/110761 CN2019110761W WO2020088219A1 WO 2020088219 A1 WO2020088219 A1 WO 2020088219A1 CN 2019110761 W CN2019110761 W CN 2019110761W WO 2020088219 A1 WO2020088219 A1 WO 2020088219A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference object
random access
terminal
target
qcl
Prior art date
Application number
PCT/CN2019/110761
Other languages
English (en)
French (fr)
Inventor
刘思綦
纪子超
吴凯
丁昱
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020088219A1 publication Critical patent/WO2020088219A1/zh
Priority to US17/244,901 priority Critical patent/US12041654B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a random access resource determination method, terminal, and network equipment.
  • network equipment can be configured with a physical random access channel transmission opportunity (Physical Random Access Channel transmission, PRACH transmission), or PRACH transmission or RO, which is used to transmit a preamble.
  • RO is associated with certain downlink signals, such as channel state indication reference signal (Channel-State Information Reference, CSI-RS), synchronization signal / physical broadcast channel block (Synchronization Signal) and PBCH Block, SS / PBCH block or called SSB etc.
  • the terminal may select the RO associated with the corresponding downlink signal to send the preamble according to the measurement result of these downlink signals or the indication of the network device.
  • the available resources of the network device and the terminal are uncertain. Even if the network device configures certain downlink signal resources for the terminal, the terminal cannot determine whether the network device has seized the corresponding resources and Successfully sent the downlink signal. As shown in Figure 1, the network device grabbed only two SSB resources in T1 and sent SSB1 and SSB2; the network device did not grab resources in T2; the network device grabbed 4 SSB resources in T3 and sent SSB1, SSB2, SSB3, and SSB4 are included, where SSB1 and SSB3 are quasi-co-location (QCL), and SSB2 and SSB4 are QCL.
  • QCL quasi-co-location
  • the network device indicates that SSB1, SSB3, SSB3, and SSB4 have been sent in total, and builds an association relationship between SSB and RO based on these four SSBs. Assuming that the terminal receives SSB1 at T1, it does not enter T3 before receiving SSB1 and attempts to perform random access (Random Access Channel, RACH), then the terminal cannot measure SSB3, and the terminal can only select RO based on SSB1. The random access process is performed on the selected RO. If the RO corresponding to the SSB1 cannot be accessed, there is no other RO to choose from, which may cause the random access process to fail.
  • RACH Random Access Channel
  • Embodiments of the present disclosure provide a method for determining random access resources, a terminal, and a network device, to solve the problem that the terminal can only select an RO based on the measured SSB, and cannot select another available RO to cause the random access process to fail.
  • some embodiments of the present disclosure provide a random access resource determination method, which is applied to the terminal side and includes:
  • the target reference object and the QCL reference object determine the available random access resources.
  • some embodiments of the present disclosure also provide a terminal, including:
  • a first acquisition module for acquiring a quasi-co-located QCL reference object quasi-co-located with the target reference object
  • the first determining module is configured to determine available random access resources according to the target reference object and the QCL reference object.
  • some embodiments of the present disclosure provide a terminal.
  • the terminal includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program is executed by the processor, the random access described above is implemented. The steps of the resource determination method.
  • some embodiments of the present disclosure provide a method for determining random access resources, which is applied to the network device side and includes:
  • the reference object group further includes: a QCL reference object that is quasi-co-located with the target reference object.
  • some embodiments of the present disclosure provide a network device, including:
  • the first sending module is configured to send parameter information of the reference object group where the target reference object is located to the terminal, where the reference object group further includes: a QCL reference object that is quasi-co-located with the target reference object.
  • some embodiments of the present disclosure also provide a network device.
  • the network device includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the processor executes the computer program, the randomization described above is implemented. Steps of access resource determination method.
  • some embodiments of the present disclosure provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium.
  • the computer program is executed by a processor, the steps of the random access resource determination method described above are implemented.
  • the embodiments of the present disclosure can also determine the subsequent available random access resources based on the QCL reference object that is quasi co-located with the target reference object, which increases Optional RO can improve the success rate of the random access process and reduce the random access delay.
  • FIG. 1 shows a schematic diagram of resource mapping of network equipment transmission SSB under unlicensed frequency band transmission
  • FIG. 2 shows a block diagram of a mobile communication system to which some embodiments of the present disclosure can be applied;
  • FIG. 3 is a schematic flowchart of a method for determining a random access resource on a terminal side according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of a module structure of a terminal according to some embodiments of the present disclosure.
  • FIG. 5 shows a terminal block diagram of some embodiments of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for determining a random access resource on a network device side of the present disclosure
  • FIG. 7 shows a schematic diagram of the module structure of the network device of the present disclosure.
  • FIG. 8 shows a block diagram of a network device of some embodiments of the present disclosure.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single carrier frequency Multiple access
  • SC-FDMA single-carrier Frequency-Division Multiple Access
  • the wireless communication system includes a terminal 21 and a network device 22.
  • the terminal 21 may also be called a terminal device or a user terminal (User Equipment), and the terminal 21 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant) , PDA), mobile Internet device (Mobile Internet Device (MID), wearable device (Wearable Device) or vehicle-mounted device and other terminal side devices, it should be noted that in some embodiments of the present disclosure, the terminal 21 is not limited The specific type.
  • the network device 22 may be a base station or a core network, wherein the base station may be a base station of 5G and later versions (for example: gNB, 5G, NR, NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point, Or other access points, etc.), where the base station may be referred to as Node B, Evolved Node B, access point, Base Transceiver Station (BTS), radio base station, radio transceiver, basic service set (Basic Service Set, BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolution Node B, WLAN Access Point, WiFi Node, or in the field
  • BSS Base Transceiver Station
  • ESS Extended Service Set
  • Node B Evolved Node B
  • eNB Home Node B, Home Evolution Node B, WLAN Access Point, WiFi Node, or in the field
  • the base station is not limited to a specific technical vocabulary
  • the base station may communicate with the terminal 21 under the control of the base station controller.
  • the base station controller may be part of the core network or some base stations. Some base stations can communicate control information or user data with the core network through the backhaul. In some examples, some of these base stations may communicate with each other directly or indirectly through a backhaul link, which may be a wired or wireless communication link.
  • the wireless communication system can support operation on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can transmit modulated signals on these multiple carriers simultaneously. For example, each communication link may be a multi-carrier signal modulated according to various radio technologies. Each modulated signal can be sent on a different carrier and can carry control information (eg, reference signals, control channels, etc.), overhead information, data, etc.
  • the base station can wirelessly communicate with the terminal 21 via one or more access point antennas. Each base station can provide communication coverage for its respective coverage area. The coverage area of an access point may be divided into sectors that only constitute a part of the coverage area.
  • the wireless communication system may include different types of base stations (eg, macro base stations, micro base stations, or pico base stations). The base station may also utilize different radio technologies, such as cellular or WLAN radio access technologies. The base station may be associated with the same or different access network or operator deployment. The coverage areas of different base stations (including the coverage areas of the same or different types of base stations, the coverage areas using the same or different radio technologies, or the coverage areas belonging to the same or different access networks) may overlap.
  • the communication link in the wireless communication system may include an uplink for carrying uplink (Uplink, UL) transmission (for example, from the terminal 21 to the network device 22), or a downlink for carrying downlink (Downlink, DL)
  • the downlink of the transmission (eg, from the network device 22 to the terminal 21).
  • UL transmission may also be referred to as reverse link transmission
  • DL transmission may also be referred to as forward link transmission.
  • Downlink transmission can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • uplink transmissions can be performed using licensed frequency bands, unlicensed frequency bands, or both.
  • Some embodiments of the present disclosure provide a method for determining random access resources, which is applied to the terminal side. As shown in FIG. 3, the method includes the following steps:
  • Step 31 Acquire a quasi-co-located QCL reference object that is quasi-co-located with the target reference object.
  • the reference object is a downlink signal used to determine available random access resources.
  • the target reference object is a downlink signal determined and measured by the terminal.
  • the reference object may include but is not limited to SSB and / or channel state information reference signal (Channel State Information Reference Signal, CSI-RS), correspondingly, the target reference object may also be SSB and / or CSI-RS.
  • CSI-RS Channel State Information Reference Signal
  • the QCL reference object is a signal quasi-co-located with the target reference object, and its type may be SSB and / or CSI-RS. It is worth noting that the signal types of the target reference object and the QCL reference object may be the same or different. For example, when the target reference object is SSB, the QCL reference object may be SSB or CSI-RS.
  • the QCL reference object and the target reference object satisfy the quasi-co-location relationship. Satisfying the quasi-co-location relationship may also be referred to as satisfying a certain beam relationship (for example, using the same or corresponding beam), or satisfying a certain spatial relationship (for example, the same transmission direction). Or overlap), or some spatial domain transmission filters have the same parameters (for example, use the same spatial transmission filter), or use the same QCL reference (for example, have the same QCL source, or called QCL source) Or at least one QCL parameter or attribute is the same.
  • the QCL parameters or attributes include at least one of the following: Doppler spread, Doppler shift, average gain, average delay, delay spread spread), spatial reception parameters (spatial Rx parameters), etc.
  • the quasi-co-location type satisfied by the QCL reference object and the target reference object may be any of QCL TypeA, QCL TypeB, QCL TypeC, and QCL TypeD. It is worth noting that in some embodiments of the present disclosure, the reference object is SSB as an example. When the reference object is CSI-RS or other downlink signals, the corresponding implementation manners can be referred to to achieve the desired effect.
  • Step 32 Determine available random access resources according to the target reference object and the QCL reference object.
  • the terminal may determine the available random access resources for subsequent (or referred to as next, next, next, etc.) according to at least one of the target reference object and the QCL reference object (available RO). For example, when the terminal obtains multiple target reference objects (such as SSB1 and SSB2), the terminal may determine the subsequent available random access according to at least one of the multiple target reference objects (SSB1, SSB2, SSB1, and SSB2). Resources. For another example, the terminal measures a target reference object (such as SSB1), and obtains a QCL reference object (such as SSB3) that is quasi-co-located with the target reference object. Random access resources, or the terminal may target reference objects and QCL reference objects (SSB1 and SSB3) to determine subsequent available random access resources.
  • SSB1 and SSB3 the terminal may target reference objects and QCL reference objects (SSB1 and SSB3) to determine subsequent available random access resources.
  • step 32 may be implemented in different ways. Some embodiments of the present disclosure are only exemplified in the following manner. Other implementations may also be applied to some embodiments of the present disclosure to achieve expectations effect.
  • step 32 may be implemented by but not limited to the following ways:
  • Method 1 Determine at least one candidate random access resource in the candidate random access resource set as an available random access resource.
  • the candidate random access resource set is a subsequent candidate set of available random access resources, which is related to the target reference object and / or QCL reference object.
  • the candidate random access resource set is a collection of a first candidate random access resource (first RO) corresponding to the target reference object and a second candidate random access resource (second RO) corresponding to the QCL reference object.
  • the terminal may select at least one RO in the collection of the RO set corresponding to the target reference object and the RO set corresponding to the QCL reference object as the next available RO, that is, the terminal is based on the RO and QCL reference objects corresponding to the target reference object
  • the collection of corresponding ROs determines the ROs that are available next. Assuming that a target reference object corresponds to 4 ROs, then these 4 ROs are the first ROs; assuming that QCL reference objects correspond to 4 ROs, then these 4 ROs are the second ROs.
  • the terminal selects at least one RO as the next available RO in the set of the target SSB (or called selected SSB) corresponding RO and the QCL SSS corresponding RO. That is, the terminal determines at least one RO that is available next based on the set of the RO corresponding to the selected SSB and the RO corresponding to the QCL and SSB. In other words, the terminal determines the next available RO according to the RO in the PRACH configuration corresponding to the target SSB and the RO in the PRACH configuration corresponding to the QCL SSB.
  • the terminal when each SSB in the PRACH configuration corresponds to multiple discrete or continuous ROs, the terminal according to multiple discrete or continuous ROs in the PRACH configuration corresponding to the target SSB and multiple discrete or continuous ROs in the PRACH configuration corresponding to the SCL To determine the next available RO.
  • the candidate random access resource set is the intersection of the first candidate random access resource and the second candidate random access resource. That is, the terminal may select at least one RO in the intersection of the RO set corresponding to the target reference object and the RO set corresponding to the QCL reference object as the next available RO, that is, the terminal is based on the RO and QCL reference objects corresponding to the target reference object The intersection of the corresponding ROs determines the ROs that are available next.
  • the terminal selects at least one RO as the next available RO in the intersection of the RO corresponding to the target SSB (or called selected SSB) and the RO corresponding to the QCL SSS. That is, the terminal determines at least one RO that is available next based on the intersection of the RO corresponding to the selected SSB and the RO corresponding to the QCL and SSB. In other words, the terminal determines the next available RO according to the RO in the PRACH configuration corresponding to the target SSB and the RO in the PRACH configuration corresponding to the QCL SSB.
  • the terminal when each SSB in the PRACH configuration corresponds to multiple discrete or continuous ROs, the terminal according to multiple discrete or continuous ROs in the PRACH configuration corresponding to the target SSB and multiple discrete or continuous ROs in the PRACH configuration corresponding to the SCL To determine the next available RO.
  • the first candidate random access resource and the second candidate random access resource may completely overlap, may not overlap at all, or may partially overlap.
  • both the first candidate random access resource and the second candidate random access resource include RO1, RO2, RO3, and RO4.
  • the first candidate random access resource includes RO1 and RO2, and the second candidate random access resource set includes RO3 and RO4.
  • the first candidate random access resource includes RO1, RO2, and RO3, and the second candidate random access resource includes RO2, RO3, and RO4.
  • the terminal may determine the subsequent available random access resources in the following manner:
  • the terminal may select one RO with equal probability in the collection as the next available RO.
  • the terminal may select N (not equal to 1) ROs with equal probability in the collection as the next available ROs.
  • the terminal selects one RO as the next available RO with equal probability in the RO set corresponding to the target SSB and QCL SSB.
  • the target SSB is SSB1 and the QCL SSB is SSB2.
  • SSB1 corresponds to RO1-4
  • SSB2 corresponds to RO5-8.
  • RO1-4 is frequency division multiplexing (Frequency, Division, Multiplex, FDM)
  • RO5-8 is FDM
  • RO1-4 and RO5-8 time domain resources are different.
  • the terminal considers that RO1-8 is a set of candidate random access resources, that is, RO1-8 can be selected, and the terminal can select one RO from RO1-8 with a medium probability as the next available RO.
  • the terminal can also select N ROs with equal probabilities for the target SSB and QCL SSS in the collection as the next available RO, where N is greater than 1.
  • N 2
  • the target SSB is SSB1
  • the QCL SSB is SSB2.
  • SSB1 corresponds to RO1-4
  • SSB2 corresponds to RO5-8.
  • RO1-4 is FDM
  • RO5-8 is FDM
  • RO1-4 and RO5-8 have different time domain resources.
  • the terminal considers that RO1-8 can be selected, and the terminal can select 4 ROs from RO1-8 with a medium probability as the next available RO.
  • the terminal may also select 2 ROs with medium probability from RO1-4 and 2 ROs with medium probability from RO 5-8 respectively, and use these 4 ROs as the next available ROs.
  • the terminal may select one RO with equal probability in the intersection as the next available RO.
  • the terminal may select N (greater than 1) ROs with equal probability in the intersection as the next available ROs.
  • the terminal selects an RO as the next available RO with equal probability in the intersection of ROs corresponding to the target SSB and QCL SSB.
  • the target SSB is SSB1 and the QCL SSB is SSB2.
  • SSB1 corresponds to RO1-8
  • SSB2 corresponds to RO1-8.
  • RO1-4 is FDM
  • RO5-8 is FDM
  • RO1-4 and RO5-8 have different time domain resources.
  • the terminal thinks that RO1-8 can be selected.
  • the terminal may select one RO from RO1-8 with a medium probability as the next available RO.
  • the terminal can select 2 ROs from RO1-8 with a medium probability as the next available ROs.
  • the nearest time here may be a time domain that is greater than the time when the terminal is ready to send the RACH, and the closest available RACH resource is the time domain.
  • the terminal selects the nearest N ROs among the multiple ROs in the time domain location as the next available ROs.
  • the most recent N refers to: N at the most recent time domain position, for example, there are M (M is greater than or equal to N) RO at the most recent time domain position, and the most recent N refers to N of M .
  • the nearest N can also refer to: sort the N nearest distances according to the time domain position, for example, according to the time domain order, there are n1 (n1 less than N), n2 (n1 + n2 greater than or equal to N) and n3 ROs, the most recent N refers to n1 plus (N-n1) of n2.
  • the terminal may select the nearest N ROs in the collection as the next available RO.
  • the terminal can select N of them with equal probability, and N is greater than or equal to 1.
  • SSB1 corresponds to RO1-4
  • SSB2 corresponds to RO5-8
  • RO1-4 is FDM
  • RO5-8 is FDM
  • RO1-4 and RO5-8 have different time domain resources.
  • the time domain is greater than the time when the terminal is ready to send RACH
  • the time domain corresponding to the RACH resource closest to the time when the terminal is ready to send RACH is the time domain where RO1-4 is located
  • the terminal thinks that RO1-4 can be selected.
  • time domain is greater than the time when the terminal is ready to send RACH, and it is sorted according to the time when the terminal is ready to send RACH.
  • the time domain corresponding to the nearest RACH resource is RO1, RO2, RO3, and RO4, where RO1
  • the terminal may select the nearest N ROs in the intersection as the next available RO.
  • the terminal can select N of them with equal probability, and N is greater than or equal to 1.
  • SSB1 corresponds to RO1-8
  • SSB2 corresponds to RO1-8
  • RO1-4 is FDM
  • RO5-8 is FDM
  • RO1-4 and RO5-8 time domain resources are different.
  • the terminal thinks that RO1-4 can be selected.
  • N 1, the user selects one RO from RO1-4 with equal probability as the next available RO.
  • time domain is greater than the time when the terminal is ready to send RACH, and it is sorted according to the time when the terminal is ready to send RACH.
  • the time domain corresponding to the nearest RACH resource is RO1, RO2, RO3, and RO4, where RO1
  • Manner 2 At least one of the first candidate random access resource and the second candidate random access resource is determined as an available random access resource.
  • the method includes but is not limited to: determining at least one of the first RO and at least one of the second RO as available random access resources in a subsequent transmission; or, determining at least one of the first RO as a subsequent at least Available random access resources for one transmission; or, at least one of the second ROs is determined as available random access resources for at least one subsequent transmission; or, at least one of the first ROs is determined as the subsequent first transmissions Available random access resources, determining at least one of the second ROs as available random access resources for the subsequent second transmission; or, determining at least one of the second ROs as available random access for the subsequent first transmission
  • the resource determines at least one of the first RO as an available random access resource for the subsequent second transmission.
  • the terminal may determine the subsequent available random access resources in the following manner:
  • the terminal alternately determines the subsequent available random access resources based on the first RO and the second RO. When there are multiple first ROs or multiple second ROs, the terminal selects at least one of these ROs as the next available RO with equal probability.
  • the order of the first RO and the second RO may be determined based on the target reference object and then the QCL reference object to determine the next available RO. It is also possible to determine the next available RO based on the order based on the QCL SSB and then the selected SSB.
  • the above sequence may be specified by different priorities, for example, priority is defined for the target reference object and the QCL reference object, and the terminal determines at least one RO to be available next based on the different reference objects according to the priority order.
  • the priority of the target reference object and the QCL reference object may be the same or different.
  • the above sequence may be: pre-configured by the manufacturer, pre-defined by the protocol, or freely implemented by the terminal.
  • SSB1 corresponds to RO1-4
  • SSB2 corresponds to RO5-8
  • RO1-4 is FDM
  • RO5-8 is FDM
  • RO1-4 and RO5-8 have different time domain resources.
  • the terminal determines the next available RO based on the QCL SSS the terminal considers that both RO5-8 can be selected.
  • the terminal when there are multiple target reference objects and QCL reference objects, the terminal first selects at least one of these reference objects with equal probability, and then selects at least one of the ROs corresponding to the selected at least one reference object with a medium probability to determine the subsequent available Random access resources.
  • the priority of these reference objects may also be different.
  • the terminal may sequentially select different target reference objects or QCL reference objects in order of priority.
  • the target reference objects include SSB1 and SSB2
  • the QCL reference objects include SSB3 and SSB4.
  • the priorities of SSB1 and SSB2 are highest and third, respectively
  • the priorities of SSB3 and SSB4 are second and fourth, respectively.
  • the terminal can determine the available ROs in order of SSB1, SSB3, SSB2, and SSB4. It is worth noting that when the above sequence is independent of priority, the above sequence may be: pre-configured by the manufacturer or pre-defined by the protocol or freely implemented by the user.
  • SSB1 corresponds to RO1-4
  • SSB2 corresponds to RO5-8
  • RO1-4 is FDM
  • RO5-8 is FDM
  • RO1-4 and RO5-8 have different time domain resources.
  • the terminal selects one SSB among SSB1 and SSB2 with equal probability.
  • the terminal selects the next available RO based on the target SSB (ie SSB1)
  • the terminal thinks that RO1-4 can be selected.
  • N 2
  • QCL SSS ie SSB2
  • the terminal thinks that RO5-8 can be selected at this time.
  • the first preset condition may include but is not limited to:
  • the QCL reference object does not meet certain conditions, for example, the measurement result of the QCL reference object does not meet the threshold requirement.
  • the number of retransmissions of message one (msg1) in the RO corresponding to the QCL reference object reaches a predetermined number of times; assuming that the preset condition is that the number of msg1 retransmissions exceeds N times, it is assumed that the terminal is based on the QCL reference object and the target in order If the reference object determines at least one RO that is available next, there will be a transmission of msg1 before the terminal determines at least one RO that is available next based on the target reference object.
  • This time the retransmission in the RO corresponding to the QCL reference object is a certain period of time from the first transmission of msg1;
  • the preset condition is that no acquisition opportunity (resource) of the above RO is successfully obtained within a certain time window
  • the number of consecutive listening (Listen Before Talk, LBT) failures reaches a predetermined number of times
  • the number of listening (LBT) failures reaches a predetermined number of times
  • RAR Random Access Response
  • the second preset condition includes but is not limited to:
  • the target reference object does not meet certain conditions, for example, the measurement result of the target reference object does not meet the threshold requirement.
  • the number of retransmissions of message one (msg1) in the RO corresponding to the target reference object reaches a predetermined number of times; assuming that the preset condition is that the number of msg1 retransmissions exceeds N times, it is assumed that the terminal is based on the target reference object, QCL If the reference object determines at least one RO that is available next, there will be a transmission of msg1 before the terminal determines the next available RO based on the QCL reference object.
  • the preset condition is that no acquisition opportunity (resource) of the above RO is successfully obtained within a certain time window
  • the number of consecutive listening (Listen Before Talk, LBT) failures reaches a predetermined number of times
  • the number of listening (LBT) failures reaches a predetermined number of times
  • RAR Random Access Response
  • the terminal may also include the following behaviors: the terminal may first try to obtain these RO resources, and if the resource is successfully obtained, send msg1 on the resource. Therefore, the process of determining the next available RO based on different target reference objects and / or QCL reference objects may also include other processes such as the transmission of msg1. Whether or not to include other processes depends on preset conditions. Embodiments of the present disclosure No restrictions.
  • the terminal When there are multiple candidate available ROs and the terminal needs to select a part of them as the next available RO, in addition to the above schemes, such as equal probability, it also includes random selection of the terminal and selection of good measurement results based on the measurement results, such as reference signal reception At least one of power (ReferenceSignalReceivedPower, RSRP), reference signal received quality (ReferenceSignalReceivedQuality, RSRQ), reference signal strength indicator (ReceivedSignalStrengthIndicator, RSSI), etc. is large.
  • RSRP ReferenceSignalReceivedPower
  • RSRQ reference signal received quality
  • RSSI reference signal strength indicator
  • each transmission can use different methods listed above to determine the next available RO, and the combination of the determination methods in multiple transmission processes is not specifically limited.
  • the target reference object corresponds to a first candidate random access resource set
  • the QCL reference object corresponds to a second candidate random access resource set
  • the method further includes: acquiring the target reference object and random First correspondence information of access resources; and / or Obtain second correspondence information of QCL reference objects and random access resources.
  • the first correspondence information is used to indicate the correspondence between the target reference object and the first candidate random access resource set
  • the second correspondence information is used to indicate the correspondence between the QCL reference object and the second candidate random access resource set.
  • step 31 it further includes: acquiring QCL information, wherein the QCL information includes: indication information for indicating a QCL relationship between at least two reference objects, and the target reference object is at least one of the at least two reference objects.
  • the QCL information may be pre-defined (such as protocol agreement), indicated by the network device or pre-configured by the manufacturer.
  • the method before step 32, further includes: determining a target reference object.
  • the method for determining the target reference object includes but is not limited to the following:
  • the method further includes: measuring the reference object to obtain a corresponding measurement result; and determining the target reference object according to the measurement result.
  • the measurement result includes but is not limited to: at least one of RSRP, RSRQ, RSSI, and the like.
  • the step of determining the target reference object according to the measurement result includes one of the following:
  • the threshold value may be pre-defined (as agreed in the protocol), indicated by the network device, and pre-configured by the manufacturer.
  • the reference object whose measurement result is greater than the second threshold is determined as the target reference object, and the second threshold is less than the first threshold.
  • the first threshold is T1 and the second threshold is T2, where T1, T2, and T1-T2 can all be predefined (as agreed in the protocol), indicated by the network device, and pre-configured by the manufacturer, and T1, T2, and T1 -The T2 acquisition method can be the same or different.
  • T2 is indicated by the network device, and T2-T1 is a predefined protocol. Based on T2 and T2-T1, T1 can be implicitly launched.
  • the terminal obtains QCL information, and according to the QCL information, it is found that the SSB has a QCL SSB, the terminal determines at least one RO to be available next based on the SSB and QCL SSS.
  • the user considers that all ROs corresponding to the SSB and the QCL SSB are available ROs, attempts to obtain resources of these ROs, and initiates a random access process on the ROs that successfully obtained the resources.
  • the above embodiments are based on the example that one SSB measurement result is higher than T1- ⁇ , and the present invention is also applicable to the case where multiple SSB measurement results are higher than T1- ⁇ .
  • the method further includes: combining and demodulating multiple reference objects; and determining the demodulated reference object as the target reference object.
  • the multiple reference objects mentioned here may be multiple received at one time, or multiple received multiple times.
  • the broadcast channel is successfully resolved by the terminal through multiple merges of SSB, that is, the terminal cannot successfully perform one-shot PBCH decoding (one-shot PBCH decoding).
  • the terminal successfully decodes the PBCH in the SSB by receiving and combining multiple SSB transmissions, and the terminal determines at least one RO to be available based on the decoded SSB and the corresponding QCL SSB. For example, if the terminal receives multiple SSB1 transmissions, the PBCH in SSB1 cannot be decoded in a single decoding. After combining multiple SSB1s, the PBCH in SSB1 is decoded.
  • the channel quality of SSB1 may be considered to be relatively poor.
  • the terminal determines at least one RO to be available next based on SSB1 and SSB2.
  • the terminal considers that all ROs corresponding to the SSB and the QCL SSB are available ROs, attempts to obtain resources of these ROs, and initiates a random access process on the ROs that successfully obtained the resources.
  • the above embodiment is an example based on the case where an SSB corresponding to an SSB index is decoded and only one corresponding to QCL is decoded.
  • the present invention is also applicable to solving multiple SSBs corresponding to multiple SSB indexes, and / Or each solved SSB corresponds to multiple QCL SSBs, no more examples will be given.
  • the terminal may also perform at least one of the following actions:
  • Action 1 Initiate a random access process through at least one of the available random access resources.
  • the random access process may be used but not limited to one of the following functions: contention random access, non-contention random access, system information SI request, beam Failure Recovery (Beam Failure Recovery, BFR) and the preamble of a specific group.
  • the specific group includes at least one of group A and group B.
  • This behavior refers to that after the terminal determines the available RO, the terminal can try to obtain the resources of the available RO, and send msg1 to the RO that successfully obtained the resource, where if there are multiple determined available ROs, you can try to obtain these The resources of the RO, and send msg1 on one or more ROs that have successfully obtained the resource, the terminal can send one or more msg1. Specifically, the terminal may send multiple msg1 on one RO, one msg1 on multiple ROs, or different msg1 on different ROs.
  • the first step message sent by the terminal in the 4-step random access process is message 1 (msg1) carrying a preamble.
  • the first message sent by the terminal is message A (msgA).
  • MsgA may contain at least one of preamble and data.
  • the design of msg1 in various schemes related to msg1 is also applicable to msgA.
  • the random access process can determine the preamble, such as the 4-step random access process (4step-RACH) or the 2-step random access process (2step-RACH); the random access process can also be uncertain about the preamble, For example, a 2-step random access procedure that only sends data directly in msgA.
  • Action 2 Determine the target preamble transmitted in the subsequent available random access resources.
  • the one selected with a medium probability among the preambles corresponding to the available random access resources is determined as the target preamble. That is, the terminal selects one of the preambles corresponding to the reference object of the available RO with equal probability.
  • one of the overlapping preambles is selected with a medium probability to be determined as the target preamble.
  • the at least partial overlap includes that the preamble codes corresponding to the ROs used in the two previous and subsequent transmissions are completely the same and partially the same.
  • the terminal selects one of the preambles corresponding to the reference object of the RO to select a medium probability to transmit.
  • the terminal selects one of the probabilities of the overlapping parts of the preamble corresponding to the RO reference object to transmit for the same probability .
  • the terminal selects the same preamble as the preamble sent last time to send.
  • the terminal selects the same preamble as the last preamble sent for transmission.
  • the terminal uses the QCL reference object to correspond to the preamble indicated by the network device, and vice versa.
  • the RO is determined based on the target SSB (such as SSB1), but the network device does not indicate the preamble to SSB1, and indicates the preamble2 to the QCL SSB (such as SSB2).
  • the terminal After determining the RO based on SSB1, the terminal attempts to send preamble2.
  • RO is determined based on QCL SSB (such as SSB2), but the network device does not indicate preamble to SSB2, but indicates preamble1 to the target SSB (such as SSB1). Then, the terminal determines RO based on SSB2 and attempts to send preamble1.
  • QCL SSB such as SSB2
  • the network device does not indicate preamble to SSB2, but indicates preamble1 to the target SSB (such as SSB1). Then, the terminal determines RO based on SSB2 and attempts to send preamble1.
  • Behavior 3 When the reference object corresponding to the next available random access resource is different from the reference object corresponding to the previous available random access resource, increase the count of the preamble power climb counter.
  • This behavior is to adjust the transmission power of the preamble, which refers to increasing the power
  • Specific ways to increase power include but are not limited to: directly increase the transmission power of the preamble, or indirectly increase the transmission power of the preamble.
  • the increment of each time the preamble power climb counter (PREAMBLE_POWER_RAMPING_COUNTER) is increased, the preamble change amount (DELTA_PREAMBLE), the preamble received target power (preambleReceivedTargetPower), and the preamble power climb step (PREAMBLE_POWER_RAMPING_STEP) Greater than the corresponding parameters in other cases.
  • a variation ( ⁇ ) is added to the preamble power climb step size indicated by the network device as the preamble power climb step size in the process.
  • the preamble power climb step size is the preamble power indicated by the network device. Climbing step.
  • each time the increment of the preamble power climb counter is increased by 2
  • the increment of the preamble power climb counter is increased by 1.
  • the preamble power climb counter (PREAMBLE_POWER_RAMPING_COUNTER) is incremented. For example, the first available RO is determined based on the target SSB, and the second available RO is determined based on QCL SSB, then the counter count increases during the second transmission. Assume that the target SSB is SSB1 and the QCL SSB is SSB2.
  • the terminal When the terminal successfully sends msg1 based on the RO of SSB1 but does not receive the RAR, if the terminal selects the RO based on SSB1 for the next msg1 retransmission, the terminal increases the power of the preamble at this time, for example, increasing the count of the preamble power climb counter.
  • the terminal determines available ROs based on more than one reference object, that is, when there are at least two target reference objects, or at least one target reference object and at least one QCL reference object, after step 31 It also includes: monitoring downlink control information (DCI) according to the target reference object and / or QCL reference object.
  • DCI downlink control information
  • the monitoring behavior includes but is not limited to:
  • Behavior 1 In the search space, monitor the monitoring timing corresponding to the first reference object, where the first reference object is a reference object that is quasi-co-located with the received random access response RAR (or referred to as used for RAR reception) Reference object), or, the first reference object is a reference object corresponding to the random access resource used to initiate the random access process.
  • the terminal assumes that the monitoring object and the reference object used when receiving the RAR are QCL.
  • the terminal determines the next available RO as RO1 based on SSB1, and determines the next available RO as RO2 based on SSB2, and RO1 and RO2 are different RO resources.
  • the terminal successfully obtains at least one of RO1 and RO2 of the resource, and sends a preamble on it.
  • the network device receives the preamble and feeds back RAR.
  • the terminal successfully receives the RAR using the QCL of SSB1, or the terminal determines that the associated SSB of the RO resource corresponding to the RAR is SSB1 according to its random access wireless network temporary identity (Random Access Radio Radio Network Identity, RA-RNTI).
  • Resource set for example, control the search space in resource set 0 (Common Resource Set 0, CORESET # 0), for example, the public search space (Common Search Space, CSS) collects the terminal ’s dedicated DCI, such as the cell radio network temporary identification (Cell Radio) Network (Temporary Identity, C-RNTI) scrambled DCI, monitor the DCI at the monitoring time corresponding to SSB1 in CSS.
  • dedicated DCI such as the cell radio network temporary identification (Cell Radio) Network (Temporary Identity, C-RNTI) scrambled DCI
  • the terminal assumes that the monitoring timing corresponding to SSB1 in the CSS and SSB1 are QCL.
  • CORESET # 0 for other CORESET, such as commonControlResourceSet, controlResourceSetZero, this solution is also applicable.
  • Behavior 2 In the search space, monitor the monitoring timing corresponding to the target reference object and the QCL reference object. Among them, in the search space, the terminal assumes that the monitoring timing and the target reference object and the QCL reference object are QCL.
  • the search space monitor the DCI on the monitoring opportunities corresponding to the target reference object and the QCL reference object. Specifically, in the search space, the DCI is monitored on all or part (ie, at least one) monitoring occasions corresponding to the target reference object and the QCL reference object.
  • the SSB as an example, for example, in the search space, at least one of the monitoring timings corresponding to the monitoring target SSB and the QCL SSB, where the terminal selects the monitoring timing for monitoring by itself.
  • the terminal may select the SSB whose measurement result meets a certain threshold value based on the measurement result.
  • the terminal determines that the target SSB is SSB1 during the RACH process
  • the QCL information indicates that the QCL of SSB1 and the SSB is SSB2.
  • the terminal determines the next available RO as RO1 based on SSB1, and determines the next available RO as RO2 based on SSB2, and RO1 and RO2 are different RO resources.
  • the terminal successfully obtains at least one of RO1 and RO2 of the resource, and sends a preamble on it.
  • the network device receives the preamble and feeds back RAR.
  • the terminal collects the user's dedicated DCI in the control resource set, such as CORESET # 0, such as CSS, for example, the DCI scrambled by C-RNTI, it monitors the DCI at the monitoring opportunities corresponding to SSB1 and SSB2 in CSS.
  • the terminal assumes that the monitoring timings corresponding to SSB1 and SSB2 in the CSS are SCL1 and QCL, and SSB2 is also QCL. Note that the above is an example of CORESET # 0.
  • CORESET # 0. For other CORESET, such as commonControlResourceSet, controlResourceSetZero, this solution is also applicable.
  • Some embodiments of the present disclosure above have described embodiments in which the terminal determines the next available RO based on the signal granularity. The following embodiment will further determine an embodiment in which the next available RO is based on the granularity of the reference object group.
  • Step 31 includes: obtaining a reference object group where the target reference object is located; wherein, the reference object group further includes: a QCL reference object quasi-co-located with the target reference object.
  • the reference object group includes multiple reference objects, and the multiple reference objects satisfy a certain quasi-co-location relationship.
  • the number of reference objects included in different reference object groups may be the same or different. Without indicating that the quasi-co-location relationship between different reference object groups, the terminal does not assume quasi-co-location between multiple reference objects belonging to different reference object groups.
  • the manner of obtaining the reference object group where the target reference object is located includes but is not limited to:
  • the method further includes: acquiring parameter information (or related information) of the reference object group where the target reference object is located.
  • the parameter information includes: at least one of airspace information, pattern information and index information of the reference object group item.
  • the parameter information may include reference object group configuration information in addition to the above information.
  • the reference object group may be indicated by airspace information (or called direction information, QCL information, QCL type information, QCL airspace information, etc.), which may be pre-defined (such as agreed in the protocol), indicated by the network equipment, or vendor Pre-configured.
  • airspace information or called direction information, QCL information, QCL type information, QCL airspace information, etc.
  • pre-defined such as agreed in the protocol
  • SSB group configuration signaling to allocate 64 SSB indexes into 8 SSB index groups, that is, divided into 8 SSB groups. Each group contains a maximum of 8 SSB indexes. The terminal believes that the SSB indexes in the same group constitute an SSB group and are QCL.
  • the network device can also send airspace information for each SSB group, for example, the network device sends a list of direction information for each SSB group ⁇ direction 2, direction 3, direction 4, direction 5, direction 7, direction 6, direction 8 , Direction 1 ⁇ , each direction indicator in the direction information list represents a different direction, and the direction indicator in the direction information list corresponds to the SSB group, so the terminal can determine the transmission direction of each SSB group according to the airspace information.
  • the reference object group can also be indicated by pattern information and / or index information, where the pattern information and index information can also be pre-defined (such as protocol agreement), indicated by network equipment, or pre-configured by the manufacturer , And the indication methods of the pattern information and the index information may be the same or different.
  • the index information of the reference object group may be implicitly carried by certain signals, such as PBCH, DMRS, SIB, DCI, or other system information, or explicitly carried by these signals.
  • the network device may also send the airspace information of each reference object group, for example, send the direction information list ⁇ direction 2, direction 3 ⁇ of each reference object group, each direction identifier in the direction information list represents a different direction,
  • the network device may also send the airspace information of each reference object group, for example, send the direction information list ⁇ direction 2, direction 3 ⁇ of each reference object group, each direction identifier in the direction information list represents a different direction,
  • the network device may also send the airspace information of each reference object group, for example, send the direction information list ⁇ direction 2, direction 3 ⁇ of each reference object group, each direction identifier in the direction information list represents a different direction.
  • the terminal can determine the transmission direction of each reference object group according to the airspace information.
  • the terminal obtains the SSB group pattern and SSB group index to determine the SSB group.
  • the protocol predefines the pattern of SSB group, and in pattern configuration 1 of SSB group, SSB1 and SSB2 belong to one SSB group, and SSB3 and SSB4 belong to another SSB group.
  • SSB1, SSB2, SSB3, and SSB4 belong to the same SSB group in pattern configuration 2 of the SSB group.
  • the terminal considers that SSB1 and SSB2 belong to a SSB group, which is QCL.
  • SSB3 and SSB4 belong to another SSB group, which is QCL.
  • the index of the SSB group represents an airspace grouping factor (or called QCL factor, grouping factor, repetition factor, etc.), indicating the number of SSBs contained in an SSB group.
  • the value range of the SSB group index is ⁇ 1, 2, 4, 8 ⁇ .
  • the terminal can derive the number of SSB groups based on the airspace grouping factor. For example, in certain frequency domains, there are at most L SSBs sent in a period.
  • the air-domain grouping factor i
  • there are L / i groups and each group has i QCL SSBs.
  • the SSBs of L / i QCLs in each group may be L / i SSBs with continuous indexes, or may be SSBs corresponding to indexes distributed discretely according to a predetermined pattern. Or alternatively, there are at most L SSB time domain positions in a period.
  • the SSB time domain positions of L / i QCLs in each group may be L / i time domain positions with consecutive time domain position numbers, or may be discretely distributed time domain positions according to a predetermined pattern.
  • the index of the SSB group indicates the number of groups, that is, indicates the number of SSB groups.
  • the SSB time domain positions of the L / j QCLs in each group may be L / j time domain positions with consecutive time domain position numbers, or may be discretely distributed time domain positions according to a predetermined pattern.
  • Manner 2 Before step 32, it further includes: acquiring airspace information of the target reference object, and according to the airspace information, determining the reference object group where the target reference object is located.
  • the airspace information includes: airspace index information and / or airspace grouping factor, and the target reference object is indicated by the reference index information and / or time domain position information.
  • the time-domain position information of the reference object may be a candidate time-domain position of the reference object, or may be a time-domain position where the reference object is actually used.
  • the step of determining the reference object group where the target reference object is located according to the airspace information includes: determining a reference object that is the same as the airspace index information of the target reference object, and belongs to the reference object group where the target reference object is located.
  • the airspace information of the SSB is the airspace index (or QCL index) set.
  • the SSB indicates through the SSB index.
  • the airspace index in the airspace index set corresponds to the SSB index one by one.
  • the terminal considers that the SSB corresponds to the same airspace index It is the same SSB group.
  • the SSB can also be indicated by the SSB time domain location information.
  • the air domain index in the air domain index set corresponds to the SSB time domain location information one by one.
  • the terminal considers that the SSB time domain location information corresponding to the same air domain index is the same SSB group.
  • the step of determining the reference object group where the target reference object is located according to the airspace information includes: determining a reference object that has the same result as the target reference object modulo the airspace grouping factor, and belongs to the reference object group where the target reference object is located.
  • the SSB airspace grouping factor is a value, such as M
  • SSB is indicated by SSB index
  • airspace index SSB index mod M
  • the terminal considers that the SSB corresponding to the same airspace index is the same SSB group, that is, The terminal considers that SSBs with the same modulus result for the airspace grouping factor M belong to the same SSB group.
  • SSB can also be indicated by SSB time domain location information
  • airspace index SSB time domain location information (such as SSB time domain location index) mod M
  • the terminal thinks that the SSB corresponding to the same airspace index is the same SSB group, which means ,
  • the terminal considers that the SSB time-domain transmission position information with the same modulus result of the air-domain grouping factor M belongs to the same SSB group.
  • the number of reference object groups is M.
  • the parameter information of the reference object group, the airspace information of the reference object and the reference object indication information can be carried in but not limited to the following ways:
  • Explicit Carrying Explicit carrying of physical broadcast channel, control channel, system broadcast information block (system information block) or other radio resource control (Radio Resource Control, RRC) signaling;
  • Implicit carrying For example, it is used for reference signal (Reference Signal, RS) sequence generation, and is used for at least one of signaling scrambling.
  • the spatial information of the reference object and the indication information of the reference object are determined by detecting the RS sequence or descrambling.
  • the airspace information of the reference object and the indication information of the reference object may be implicitly carried by a demodulation reference signal (De-Modulation, Reference, Signal, DMRS); the airspace information of the reference object and the reference object indication information are used to generate the scrambling code sequence of the PBCH, etc. .
  • the above carrying method is optional, and the different information mentioned in some embodiments of the present disclosure (such as the airspace information of the reference object group, the index information of the reference object group, the airspace information of the reference object, the reference Object indication information, etc.) can be carried in different ways, and this embodiment is not specifically limited.
  • Step 32 includes: determining available random access resources according to the third correspondence between the reference object group and the random access resources.
  • the third correspondence includes but is not limited to at least one of the following:
  • the information about the number of random access resources corresponding to the target group for example, the number of corresponding SSB groups on an RO, or the number of ROs corresponding to an SSB group.
  • the preamble information corresponding to the reference object group in the random access resource where the preamble information is used to indicate: a preamble for contention random access, a preamble for non-contention random access, and system information At least one of a preamble for SI request, a preamble for beam failure recovery BFR, and a preamble for a specific group.
  • the preamble corresponding to each SSB group on each RO contains at least one of the following: the preamble corresponding to each SSB group for competing for random access; the corresponding preamble corresponding to each SSB group Non-contention random access preamble; each SSB group corresponds to a preamble for SI requests; each SSB group corresponds to a preamble for BFR; each SSB group corresponds to a preamble for groupA; each SSB group corresponds to For the preamble of groupB; the power parameter of the random access resource; the reference measurement threshold of the target group.
  • the power parameter of the random access resource may include: at least one of an increase amount of a preamble power climb counter, a change amount of a preamble code, a preamble reception target power, a preamble climb step size, and the like.
  • the measurement threshold may be the SSB group average measurement threshold.
  • the method further includes: acquiring fourth correspondence information between the reference object group and the monitoring opportunity.
  • the fourth correspondence information is used to indicate the number of monitoring opportunities corresponding to the reference object group.
  • the fourth correspondence information is used to indicate: the number of corresponding reference object groups on a group of monitoring occasions, the group of monitoring occasions includes at least one monitoring opportunity, or the fourth correspondence information is used to indicate the monitoring corresponding to a reference object group The number of opportunities.
  • the corresponding number of reference object groups and monitoring opportunities may be one-to-one, one-to-many, or many-to-one.
  • the first correspondence information, the second correspondence information, the third correspondence information and the fourth correspondence information mentioned in some embodiments of the present disclosure may be predefined, indicated by the network equipment or pre-configured by the manufacturer And different ways of acquiring the corresponding relationship information may be different, which is not limited in the embodiments of the present disclosure.
  • the determination mentioned in some embodiments of the present disclosure may also be referred to as selection.
  • the two have the same meaning and are usually interchangeable. Both random and equal probability have the same meaning and are interchangeable.
  • the signal included in a DRS may be SSB, At least one of CSI-RS, control signal, and data.
  • the control signal may be the control signal used for scheduling the remaining minimum system information (RemainingMinimumSystemInformation, RMSI), other system information (OtherSystemInformation, OSI), paging message (paging), RAR, message four (msg4) At least one.
  • the data signal may be at least one of RMSI, OSI, paging, RAR, and msg4.
  • the other signals included in the two DRSs are also quasi-co-located. If both DRSs include SSB and CSI-RS, and the SSBs corresponding to the two DRSs are quasi-co-located, then the CSI-RSs corresponding to the two DRSs are also quasi-co-located, optionally, one of the two DRSs. The CSI-RS of the DRS and the SSB of the other DRS of the two DRSs are also quasi co-located, and vice versa.
  • the SSBs corresponding to the two DRSs are quasi-co-located, and the corresponding CSI-RSs are also quasi-co-located.
  • the CSI-RS of one of the two DRSs It is also quasi co-located with the SSB of the other of the two DRSs.
  • the terminal in addition to determining the subsequent available random access resources based on the target reference object, the terminal may also determine the subsequent based on the QCL reference object quasi co-located with the target reference object
  • the available random access resources increase the available RO of the terminal, which can increase the success rate of the random access process and reduce the random access delay.
  • the terminal 400 of some embodiments of the present disclosure can achieve the quasi-co-located QCL reference object that is quasi-co-located with the target reference object in the above embodiments; according to the target reference object and the QCL reference object, determine the available random
  • the terminal 400 specifically includes the following functional modules:
  • the first obtaining module 410 is configured to obtain a quasi-co-located QCL reference object that is quasi-co-located with the target reference object;
  • the first determining module 420 is configured to determine available random access resources according to the target reference object and the QCL reference object.
  • the first determination module 420 includes one of the following:
  • the first determining submodule is configured to determine at least one candidate random access resource in the candidate random access resource set as an available random access resource, where the candidate random access resource set is the first candidate corresponding to the target reference object A collection of random access resources and a second candidate random access resource corresponding to the QCL reference object, or the set of candidate random access resources is the intersection of the first candidate random access resource and the second candidate random access resource;
  • the second determination submodule is configured to determine at least one of the first candidate random access resource and the second candidate random access resource as an available random access resource.
  • the first determining submodule includes one of the following:
  • a first determining unit configured to determine at least one candidate random access resource randomly selected in the candidate random access resource set as an available random access resource
  • the second determining unit is configured to determine the nearest N candidate random access resources in the candidate random access resource set as available random access resources, where N is greater than or equal to 1.
  • the second determining submodule includes one of the following:
  • a third determining unit configured to sequentially determine at least one of the first candidate random access resource and at least one of the second candidate random access resource as available random access resources;
  • a fourth determining unit configured to randomly select at least one reference object among the target reference object and the QCL reference object; determine at least one of the candidate random access resources corresponding to the at least one reference object as an available random access resource;
  • a fifth determining unit configured to determine at least one of the first candidate random access resources as available random access resources when the first preset condition is satisfied;
  • the sixth determining unit is configured to determine at least one of the second candidate random access resources as available random access resources when the second preset condition is satisfied.
  • the terminal 400 further includes:
  • a third obtaining module configured to obtain first correspondence information between the target reference object and the random access resource
  • the fourth obtaining module is configured to obtain second correspondence information between the QCL reference object and the random access resource.
  • the terminal 400 further includes:
  • the second acquisition module is used to acquire QCL information, where the QCL information includes: indication information used to indicate a QCL relationship between at least two reference objects, and the target reference object is at least one of the at least two reference objects.
  • the terminal 400 further includes:
  • the measurement module is used to measure the reference object and obtain corresponding measurement results
  • the second determination module is used to determine the target reference object according to the measurement result.
  • the second determination module includes one of the following:
  • a third determination submodule configured to determine the reference object whose measurement result is greater than or equal to the first threshold as the target reference object
  • the fourth determination submodule is used to determine the reference object whose measurement result is greater than the second threshold value as the target reference object when the measurement results are all less than the first threshold value, and the second threshold value is less than the first threshold value.
  • the terminal 400 further includes:
  • Processing module used for merging and demodulating reference objects received multiple times
  • the third determining module is used to determine the demodulated reference object as the target reference object.
  • the terminal 400 further includes at least one of the following:
  • the access module is used to initiate a random access process through at least one of the available random access resources
  • the fourth determining module is used to determine the target preamble transmitted in the available random access resources
  • the counter module is used to increase the preamble power climb counter count when the reference object corresponding to the next available random access resource is different from the reference object corresponding to the previous available random access resource.
  • the fourth determination module includes:
  • a fifth determination submodule configured to determine one randomly selected from the preambles corresponding to the available random access resources as the target preamble
  • the sixth determining submodule is used to randomly select one of the overlapping preamble codes and determine it as the target preamble code when the available random access resources and the preamble codes corresponding to the random access resources used in the previous transmission at least partially overlap.
  • the seventh determination submodule is used to determine the preamble transmitted last time as the target preamble; or,
  • the eighth determination submodule is used to determine the preamble indicated by the network device as the target preamble.
  • the terminal 400 further includes: a monitoring module,
  • the monitoring module is used to: in the search space, monitor the monitoring timing corresponding to the first reference object, where the first reference object is a reference object that is quasi-co-located with the received random access response, or the first reference object is Reference objects corresponding to the random access resources used to initiate the random access process;
  • the monitoring module is used to: monitor the monitoring opportunities corresponding to the target reference object and the QCL reference object in the search space.
  • the first obtaining module 410 includes:
  • the obtaining submodule is used to obtain a reference object group where the target reference object is located; wherein, the reference object group further includes: a QCL reference object quasi-co-located with the target reference object.
  • the terminal 400 further includes:
  • the third obtaining module is used to obtain the parameter information of the reference object group where the target reference object is located, and the parameter information includes: at least one of airspace information, pattern information and index information of the reference object group.
  • the terminal 400 includes:
  • the fourth obtaining module is used to obtain the airspace information of the target reference object, where the airspace information includes: airspace index information and / or airspace grouping factor, and the target reference object is indicated by the reference index information and / or time domain location information;
  • the determining unit is used to determine the reference object group where the target reference object is located based on the airspace information.
  • the determining unit includes:
  • the first determining subunit is used to determine a reference object having the same spatial domain index information as the target reference object, and belongs to the reference object group where the target reference object is located;
  • the second determining subunit is used to determine a reference object having the same result as the target reference object modulo the spatial domain grouping factor, and belongs to the reference object group where the target reference object is located.
  • the first determining module 420 further includes:
  • the tenth determination sub-module is used to determine the available random access resource according to the third correspondence between the reference object group and the random access resource.
  • the terminal 400 further includes:
  • the third obtaining module is configured to obtain fourth correspondence information between the reference object group and the monitoring opportunity; wherein, the fourth correspondence information is used to indicate the number of monitoring opportunities corresponding to the reference object group.
  • the terminal of some embodiments of the present disclosure can also determine the subsequent available random access based on the QCL reference object quasi co-located with the target reference object Resources increase the available RO of the terminal, which can improve the success rate of the random access process and reduce the random access delay.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal for implementing various embodiments of the present disclosure.
  • the terminal 50 includes but is not limited to: a radio frequency unit 51, a network module 52, an audio output unit 53,
  • the input unit 54, the sensor 55, the display unit 56, the user input unit 57, the interface unit 58, the memory 59, the processor 510, and the power supply 511 are components.
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those illustrated, or combine certain components, or arrange different components.
  • terminals include but are not limited to mobile phones, tablet computers, notebook computers, palmtop computers, in-vehicle terminals, wearable devices, and pedometers.
  • the radio frequency unit 51 is used to obtain a quasi-co-located QCL reference object that is quasi-co-located with the target reference object;
  • the processor 510 is configured to determine subsequent available random access resources according to the target reference object and the QCL reference object;
  • the terminal of some embodiments of the present disclosure can also determine the subsequent available random access resources based on the QCL reference object that is quasi-co-located with the target reference object, which increases the terminal
  • the optional RO can improve the success rate of the random access process and reduce the random access delay.
  • the radio frequency unit 51 may be used to receive and send signals during sending and receiving information or during a call. Specifically, after receiving the downlink data from the base station, the processor 510 processes the data; In addition, the uplink data is sent to the base station.
  • the radio frequency unit 51 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 51 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 52, such as helping users to send and receive e-mail, browse web pages, and access streaming media.
  • the audio output unit 53 may convert the audio data received by the radio frequency unit 51 or the network module 52 or stored in the memory 59 into an audio signal and output as sound. Moreover, the audio output unit 53 may also provide audio output related to a specific function performed by the terminal 50 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 53 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 54 is used to receive audio or video signals.
  • the input unit 54 may include a graphics processor (Graphics, Processing, Unit, GPU) 541 and a microphone 542.
  • the graphics processor 541 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode
  • the data is processed.
  • the processed image frame may be displayed on the display unit 56.
  • the image frame processed by the graphics processor 541 may be stored in the memory 59 (or other storage medium) or sent via the radio frequency unit 51 or the network module 52.
  • the microphone 542 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 51 in the case of the telephone call mode and output.
  • the terminal 50 also includes at least one sensor 55, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 561 according to the brightness of the ambient light, and the proximity sensor can close the display panel 561 and / or when the terminal 50 moves to the ear Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to recognize the posture of the terminal (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc .; sensor 55 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 56 is used to display information input by the user or information provided to the user.
  • the display unit 56 may include a display panel 561, and the display panel 561 may be configured in the form of a liquid crystal display (Liquid Crystal) (LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal
  • OLED Organic Light-Emitting Diode
  • the user input unit 57 can be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 57 includes a touch panel 571 and other input devices 572.
  • the touch panel 571 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc. on or near the touch panel 571 operating).
  • the touch panel 571 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates, and then sends To the processor 510, the command sent by the processor 510 is received and executed.
  • the touch panel 571 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 57 may also include other input devices 572.
  • other input devices 572 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the touch panel 571 may be overlaid on the display panel 561, and when the touch panel 571 detects a touch operation on or near it, it is transmitted to the processor 510 to determine the type of touch event, and then the processor 510 according to the touch The type of event provides a corresponding visual output on the display panel 561.
  • the touch panel 571 and the display panel 561 are implemented as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 571 and the display panel 561 may be integrated and The input and output functions of the terminal are implemented, which is not limited here.
  • the interface unit 58 is an interface for connecting an external device to the terminal 50.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input / output (I / O) port, video I / O port, headphone port, etc.
  • the interface unit 58 may be used to receive input from external devices (eg, data information, power, etc.) and transmit the received input to one or more elements within the terminal 50 or may be used between the terminal 50 and external devices Transfer data between.
  • the memory 59 can be used to store software programs and various data.
  • the memory 59 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, at least one function required application programs (such as sound playback function, image playback function, etc.), etc .; the storage data area may store Data created by the use of mobile phones (such as audio data, phone books, etc.), etc.
  • the memory 59 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the processor 510 is the control center of the terminal, and uses various interfaces and lines to connect the various parts of the entire terminal, executes or executes the software programs and / or modules stored in the memory 59, and calls the data stored in the memory 59 to execute Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 510 may include one or more processing units; optionally, the processor 510 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modulation processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 510.
  • the terminal 50 may further include a power supply 511 (such as a battery) that supplies power to various components.
  • a power supply 511 (such as a battery) that supplies power to various components.
  • the power supply 511 may be logically connected to the processor 510 through a power management system, thereby managing charge, discharge, and power consumption management through the power management system And other functions.
  • the terminal 50 includes some function modules not shown, which will not be repeated here.
  • some embodiments of the present disclosure also provide a terminal, including a processor 510, a memory 59, and a computer program stored on the memory 59 and executable on the processor 510.
  • the computer program is used by the processor 510 During execution, each process of the foregoing random access resource determination method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides users with voice and / or other service data connectivity, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem .
  • the wireless terminal can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • Radio Access Network Radio Access Network
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal
  • it may be a portable, pocket-sized, handheld, computer built-in or vehicle-mounted mobile device that exchanges language and / or data with the wireless access network.
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless terminal may also be called a system, a subscriber unit (Subscriber Unit), a subscriber station (Subscriber Station), a mobile station (Mobile Station), a mobile station (Mobile), a remote station (Remote Station), a remote terminal (Remote Terminal), an access terminal Access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), user equipment (User Device or User Equipment), not limited here.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements the processes of the foregoing random access resource determination method embodiments, and The same technical effect can be achieved, and in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the above embodiment introduces the random access resource determination method of the present invention from the terminal side.
  • the following embodiment will further introduce the random access resource determination method of the network device side with reference to the drawings.
  • the random access resource determination method of some embodiments of the present disclosure is applied to the network device side.
  • the method includes the following steps:
  • Step 61 Send parameter information of the reference object group where the target reference object is located to the terminal, where the reference object group further includes: a QCL reference object that is quasi-co-located with the target reference object.
  • the reference object group includes multiple reference objects, and the multiple reference objects satisfy a certain quasi-co-location relationship.
  • the number of reference objects included in different reference object groups may be the same or different.
  • multiple reference objects belonging to different reference object groups may or may not be quasi-co-located.
  • the parameter information in some embodiments of the present disclosure includes, but is not limited to, at least one of configuration information of the reference object group, airspace information of the reference object group, pattern information, and index information.
  • the reference object group may be indicated by airspace information (or called direction information, QCL information, QCL type information, QCL airspace information, etc.), which may be pre-defined (such as agreed in the protocol), indicated by the network equipment, or the manufacturer Pre-configured.
  • the reference object group can also be indicated by pattern information and / or index information, where the pattern information and index information can also be pre-defined (such as protocol agreement), indicated by network equipment, or pre-configured by the manufacturer , And the indication methods of the pattern information and the index information may be the same or different.
  • the index information of the reference object group may be implicitly carried by certain signals, such as PBCH, DMRS, SIB, DCI, or other system information, or explicitly carried by these signals.
  • the network device may also send the airspace information of each reference object group, for example, send the direction information list ⁇ direction 2, direction 3 ⁇ of each reference object group, each direction identifier in the direction information list represents a different direction,
  • the terminal can determine the transmission direction of each reference object group according to the airspace information.
  • the method further includes sending airspace information of the target reference object to the terminal, where the airspace information includes: airspace index information and / or airspace grouping factor, and the target reference object is indicated by the reference index information and / or time domain location information.
  • the time-domain position information of the reference object may be a candidate time-domain position of the reference object, or may be a time-domain position where the reference object is actually used.
  • the terminal may determine that the reference object having the same spatial domain index information as the target reference object belongs to the reference object group where the target reference object is located.
  • a reference object with the same result as the target reference object modulo the spatial grouping factor is determined to belong to the reference object group where the target reference object is located.
  • step 61 it also includes at least one of the following:
  • the third correspondence includes but is not limited to at least one of the following: information on the number of random access resources corresponding to the reference object group; in the random access resource
  • the preamble information corresponding to the reference object group where the preamble information is used to indicate: a preamble used for contention random access, a preamble used for non-contention random access, and a preamble used for system information SI request , At least one of the preamble used for beam failure recovery BFR and the preamble used for a specific group; the power parameter of the random access resource; wherein the power parameter may include: the increment of the preamble power climb counter, the preamble At least one of change amount, preamble reception target power, preamble climb step size, etc .; refer to the measurement threshold of the object group.
  • the correspondence information is used to indicate the number of monitoring opportunities corresponding to the reference object group.
  • the network device-side embodiment corresponds to the terminal-side embodiment, and those skilled in the art should be able to understand that the above-mentioned terminal-side embodiments can be transformed into network device-side embodiments through interactive correspondence. , So I wo n’t repeat them here.
  • the network device sends to the terminal a reference object group where the target reference object is located, and other reference objects in the reference object group are quasi-co-located with the target reference object, so that the terminal can be based on
  • the reference object group determines the subsequent available random access resources, that is, in addition to determining the subsequent available random access resources based on the target reference object, the terminal can also determine the subsequent available random access resources based on the QCL reference object quasi co-located with the target reference object
  • the available random access resources increase the available RO of the terminal, which can increase the success rate of the random access process and reduce the random access delay.
  • the network device 700 of the embodiment of the present invention can implement the above embodiment to send the parameter information of the reference object group where the target reference object is located to the terminal, where the reference object group further includes: quasi co-location with the target reference object
  • the network device 700 specifically includes the following functional modules:
  • the first sending module 710 is configured to send parameter information of the reference object group where the target reference object is located to the terminal, where the reference object group further includes: a QCL reference object that is quasi-co-located with the target reference object.
  • the parameter information includes: at least one of airspace information, pattern information, and index information of the reference object group.
  • the network device 700 further includes:
  • the second sending module is configured to send the airspace information of the target reference object to the terminal, where the airspace information includes: airspace index information and / or airspace grouping factor, and the target reference object is indicated by the reference index information and / or time domain location information.
  • the network device 700 further includes at least one of the following:
  • a third sending module configured to send the first correspondence between the target reference object and the random access resource to the terminal;
  • a fourth sending module configured to send the second correspondence between the QCL reference object and the random access resource to the terminal;
  • a fifth sending module configured to send the third correspondence between the reference object group and the random access resource to the terminal;
  • the sixth sending module is used to send the fourth correspondence information between the reference object group and the monitoring opportunity to the terminal; wherein, the fourth correspondence information is used to indicate the number of monitoring opportunities corresponding to the reference object group.
  • the network device of some embodiments of the present disclosure sends to the terminal a reference object group where the target reference object is located, and other reference signals in the reference object group are quasi co-located with the target reference object, so that the terminal can be based on the reference
  • the object group determines the subsequent available random access resources, that is, in addition to determining the subsequent available random access resources based on the target reference object, the terminal can also determine the subsequent available based on the QCL reference object quasi co-located with the target reference object Random access resources increase the available RO of the terminal, which can increase the success rate of the random access process and reduce the random access delay.
  • each module of the terminal is only a division of logical functions, and in actual implementation, it may be integrated into a physical entity in whole or in part, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also be implemented in the form of hardware; some modules can also be implemented through processing elements calling software, and some modules can be implemented in hardware.
  • the determination module may be a separately established processing element, or may be implemented by being integrated in a chip of the above-mentioned device, and may also be stored in the memory of the above-mentioned device in the form of a program code, by a processing element of the above-mentioned device Call and execute the function of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together or can be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, for example, one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or one or more microprocessors (digital signal processor (DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processor that can call program code.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • some embodiments of the present disclosure also provide a network device, the network device includes a processor, a memory, and a computer program stored on the memory and executable on the processor, the processor executes the computer The program implements the steps in the random access resource determination method as described above.
  • Embodiments of the invention also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium. When the computer program is executed by a processor, the steps of the random access resource determination method described above are implemented.
  • the network device 800 includes an antenna 81, a radio frequency device 82, and a baseband device 83.
  • the antenna 81 is connected to the radio frequency device 82.
  • the radio frequency device 82 receives information through the antenna 81 and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82, and the radio frequency device 82 processes the received information and sends it out through the antenna 81.
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 83.
  • the method performed by the network device in the above embodiment may be implemented in the baseband apparatus 83.
  • the baseband apparatus 83 includes a processor 84 and a memory 85.
  • the baseband device 83 may include, for example, at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG. 8, one of the chips is, for example, the processor 84, and is connected to the memory 85 to call a program in the memory 85 to execute The network device operations shown in the above method embodiments.
  • the baseband device 83 may further include a network interface 86 for exchanging information with the radio frequency device 82.
  • the interface is, for example, a common public radio interface (common public radio interface, CPRI).
  • the processor here may be a processor, or a collective term for multiple processing elements, for example, the processor may be a CPU, or an ASIC, or one or more configured to implement the method performed by the above network device
  • An integrated circuit for example: one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element may be a memory or a collective term for multiple storage elements.
  • the memory 85 may be volatile memory or nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically Erasable programmable read only memory (Electrically, EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDRSDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory 85 described in this application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the network device of some embodiments of the present disclosure further includes: a computer program stored on the memory 85 and executable on the processor 84, and the processor 84 calls the computer program in the memory 85 to execute each module shown in FIG. 7 Methods.
  • the computer program when the computer program is called by the processor 84, it can be used to execute: send parameter information of the reference object group where the target reference object is located to the terminal, where the reference object group further includes: a QCL reference object that is quasi-co-located with the target reference object.
  • the network device in some embodiments of the present disclosure sends to the terminal a reference object group where the target reference object is located, and other reference signals in the reference object group are quasi co-located with the target reference object, so that the terminal can determine based on the reference object group
  • Subsequent available random access resources that is, in addition to determining the subsequent available random access resources based on the target reference object, the terminal can also determine the subsequent available random access based on the QCL reference object quasi-co-located with the target reference object Resources increase the available RO of the terminal, which can improve the success rate of the random access process and reduce the random access delay.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure essentially or part of the contribution to the related technology or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • each component or each step can be decomposed and / or recombined.
  • These decompositions and / or recombinations should be regarded as equivalent solutions of the present disclosure.
  • the steps for performing the above-mentioned series of processing can naturally be executed in chronological order in the order described, but it does not necessarily need to be executed in chronological order, and some steps can be executed in parallel or independently of each other.
  • the purpose of the present disclosure can also be achieved by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the object of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure. Obviously, the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be noted that, in the device and method of the present disclosure, obviously, each component or each step can be decomposed and / or recombined.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (Application Specific Integrated Circuits, ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing device (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), field programmable gate array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, others for performing the functions described in this disclosure Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing device
  • DPD digital signal processing device
  • PLD programmable Logic Device
  • FPGA field programmable gate array
  • controller microcontroller, microprocessor, others for performing the functions described in this disclosure Electronic unit or its combination.
  • the technology described in the embodiments of the present disclosure may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory may be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种随机接入资源确定方法、终端及网络设备,该方法包括:获取与目标参考对象准共址的准共址QCL参考对象;以及根据目标参考对象和QCL参考对象,确定可用随机接入资源。

Description

随机接入资源确定方法、终端及网络设备
相关申请的交叉引用
本申请主张在2018年11月2日在中国提交的中国专利申请号No.201811303032.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种随机接入资源确定方法、终端及网络设备。
背景技术
在移动通信系统中,网络设备可以配置物理随机接入信道传输机会(Physical Random Access Channel transmission occasion,PRACH transmission occasion),或称为PRACH occasion或RO,用于传输前导码(preamble)。RO和某些下行信号存在关联关系,如信道状态指示参考信号(Channel State Information Reference Signal,CSI-RS)、同步信号/物理广播信道块(Synchronization Signal and PBCH Block,SS/PBCH block)或称为SSB等。终端可根据对这些下行信号的测量结果或网络设备的指示,选择相应下行信号关联的RO来发送前导码。
在非授权频段传输机制中,网络设备和终端的可用(available)资源是不确定的,即使网络设备为终端配置了某些下行信号的资源,但终端也无法确定网络设备是否抢占到了相应资源并成功进行了下行信号的发送。如图1所示,网络设备在T1内网络设备只抢到了两个SSB资源,发送了SSB1和SSB2;在T2内网络设备没有抢到资源;在T3内网络设备抢到了4个SSB资源,发送了SSB1、SSB2、SSB3和SSB4,其中,SSB1和SSB3是准共址(quasi Co-location,QCL)的,SSB2和SSB4是QCL的。网络设备指示总共发送了SSB1、SSB3、SSB3和SSB4,并基于这4个SSB构建SSB和RO的关联关 系。假设终端在T1收到了SSB1,那么在收到SSB1并尝试进行随机接入(Random Access Channel,RACH)之前未进入到T3,那么终端无法测量到SSB3,终端仅能够基于SSB1去选择RO,终端在选择的RO上进行随机接入过程,若在该SSB1对应的RO上无法接入,则没有其他RO可供选择,可能会导致随机接入过程失败。
发明内容
本公开实施例提供了一种随机接入资源确定方法、终端及网络设备,以解决终端仅能够基于测量到的SSB选择RO,无法选择其他可用RO导致的随机接入过程失败的问题。
第一方面,本公开的一些实施例提供了一种随机接入资源确定方法,应用于终端侧,包括:
获取与目标参考对象准共址的准共址QCL参考对象;以及
根据目标参考对象和QCL参考对象,确定可用随机接入资源。
第二方面,本公开的一些实施例还提供了一种终端,包括:
第一获取模块,用于获取与目标参考对象准共址的准共址QCL参考对象;以及
第一确定模块,用于根据目标参考对象和QCL参考对象,确定可用随机接入资源。
第三方面,本公开的一些实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述的随机接入资源确定方法的步骤。
第四方面,本公开的一些实施例提供了一种随机接入资源确定方法,应用于网络设备侧,包括:
向终端发送目标参考对象所在参考对象组的参数信息,其中,参考对象组还包括:与目标参考对象准共址的QCL参考对象。
第五方面,本公开的一些实施例提供了一种网络设备,包括:
第一发送模块,用于向终端发送目标参考对象所在参考对象组的参数信息,其中,参考对象组还包括:与目标参考对象准共址的QCL 参考对象。
第六方面,本公开的一些实施例还提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的随机接入资源确定方法的步骤。
第七方面,本公开的一些实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述的随机接入资源确定方法的步骤。
这样,本公开的实施例除了可基于目标参考对象确定后续的可用随机接入资源外,还可基于与目标参考对象准共址的QCL参考对象确定后续的可用随机接入资源,增加了终端的可供选择的RO,可提高随机接入过程的成功率,降低随机接入时延。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示非授权频段传输下网络设备传输SSB的资源映射示意图;
图2表示本公开的一些实施例可应用的移动通信系统框图;
图3表示本公开的一些实施例终端侧随机接入资源确定方法的流程示意图;
图4表示本公开的一些实施例终端的模块结构示意图;
图5表示本公开的一些实施例的终端框图;
图6表示本公开网络设备侧随机接入资源确定方法的流程示意图;
图7表示本公开网络设备的模块结构示意图;以及
图8表示本公开的一些实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图2,图2示出本公开的一些实施例可应用的一种无线通信系统的框图。无线通信系统包括终端21和网络设备22。其中,终端21也可以称作终端设备或者用户终端(User Equipment,UE),终端21可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开的一些实施例中并不限定终端21的具体类型。网络设备22可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开的一些实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
基站可在基站控制器的控制下与终端21通信,在各种示例中,基站控制器可以是核心网或某些基站的一部分。一些基站可通过回程与核心网进行控制信息或用户数据的通信。在一些示例中,这些基站中的一些可以通过回程链路直接或间接地彼此通信,回程链路可以是有线或无线通信链路。无线通信系统可支持多个载波(不同频率的波 形信号)上的操作。多载波发射机能同时在这多个载波上传送经调制信号。例如,每条通信链路可以是根据各种无线电技术来调制的多载波信号。每个已调信号可在不同的载波上发送并且可携带控制信息(例如,参考信号、控制信道等)、开销信息、数据等。
基站可经由一个或多个接入点天线与终端21进行无线通信。每个基站可以为各自相应的覆盖区域提供通信覆盖。接入点的覆盖区域可被划分成仅构成该覆盖区域的一部分的扇区。无线通信系统可包括不同类型的基站(例如宏基站、微基站、或微微基站)。基站也可利用不同的无线电技术,诸如蜂窝或WLAN无线电接入技术。基站可以与相同或不同的接入网或运营商部署相关联。不同基站的覆盖区域(包括相同或不同类型的基站的覆盖区域、利用相同或不同无线电技术的覆盖区域、或属于相同或不同接入网的覆盖区域)可以交叠。
无线通信系统中的通信链路可包括用于承载上行链路(Uplink,UL)传输(例如,从终端21到网络设备22)的上行链路,或用于承载下行链路(Downlink,DL)传输(例如,从网络设备22到终端21)的下行链路。UL传输还可被称为反向链路传输,而DL传输还可被称为前向链路传输。下行链路传输可以使用授权频段、非授权频段或这两者来进行。类似地,上行链路传输可以使用有授权频段、非授权频段或这两者来进行。
本公开的一些实施例提供了一种随机接入资源确定方法,应用于终端侧,如图3所示,该方法包括以下步骤:
步骤31:获取与目标参考对象准共址的准共址QCL参考对象。
其中,参考对象为用于确定可用随机接入资源的下行信号目标参考对象是终端测量确定的下行信号,参考对象可以包括但不限于SSB和/或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),相应地,目标参考对象也可以是SSB和/或CSI-RS。QCL参考对象是与目标参考对象准共址的信号,其类型可以是SSB和/或CSI-RS。值得指出的是,目标参考对象与QCL参考对象的信号类型可以相同也可以不同,例如目标参考对象是SSB时,QCL参 考对象可以是SSB,也可以是CSI-RS。其中,QCL参考对象与目标参考对象满足准共址关系,满足准共址关系又可称为满足某种波束关系(例如使用相同或者对应的波束)、或满足某种空间关系(例如传输方向相同或者重叠)、或某些空域传输滤波器(spatial domain transmission filter)参数相同(例如使用相同的空域传输滤波器)、或使用相同的QCL参考(例如有相同的QCL源,或称为QCL source)、或者至少一项QCL参数或属性相同。其中QCL参数或属性包含如下至少一项:多普勒拓展(Doppler spread)、多普勒偏移(Doppler shift)、平均增益(average gain)、平均时延(average delay)、时延拓展(delay spread)、空间接收参数(spatial Rx parameters)等。QCL参考对象与目标参考对象所满足的准共址类型可以是QCL TypeA、QCL TypeB、QCL TypeC和QCL TypeD中的任一种。值得指出的是,本公开的一些实施例中基本以参考对象为SSB为例做的说明,当参考对象为CSI-RS或其他下行信号时,均可参照相应实现方式,以达到预期效果。
步骤32:根据目标参考对象和QCL参考对象,确定可用随机接入资源。
其中,终端在确定目标参考对象和QCL参考对象后,可根据目标参考对象和QCL参考对象中的至少一项,确定后续(或称为接下来、下一个、next等)的可用随机接入资源(available RO)。例如终端测量得到多个目标参考对象时(如SSB1和SSB2),那么终端可根据这多个目标参考对象中的至少一项(SSB1、SSB2、SSB1和SSB2),来确定后续的可用随机接入资源。又例如终端测量得到一个目标参考对象(如SSB1),又获取到与该目标参考对象准共址一个的QCL参考对象(如SSB3),那么终端可根据QCL参考对象(SSB3)来确定后续的可用随机接入资源,或者终端可目标参考对象和QCL参考对象(SSB1和SSB3)来确定后续的可用随机接入资源。
其中,本公开的一些实施例中步骤32可通过不同方式实现,本公开的一些实施例仅以下述方式作为示例性说明,其他实现方式亦可 应用于本公开的一些实施例中,以达到预期效果。
其中,步骤32可通过但不限于以下方式实现:
方式一、将候选随机接入资源集合中的至少一个候选随机接入资源,确定为可用随机接入资源。
其中,候选随机接入资源集合是后续的可用随机接入资源的候选集合,该集合与目标参考对象和/或QCL参考对象相关。具体地,候选随机接入资源集合为目标参考对象对应的第一候选随机接入资源(简称第一RO)和QCL参考对象对应的第二候选随机接入资源(第二RO)的合集。也就是说,终端可在目标参考对象对应的RO集合和QCL参考对象对应的RO集合的合集中选择至少一个RO,作为接下来的可用RO,即终端基于目标参考对象对应的RO和QCL参考对象对应的RO的合集确定接下来可用的RO。假设一个目标参考对象对应4个RO,那么这4个RO为第一RO;假设QCL参考对象对应4个RO,那么这4个RO为第二RO。
以SSB为例,终端在目标SSB(或称为被选SSB)对应RO和QCL SSB对应RO的合集中选择至少一个RO作为接下来的可用RO。也即终端基于被选SSB对应RO和QCL SSB对应RO的合集确定至少一个接下来可用的RO。也就是说,终端根据目标SSB对应的PRACH配置中RO和QCL SSB对应的PRACH配置中RO,确定下一个可用RO。可选地,当PRACH配置中每个SSB对应多个离散或连续的RO时,终端根据目标SSB对应的PRACH配置中多个离散或连续RO和QCL SSB对应的PRACH配置中多个离散或连续RO,确定下一个可用RO。
或者,候选随机接入资源集合为第一候选随机接入资源和第二候选随机接入资源的交集。也就是说,终端可在目标参考对象对应的RO集合和QCL参考对象对应的RO集合的交集中选择至少一个RO,作为接下来的可用RO,即终端基于目标参考对象对应的RO和QCL参考对象对应的RO的交集确定接下来可用的RO。
以SSB为例,终端在目标SSB(或称为被选SSB)对应RO和 QCL SSB对应RO的交集中选择至少一个RO作为接下来的可用RO。也即终端基于被选SSB对应RO和QCL SSB对应RO的交集确定至少一个接下来可用的RO。也就是说,终端根据目标SSB对应的PRACH配置中RO和QCL SSB对应的PRACH配置中RO,确定下一个可用RO。可选地,当PRACH配置中每个SSB对应多个离散或连续的RO时,终端根据目标SSB对应的PRACH配置中多个离散或连续RO和QCL SSB对应的PRACH配置中多个离散或连续RO,确定下一个可用RO。
其中,第一候选随机接入资源和第二候选随机接入资源可以完全重叠,也可以完全不重叠,亦可以部分重叠。例如第一候选随机接入资源和第二候选随机接入资源中均包括RO1、RO2、RO3和RO4。又例如第一候选随机接入资源中包括RO1和RO2,第二候选随机接入资源集合中RO3和RO4。又例如第一候选随机接入资源中包括RO1、RO2和RO3,第二候选随机接入资源中包括RO2、RO3和RO4。
进一步地,在该方式下,终端可通过以下方式确定后续的可用随机接入资源:
1、将在候选随机接入资源集合中随机(或称为等概率,即被选择的几率相同)选择的至少一个候选随机接入资源,确定为可用随机接入资源。
1)当候选随机接入资源集合为第一RO和第二RO的合集时,终端可在该合集中等概率地选择一个RO,作为接下来的可用RO。或者,终端可在该合集中等概率的选择N(不等于1)个RO,作为接下来的可用RO。
以SSB为例,终端在目标SSB和QCL SSB对应的RO合集中,等概率地选择一个RO作为接下来可用RO。假设目标SSB为SSB1,QCL SSB为SSB2。SSB1对应RO1-4,SSB2对应RO5-8。且RO1-4是频分复用(Frequency Division Multiplex,FDM)的,RO5-8是FDM的,RO1-4和RO5-8时域资源不同。此时终端认为RO1-8均为候选随机接入资源集合,即RO1-8均可以被选择,终端可从RO1-8 中等概率地选择一个RO作为接下来可用RO。
此外,终端还可在该合集中针对目标SSB和QCL SSB等概率地选择N个RO,作为接下来可用RO,N大于1。假设N=2,目标SSB为SSB1,QCL SSB为SSB2。SSB1对应RO1-4,SSB2对应RO5-8。且RO1-4是FDM的,RO5-8是FDM的,RO1-4和RO5-8的时域资源不同。此时终端认为RO1-8都可以选择,终端可从RO1-8中等概率的选择4个RO作为接下来可用RO。终端还可以分别从RO1-4中等概率地选择2个RO,从RO 5-8中等概率地选择2个RO,并将这4个RO作为接下来可用RO。
2)当候选随机接入资源集合为第一RO和第二RO的交集时,终端可在该交集中等概率地选择一个RO,作为接下来的可用RO。或者,终端可在该交集中等概率的选择N(大于1)个RO,作为接下来的可用RO。
以SSB为例,终端在目标SSB和QCL SSB对应的RO交集中,等概率地选择一个RO作为接下来可用RO。假设目标SSB为SSB1,QCL SSB为SSB2。SSB1对应RO1-8,SSB2对应RO1-8。且RO1-4是FDM的,RO5-8是FDM的,RO1-4和RO5-8的时域资源不同。此时终端认为RO1-8都可以选择。终端可从RO1-8中等概率地选择1个RO作为接下来可用RO。此外终端还可从RO1-8中等概率地选择2个RO作为接下来可用RO。
2、将候选随机接入资源集合中最近的N个候选随机接入资源,确定为可用随机接入资源,其中,N大于或等于1
其中,这里的最近可以是时域上大于距离终端准备好发送RACH的时刻,且离该时刻最近的可用RACH资源对应的时域。假设存在RACH的时域位置上存在多个RO,终端在该时域位置上的多个RO中选择最近的N个RO作为接下来可用RO。其中,这里最近的N个指的是:最近时域位置上的N个,例如最近时域位置上存在M(M大于或等于N)个RO,最近的N个指的是M中的N个。或者最近的N个还可以指:按照时域位置排序距离最近的N个,例如按照时 域排序不同时域位置上分别存在n1(n1小于N)、n2(n1+n2大于或等于N)和n3个RO,最近的N个指的是n1加上n2中的(N-n1)个。
1)当候选随机接入资源集合为第一RO和第二RO的合集时,终端可在该合集中选择最近的N个RO,作为接下来可用RO。
当最近RACH时域资源上存在多个FDM的RO时,终端可以等概率地从中选出N个,N大于等于1。
以SSB为例,假设目标SSB为SSB1,QCL SSB为SSB2。SSB1对应RO1-4,SSB2对应RO5-8。且RO1-4是FDM的,RO5-8是FDM的,RO1-4和RO5-8的时域资源不同。假设时域上大于距离终端准备好发送RACH的时刻,且距离终端准备好发送RACH的时刻最近的RACH资源对应的时域为RO1-4所在的时域,终端认为RO1-4都可以选择。当N=1时,终端从RO1-4等概率地选择一个RO作为接下来可用RO。N=2时,终端从RO1-4等概率地选择2个RO作为接下来可用RO。
或者,假设时域上大于距离终端准备好发送RACH的时刻,且按照距离终端准备好发送RACH的时刻进行排序,最近的RACH资源对应的时域为RO1、RO2、RO3、和RO4,其中,RO1-4的时域距离依次增大,当N=1时,终端将距离最近的RO1作为接下来可用RO。N=2时,终端将距离最近的从RO1和RO2作为接下来可用RO。
2)当候选随机接入资源集合为第一RO和第二RO的交集时,终端可在该交集中选择最近的N个RO,作为接下来可用RO。
当最近RACH时域资源上存在多个FDM的RO时,终端可以等概率地从中选出N个,N大于等于1。
以SSB为例,假设被选SSB为SSB1,QCL SSB为SSB2。SSB1对应RO1-8,SSB2对应RO1-8。且RO1-4是FDM的,RO5-8是FDM的,RO1-4和RO5-8时域资源不同。假设时域上大于距离用户准备好发送RACH的时刻,且距离用户准备好发送RACH的时刻最近的RACH资源对应的时域为RO1-4所在的时域,终端认为RO1-4 都可以选择。N=1时,用户从RO1-4等概率地选择一个RO作为接下来可用RO。N=2时,终端从RO1-4等概率地选择2个RO作为接下来可用RO。
或者,假设时域上大于距离终端准备好发送RACH的时刻,且按照距离终端准备好发送RACH的时刻进行排序,最近的RACH资源对应的时域为RO1、RO2、RO3、和RO4,其中,RO1-4的时域距离依次增大,当N=1时,终端将距离最近的RO1作为接下来可用RO。N=2时,终端将距离最近的从RO1和RO2作为接下来可用RO。
方式二、将第一候选随机接入资源和第二候选随机接入资源中的至少一个,确定为可用随机接入资源。
该方式包括但不限于:将第一RO中的至少一个和第二RO中至少一个,确定为后续一次传输中的可用随机接入资源;或者,将第一RO中的至少一个确定为后续至少一次传输的可用随机接入资源;或者,将第二RO中的至少一个确定为后续至少一次传输的可用随机接入资源;或者,将第一RO中的至少一个确定为后续第一次传输的可用随机接入资源,将第二RO中的至少一个确定为后续第二次传输的可用随机接入资源;或者,将第二RO中的至少一个确定为后续第一次传输的可用随机接入资源,将第一RO中的至少一个确定为后续第二次传输的可用随机接入资源。
进一步地,在该方式下,终端可通过以下方式确定后续的可用随机接入资源:
1、依次将第一候选随机接入资源中的至少一个和第二候选随机接入资源中的至少一个,确定为可用随机接入资源。
其中,终端交替基于第一RO和第二RO确定后续的可用随机接入资源。在第一RO为多个或第二RO为多个时,终端等概率的在这些RO中选择至少一个作为接下来可用RO。其中,第一RO和第二RO的次序可按照先基于目标参考对象再基于QCL参考对象的顺序来确定接下来可用RO。也可以按照先基于QCL SSB再基于被选SSB的顺序来确定接下来可用RO。
进一步地,上述顺序可能是由不同的优先级规定的,例如给目标参考对象和QCL参考对象定义了优先级,终端按照优先级的顺序基于不同的参考对象确定接下来可用的至少一个RO。可选地,目标参考对象和QCL参考对象的优先级可能相同,也可能不同。当目标参考对象和QCL参考对象的优先级相同时,上述顺序可以是:厂商预配置的、或协议预定义的、或者终端自由实现的。
以SSB为例,假设目标SSB为SSB1,QCL SSB为SSB2。SSB1对应RO1-4,SSB2对应RO5-8。且RO1-4是FDM的,RO5-8是FDM的,RO1-4和RO5-8的时域资源不同。当终端基于目标SSB确定接下来可用RO时,此时终端认为RO1-4都可以选择,当N=2时,终端从RO1-4中等概率地选择2个RO作为接下来可用RO。当终端基于QCL SSB确定接下来可用RO时,此时终端认为RO5-8都可以选择,当N=2时,终端从RO5-8中等概率地选择2个RO作为接下来可用RO。
2、在目标参考对象和QCL参考对象中随机选择至少一个参考对象;将至少一个参考对象对应的候选随机接入资源中的至少一个,确定为可用随机接入资源。
其中,在存在多个目标参考对象和QCL参考对象时,终端先等概率地在这些参考对象中选择至少一个,再在选择的至少一个参考对象对应的RO中等概率选择至少一个确定为后续的可用随机接入资源。
此外,目标参考对象或QCL参考对象包含多个参考对象时,这些参考对象的优先级也可能不同。终端可以按照优先级顺序依次选择不同的目标参考对象或QCL参考对象。以SSB为例,假设目标参考对象包括SSB1和SSB2,QCL参考对象包括SSB3和SSB4。其中,SSB1和SSB2的优先级分别为最高和三等,SSB3和SSB4的优先级分别为二等和四等,终端可以按照SSB1、SSB3、SSB2和SSB4的顺序依次来确定可用RO。值得指出的是,当上述顺序和优先级无关时,上述顺序可以是:厂商预配置的或协议预定义的或者用户自由实现的。
以SSB为例,假设目标SSB为SSB1,QCL SSB为SSB2。SSB1 对应RO1-4,SSB2对应RO5-8。且RO1-4是FDM的,RO5-8是FDM的,RO1-4和RO5-8的时域资源不同。终端等概率的在SSB1和SSB2中选择一个SSB,当终端选择基于目标SSB(即SSB1)确定接下来可用RO时,此时终端认为RO1-4都可以选择,当N=2时,终端从RO1-4中等概率地选择2个RO作为接下来可用RO。当终端选择QCL SSB(即SSB2)确定接下来可用RO时,此时终端认为RO5-8都可以选择,当N=2时,终端从RO5-8中等概率地选择2个RO作为接下来可用RO。
3、在满足第一预设条件时,将第一候选随机接入资源中的至少一个,确定为可用随机接入资源。
其中,第一预设条件可以包括但不限于:
QCL参考对象不满足一定条件,如QCL参考对象的测量结果不满足阈值要求。
随机接入过程中消息一(msg1)在QCL参考对象对应的RO中的重传次数达到预定次数;假设预设条件为msg1重传次数超过N次时,假设终端按照依次基于QCL参考对象,目标参考对象确定接下来可用的至少一个RO,则在终端基于目标参考对象确定接下来可用的至少一个RO前会有msg1的传输。
本次在QCL参考对象对应的RO中的重传距离第一次发送msg1的发送的时间达到一定时长;
在QCL参考对象对应的RO中,在一定时间窗内没有获取上述至少一个RO的发送机会(资源);例如预设条件为在一定时间窗内没有成功任何获取上述RO的发送机会(资源),假设用户按照依次基于QCL参考对象,目标参考对象,确定接下来可用的至少一个RO,则在终端基于目标参考对象确定接下来可用的至少一个RO前没有msg1的传输。
对于QCL参考对象对应的RO,侦听(Listen Before Talk,LBT)连续失败次数达到预定次数;
对于QCL参考对象对应的RO,侦听(LBT)失败次数达到预定 次数;
在一定时间窗过期后都没有在QCL参考对象对应的RO中收到随机接入响应(Random Access Response,RAR)。
4、在满足第二预设条件时,将第二候选随机接入资源中的至少一个,确定为可用随机接入资源。
该方式下,第二预设条件包括但不限于:
目标参考对象不满足一定条件,如目标参考对象的测量结果不满足阈值要求。
随机接入过程中消息一(msg1)在目标参考对象对应的RO中的重传次数达到预定次数;假设预设条件为msg1重传次数超过N次时,假设终端按照依次基于目标参考对象,QCL参考对象确定接下来可用的至少一个RO,则在终端基于QCL参考对象确定接下来可用的至少一个RO前会有msg1的传输。
本次在目标参考对象对应的RO中的重传距离第一次发送msg1的发送的时间达到一定时长;
在目标参考对象对应的RO中,在一定时间窗内没有获取上述至少一个RO的发送机会(资源);例如预设条件为在一定时间窗内没有成功任何获取上述RO的发送机会(资源),假设用户按照依次基于目标参考对象,QCL参考对象确定接下来可用的至少一个RO,则在终端基于QCL参考对象确定接下来可用的至少一个RO前没有msg1的传输。
对于目标参考对象对应的RO,侦听(Listen Before Talk,LBT)连续失败次数达到预定次数;
对于目标参考对象对应的RO,侦听(LBT)失败次数达到预定次数;
在一定时间窗过期后都没有在目标参考对象对应的RO中收到随机接入响应(Random Access Response,RAR)。
需要注意的是,在本实施例中,如果终端确定接下来可用的RO后,还可能包括的行为有:终端可能会先尝试获取这些RO资源,如 果成功获取了资源则在资源上发送msg1。因此在先后基于不同的目标参考对象和/或QCL参考对象确定接下来可用的RO的过程中可能还包含了msg1的传输等其他过程,具体是否包含其他过程取决于预设条件,本公开实施例不做限制。
当候选的可用RO存在多个且终端需要从中选出一部分作为接下来可用RO,除了上述方案,例如等概率之外,还包含终端随机选择、根据测量结果选择测量结果好的,例如参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)、参考信号强度指示(Received Signal Strength Indicator,RSSI)等中至少一项数值大的。
另外值得指出的是,在不同传输过程中,每次传输可采用上述列举的不同方式确定接下来可用RO,多次传输过程中确定方式的组合不做具体限定。
在本公开的一些实施例中,目标参考对象对应有第一候选随机接入资源集合,QCL参考对象对应有第二候选随机接入资源集合,在步骤32之前还包括:获取目标参考对象与随机接入资源的第一对应关系信息;和/或,获取QCL参考对象与随机接入资源的第二对应关系信息。其中,第一对应关系信息用于指示目标参考对象与第一候选随机接入资源集合的对应关系,第二对应关系信息用于指示QCL参考对象与第二候选随机接入资源集合的对应关系。
进一步地,步骤31之前还包括:获取QCL信息,其中,QCL信息包括:用于指示至少两个参考对象之间QCL关系的指示信息,目标参考对象为至少两个参考对象中的至少一个。其中,该QCL信息可以是预定义(如协议约定)的、网络设备指示的或厂商预配置的。
进一步地,在本公开的一些实施例中,步骤32之前还包括:确定目标参考对象。其中,确定目标参考对象的方式包括但不限于以下:
方式一、测量确定
步骤32之前还包括:对参考对象进行测量,得到相应的测量结果;根据测量结果,确定目标参考对象。
其中,测量结果包括但不限于:RSRP、RSRQ、RSSI等中的至少一项。
具体地,根据测量结果确定目标参考对象的步骤,包括以下中的一项:
1、将测量结果大于或等于第一阈值的参考对象确定为目标参考对象。
假设第一阈值为T,该阈值可以是预定义的(如协议约定)、网络设备指示的、厂商预配置的。
2、在测量结果都小于第一阈值的情况下,将测量结果大于第二阈值的参考对象确定为目标参考对象,第二阈值小于第一阈值。
假设第一阈值为T1,第二阈值为T2,其中,T1、T2、T1-T2均可以是预定义的(如协议约定)、网络设备指示的、厂商预配置的,且T1、T2、T1-T2的获取方式可以相同也可以不同。例如T2是网络设备指示的,T2-T1是协议预定义,基于T2、T2-T1可隐式推出T1。
以SSB为例,网络设备发送阈值T1和△(△=T1-T2),终端测量SSB,如果某个SSB测量结果高于T1-△(即T2),终端基于该SSB确定接下来可用的至少一个RO。可选地,如果终端获得了QCL信息,并根据QCL信息,发现该SSB有QCL SSB,终端基于该SSB和QCL SSB确定接下来可用的至少一个RO。可选地,用户认为该SSB和QCL SSB对应的所有RO都是可用的RO,尝试获取这些RO的资源,并在成功获得了资源的RO上发起随机接入过程。
其中,上述实施例是按照一个SSB测量结果高于T1-△来举例,本发明也适用于存在多个SSB测量结果高于T1-△的情况。
方式二、将接收到的多个信号进行合并并解调得到
步骤32之前还包括:合并和解调多个参考对象;将解调后的参考对象确定为目标参考对象。其中,这里所说的多个参考对象可以是一次接收到的多个,也可以是多次接收到的多个。
以SSB为例,广播信道是终端通过多次合并SSB才成功解出来的,即终端无法一次PBCH解码(one-shot PBCH decoding)成功。 终端通过接收和合并多个SSB传输,并成功解码了SSB中的PBCH,终端基于被解码SSB和对应的QCL SSB确定接下来可用的至少一个RO。例如终端接收了多个SSB1传输,单个解码时无法解码SSB1中PBCH,将多个SSB1合并后解码了SSB1中的PBCH,此时认为SSB1的信道质量可能比较差。进一步地,若QCL信息指示有和SSB1准共址的SSB2,那么终端基于SSB1和SSB2确定接下来可用的至少一个RO。可选地,终端认为该SSB和QCL SSB对应的所有RO都是可用的RO,尝试获取这些RO的资源,并在成功获得了资源的RO上发起随机接入过程。
值得指出是的,上述实施例是按照解码了一个SSB index对应的SSB,以及其只有一个对应QCL的情况进行举例,本发明也适用于解出了多个SSB index分别对应的多个SSB,和/或每个被解出SSB有对应多个QCL SSB的情况,不再一一举例说明。
另一方面,在本公开的一些实施例的步骤32之后,终端还可以执行以下行为中的至少一项:
行为一、通过可用随机接入资源的至少一个,发起随机接入过程。
具体地,在本公开的一些实施例中(不局限行为一)随机接入过程可以用于但不限于以下功能中的一个:竞争随机接入、非竞争随机接入、系统信息SI请求、波束失败恢复(Beam Failure Recovery,BFR)以及特定组的前导码。其中,特定组包括group A和group B中的至少一项。
该行为指的是,在终端确定可用RO之后,终端可尝试获取可用RO的资源,并在成功获取了资源的RO上发送msg1,其中,如果确定的可用RO有多个,则可以尝试获取这些RO的资源,并在成功获取了资源的一个或多个RO上发送msg1,终端可以发送一个或多个msg1。具体地,终端可以在一个RO上发送多个msg1,也可以在多个RO上发送1个msg1,也可以在不同RO上发送不同msg1。
值得指出的是,在本公开的一些实施例中所提及的随机接入过程,在4步随机接入过程中终端发送的第一步消息为携带有前导码的消 息1(msg1)。在2步随机接入过程中终端发送的第一步消息为消息A(msgA),msgA可能包含前导码和数据中的至少一项。在本公开的一些实施例中各种与msg1相关的方案中msg1的设计同样也适用于msgA。
值得指出的是,随机接入过程可确定前导码,如4步随机接入流程(4step-RACH)或2步随机接入流程(2step-RACH);随机接入过程中还可不确定前导码,如直接在msgA中只发送数据的2步随机接入流程。
行为二、确定在后续的可用随机接入资源中传输的目标前导码(preamble)。
其中行为二的具体实现方式包括但不限于:
1、将在可用随机接入资源对应的前导码中等概率选择的一个,确定为目标前导码。即终端等概率地选择确定可用RO的参考对象所对应的preamble中的一个。
2、在可用随机接入资源与上一次传输使用的随机接入资源对应的前导码至少部分重叠时,在重叠的前导码中等概率的选择一个,确定为目标前导码。
其中,至少部分重叠包括前后两次传输使用的RO所对应的preamble码完全相同和部分相同。
在前后两次传输使用的RO所对应的preamble码完全相同的情况下,如果是第一次传输,那么终端在确定RO的参考对象所对应的preamble中等概率的选择一个进行传输。
前后两次传输使用的RO所对应的preamble码部分相同的情况下,如果是第一次传输,那么终端在前后两次确定RO的参考对象所对应的preamble的重叠部分等概率的选择一个进行传输。
3、将上一次传输的前导码,确定为目标前导码。
在前后两次传输使用的RO所对应的preamble码完全相同的情况下,如果是第二次传输,那么终端选用和上次发送的preamble一样的preamble进行发送。
前后两次传输使用的RO所对应的preamble码部分相同的情况下,如果是第二次传输,且上次发送的preamble为前后两次确定RO的参考对象所对应的preamble的重叠部分中的一个,则终端选用和上次发送的preamble一样的preamble进行发送。
4、将网络设备指示的前导码,确定为目标前导码。
如果目标参考对象没有被网络设备指示preamble,且QCL参考对象被网络设备指示preamble,那么终端使用QCL参考对象对应被网络设备指示的preamble,反之亦然。以SSB为例,例如基于目标SSB(如SSB1)确定RO,但是网络设备没有给SSB1指示preamble,给QCL SSB(如SSB2)指示可preamble2。终端在基于SSB1确定RO后并尝试发送preamble2。反之,基于QCL SSB(如SSB2)确定RO,但是网络设备没有给SSB2指示preamble,给目标SSB(如SSB1)指示了preamble1。则终端基于SSB2确定RO后并尝试发送preamble1。
行为三、在下一个可用随机接入资源对应的参考对象与上一个可用随机接入资源对应的参考对象不同时,增加前导码功率爬升计数器的计数。
该行为为调整前导码的发送功率,这里指的是增加功率,其中,前导码的发送功率的计算可以参照:前导码发送功率=前导码接收目标功率preambleReceivedTargetPower+前导码变化量DELTA_PREAMBLE+(前导码功率爬升计数器PREAMBLE_POWER_RAMPING_COUNTER–1)×前导码功率爬升步长PREAMBLE_POWER_RAMPING_STEP。具体增加功率的方式包括但不限于:直接增加preamble的发送功率,或者,间接增加preamble的发送功率。具体地:每次增加前导码功率爬升计数器(PREAMBLE_POWER_RAMPING_COUNTER)时的增加量、前导码变化量(DELTA_PREAMBLE)、前导码接收目标功率(preambleReceivedTargetPower)、前导码功率爬升步长(PREAMBLE_POWER_RAMPING_STEP)中的至少一项大于其他 情况下的对应参数。例如在网络设备指示的前导码功率爬升步长的基础上增加一个变化量(△)作为该过程中前导码功率爬升步长,其他情况下前导码功率爬升步长为网络设备指示的前导码功率爬升步长。或者例如每次增加前导码功率爬升计数器时的增加量为2,对于其他情况下每次增加前导码功率爬升计数器时的增加量为1。
以SSB为例,在上一次用于确定接下来可用RO的SSB和下一次用于确定接下来可用RO的SSB不同时(或者描述为:终端切换了用于确定接下来可用RO的SSB时),在下一次传输preamble时,前导码功率爬升计数器(PREAMBLE_POWER_RAMPING_COUNTER)增加计数。例如第一次的可用RO是基于目标SSB确定的,第二次的可用RO是基于QCL SSB确定的,则第二次传输时计数器计数增加。假设目标SSB为SSB1,QCL SSB为SSB2。当终端基于SSB1的RO成功发送msg1但是没有收到RAR时,如果终端下一次msg1重传选择基于SSB1的RO,此时终端调大preamble的功率,例如增加前导码功率爬升计数器的计数。
另一方面,在终端基于多于一个参考对象确定可用RO的情况下,即在目标参考对象为至少两个,或者目标参考对象为至少一个且QCL参考对象为至少一个的情况下,步骤31之后还包括:根据目标参考对象和/或QCL参考对象进行下行控制信息(Downlink Control Information,DCI)的监控。具体地,监控行为包括但不限于:
行为一、在搜索空间中,监控与第一参考对象对应的监控时机,其中,第一参考对象是与接收到的随机接入响应RAR准共址的参考对象(或称为用于RAR接收的参考对象),或,第一参考对象是与发起随机接入过程所使用的随机接入资源对应的参考对象。其中,在搜索空间中,终端假设监控时机和接收到RAR时所用的参考对象是QCL的。
以SSB为例,在搜索空间中,监控和接收到RAR时所用的SSB对应的监控时机上监听DCI。假设RACH过程中终端确定的目标SSB 为SSB1,QCL信息指示SSB1的QCL SSB为SSB2。在RACH过程中,终端基于SSB1确定接下来可用RO为RO1,基于SSB2确定接下来可用RO为RO2,且RO1和RO2为不同的RO资源。终端成功获得了资源的RO1和RO2中的至少一个,并在上面发送preamble。网络设备接收preamble并反馈RAR。假设终端使用SSB1的QCL成功接收RAR,或者终端根据其随机接入无线网络临时标识(Random Access Radio Network Temporary Identity,RA-RNTI)确定该RAR对应的RO资源的关联SSB为SSB1时,终端在控制资源集,例如控制资源集0(Common Resource set 0,CORESET#0)中的搜索空间,例如公共搜索空间(Common Search Space,CSS)中收取终端的专用DCI,例如小区无线网络临时标识(Cell Radio Network Temporary Identity,C-RNTI)加扰的DCI时,去CSS中SSB1对应的监控时机监控该DCI。可选地,终端假设CSS中SSB1对应的监控时机和SSB1是QCL的。注意上面是以CORESET#0进行举例,对于其他的CORESET,例如commonControlResourceSet、controlResourceSetZero,该方案也适用。
行为二、在搜索空间中,监控目标参考对象和QCL参考对象对应的监控时机。其中,在搜索空间中,终端假设监控时机与目标参考对象和QCL参考对象是QCL的。
在搜索空间中,在目标参考对象和QCL参考对象对应的监控时机上监听DCI。具体地,在搜索空间中,在目标参考对象和QCL参考对象对应的全部或部分(即至少一个)监控时机上监听DCI。以SSB为例,如在搜索空间中,监控目标SSB和QCL SSB对应的监控时机中的至少一个,其中终端自行选择进行监控的监控时机。或者,在搜索空间中,选择目标SSB和QCL SSB中的至少一个SSB,并监控选择的至少一个SSB对应的监控时机,其中终端可基于测量结果选择测量结果满足一定阈值要求SSB。假设RACH过程中终端确定目标SSB为SSB1,QCL信息指示SSB1的QCL SSB为SSB2。在RACH过程中,终端基于SSB1确定接下来可用RO为RO1,基于SSB2 确定接下来可用RO为RO2,且RO1和RO2为不同的RO资源。终端成功获得了资源的RO1和RO2中的至少一个,并在上面发送preamble。网络设备接收preamble并反馈RAR。终端在在控制资源集,例如CORESET#0中的搜索空间,例如CSS中收取用户的专用DCI,例如C-RNTI加扰的DCI时,去CSS中SSB1和SSB2对应的监控时机监控该DCI。可选地,终端假设CSS中SSB1和SSB2对应的监控时机和SSB1是QCL的,和SSB2也是QCL的。注意上面是以CORESET#0进行举例,对于其他的CORESET,例如commonControlResourceSet,controlResourceSetZero,该方案也适用。
以上本公开的一些实施例介绍了终端基于信号粒度确定接下来可用RO的实施例,下面本实施例将进一步基于参考对象组的粒度确定接下来可用RO的实施例。
步骤31包括:获取目标参考对象所在的参考对象组;其中,参考对象组还包括:与目标参考对象准共址的QCL参考对象。
其中,参考对象组中包括多个参考对象,这多个参考对象满足一定的准共址关系。不同参考对象组中所包含的参考对象的数目可以相同,也可以不同。在未指示不同参考对象组之间是准共址关系的情况下,终端不假设属于不同参考对象组的多个参考对象之间准共址。
进一步地,获取目标参考对象所在参考对象组的方式包括但不限于:
方式一、在步骤32之前,还包括:获取目标参考对象所在参考对象组的参数信息(或称为相关信息),参数信息包括:参考对象组的空域信息、图样信息和索引信息中的至少一项。参数信息除了包括上述信息外还可包括参考对象组配置信息。
其中,参考对象组可通过空域信息(或称为方向信息、QCL信息、QCL类型信息、QCL空域信息等)指示,该空域信息可以是预定义(如协议约定)的、网络设备指示的或厂商预配置的。
以SSB为例,假设网络设备发送SSB group配置信令将64个SSB index分配为8个SSB index组,即划分为8个SSB group。每 个组内包含最多8个SSB index,终端认为处于同一个组内的SSB index构成一个SSB group,且是QCL的。可选地,网络设备还可以发送每个SSB group的空域信息,例如网络设备发送每个SSB group的方向信息列表{方向2,方向3,方向4,方向5,方向7,方向6,方向8,方向1},方向信息列表中每个方向标识代表不同的方向,且方向信息列表中的方向标识和SSB group一一对应,因此终端可根据该空域信息确定每个SSB group的传输方向。
此外,参考对象组还可通过图样信息(pattern)和/或索引信息(index)指示,其中,图样信息和索引信息亦可以是预定义(如协议约定)的、网络设备指示的或厂商预配置的,且图样信息和索引信息的指示方式可以相同也可以不同。在一些实施例中,参考对象组的索引信息可能由某些信号,例如PBCH、DMRS、SIB、DCI或其他系统信息等,隐式携带或者由这些信号显式携带。可选地,网络设备还可以发送每个参考对象组的空域信息,例如发送每个参考对象组的方向信息列表{方向2,方向3},方向信息列表中每个方向标识代表不同的方向,且方向信息列表中的方向标识和参考对象组一一对应,因此终端可根据该空域信息确定每个参考对象组的传输方向。
以SSB为例,终端获取SSB group的pattern和SSB group的index确定SSB group。例如:协议预定义SSB group的pattern,且SSB group的pattern配置1中SSB1和SSB2属于一个SSB group,SSB3和SSB4属于另外一个SSB group。SSB group的pattern配置2中SSB1、SSB2、SSB3和SSB4属于同一个SSB group。网络设备指示SSB group的index=1,此时终端认为SSB1和SSB2属于一个SSB group,是QCL的。SSB3和SSB4属于另外一个SSB group,是QCL的。
进一步地,SSB group的index表示空域分组因子(或称为QCL因子、分组因子、重复因子等),指示一个SSB group中包含的SSB的数目。例如SSB group的index的取值范围为{1,2,4,8},当SSB group的index=4即空域分组因子=4时,表示一个SSB group中有4个QCL的SSB。相应地,终端可基于空域分组因子推出SSB group 的个数。例如处于某些频域时,一个周期内发送的SSB最多为L个,如果空域分组因子=i,则有L/i个group,每个group内有i个QCL的SSB。每个group内的L/i个QCL的SSB可能是index连续的的L/i个SSB,也可能是按照预定图样离散分布的index对应的SSB。或者可选地,一个周期内SSB时域位置最多为L个,如果空域分组因子=i,则有L/i个group,每个group内有i个QCL的SSB时域位置,这些属于位置上发送了的SSB是QCL的。每个group内的L/i个QCL的SSB时域位置可能是时域位置编号连续的的L/i个时域位置,也可能是按照预定图样离散分布的时域位置。
可选地,SSB group的index表示分组数目,即指示SSB group的数目。例如SSB group的index的取值范围为{1,2,4,8},当SSB group的index=4即SSB group数目=4时。相应地,终端可基于空域分组因子推出SSB group内SSB的个数。处于某些频域时,一个周期内发送的SSB最多为L个,如果分组数目=j,则有j个group,每个group内有L/j个QCL的SSB。每个group内的L/j个QCL的SSB可能是index连续的的L/j个SSB,也可能是按照预定图样离散分布的index对应的SSB。或者可选地,一个周期内SSB时域位置最多为L个,如果分组数目=j,则有j个group,每个group内有L/j个QCL的SSB时域位置,这些时域位置上发送了的SSB是QCL的。每个group内的L/j个QCL的SSB时域位置可能是时域位置编号连续的的L/j个时域位置,也可能是按照预定图样离散分布的时域位置。
方式二、在步骤32之前,还包括:获取目标参考对象的空域信息,根据空域信息,确定目标参考对象所在参考对象组。其中,空域信息包括:空域索引信息和/或空域分组因子,目标参考对象由参考索引信息和/或时域位置信息指示。其中,值得指出的是,在本公开的一些实施例中参考对象的时域位置信息可以是参考对象的候选时域位置,也可以是实际使用发送了参考对象的时域位置。
其中,根据空域信息确定目标参考对象所在参考对象组的步骤包括:确定与目标参考对象的空域索引信息相同的参考对象,属于目标 参考对象所在的参考对象组。以SSB为例,SSB的空域信息为空域index(或称为QCL index)集合,SSB通过SSB index指示,空域index集合中的空域index和SSB index一一对应,终端认为对应相同空域index的SSB index是同一个SSB group。此外,SSB还可通过SSB时域位置信息指示,空域index集合中的空域index和SSB时域位置信息一一对应,终端认为对应相同空域index的SSB时域位置信息是同一个SSB group。
或者,根据空域信息确定目标参考对象所在参考对象组的步骤包括:确定与目标参考对象对空域分组因子取模结果相同的参考对象,属于目标参考对象所在的参考对象组。以SSB为例,SSB的空域分组因子为一个值,如M,SSB通过SSB index指示,空域index=SSB index mod M,终端认为对应相同空域index的SSB index是同一个SSB group,也就是说,终端认为对空域分组因子M取模结果相同的SSB属于同一SSB group。此外,SSB还可以通过SSB时域位置信息指示,空域index=SSB时域位置信息(如SSB时域位置index)mod M,终端认为对应相同空域index的SSB index是同一个SSB group,也就是说,终端认为对空域分组因子M取模结果相同的SSB时域传输位置信息属于同一SSB group。其中,值得指出的是,在该确定方式下,参考对象组的数目为M。
其中,参考对象组的参数信息、参考对象的空域信息和参考对象指示信息(参考对象索引信息和参考对象时域位置信息等)分别可以通过但不限于以下方式携带:
显式携带:物理广播信道、控制信道、系统广播信息块(system information block)或其他无线资源控制(Radio Resource Control,RRC)信令等显式携带;
预定义、厂商预配置等;
隐式携带:例如用于参考信号(Reference Signal,RS)序列生成,用于信令加扰中的至少一项。通过检测RS序列或者解扰确定参考对象的空域信息和参考对象指示信息。例如,参考对象的空域信息 和参考对象指示信息可通过解调参考信号(De-Modulation Reference Signal,DMRS)隐式携带;参考对象的空域信息和参考对象指示信息用于生成PBCH的扰码序列等。
值得指出的是,上述携带方式为可选方式,在本公开的一些实施例中所提及的不同信息(如参考对象组的空域信息、参考对象组的索引信息、参考对象的空域信息、参考对象指示信息等)可通过不同方式携带,本实施例不做具体限定。
在终端确定目标参考对象所在的参考对象组之后,可根据参考对象组确定接下来的可用RO。步骤32包括:根据参考对象组与随机接入资源的第三对应关系,确定可用随机接入资源。其中,第三对应关系包括但不限于以下中的至少一项:
参考对象组对应的随机接入资源的数目信息;如一个RO上对应的SSB group数目,或者一个SSB group对应的RO数目。
随机接入资源中所述参考对象组对应的前导码信息,其中,前导码信息用于指示:用于竞争随机接入的前导码、用于非竞争随机接入的前导码、用于系统信息SI请求的前导码、用于波束失败恢复BFR的前导码和用于特定组的前导码中的至少一项。如每个RO上每个SSB group对应的preamble,形式为序列index或序列数目,包含以下至少一项:每个SSB group对应的用于竞争随机接入的preamble;每个SSB group对应的用于非竞争随机接入的preamble;每个SSB group对应的用于SI请求的preamble;每个SSB group对应的用于BFR的preamble;每个SSB group对应的用于groupA的preamble;每个SSB group对应的用于groupB的preamble;随机接入资源的功率参数;参考对象组的测量阈值。
随机接入资源的功率参数;其中该功率参数可以包括:前导码功率爬升计数器的增加量、前导码变化量、前导码接收目标功率和前导码爬升步长等中的至少一项。
参考对象组的测量阈值,例如该测量阈值可以是SSB group平均测量阈值。
进一步地,在获取目标参考对象所在的参考对象组的步骤之后还包括:获取参考对象组与监控时机的第四对应关系信息。其中,第四对应关系信息用于指示参考对象组对应的监控时机的数目。其中,第四对应关系信息用于指示:一组监控时机上对应的参考对象组的数目,一组监控时机包含至少一个监控时机,或者第四对应关系信息用于指示一个参考对象组对应的监控时机数目。其中,参考对象组与监控时机的对应数目可以是一对一、一对多或多对一。
其中,在本公开的一些实施例中提及的第一对应关系信息、第二对应关系信息、第三对应关系信息和第四对应关系信息可以是预定义的、网络设备指示的或厂商预配置的,且不同对应关系信息的获取方式可以不同,本公开实施例对此不做限制。
在本公开的一些实施例中所提及的确定(determine)又可称为选择(select),两者含义相同,通常可以互换;随机与等概率两者含义相同,亦可互换。
值得指出的是,在本公开的一些实施例中满足一定准共址关系的参考对象具有QCL传递性,以发现参考信号(Discovery Reference Signal,DRS)为例,一个DRS包含的信号可能为SSB、CSI-RS、控制信号和数据中的至少一种。其中控制信号可能为用于调度剩余最小系统信息(Remaining Minimum System Information,RMSI)、其他系统信息(Other System Information,OSI)、寻呼消息(paging)、RAR、消息四(msg4)的控制信号中的至少一个。其中数据信号可能为RMSI、OSI、paging、RAR和msg4中的至少一个。若一个DRS包含的信号中的至少一种和另一个DRS包含的信号的至少一种是QCL的,则这两个DRS内包含的其他信号也是准共址的。若两个DRS都包含SSB和CSI-RS,且两个DRS对应的SSB是准共址的,那么两个DRS对应的CSI-RS也是准共址的,可选地,两个DRS中其中一个DRS的CSI-RS和两个DRS中另一个DRS的SSB也是准共址的,反之亦然。若两个DRS为准共址的,那么这两个DRS对应的SSB是准共址的,对应的CSI-RS也是准共址的,可选地,两个 DRS中其中一个DRS的CSI-RS和两个DRS中另一个DRS的SSB也是准共址的。
在本公开的一些实施例的随机接入资源确定方法中,终端除了可基于目标参考对象确定后续的可用随机接入资源外,还可基于与目标参考对象准共址的QCL参考对象确定后续的可用随机接入资源,增加了终端的可供选择的RO,可提高随机接入过程的成功率,降低随机接入时延。
以上实施例介绍了不同场景下的随机接入资源确定方法,下面将结合附图对与其对应的终端做进一步介绍。
如图4所示,本公开的一些实施例的终端400,能实现上述实施例中获取与目标参考对象准共址的准共址QCL参考对象;根据目标参考对象和QCL参考对象,确定可用随机接入资源方法的细节,并达到相同的效果,该终端400具体包括以下功能模块:
第一获取模块410,用于获取与目标参考对象准共址的准共址QCL参考对象;
第一确定模块420,用于根据目标参考对象和QCL参考对象,确定可用随机接入资源。
其中,第一确定模块420包括以下中的一项:
第一确定子模块,用于将候选随机接入资源集合中的至少一个候选随机接入资源,确定为可用随机接入资源,其中,候选随机接入资源集合为目标参考对象对应的第一候选随机接入资源和QCL参考对象对应的第二候选随机接入资源的合集,或者,候选随机接入资源集合为第一候选随机接入资源和第二候选随机接入资源的交集;
第二确定子模块,用于将第一候选随机接入资源和第二候选随机接入资源中的至少一个,确定为可用随机接入资源。
其中,第一确定子模块包括以下中的一项:
第一确定单元,用于将在候选随机接入资源集合中随机选择的至少一个候选随机接入资源,确定为可用随机接入资源;
第二确定单元,用于将候选随机接入资源集合中最近的N个候 选随机接入资源,确定为可用随机接入资源,N大于或等于1。
其中,第二确定子模块包括以下中的一项:
第三确定单元,用于依次将第一候选随机接入资源中的至少一个和第二候选随机接入资源中的至少一个,确定为可用随机接入资源;
第四确定单元,用于在目标参考对象和QCL参考对象中随机选择至少一个参考对象;将至少一个参考对象对应的候选随机接入资源中的至少一个,确定为可用随机接入资源;
第五确定单元,用于在满足第一预设条件的情况下,将所述第一候选随机接入资源中的至少一项,确定为可用随机接入资源;
第六确定单元,用于在满足第二预设条件的情况下,将所述第二候选随机接入资源中的至少一项,确定为可用随机接入资源。
其中,终端400还包括:
第三获取模块,用于获取目标参考对象与随机接入资源的第一对应关系信息;
和/或,
第四获取模块,用于获取QCL参考对象与随机接入资源的第二对应关系信息。
其中,终端400还包括:
第二获取模块,用于获取QCL信息,其中,QCL信息包括:用于指示至少两个参考对象之间QCL关系的指示信息,目标参考对象为至少两个参考对象中的至少一个。
其中,终端400还包括:
测量模块,用于对参考对象进行测量,得到相应的测量结果;
第二确定模块,用于根据测量结果,确定目标参考对象。
其中,第二确定模块包括以下中的一项:
第三确定子模块,用于将测量结果大于或等于第一阈值的参考对象确定为目标参考对象;
第四确定子模块,用于在测量结果都小于第一阈值的情况下,将测量结果大于第二阈值的参考对象确定为目标参考对象,第二阈值小 于第一阈值。
其中,终端400还包括:
处理模块,用于合并和解调多次接收到的参考对象;
第三确定模块,用于将解调后的参考对象确定为目标参考对象。
其中,终端400还包括以下至少一项:
接入模块,用于通过可用随机接入资源的至少一个,发起随机接入过程;
第四确定模块,用于确定在可用随机接入资源中传输的目标前导码;
计数器模块,用于在下一个可用随机接入资源对应的参考对象与上一个可用随机接入资源对应的参考对象不同时,增加前导码功率爬升计数器计数。
其中,第四确定模块包括:
第五确定子模块,用于将在可用随机接入资源对应的前导码中随机选择的一个,确定为目标前导码;
第六确定子模块,用于在可用随机接入资源与上一次传输使用的随机接入资源对应的前导码至少部分重叠时,在重叠的前导码中随机选择一个,确定为目标前导码;
第七确定子模块,用于将上一次传输的前导码,确定为目标前导码;或,
第八确定子模块,用于将网络设备指示的前导码,确定为目标前导码。
其中,终端400还包括:监控模块,
在目标参考对象为至少两个,或者目标参考对象为至少一个且QCL参考对象为至少一个的情况下,
监控模块用于:在搜索空间中,监控与第一参考对象对应的监控时机,其中,第一参考对象是与接收到的随机接入响应准共址的参考对象,或,第一参考对象是与发起随机接入过程所使用的随机接入资源对应的参考对象;
或者,
监控模块用于:在搜索空间中,监控目标参考对象和QCL参考对象对应的监控时机。
其中,第一获取模块410包括:
获取子模块,用于获取目标参考对象所在的参考对象组;其中,参考对象组还包括:与目标参考对象准共址的QCL参考对象。
其中,终端400还包括:
第三获取模块,用于获取目标参考对象所在参考对象组的参数信息,参数信息包括:参考对象组的空域信息、图样信息和索引信息中的至少一项。
其中,终端400包括:
第四获取模块,用于获取目标参考对象的空域信息,其中,空域信息包括:空域索引信息和/或空域分组因子,目标参考对象由参考索引信息和/或时域位置信息指示;
确定单元,用于根据空域信息,确定目标参考对象所在参考对象组。
其中,确定单元包括:
第一确定子单元,用于确定与目标参考对象的空域索引信息相同的参考对象,属于目标参考对象所在的参考对象组;
或者,
第二确定子单元,用于确定与目标参考对象对空域分组因子取模结果相同的参考对象,属于目标参考对象所在的参考对象组。
其中,第一确定模块420还包括:
第十确定子模块,用于根据参考对象组与随机接入资源的第三对应关系,确定可用随机接入资源。
其中,终端400还包括:
第三获取模块,用于获取参考对象组与监控时机的第四对应关系信息;其中,第四对应关系信息用于指示参考对象组对应的监控时机的数目。
值得指出的是,本公开的一些实施例的终端除了可基于目标参考对象确定后续的可用随机接入资源外,还可基于与目标参考对象准共址的QCL参考对象确定后续的可用随机接入资源,增加了终端的可供选择的RO,可提高随机接入过程的成功率,降低随机接入时延。
为了更好的实现上述目的,进一步地,图5为实现本公开各个实施例的一种终端的硬件结构示意图,该终端50包括但不限于:射频单元51、网络模块52、音频输出单元53、输入单元54、传感器55、显示单元56、用户输入单元57、接口单元58、存储器59、处理器510、以及电源511等部件。本领域技术人员可以理解,图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开的一些实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元51,用于获取与目标参考对象准共址的准共址QCL参考对象;
处理器510,用于根据目标参考对象和所述QCL参考对象,确定后续的可用随机接入资源;
本公开的一些实施例的终端除了可基于目标参考对象确定后续的可用随机接入资源外,还可基于与目标参考对象准共址的QCL参考对象确定后续的可用随机接入资源,增加了终端的可供选择的RO,可提高随机接入过程的成功率,降低随机接入时延。
应理解的是,在本公开的一些实施例中,射频单元51可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器510处理;另外,将上行的数据发送给基站。通常,射频单元51包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元51还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块52为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元53可以将射频单元51或网络模块52接收的或者在存储器59中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元53还可以提供与终端50执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元53包括扬声器、蜂鸣器以及受话器等。
输入单元54用于接收音频或视频信号。输入单元54可以包括图形处理器(Graphics Processing Unit,GPU)541和麦克风542,图形处理器541对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元56上。经图形处理器541处理后的图像帧可以存储在存储器59(或其它存储介质)中或者经由射频单元51或网络模块52进行发送。麦克风542可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元51发送到移动通信基站的格式输出。
终端50还包括至少一种传感器55,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板561的亮度,接近传感器可在终端50移动到耳边时,关闭显示面板561和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器55还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元56用于显示由用户输入的信息或提供给用户的信息。显示单元56可包括显示面板561,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板561。
用户输入单元57可用于接收输入的数字或字符信息,以及产生 与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元57包括触控面板571以及其他输入设备572。触控面板571,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板571上或在触控面板571附近的操作)。触控面板571可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器510,接收处理器510发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板571。除了触控面板571,用户输入单元57还可以包括其他输入设备572。具体地,其他输入设备572可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板571可覆盖在显示面板561上,当触控面板571检测到在其上或附近的触摸操作后,传送给处理器510以确定触摸事件的类型,随后处理器510根据触摸事件的类型在显示面板561上提供相应的视觉输出。虽然在图5中,触控面板571与显示面板561是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板571与显示面板561集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元58为外部装置与终端50连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元58可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端50内的一个或多个元件或者可以用于在终端50和外部装置之间传输数据。
存储器59可用于存储软件程序以及各种数据。存储器59可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、 至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器59可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器510是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器59内的软件程序和/或模块,以及调用存储在存储器59内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器510可包括一个或多个处理单元;可选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
终端50还可以包括给各个部件供电的电源511(比如电池),可选的,电源511可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端50包括一些未示出的功能模块,在此不再赘述。
可选的,本公开的一些实施例还提供一种终端,包括处理器510,存储器59,存储在存储器59上并可在所述处理器510上运行的计算机程序,该计算机程序被处理器510执行时实现上述随机接入资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal  Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开的一些实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述随机接入资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
以上实施例从终端侧介绍了本发明的随机接入资源确定方法,下面本实施例将结合附图对网络设备侧的随机接入资源确定方法做进一步介绍。
如图6所示,本公开的一些实施例的随机接入资源确定方法,应用于网络设备侧,该方法包括以下步骤:
步骤61:向终端发送目标参考对象所在参考对象组的参数信息,其中,参考对象组还包括:与目标参考对象准共址的QCL参考对象。
其中,参考对象组中包括多个参考对象,这多个参考对象满足一定的准共址关系。不同参考对象组中所包含的参考对象的数目可以相同,也可以不同。在未指示不同参考对象组之间是准共址关系的情况下,属于不同参考对象组的多个参考对象之间可以准共址,也可以不准共址。
其中,本公开的一些实施例中参数信息包括但不限于:参考对象组的配置信息、参考对象组的空域信息、图样信息和索引信息中的至少一项。其中,参考对象组可通过空域信息(或称为方向信息、QCL 信息、QCL类型信息、QCL空域信息等)指示,该空域信息可以是预定义(如协议约定)的、网络设备指示的或厂商预配置的。此外,参考对象组还可通过图样信息(pattern)和/或索引信息(index)指示,其中,图样信息和索引信息亦可以是预定义(如协议约定)的、网络设备指示的或厂商预配置的,且图样信息和索引信息的指示方式可以相同也可以不同。在一些实施例中,参考对象组的索引信息可能由某些信号,例如PBCH、DMRS、SIB、DCI或其他系统信息等,隐式携带或者由这些信号显式携带。可选地,网络设备还可以发送每个参考对象组的空域信息,例如发送每个参考对象组的方向信息列表{方向2,方向3},方向信息列表中每个方向标识代表不同的方向,且方向信息列表中的方向标识和参考对象组一一对应,因此终端可根据该空域信息确定每个参考对象组的传输方向。
步骤61之前,还包括:向终端发送目标参考对象的空域信息,其中,空域信息包括:空域索引信息和/或空域分组因子,目标参考对象由参考索引信息和/或时域位置信息指示。其中,值得指出的是,本公开的一些实施例中参考对象的时域位置信息可以是参考对象的候选时域位置,也可以是实际使用发送了参考对象的时域位置。相应地,终端可确定与目标参考对象的空域索引信息相同的参考对象,属于目标参考对象所在的参考对象组。或者,确定与目标参考对象对空域分组因子取模结果相同的参考对象,属于目标参考对象所在的参考对象组。
进一步地,步骤61之前或之后,还包括以下中的至少一项:
向终端发送目标参考对象与随机接入资源的第一对应关系信息;
向终端发送QCL参考对象与随机接入资源的第二对应关系信息;
向终端发送参考对象组与随机接入资源的第三对应关系;第三对应关系包括但不限于以下中的至少一项:参考对象组对应的随机接入资源的数目信息;随机接入资源中所述参考对象组对应的前导码信息,其中,前导码信息用于指示:用于竞争随机接入的前导码、用于非竞争随机接入的前导码、用于系统信息SI请求的前导码、用于波束失 败恢复BFR的前导码和用于特定组的前导码中的至少一项;随机接入资源的功率参数;其中该功率参数可以包括:前导码功率爬升计数器的增加量、前导码变化量、前导码接收目标功率和前导码爬升步长等中的至少一项;参考对象组的测量阈值。
向终端发送参考对象组与监控时机的第四对应关系信息;其中,对应关系信息用于指示参考对象组对应的监控时机的数目。
其中,第一对应关系信息、第二对应关系信息、第三对应关系信息和第四对应关系信息的具体实现可参照终端侧实施例,在此不再赘述。另外,本公开的一些实施例中网络设备侧实施例是与终端侧实施例对应的,本领域技术人员应该能够理解,上述终端侧的实施例均可通过交互对应变形为网络设备侧的实施例,故在此不再赘述。
本发明实施例的随机接入资源确定方法中,网络设备向终端发送目标参考对象所在的参考对象组,该参考对象组中的其他参考对象是与目标参考对象准共址的,这样终端可基于参考对象组确定后续的可用随机接入资源,也就是说,终端除了可基于目标参考对象确定后续的可用随机接入资源外,还可基于与目标参考对象准共址的QCL参考对象确定后续的可用随机接入资源,增加了终端的可供选择的RO,可提高随机接入过程的成功率,降低随机接入时延。
以上实施例分别详细介绍了不同场景下的随机接入资源确定方法,下面本实施例将结合附图对其对应的网络设备做进一步介绍。
如图7所示,本发明实施例的网络设备700,能实现上述实施例中向终端发送目标参考对象所在参考对象组的参数信息,其中,参考对象组还包括:与目标参考对象准共址的QCL参考对象方法的细节,并达到相同的效果,该网络设备700具体包括以下功能模块:
第一发送模块710,用于向终端发送目标参考对象所在参考对象组的参数信息,其中,参考对象组还包括:与目标参考对象准共址的QCL参考对象。
其中,参数信息包括:参考对象组的空域信息、图样信息和索引信息中的至少一项。
其中,网络设备700还包括:
第二发送模块,用于向终端发送目标参考对象的空域信息,其中,空域信息包括:空域索引信息和/或空域分组因子,目标参考对象由参考索引信息和/或时域位置信息指示。
其中,网络设备700还包括以下中的至少一项:
第三发送模块,用于向终端发送目标参考对象与随机接入资源的第一对应关系信息;
第四发送模块,用于向终端发送QCL参考对象与随机接入资源的第二对应关系信息;
第五发送模块,用于向终端发送参考对象组与随机接入资源的第三对应关系;
第六发送模块,用于向终端发送参考对象组与监控时机的第四对应关系信息;其中,第四对应关系信息用于指示参考对象组对应的监控时机的数目。
值得指出的是,本公开的一些实施例的网络设备向终端发送目标参考对象所在的参考对象组,该参考对象组中的其他参考信号是与目标参考对象准共址的,这样终端可基于参考对象组确定后续的可用随机接入资源,也就是说,终端除了可基于目标参考对象确定后续的可用随机接入资源外,还可基于与目标参考对象准共址的QCL参考对象确定后续的可用随机接入资源,增加了终端的可供选择的RO,可提高随机接入过程的成功率,降低随机接入时延。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模 块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
为了更好的实现上述目的,本公开的一些实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的随机接入资源确定方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的随机接入资源确定方法的步骤。
具体地,本公开的一些实施例还提供了一种网络设备。如图8所示,该网络设备800包括:天线81、射频装置82、基带装置83。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
上述频带处理装置可以位于基带装置83中,以上实施例中网络设备执行的方法可以在基带装置83中实现,该基带装置83包括处理器84和存储器85。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为处理器84,与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置83还可以包括网络接口86,用于与射频装置82交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器85可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请描述的存储器85旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开的一些实施例的网络设备还包括:存储在存储器85上并可在处理器84上运行的计算机程序,处理器84调用存储器 85中的计算机程序执行图7所示各模块执行的方法。
具体地,计算机程序被处理器84调用时可用于执行:向终端发送目标参考对象所在参考对象组的参数信息,其中,参考对象组还包括:与目标参考对象准共址的QCL参考对象。
本公开的一些实施例中的网络设备,向终端发送目标参考对象所在的参考对象组,该参考对象组中的其他参考信号是与目标参考对象准共址的,这样终端可基于参考对象组确定后续的可用随机接入资源,也就是说,终端除了可基于目标参考对象确定后续的可用随机接入资源外,还可基于与目标参考对象准共址的QCL参考对象确定后续的可用随机接入资源,增加了终端的可供选择的RO,可提高随机接入过程的成功率,降低随机接入时延。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分 开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存 储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (28)

  1. 一种随机接入资源确定方法,应用于终端侧,,包括:
    获取与目标参考对象准共址的准共址QCL参考对象;以及
    根据所述目标参考对象和所述QCL参考对象,确定可用随机接入资源。
  2. 根据权利要求1所述的随机接入资源确定方法,其中,根据所述目标参考对象和所述QCL参考对象,确定可用随机接入资源的步骤,包括以下中的一项:
    将候选随机接入资源集合中的至少一个候选随机接入资源,确定为所述可用随机接入资源,其中,所述候选随机接入资源集合为所述目标参考对象对应的第一候选随机接入资源和所述QCL参考对象对应的第二候选随机接入资源的合集,或者,所述候选随机接入资源集合为所述第一候选随机接入资源和所述第二候选随机接入资源的交集;以及
    将所述第一候选随机接入资源和所述第二候选随机接入资源中的至少一个,确定为所述可用随机接入资源目标参考对象。
  3. 根据权利要求2所述的随机接入资源确定方法,其中,将候选随机接入资源集合中的至少一个候选随机接入资源,确定为所述可用随机接入资源的步骤,包括以下中的一项:
    将在所述候选随机接入资源集合中随机选择的至少一个候选随机接入资源,确定为所述可用随机接入资源;
    将所述候选随机接入资源集合中最近的N个候选随机接入资源,确定为所述可用随机接入资源,其中,所述N大于或等于1。
  4. 根据权利要求2所述的随机接入资源确定方法,其中,将所述第一候选随机接入资源和所述第二候选随机接入资源中的至少一个,确定为所述可用随机接入资源的步骤,包括以下中的一项:
    依次将所述第一候选随机接入资源中的至少一个和所述第二候选随机接入资源中的至少一个,确定为所述可用随机接入资源;
    在所述目标参考对象和所述QCL参考对象中随机选择至少一个参考对象;将所述至少一个参考对象对应的候选随机接入资源中的至少一个,确定为所述可用随机接入资源;
    在满足第一预设条件的情况下,将所述第一候选随机接入资源中的至少一项,确定为所述可用随机接入资源;
    在满足第二预设条件的情况下,将所述第二候选随机接入资源中的至少一项,确定为所述可用随机接入资源。
  5. 根据权利要求2所述的随机接入资源确定方法,其中,根据所述目标参考对象和所述QCL参考对象,确定可用随机接入资源的步骤之前,还包括:
    获取目标参考对象与随机接入资源的第一对应关系信息;
    和/或,
    获取所述QCL参考对象与随机接入资源的第二对应关系信息。
  6. 根据权利要求1所述的随机接入资源确定方法,其中,获取与目标参考对象准共址的准共址QCL参考对象的步骤之前,还包括:
    获取QCL信息,其中,所述QCL信息包括:用于指示至少两个参考对象之间QCL关系的指示信息,所述目标参考对象为所述至少两个参考对象中的至少一个。
  7. 根据权利要求1所述的随机接入资源确定方法,其中,根据所述目标参考对象和所述QCL参考对象,确定可用随机接入资源的步骤之前,还包括:
    对参考对象进行测量,得到相应的测量结果;以及
    根据所述测量结果,确定所述目标参考对象。
  8. 根据权利要求7所述的随机接入资源确定方法,其中,根据所述测量结果,确定所述目标参考对象的步骤,包括以下中的一项:
    将测量结果大于或等于第一阈值的参考对象确定为所述目标参考对象;以及
    在测量结果都小于所述第一阈值的情况下,将测量结果大于第二阈值的参考对象确定为所述目标参考对象,所述第二阈值小于所述第 一阈值。
  9. 根据权利要求1所述的随机接入资源确定方法,其中,根据所述目标参考对象和所述QCL参考对象,确定可用随机接入资源的步骤之前,还包括:
    合并和解调多个参考对象;以及
    将解调后的参考对象确定为目标参考对象。
  10. 根据权利要求1所述的随机接入资源确定方法,其中,根据所述目标参考对象和所述QCL参考对象,确定可用随机接入资源的步骤之后,还包括以下至少一项:
    通过所述可用随机接入资源的至少一个,发起随机接入过程;
    确定在所述的可用随机接入资源中传输的目标前导码;以及
    在下一个可用随机接入资源对应的参考对象与上一个可用随机接入资源对应的参考对象不同时,增加前导码功率爬升计数器计数。
  11. 根据权利要求10所述的随机接入资源确定方法,其中,确定在所述可用随机接入资源中传输的目标前导码的步骤,包括:
    将在所述可用随机接入资源对应的前导码中随机选择的一个,确定为所述目标前导码;
    在所述可用随机接入资源与上一次传输使用的随机接入资源对应的前导码至少部分重叠时,在重叠的前导码中随机选择一个,确定为所述目标前导码;
    将上一次传输的前导码,确定为所述目标前导码;或
    将网络设备指示的前导码,确定为所述目标前导码。
  12. 根据权利要求1所述的随机接入资源确定方法,其中,获取与目标参考对象准共址的准共址QCL参考对象的步骤之后,还包括:
    在所述目标参考对象为至少两个,或者所述目标参考对象为至少一个且所述QCL参考对象为至少一个的情况下,
    在搜索空间中,监控与第一参考对象对应的监控时机,其中,所述第一参考对象是与接收到的随机接入响应准共址的参考对象,或,所述第一参考对象是与发起随机接入过程所使用的随机接入资源对 应的参考对象;
    或者,
    在所述搜索空间中,监控所述目标参考对象和所述QCL参考对象对应的监控时机。
  13. 根据权利要求1所述的随机接入资源确定方法,其中,获取与目标参考对象准共址的准共址QCL参考对象的步骤,包括:
    获取所述目标参考对象所在的参考对象组;其中,所述参考对象组还包括:与所述目标参考对象准共址的QCL参考对象。
  14. 根据权利要求1所述的随机接入资源确定方法,其中,根据所述目标参考对象和所述QCL参考对象,确定可用随机接入资源的步骤之前,还包括:
    获取目标参考对象所在参考对象组的参数信息,所述参数信息包括:参考对象组的空域信息、图样信息和索引信息中的至少一项。
  15. 根据权利要求1所述的随机接入资源确定方法,其中,根据所述目标参考对象和所述QCL参考对象,确定可用随机接入资源的步骤之前,包括:
    获取目标参考对象的空域信息,其中,所述空域信息包括:空域索引信息和/或空域分组因子,所述目标参考对象由参考索引信息和/或时域位置信息指示;以及
    根据所述空域信息,确定所述目标参考对象所在参考对象组。
  16. 根据权利要求15所述的随机接入资源确定方法,其中,根据所述空域信息,确定所述目标参考对象所在参考对象组的步骤,包括:
    确定与所述目标参考对象的空域索引信息相同的参考对象,属于所述目标参考对象所在的参考对象组;
    或者,
    确定与所述目标参考对象对所述空域分组因子取模结果相同的参考对象,属于所述目标参考对象所在的参考对象组。
  17. 根据权利要求13所述的随机接入资源确定方法,其中,根 据所述目标参考对象和所述QCL参考对象,确定可用随机接入资源的步骤,包括:
    根据所述参考对象组与随机接入资源的第三对应关系,确定所述可用随机接入资源。
  18. 根据权利要求17所述的随机接入资源确定方法,其中,所述第三对应关系信息包括以下中的至少一项:
    所述参考对象组对应的随机接入资源的数目信息;
    随机接入资源中所述参考对象组对应的前导码信息,其中,所述前导码信息用于指示:用于竞争随机接入的前导码、用于非竞争随机接入的前导码、用于系统信息SI请求的前导码、用于波束失败恢复BFR的前导码和用于特定组的前导码中的至少一项;
    所述随机接入资源的功率参数;以及
    所述参考对象组的测量阈值。
  19. 根据权利要求13所述的随机接入资源确定方法,其中,获取所述目标参考对象所在的参考对象组的步骤之后,还包括:
    获取所述参考对象组与监控时机的第四对应关系信息;其中,所述第四对应关系信息用于指示所述参考对象组对应的监控时机的数目。
  20. 一种终端,包括:
    第一获取模块,用于获取与目标参考对象准共址的准共址QCL参考对象;以及
    第一确定模块,用于根据所述目标参考对象和所述QCL参考对象,确定可用随机接入资源。
  21. 一种终端,所述终端包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至19中任一项所述的随机接入资源确定方法的步骤。
  22. 一种随机接入资源确定方法,应用于网络设备侧,包括:
    向终端发送目标参考对象所在参考对象组的参数信息,其中,所 述参考对象组还包括:与所述目标参考对象准共址的QCL参考对象。
  23. 根据权利要求22所述的随机接入资源确定方法,其中,所述参数信息包括:参考对象组的空域信息、图样信息和索引信息中的至少一项。
  24. 根据权利要求22所述的随机接入资源确定方法,其中,向终端发送目标参考对象所在参考对象组的参数信息的步骤之前,还包括:
    向所述终端发送目标参考对象的空域信息,其中,所述空域信息包括:空域索引信息和/或空域分组因子,所述目标参考对象由参考索引信息和/或时域位置信息指示。
  25. 根据权利要求22所述的随机接入资源确定方法,其中,向终端发送目标参考对象所在参考对象组的参数信息的步骤之前,或者,向终端发送目标参考对象所在参考对象组的参数信息的步骤之后,还包括以下中的至少一项:
    向所述终端发送所述目标参考对象与随机接入资源的第一对应关系信息;
    向所述终端发送所述QCL参考对象与随机接入资源的第二对应关系信息;
    向所述终端发送所述参考对象组与随机接入资源的第三对应关系;以及
    向所述终端发送所述参考对象组与监控时机的第四对应关系信息;其中,所述第四对应关系信息用于指示所述参考对象组对应的监控时机的数目。
  26. 一种网络设备,包括:
    第一发送模块,用于向终端发送目标参考对象所在参考对象组的参数信息,其中,所述参考对象组还包括:与所述目标参考对象准共址的QCL参考对象。
  27. 一种网络设备,所述网络设备包括处理器、存储器以及存储于所述存储器上并在所述处理器上运行的计算机程序,所述处理器执 行所述计算机程序时实现如权利要求22至25任一项所述的随机接入资源确定方法的步骤。
  28. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至19、22至25中任一项所述的随机接入资源确定方法的步骤。
PCT/CN2019/110761 2018-11-02 2019-10-12 随机接入资源确定方法、终端及网络设备 WO2020088219A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/244,901 US12041654B2 (en) 2018-11-02 2021-04-29 Random access resource determining method, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811303032.3 2018-11-02
CN201811303032.3A CN111148268B (zh) 2018-11-02 2018-11-02 随机接入资源确定方法、终端及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/244,901 Continuation US12041654B2 (en) 2018-11-02 2021-04-29 Random access resource determining method, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2020088219A1 true WO2020088219A1 (zh) 2020-05-07

Family

ID=70462935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110761 WO2020088219A1 (zh) 2018-11-02 2019-10-12 随机接入资源确定方法、终端及网络设备

Country Status (3)

Country Link
US (1) US12041654B2 (zh)
CN (1) CN111148268B (zh)
WO (1) WO2020088219A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4181567A4 (en) * 2020-07-07 2024-03-13 Beijing Xiaomi Mobile Software Co., Ltd. POSITIONING METHOD AND APPARATUS, COMMUNICATION DEVICE AND INFORMATION MEDIUM

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148232B (zh) * 2018-11-02 2021-10-22 维沃移动通信有限公司 信息传输方法及通信设备
WO2020174947A1 (ja) * 2019-02-26 2020-09-03 株式会社Nttドコモ 端末及び通信方法
US11456831B2 (en) * 2019-03-22 2022-09-27 Samsung Electronics Co., Ltd. Method and apparatus for CSI-RS enhancement for NR unlicensed spectrum
CN115516984A (zh) * 2019-06-20 2022-12-23 北京小米移动软件有限公司 确定随机接入信道机会ro的方法及装置
CN114271012B (zh) * 2020-07-06 2024-05-07 北京小米移动软件有限公司 随机接入资源配置方法、装置及存储介质
CN114501669A (zh) * 2020-10-23 2022-05-13 维沃移动通信有限公司 随机接入的方法、终端设备和网络设备
WO2022099614A1 (zh) * 2020-11-13 2022-05-19 Oppo广东移动通信有限公司 随机接入资源的确定方法、装置、网络设备及存储介质
CN116419419A (zh) * 2021-12-29 2023-07-11 展讯通信(上海)有限公司 一种随机接入方法、装置、芯片及模组设备
CN117856988A (zh) * 2022-09-29 2024-04-09 华为技术有限公司 一种传输方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023841A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102099637B1 (ko) * 2012-04-19 2020-04-10 삼성전자 주식회사 협력 멀티-포인트 통신 시스템들에 대한 기준 심볼 포트들의 준 공존 식별을 위한 방법 및 장치
EP3280107B1 (en) * 2015-04-03 2020-12-16 LG Electronics Inc. Method for receiving downlink signal by means of unlicensed band in wireless communication system and device for same
US10834716B2 (en) * 2016-07-28 2020-11-10 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and device therefor
EP4425856A2 (en) * 2016-07-28 2024-09-04 LG Electronics Inc. Method for receiving reference signal in wireless communication system and device therefor
KR101921710B1 (ko) * 2017-01-06 2019-02-13 엘지전자 주식회사 무선 통신 시스템에서의 참조 신호 수신 방법 및 이를 위한 장치
CN108289016B (zh) * 2017-01-09 2023-10-24 华为技术有限公司 无线通信的方法、终端设备和网络设备
WO2018173238A1 (ja) * 2017-03-23 2018-09-27 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN108632971A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 功率控制方法、终端和网络设备
JP7078638B2 (ja) * 2017-03-24 2022-05-31 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 送信機構成及び受信機構成のネットワーク開始再選択
WO2018204882A1 (en) * 2017-05-05 2018-11-08 Intel IP Corporation Quasi co-location (qcl) for antenna ports in new radio (nr)
EP3471328A4 (en) * 2017-06-28 2020-02-19 LG Electronics Inc. -1- CHANNEL STATE INFORMATION REFERENCE SIGNAL TRANSMISSION AND RECEIVING METHOD IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREOF
CN112865924A (zh) * 2017-07-05 2021-05-28 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
US11477824B2 (en) * 2017-09-07 2022-10-18 Futurewei Technologies, Inc. System and method for request multiplexing
CN110603768A (zh) * 2017-09-14 2019-12-20 Oppo广东移动通信有限公司 信号处理的方法和装置
WO2019066618A1 (ko) * 2017-09-29 2019-04-04 엘지전자 주식회사 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치
US10784943B2 (en) * 2017-10-23 2020-09-22 Apple, Inc. Beam failure recovery operation
US12081382B2 (en) * 2017-11-17 2024-09-03 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods regarding frequency- selective SRS transmission and PUSCH precoding
US20190166513A1 (en) * 2017-11-28 2019-05-30 Mediatek Inc. CSI-RS Radio Resource Management (RRM) Measurement
US11239893B2 (en) * 2018-01-24 2022-02-01 Qualcomm Incorporated Quasi co-location assumptions for aperiodic channel state information reference signal triggers
WO2019171518A1 (ja) * 2018-03-07 2019-09-12 株式会社Nttドコモ ユーザ端末及び無線通信方法
EP4152885A1 (en) * 2018-05-10 2023-03-22 Nokia Technologies Oy Secondary cell beam recovery
WO2019232798A1 (zh) * 2018-06-08 2019-12-12 富士通株式会社 功率的确定方法及装置
US10925116B2 (en) * 2018-06-26 2021-02-16 Apple Inc. Beam indication for semi-persistent and grant-free transmissions
US11012137B2 (en) * 2018-08-09 2021-05-18 Comcast Cable Communications, Llc Resource management for beam failure recovery procedures
EP3836668B1 (en) * 2018-08-10 2024-09-18 Ntt Docomo, Inc. User terminal and wireless communication method
US11963151B2 (en) * 2018-09-27 2024-04-16 Nokia Technologies Oy Beam failure recovery for serving cell
US10848222B2 (en) * 2018-09-28 2020-11-24 Qualcomm Incorporated Synchronizing timing for updating beam configuration information
CA3060828A1 (en) * 2018-11-01 2020-05-01 Comcast Cable Communications, Llc Random access response reception
US11140722B2 (en) * 2018-11-01 2021-10-05 Ofinno, Llc Pathloss measurement in multiple cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023841A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL: "Summary of remaining issues on CSI-RS.", 3GPP DRAFT; R1-1721443, 1 December 2017 (2017-12-01), Reno, USA, pages 1 - 16, XP051363889 *
LG ELECTRONICS INC: "Correction on RA resource selection.", 3GPP DRAFT; R2-1815457, 12 October 2018 (2018-10-12), Chengdu, China, pages 1 - 6, XP051524799 *
VIVO: "Discussion on enhancements to initial access procedure", 3GPP DRAFT; R1-1904066, 12 April 2019 (2019-04-12), Xi’an, China, pages 1 - 10, XP051691271 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4181567A4 (en) * 2020-07-07 2024-03-13 Beijing Xiaomi Mobile Software Co., Ltd. POSITIONING METHOD AND APPARATUS, COMMUNICATION DEVICE AND INFORMATION MEDIUM

Also Published As

Publication number Publication date
CN111148268B (zh) 2022-02-01
US20210250991A1 (en) 2021-08-12
US12041654B2 (en) 2024-07-16
CN111148268A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2020088219A1 (zh) 随机接入资源确定方法、终端及网络设备
JP7369782B2 (ja) ハイブリッド自動再送要求harqフィードバック方法、端末及びネットワーク機器
WO2020088315A1 (zh) 信息传输方法及通信设备
WO2020147817A1 (zh) 随机接入过程的信息传输方法及终端
JP7216804B2 (ja) アップリンク情報の送信方法及び端末
WO2020151743A1 (zh) 随机接入方法及终端
WO2020147816A1 (zh) 随机接入传输方法及终端
WO2020088101A1 (zh) 非周期信道状态信息参考信号配置方法、网络设备及终端
WO2020057317A1 (zh) 传输指示信号的传输方法、网络设备及终端
WO2020147826A1 (zh) 随机接入传输方法及终端
CN111182635B (zh) 非授权频段信息传输方法、终端及网络设备
WO2020147827A1 (zh) 随机接入传输方法及终端
CN109803437B (zh) 一种随机接入方法、终端及网络设备
WO2020151706A1 (zh) 随机接入传输方法及终端
WO2019242568A1 (zh) 功率分配方法及终端
WO2021088783A1 (zh) 物理下行控制信道的检测方法及装置
WO2020134222A1 (zh) 信息传输方法、终端及网络设备
RU2778483C1 (ru) Способ передачи информации и устройство связи
WO2021057657A1 (zh) 资源配置方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880460

Country of ref document: EP

Kind code of ref document: A1