WO2020088173A1 - 能在微波场中产生电弧的多孔复合材料及其制备方法和用途 - Google Patents

能在微波场中产生电弧的多孔复合材料及其制备方法和用途 Download PDF

Info

Publication number
WO2020088173A1
WO2020088173A1 PCT/CN2019/108632 CN2019108632W WO2020088173A1 WO 2020088173 A1 WO2020088173 A1 WO 2020088173A1 CN 2019108632 W CN2019108632 W CN 2019108632W WO 2020088173 A1 WO2020088173 A1 WO 2020088173A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
composite material
carbon
microwave
skeleton
Prior art date
Application number
PCT/CN2019/108632
Other languages
English (en)
French (fr)
Inventor
蒋海斌
乔金樑
张晓红
刘文璐
宋志海
戚桂村
高建明
蔡传伦
李秉海
王湘
赖金梅
茹越
张红彬
韩朋
黄文氢
张江茹
赵亚婷
姜超
孙姝琦
郭照琰
陈松
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811264452.5A external-priority patent/CN111097350B/zh
Priority claimed from CN201811264420.5A external-priority patent/CN111100322B/zh
Priority claimed from CN201811264415.4A external-priority patent/CN111099943B/zh
Priority claimed from CN201811264454.4A external-priority patent/CN111100326B/zh
Priority claimed from CN201811264424.3A external-priority patent/CN111100665B/zh
Priority claimed from CN201811264451.0A external-priority patent/CN111100660B/zh
Priority claimed from CN201811264425.8A external-priority patent/CN111099917B/zh
Priority claimed from CN201811264455.9A external-priority patent/CN111100327B/zh
Priority claimed from CN201811264422.4A external-priority patent/CN111100661B/zh
Priority claimed from CN201811264432.8A external-priority patent/CN111100325B/zh
Priority claimed from CN201811264439.XA external-priority patent/CN111100663B/zh
Priority to AU2019373610A priority Critical patent/AU2019373610B2/en
Priority to US17/309,134 priority patent/US20220008882A1/en
Priority to JP2021523303A priority patent/JP2022506131A/ja
Priority to BR112021008076-7A priority patent/BR112021008076A2/pt
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to CA3117124A priority patent/CA3117124A1/en
Priority to CN201980057945.8A priority patent/CN112823441B/zh
Priority to EP19880547.5A priority patent/EP3876320A4/en
Priority to KR1020217016481A priority patent/KR20210089187A/ko
Publication of WO2020088173A1 publication Critical patent/WO2020088173A1/zh
Priority to JP2024107304A priority patent/JP2024133574A/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/008Pyrolysis reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0032Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B19/00Heating of coke ovens by electrical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/40Thermal non-catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/10Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating electric
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6491Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0496Pyrolysing the materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • C10G2300/1007Used oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2204/00Supplementary heating arrangements
    • F23G2204/20Supplementary heating arrangements using electric energy
    • F23G2204/203Microwave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention relates to the fields of microwave heating, microwave high-temperature cracking and waste resource utilization, in particular, to porous composite materials capable of generating arcs in a microwave field, preparation methods and uses thereof, and cracking and / or recycling materials containing organic compounds method.
  • the chemical recovery method that converts waste plastics into small molecular hydrocarbons (gases, liquid oils or solid waxes) by chemical or thermal conversion is considered to be a technical solution that can surpass mechanical recovery, and the resulting products can be used as fuel or chemical raw materials.
  • the current technical solution has not been widely used, mainly due to the high cost.
  • most of the chemical recovery process requires expensive catalysts, and the selectivity of the catalyst requires that the raw materials must be pure polymers, which requires a time-consuming and laborious classification of waste plastics; on the other hand, the chemical recovery process requires greater energy Consume.
  • carbon fiber composite materials have excellent properties such as light weight, high strength, and good corrosion resistance, and are widely used in high-tech fields such as aerospace, new energy, automobile industry, and sporting goods.
  • high-tech fields such as aerospace, new energy, automobile industry, and sporting goods.
  • the generated waste of carbon fiber composite materials is increasing day by day, and a large amount of carbon fiber composite material waste has attracted people's attention, which has a huge impact on environmental protection and economic benefits.
  • people's increasing emphasis on environmental protection and the energy and resource crisis caused by the international situation, as well as the high price and excellent comprehensive performance of carbon fiber composite materials research on carbon fiber recycling technology is an important development trend in the future.
  • the current carbon fiber recycling technology methods mainly include physical recycling method and chemical recycling method.
  • the physical recycling method is to crush or melt carbon fiber composite materials as raw materials for new materials.
  • this method will cause damage to the performance of each component of the composite material, especially we can not get carbon fiber from it, and we cannot achieve recyclability.
  • Chemical recycling is the use of thermal decomposition or organic solvent decomposition to recover carbon fiber from carbon fiber composite waste. Organic solvent is decomposed and recovered to obtain clean carbon fiber, but a large amount of organic solvent is used in the recovery process, which may cause pollution to the environment.
  • PCB Printed circuit board
  • the substrate is composed of polymer synthetic resin and reinforcement materials.
  • the binder is usually phenol resin, epoxy resin, polyimide resin, cyanate resin, polyphenylene ether resin, and the like.
  • China's annual output of copper clad laminates reached 160,100 tons.
  • China's printed circuit board output surpassed Japan and became the world's largest printed circuit board producer.
  • Microwave refers to electromagnetic waves with a wavelength between infrared and ultra high frequency (UHF) radio waves, which has a very strong penetration ability, with a wavelength between lm and 1mm, and a corresponding frequency of 300GHz-300MHz.
  • the magnetron of the microwave generator receives the power of the power source and generates microwaves, which are delivered to the microwave heater through the waveguide.
  • the materials to be heated are heated under the action of the microwave field.
  • the heating method of the microwave is quite different from the ordinary heat transfer.
  • the high-frequency electric field periodically changes the applied electric field and direction at a rate of hundreds of millions per second, so that the polar molecules in the material vibrate with the electric field at high frequency, and the friction between the molecules
  • the squeezing action causes the material to quickly heat up, so that the temperature of the interior and surface of the material increases rapidly at the same time.
  • microwave thermal cracking technology is also used to crack the waste rubber into monomers and then re-polymerize it for use. Therefore, microwave thermal cracking technology is expected to become the key to solve the problem of plastic pollution and the utilization of rubber resources.
  • the object of the present invention is to provide a porous composite material and its preparation method and use, the porous composite material can generate an arc in the microwave field, which can be rapid Within minutes) high temperatures (especially above 1000 ° C) are generated, enabling effective microwave high temperature heating or microwave cracking of substances containing organic compounds (such as plastics such as polyethylene, polypropylene, polystyrene; rubber; vegetable oil; biomass ; Carbon fiber composite materials; circuit boards) and can recover valuable substances in cracked products for recycling as chemical raw materials or other applications.
  • the porous composite material itself can withstand high temperatures and is suitable for industrial applications.
  • Another object of the present invention is that the preparation method of the porous composite material is simple and easy to implement, and it is easy to realize large-scale preparation.
  • Another object of the present invention is that the method of using the porous composite material microwave high temperature heating or microwave cracking of substances containing organic compounds can achieve efficient operation, and the cracked products can achieve high added value, especially mainly lighter components ( (Especially gas phase or small molecule gas).
  • Another object of the present invention is to provide a method for efficiently recycling resources of microwave high-temperature cracking circuit boards.
  • the cracked gas product can be a gas with high recycling value, and the solid residue can easily realize the separation of metal and non-metal components, and realize the efficient recovery of metal and glass fiber, so as to realize the clean and efficient recovery of all components of the waste circuit board.
  • the above-mentioned object of the present invention can be achieved by a porous composite material capable of generating an arc in a microwave field.
  • the porous composite material capable of generating an arc in a microwave field includes: an inorganic porous skeleton and carbon supported on the inorganic porous skeleton material.
  • the first aspect of the present invention provides a porous composite material capable of generating an arc in a microwave field, including an inorganic porous framework and a carbon material supported on the inorganic porous framework, wherein the average pore diameter of the inorganic porous framework It is 0.2-1000 ⁇ m.
  • the loading means that the carbon material is fixed to the surface and / or structure of the inorganic porous framework through a certain binding force.
  • the surface refers to all interfaces of the porous framework that can contact the gas phase, and "fixed in the structure” refers to inlaying or anchoring inside the porous framework itself, rather than inside the pores.
  • Arc refers to a gas discharge phenomenon, a beam of high-temperature ionized gas, but also a plasma.
  • the carbon material is graphene, carbon nanotubes, carbon nanofibers, graphite, carbon black, carbon fibers, carbon dots, carbon nanowires, products obtained by carbonization of carbonizable organic substances or products after carbonization of a mixture of carbonizable organic substances At least one of them is preferably at least one of graphene, carbon nanotubes, a product obtained by carbonizing a carbonizable organic substance, and a product obtained by carbonizing a mixture of carbonizable organic substances.
  • the carbonization refers to the process of processing organic matter under certain temperature and atmosphere conditions, in which all or most of the hydrogen, oxygen, nitrogen, sulfur, etc. in the organic matter are volatilized, thereby obtaining a synthetic material with a high carbon content .
  • the carbonizable organic substance refers to an organic polymer compound, including
  • thermosetting plastics and thermoplastics more preferably selected from epoxy resins, phenolic resins, furan resins, polystyrene, styrene-divinylbenzene copolymer, polypropylene At least one of nitrile, polyaniline, polypyrrole, polythiophene, styrene-butadiene rubber, and polyurethane rubber; and
  • -A natural organic polymer compound preferably at least one of starch, viscose fiber, lignin and cellulose.
  • the mixture containing carbonizable organic matter refers to a mixture of carbonizable organic matter and other metal-free organic matter and / or metal-free inorganic matter; preferably at least one selected from the group consisting of coal, natural pitch, petroleum pitch, and coal tar pitch Species.
  • the ratio of the carbon material may be 0.001% -99%, preferably 0.01% -90%, more preferably 0.1% -80% based on the total mass of the porous composite material.
  • the inorganic porous skeleton refers to an inorganic material having a porous structure.
  • the average pore diameter of the inorganic porous framework is 0.2-1000 ⁇ m, preferably 0.2-500 ⁇ m, more preferably 0.5-500 ⁇ m, particularly preferably 0.5-250 ⁇ m, or 0.2-250 ⁇ m.
  • the porosity of the inorganic porous framework may be 1% -99.99%, preferably 10% -99.9%, and more preferably 30% -99%.
  • the average pore size described herein is determined by scanning electron microscope (SEM). First, the pore diameter of the single pore is determined by the shortest value of the distance between the straight line passing through the center of the single pore and the two intersections of the outline of the pore in the SEM photograph; then, the pore diameters of all pores shown in the SEM photograph The number average of the values determines the average pore size.
  • the porosity is determined with reference to GB / T 23561.4-2009.
  • the inorganic material may be selected from carbon, silicate, aluminate, borate, phosphate, germanate, titanate, oxide, nitride, carbide, boride, sulfide, silicide and A combination of one or more halides; preferably one or more combinations selected from carbon, silicate, titanate, oxide, carbide, nitride, boride.
  • the oxide may be selected from at least one of alumina, silica, zirconia, magnesia, cerium oxide, and titanium oxide.
  • the nitride may be at least one selected from silicon nitride, boron nitride, zirconium nitride, hafnium nitride, and tantalum nitride.
  • the carbide may be selected from at least one of silicon carbide, zirconium carbide, hafnium carbide, and tantalum carbide.
  • the boride may be selected from at least one of zirconium boride, hafnium boride, and tantalum boride.
  • the inorganic material of the inorganic porous skeleton is more preferably at least one of carbon, silicate, alumina, magnesia, zirconia, silicon carbide, boron nitride, and potassium titanate.
  • the inorganic porous skeleton is at least one selected from the following skeletons: a carbon skeleton obtained after carbonization of the polymer sponge, a porous skeleton composed of inorganic fibers, an inorganic sponge skeleton, a skeleton composed of inorganic particle accumulation, a ceramic precursor Ceramic sponge skeleton obtained after firing of sponge, ceramic fibre skeleton obtained after firing of ceramic precursor fiber; preferably skeleton of melamine sponge carbonized, skeleton of phenolic resin sponge carbonized, porous skeleton of aluminum silicate fiber (such as aluminosilicate rock Cotton), porous framework of mullite fiber, porous framework of alumina fiber (such as alumina fiber board), porous framework of zirconia fiber, porous framework of magnesium oxide fiber, porous framework of boron nitride fiber, boron carbide fiber A porous skeleton, a porous skeleton of silicon carbide fibers, a porous skeleton of potassium titanate fibers, and
  • the porous structure of the inorganic porous skeleton may come from the pore structure of the skeleton material itself, such as a sponge-like structure; it may also come from the pore structure formed by the accumulation of fibrous materials, such as fiber cotton, fiber felt, and fiber board; and may also come from The pore structure formed by the accumulation of particulate materials, such as sand pile structure; it can also come from a combination of the above forms. It is preferably derived from a pore structure formed by fibrous materials.
  • the porous framework composed of the above-mentioned inorganic fibers, wherein the pores are a pore structure composed of a framework in which fiber materials are accumulated does not mean that the fibers themselves are porous.
  • the porous composite material according to the present invention can generate a high-temperature arc in a microwave field, for example, an electric arc that raises the temperature of the porous composite material to above 1000 ° C in a 900w microwave field, and the porous composite material itself can withstand high temperatures up to 3000 °C high temperature.
  • the porous composite material capable of generating an arc in a microwave field according to the present invention is an efficient microwave heating material.
  • the second aspect of the present invention provides a method for preparing a porous composite material according to the present invention.
  • the preparation method according to the present invention includes the following steps:
  • the inorganic porous framework or inorganic porous framework precursor is immersed in the solution or dispersion of the carbon material and / or carbon material precursor, and the pores of the inorganic porous framework or inorganic porous framework precursor are filled with the solution or Dispersions;
  • step (2) The porous material obtained in step (1) is heated and dried, so that the carbon material or the carbon material precursor is precipitated or solidified and supported on the inorganic porous skeleton or the inorganic porous skeleton precursor;
  • step (3) If at least one of a carbon material precursor or an inorganic porous skeleton precursor is used as a raw material, the following step is further performed: heating the porous material obtained in step (2) under an inert gas atmosphere to convert the inorganic porous skeleton precursor It is inorganic porous framework, and / or carbon material precursor reduction or carbonization.
  • the solution or dispersion of the carbon material or its precursor in step (1) may include a solvent selected from the group consisting of benzene, toluene, xylene, trichlorobenzene, chloroform, cyclohexane, ethyl hexanoate, and butyl acetate
  • a solvent selected from the group consisting of benzene, toluene, xylene, trichlorobenzene, chloroform, cyclohexane, ethyl hexanoate, and butyl acetate
  • ester carbon disulfide
  • ketone acetone
  • cyclohexanone tetrahydrofuran
  • dimethylformamide water and alcohol
  • the alcohol is preferably selected from propanol, n-butanol, isobutanol
  • the loading carbon material precursor used in the production method according to the present invention is preferably a precursor that can be dissolved or dispersed in a human-friendly and environment-friendly solvent before loading, so that the production process is "green".
  • the human-friendly and environment-friendly solvent is selected from at least one of ethanol, water, and a mixture of both, that is, the solvent in step (1) is more preferably a solvent containing water and / or ethanol; further preferably water and / or Or ethanol.
  • the solution or dispersion may be sufficient to fully dissolve or fully disperse the carbon material and / or carbon material precursor in the solvent, and the concentration may generally be 0.001-1 g / mL, preferably 0.002-0.8 g / mL, and more preferably 0.003g-0.5g / mL.
  • the heating and drying in step (2) can be performed at a temperature of 50-250 ° C, preferably 60-200 ° C, more preferably 80-180 ° C; preferably by microwave heating.
  • the power of the microwave can be 1W-100KW, preferably 500W-10KW.
  • the microwave heating time may be 2-200 min, preferably 20-200 min.
  • the inorganic porous skeleton precursor is a porous material that can be converted into an inorganic porous skeleton; it can be at least one selected from a ceramic precursor, a porous material of carbonizable organic matter, or a porous material of a mixture of carbonizable organic matter.
  • the carbon material precursor may be graphene oxide, modified carbon nanotubes, modified carbon nanofibers, modified graphite, modified carbon black, modified carbon fiber and carbonizable organic matter or a mixture containing carbonizable organic matter. At least one. Modified carbon nanotubes, modified carbon nanofibers, modified graphite, modified carbon black, modified carbon fiber means to improve the dispersion of these carbon materials in water or organic solvents, to obtain a stable dispersion, pretreatment Carbon materials, for example, pretreatment with dispersants and surfactants, or pretreatment with grafted hydrophilic groups; these pretreatment methods all use pretreatment methods in the prior art to improve dispersion.
  • Carbon materials subjected to the above pretreatment such as graphene aqueous dispersion, graphene ethanol dispersion, graphene aqueous slurry, graphene oily slurry, graphene oxide aqueous dispersion, graphene oxide ethanol dispersion, graphene oxide N -Methylpyrrolidone dispersion, carbon nanotube aqueous dispersion, carboxylated carbon nanotube aqueous dispersion, carbon nanotube ethanol dispersion, carbon nanotube dimethylformamide dispersion, carbon nanotube N-methylpyrrolidone slurry Materials, etc., are also available commercially.
  • the heating temperature in step (3) may be 400-1800 ° C, preferably 600-1500 ° C, more preferably 800-1200 ° C, preferably by microwave heating.
  • the microwave power may be 100W to 100KW, preferably 700W to 20KW.
  • the microwave heating time may be 0.5-200min, preferably 1-100min.
  • the preparation method includes the following steps:
  • step b Immerse the inorganic porous framework or inorganic porous framework precursor in the solution or dispersion of step a, so that the pores of the inorganic porous framework or inorganic porous framework precursor are filled with the solution or dispersion; the carbon material and / or carbon material precursor 0.001% -99.999% of the total mass of the inorganic porous framework material or the inorganic porous framework material precursor and the carbon material and / or carbon material precursor, preferably 0.01% -99.99%, more preferably 0.1% -99.9%;
  • step b Take out the porous material obtained in step b, heat and dry, the carbon material or carbon material precursor is precipitated or solidified, and loaded on the inorganic porous framework or inorganic porous framework precursor; the heating and drying temperature is 50-250 ° C, preferably 60 -200 °C, more preferably 80-180 °C;
  • step d the porous composite material capable of generating an arc in a microwave field is obtained; if the raw material uses a carbon material precursor or an inorganic porous skeleton precursor At least one of them, you need to continue to the following step d:
  • step d Heating the porous material obtained in step c under an inert gas atmosphere, the inorganic porous skeleton precursor is converted into an inorganic porous skeleton, and / or the carbon material precursor is reduced or carbonized to obtain the porous composite material capable of generating an arc in a microwave field ; Heating temperature 400-1800 °C, preferably 600-1500 °C, more preferably 800-1200 °C.
  • the carbon material supported on the inorganic porous framework described in the preparation method according to the present invention is graphene
  • the carbon nanotube dispersion is preferably used in step (1) or step a.
  • thermosetting plastic When a thermosetting plastic is used as the precursor of the carbon material for loading, in step (1) or step a, a suitable curing system needs to be prepared according to the commonly used curing formula in the prior art of the selected thermosetting plastic; in this curing system, Add one or more optional additives selected from curing accelerators, dyes, pigments, colorants, antioxidants, stabilizers, plasticizers, lubricants, flow modifiers or additives, flame retardants , Anti-dripping agent, anti-caking agent, adhesion promoter, conductive agent, multivalent metal ion, impact modifier, release aid, nucleating agent, etc.
  • the amount of additives used can be the conventional amount, or adjusted according to the requirements of the actual situation.
  • the thermosetting resin used as the carbon material precursor after the heating in the subsequent step c is solidified and loaded on the inorganic porous framework.
  • the loading carbon material precursor is thermosetting plastic
  • the corresponding good solvent in the prior art is selected in step (1) or step a to dissolve the above thermosetting plastic and its curing system to obtain a loading carbon material precursor solution .
  • the solution of the loading carbon material precursor may be added with antioxidants, auxiliary antioxidants, heat stabilizers, light stabilizers, ozone stabilizers, processing aids, Plasticizers, softeners, anti-blocking agents, foaming agents, dyes, pigments, waxes, extenders, organic acids, flame retardants, and coupling agents are commonly used additives in the prior art in plastic processing.
  • the amount of additives used can be the conventional amount, or adjusted according to the requirements of the actual situation.
  • the pores of the inorganic porous framework can be filled with the carbon material for loading or the carbon material precursor solution or dispersion by squeezing several times or not at all.
  • step (2) of the preparation method of the present invention excess porous carbon material or carbon material precursor in the porous material obtained in step (1) can be removed with or without measures
  • the above measures include but are not limited to one or both of extrusion and centrifugation operations.
  • the heating in steps (2) and (3) of the preparation method according to the present invention may preferably be microwave heating, which not only has high efficiency but also uniform heating, specifically:
  • the microwave power may be 1W-100KW, preferably 500W-10KW, and the microwave irradiation time is 2-200min, preferably 20-200min.
  • the microwave power in step (3) may be 100W-100KW, preferably 700W-20KW; the microwave irradiation time is 0.5-200min, preferably 1-100min.
  • the heating in step (3) of the preparation method according to the present invention needs to be performed under an inert gas atmosphere, and is selected from the inert gas atmospheres commonly used in the prior art, preferably nitrogen.
  • the equipment used in the preparation method according to the present invention is commonly used equipment.
  • the porous composite material according to the present invention has excellent mechanical properties due to the combination of an inorganic porous framework and a carbon material, and unexpectedly can generate an arc in a microwave field to quickly generate high temperatures, for example, a 900w microwave field can generate
  • the porous composite material is heated to an arc above 1000 ° C, which can be used for microwave high temperature heating, biomass cracking, vegetable oil treatment, waste polymer material cracking, petrochemical cracking, carbon fiber composite material recycling, garbage treatment, VOC waste gas treatment, COD sewage governance and high-temperature catalysis.
  • the porous composite material itself is resistant to high temperature, the preparation process is simple and easy to implement, and it is easy to realize large-scale preparation.
  • the third aspect of the present invention provides the porous composite material according to the present invention for microwave high-temperature heating, cracking and recycling of substances containing organic compounds (such as organic substances, mixtures containing organic substances, or composite materials containing organic substances) and high-temperature catalysis Applications in fields such as biomass cracking, vegetable oil processing, waste polymer materials cracking, petrochemical cracking, carbon fiber composite material recycling, waste treatment, VOC waste gas treatment or COD sewage treatment.
  • substances containing organic compounds such as organic substances, mixtures containing organic substances, or composite materials containing organic substances
  • high-temperature catalysis Applications in fields such as biomass cracking, vegetable oil processing, waste polymer materials cracking, petrochemical cracking, carbon fiber composite material recycling, waste treatment, VOC waste gas treatment or COD sewage treatment.
  • Petrochemical cracking means that in the petrochemical production process, petroleum fractionation products (including petroleum gas) are commonly used as raw materials, and higher temperatures than cracking are used to break hydrocarbons with long-chain molecules into various short-chain gaseous hydrocarbons and small amounts Liquid hydrocarbons to provide organic chemical raw materials.
  • the porous composite material according to the invention may be particularly suitable for cracking and / or recycling substances containing organic compounds.
  • the fourth aspect of the present invention provides a method of cracking and / or recycling a substance containing an organic compound, wherein the substance containing the organic compound is brought into contact with the porous composite material according to the present invention, under an inert atmosphere or evacuated, to the above A microwave field is applied to the substance containing the organic compound and the porous composite material, and the porous composite material generates an arc in the microwave field, thereby quickly reaching a high temperature to crack the substance containing the organic compound.
  • the substances containing organic compounds include organic substances, mixtures containing organic substances, and composite materials containing organic substances, and may be selected from, for example:
  • plastics referred to herein refer to plastics and their mixtures that have been used in civil, industrial and other uses and are eventually eliminated or replaced, including but not limited to polyolefins, polyesters (polyesters and their mixtures, At least one of polyethylene terephthalate, polybutylene terephthalate and polyarylate), polyamide, acrylonitrile-butadiene-styrene terpolymer, polycarbonate , Polylactic acid, polyurethane, polymethyl methacrylate, polyoxymethylene, polyphenylene oxide and polyphenylene sulfide at least one, preferably polyethylene and mixtures thereof (including but not limited to low density polyethylene, linear low density At least one of polyethylene, medium density polyethylene, high density polyethylene and ultra high molecular weight polyethylene, preferably at least one of low density polyethylene, linear low density polyethylene and high density polyethylene), polypropylene and Its mixture, polyvinyl chloride and its mixture, polyethylene terephthal
  • -Waste rubber used rubber refers to rubber and its mixture that have been used in civil, industrial and other uses and are eventually eliminated or replaced; preferably natural rubber, butadiene rubber, styrene-butadiene rubber, nitrile rubber, At least one of isoprene rubber, ethylene-propylene rubber, butyl rubber, neoprene rubber, styrene block copolymer and silicone rubber; more preferably natural rubber, cis-butadiene rubber, styrene-butadiene rubber, isoprene rubber and At least one of ethylene propylene rubber; the waste rubber can be directly mixed together without sorting, thereby simplifying the processing procedure of waste rubber; unless there are special requirements for decomposition products, it needs to be processed according to the type;
  • the biomass mentioned here refers to various animals, plants and algae produced by photosynthesis, mainly composed of cellulose, hemicellulose and lignin, including but not limited to straw, bagasse, branches, leaves, wood chips , Rice husk, rice straw, straw, peanut shell, coconut shell, palm seed shell, walnut shell, Hawaiian nut shell, pistachio shell, wheat straw, corn stalk and corn cob; and
  • oils and fats obtained from the fruits, seeds and germs of plants and mixtures thereof oils and fats obtained from the fruits, seeds and germs of plants include but are not limited to palm oil and rapeseed At least one of oil, sunflower oil, soybean oil, peanut oil, linseed oil and castor oil, preferably at least one of palm oil, rapeseed oil, sunflower oil and soybean oil;
  • the carbon fiber composite materials described herein are preferably carbon fiber reinforced polymer composite materials in the prior art, and the polymer matrix composited with carbon fibers includes but is not limited to polyethylene, polypropylene, nylon, phenolic resin, At least one of epoxy resins; and
  • circuit board described herein may be various circuit boards produced under current technical conditions.
  • the circuit board and the porous composite material are contacted, and a microwave field is applied to the circuit board and the porous composite material under an inert atmosphere or a vacuum.
  • the porous composite material generates an arc under the microwave and quickly reaches a high temperature to make the circuit Cracking of organic materials such as polymer synthetic resins in the board will result in a large amount of gas products and solid residues; the gas is a flammable gas with a high calorific value; the solid residue includes a loosely structured and easily separated metal component and a glass fiber mixture as The main non-metallic component.
  • the weight ratio of the substance containing the organic compound to the porous composite material may be 1: 99-99: 1, preferably 1: 50-50: 1, more preferably 1: 30-30: 1, more preferably 1:10 -10: 1.
  • the microwave power of the microwave field may be 1W-100KW, more preferably 100W-50KW, more preferably 200W-50KW, more preferably 500W-20KW, most preferably 700W-20KW, especially for example 700W, 900W or 1500W.
  • the microwave irradiation time may be 0.1-200 min; more preferably 0.5-150 min, most preferably 1-100 min.
  • An arc is generated in the microwave field and can quickly reach 700-3000 ° C, preferably 800-2500 ° C, more preferably 800-2000 ° C, so that the organic compound in the substance containing the organic compound is cracked.
  • the microwave power of cracked palm oil may be 200W-80KW, preferably 300W-50KW; the microwave irradiation time may be 0.2-200min; preferably 0.3-150min.
  • the microwave power of the cracked rapeseed oil may be 100W-50KW, preferably 200W-30KW; the microwave irradiation time may be 0.1-150min; preferably 0.2-130min.
  • the microwave power of the cracked sunflower oil can be 80W-60KW, preferably 200W-40KW; the microwave irradiation time can be 0.3-120min; preferably 0.4-100min.
  • the microwave power of the cracked soybean oil may be 120W-40KW, preferably 200W-30KW; the microwave irradiation time may be 0.2-100min; preferably 0.5-90min.
  • the microwave power of the cracked peanut oil may be 100W-10KW, preferably 300W-8KW; the microwave irradiation time may be 0.3-100min; preferably 0.5-90min.
  • the microwave power of the cracked linseed oil may be 150W-80KW, preferably 300W-50KW; the microwave irradiation time may be 0.1-80min; preferably 0.3-70min.
  • the microwave power of the cracked castor oil may be 200W-50KW, preferably 300W-40KW; the microwave irradiation time may be 0.5-70min, preferably 0.6-60min.
  • the microwave power of the cracked straw can be 100W-70KW, and the microwave irradiation time can be 0.2-150min.
  • the microwave power of cracked bagasse can be 80W-50KW, and the microwave irradiation time can be 0.2-120min.
  • the microwave power of the cracked branches can be 120W-100KW, and the microwave irradiation time can be 0.5-200min.
  • the microwave power of the cracked leaves can be 50W-40KW, and the microwave irradiation time can be 0.1-80min.
  • the microwave power of cracked wood chips can be 100W-10KW, and the microwave irradiation time can be 0.2-100min.
  • the microwave power of cracking rice husk can be 80W-80KW, and the microwave irradiation time can be 0.2-120min.
  • the microwave power of the cracked rice straw is 100W ⁇ 70KW, and the microwave irradiation time is 0.2 ⁇ 100min.
  • the microwave power of the cracked straw can be 50W-60KW, and the microwave irradiation time can be 0.2-60min.
  • the microwave power of the cracked peanut shell can be 100W-50KW, and the microwave irradiation time can be 0.3-70min.
  • the microwave power of the cracked coconut shell can be 200W-80KW, and the microwave irradiation time can be 0.5-150min.
  • the microwave power of the cracked palm seed shell can be 100W-50KW, and the microwave irradiation time can be 0.3-100min.
  • the microwave power of the cracked corn cob can be 80W-50KW, and the microwave irradiation time can be 0.2-70min.
  • the microwave power of cracking natural rubber can be 100W-50KW, and the microwave irradiation time can be 0.5-150min.
  • the microwave power of cracking cis-butadiene rubber can be 120W-60KW, and the microwave irradiation time can be 0.5-120min.
  • the microwave power of cracking styrene butadiene rubber can be 150W-80KW, and the microwave irradiation time can be 0.6-200min.
  • the microwave power of cracking isoprene rubber can be 100W-60KW, and the microwave irradiation time can be 0.5-150min.
  • the microwave power of the cracked ethylene-propylene rubber can be 200W-70KW, and the microwave irradiation time can be 0.2-100min.
  • the microwave field can be generated by using various microwave devices in the prior art, such as domestic microwave ovens and industrial microwave devices (such as microwave thermal cracking reactors).
  • the inert atmosphere is an inert gas atmosphere commonly used in the prior art, such as nitrogen, helium, neon, argon, krypton, or xenon, preferably nitrogen.
  • the substance containing the organic compound and the porous composite material may be contacted in various ways. If the substance containing the organic compound is solid, such as waste plastic, the substance can be placed on the porous composite material, placed in the cavity composed of the porous composite material, or covered by the porous composite material in the lower part, etc .; preferably the solid substance ( For example, the circuit board) is broken and contacted with the porous composite material. If the substance containing organic compounds is a liquid, such as vegetable oil, one of the methods that can be used is the intermittent method, that is, the vegetable oil is first added to the porous composite material, and the porous composite material will automatically suck the vegetable oil into the pores before proceeding.
  • the substance containing organic compound is a liquid, such as vegetable oil
  • the intermittent method that is, the vegetable oil is first added to the porous composite material, and the porous composite material will automatically suck the vegetable oil into the pores before proceeding.
  • Microwave cracking the other is continuous, that is, while microwave cracking, a pump (such as a peristaltic pump) is continuously added to the surface of the porous material through a quartz pipe.
  • a pump such as a peristaltic pump
  • the pumping speed mentioned above can guarantee the time that the mixture of vegetable oil and porous composite material stays in the microwave field. If the substance containing the organic compound is a mixture of solid and liquid, the mixed form of the above-mentioned contact mode can be adopted accordingly.
  • the device for placing or carrying the organic compound-containing substance and the porous composite material in the method of the present invention may be various vessels or pipes that can penetrate microwaves and withstand temperatures above 1200 ° C, such as quartz crucibles, quartz reactors Quartz tube, alumina crucible, alumina reactor, alumina tube, etc.
  • the organic compound-containing substance is vaporized after cracking.
  • the gas obtained after the cracking can be collected for subsequent processing or recycling, for example, after the gas is separated as fuel or as a raw material for the chemical industry for subsequent reaction and production; the cracked residue is treated as waste, or as for carbon fiber composite Material, the residue after cracking is mainly carbon fiber, which can be collected to remove impurities and reuse, or for circuit boards, the solid residue obtained by cracking of the circuit board can be processed, and the metal and nonmetal components can be separated and recovered separately Reuse.
  • the above separation of solid residues can adopt various separation methods and equipment in the prior art.
  • the gas collection is a common method in the prior art, and can be performed by a gas collection device, preferably under an inert atmosphere.
  • a gas collection device preferably under an inert atmosphere.
  • the gas collection method is: put a quartz crucible carrying a substance containing an organic compound and a porous composite material in a vacuum bag in a nitrogen-protected glove box, seal it in a vacuum bag, and then react under microwave Unscrew the crucible through the vacuum bag, pierce into the vacuum bag with a syringe to take samples.
  • an industrial type microwave oven with an air inlet and an air outlet such as a microwave thermal cracking reactor, etc.
  • the gas collection method is: the reaction process is purged with nitrogen, and the air outlet is sampled and collected with a gas bag.
  • the method of the present invention uses the porous composite material to generate an arc in a microwave field, thereby rapidly generating a high temperature, and cracking a substance containing an organic compound.
  • the cracked product can be used as a chemical raw material for recycling, or the carbon fiber or Valuable residues such as metals are recycled and reused, especially to achieve full recovery of waste circuit boards.
  • the process is efficient and the added value of the product composition is high.
  • the weight of the raw inorganic porous framework material is measured first, and the weight of the obtained porous composite material is measured after the end of the experiment.
  • the mass percentage of the carbon material in the porous composite material is measured first, and the weight of the obtained porous composite material is measured after the end of the experiment.
  • the Agilent 6890N gas chromatograph produced by the American company Agilent is equipped with a FID detector, using a chromatography column: HP-PLOT AL 2 O 3 capillary chromatography column (50m ⁇ 0.53mm ⁇ 15 ⁇ m); carrier gas: He, average linear velocity 41cm / s ; Inlet temperature 200 °C; Detector temperature: 250 °C; Split ratio 15: 1; Injection volume: 0.25ml (gaseous); Heating program: Initial temperature 55 °C, hold for 3min, increase to 120 at 4 °C / min °C, hold for 4min, then increase to 170 °C at 20 °C / min, hold for 10min.
  • the average pore diameter of the inorganic porous framework and the porous composite material is determined by: the shortest value in the distance between the two intersections of the straight line passing through the center of a single pore in the scanning electron microscope (SEM) photograph and the outline of the pore To determine the pore size of a single pore, and then determine the average pore size by the number average of the pore values of all pores shown in the SEM photograph.
  • SEM scanning electron microscope
  • the SEM adopted is Hitachi S-4800, Japan Hitachi, and the magnification is 200 times.
  • Porosity measurement method refer to GB / T 23561.4-2009 to determine the porosity.
  • the raw materials used in the examples are all commercially available.
  • the phenolic resin carbonization product supports a porous composite material with a carbon porous skeleton (the average pore diameter of the carbon skeleton is 350 ⁇ m, and the porosity is 99%), wherein the carbon material supported on the inorganic carbon skeleton accounts for 80% of the total mass of the porous composite material.
  • porous composite material (4) Put the dried porous material into a tube furnace and carbonize it at 1000 ° C for 1 hour under a nitrogen atmosphere to carbonize the phenolic resin to obtain activated alumina (porous skeleton) supported by the phenolic resin carbonized product that can generate an arc in the microwave field. ) Of the porous composite material, wherein the carbon material accounts for 0.05% of the total mass of the porous composite material.
  • porous composite material obtained in Example 1 With the aid of the porous composite material obtained in Example 1, all materials were cracked and gasified after microwave treatment in a domestic microwave oven (700w) for as short as 30s, and almost no residues were seen, only in the case of polyvinyl chloride (PVC) hose Only a small amount of black substance remains, and there is a severe arc discharge in all processes.
  • the porous composite material generates an arc in the microwave field, thereby rapidly generating high temperature and transferring heat to the material to quickly crack the material.
  • the samples obtained in Examples 2-14 were used to perform the same experiment as the above process, and similar experimental phenomena and results were obtained.
  • the porous composite materials obtained in Examples 2-14 can generate arcs in the microwave field, thereby rapidly generating high temperatures and transferring heat to the materials to quickly crack the materials.
  • the specific operation of placing the material to be cracked inside the cavity of the porous composite material that generates an arc in the microwave is as follows: first place a part of the porous composite material at the bottom of the quartz reactor and form an open cavity around it, and then place the material in Inside the cavity, the remaining porous composite material is finally covered on top of the material.
  • the samples obtained in Examples 2-14 were used to perform the same experiment as the above process, and similar experimental phenomena and results were obtained.
  • the porous composite materials obtained in Examples 2-14 can generate arcs in the microwave, thereby quickly generating high temperatures and transferring them to the materials to quickly crack the materials.
  • HDPE beverage bottle cap
  • Example 1 Take 1g sample obtained in Example 1 and use microwave thermal cracking reactor (XOLJ-2000N, Nanjing Xianou Instrument Manufacturing Co., Ltd.) to crack at 700W power for 30s (or use domestic microwave oven (700W) at high fire for 30s) to crack 0.5g of HDPE , 0.5g of PP and 0.5g of LLDPE, and then the gas obtained by chromatographic analysis, the main components detected are listed in Table 1-1.
  • microwave thermal cracking reactor XOLJ-2000N, Nanjing Xianou Instrument Manufacturing Co., Ltd.
  • Example 1 Take 1g sample obtained in Example 1 and use microwave thermal cracking reactor (XOLJ-2000N, Nanjing Xianou Instrument Manufacturing Co., Ltd.) to crack 0.5g of PET at 700W power for 30s (or use domestic microwave oven (700W) at high fire for 30s), Then the obtained gas was analyzed by chromatography, and the main components detected were listed in Table 1-2.
  • microwave thermal cracking reactor XOLJ-2000N, Nanjing Xianou Instrument Manufacturing Co., Ltd.
  • Example 1 Take 1g of the sample obtained in Example 1 and use microwave thermal cracking reactor (XOLJ-2000N, Nanjing Xianou Instrument Manufacturing Co., Ltd.) to crack at 700W power for 30s (or use domestic microwave oven (700W) at high fire for 30s) to crack 0.5g of PS. Then the gas obtained was analyzed by chromatography, and the main components detected were listed in Table 1-3.
  • microwave thermal cracking reactor XOLJ-2000N, Nanjing Xianou Instrument Manufacturing Co., Ltd.
  • Example 1 Take 1g of the sample obtained in Example 1 and crack 0.5g of PVC with a domestic microwave oven (700W) for 30s at high fire, and then perform chromatographic analysis on the resulting gas.
  • the main components detected are listed in Table 1-4.
  • Example 6 The 30g sample obtained in Example 6 was used to crack 50g HDPE, 50g PP and 50g LLDPE with a microwave thermal cracking reactor at 1500W power for 10min, and then the obtained gas was subjected to chromatographic analysis.
  • the main components detected were listed in Table 2-1 .
  • Example 6 The 30g sample obtained in Example 6 was used to crack 50g PET with a microwave thermal cracking reactor at 1500W power for 20min, and then the obtained gas was subjected to chromatographic analysis.
  • the main components detected were listed in Table 2-2.
  • Example 6 The 30g sample obtained in Example 6 was used to crack 3g PS with a microwave thermal cracking reactor at a power of 1500W for 40min, and then the gas obtained was subjected to chromatographic analysis.
  • the main components detected were listed in Table 2-3.
  • Example 6 The 30g sample obtained in Example 6 was used to crack 50g disposable transparent plastic cup (PS) fragments in a microwave thermal cracking reactor at 1500W for 15 minutes, and then the obtained gas was subjected to chromatographic analysis. The main components detected are listed in the table. 2-4.
  • PS disposable transparent plastic cup
  • Example 6 The 30g sample obtained in Example 6 was used to crack 50g of PVC hose fragments in a microwave thermal cracking reactor at a power of 1500W for 15 minutes, and then the resulting gas was subjected to chromatographic analysis. The main components detected were listed in Table 2-5.
  • Microwave cracking vegetable oil
  • the porous composite material generates an arc in the microwave field, thereby rapidly generating high temperature and transferring heat to the material to quickly crack the material. After the cracking, the obtained gas was analyzed by chromatography. The main components detected were listed in Table 3-1.
  • Example 6 A 30g sample obtained in Example 6 was used to crack 100g of palm oil, rapeseed oil, sunflower oil, and soybean oil with a microwave thermal cracking reactor at a power of 1500W and a feed rate of 2g / min, and then the gas obtained was subjected to chromatographic analysis.
  • the main components detected are listed in Table 3-2.
  • the specific operation of placing the material to be cracked inside the cavity composed of the porous composite material is as follows: first, a part of the porous composite material is placed at the bottom of the quartz reactor and around it to form an upper open cavity, and then the material is placed in the cavity Inside, the remaining porous composite material is finally covered on top of the material.
  • Example 1 Take 1g of the sample obtained in Example 1 and crack 0.5g of straw and rice husk in a domestic microwave oven (700W) for 30 seconds under high fire, and then analyze the gas obtained by chromatographic analysis, in which the main except for CO and CO 2 were detected.
  • the ingredients are listed in Table 4-1.
  • Example 6 The 30g sample obtained in Example 6 was used to crack 50g of straw and rice husk with a microwave thermal cracking reactor at 1500W power for 15min, and then the obtained gas was subjected to chromatographic analysis, in which the main components except CO and CO 2 were detected.
  • Example 1 Take 50g samples of automobile tire (Han Thai) fragments, styrene-butadiene rubber (Beijing Rubber Products Factory) and ethylene propylene rubber (Beijing Rubber Products Factory), respectively, and put them in a cavity composed of 30g of the porous composite material that generates arc in the microwave obtained in Example 1 Inside the body, after being protected with nitrogen, it was treated with a microwave thermal cracking reactor (XOLJ-2000N, Nanjing Xianou Instrument Manufacturing Co., Ltd.) at 1500W for 5 minutes. All materials are cracked and gasified after microwave treatment in a domestic microwave oven (700w) for as short as 30s. For the black material that is broken by a pinch of car tire fragments, the styrene-butadiene rubber and ethylene-propylene rubber samples leave no residue.
  • XOLJ-2000N Nanjing Xianou Instrument Manufacturing Co., Ltd.
  • the specific operation of placing the material to be cracked inside the cavity composed of the porous composite material is as follows: first, a part of the porous composite material is placed at the bottom of the quartz reactor and a cavity with an upper opening is formed around it, and then the material is placed in the cavity Inside the body, the remaining porous composite material is finally covered on top of the material.
  • Example 6 the 30g sample obtained in Example 6 was used to crack 50g of automobile tire (Han Thai) fragments, styrene-butadiene rubber (Beijing Rubber Products Factory) and ethylene propylene rubber (Beijing Rubber) with a microwave thermal cracking reactor at 1500W for 15 minutes. Product factory) samples, and then the gas obtained was subjected to chromatographic analysis, in which the main components other than CO and CO 2 detected were listed in Table 5-4, Table 5-5, and Table 5-6.
  • Microwave cracked carbon fiber composite material is a Microwave cracked carbon fiber composite material
  • 2g carbon fiber reinforced epoxy resin composite material (Changzhou Hua carbon fiber composite material Co., Ltd.) was placed on 1g of the porous composite material obtained in Example 1, after being protected with nitrogen, it was cracked in a high-temperature microwave in a domestic microwave oven (700w) for 40s After that, the carbon fiber composite material was taken out, the weight was found to be heavy, and the carbon fiber could be easily peeled off; there was a severe arc discharge phenomenon during the microwave process.
  • the porous composite material generates an arc in the microwave, thereby rapidly generating high temperature and transferring heat to the material to quickly crack the material.
  • the material to be cracked is placed inside the cavity of the porous composite material that generates the arc in the microwave.
  • the specific operation is as follows: first place a part of the porous composite material that generates the arc in the microwave at the bottom and around the quartz reactor to form an upper opening cavity, and then Place the material inside the cavity, and finally cover the remaining porous composite material on top of the material.
  • the samples obtained in Examples 2-14 were subjected to the same experiment as the above process to obtain similar experimental phenomena and results.
  • the porous composite materials obtained in Examples 2-14 can generate arcs in the microwave, thereby quickly generating high temperatures and transferring them to the materials to quickly crack the materials.
  • the material is placed inside the cavity of the porous composite material that generates the arc in the microwave.
  • the specific operations are as follows: first place a part of the porous composite material that generates the arc in the microwave at the bottom and around the quartz reactor to form an upper opening cavity, and then the material Place it inside the cavity, and finally cover the remaining porous composite material on top of the material.
  • the collected gas is chromatographically analyzed in the following manner: the gas product collected after the cracking is in accordance with ASTM D1945-14 method, using a refinery gas analyzer (HP Agilent 7890 A, configured with 3 channels, including 1 FID and 2 TCD (thermal conductivity detector) were analyzed. Analyze hydrocarbons on the FID channel. A TCD using a nitrogen carrier gas was used to determine the hydrogen content because of the small difference in conductivity between the hydrogen and helium carrier gases. Another TCD that uses helium as a carrier gas is used to detect CO, CO 2 , N 2 and O 2 . For quantitative analysis, the response factor is determined by using RGA (refinery gas analysis) calibration gas standards.
  • RGA refinery gas analysis
  • waste circuit board (the waste circuit board has been pre-broken into small pieces with an area of about 1cm 2 irregular small pieces, the circuit board is disassembled from the waste computer motherboard, brand Gigabyte), placed in 50g of the porous obtained in Example 1 Inside the cavity composed of composite materials, the whole is then placed in a microwave cracking reactor (Qingdao Microway Instrument Manufacturing Co., Ltd., model MKX-R1C1B). After nitrogen protection, the microwave thermal cracking reactor is treated at 900W for 5 minutes . The porous composite material generates an arc in the microwave, thereby quickly generating high temperature and transferring it to the material to quickly crack the material. The gas components collected were analyzed by gas chromatography.
  • the main components of cracked gas products are listed in Table 7-1.
  • the solid residue is 30% of the mass before cracking, including the loosely structured and easily separated metal component and the non-metallic component mainly composed of glass fiber mixture.
  • the metal and non-metal can be separated and recovered Part (mainly glass fiber).
  • the specific operation of placing the circuit board to be cracked inside the cavity composed of the porous composite material is as follows: first, a part of the porous composite material is placed inside the quartz reactor, and the porous composite material is sequentially placed to form a hollow opening The cavity is then placed inside the cavity, and finally the remaining porous composite material is covered on the top of the material.
  • the samples obtained in Examples 2-14 were subjected to the same experiment as the above process to obtain similar experimental phenomena and results.
  • the mass of solid residue after the reaction is about 28% to 35% before cracking.
  • the porous composite materials obtained in Examples 2-14 can generate arcs in the microwave field, thereby rapidly generating high temperatures and passing them to the materials to quickly crack them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Sustainable Development (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

一种能在微波场中产生电弧的多孔复合材料及其制备方法和用途。所述多孔复合材料包含无机多孔骨架和负载于所述无机多孔骨架上的碳材料,其中所述无机多孔骨架的平均孔径为0.2-1000μm。所述多孔复合材料具有优异的机械性能,并能够在微波场中产生电弧从而迅速产生高温,由此可以用于微波高温加热、生物质裂解、植物油处理、废旧高分子材料裂解、石油化工裂解、碳纤维复合材料回收、垃圾处理、VOC废气治理、COD污水治理、高温催化、废电路板全组分回收利用以及制备氢气等领域。

Description

能在微波场中产生电弧的多孔复合材料及其制备方法和用途 技术领域
本发明涉及微波加热、微波高温裂解和废旧资源利用领域,具体地,涉及能在微波场中产生电弧的多孔复合材料及其制备方法和用途,以及裂解和/或回收利用包含有机化合物的物质的方法。
背景技术
超过90%的化工原料来自于石油、页岩气和煤等化石能源。但是,化石能源不可再生并且其使用中会产生CO 2,因此开发环境友好的可再生能源成为当前能源领域的热点之一。为了经济和社会的更可持续发展,迫切需要用可再生的生物质能源来代替化石能源。其中,植物油因其价格低廉、可大规模种植等特点成为研究的热点。2012至2013年,世界共生产棕榈油、菜籽油、葵花籽油和大豆油等主要的植物油4.62亿吨。近年来热解技术的迅速发展使其成为生物质利用技术中较为高效和成熟的技术之一。
另一方面,20世纪50年代以来,人类已生产83亿吨塑料,其中63亿吨已成为废弃物。这63亿吨废塑料中,9%被回收,12%被焚烧,其余79%(近55亿吨)被埋在垃圾填埋场中或在自然环境中积累。人类还在不断加快塑料的生产速度,目前塑料产量每年已达到4亿吨,预计到2050年,全球将有120亿吨废塑料。每年有超过800万吨塑料进入海洋,如不加以限制,到2050年,海洋里的塑料垃圾将比鱼类还多。近年来,国际顶级刊物相继发表了塑料微粒对海洋、河流中的生物和饮用水的污染,引起了全社会对塑料污染的关注。2018年,联合国环境署首次聚焦一次性塑料污染问题,发布世界环境日的主题为“塑战速决”,呼吁全世界向塑料污染“宣战”。
就解决塑料污染问题,科研工作者已经做出了许多不懈的努力。从1970年开始,就有大量研究致力于制备在自然环境中可降解的塑料,但是可降解塑料只在生物医药、农业地膜和垃圾袋等方面有重要应用,并且,在需要回收再利用的场合,可降解塑料的存在会严重影响回收塑料制品的性能;同时,可降解塑料在非理想的自然环境中依然需要较长时间才能降解,无 法有效解决白色污染问题。
目前,机械回收是唯一被广泛采用的处理废旧塑料的技术方案,主要步骤依次是去除有机残渣、洗涤、粉碎、熔融再加工,在熔融再加工的过程中通常需要共混新料来维持性能。不同塑料对加工过程的响应不同,使得机械回收的技术方案适用的塑料种类很少,目前实际采用该技术进行回收再生的只有聚对苯二甲酸乙二醇酯(PET)和聚乙烯(PE),分别占每年塑料产量的9%和37%。温度敏感塑料、复合材料、和升温不熔融流动的塑料(如热固性塑料)都无法通过该方法来处理。
将废塑料通过化学转化或热转化制成小分子烃(气体、液态油或固体蜡)的化学回收法被认为是可以超越机械回收的技术方案,所得产物可以用作燃料或化工原料。但是,目前该技术方案并没有被广泛应用,主要是由于成本太高。一方面,化学回收过程大多需要昂贵的催化剂,并且催化剂的选择性要求原料必须是纯的聚合物,这需要对废旧塑料进行耗时耗力的分类;另一方面,化学回收过程需要较大能耗。
另一方面,随着世界经济的快速发展,橡胶材料被广泛运用于各个行业,橡胶制品的需求量也随之越来越高。汽车的产生给人类的生产和生活带来了极大的便利,推动了社会的进步,但同时也带来了一些难以忽视的隐患,即环境和资源问题的加剧。随着汽车制造量的逐年增长,资源的消耗量和轮胎的废弃量也持续增多。我国幅员辽阔、人口众多,是一个轮胎使用大国。废弃的轮胎占用了大量的土地资源和环境空间,加上废旧轮胎分解所需时间的未知性,它们不但不便于进行压缩清理,而且也很难发生生物降解。废旧轮胎对环境造成了巨大的危害,并且难以治理,因此被称为“黑色污染”。废旧橡胶资源化利用已经到了刻不容缓的地步。
另一方面,碳纤维复合材料具有轻质高强、耐腐蚀性好等优异性能,在航空航天、新能源、汽车工业、体育用品等高新技术领域都有着广泛的应用。随着碳纤维复合材料的广泛应用,所产生的碳纤维复合材料废旧物与日俱增,大量碳纤维复合材料废弃物引起了人们的关注,这对环境保护以及经济效益产生了巨大的影响。随着人们对环境保护的日益重视和国际形势引起的能源、资源危机,以及碳纤维复合材料中碳纤维价格昂贵、综 合性能优异,进行碳纤维回收技术的研究是未来重要的发展趋势。
目前的碳纤维回收技术方法主要有物理回收法和化学回收法。物理回收法是将碳纤维复合材料废弃物粉碎或熔融作为新材料的原材料使用。但这种方法会对复合材料的各组分性能造成破坏,特别是我们并不能从中得到碳纤维,无法实现可循环。化学回收是利用热分解或有机溶剂分解的方法从碳纤维复合材料废弃物回收碳纤维。有机溶剂分解回收得到干净的碳纤维,但是回收过程中使用大量的有机溶剂,可能对环境产生污染,使用后的溶剂分离(分液、萃取、蒸馏等)操作过程复杂,导致回收成本较高,并且该方法中对碳纤维增强树脂复合材料基体树脂的种类、甚至固化剂的种类有选择性,并非适合所有的基体树脂。现有技术中已经公开的最具有工业化可行性的是热分解处理碳纤维复合材料,但是传统的加热形式效率普遍较低,使得能耗成本太高。
印刷电路板(PCB)是几乎所有电子信息产品的必备元件,被广泛应用于电子元件与电动控制等多种工业领域。作为PCB制造中的基板材料,覆铜板主要由基板、铜箔和粘合剂三部分构成。基板由高分子合成树脂和增强材料组成。粘合剂通常为酚醛树脂、环氧树脂、聚酰亚胺树脂、氰酸酯树脂、聚苯醚树脂等。早在2000年我国年产覆铜板就已经达到16.01万吨,2006年我国印刷电路板的产量超越日本,成为世界上产值最大的印刷电路板生产国。到目前为止,全球约40%的PCB都在中国生产,随之而来的废印刷电路板(WPCB)数量也十分巨大。机械处理、酸溶等现有的WPCB处理方法多侧重于电路板中金属的回收,较少涉及线路板中非金属成分的有效回收利用,且这些方法大多对环境安全构成严重了威胁。因此,发明一种清洁高效的WPCB处理方法是当前研究的热点问题之一。
微波是指波长介于红外线和特高频(UHF)无线电波之间的电磁波,具有非常强的穿透能力,其波长在lm到lmm之间,所对应的频率为300GHz-300MHz。微波发生器的磁控管接受电源功率而产生微波,通过波导输送到微波加热器,需要加热的物料在微波场的作用下被加热。微波的加热方式与普通的热传递有较大不同,高频电场以每秒几亿级的速度周期性改变外加电场和方向,使物料中的极性分子随电场作高频振动,分子间摩擦挤 压作用使物料迅速发热,从而使物料内部和表面温度同时迅速升高。
新近开发了不采用催化剂的微波热裂解技术,该技术能量效率高,能够同时处理不同种类和受到一定污染的废旧塑料,例如目前使用最多的聚乙烯、聚丙烯、聚酯、聚苯乙烯、聚氯乙烯,使之裂解成化工原料。另外,也采用微波热裂解技术将废旧橡胶裂解成单体并然后重新聚合后使用。因此,微波热裂解技术有望成为解决塑料污染问题和橡胶资源化利用的关键。
已有较多的专利公开了利用微波的这一特性进行热裂解的技术,如中国专利申请公开CN102585860A、CN103252226A、CN106520176A等,但它们都是用碳化硅等普通微波敏感材料在微波场中产生热并将热量传给要裂解的物料,从而达到热裂解目的,这种方式的工作温度不高,效率和产物组成不理想。因此,仍然需要开发一种在微波场中能够迅速产生高温并将热量传递给物料的微波加热材料,开发一种高效的微波高温裂解废旧塑料、废旧橡胶或生物质或植物油的方法,开发一种高效的微波高温裂解碳纤维复合材料并回收碳纤维的方法,一种微波高温裂解电路板实现资源有效回收利用的方法。开发此类材料和方法具有巨大的应用前景。
发明内容
鉴于现有技术中存在的问题,本发明的目的是提供一种多孔复合材料及其制备方法和用途,所述多孔复合材料能在微波场中产生电弧,从而可迅速(例如几十秒到几分钟内)产生高温(特别是1000℃以上),使得可实现有效的微波高温加热或微波裂解包含有机化合物的物质(例如塑料,例如聚乙烯、聚丙烯、聚苯乙烯;橡胶;植物油;生物质;碳纤维复合材料;电路板)并可回收裂解产物中的有价值物质用于循环利用作为化工原料或其他方面的应用。另外,该多孔复合材料本身可以耐高温,适宜工业化应用。
本发明的另一目的是,所述多孔复合材料的制备方法可简单易行,和易于实现规模化制备。
本发明的另一目的是,利用所述多孔复合材料微波高温加热或微波裂解包含有机化合物的物质的方法可以实现高效运行,并且裂解产物可以实 现高附加值,尤其是主要为较轻组分(尤其是气相或小分子气体)。
本发明的另一目的是提供一种微波高温裂解电路板实现资源有效回收利用的方法。裂解气体产物可以为回收利用价值高的气体,固体残渣可易于实现金属与非金属组分的分离,实现金属与玻璃纤维的高效回收,从而实现废电路板全组分的清洁高效回收。
上述本发明的目的可通过一种能在微波场中产生电弧的多孔复合材料而实现,所述能在微波场中产生电弧的多孔复合材料包括:无机多孔骨架和负载于无机多孔骨架上的碳材料。
具体地,本发明的第一方面提供一种能在微波场中产生电弧的多孔复合材料,包含无机多孔骨架和负载于所述无机多孔骨架上的碳材料,其中所述无机多孔骨架的平均孔径为0.2-1000μm。
本文中,所述负载是指碳材料通过一定的结合力固定于无机多孔骨架的表面和/或结构中。所述表面是指多孔骨架所有可以接触到气相的界面,“固定于结构中”指的是镶嵌或者锚定于多孔骨架本身的内部,而不是孔道的内部。
电弧是指一种气体放电现象,是一束高温电离气体,也是一种等离子体。
所述碳材料为石墨烯、碳纳米管、碳纳米纤维、石墨、炭黑、碳纤维、碳点、碳纳米线、由可碳化的有机物碳化得到的产物或由可碳化有机物的混合物碳化后的产物中的至少一种,优选为石墨烯、碳纳米管、由可碳化的有机物碳化得到的产物和由可碳化有机物的混合物碳化后的产物中的至少一种。
所述的碳化是指在一定的温度、气氛条件下处理有机物的过程,其中有机物中的氢、氧、氮、硫等全部或大部挥发掉,从而得到一种含碳量很高的合成材料。
所述可碳化有机物是指有机高分子化合物,包括
-合成有机高分子化合物,优选为橡胶,或塑料,包括热固性塑料和热塑性塑料,更优选选自环氧树脂、酚醛树脂、呋喃树脂、聚苯乙烯、苯乙烯-二乙烯苯共聚物、聚丙烯腈、聚苯胺、聚吡咯、聚噻吩、丁苯橡胶、 聚氨酯橡胶中的至少一种;和
-天然有机高分子化合物,优选为淀粉、粘胶纤维、木质素和纤维素中的至少一种。
所述包含可碳化有机物的混合物是指可碳化有机物与其他不含金属的有机物和/或不含金属的无机物的混合物;优选选自煤、天然沥青、石油沥青或煤焦沥青中的至少一种。
所述碳材料的比例可以为基于所述多孔复合材料总质量计的0.001%-99%,优选0.01%-90%,更优选0.1%-80%。
所述无机多孔骨架是指具有多孔结构的无机材料。所述无机多孔骨架的平均孔径为0.2-1000μm,优选0.2-500μm,更优选0.5-500μm,特别优选为0.5-250μm,或者0.2-250μm。所述无机多孔骨架的孔隙率可以为1%-99.99%,优选10%-99.9%,更优选为30%-99%。
本文中所述平均孔径通过扫描电子显微镜(SEM)测定。首先,通过SEM照片中穿过单个孔隙中心的直线与该孔隙的轮廓的两个交点之间的距离中最短的值来确定该单个孔隙的孔径;然后,通过SEM照片中显示的所有孔隙的孔径值的数均值来确定平均孔径。
孔隙率参考GB/T 23561.4-2009测定。
所述无机材料可以选自碳、硅酸盐、铝酸盐、硼酸盐、磷酸盐、锗酸盐、钛酸盐、氧化物、氮化物、碳化物、硼化物、硫化物、硅化物和卤化物中一种或多种的组合;优选选自碳、硅酸盐、钛酸盐、氧化物、碳化物、氮化物、硼化物中一种或多种的组合。所述氧化物可以选自氧化铝、氧化硅、氧化锆、氧化镁、氧化铈和氧化钛中的至少一种。所述氮化物可以选自氮化硅、氮化硼、氮化锆、氮化铪和氮化钽中的至少一种。所述碳化物可以选自碳化硅、碳化锆、碳化铪和碳化钽中的至少一种。所述硼化物可以选自硼化锆、硼化铪和硼化钽中的至少一种。所述无机多孔骨架的无机材料更优选为碳、硅酸盐、氧化铝、氧化镁、氧化锆、碳化硅、氮化硼、钛酸钾中的至少一种。
优选地,所述无机多孔骨架为选自以下骨架中的至少一种:聚合物海绵碳化后得到的碳骨架、无机纤维构成的多孔骨架、无机海绵骨架、无机 颗粒堆积构成的骨架、陶瓷前驱体海绵焙烧后得到的陶瓷海绵骨架、陶瓷前驱体纤维焙烧后得到的陶瓷纤维骨架;优选三聚氰胺海绵碳化后的骨架、酚醛树脂海绵碳化后的骨架、硅酸铝纤维的多孔骨架(如硅酸铝岩棉)、莫来石纤维的多孔骨架、氧化铝纤维的多孔骨架(如氧化铝纤维板)、氧化锆纤维的多孔骨架、氧化镁纤维的多孔骨架、氮化硼纤维的多孔骨架、碳化硼纤维的多孔骨架、碳化硅纤维的多孔骨架、钛酸钾纤维的多孔骨架、陶瓷前驱体纤维焙烧后得到的陶瓷纤维骨架。
所述无机多孔骨架的多孔结构可以来自骨架材料本身的孔结构,例如海绵状结构形式;也可以来自纤维材料堆积而成的孔结构,例如纤维棉、纤维毡和纤维板等结构形式;也可以来自颗粒材料堆积而成的孔结构,例如沙堆结构形式;还可以来自以上多种形式的组合。优选来自纤维材料堆积而成的孔结构。特别说明的是,以上所述的无机纤维构成的多孔骨架,其中的多孔是由纤维材料堆积的骨架构成的孔结构,并不是指纤维本身具有多孔。
根据本发明的多孔复合材料能够在微波场中产生高温电弧,例如在900w微波场中能够产生使多孔复合材料升温至1000℃以上的电弧,并且所述多孔复合材料本身耐高温,最高可耐3000℃的高温。根据本发明的能在微波场中产生电弧的多孔复合材料是一种高效的微波加热材料。
制备方法
本发明的第二方面提供根据本发明的多孔复合材料的制备方法。根据本发明的制备方法包括以下步骤:
(1)将所述无机多孔骨架或无机多孔骨架前驱体浸入所述碳材料和/或碳材料前驱体的溶液或分散体中,使无机多孔骨架或无机多孔骨架前驱体的孔隙充满该溶液或分散体;
(2)将步骤(1)中得到的多孔材料加热干燥,使得碳材料或碳材料前驱体析出或固化并负载于无机多孔骨架或无机多孔骨架前驱体上;
(3)如果采用碳材料前驱体或者无机多孔骨架前驱体中的至少一种作为原料,则进一步进行以下步骤:惰性气体气氛下加热步骤(2)得到的多 孔材料,使得无机多孔骨架前驱体转化为无机多孔骨架,和/或碳材料前驱体还原或碳化。
步骤(1)中碳材料或其前驱体的溶液或分散体可以包含选自以下的溶剂:苯、甲苯、二甲苯、三氯苯、三氯甲烷、环己烷、己酸乙酯、乙酸丁酯、二硫化碳、甲酮、丙酮、环己酮、四氢呋喃、二甲基甲酰胺、水和醇类中的一种或组合;其中,所述醇类优选选自丙醇、正丁醇、异丁醇、乙二醇、丙二醇、1,4–丁二醇、异丙醇、乙醇中的至少一种。
根据本发明的制备方法中使用的负载用碳材料前驱体优选负载前可以溶解或分散于对人体和环境友好的溶剂中的前驱体,使制备过程“绿色”。所述的对人体和环境友好的溶剂选自乙醇、水和两者混合物中的至少一种,即步骤(1)中的溶剂更优选为包含水和/或乙醇的溶剂;进一步优选水和/或乙醇。
所述溶液或分散体实现碳材料和/或碳材料前驱体在溶剂中充分溶解或是充分分散即可,通常其浓度可以为0.001-1g/mL,优选为0.002-0.8g/mL,再优选为0.003g-0.5g/mL。
步骤(2)中的加热干燥可以在50-250℃,优选60-200℃,更优选80-180℃的温度下进行;优选通过微波加热。微波的功率可以为1W~100KW,优选为500W-10KW。微波加热时间可以为2-200min,优选为20-200min。
所述的无机多孔骨架前驱体是可转化为无机多孔骨架的多孔材料;可以选自陶瓷前驱体、可碳化的有机物的多孔材料或可碳化有机物的混合物的多孔材料中的至少一种。
所述碳材料前驱体可以是氧化石墨烯、改性碳纳米管、改性碳纳米纤维、改性石墨、改性炭黑、改性碳纤维和可碳化的有机物或包含可碳化有机物的混合物中的至少一种。改性碳纳米管、改性碳纳米纤维、改性石墨、改性炭黑、改性碳纤维是指为了提高这些碳材料在水或有机溶剂中的分散性,得到稳定的分散体,进行预处理的碳材料,例如采用分散剂、表面活性剂进行预处理,或是接枝亲水基团进行预处理等;这些预处理手段均采用现有技术中的改善分散性的预处理手段。进行上述预处理的碳材料如石墨烯水分散体、石墨烯乙醇分散体、石墨烯水性浆料、石墨烯油性浆料、 氧化石墨烯水分散体、氧化石墨烯乙醇分散体、氧化石墨烯N-甲基吡咯烷酮分散体、碳纳米管水分散体、羧基化碳纳米管水分散体、碳纳米管乙醇分散体、碳纳米管二甲基甲酰胺分散体、碳纳米管N-甲基吡咯烷酮浆料等,也均可以通过市售而得。
步骤(3)的加热温度可以为400-1800℃,优选600-1500℃,更优选800-1200℃,优选通过微波加热。微波的功率可以为100W~100KW,优选700W~20KW。微波加热的时间可以为0.5-200min,优选为1-100min。
在一种实施方案中,所述制备方法包括以下步骤:
a、制备负载用碳材料或碳材料前驱体溶液或分散体;
b、将无机多孔骨架或无机多孔骨架前驱体浸入步骤a的溶液或分散体中,使无机多孔骨架或无机多孔骨架前驱体的孔隙充满该溶液或分散体;碳材料和/或碳材料前驱体占无机多孔骨架材料或无机多孔骨架材料前驱体与碳材料和/或碳材料前躯体的总质量的0.001%-99.999%,优选0.01%-99.99%,更优选0.1%-99.9%;
c、取出步骤b得到的多孔材料,加热,烘干,碳材料或碳材料前驱体析出或固化,负载于无机多孔骨架或无机多孔骨架前驱体上;加热烘干温度50-250℃,优选60-200℃,更优选80-180℃;
如果以上原料采用的是碳材料和无机多孔骨架,则经过步骤c后即得到所述能在微波场中产生电弧的多孔复合材料;如果所述的原料采用碳材料前驱体或者无机多孔骨架前驱体中的至少一种,则需要继续以下步骤d:
d、惰性气体气氛下加热步骤c得到的多孔材料,无机多孔骨架前驱体转化为无机多孔骨架,和/或碳材料前驱体还原或碳化,得到所述能在微波场中产生电弧的多孔复合材料;加热温度400-1800℃,优选600-1500℃,更优选800-1200℃。
当根据本发明的制备方法中所述的负载于无机多孔骨架的碳材料为石墨烯时,步骤(1)或步骤a中优选用氧化石墨烯水溶液。
当所述的负载于无机多孔骨架的碳材料为碳纳米管时,步骤(1)或步骤a中优选用碳纳米管分散体。
当所述的负载用碳材料前驱体选用热固性塑料时,步骤(1)或步骤a 中需要根据所选热固性塑料的现有技术中常用固化配方配制成合适的固化体系;该固化体系中,可以加入任选的一种或多种选自以下的添加剂:固化促进剂、染料、颜料、着色剂、抗氧化剂、稳定剂、增塑剂、润滑剂、流动改性剂或助剂、阻燃剂、防滴剂、抗结块剂、助粘剂、导电剂、多价金属离子、冲击改性剂、脱模助剂、成核剂等。所用添加剂用量可以为常规用量,或根据实际情况的要求进行调整。当在负载用碳材料前驱体选用热固性塑料时,后续的步骤c中加热后作为碳材料前驱体的热固性树脂固化,负载于无机多孔骨架。
当所述的负载用碳材料前驱体选用热固性塑料时,步骤(1)或步骤a中选取现有技术中相应的良溶剂将上述热固性塑料及其固化体系溶解,得到负载用碳材料前驱体溶液。
当所述的负载用碳材料前驱体选用热塑性塑料时,负载用碳材料前驱体的溶液中可以加入如抗氧化剂、助抗氧化剂、热稳定剂、光稳定剂、臭氧稳定剂、加工助剂、增塑剂、软化剂、防粘连剂、发泡剂、染料、颜料、蜡、增量剂、有机酸、阻燃剂、和偶联剂等塑料加工过程中现有技术的常用助剂。所用助剂用量可以为常规用量,或根据实际情况的要求进行调整。
根据本发明的制备方法中可以通过挤压数次或完全不挤压使无机多孔骨架的孔隙充满负载用碳材料或碳材料前驱体溶液或分散体。
根据本发明的制备方法的步骤(2)中取出步骤(1)得到的多孔材料后可以采取或者不采取措施去除步骤(1)得到的多孔材料中的多余的负载用碳材料或碳材料前驱体溶液或分散体,上述措施包括但不限于挤压和离心操作中的一种或两种。
根据本发明的制备方法的步骤(2)和(3)中所述加热可以优选为微波加热,微波加热不仅效率高而且受热均匀,具体地:
步骤(2)微波的功率可以为1W~100KW,优选为500W-10KW,微波照射时间为2-200min,优选为20-200min。
步骤(3)的微波功率可以为100W~100KW,优选700W~20KW;微波照射时间为0.5-200min,优选为1-100min。
根据本发明的制备方法的步骤(3)中所述加热需要在惰性气体气氛下 进行,选自现有技术中常用的惰性气体气氛,优选氮气。
根据本发明的制备方法中所采用的设备均为常用设备。
应用
根据本发明的多孔复合材料由于将无机多孔骨架和碳材料相结合而具有优异的机械性能,并预料不到地能够在微波场中产生电弧从而迅速产生高温,例如在900w微波场中能够产生使多孔复合材料升温至1000℃以上的电弧,从而可以用于微波高温加热、生物质裂解、植物油处理、废旧高分子材料裂解、石油化工裂解、碳纤维复合材料回收、垃圾处理、VOC废气治理、COD污水治理以及高温催化等领域。同时,所述多孔复合材料本身耐高温,其制备工艺流程简单易行,易于实现规模化制备。
因此,本发明的第三方面提供根据本发明的多孔复合材料用于微波高温加热、包含有机化合物的物质(例如有机物、包含有机物的混合物或包含有机物的复合材料)的裂解和回收利用和高温催化等领域中的用途,尤其用于生物质裂解、植物油处理、废旧高分子材料裂解、石油化工裂解、碳纤维复合材料回收、垃圾处理、VOC废气治理或COD污水治理的用途。
石油化工裂解是指在石油化工生产过程中,常用石油分馏产品(包括石油气)作原料,采用比裂化更高的温度,使具有长链分子的烃断裂成各种短链的气态烃和少量液态烃,以提供有机化工原料。
根据本发明的多孔复合材料可尤其适合用于裂解和/或回收利用包含有机化合物的物质。
因此,本发明的第四方面提供裂解和/或回收利用包含有机化合物的物质的方法,其中将包含有机化合物的物质与根据本发明的多孔复合材料接触,在惰性气氛下或抽真空,对上述包含有机化合物的物质与多孔复合材料施加微波场,多孔复合材料在微波场中产生电弧,从而迅速达到高温而使所述包含有机化合物的物质裂解。
所述包含有机化合物的物质包括有机物、包含有机物的混合物和包含有机物的复合材料,可以例如选自:
-废旧塑料,在此所述的废旧塑料指在民用、工业等用途中使用过且 最终淘汰或替换下来的塑料及其混合物,包括但不限于聚烯烃,聚酯(聚酯及其混合物,例如聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯和聚芳酯中的至少一种),聚酰胺,丙烯腈-丁二烯-苯乙烯三元共聚物,聚碳酸酯,聚乳酸,聚氨酯,聚甲基丙烯酸甲酯,聚甲醛,聚苯醚和聚苯硫醚中的至少一种,优选为聚乙烯及其混合物(包括但不限于低密度聚乙烯、线性低密度聚乙烯、中密度聚乙烯、高密度聚乙烯和超高分子量聚乙烯中的至少一种,优选低密度聚乙烯、线性低密度聚乙烯和高密度聚乙烯中的至少一种)、聚丙烯及其混合物、聚氯乙烯及其混合物、聚对苯二甲酸乙二醇酯、聚苯乙烯及其混合物(包括但不限于普通聚苯乙烯、发泡聚苯乙烯、高抗冲聚苯乙烯和间规聚苯乙烯中的至少一种)、聚酰胺、丙烯腈-丁二烯-苯乙烯三元共聚物、聚碳酸酯、聚乳酸、聚甲基丙烯酸甲酯和聚甲醛中的至少一种,更优选为聚乙烯、聚丙烯、聚氯乙烯、聚对苯二甲酸乙二醇酯、聚苯乙烯、聚碳酸酯和聚酰胺中的至少一种;所述废旧塑料可以无需分拣而直接混合在一起处理,从而简化废旧塑料的处理程序,除非如果对分解产物有特殊要求的话需要按照种类处理;
-废旧橡胶,在此所述的废旧橡胶指在民用、工业等用途中使用过且最终淘汰或替换下来的橡胶及其混合物;优选为天然橡胶、顺丁橡胶、丁苯橡胶、丁腈橡胶、异戊橡胶、乙丙橡胶、丁基橡胶、氯丁橡胶、苯乙烯系嵌段共聚物和硅橡胶中的至少一种;更优选为天然橡胶、顺丁橡胶、丁苯橡胶、异戊橡胶和乙丙橡胶中的至少一种;所述废旧橡胶可以无需分拣而直接混合在一起处理,从而简化废旧橡胶的处理程序;除非如果对分解产物有特殊要求的话需要按照种类处理;
-生物质,在此所述的生物质指通过光合作用产生的各种动植物和藻类,主要由纤维素、半纤维素和木质素组成,包括但不限于秸秆、蔗渣、树枝、树叶、木屑、稻壳、稻杆、稻草、花生壳、椰子壳、棕榈籽壳、核桃壳、夏威夷果壳、开心果壳、麦秆、玉米杆和玉米芯中的至少一种;和
-植物油,在此所述的植物油指从植物的果实、种子、胚芽中得到的油脂及其混合物,所述的从植物的果实、种子、胚芽中得到的油脂包括但不限于棕榈油、菜籽油、葵花籽油、大豆油、花生油、亚麻油和蓖麻油中 的至少一种,优选棕榈油、菜籽油、葵花籽油和大豆油中的至少一种;
-碳纤维复合材料,在此所述的碳纤维复合材料优选现有技术中的碳纤维增强聚合物复合材料,所述与碳纤维复合的聚合物基体包括但不限于聚乙烯、聚丙烯、尼龙、酚醛树脂、环氧树脂中的至少一种;以及
-电路板,在此所述的电路板可为目前技术条件下生产的各种电路板。
在碳纤维复合材料的情况下,在惰性气氛下或真空中,对碳纤维复合材料与多孔复合材料施加微波场,其中多孔复合材料在微波场中产生电弧,从而迅速达到高温而使得碳纤维复合材料中的聚合物基体裂解,而碳纤维得到保留并被回收再利用。
在电路板的情况下,将电路板与多孔复合材料接触,在惰性气氛下或真空,对上述电路板与多孔复合材料施加微波场,多孔复合材料在微波下产生电弧并迅速达到高温,使电路板中高分子合成树脂等有机材料裂解,会得到大量气体产物及固体残渣;所述气体为高热值的可燃性气体;所述固体残渣包括结构疏松易分离的金属组分与以玻璃纤维混合物等为主的非金属组分。
所述包含有机化合物的物质与所述多孔复合材料的重量比可以为1:99-99:1,优选1:50-50:1,更优选1:30-30:1,更优选1:10-10:1。
所述微波场的微波功率可以为1W-100KW,更优选100W-50KW,更优选200W-50KW,更优选500W-20KW,最优选700W-20KW,特别是例如700W、900W或1500W。微波照射的时间可以为0.1-200min;更优选0.5-150min,最优选1-100min。微波场中产生电弧,可以迅速达到700-3000℃,优选800-2500℃,更优选800-2000℃,使得所述包含有机化合物的物质中的有机化合物裂解。
例如,裂解棕榈油的微波功率可以为200W-80KW,优选为300W-50KW;微波照射时间可以为0.2-200min;优选为0.3-150min。裂解菜籽油的微波功率可以为100W-50KW,优选为200W-30KW;微波照射时间可以为0.1-150min;优选为0.2-130min。裂解葵花籽油的微波功率可以为80W-60KW,优选为200W-40KW;微波照射时间可以为0.3-120min; 优选为0.4-100min。裂解大豆油的微波功率可以为120W-40KW,优选为200W-30KW;微波照射时间可以为0.2-100min;优选为0.5-90min。裂解花生油的微波功率可以为100W-10KW,优选为300W-8KW;微波照射时间可以为0.3-100min;优选为0.5-90min。裂解亚麻油的微波功率可以为150W-80KW,优选为300W-50KW;微波照射时间可以为0.1-80min;优选为0.3-70min。裂解蓖麻油的微波功率可以为200W-50KW,优选为300W-40KW;微波照射时间可以为0.5-70min,优选为0.6-60min。裂解秸秆的微波功率可以为100W-70KW,微波照射时间可以为0.2-150min。裂解蔗渣的微波功率可以为80W-50KW,微波照射时间可以为0.2-120min。裂解树枝的微波功率可以为120W-100KW,微波照射时间可以为0.5-200min。裂解树叶的微波功率可以为50W-40KW,微波照射时间可以为0.1-80min。裂解木屑的微波功率可以为100W-10KW,微波照射时间可以为0.2-100min。裂解稻壳的微波功率可以为80W-80KW,微波照射时间可以为0.2-120min。裂解稻杆的微波功率为100W~70KW,微波照射时间为0.2~100min。裂解稻草的微波功率可以为50W-60KW,微波照射时间可以为0.2-60min。裂解花生壳的微波功率可以为100W-50KW,微波照射时间可以为0.3-70min。裂解椰子壳的微波功率可以为200W-80KW,微波照射时间可以为0.5-150min。裂解棕榈籽壳的微波功率可以为100W-50KW,微波照射时间可以为0.3-100min。裂解玉米芯的微波功率可以为80W-50KW,微波照射时间可以为0.2-70min。裂解天然橡胶的微波功率可以为100W-50KW,微波照射时间可以为0.5-150min。裂解顺丁橡胶的微波功率可以为120W-60KW,微波照射时间可以为0.5-120min。裂解丁苯橡胶的微波功率可以为150W-80KW,微波照射时间可以为0.6-200min。裂解异戊橡胶的微波功率可以为100W-60KW,微波照射时间可以为0.5-150min。裂解乙丙橡胶的微波功率可以为200W-70KW,微波照射时间可以为0.2-100min。
所述微波场可采用现有技术中的各种微波设备,例如家用微波炉、工业化微波设备(如微波热裂解反应器)等产生。
惰性气氛为现有技术中通常用的惰性气体气氛,例如氮气、氦气、氖 气、氩气、氪气或氙气,优选氮气。
所述包含有机化合物的物质与多孔复合材料可以各种方式接触。如果包含有机化合物的物质是固体,例如废旧塑料,则可将该物质放置于多孔复合材料上,放置于多孔复合材料构成的腔体内、或被多孔复合材料盖在下部等;优选将固体物质(例如电路板)进行破碎后与多孔复合材料接触。如果包含有机化合物的物质是液体,例如植物油,则可采用的方式之一是间歇方式,也就是先将植物油加到多孔复合材料上,多孔复合材料会自动将植物油吸到孔道内部,然后再进行微波裂解;另一种是连续的,也就是在微波裂解的同时,用泵(例如蠕动泵)通过石英管道持续添加到多孔材料表面。以上所述的泵送速度能保障植物油和多孔复合材料的混合物在微波场下停留的时间即可。如果包含有机化合物的物质是固体和液体的混合物,则可相应采用上述接触方式的混合形式。
本发明的方法中用于放置或承载所述包含有机化合物的物质和多孔复合材料的装置可以是微波可以穿透且耐1200℃以上高温的各种容器或管道,如石英坩埚、石英反应器、石英管、氧化铝坩埚、氧化铝反应器、氧化铝管等。
本发明的方法中所述包含有机化合物的物质在裂解后气化。可将裂解后得到的气体收集用于后续处理或回收利用,例如将气体分离后作为燃料或是作为化学工业原料进行后续反应和生产;将裂解后的残渣作为废弃物处理,或者如对于碳纤维复合材料,裂解后的残渣主要是碳纤维,可以将其收集后去除杂质再利用,或者对于电路板,可处理所述电路板裂解得到的固体残渣,将其中的金属与非金属组分分离,分别回收再利用。以上有关固体残渣的分离可采用现有技术中的各种分离的办法和设备。
所述的气体收集为现有技术中通常的方法,可采用气体收集装置进行,优选在惰性气氛下进行。例如,如采用家用式微波炉作为微波场,则气体收集方式为:在氮气保护的手套箱中将承载包含有机化合物的物质和多孔复合材料的石英坩埚装入真空袋中后密封,微波下反应后隔着真空袋拧开坩埚,用针筒扎进真空袋取样。如果采用工业式的有进气口和出气口的微波炉(如微波热裂解反应器等),则气体收集方式为:反应过程用氮气吹扫, 出气口用集气袋取样收集。
本发明的方法利用所述多孔复合材料在微波场中产生电弧,从而迅速产生高温,使包含有机化合物的物质裂解,可以将裂解产物作为化工原料以回收利用,或将裂解后留下的碳纤维或金属等有价值残渣回收再利用,尤其可实现废电路板全回收。该过程高效,产物组成附加值高。
具体实施方式
下面结合实施例,进一步举例说明本发明;但本发明的范围不受这些实施例的限制。
实施例中的实验数据使用以下仪器及测定方法测定:
1、实施例中所得多孔复合材料中负载的碳材料质量百分含量的测定:
(1)原料中采用无机多孔骨架材料的情况下,先测定原料无机多孔骨架材料重量,在实验结束后测定所得多孔复合材料重量,两者重量差即为负载的碳材料重量,由此确定负载的碳材料在多孔复合材料的质量百分含量;
(2)原料中采用无机多孔骨架前驱体的情况下,取两个重量一致的无机多孔骨架前驱体试样,其中一个试样用于根据本发明的实施例;另一个用于参比实施例,其中只实施如上文所述的制备方法的步骤c和步骤d;在实验结束后,称量根据本发明的实施例所得多孔复合材料的重量,并称量参比实施例所得的试样最后的重量,两者重量差即为负载的碳材料重量,由此确定负载的碳材料在多孔复合材料中的质量百分含量。
2、除非另外说明,以下实施例和对比例中对裂解出的气体进行的色谱分析采用美国Agilent公司生产的Agilent 6890N气相色谱在如下条件下进行。
所用美国Agilent公司生产的Agilent 6890N气相色谱配备有FID检测器,使用色谱柱:HP-PLOT AL 2O 3毛细管色谱柱(50m×0.53mm×15μm);载气:He,平均线速度41cm/s;进样口温度200℃;检测器温度:250℃;分流比15:1;进样量:0.25ml(气态);升温程序:初始温度55℃,保持3min,以4℃/min升至120℃,保持4min,再以20℃/min升至170℃,保 持10min。
3、无机多孔骨架和多孔复合材料的平均孔径通过如下方式确定:通过扫描电子显微镜(SEM)照片中穿过单个孔隙中心的直线与该孔隙的轮廓的两个交点之间的距离中最短的值来确定单个孔隙的孔径,然后通过SEM照片中显示的所有孔隙的孔径值的数均值来确定平均孔径。采用的SEM为Hitachi S-4800,日本日立,放大率为200倍。
4、孔隙率的测定方法:参考GB/T 23561.4-2009测定孔隙率。
实施例中使用的原料均为商购获得的。
多孔复合材料的制备
实施例1
(1)量取500ml氧化石墨烯水分散体(JCGO-95-1-2.6-W,10mg/ml,南京吉仓纳米科技有限公司),将其置于烧杯中;
(2)取2g由酚醛树脂构成的多孔骨架(酚醛泡沫,平均孔径300μm,孔隙率99%,常熟绿洲花卉泡沫有限公司),将其浸泡入氧化石墨烯水分散体,使分散体充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于180℃烘箱中加热1小时,由此烘干并预还原;
(4)将烘干的多孔材料放入家用微波炉(700w,型号M1-L213B,美的)中并在高火下微波处理2min,将预还原的氧化石墨烯还原成石墨烯,酚醛树脂骨架碳化成碳骨架(平均孔径200μm,孔隙率99%),得到能在微波场中产生电弧的石墨烯负载碳多孔骨架的多孔复合材料,其中石墨烯占多孔复合材料总质量的百分数为10%。
实施例2
(1)量取500ml碳纳米管分散体(XFWDM,100mg/ml,南京先丰纳米材料科技有限公司),将其置于烧杯;
(2)取2g由酚醛树脂构成的多孔骨架(酚醛泡沫,平均孔径200μm,孔隙率99%,常熟绿洲花卉泡沫有限公司),将其浸泡入碳纳米管分散体中, 使碳纳米管分散体充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于80℃烘箱中加热5小时,烘干;
(4)将烘干的多孔材料放入管式炉,在氮气气氛下于800℃碳化1h,得到能在微波场中能产生电弧的碳纳米管负载碳多孔骨架的多孔复合材料(碳骨架的平均孔径140μm,孔隙率99%),其中碳纳米管占多孔复合材料总质量的百分数为30%。
实施例3
(1)量取500ml碳纳米管分散体(XFWDM,100mg/ml,南京先丰纳米材料科技有限公司),将其置于烧杯中;
(2)取5g由硅酸盐构成的纤维棉状多孔骨架(平均孔径150μm,孔隙率90%,山东鲁阳节能材料股份有限公司)浸泡入碳纳米管分散体中,挤压数次,使分散体充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于150℃烘箱中加热2小时,烘干,得到能在微波场中产生电弧的碳纳米管负载硅酸盐纤维多孔骨架的多孔复合材料,其中碳纳米管占多孔复合材料总质量的百分数为10%。
实施例4
(1)称取30g粉末酚醛树脂(2123,新乡市伯马风帆实业有限公司)和3.6g六亚甲基四胺固化剂,将其置于烧杯中,倒入500ml乙醇,将混合物用磁转子搅拌1小时至所有组分溶解;
(2)取5g由硅酸盐构成的纤维棉状多孔骨架(平均孔径150μm,孔隙率90%,山东鲁阳节能材料股份有限公司),将其浸泡入配制好的溶液中,挤压数次,使溶液充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于180℃烘箱中加热2小时,烘干除去溶剂,使得酚醛树脂固化;
(4)将烘干固化的多孔材料放入管式炉,在氮气气氛下于1000℃碳化 1h,使得酚醛树脂碳化,得到能在微波场中产生电弧的酚醛树脂碳化产物负载硅酸盐纤维多孔骨架的多孔复合材料,其中碳材料占多孔复合材料总质量的百分数为5%。
实施例5
(1)称取50g液体酚醛树脂(2152,济宁佰一化工),将其置于烧杯,倒入500ml乙醇,用磁转子搅拌1小时至所有组分溶解;
(2)取8g由氧化铝构成的纤维板状多孔骨架(平均孔径100μm,孔隙率85%,山东鲁阳节能材料股份有限公司),将其浸泡入配制好的溶液中,使溶液充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于180℃烘箱中加热2小时,烘干除去溶剂,使得酚醛树脂固化;
(4)将烘干固化的多孔材料放入管式炉,在氮气气氛下于900℃碳化1h,使得酚醛树脂碳化,得到能在微波场中产生电弧的酚醛树脂碳化产物负载氧化铝纤维多孔骨架的多孔复合材料,其中碳材料占多孔复合材料总质量的百分数为6%。
实施例6
(1)称取30g水溶性淀粉(药用级,货号:S104454,上海阿拉丁生化科技股份有限公司),将其置于烧杯中,倒入500ml去离子水,用磁转子搅拌1小时至所有组分溶解;
(2)取8g由氧化铝构成的纤维毡状多孔骨架(平均孔径100μm,孔隙率85%,山东鲁阳节能材料股份有限公司),将其浸泡入配制好的溶液中,使溶液充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放入微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司),在功率10KW下微波处理2min,使得将多孔材料烘干;
(4)将烘干的多孔材料放入管式炉,在氮气气氛下于1200℃碳化1h,使得水溶性淀粉碳化,得到能在微波场中产生电弧的淀粉碳化产物负载氧 化铝纤维多孔骨架的多孔复合材料,其中碳材料占多孔复合材料总质量的百分数为0.1%。
实施例7
(1)称取50g水溶性淀粉(药用级,货号S104454,上海阿拉丁生化科技股份有限公司),将其置于烧杯中,倒入500ml去离子水,用磁转子搅拌1小时至所有组分溶解;
(2)取8g由氧化铝构成的纤维棉状多孔骨架(平均孔径100μm,孔隙率85%,山东鲁阳节能材料股份有限公司),将其浸泡入配制好的溶液中,挤压数次,使溶液充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放入微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司),在功率500W下微波处理2h,使得将多孔材料烘干;
(4)将烘干的多孔材料放入管式炉,在氮气气氛下于1000℃碳化1h,使得淀粉碳化,得到能在微波场中产生电弧的淀粉碳化产物负载氧化铝纤维多孔骨架的多孔复合材料,其中碳材料占多孔复合材料总质量的百分数为0.2%。
实施例8
(1)称取2kg液体酚醛树脂(2152,济宁佰一化工),将其置于烧杯中,倒入4L乙醇,用磁转子搅拌1小时至所有组分溶解;
(2)取2g由酚醛树脂构成的多孔骨架(酚醛泡沫,平均孔径500μm,孔隙率99%,常熟绿洲花卉泡沫有限公司),将其浸泡入配制好的溶液中,使溶液充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于150℃烘箱中加热2小时,烘干;
(4)将烘干的多孔材料放入微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司),在功率20KW下氮气气氛下微波处理100min,得到能在微波场中产生电弧的酚醛树脂碳化产物负载碳多孔骨架的多孔复合 材料(碳骨架的平均孔径350μm,孔隙率99%),其中负载于无机碳骨架上的碳材料占多孔复合材料总质量的百分数为80%。
实施例9
(1)称取0.3g液体酚醛树脂(2152,济宁佰一化工),将其置于烧杯中,倒入100ml乙醇,用磁转子搅拌1小时至所有组分溶解;
(2)取300g活性氧化铝(平均孔径0.05μm,孔隙率30%,山东凯欧化工科技有限公司),将其浸泡入配制好的溶液中,使溶液充分进入活性氧化铝的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于150℃烘箱中加热2小时,烘干;
(4)将烘干的多孔材料放入管式炉,在氮气气氛下于1000℃碳化1h,使得酚醛树脂碳化,得到能在微波场中产生电弧的酚醛树脂碳化产物负载活性氧化铝(多孔骨架)的多孔复合材料,其中碳材料占多孔复合材料总质量的百分数为0.05%。
实施例10
(1)称取30g粉末酚醛树脂(2123,新乡市伯马风帆实业有限公司)和3.6g六亚甲基四胺固化剂,将其置于烧杯中,倒入500ml乙醇,用磁转子搅拌1小时至溶解;
(2)取8g由氧化镁构成的纤维板状多孔骨架(平均孔径100μm,孔隙率80%,济南火龙热陶瓷有限责任公司),将其浸泡入配制好的溶液中,使溶液充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于180℃烘箱中加热2小时,烘干除去溶剂,使得酚醛树脂固化;
(4)将烘干固化的多孔材料放入管式炉,在氮气气氛下于1000℃下碳化1h,使得酚醛树脂碳化,得到能在微波场中产生电弧的酚醛树脂碳化产物负载氧化镁纤维多孔骨架的多孔复合材料,其中碳材料占多孔复合材料总质量的百分数为3%。
实施例11
(1)称取100g水溶性淀粉(药用级,上海阿拉丁生化科技股份有限公司),将其置于烧杯中,倒入500ml去离子水,用磁转子搅拌1小时至所有组分溶解;
(2)取8g由氧化锆构成的纤维板状多孔骨架(平均孔径150μm,孔隙率80%,济南火龙热陶瓷有限责任公司),将其浸泡入配制好的溶液中,使溶液充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放入微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司),在功率3KW下微波处理20min,使得多孔材料烘干;
(4)将烘干的多孔材料放入管式炉,在氮气气氛下于900℃碳化2h,使得淀粉碳化,得到能在微波场中产生电弧的淀粉碳化产物负载氧化锆纤维多孔骨架的多孔复合材料,其中碳材料占多孔复合材料总质量的百分数为0.5%。
实施例12
(1)称取50g液体酚醛树脂(2152,济宁佰一化工),将其置于烧杯中,倒入500ml乙醇,用磁转子搅拌1小时至所有组分溶解;
(2)取8g由氮化硼构成的纤维板状多孔骨架(平均孔径100μm,孔隙率80%,济南火龙热陶瓷有限责任公司),将其浸泡入配制好的溶液中,使溶液充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于180℃烘箱中加热2小时,烘干除去溶剂,使得酚醛树脂固化;
(4)将烘干固化的多孔材料放入管式炉,在氮气气氛下于900℃下碳化1h,使得酚醛树脂碳化,得到能在微波场中产生电弧的酚醛树脂碳化产物负载氮化硼纤维多孔骨架的多孔复合材料,其中碳材料占多孔复合材料总质量的百分数为5%。
实施例13
(1)称取100g液体酚醛树脂(2152,济宁佰一化工),将其置于烧杯中,倒入500ml乙醇,用磁转子搅拌1小时至所有组分溶解;
(2)取8g由碳化硅构成的纤维板状多孔骨架(平均孔径100μm,孔隙率80%,济南火龙热陶瓷有限责任公司),将其浸泡入配制好的溶液中,使溶液充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于180℃烘箱中加热2小时,烘干以除去溶剂,使得酚醛树脂固化;
(4)将烘干固化的多孔材料放入管式炉,在氮气气氛下于800℃下碳化1h,使得酚醛树脂碳化,得到能在微波场中产生电弧的酚醛树脂碳化产物负载碳化硅纤维多孔骨架的多孔复合材料,其中碳材料占多孔复合材料总质量的百分数为10%。
实施例14
(1)称取100g液体酚醛树脂(2152,济宁佰一化工),将其置于烧杯中,倒入500ml乙醇,用磁转子搅拌1小时至所有组分溶解;
(2)取8g由钛酸钾构成的纤维板状多孔骨架(平均孔径100μm,孔隙率80%,济南火龙热陶瓷有限责任公司),将其浸泡入配制好的溶液中,使溶液充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于180℃烘箱中加热2小时,烘干除去溶剂,使得酚醛树脂固化;
(4)将烘干固化的多孔材料放入管式炉,在氮气气氛下于800℃下碳化1h,使得酚醛树脂碳化,得到能在微波场中产生电弧的酚醛树脂碳化产物负载钛酸钾纤维多孔骨架的多孔复合材料,其中碳材料占多孔复合材料总质量的百分数为10%。
微波裂解废旧塑料
实施例15
剪取或称取各0.5g的饮料瓶身(PET)、饮料瓶盖(HDPE)、大棚膜 (LLDPE)、PP粒料、PP饭盒碎片、包装聚苯乙烯(PS)泡沫、丙烯腈-丁二烯-苯乙烯三元共聚物托盘(ABS)、尼龙管子碎片(PA6)以及透明水杯(PC)和0.5g聚氯乙烯(PVC)软管分别置于1g实施例1得到的多孔复合材料上,用氮气保护后,在家用微波炉(700w)中采用高火微波裂解30s。在实施例1得到的多孔复合材料的辅助下,所有物料经过家用微波炉(700w)短短30s微波处理后都裂解气化,几乎未见残留,只是在聚氯乙烯(PVC)软管的情况下仅有少量黑色物质残留,所有过程中有剧烈的电弧放电现象。该多孔复合材料在微波场中产生电弧,从而迅速产生高温并将热量传递给物料使物料快速裂解。
采用实施例2-14得到的样品进行与上述过程相同的实验,得到类似的实验现象和结果。实施例2-14得到的多孔复合材料都能在微波场中产生电弧,从而迅速产生高温并将热量传递给物料使物料快速裂解。
实施例16
剪取50g饮料瓶盖(HDPE)、50g PP饭盒碎片、50g丙烯腈-丁二烯-苯乙烯三元共聚物托盘(ABS)、50g尼龙管子碎片(PA6)以及50g透明水杯(PC)、3g包装泡沫(PS)、10g大棚膜(LLDPE)、50g饮料瓶身(PET)、50g一次性透明塑料杯(PS)碎片和50g聚氯乙烯(PVC)软管碎片,分别置于30g实施例1得到的多孔复合材料组成的腔体内部,用氮气保护后,用微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司)以1500W功率处理5min。所有物料几乎未见残留,只是在聚氯乙烯软管的情况下物料仅有少量黑色物质残留。
待裂解物料置于微波中产生电弧的多孔复合材料组成的腔体内部的具体操作如下:先将一部分多孔复合材料放置于石英反应器的底部和周围形成上开口的腔体,随后将物料放置于腔体内部,最后将剩余的多孔复合材料盖于物料上部。
采用实施例2-14得到的样品进行与上述过程相同的实验,得到类似的实验现象和结果。实施例2-14得到的多孔复合材料都能在微波中产生电弧,从而迅速产生高温并传递给物料使物料快速裂解。
对比例1
将0.5g饮料瓶盖(HDPE)碎片、0.5g PP饭盒碎片、0.5g PET瓶身碎片、PS泡沫和0.5g PVC软管分别置于1g碳化硅粉末(98.5%,国药集团化学试剂北京有限公司)上,用氮气保护后,在家用微波炉(700w)中采用高火微波处理30s。微波过程都没有任何火花,微波处理之后HDPE瓶盖、PP饭盒碎片、PET碎片、PS泡沫和PVC软管都没有发生变化,只有石英坩埚底部有些温热。
对比例2
将0.5g饮料瓶盖(HDPE)碎片置于1g活性炭粉末(AR,≥200目,货号C112223,上海阿拉丁生化科技股份有限公司)上,用氮气保护后,在家用微波炉(700w)中采用高火微波处理30s。微波过程时而有电弧出现,微波处理之后HDPE瓶盖熔化,但并没有完全消失,称重发现HDPE有25%失重。
实施例17
除以下参数外,其他参数和步骤同实施例15:
取实施例1得到的1g样品用微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司)以700W功率30s分别裂解(或用家用微波炉(700W)高火30s裂解)0.5g的HDPE、0.5g的PP和0.5g的LLDPE,然后将得到的气体进行色谱分析,其中检测到的主要成分列于表1-1中。
取实施例1得到的1g样品用微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司)以700W功率30s裂解(或用家用微波炉(700W)高火30s裂解)0.5g的PET,然后将得到的气体进行色谱分析,其中检测到的主要成分列于表1-2中。
取实施例1得到的1g样品用微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司)以700W功率30s裂解(或用家用微波炉(700W)高火30s裂解)0.5g的PS,然后将得到的气体进行色谱分析,其中检测到 的主要成分列于表1-3中。
取实施例1得到的1g样品用家用微波炉(700W)高火30s裂解0.5g的PVC,然后将得到的气体进行色谱分析,其中检测到的主要成分列于表1-4中。
表1-1
Figure PCTCN2019108632-appb-000001
表1-2
Figure PCTCN2019108632-appb-000002
表1-3
Figure PCTCN2019108632-appb-000003
表1-4
Figure PCTCN2019108632-appb-000004
实施例18
除以下参数外,其他参数和步骤同实施例15:
取实施例6得到的30g样品用微波热裂解反应器以1500W功率10min裂解50g HDPE、50g PP和50g LLDPE,然后将得到的气体进行色谱分析,其中检测到的主要成分列于表2-1中。
取实施例6得到的30g样品用微波热裂解反应器以1500W功率20min裂解50g PET,然后将得到的气体进行色谱分析,其中检测到的主要成分列于表2-2中。
取实施例6得到的30g样品用微波热裂解反应器以1500W功率40min裂解3g PS,然后将得到的气体进行色谱分析,其中检测到的主要成分列于表2-3中。
取实施例6得到的30g样品用微波热裂解反应器以1500W功率15分钟裂解50g的一次性透明塑料杯(PS)碎片,然后将得到的气体进行色谱分析,其中检测到的主要成分列于表2-4。
取实施例6得到的30g样品用微波热裂解反应器以1500W功率15分钟裂解50g的PVC软管碎片,然后将得到的气体进行色谱分析,其中检测到的主要成分列于表2-5。
表2-1
Figure PCTCN2019108632-appb-000005
表2-2
Figure PCTCN2019108632-appb-000006
表2-3
Figure PCTCN2019108632-appb-000007
表2-4
Figure PCTCN2019108632-appb-000008
表2-5
Figure PCTCN2019108632-appb-000009
对比例3
(1)称取50g液体酚醛树脂(2152,济宁佰一化工)置于烧杯中,倒入500ml乙醇,用磁转子搅拌1小时至所有组分溶解;
(2)取8g由氧化铝构成的纤维板状多孔骨架(平均孔径100nm,合肥普元纳米科技有限公司),将其浸泡入配制好的溶液,使溶液充分进入多孔骨架的孔道;
(3)取出浸泡好的多孔材料,放于不锈钢托盘中,置于180℃烘箱中 加热2小时,烘干除去溶剂,使得酚醛树脂固化;
(4)将烘干固化的多孔材料放入管式炉,在氮气气氛下于900℃碳化1h,使得酚醛树脂碳化。
将0.5g饮料瓶盖(HDPE)碎片置于1g步骤(4)得到的材料上,在用氮气保护后,在家用微波炉(700w)中采用高火微波处理30s。微波处理过程中没有任何出现火花,微波处理之后HDPE瓶盖并没有发生变化。由此可见,在无机多孔骨架的孔径较小的情况下,没有获得能在微波场中产生电弧而实现有效裂解的多孔复合材料。
微波裂解植物油
实施例19
取0.5g的棕榈油、菜籽油、葵花籽油和大豆油中的每一种,分别置于1g实施例1得到的多孔复合材料上,所述油被多孔复合材料自动吸入,在用氮气保护后,将混合材料在家用微波炉(700w)中采用高火微波裂解30s(或微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司)以700W功率30s裂解),然后称重显示多孔复合材料中几乎没有物料残留。在实施例1得到的多孔复合材料的辅助下,所有物料经过微波(700w)短短30s微波处理后都裂解气化,在此过程中有剧烈的电弧放电现象。该多孔复合材料在微波场中产生电弧,从而迅速产生高温并将热量传递给物料使物料快速裂解。裂解后将得到的气体进行色谱分析,其中检测到的主要成分列于表3-1中。
表3-1
Figure PCTCN2019108632-appb-000010
实施例20
取100g棕榈油、菜籽油、葵花籽油和大豆油中的每一种,分别置于烧杯,将30g实施例1得到的多孔复合材料置于石英反应器,用500ml/min氮气吹扫10min后将流量调至100ml/min,以1500W功率启动微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司),采用蠕动泵(兰格BT100-2J精密蠕动泵)以约2g/min的速度通过石英细管将上述植物油持续添加到石英反应器内的多孔复合材料表面,物料被源源不断的裂解成气体,操作结束之后几乎没有物料残留。
采用实施例2-14得到的多孔复合材料进行与上述过程相同的实验,得到类似的实验现象和结果。
对比例4
将0.5g棕榈油滴加于1g碳化硅粉末(98.5%,国药集团化学试剂北京有限公司)上,在用氮气保护后,在家用微波炉(700w)中采用高火微波处理30s。微波过程没有任何火花,只有石英坩埚底部有些温热,微波处理之后称重显示棕榈油质量未发生明显变化。
实施例21
除以下参数外,其他参数和步骤同实施例19:
取实施例6得到的30g的样品用微波热裂解反应器以1500W功率及2g/min进料速度分别裂解100g棕榈油、菜籽油、葵花籽油和大豆油,然后将得到的气体进行色谱分析,其中检测到的主要成分列于表3-2中。
表3-2
Figure PCTCN2019108632-appb-000011
微波裂解生物质:
实施例22
分别取0.5g秸秆、蔗渣、树枝、树叶、木屑、稻壳、稻草、花生壳、椰子壳、棕榈籽壳和玉米芯,分别置于1g实施例1得到的多孔复合材料上,在用氮气保护后,在家用微波炉(700w)中采用高火微波裂解30s。在实施例1得到的多孔复合材料的辅助下,所有物料经过家用微波炉(700w)短短30s微波处理后都裂解气化,仅剩黑色物质,该过程中有剧烈的电弧放电现象。该多孔复合材料在微波中产生电弧,从而迅速产生高温并将热量传递给物料使物料快速裂解。
分别取50g秸秆、蔗渣、树枝、树叶、木屑、稻壳、稻草、花生壳、椰子壳、棕榈籽壳和玉米芯,分别置于30g实施例1得到的多孔复合材料组成的腔体内部,在用氮气保护后,用微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司)以1500W功率处理5min。所有物料仅剩黑色物质。
待裂解物料置于所述多孔复合材料组成的腔体内部具体操作如下:先将一部分所述多孔复合材料放置于石英反应器的底部和周围形成上开口的腔体,随后将物料放置于腔体内部,最后将剩余的多孔复合材料盖于物料上部。
采用实施例2-14得到的样品进行与上述过程相同的实验,得到类似的实验现象和结果。
对比例5
将0.5g稻壳置于1g碳化硅粉末(98.5%,国药集团化学试剂北京有限公司)上,在用氮气保护后,在家用微波炉(700w)中采用高火微波处理30s。微波处理过程没有任何火花,微波处理之后稻壳并没有发生变化,只有石英坩埚底部有些温热。
实施例23
除以下参数外,其他参数和步骤同实施例22:
取实施例1得到的1g的样品用家用微波炉(700W)高火30s分别裂解0.5g的秸秆和稻壳,然后将得到的气体进行色谱分析,其中检测到的除CO和CO 2之外的主要成分列于表4-1中。
取实施例6得到的30g样品用微波热裂解反应器以1500W功率15min分别裂解50g秸秆和稻壳,然后将得到的气体进行色谱分析,其中检测到的除CO和CO 2之外的主要成分列于表4-2中。
表4-1
Figure PCTCN2019108632-appb-000012
表4-2
Figure PCTCN2019108632-appb-000013
微波裂解废旧橡胶:
实施例24
取0.5g汽车轮胎(韩泰)碎片、丁苯橡胶(北京橡胶制品厂)和乙丙橡胶(北京橡胶制品厂)样品分别置于1g实施例1得到的多孔复合材料上,在用氮气保护后,在家用微波炉(700w)中采用高火微波裂解30s。在实施例1得到的多孔复合材料的辅助下,所有物料经过家用微波炉(700w)短短30s微波处理后都裂解气化,对于汽车轮胎碎片仅剩一捏就碎的黑色物质,对于丁苯橡胶和乙丙橡胶样品没有留下残留物,该过程中有剧烈的电弧放电现象。该多孔复合材料在微波中产生电弧,从而迅速产生高温并 将热量传递给物料使物料快速裂解。
取50g汽车轮胎(韩泰)碎片、丁苯橡胶(北京橡胶制品厂)和乙丙橡胶(北京橡胶制品厂)样品分别置于30g实施例1得到的微波中产生电弧的多孔复合材料组成的腔体内部,在用氮气保护后,用微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司)以1500W功率处理5min。所有物料经过家用微波炉(700w)短短30s微波处理后都裂解气化,对于汽车轮胎碎片仅剩一捏就碎的黑色物质,丁苯橡胶和乙丙橡胶样品没有留下残留物。
待裂解物料置于所述多孔复合材料组成的腔体内部的具体操作如下:先将一部分所述多孔复合材料放置于石英反应器的底部和周围形成上开口的腔体,随后将物料放置于腔体内部,最后将剩余的多孔复合材料盖于物料上部。
采用实施例2-14得到的多孔复合材料进行与上述过程相同的实验,得到类似的实验现象和结果。
对比例6
将0.5g丁苯橡胶样品置于1g碳化硅粉末(98.5%,国药集团化学试剂北京有限公司)上,在用氮气保护后,在家用微波炉(700w)中采用高火微波处理30s。微波处理过程没有任何火花,微波处理之后丁苯橡胶样品并没有发生变化,只有石英坩埚底部有些温热。
实施例25
取0.5g汽车轮胎(韩泰)碎片、丁苯橡胶(北京橡胶制品厂)和乙丙橡胶(北京橡胶制品厂)样品分别置于1g实施例1得到的多孔复合材料上,在用氮气保护后,在家用微波炉(700w)中采用高火微波裂解30s,然后将得到的气体进行色谱分析,其中检测到的除CO和CO 2之外主要成分列于表5-1、表5-2和表5-3中。
同以上步骤,取实施例6得到的30g样品用微波热裂解反应器以1500W功率15分钟分别裂解50g汽车轮胎(韩泰)碎片、丁苯橡胶(北京橡胶制 品厂)和乙丙橡胶(北京橡胶制品厂)样品,然后将得到的气体进行色谱分析,其中检测到的除CO和CO 2之外的主要成分列于表5-4、表5-5和表5-6中。
表5-1
Figure PCTCN2019108632-appb-000014
表5-2
Figure PCTCN2019108632-appb-000015
表5-3
Figure PCTCN2019108632-appb-000016
表5-4
Figure PCTCN2019108632-appb-000017
表5-5
Figure PCTCN2019108632-appb-000018
表5-6
Figure PCTCN2019108632-appb-000019
微波裂解碳纤维复合材料:
实施例26
取2g碳纤维增强环氧树脂复合材料(常州市华碳纤维复合材料有限公司)置于1g实施例1得到的多孔复合材料上,用氮气保护后,在家用微波炉(700w)中采用高火微波裂解40s后,取出碳纤维复合材料,称量发现失重,碳纤维已经可以轻易剥离;微波过程中有剧烈的电弧放电现象。该多孔复合材料在微波中产生电弧,从而迅速产生高温并将热量传递给物料使物料快速裂解。
取50g碳纤维增强环氧树脂复合材料(常州市华碳纤维复合材料有限公司)置于30g实施例1得到的微波中产生电弧的多孔复合材料组成的腔体内部,用氮气保护后,用微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司)以1500W功率处理5min。取出碳纤维复合材料,称量发现失重,碳纤维已经可以轻易从织物中剥离。
待裂解物料置于微波中产生电弧的多孔复合材料组成的腔体内部具体操作如下:先将一部分微波中产生电弧的多孔复合材料放置于石英反应器 的底部和周围形成上开口的腔体,随后将物料放置于腔体内部,最后将剩余的多孔复合材料盖于物料上部。
对实施例2-14得到的样品进行与上述过程相同的实验,得到类似的实验现象和结果。实施例2-14得到的多孔复合材料都能在微波中产生电弧,从而迅速产生高温并传递给物料使物料快速裂解。
对比例7
取2g碳纤维增强环氧树脂复合材料(常州市华碳纤维复合材料有限公司)置于1g碳化硅粉末(98.5%,国药集团化学试剂北京有限公司)上,用氮气保护后,在家用微波炉(700w)中采用高火微波处理30s。微波处理过程没有出现任何火花,微波处理之后物料并没有发生变化,只有石英坩埚底部有些温热。
实施例27
取2g碳纤维增强环氧树脂复合材料(常州市华碳纤维复合材料有限公司)置于1g实施例1得到的微波中产生电弧的多孔复合材料上,用氮气保护后,在家用微波炉(700w)中采用高火微波裂解40s后,取出碳纤维复合材料,称量发现失重36%,碳纤维已经可以轻易从织物中剥离。对收集得到的气体进行色谱分析,其中检测到的主要成分列于表6。
取30g碳纤维增强聚丙烯复合材料(常州市华碳纤维复合材料有限公司)置于30g实施例6得到的微波中产生电弧的多孔复合材料组成的腔体内部,用氮气保护后,用微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司)以1500W功率处理5min。称量发现失重38%,碳纤维已经可以轻易从织物中剥离。对收集得到的气体进行色谱分析,其中检测到的主要成分列于表6中。
取50g碳纤维增强尼龙复合材料(常州市华碳纤维复合材料有限公司)置于30g实施例7得到的微波中产生电弧的多孔复合材料组成的腔体内部,用氮气保护后,用微波热裂解反应器(XOLJ-2000N,南京先欧仪器制造有限公司)以2000W功率处理10min。称量发现失重39%,碳纤维已经可以 轻易从织物中剥离。对收集得到的气体进行色谱分析,其中检测到的主要成分列于表6中。
物料置于微波中产生电弧的多孔复合材料组成的腔体内部具体操作如下:先将一部分微波中产生电弧的多孔复合材料放置于石英反应器的底部和周围形成上开口的腔体,随后将物料放置于腔体内部,最后将剩余的多孔复合材料盖于物料上部。
表6
Figure PCTCN2019108632-appb-000020
微波裂解电路板:
在以下实施例中,收集的气体通过如下方式进行色谱分析:将裂解后收集的气体产物根据ASTM D1945-14方法,使用炼厂气分析仪(HP Agilent 7890 A,配置有3个通道,包括1个FID和2个TCD(热导率检测器))进行分析。在FID通道上分析烃。应用一个采用氮气载气的TCD来测定氢气含量,这是因为在氢气和氦气载气的传导率方面存在小的差异。另一个采用氦气作为载气的TCD用于检测CO、CO 2、N 2和O 2。为了进行定量分析,通过使用RGA(炼厂气分析)校准气体标准来测定响应因子。
实施例28
取10g废电路板(废电路板已预破碎成小块,面积约为1cm 2大小的不规则小块,该电路板拆自废旧电脑主板,品牌技嘉),置于50g实施例1得到的多孔复合材料组成的腔体内部,随后将其整体置于微波裂解反应器(青岛迈可威仪器制造有限公司,型号MKX-R1C1B)中,氮气保护后,用微波热裂解反应器以900W功率处理5min。该多孔复合材料在微波中产生电弧,从而迅速产生高温并传递给物料使物料快速裂解。将收集所得到的气体组分进行气相色谱分析。裂解气体产物主要成分列于表7-1。反应结束后固体残渣质量为裂解前的30%,包括结构疏松易分离的金属组分与以玻璃纤维混合物等为主的非金属组分,通过简单破碎后就可以分离回收其中的金属与非金属部分(主要为玻璃纤维)。
待裂解电路板置于所述多孔复合材料组成的腔体内部的具体操作如下:先将一部分在所述多孔复合材料放于石英反应器内部,将多孔复合材料依次摆放形成一个中空的开口向上的腔体,随后将废电路板放置于腔体内部,最后将剩余的多孔复合材料盖于物料上部。
对实施例2-14得到的样品进行与上述过程相同的实验,得到类似的实验现象和结果。反应结束后固体残渣质量约为裂解前的28%~35%。实施例2-14得到的多孔复合材料都能在微波场中产生电弧,从而迅速产生高温并传递给物料使其快速裂解。
对比例8
将10g废电路板与50g碳化硅粉末(98.5%,国药集团化学试剂北京有限公司)均匀混合后置于石英反应罐内,随后将其整体置于微波反应器(MKX-R1C1B,青岛迈可威仪器制造有限公司)中,氮气保护后,用微波热裂解反应器以900W功率处理5min。微波过程没有任何火花,微波处理之后废电路板并没有发生变化,只有石英反应罐底部有些温热。
实施例29
除以下参数外,其他参数和步骤同实施例28:
取10g废电路板,与30g实施例6得到的微波中产生电弧的多孔复合材料均匀混合后置于石英反应罐内,随后将其整体置于微波裂解反应器中,氮气保护后,用微波热裂解反应器以1200W功率处理10min。该多孔复合材料在微波中产生电弧,从而迅速产生高温并传递给物料使物料快速裂解。将收集所得到的气体组分进行气相色谱分析。热解气体产物主要成分列于表7-2。反应结束后固体残渣质量为热解前的32%,且金属与基板之间结构松散,通过简单破碎后就可以分离回收其中的金属与非金属部分。
实施例30
除以下参数外,其他参数和步骤同实施例28:
取10g废电路板,与15g实施例2得到的微波中产生电弧的多孔复合材料均匀混合后置于石英反应罐内,随后将其整体置于微波裂解反应器中,氮气保护后,用微波热裂解反应器以900W功率处理20min。该多孔复合材料在微波中产生电弧,从而迅速产生高温并传递给物料使物料快速裂解。将收集所得到的气体组分进行气相色谱分析。热解气体产物主要成分列于表7-3。反应结束后固体残渣质量为热解前的30%,且金属与基板之间结构松散,通过简单破碎后就可以分离回收其中的金属与非金属部分。
实施例31
除以下参数外,其他参数和步骤同实施例28:
取2g废电路板,与60g实施例11得到的微波中产生电弧的多孔复合材料均匀混合后置于石英反应罐内,随后将其整体置于微波裂解反应器中,氮气保护后,用微波热裂解反应器以900W功率处理5min。该多孔复合材料在微波中产生电弧,从而迅速产生高温并传递给物料使物料快速裂解。将收集所得到的气体组分进行气相色谱分析。热解气体产物主要成分列于表7-4。反应结束后固体残渣质量为热解前的30%,且金属与基板之间结构松散,通过简单破碎后就可以分离回收其中的金属与非金属部分。
实施例32
除以下参数外,其他参数和步骤同实施例28:
取20g废电路板,与5g实施例8得到的微波中产生电弧的多孔复合材料均匀混合后置于石英反应罐内,随后将其整体置于微波裂解反应器中,氮气保护后,用微波热裂解反应器以1000W功率处理30min。该多孔复合材料在微波中产生电弧,从而迅速产生高温并传递给物料使物料快速裂解。将收集所得到的气体组分进行气相色谱分析。热解气体产物主要成分列于表7-5。反应结束后固体残渣质量为热解前的31%,且金属与基板之间结构松散,通过简单破碎后就可以分离回收其中的金属与非金属部分。
表7-1
气体产物组成 体积占比(vol.%)
氢气 20.36
一氧化碳 53.25
二氧化碳 12.72
甲烷 3.81
乙烷 0.39
乙烯 5.02
丙烷 0.14
丙烯 0.90
乙炔 1.35
1-丁烯 0.42
1,3-丁二烯 0.05
0.09
其它 1.50
表7-2
气体产物组成 体积占比(vol.%)
氢气 18.00
一氧化碳 42.80
二氧化碳 6.90
甲烷 14.90
乙烷 2.00
乙烯 6.00
丙烷 1.00
丙烯 4.70
乙炔 1.10
1-丁烯 0.20
1,3-丁二烯 0.60
0.10
其它 1.70
表7-3
气体产物组成 体积占比(vol.%)
氢气 15.00
一氧化碳 49.60
二氧化碳 9.10
甲烷 13.50
乙烷 2.30
乙烯 4.20
丙烷 0.80
丙烯 2.20
乙炔 0.90
1-丁烯 0.10
1,3-丁二烯 0.60
0.10
其它 1.60
表7-4
气体产物组成 体积占比(vol.%)
氢气 19.47
一氧化碳 48.80
二氧化碳 7.25
甲烷 8.80
乙烷 1.0
乙烯 8.80
丙烷 0.10
丙烯 3.20
乙炔 0.80
1-丁烯 0.30
1,3-丁二烯 0.07
0.08
其它 1.33
表7-5
气体产物组成 体积占比(vol.%)
氢气 16.20
一氧化碳 47.32
二氧化碳 8.68
甲烷 10.1
乙烷 1.80
乙烯 6.60
丙烷 2.32
丙烯 4.10
乙炔 0.80
1-丁烯 0.08
1,3-丁二烯 0.10
0.20
其它 1.70
从表中数据还可以看出,裂解产物中含有较高比例的氢气,因此可以收集其中的氢气用作燃料。

Claims (16)

  1. 能在微波场中产生电弧的多孔复合材料,包含无机多孔骨架和负载于所述无机多孔骨架上的碳材料,其中所述无机多孔骨架的平均孔径为0.2-1000μm。
  2. 根据权利要求1的多孔复合材料,其特征在于,所述无机多孔骨架的平均孔径为0.2-500μm,优选0.5-500μm,更优选为0.5-250μm;
    和/或
    所述无机多孔骨架的孔隙率为1%-99.99%,优选10%-99.9%,更优选为30%-99%。
  3. 根据权利要求1或2的多孔复合材料,其特征在于,所述碳材料的比例为基于所述多孔复合材料总质量计的0.001%-99%,优选0.01%-90%,更优选0.1%-80%。
  4. 根据权利要求1-3中任一项的多孔复合材料,其特征在于,所述多孔复合材料在微波场中产生的电弧使得多孔复合材料达到1000℃以上的温度。
  5. 根据权利要求1-4中任一项的多孔复合材料,其特征在于,所述碳材料选自石墨烯、碳纳米管、碳纳米纤维、石墨、炭黑、碳纤维、碳点、碳纳米线、由可碳化有机物或包含可碳化有机物的混合物的碳化得到的产物以及它们的组合,优选选自石墨烯、碳纳米管、由可碳化有机物或包含可碳化有机物的混合物的碳化得到的产物以及它们的组合;
    优选,所述可碳化有机物为有机高分子化合物,包括合成有机高分子化合物,优选为橡胶,或塑料,包括热固性塑料和热塑性塑料,更优选选自环氧树脂、酚醛树脂、呋喃树脂、聚苯乙烯、苯乙烯-二乙烯苯共聚物、聚丙烯腈、聚苯胺、聚吡咯、聚噻吩、丁苯橡胶、聚氨酯橡胶及其组合;和天然有机高分子化合物,优选为淀粉、粘胶纤维、木质素和纤维素中的至少一种;
    优选,所述包含可碳化有机物的混合物为可碳化有机物与其他不含金属 的有机物和/或不含金属的无机物的混合物;更优选选自煤、天然沥青、石油沥青或煤焦沥青及其组合。
  6. 根据权利要求1-5中任一项的多孔复合材料,其特征在于,所述无机多孔骨架是具有多孔结构的无机材料,所述无机材料选自碳、硅酸盐、铝酸盐、硼酸盐、磷酸盐、锗酸盐、钛酸盐、氧化物、氮化物、碳化物、硼化物、硫化物、硅化物和卤化物及其组合;优选选自碳、硅酸盐、钛酸盐、氧化物、碳化物、氮化物、硼化物及其组合;其中所述氧化物优选选自氧化铝、氧化硅、氧化锆、氧化镁、氧化铈和氧化钛及其组合;所述氮化物优选选自氮化硅、氮化硼、氮化锆、氮化铪和氮化钽及其组合;所述碳化物优选选自碳化硅、碳化锆、碳化铪和碳化钽及其组合;所述硼化物优选选自硼化锆、硼化铪和硼化钽及其组合;
    优选地,所述无机多孔骨架为选自以下中的至少一种:聚合物海绵碳化后得到的碳骨架、无机纤维构成的多孔骨架、无机海绵骨架、无机颗粒堆积构成的骨架、陶瓷前驱体海绵焙烧后得到的陶瓷海绵骨架、陶瓷前驱体纤维焙烧后得到的陶瓷纤维骨架;优选三聚氰胺海绵碳化后的骨架、酚醛树脂海绵碳化后的骨架、硅酸铝纤维的多孔骨架、莫来石纤维的多孔骨架、氧化铝纤维的多孔骨架、氧化锆纤维的多孔骨架、氧化镁纤维的多孔骨架、氮化硼纤维的多孔骨架、碳化硼纤维的多孔骨架、碳化硅纤维的多孔骨架、钛酸钾纤维的多孔骨架、陶瓷前驱体纤维焙烧后得到的陶瓷纤维骨架。
  7. 制备根据权利要求1-6中任一项的多孔复合材料的方法,其特征在于,所述方法包括以下步骤:
    (1)将所述无机多孔骨架或无机多孔骨架前驱体浸入所述碳材料和/或碳材料前驱体的溶液或分散体中,使无机多孔骨架或无机多孔骨架前驱体的孔隙充满该溶液或分散体;
    (2)将步骤(1)中得到的多孔材料加热干燥,使得碳材料或碳材料前驱体析出或固化并负载于无机多孔骨架或无机多孔骨架前驱体上;
    (3)如果采用碳材料前驱体或者无机多孔骨架前驱体中的至少一种作为原料,则进一步进行以下步骤:惰性气体气氛下加热步骤(2)得到的多孔材 料,使得无机多孔骨架前驱体转化为无机多孔骨架,和/或碳材料前驱体还原或碳化。
  8. 根据权利要求7的方法,其特征在于,
    步骤(1)中碳材料或其前驱体的溶液或分散体包含选自以下的溶剂:苯、甲苯、二甲苯、三氯苯、三氯甲烷、环己烷、己酸乙酯、乙酸丁酯、二硫化碳、甲酮、丙酮、环己酮、四氢呋喃、二甲基甲酰胺、水和醇及其组合;其中,所述醇优选选自丙醇、正丁醇、异丁醇、乙二醇、丙二醇、1,4–丁二醇、异丙醇、乙醇及其组合;更优选为包含水和/或乙醇的溶剂;进一步优选水和/或乙醇;和/或
    步骤(1)的溶液或分散体的浓度为0.001-1g/mL,优选为0.002-0.8g/mL,更优选为0.003g-0.5g/mL;和/或
    步骤(1)中碳材料和/或碳材料前驱体占无机多孔骨架材料或无机多孔骨架材料前驱体与碳材料和/或碳材料前躯体的总质量的0.001%-99.999%,优选0.01%-99.99%,更优选0.1%-99.9%。
  9. 根据权利要求7或8的方法,其特征在于,
    步骤(2)中的加热干燥在50-250℃,优选60-200℃,更优选80-180℃的温度下进行;优选通过微波加热,其中微波的功率优选为1W~100KW,更优选为500W-10KW,并且微波加热时间优选为2-200min,更优选为20-200min。
  10. 根据权利要求7-9中任一项的方法,其特征在于,
    所述的无机多孔骨架前驱体选自陶瓷前驱体、可碳化有机物的多孔材料或包含可碳化有机物的混合物的多孔材料及其组合;和/或
    所述碳材料前驱体是氧化石墨烯、改性碳纳米管、改性碳纳米纤维、改性石墨、改性炭黑、改性碳纤维和可碳化有机物或包含可碳化有机物的混合物及其组合;和/或
    步骤(3)的加热在400-1800℃,优选600-1500℃,更优选800-1200℃的温度下进行;优选通过微波加热,其中微波的功率优选为100W~100KW, 更优选700W~20KW;微波加热的时间优选为0.5-200min,更优选为1-100min。
  11. 根据权利要求1-6中任一项的多孔复合材料或根据权利要求7-10中任一项的方法制备的多孔复合材料用于微波高温加热、包含有机化合物的物质(例如有机物、包含有机物的混合物和包含有机物的复合材料)的裂解和回收利用或高温催化领域中的用途,例如用于生物质裂解、植物油处理、废旧高分子材料裂解、石油化工裂解、碳纤维复合材料回收、垃圾处理、VOC废气治理或COD污水治理。
  12. 裂解和/或回收利用包含有机化合物的物质的方法,其中将包含有机化合物的物质与根据权利要求1-6中任一项的多孔复合材料或根据权利要求7-10中任一项的方法制备的多孔复合材料接触,在惰性气氛下或抽真空,对上述包含有机化合物的物质与多孔复合材料施加微波场,多孔复合材料在微波场中产生电弧,从而迅速达到高温而使所述物质中包含的有机化合物裂解;
    其中所述包含有机化合物的物质例如为有机物、包含有机物的混合物和包含有机物的复合材料,例如选自
    -废旧塑料,例如为聚烯烃,聚酯,例如聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯和聚芳酯中的至少一种,聚酰胺,丙烯腈-丁二烯-苯乙烯三元共聚物,聚碳酸酯,聚乳酸,聚氨酯,聚甲基丙烯酸甲酯,聚甲醛,聚苯醚和聚苯硫醚中的至少一种,优选为聚乙烯、聚丙烯、聚氯乙烯、聚对苯二甲酸乙二醇酯、聚苯乙烯、聚酰胺、丙烯腈-丁二烯-苯乙烯三元共聚物、聚碳酸酯、聚乳酸、聚甲基丙烯酸甲酯和聚甲醛中的至少一种,更优选为聚乙烯、聚丙烯、聚氯乙烯、聚对苯二甲酸乙二醇酯、聚苯乙烯、聚碳酸酯和聚酰胺中的至少一种;
    -废旧橡胶,例如为天然橡胶、顺丁橡胶、丁苯橡胶、丁腈橡胶、异戊橡胶、乙丙橡胶、丁基橡胶、氯丁橡胶、苯乙烯系嵌段共聚物和硅橡胶中的至少一种,优选为天然橡胶、顺丁橡胶、丁苯橡胶、异戊橡胶和乙丙橡胶中的至少一种;
    -生物质,优选为秸秆、蔗渣、树枝、树叶、木屑、稻壳、稻杆、稻草、花生壳、椰子壳、棕榈籽壳、核桃壳、夏威夷果壳、开心果壳、麦秆、玉米杆和玉米芯中的至少一种;
    -植物油,优选为棕榈油、菜籽油、葵花籽油、大豆油、花生油、亚麻油和蓖麻油中的至少一种;更优选为棕榈油、菜籽油、葵花籽油和大豆油中的至少一种;
    -碳纤维复合材料,包含选自以下的聚合物基体:聚乙烯、聚丙烯、尼龙、酚醛树脂和环氧树脂;和
    -电路板。
  13. 根据权利要求12的方法,其中
    所述包含有机化合物的物质与所述多孔复合材料的重量比为1:99-99:1,优选1:50-50:1,更优选1:30-30:1;和/或,
    所述微波场的微波功率为1W-100KW;更优选100W-50KW,最优选700W-20KW;和/或,
    微波照射的时间为0.1-200min;更优选0.5-150min,最优选1-100min。
  14. 根据权利要求12的方法,其中所述包含有机化合物的物质是碳纤维复合材料,并且在碳纤维复合材料中的聚合物基体裂解后,将留下的碳纤维回收再利用。
  15. 根据权利要求12的方法,其中所述包含有机化合物的物质是电路板,并且处理所述电路板裂解得到的固体残渣,将其中的金属与非金属组分分离,分别回收再利用;和/或收集所述电路板裂解得到的气体产物。
  16. 根据权利要求15的方法,其中收集裂解产物中的氢气。
PCT/CN2019/108632 2018-10-29 2019-09-27 能在微波场中产生电弧的多孔复合材料及其制备方法和用途 WO2020088173A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020217016481A KR20210089187A (ko) 2018-10-29 2019-09-27 마이크로파 장에서 전기 아크를 발생시킬 수 있는 다공성 복합 재료, 이의 제조 방법 및 용도
EP19880547.5A EP3876320A4 (en) 2018-10-29 2019-09-27 POROUS COMPOSITE MATERIAL CAPABLE OF GENERATING AN ELECTRIC ARC IN A MICROWAVE FIELD, METHOD FOR PREPARING IT AND ITS USE
CN201980057945.8A CN112823441B (zh) 2018-10-29 2019-09-27 能在微波场中产生电弧的多孔复合材料及其制备方法和用途
CA3117124A CA3117124A1 (en) 2018-10-29 2019-09-27 Porous composite material capable of generating electric arc in microwave field, preparation method therefor, and use thereof
AU2019373610A AU2019373610B2 (en) 2018-10-29 2019-09-27 Porous composite material capable of generating electric arc in microwave field, preparation method therefor, and use thereof
BR112021008076-7A BR112021008076A2 (pt) 2018-10-29 2019-09-27 material compósito poroso, método para preparar o material compósito poroso, uso do material compósito poroso e método para pirólise ou reciclagem de uma substância compreendendo um composto orgânico
JP2021523303A JP2022506131A (ja) 2018-10-29 2019-09-27 マイクロ波場において電気アークを生成可能な多孔質複合材料、その調製方法、およびその使用
US17/309,134 US20220008882A1 (en) 2018-10-29 2019-09-27 Porous Composite Material Capable of Generating Electric Arc in Microwave Field, Preparation Method therefor, and Use thereof
JP2024107304A JP2024133574A (ja) 2018-10-29 2024-07-03 マイクロ波場において電気アークを生成可能な多孔質複合材料、その調製方法、およびその使用

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
CN201811264451.0 2018-10-29
CN201811264452.5 2018-10-29
CN201811264454.4 2018-10-29
CN201811264452.5A CN111097350B (zh) 2018-10-29 2018-10-29 一种微波高温裂解废旧聚氯乙烯的方法
CN201811264439.X 2018-10-29
CN201811264439.XA CN111100663B (zh) 2018-10-29 2018-10-29 一种微波高温裂解废旧聚乙烯的方法
CN201811264432.8A CN111100325B (zh) 2018-10-29 2018-10-29 一种微波高温裂解废旧聚苯乙烯的方法
CN201811264422.4A CN111100661B (zh) 2018-10-29 2018-10-29 一种微波高温裂解废旧塑料的方法
CN201811264455.9 2018-10-29
CN201811264455.9A CN111100327B (zh) 2018-10-29 2018-10-29 一种微波高温裂解废旧聚丙烯的方法
CN201811264425.8A CN111099917B (zh) 2018-10-29 2018-10-29 一种微波中产生电弧的多孔复合材料及制备方法
CN201811264424.3 2018-10-29
CN201811264420.5 2018-10-29
CN201811264415.4 2018-10-29
CN201811264451.0A CN111100660B (zh) 2018-10-29 2018-10-29 一种微波高温裂解废旧聚酯的方法
CN201811264425.8 2018-10-29
CN201811264424.3A CN111100665B (zh) 2018-10-29 2018-10-29 一种微波高温裂解植物油的方法
CN201811264422.4 2018-10-29
CN201811264454.4A CN111100326B (zh) 2018-10-29 2018-10-29 一种微波高温裂解废旧橡胶的方法
CN201811264415.4A CN111099943B (zh) 2018-10-29 2018-10-29 一种微波高温裂解生物质的方法
CN201811264420.5A CN111100322B (zh) 2018-10-29 2018-10-29 一种微波高温裂解碳纤维复合材料的方法
CN201811264432.8 2018-10-29

Publications (1)

Publication Number Publication Date
WO2020088173A1 true WO2020088173A1 (zh) 2020-05-07

Family

ID=70463464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108632 WO2020088173A1 (zh) 2018-10-29 2019-09-27 能在微波场中产生电弧的多孔复合材料及其制备方法和用途

Country Status (10)

Country Link
US (1) US20220008882A1 (zh)
EP (1) EP3876320A4 (zh)
JP (2) JP2022506131A (zh)
KR (1) KR20210089187A (zh)
CN (1) CN112823441B (zh)
AU (1) AU2019373610B2 (zh)
BR (1) BR112021008076A2 (zh)
CA (1) CA3117124A1 (zh)
TW (1) TWI732327B (zh)
WO (1) WO2020088173A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022101003A1 (en) 2020-11-11 2022-05-19 Coeus Limited Structural shell
CN116505117A (zh) * 2023-05-22 2023-07-28 山东产研绿洲环境产业技术研究院有限公司 一种微波热解碳包覆废旧锂电池负极石墨的装置及方法
US12077440B1 (en) 2021-04-05 2024-09-03 Systima Technologies, Inc. Method of making graphitic carbon-carbon composite

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112537765B (zh) * 2020-11-17 2022-11-25 浙江大学自贡创新中心 一种锂离子电池碳负极材料的制备方法
WO2023000079A1 (en) * 2021-07-22 2023-01-26 National Research Council Of Canada Transforming asphaltenes to carbon fibres
GB2611330A (en) * 2021-09-30 2023-04-05 Univ Limerick Carbon foam materials
WO2024129241A2 (en) * 2022-10-19 2024-06-20 West Virginia University Board of Governors on behalf of West Virginia University Microwave-assisted methods to recover critical materials from electronic waste
CN115671641B (zh) * 2022-10-27 2023-10-20 国网浙江省电力有限公司湖州供电公司 一种应用于电化学储能系统的高汽化热多孔灭火介质及其制备方法
CN116161659B (zh) * 2023-03-29 2024-04-05 华中科技大学 一种利用废弃聚乳酸制备多孔碳纳米薄片的方法
CN117965009A (zh) * 2024-01-19 2024-05-03 广州傲群刷业科技有限公司 一种碳纤维复合材料及其拉丝工艺及应用
CN118458709B (zh) * 2024-07-08 2024-10-18 浙江工业大学 杂元素掺杂多孔氮化硅材料及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585860A (zh) 2012-01-09 2012-07-18 四川理工学院 一种垃圾微波裂解处理方法
CN102709569A (zh) * 2012-06-15 2012-10-03 常德力元新材料有限责任公司 多孔金属复合材料
CN103252226A (zh) 2013-05-10 2013-08-21 王文平 一种用于废塑料微波裂解的催化剂及制备方法
US20140183415A1 (en) * 2012-12-31 2014-07-03 Cheil Industries Inc. Graphene-Based Composite and Method of Preparing the Same
CN104576085A (zh) * 2014-12-08 2015-04-29 江苏大学 一种用于电容器电极的碳氮复合海绵体材料的制备方法
CN104817337A (zh) * 2015-04-20 2015-08-05 陕西科技大学 一种多尺度结构SiC/C多孔复合陶瓷及其制备方法
CN105728711A (zh) * 2009-08-05 2016-07-06 霍加纳斯股份有限公司 可透多孔复合材料
CN105845937A (zh) * 2016-05-12 2016-08-10 陕西科技大学 一种原位构筑三维多孔碳骨架/石墨烯复合结构的方法
CN106520176A (zh) 2016-11-21 2017-03-22 中国科学院过程工程研究所 一种用聚烯烃塑料制取小分子烯烃的方法
US20170081197A1 (en) * 2015-09-21 2017-03-23 Korea Institute Of Science And Technology Porous silicon dioxide-carbon composite and method for preparing high-purity granular beta-phase silicon carbide powder with using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110692B2 (zh) * 1971-11-11 1976-04-06
US6184427B1 (en) * 1999-03-19 2001-02-06 Invitri, Inc. Process and reactor for microwave cracking of plastic materials
JP3699992B2 (ja) * 2001-08-07 2005-09-28 独立行政法人産業技術総合研究所 炭化ケイ素系耐熱性超軽量多孔質構造材及びその製造方法
JP5574368B2 (ja) * 2010-05-18 2014-08-20 独立行政法人産業技術総合研究所 多孔質マイクロ波発熱体とその製造方法及びフィルタとその製造方法
EP2692425A1 (de) * 2012-07-30 2014-02-05 Wieser-linhart, Emil A. J. Verfahren und Anlage zur Erzeugung von Treibstoffen aus organischen Stoffen mittels gestufter Mikrowellenbehandlung
CN103268929B (zh) * 2013-06-04 2015-01-07 山东大学 一种碳/铜/金属氧化物复合多孔材料及其制备方法与应用
CN105439563B (zh) * 2014-08-28 2019-08-27 中国科学院大连化学物理研究所 一种整体式多孔碳-碳化硅复合材料及其制备和应用
CN105586091B (zh) * 2014-10-22 2018-02-09 中国石油化工股份有限公司大连石油化工研究院 一种生物质热解气化方法
CN107344855A (zh) * 2017-07-25 2017-11-14 东莞市联洲知识产权运营管理有限公司 一种含多孔石墨烯微球的多级孔洞泡沫陶瓷及其制备方法
CN108609603B (zh) * 2018-05-27 2022-03-22 南京航空航天大学 一种含有石墨烯涂层的碳泡沫及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105728711A (zh) * 2009-08-05 2016-07-06 霍加纳斯股份有限公司 可透多孔复合材料
CN102585860A (zh) 2012-01-09 2012-07-18 四川理工学院 一种垃圾微波裂解处理方法
CN102709569A (zh) * 2012-06-15 2012-10-03 常德力元新材料有限责任公司 多孔金属复合材料
US20140183415A1 (en) * 2012-12-31 2014-07-03 Cheil Industries Inc. Graphene-Based Composite and Method of Preparing the Same
CN103252226A (zh) 2013-05-10 2013-08-21 王文平 一种用于废塑料微波裂解的催化剂及制备方法
CN104576085A (zh) * 2014-12-08 2015-04-29 江苏大学 一种用于电容器电极的碳氮复合海绵体材料的制备方法
CN104817337A (zh) * 2015-04-20 2015-08-05 陕西科技大学 一种多尺度结构SiC/C多孔复合陶瓷及其制备方法
US20170081197A1 (en) * 2015-09-21 2017-03-23 Korea Institute Of Science And Technology Porous silicon dioxide-carbon composite and method for preparing high-purity granular beta-phase silicon carbide powder with using the same
CN105845937A (zh) * 2016-05-12 2016-08-10 陕西科技大学 一种原位构筑三维多孔碳骨架/石墨烯复合结构的方法
CN106520176A (zh) 2016-11-21 2017-03-22 中国科学院过程工程研究所 一种用聚烯烃塑料制取小分子烯烃的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876320A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022101003A1 (en) 2020-11-11 2022-05-19 Coeus Limited Structural shell
GB2602444A (en) * 2020-11-11 2022-07-06 Coeus Ltd Structural shell
GB2602444B (en) * 2020-11-11 2023-05-10 Coeus Ltd Structural shell
US12077440B1 (en) 2021-04-05 2024-09-03 Systima Technologies, Inc. Method of making graphitic carbon-carbon composite
CN116505117A (zh) * 2023-05-22 2023-07-28 山东产研绿洲环境产业技术研究院有限公司 一种微波热解碳包覆废旧锂电池负极石墨的装置及方法
CN116505117B (zh) * 2023-05-22 2024-02-20 山东产研绿洲环境产业技术研究院有限公司 一种微波热解碳包覆废旧锂电池负极石墨的装置及方法

Also Published As

Publication number Publication date
TWI732327B (zh) 2021-07-01
KR20210089187A (ko) 2021-07-15
TW202017856A (zh) 2020-05-16
CN112823441B (zh) 2023-03-24
JP2022506131A (ja) 2022-01-17
CA3117124A1 (en) 2020-05-07
AU2019373610B2 (en) 2024-07-18
CN112823441A (zh) 2021-05-18
EP3876320A1 (en) 2021-09-08
AU2019373610A1 (en) 2021-05-20
BR112021008076A2 (pt) 2021-08-03
US20220008882A1 (en) 2022-01-13
EP3876320A4 (en) 2022-12-14
AU2019373610A8 (en) 2021-06-10
JP2024133574A (ja) 2024-10-02

Similar Documents

Publication Publication Date Title
TWI732327B (zh) 能在微波場中產生電弧的多孔複合材料及其製備方法和用途
CN112639058B (zh) 微波高温裂解包含有机物的固体材料的连续操作方法
CN111099917B (zh) 一种微波中产生电弧的多孔复合材料及制备方法
CN111100661B (zh) 一种微波高温裂解废旧塑料的方法
CN111097350B (zh) 一种微波高温裂解废旧聚氯乙烯的方法
CN111099943B (zh) 一种微波高温裂解生物质的方法
CN111100327B (zh) 一种微波高温裂解废旧聚丙烯的方法
CN111100663B (zh) 一种微波高温裂解废旧聚乙烯的方法
CN111100325B (zh) 一种微波高温裂解废旧聚苯乙烯的方法
CN111100660B (zh) 一种微波高温裂解废旧聚酯的方法
KR102721445B1 (ko) 유기물을 포함하는 고형 물질의 마이크로파 고온 열분해를 위한 연속 조작 방법
CN112570416B (zh) 一种微波高温裂解电路板的方法及其应用
CN111100665B (zh) 一种微波高温裂解植物油的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3117124

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021523303

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021008076

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019373610

Country of ref document: AU

Date of ref document: 20190927

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217016481

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019880547

Country of ref document: EP

Effective date: 20210531

ENP Entry into the national phase

Ref document number: 112021008076

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210428