WO2020087999A1 - 带有力反馈的手部动作捕获装置 - Google Patents

带有力反馈的手部动作捕获装置 Download PDF

Info

Publication number
WO2020087999A1
WO2020087999A1 PCT/CN2019/097382 CN2019097382W WO2020087999A1 WO 2020087999 A1 WO2020087999 A1 WO 2020087999A1 CN 2019097382 W CN2019097382 W CN 2019097382W WO 2020087999 A1 WO2020087999 A1 WO 2020087999A1
Authority
WO
WIPO (PCT)
Prior art keywords
force feedback
link
connecting rod
base
rotation sensor
Prior art date
Application number
PCT/CN2019/097382
Other languages
English (en)
French (fr)
Inventor
谷逍驰
Original Assignee
深圳岱仕科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳岱仕科技有限公司 filed Critical 深圳岱仕科技有限公司
Publication of WO2020087999A1 publication Critical patent/WO2020087999A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/014Hand-worn input/output arrangements, e.g. data gloves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user

Definitions

  • the present application relates to the technical field of motion capture and force feedback, in particular to a hand motion capture device with force feedback.
  • common hand motion capture schemes include computer vision motion capture, inertial measurement unit (IMU) motion capture, and bending sensor motion capture, etc .
  • common force feedback technologies also include motor disk pull-type and linear motor direct-drive type Wait.
  • force feedback there are already some devices with force feedback on the market.
  • a bending sensor glove with a force feedback device can control the drawing of the steel wire through the rotation of the motor disk, and drive the pulley pair Pull with your fingertips to achieve force feedback.
  • the academic community has also tried to connect a set of connecting rod systems through a linear motor, and the linear motor drives the connecting rod system to directly push and pull the fingertips to achieve force feedback.
  • a hand motion capture device with force feedback includes a base, a force feedback device connected to the base, a link structure connected to the force feedback device, and a structure for fixing the link structure and the base Fixed components for hands;
  • the force feedback device includes a drive mechanism and a first link, a first end of the first link is connected to the drive mechanism, and a second end of the first link is movable with the link structure connection;
  • An angle sensor assembly configured to detect the rotation angle of the link structure or the rotation angle of the force feedback device relative to the base and generate a detection signal
  • a control circuit electrically connected to the angle sensor assembly and the driving mechanism, configured to send the detection signal of the angle sensor to a host computer, and according to one or more controls sent by the host computer The signal controls the drive mechanism to output the position and the corresponding magnitude of feedback to the first link.
  • control circuit includes a first processor and a second processor, the first processor is disposed on the base, the second processor is electrically connected to the first processor, the The second processor is configured to control the drive mechanism to output feedback of the position and corresponding magnitude to the first link according to control instructions of the first processor.
  • the driving mechanism includes a motor connected to the first end of the first link.
  • the drive mechanism further includes a gearbox; the gearbox is respectively connected to the motor and the first end of the first link.
  • the angle sensor assembly includes a thumb sensing sensor assembly and at least one set of non-thumb sensing sensor assemblies
  • the force feedback device includes a thumb force feedback device and at least one non-thumb force feedback device
  • the sensor assembly and the non-thumb induction sensor assembly each include a plurality of rotation sensors, and the thumb force feedback device and the non-thumb force feedback device each include at least one force feedback module.
  • the thumb sensor assembly includes a first rotation sensor, a second rotation sensor, and a third rotation sensor respectively connected to the control circuit, the third rotation sensor is mounted on the base,
  • the first rotation sensor is provided in the thumb force feedback device, and the first rotation sensor is connected to the first end of the first link in the thumb force feedback device;
  • the second rotation sensors are respectively Connected to the first rotation sensor and the third rotation sensor, and the angle between the axis of the first rotation sensor and the axis of the second rotation sensor is within a preset first angle range, The angle between the axis of the second rotation sensor and the axis of the third rotation sensor is within the first angle range;
  • Each of the non-thumb induction sensor assemblies includes a fourth rotation sensor and a fifth rotation sensor electrically connected to the control circuit, and the fourth rotation sensor is provided in the corresponding four-finger force feedback device, And the fourth rotation sensor is connected to the first end of the first link in the non-thumb force feedback device; the fifth rotation sensors are all installed on the base, and the axis of the fourth rotation sensor The angle between the axis of the fifth rotation sensor is within the first angle range, and the angle between the axis of the four fifth rotation sensors is within the preset second angle range The number of angles between the axes of the four fifth rotation sensors and the bottom surface of the base is within the first angle range.
  • the connecting rod structure includes a straight rod with an adjustable length, and a special-shaped connecting rod with an adjustable length or a replaceable shape, and the fixing component is disposed on the special-shaped connecting rod, the straight An adjustment structure is provided at one end of the rod, the second end of the first link is connected to the adjustment structure, and the other end of the straight rod is movably connected to the shaped connection rod.
  • the device further includes a telescopic structure with a retractable length; one end of the telescopic structure is connected to the force feedback device, and the other end of the telescopic structure is connected to the connecting rod structure.
  • the telescopic structure includes a second link, a third link, a link bushing, and a screw; one end of the second link is connected to the force feedback device, and the second link The other end of the rod is connected to the connecting rod bushing; one end of the third connecting rod is connected to the connecting rod structure, the other end of the third connecting rod extends into the connecting rod bushing, and the screw
  • the third connecting rod and the connecting rod bushing are connected through an opening in the connecting rod bushing and a screw hole at the other end of the third connecting rod.
  • the device further includes an external accessory connected to the base, the external accessory including at least one of a touch screen, a joystick, a button, a tracker, and a dial.
  • the external accessory is electrically connected to the base.
  • the external accessory and the base are detachably connected through an accessory connection structure
  • the accessory connection structure includes a sliding slot, a slider connecting rod that can slide into the sliding slot, and a screw, the sliding The slot is provided on the base; the screw is used to fix the slider connecting rod on the base when one end of the slider connecting rod slides into the sliding slot, the slider connecting rod The other end is detachably connected to the external accessory.
  • the first processor includes a wireless communication module.
  • a power supply device is also provided in the base.
  • the power supply device includes a battery.
  • the fixing assembly includes a palm fixing device and a finger fixing device.
  • the palm fixing device is a strap structure, a glove structure, a finger cover structure or a bracelet structure.
  • the finger fixing component is a cable tie structure or a finger sleeve structure.
  • the hand motion capture device with force feedback provided by the embodiment of the present application, the angle sensor assembly can obtain the rotation angle of the link structure or the rotation angle of the force feedback device relative to the base and generate a detection signal, and feed the detection signal back to the control circuit to control
  • the circuit sends the detection signal to the host computer.
  • the host computer sends a control command to the control circuit according to the detection signal.
  • the control circuit can control the drive mechanism to output the position and the corresponding feedback to the first link according to the control command of the host computer, that is, control
  • the circuit can control the position and size of the feedback force more finely.
  • the hand motion capture device with force feedback of the present application can not only realize the motion capture of the corresponding parts of the human body, but also achieve fine force feedback at the same time.
  • the force feedback function and the motion capture device share the angle sensor component to realize the action
  • the combination of capture and force feedback is one.
  • the force feedback device customized in the embodiment of the present application is smaller in volume, more superior in performance, and lower in delay.
  • With the motor control algorithm of the control circuit it can achieve flexible and variable torque output, simulating different hardness of objects, giving users more Real touch experience.
  • the product of the hand motion capture device with force feedback provided in this embodiment is more integrated, the overall structure is more stable, and a lighter wearing experience is realized.
  • FIG. 1 is a schematic structural diagram of a hand motion capture device with force feedback according to an embodiment of the present application
  • FIG. 1a is a schematic structural diagram of another hand motion capture device with force feedback according to an embodiment of the present application
  • FIG. 1b is a partial structural schematic diagram of a hand motion capture device with force feedback provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a hand motion capture device with force feedback according to another embodiment of the present application.
  • FIG. 3 is a partial structural schematic diagram of a hand motion capture device with force feedback provided by an embodiment of the present application
  • FIG. 4 is a partial structural schematic diagram of another hand motion capture device with force feedback provided by an embodiment of the present application.
  • FIG. 5 is a side view of an angle sensor assembly of a hand motion capture device with force feedback provided by an embodiment of the present application
  • FIG. 6 is a plan view of an angle sensor assembly of a hand motion capture device with force feedback provided by an embodiment of the present application
  • FIG. 7 is a partial structural schematic diagram of another hand motion capture device with force feedback provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a hand motion capture device with force feedback according to another embodiment of the present application.
  • 9a-9d are partial structural schematic diagrams of a hand motion capture device with force feedback provided by another embodiment of the present application.
  • 10a-10c are schematic diagrams of a telescopic structure provided by an embodiment of the present application.
  • wireless communication module wireless communication module
  • Thumb force feedback device
  • the hand motion capture device with force feedback of the present application can provide adjustable continuous force feedback at the tip of the user's finger to simulate the shape and stiffness of the virtual object, which can be used for robot control, mechanical control, games, etc.
  • a hand movement capture device with force feedback may be used.
  • the user can use the hand motion capture device with force feedback to control the robot to remove bombs one kilometer away from the user.
  • the user can remotely control the robot's hand by moving his hand to grab and remove explosive items.
  • the hand motion capture device with force feedback can apply a feedback force to the user, so that the user has a sense of grip and can more finely understand the state of the part holding the object to assist in the safe disassembly. The task of exploding items.
  • the host computer can send a command to the hand motion capture device with force feedback, so that the hand motion capture device with force feedback exerts a feedback force on the user's hand, making the user seem to hold it in the real world.
  • the host computer can send a command to the hand motion capture device with force feedback, so that the hand motion capture device with force feedback exerts a feedback force on the user's hand, making the user seem to hold it in the real world.
  • FIG. 1 is a schematic structural diagram of a hand motion capture device with force feedback provided by an embodiment of the present application.
  • FIG. 1a is a schematic structural diagram of another hand motion capture device with force feedback provided by an embodiment of the present application
  • FIG. 1b is a partial structural schematic diagram of a hand motion capture device with force feedback provided by an embodiment of the present application.
  • the hand motion capture device with force feedback includes a base 1, a force feedback device 2 connected to the base 1, a link structure 3 connected to the force feedback device 2, and The rod structure 3 and the base 1 are fixed to the hand fixed assembly 4; as shown in FIG.
  • the force feedback device 2 includes a driving mechanism 21 and a first link 22, the first end of the first link 22 and the driving mechanism 21 Connection, the second end of the first link 22 is movably connected to the link structure 3; angle sensor assembly, the angle sensor assembly is configured to detect the rotation angle of the link structure or the rotation angle of the force feedback device relative to the base and generate a detection signal ; And a control circuit, the control circuit is electrically connected to the angle sensor assembly and the drive mechanism 21, is configured to send the detection signal of the angle sensor to the host computer, and according to one or more control sent by the host computer Output signal controls the drive mechanism 21 and the position feedback 22 corresponding to the size of the first link.
  • the force feedback device 2 can be movably connected to the base 1 by means of links, hinges, bearings, etc.
  • the force feedback device 2 includes a drive mechanism 21 and a first link 22, where the drive mechanism 21 can be a motor, A mechanism for providing driving force composed of a transmission device, etc.
  • the driving mechanism 21 can output the feedback position and different sizes, different directions and continuous feedback to the first link 22 under the control of the control circuit, thereby realizing the action of the feedback force In the hands of users.
  • the feedback may be rigidity feedback, vibration feedback, temperature feedback, tactile feedback and so on.
  • the hand motion capture device with force feedback may finally include a plurality of force feedback devices 2, for example, one or more force feedback devices 2 are provided for the thumb, and one or more force feedback devices 2 are provided for the other four fingers, or, One or more force feedback devices 2 can also be provided for each finger.
  • the above-mentioned angle sensor assembly can detect the rotation angle of the link structure or the rotation angle of the force feedback device relative to the base and generate a detection signal, which is a hand movement signal, and transmits the collected mobile phone movement signal back to the control circuit.
  • the angle sensor assembly may include multiple rotation sensors.
  • the number of rotation sensors in the angle sensor assembly may be set according to the degree of freedom of the finger, for example, if the degree of freedom of the thumb is set to 3, the angle sensor assembly corresponding to the thumb includes 3 rotation sensors , The degrees of freedom of the remaining four fingers are set to 2, the angle sensor assembly corresponding to the index finger, middle finger, ring finger, and little finger all include 2 rotation sensors, or the degree of freedom of the thumb is set to 4, the angle sensor assembly corresponding to the thumb includes For the four rotation sensors, the degrees of freedom of the remaining four fingers are all set to 3.
  • the angle sensor components corresponding to the index finger, middle finger, ring finger, and little finger all include three rotation sensors, but this application is not limited to this.
  • the rotation sensor can use an arbitrary angle sensor such as a potentiometer, a Hall angle sensor, a non-contact magnetic angle sensor, and an encoder.
  • control circuit is equivalent to a control system with a force feedback hand motion capture device.
  • the control circuit can communicate with the host computer, send the hand motion signal collected by the angle sensor assembly to the host computer, and can also receive the host computer.
  • the host computer command sent by the computer controls the drive 21 mechanism to output position and corresponding size feedback to the first link 22 according to the object rigidity in the host computer command.
  • the host computer can be a computer, mobile phone, game console, server, computer equipment, etc.
  • the hand motion capture device with force feedback provided by this embodiment can realize both hand motion capture and force feedback.
  • the implementation principle is as follows: the angle sensor assembly can obtain the rotation angle of the connecting rod structure or the force feedback device relative to the base Rotation angle and generate a detection signal, the detection signal is fed back to the control circuit, the control circuit sends the detection signal to the host computer, the host computer reconstructs the hand model based on the detection signal, and establishes the relative coordinates between each fingertip and the back of the hand Relationship, through this relative coordinate relationship, the reconstructed hand model is mapped to the hand of the virtual character, and then collision detection and physical state judgment of object interaction are started.
  • the control circuit controls the drive mechanism to output the feedback position to the first link according to the position, vector direction and magnitude of the feedback force corresponding to each finger
  • the feedback of the direction and magnitude of the corresponding vector enables the first link and the link structure to simulate the force at a specific time period, at a specific angle and specific feedback, so that the corresponding part of the user's body stays at a specific position, and the user can
  • the output of the driving mechanism can be overcome by the corresponding parts of the body, and the rigidity, temperature, and tactile sensation of the object can be felt.
  • the real user's hand cannot hold the object, but the shape of the user's hand can be fitted to the state of the body through force feedback, and the user can perceive the object through different strengths
  • the stiffness and shape of people make people have the illusion of grasping objects.
  • the hand motion capture device with force feedback provided by the embodiment of the present application, the angle sensor assembly can obtain the rotation angle of the link structure or the rotation angle of the force feedback device relative to the base and generate a detection signal, and feed the detection signal back to the control circuit to control
  • the circuit sends the detection signal to the host computer.
  • the host computer sends a control command to the control circuit according to the detection signal.
  • the control circuit can control the size and position of the feedback force output by the drive mechanism to the first link according to the control command of the host computer, that is, The control circuit can control the magnitude and position of the feedback force more finely.
  • the hand motion capture device with force feedback of the present application can realize both hand motion capture and fine force feedback at the same time.
  • the force feedback function and the motion capture device share the angle sensor assembly, which realizes the motion capture and
  • the combination of force feedback is one.
  • the force feedback device customized in the embodiment of the present application is smaller in volume, more superior in performance, and lower in delay.
  • With the motor control algorithm of the control circuit it can achieve flexible and variable torque output, simulating different hardness of objects, giving users more Real touch experience.
  • the product of the hand motion capture device with force feedback provided in this embodiment is more integrated, the overall structure is more stable, and a lighter wearing experience is realized.
  • the upper fixing assembly 4 shown in FIG. 1 is used to fix the base 1 and the link structure 3 to the hand.
  • the fixing assembly may include a palm fixation for fixing the base
  • the palm fixing device 41 may be a strap structure, a glove structure, a finger cover structure or a bracelet structure.
  • the palm fixing device 41 may be, but not limited to, a nylon strap, or a composite ergonomic wear design of any shape and any material.
  • the finger fixing component 42 is a cable tie structure or a finger sleeve structure.
  • the finger fixing component 42 may be, but not limited to, a nylon cable tie and a finger sleeve, or may be a silicone / plastic finger sleeve, or may be used to fix a finger Mechanical mechanism.
  • the finger fixing component 42 may be a nylon strap-type wearing method including a velcro, which is fixed to the fingertip by a velcro; the finger sleeve is of different sizes and different materials, so that the user can select by the size of the personal finger Its required finger sleeve.
  • the control circuit includes a first processor 51 and a second processor 52, the first processor 51 is disposed on the base 1, the second processor 52 is electrically connected to the first processor 51, the second The processor 52 is configured to control the drive mechanism 21 to output 22 a corresponding amount of torque to the first link according to the control instruction of the first processor 52.
  • the second processor 52 may be provided on the base 1, and the second processor 52 may also be provided in the force feedback device 2, which is not limited in this embodiment.
  • two processors may be provided in the control circuit, and a first processor 51 is provided in the base 1.
  • the first processor communicates with the host computer and sends the hand motion signal collected by the angle sensor to the host computer Machine, and parse the control command returned by the host computer, and send it to the second processor 52.
  • the second processor 52 controls the drive mechanism 21 to the position of the first link output 22 according to the control instruction of the first processor 51. And the corresponding size of feedback.
  • the first processor 51 includes the object stiffness in the instruction received from the host computer, and the first processor 51 calculates the magnitude, angle and position of the feedback force corresponding to each finger according to the object stiffness, and calculates the magnitude of the feedback force corresponding to each finger And the angle are sent to the corresponding second processor 52, and the second processor 52 controls the driving mechanism to output the corresponding torque and torque position according to the magnitude and angle of the feedback force.
  • the first processor 51 includes a wireless communication module 511, which can realize wireless control and is more convenient to use.
  • the wireless communication module may be any module for wireless data transmission, including but not limited to a Bluetooth module , Radio frequency (NRF) module, wireless fidelity (Wireless-Fidelity, Wi-Fi) module, 2G module, infrared module, 3G module, 4G module, etc.
  • the control circuit includes a first processor 51 and a second processor 52.
  • the first processor communicates with the host computer to collect the hand motion signal collected by the angle sensor It is sent to the host computer, and the control command returned by the host computer is parsed, and sent to the second processor 52.
  • the second processor 52 controls the drive mechanism 21 to output the first link 22 according to the control command of the first processor 51.
  • the two processors respectively assume certain functions, which can improve the control accuracy, and the two processors form a modular design, which is convenient for maintenance, management and heat dissipation.
  • the driving mechanism includes a motor 211 connected to the first end of the first link.
  • the motor 211 may be a brushed DC motor, a hollow cup motor, a brushless motor, a gear motor, or the like.
  • the driving mechanism may further include a gearbox 212, which is respectively connected to the motor 211 and the first end of the first connecting rod.
  • the gearbox 212 may use a worm, umbrella ruler, gear, or other driving methods.
  • the force feedback device 2 can provide continuous force feedback with adjustable magnitude.
  • the second processor 52 controls the motor rotation and feedback output by controlling the current of the motor 211. For example, when the rigidity of the object is high, the second processor 52 inputs a high current to the motor 211, so that the motor 211 outputs a high torque and a torque position to the first link 22 through the gearbox 212, and stops the user's hand at a specific position.
  • the second processor 52 inputs a low current to the motor 211, so that the motor 211 outputs a low torque and a torque position to the first link 22 through the gearbox 212, and the user can overcome the motor output by applying force to the corresponding part of the body The torque and torque position, feel the rigidity of the virtual object.
  • FIG. 5 is a side view of an angle sensor assembly of a hand motion capture device with force feedback provided by an embodiment of the application
  • FIG. 6 is a hand motion capture device with force feedback provided by an embodiment of the application Top view of angle sensor assembly.
  • the angle sensor assembly includes a thumb induction sensor assembly and at least one set of non-thumb induction sensor assemblies.
  • the force feedback device includes a thumb force feedback device 61 and at least one non-thumb force feedback device 62; the thumb induction sensor assembly and the non-thumb
  • the inductive sensor assembly includes multiple rotation sensors, and the thumb force feedback device and the non-thumb force feedback device each include at least one force feedback module.
  • each force feedback module may include a driving mechanism 21 and a first link 22.
  • the thumb sensor assembly includes a first rotation sensor 71, a second rotation sensor 72, and a third rotation sensor 73, which are connected to the control circuit, and the third rotation sensor 73 is mounted on the base 1, the first rotation sensor 71 is provided in the thumb force feedback device 61, and the first rotation sensor 71 is connected to the first end of the first link in the thumb force feedback device 61; the second rotation sensor 72 is connected to the first A rotation sensor 71 and a third rotation sensor 73 are connected, and the angle between the axis of the first rotation sensor 71 and the axis of the second rotation sensor 72 is within a preset first angle range, and the axis of the second rotation sensor The number of included angles with the axis of the third rotation sensor 73 is within the first angle range; each non-thumb induction sensor assembly includes a fourth rotation sensor 74 and a fifth rotation sensor 75 that are electrically connected to the control circuit, respectively.
  • the four rotation sensors 74 are all provided in the corresponding non-thumb force feedback device 62, and the fourth rotation sensor 74 and the first end of the first link in the non-thumb force feedback device 62 Connection; fifth rotation sensors 75 are installed on the base 1, the angle between the axis of the fourth rotation sensor 74 and the axis of the fifth rotation sensor 75 is within the first angle range, and four fifth rotation sensors 75 The number of included angles between the axes is within a preset second angle range, and the included angle between the axes of the four fifth rotation sensors 75 and the bottom surface of the base 1 is within the first angle range.
  • the thumb is provided with three rotation sensors.
  • the axes of the first rotation sensor 71, the second rotation sensor 72, and the third rotation sensor 73 are perpendicular to each other in space.
  • the index finger, middle finger, ring finger and little finger are each provided with two rotation sensors.
  • the third rotation sensor 73 connects the non-thumb induction sensor assembly and the thumb induction sensor assembly, and all rotation sensors are connected to the control circuit.
  • Each rotation sensor can be connected to the control circuit through a wire or wirelessly.
  • Each rotation sensor can collect the rotation angle of the link structure or the rotation angle of the force feedback device relative to the base in real time.
  • the hand movement signal has been obtained, the hand movement signal is fed back to the control circuit, and then the hand movement signal is sent by the control circuit Hand modeling for the host computer.
  • the above rotation sensors are all absolute position rotation sensors.
  • the rotation sensor of the absolute position is used, there is no need for tedious calibration, and there will be no data deviation for long-term use. Greatly improved the stability of use and reading accuracy.
  • the three-degree-of-freedom motion capture used by the thumb captures the split motion of the thumb more precisely and meticulously.
  • first angle range and the second angle range may be angle ranges set by those skilled in the art according to actual needs.
  • first angle range may be 70 ° to 110 °
  • second angle range may be ⁇ 20 ° ⁇ 20 °, which is not limited in this application.
  • more rotation sensors and force feedback devices can be provided for the thumb and the four fingers, for example, a rotation sensor or force feedback device can be provided at the connection position in the link structure, and the thumb can include 4 rotations
  • the sensor and two force feedback devices, and the other four fingers may each include three rotation sensors and two force feedback devices, which are not limited in this application.
  • the connecting rod structure 3 includes an adjustable length straight rod 31 and an adjustable length shaped connecting rod 32.
  • the fixing assembly 4 is provided on the shaped connecting rod 32, and one end of the straight rod 31 is provided with
  • the second end of the first connecting rod is connected to the adjustment structure, and the other end of the straight rod 31 is movably connected to the special-shaped connecting rod 32.
  • the adjustment structure may be a chute, an elastic material, a folding structure, a plug-in structure, a latch-lock structure, or the like.
  • the first connecting rod 22 is connected to the special-shaped connecting rod 32 through an adjustment structure
  • the straight rod 31 and the special-shaped connecting rod 32 can be movably connected by a hinge
  • the fixing assembly 4 can be movably connected to the special-shaped connecting rod 32 by a connecting pin connection.
  • the special-shaped connecting rod 32 may be a special-shaped connecting rod of any shape as long as it can connect the fingertip and the first connecting rod.
  • the lengths of the straight rod 31 and the special-shaped connecting rod 32 can be adjusted by way of chute, parts replacement, material replacement, structure replacement, etc. The length can adapt the device to finger lengths and palm sizes of different sizes.
  • the hand motion capture device with force feedback further includes an external accessory 8 connected to the base.
  • the external accessory 8 includes a joystick 81, a button 82, a tracker, a touchpad, and a dial At least one.
  • the device can also add one or more buttons, dials, joysticks or other user controls.
  • These external accessories may be attached to the base 1, or the location of these external accessories may be arbitrary.
  • the external accessory is located between the thumb and index finger, and can be connected to one or more buttons and joysticks when fixed to the base.
  • these buttons and joysticks can also be added anywhere on the exoskeleton.
  • external accessories such as buttons and joysticks can provide input such as position, angle rotation or keys.
  • the external accessory 8 is electrically connected to the base 1.
  • the external accessory can be rigidly connected to the base, and the external accessory can communicate with the base.
  • the external accessory 8 and the base 1 are detachably connected through an accessory connection structure, which includes a sliding slot 91, a slider connecting rod 92 that can slide into the sliding slot 91, and a screw 93,
  • the slide slot 91 is provided on the base 1; the screw 93 is used to fix the slider connecting rod 92 on the base 1 when one end of the slider connecting rod 92 slides into the slide slot 91, and the other end of the slider connecting rod 92 is connected to the outside Attachment 8 is detachably connected.
  • the attachment connecting structure may further include a sealing slider 94. When an external accessory is not needed, the sealing slider 94 slides into the sliding slot 91.
  • the sealing slider 94 is first removed from the sliding slot 91 Slide it out, then slide the slider connecting rod 92 into the slide slot 91, fix it with screws 93, and finally connect different external accessories 8 to the end of the slider connecting rod (1) as needed.
  • external attachments such as joysticks, buttons, touch pads and dials can also be added to the hand motion capture device with force feedback.
  • joysticks, buttons and tracking External accessories such as devices, touchpads and dials provide new input methods for computers, mobile phones and other host computers, and can be backward compatible with traditional control methods such as handles, dials and buttons.
  • a tracker is added to the hand motion capture device with force feedback, and the tracker can provide a position and angle in space for the hand motion capture device with force feedback.
  • the tracker and the base 1 may be rigidly connected, and the tracker and the base 1 may also be electrically connected.
  • the tracker provides the position and angle in the space of the hand motion capture device with force feedback through wireless or wired means,
  • the tracker can directly send the position information and angle information of the device in the space to the upper computer through a wireless method, or the tracker can also send the device in the space to the first processor 51 through a wired method or a wireless method.
  • Position information and angle information, and then the first processor 51 sends the position information and angle information of the device in space to the host computer.
  • a tracker is added to the hand motion capture device with force feedback.
  • a new input method can be provided to the host computer such as a computer and mobile phone through the tracker, which is backward compatible
  • Traditional control methods such as handles and dials.
  • the device further includes a retractable structure with a retractable length; one end of the retractable structure is connected to the force feedback device, and the other end of the retractable structure is connected to the connecting rod structure.
  • a telescopic mechanism is added between the force feedback device and the link structure. The length of the telescopic structure can be adjusted and selected according to the size of the user's hand. The user's finger is long, and the telescopic structure can be appropriately extended, and vice versa .
  • the telescopic structure includes a second link 101, a third link 102, a link bushing 103, and a screw 104; one end of the second link 101 is connected to the force feedback device 2, and the other end of the second link 101 Connected to the connecting rod bushing 103; one end of the third connecting rod 102 is connected to the connecting rod structure, the other end of the third connecting rod 102 extends into the connecting rod bushing 103, and the screw 104 passes through the opening 105 in the connecting rod bushing 103 The screw hole 106 at the other end of the third link 102 is connected to the third link 102 and the link bush 103.
  • the connecting rod bush 103 has a wave-shaped opening 105, and a single screw hole 106 is also provided at the end of the third link 102. After determining the length according to the hand shape, the screw 104 is driven into the wave-shaped opening The hole 105 and the screw hole 106 at the other end of the third link 102 lock the third link 102 and the link bush 103.
  • a power supply device is also provided in the base 1, and the power supply device is used to provide electrical energy for the first processor, the second processor, each rotation sensor, the motor and other electrical devices in the hand motion capture device with force feedback To ensure the normal operation of the hand motion capture device with force feedback.
  • the power supply device may include a battery, and may also include a wired power supply, a wireless power supply, a wireless charging device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rehabilitation Tools (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请涉及一种带有力反馈的手部动作捕获装置,包括:底座、与底座连接的力反馈装置、与力反馈装置连接的连杆结构、以及用于将连杆结构和底座固定于手部的固定组件;力反馈装置包括驱动机构和第一连杆,第一连杆的第一端部与驱动机构连接,第一连杆的第二端部与连杆结构活动连接;角度传感器组件,角度传感器组件被配置为检测连杆结构的旋转角度或力反馈装置相对底座的旋转角度并生成检测信号;和控制电路,控制电路电连接至角度传感器组件和驱动机构,被配置为将角度传感器的检测信号发送至上位机,并根据上位机发送的一个或多个控制信号控制驱动机构向第一连杆输出位置以及相应大小的反馈,可以精细控制力反馈的大小和位置。

Description

带有力反馈的手部动作捕获装置
相关申请的交叉引用
本申请的相关申请要求于2018年11月1日申请的,申请号为2018112969508,申请名称为“带有力反馈的手部动作捕获装置”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及动作捕获和力反馈技术领域,特别是涉及一种带有力反馈的手部动作捕获装置。
背景技术
在虚拟现实的场景中,为了增强用户对虚拟世界的感知,常常会应用到手部动作捕获技术和力反馈技术。
目前,手部动作捕获技术和力反馈技术皆有多种不同方案。例如,常见的手部动作捕捉方案有计算机视觉动作捕捉、惯性检测单元(Inertial measurement unit,IMU)动作捕捉、弯曲传感器动作捕捉等;常见的力反馈技术也有电机盘拉线式、直线电机直驱式等。在力反馈方面,市场上已经存在一些带有力反馈的装置,例如,一种带有力反馈的装置的弯曲传感手套可以通过电机盘的旋转控制钢丝的抽拉,通过钢丝的抽拉带动滑轮对手指尖进行拉取,实现力反馈。学术界也曾尝试通过直线电机连接一组连杆系统,由直线电机带动连杆系统直接对手指尖进行推拉,实现力反馈。
但是,上述力反馈的方案中,提供的反馈力仅是有和无的区别,同时线驱动等方案会造成比较大的系统延时,以及其占用的巨大体积严重影响产品的小型化和便携性,从而无法实现更精细的力反馈和更好的使用体验。
发明内容
基于此,有必要针对上述技术问题,提供一种轻便的能实现力反馈的精细控制的带有力反馈的手部动作捕获装置。
一种带有力反馈的手部动作捕获装置,包括:底座、与所述底座连接的力反馈装置、与所述力反馈装置连接的连杆结构、以及用于将所述连杆结构和底座固定于手部的固定组件;
所述力反馈装置包括驱动机构和第一连杆,所述第一连杆的第一端部与所述驱动机构连接,所述第一连杆的第二端部与所述连杆结构活动连接;
角度传感器组件,所述角度传感器组件被配置为检测所述连杆结构的旋转角度或所述力反馈装置相对所述底座的旋转角度并生成检测信号;和
控制电路,所述控制电路电连接至所述角度传感器组件和所述驱动机构,被配置为将 所述角度传感器的检测信号发送至上位机,并根据所述上位机发送的一个或多个控制信号控制所述驱动机构向所述第一连杆输出位置以及相应大小的反馈。
在其中一个实施例中,所述控制电路包括第一处理器和第二处理器,所述第一处理器设置于所述底座,所述第二处理器电连接至第一处理器,所述第二处理器被配置为根据所述第一处理器的控制指令,控制所述驱动机构向所述第一连杆输出位置以及相应大小的反馈。
在其中一个实施例中,所述驱动机构包括电机,所述电机与所述第一连杆的第一端部连接。
在其中一个实施例中,所述驱动机构还包括变速箱;所述变速箱分别与所述电机和所述第一连杆的第一端部连接。
在其中一个实施例中,所述角度传感器组件包括拇指感应传感器组件和至少一组非拇指感应传感器组件,所述力反馈装置包括拇指力反馈装置和至少一个非拇指力反馈装置;所述拇指感应传感器组件和所述非拇指感应传感器组件均包括多个旋转传感器,所述拇指力反馈装置和所述非拇指力反馈装置均包括至少一个力反馈模块。
在其中一个实施例中,所述拇指感应传感器组件包括分别与所述控制电路连接的第一旋转传感器、第二旋转传感器和第三旋转传感器,所述第三旋转传感器安装在所述底座上,所述第一旋转传感器设置在所述拇指力反馈装置中,且所述第一旋转传感器与所述拇指力反馈装置中的第一连杆的第一端部连接;所述第二旋转传感器分别与所述第一旋转传感器和所述第三旋转传感器连接,且所述第一旋转传感器的轴线和所述第二旋转传感器的轴线之间的夹角度数在预设的第一角度范围内,所述第二旋转传感器的轴线和所述第三旋转传感器的轴线之间的夹角度数在所述第一角度范围内;
每个所述非拇指感应传感器组件均包括分别与所述控制电路电连接的第四旋转传感器和第五旋转传感器,所述第四旋转传感器均设置在对应的所述四指力反馈装置中,且所述第四旋转传感器与所述非拇指力反馈装置中的第一连杆的第一端部连接;所述第五旋转传感器均安装在所述底座上,所述第四旋转传感器的轴线与所述第五旋转传感器的轴线之间的夹角度数在所述第一角度范围内,且四个所述第五旋转传感器的轴线之间的夹角度数在预设的第二角度范围内,四个所述第五旋转传感器的轴线与所述底座的底面之间的夹角度数在所述第一角度范围内。
在其中一个实施例中,所述连杆结构包括可调节长度的直杆,和,可调节长度或可更换形状的异形连接杆,所述固定组件设置在所述异形连接杆上,所述直杆的一端设置有调整结构,所述第一连杆的第二端部与所述调整结构连接,所述直杆的另一端与所述异形连接杆活动连接。
在其中一个实施例中,所述装置还包括长度可伸缩的伸缩结构;所述伸缩结构的一端与所述力反馈装置连接,所述伸缩结构的另一端与所述连杆结构连接。
在其中一个实施例中,所述伸缩结构包括第二连杆、第三连杆、连杆衬套和螺丝;所 述第二连杆的一端与所述力反馈装置连接,所述第二连杆的另一端与所述连杆衬套连接;所述第三连杆的一端与所述连杆结构连接,所述第三连杆的另一端伸入所述连杆衬套,所述螺丝通过所述连杆衬套上的开孔与所述第三连杆的另一端的螺丝孔连接所述第三连杆和所述连杆衬套。
在其中一个实施例中,所述装置还包括与所述底座连接的外部附件,所述外部附件包括触摸屏、操纵杆、按钮、追踪器和拨盘中的至少一个。
在其中一个实施例中,所述外部附件与所述底座电连接。
在其中一个实施例中,所述外部附件与所述底座通过附件连接结构可拆卸连接,所述附件连接结构包括滑槽、可滑入所述滑槽的滑块连接杆和螺丝,所述滑槽设置在所述底座上;所述螺丝用于在所述滑块连接杆的一端滑入所述滑槽时,将所述滑块连接杆固定在所述底座上,所述滑块连接杆的另一端与所述外部附件可拆卸连接。
在其中一个实施例中,所述第一处理器包括无线通信模块。
在其中一个实施例中,所述底座中还设置有电源装置。
在其中一个实施例中,所述电源装置包括电池。
在其中一个实施例中,所述固定组件包括手掌固定装置和手指固定装置。
在其中一个实施例中,所述手掌固定装置为绑带结构、手套结构、手指套结构或手环结构。
在其中一个实施例中,所述手指固定组件为扎带结构或指套结构。
本申请实施例提供的带有力反馈的手部动作捕获装置,角度传感器组件可以获取连杆结构的旋转角度或力反馈装置相对底座的旋转角度并生成检测信号,将检测信号反馈给控制电路,控制电路将检测信号发送给上位机,上位机根据检测信号向控制电路发送控制指令,控制电路可以根据上位机的控制指令控制驱动机构向第一连杆输出位置以及相应大小的反馈,也即,控制电路可以更加精细的控制反馈力的位置和大小。本申请的带有力反馈的手部动作捕获装置,既能够实现人体相应部位的动作捕捉,又同时实现精细的力反馈,在结构设计让力反馈功能和动作捕捉设备共享角度传感器组件,实现了动作捕获和力反馈的合二为一。本申请实施例中所定制的力反馈装置体积上更小、性能更优越、延迟更低,配合控制电路的电机控制算法,可以实现柔性可变扭矩的输出,模拟物体的不同硬度,给用户更加真实的触感体验。而且,本实施例提供的带有力反馈的手部动作捕获装置的产品更一体化,整体结构更稳定,实现了更轻便的穿戴体验。
附图说明
图1为本申请实施例提供的一种带有力反馈的手部动作捕获装置的结构示意图;
图1a为本申请实施例提供的另一种带有力反馈的手部动作捕获装置的结构示意图;
图1b为本申请实施例提供的一种带有力反馈的手部动作捕获装置的局部结构示意图;
图2为本申请另一实施例提供的一种带有力反馈的手部动作捕获装置的结构示意图;
图3为本申请实施例提供的一种带有力反馈的手部动作捕获装置的局部结构示意图;
图4为本申请实施例提供的另一种带有力反馈的手部动作捕获装置的局部结构示意图;
图5为本申请实施例提供的一种带有力反馈的手部动作捕获装置的角度传感器组件的侧视图;
图6分别为本申请实施例提供的一种带有力反馈的手部动作捕获装置的角度传感器组件的俯视图;
图7为本申请实施例提供的另一种带有力反馈的手部动作捕获装置的局部结构示意图;
图8为本申请另一实施例提供的一种带有力反馈的手部动作捕获装置的结构示意图;
图9a-图9d为本申请另一实施例提供的一种带有力反馈的手部动作捕获装置的局部结构示意图;
图10a-图10c为本申请一实施例提供的一种伸缩结构示意图。
附图标记说明:
1:底座;
2:力反馈装置;
21:驱动机构;
211:电机;
212:变速箱;
22:第一连杆;
3:连杆结构;
31:直杆;
32:异形连接杆;
4:固定组件;
41:手掌固定装置;
42:手指固定装置;
51:第一处理器;
511:无线通信模块;
52:第二处理器;
61:拇指力反馈装置;
62:非拇指力反馈装置;
71:第一旋转传感器;
72:第二旋转传感器;
73:第三旋转传感器;
74:第四旋转传感器;
75:第五旋转传感器;
8:外部附件;
81:操纵杆;
82:按钮;
91:滑槽;
92:滑块连接杆;
93:螺丝;
94:密封滑块;
101:第二连杆;
102:第三连杆;
103:连杆衬套;
104:螺丝;
105:开孔;
106:螺丝孔。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请的带有力反馈的手部动作捕获装置可在用户手指尖提供可调节的连续力反馈,用以模拟虚拟物体的形状及刚度,这可被用于机器人控制、机械控制以及游戏等等。
在一些远程操作场景或者虚拟现实场景中,为了捕获用户的手部动作或者增加用户的真实触感,可以采用带有力反馈的手部动作捕获装置。例如,用户可以使用该带有力反馈的手部动作捕获装置,操控距离用户一公里外的机器人拆弹,用户通过移动自己的手部来远程控制机器人的手部去抓取并拆除易爆物品。在抓到物体零件的一瞬间,带有力反馈的手部动作捕获装置可以向用户施加反馈力,使得用户产生把持感,能够更精细的理解抓握物体的零件状态,以辅助完成安全拆解易爆物品的任务。或者,在玩游戏时,用户可以通过头戴式显示器在虚拟世界中看到自己的双手,增加临现感,在虚拟世界中抓取虚拟物体时,当手指的坐标与被抓取物体的三维坐标重合时,上位机可以给带有力反馈的手部动作捕获装置发送指令,使得带有力反馈的手部动作捕获装置给用户的手部施加反馈力,使得用户仿佛在真实世界中真的握持到真实物体一般。
图1为本申请实施例提供的一种带有力反馈的手部动作捕获装置的结构示意图。图1a为本申请实施例提供的另一种带有力反馈的手部动作捕获装置的结构示意图,图1b为本申请实施例提供的一种带有力反馈的手部动作捕获装置的局部结构示意图,如图1和图 1a所示,该带有力反馈的手部动作捕获装置包括底座1、与底座1连接的力反馈装置2、与力反馈装置2连接的连杆结构3、以及用于将连杆结构3和底座1固定于手部的固定组件4;如图1b所示,力反馈装置2包括驱动机构21和第一连杆22,第一连杆22的第一端部与驱动机构21连接,第一连杆22的第二端部与连杆结构3活动连接;角度传感器组件,角度传感器组件被配置为检测连杆结构的旋转角度或力反馈装置相对底座的旋转角度并生成检测信号;和控制电路,控制电路电连接至角度传感器组件和驱动机构21,被配置为将角度传感器的检测信号发送至上位机,并根据上位机发送的一个或多个控制信号控制驱动机构21向第一连杆输出22位置以及相应大小的反馈。
在本实施例中,力反馈装置2可以通过连杆、铰链、轴承等方式与底座1活动连接,力反馈装置2包括驱动机构21和第一连杆22,其中,驱动机构21可以为电机、传送装置等构成的用于提供驱动力的机构,驱动机构21可以在控制电路的控制下向第一连杆22输出反馈的位置和不同大小、不同方向且连续的反馈,从而实现将反馈力作用在用户手部。其中,该反馈可以是钢度反馈、震动反馈,温度反馈,触觉反馈等等。以刚度反馈为例,当物体的刚度较高时,控制电路控制力反馈装置2输出高扭矩以及扭矩的位置;当物体的刚度较低时,控制电路控制力反馈装置2输出低扭矩以及扭矩的位置,使得用户的手部在输出的位置处停止,并通过不同大小的扭矩感受物体的刚度和形状。该带有力反馈的手部动作捕获装置终可以包括多个力反馈装置2,例如,给拇指设置一个或多个力反馈装置2,给其它四指设置一个或多个力反馈装置2,或者,还可以给每个手指分别设置一个或多个力反馈装置2。
上述与角度传感器组件可以检测连杆结构的旋转角度或力反馈装置相对底座的旋转角度并生成检测信号,该检测信号即为手部动作信号,将采集到的手机动作信号回传给控制电路。角度传感器组件可以包括多个旋转传感器,具体可以根据手指的自由度设置角度传感器器组件中旋转传感器的数目,例如,拇指的自由度设置为3,则拇指对应的角度传感器组件包括3个旋转传感器,剩余四指的自由度均设置为2,则食指、中指、无名指、小拇指对应的角度传感器组件均包括2个旋转传感器,或者,拇指的自由度设置为4,则拇指对应的角度传感器组件包括4个旋转传感器,剩余四指的自由度均设置为3,则食指、中指、无名指、小拇指对应的角度传感器组件均包括3个旋转传感器,但本申请中并不以此为限。其中,旋转传感器可以使用电位器、霍尔角度传感器、非接触式磁角度传感器、编码器等任意角度传感器。
在本实施例中,控制电路相当于带有力反馈的手部动作捕获装置的控制系统,该控制电路可以与上位机通信,向上位机发送角度传感器组件采集的手部动作信号,还可以接收上位机发送的上位机指令,根据上位机指令中的物体刚度,控制驱动21机构向第一连杆22输出位置和相应大小的反馈。上位机可以为电脑、手机、游戏机、服务器、计算机设备等。
本实施例提供的带有力反馈的手部动作捕获装置既可以实现手部动作捕获,又可以提 供力反馈,其实现原理如下:角度传感器组件可以获取连杆结构的旋转角度或力反馈装置相对底座的旋转角度并生成检测信号,将检测信号反馈给控制电路,控制电路将检测信号发送给上位机,上位机根据该检测信号重建手部模型,并且建立每个手指尖与手背之间的相对坐标关系,通过该相对坐标关系,将重建的手部模型映射到虚拟人物的手上,然后开始进行物体交互的碰撞检测和物理状态判断。当检测到虚拟人物的手部与目标物体发生碰撞时,比如,虚拟人物的手部抓住某一个虚拟物体时,判断该虚拟物体对应的物理状态,根据物理状态计算出实际上应该生成的反馈力的矢量方向和大小,并将该矢量方向和大小发送给控制电路,控制电路根据每个手指对应的反馈力的位置、矢量方向和大小,控制驱动机构向第一连杆输出反馈的位置、相应矢量方向和大小的反馈,使得第一连杆和连杆结构可以在特定的时间段、以特定的角度、特定的反馈进行力的模拟,使得用户身体的相应部位停留在特定位置,用户可以通过身体的相应部位用力来克服驱动机构输出的钢度反馈、震动反馈,温度反馈,触觉反馈等,感觉到物体的刚度、温度、触感等。例如,当人在抓取一个物体时,真实的用户手部无法握住这个物体,但是可以通过力反馈使得用户手部的形状贴合物体的状态,并且通过不同大小的力度使得用户可以感知物体的刚度和形状,使人产生抓住物体的错觉。
本申请实施例提供的带有力反馈的手部动作捕获装置,角度传感器组件可以获取连杆结构的旋转角度或力反馈装置相对底座的旋转角度并生成检测信号,将检测信号反馈给控制电路,控制电路将检测信号发送给上位机,上位机根据检测信号向控制电路发送控制指令,控制电路可以根据上位机的控制指令控制驱动机构向第一连杆输出的反馈力的大小和位置,也即,控制电路可以更加精细的控制反馈力的大小和反馈力的位置。本申请的带有力反馈的手部动作捕获装置,既能够实现手部动作捕捉,又同时实现精细的力反馈,在结构设计让力反馈功能和动作捕捉设备共享角度传感器组件,实现了动作捕获和力反馈的合二为一。本申请实施例中所定制的力反馈装置体积上更小、性能更优越、延迟更低,配合控制电路的电机控制算法,可以实现柔性可变扭矩的输出,模拟物体的不同硬度,给用户更加真实的触感体验。而且,本实施例提供的带有力反馈的手部动作捕获装置的产品更一体化,整体结构更稳定,实现了更轻便的穿戴体验。
图1中所示的上固定组件4用于将底座1和连杆结构3固定在手部,可选地,如图1b和图2所示,该固定组件可以包括用于固定底座的手掌固定装置41和用于固定连杆结构3的手指固定装置42。手掌固定装置41可以为绑带结构、手套结构、手指套结构或手环结构等。例如,该手掌固定装置41可以是但不限于尼龙绑带,也可以是任何形状,任何材质的复合人体工学的穿戴设计。可选地,手指固定组件42为扎带结构或指套结构,例如,手指固定组件42可以是但不限于尼龙扎带和手指套,也可以是硅胶/塑胶指套,或者任意可用来固定手指的机械机构。例如,手指固定组件42可以为包括尼龙搭扣的尼龙扎带式的穿戴方式,通过尼龙搭扣固定在指尖上;所述手指套通过不同大小和不同材质,使用户通过个人手指尺寸来选择其所需的手指套。
图3为本申请实施例提供的一种带有力反馈的手部动作捕获装置的局部结构示意图。如图2和图3所示,控制电路包括第一处理器51和第二处理器52,第一处理器51设置于底座1,第二处理器52电连接至第一处理器51,第二处理器52被配置为根据第一处理器52的控制指令,控制驱动机构21向第一连杆输出22相应大小的扭矩。可选地,第二处理器52可以设置在底座1上,第二处理器52也可以设置在力反馈装置2中,本实施例中不加以限制。
在本实施例中,控制电路中可以设置两个处理器,在底座1中设置第一处理器51,第一处理器与上位机进行通信,将角度传感器采集到的手部动作信号发送给上位机,并将上位机返回的控制指令进行解析,发送给第二处理器52,第二处理器52根据第一处理器51的控制指令,控制驱动机构21向第一连杆输出22反馈的位置和相应大小的反馈。例如,第一处理器51接收到上位机指令中包括物体刚度,第一处理器51根据物体刚度计算出每个手指对应的反馈力大小、角度和位置,并将每个手指对应的反馈力大小和角度发送给相应的第二处理器52,第二处理器52根据反馈力大小和角度控制驱动机构输出相应的扭矩和扭矩位置。
可选地,如图2所示,第一处理器51包括无线通信模块511,可以实现无线控制,更加方便利用,该无线通信模块可以是任意进行无线数据传输的模块,包括但不限于蓝牙模块、射频(NRF)模块、无线保真(Wireless-Fidelity,Wi-Fi)模块、2G模块、红外线模块、3G模块、4G模块等等。
本实施例提供的带有力反馈的手部动作捕获装置,控制电路包括第一处理器51和第二处理器52,第一处理器与上位机进行通信,将角度传感器采集到的手部动作信号发送给上位机,并将上位机返回的控制指令进行解析,发送给第二处理器52,第二处理器52根据第一处理器51的控制指令,控制驱动机构21向第一连杆输出22相应大小的扭矩和扭矩的位置,两个处理器分别承担一定的功能,可以提高控制精度,并且,两个处理器形成模块化设计,方便维修、管理和散热。
图4为本申请实施例提供的另一种带有力反馈的手部动作捕获装置的局部结构示意图。如图3和图4所示,可选地,驱动机构包括电机211,电机211与第一连杆的第一端部连接。
其中,电机211可以为有刷直流电机、空心杯电机、无刷电机、齿轮电机等。可选地,驱动机构还可以包括变速箱212,变速箱212分别与电机211和第一连杆的第一端部连接,变速箱212可以采用蜗杆、伞尺、齿轮等驱动方式。
在本实施例中,以齿轮电机为例,力反馈装置2可以提供连续的大小可调节的力反馈,第二处理器52通过控制电机211的电流来控制电机旋转与反馈输出。例如,当物体刚度高时,第二处理器52向电机211输入高电流,使得电机211通过变速箱212向第一连杆22输出高扭矩和扭矩位置,将使用者手部停留在特定位置。当物体刚度低时,第二处理器52向电机211输入低电流,使得电机211通过变速箱212向第一连杆22输出低扭矩和 扭矩位置,用户可以通过身体的相应部位用力来克服电机输出的扭矩和扭矩位置,感觉到虚拟物体的刚度。
图5为本申请实施例提供的一种带有力反馈的手部动作捕获装置的角度传感器组件的侧视图,图6分别为本申请实施例提供的一种带有力反馈的手部动作捕获装置的角度传感器组件的俯视图。角度传感器组件包括拇指感应传感器组件和至少一组非拇指感应传感器组件,如图2所示,力反馈装置包括拇指力反馈装置61和至少一个非拇指力反馈装置62;拇指感应传感器组件和非拇指感应传感器组件均包括多个旋转传感器,拇指力反馈装置和非拇指力反馈装置均包括至少一个力反馈模块。其中,每个力反馈模块可以包括驱动机构21和第一连杆22。
可选地,如图5和图6所示,拇指感应传感器组件包括分别与控制电路连接的第一旋转传感器71、第二旋转传感器72和第三旋转传感器73,第三旋转传感器73安装在底座1上,第一旋转传感器71设置在拇指力反馈装置61中,且第一旋转传感器71与拇指力反馈装置61中的第一连杆的第一端部连接;第二旋转传感器72分别与第一旋转传感器71和第三旋转传感器73连接,且第一旋转传感器71的轴线和第二旋转传感器72的轴线之间的夹角度数在预设的第一角度范围内,第二旋转传感器的轴线和第三旋转传感器73的轴线之间的夹角度数在第一角度范围内;每个非拇指感应传感器组件均包括分别与控制电路电连接的第四旋转传感器74和第五旋转传感器75,第四旋转传感器74均设置在对应的非拇指力反馈装置62中,且第四旋转传感器74与非拇指力反馈装置62中的第一连杆的第一端部连接;第五旋转传感器75均安装在底座1上,第四旋转传感器74的轴线与第五旋转传感器75的轴线之间的夹角度数在第一角度范围内,且四个第五旋转传感器75的轴线之间的夹角度数在预设的第二角度范围内,四个第五旋转传感器75的轴线与底座1的底面之间的夹角度数在第一角度范围内。
在本实施例中,由于拇指的外骨骼结构相对特殊,拇指设置了3个旋转传感器,第一旋转传感器71、第二旋转传感器72、第三旋转传感器73的轴线两两互相垂直,在空间中分别沿着三个不同的方向。食指、中指、无名指和小拇指各设置了2个旋转传感器,第三旋转传感器73将非拇指感应传感器组件和拇指感应传感器组件相连,且所有的旋转传感器均连接至控制电路上。各旋转传感器可以和控制电路通过电线连接,也可以是无线连接。各个旋转传感器可以实时的采集连杆结构的旋转角度或力反馈装置相对底座的旋转角度,已获得手部动作信号,将手部动作信号反馈给控制电路,再由控制电路将手部动作信号发送给上位机进行手部建模。可选地,上述各旋转传感器均为绝对位置的旋转传感器,在进行手部动作捕获时,由于使用的是绝对位置的旋转传感器,无需繁琐的校准,以及长期使用也不会产生数据偏移,大大提升了使用的稳定性,以及读取精度。拇指所采用的三自由度动作捕捉,更精准细致的捕捉了拇指的拆分动作。
需要说明的是,第一角度范围和第二角度范围可以是本领域技术人员根据实际需求设定的角度范围,例如,第一角度范围可以为70°~110°,第二角度范围可以为-20°~20°, 本申请中不以此为限。
可选地,还可以在给拇指和四指分别设置更多的旋转传感器和力反馈装置,例如,可以在连杆结构中的连接位置设置旋转传感器或力反馈装置,则拇指可以包括4个旋转传感器和2个力反馈装置,其它四指各可以包括3个旋转传感器和2个力反馈装置,本申请中不以此为限。
可选地,如图7所示,连杆结构3包括可调节长度的直杆31和可调节长度的异形连接杆32,固定组件4设置在异形连接杆32上,直杆31的一端设置有调整结构,第一连杆的第二端部与调整结构连接,直杆31的另一端与异形连接杆32活动连接。其中,该调整结构可以为滑槽、弹性材料、折叠结构、插拔结构、插销锁定结构等。
在本实施例中,第一连杆22通过调整结构连接至异形连接杆32,直杆31与异形连接杆32可以通过铰链活动连接,固定组件4可以通过驳接插销与异形连接杆32成活动连接。该异形连接杆32可以是任意形状的异型连杆,只要可以连接手指尖和第一连杆即可。可选地,直杆31和异形连接杆32的长度可以通过滑槽、更换零件、更换材料、更换结构等方式进行调节,其长度可以将此装置适配于不同大小的手指长度和手掌大小。
可选地,如图8所示,该带有力反馈的手部动作捕获装置还包括与底座连接的外部附件8,外部附件8包括操纵杆81、按钮82、追踪器、触摸板和拨盘中的至少一个。该装置还可以再添加一个或多个按钮,拨盘,遥杆或其他用户控件。这些外部附件可以附接到底座1,或者,这些外部附件的位置可以是任意的。例如,外部附件位于大拇指和食指间,可以在固定到底座时,连接一个或多个按钮和操纵杆。然而,这些按钮和操纵杆也可以被添加到外骨骼上的任何位置。同时,按钮、操纵杆等外部附件可以提供位置、角度旋转或按键等输入。
可选地,外部附件8与底座1电连接。外部附件可以和底座之间可以是刚性连接,外部附件可以与底座之间进行通信。
可选地,如图9a-9d所示,外部附件8与底座1通过附件连接结构可拆卸连接,附件连接结构包括滑槽91、可滑入滑槽91的滑块连接杆92和螺丝93,滑槽91设置在底座1上;螺丝93用于在滑块连接杆92的一端滑入滑槽91时,将滑块连接杆92固定在底座1上,滑块连接杆92的另一端与外部附件8可拆卸连接。可选地,附件连接结构还可以包括密封滑块94,当不需要外部附件时,密封滑块94滑入滑槽91中,当需要连接外部附件时,首先将密封滑块94从滑槽91上滑出,然后将滑块连接杆92滑入滑槽91,用螺丝93固定,最后根据需要在滑块连接杆(1)末端连接不同的外部附件8。
本实施例中,还可以在带有力反馈的手部动作捕获装置增加操纵杆、按钮、触摸板和拨盘等外部附件,除了提供五指的输入方式之外,还可以通过操纵杆、按钮、追踪器、触摸板和拨盘等外部附件给电脑、手机等上位机提供新的输入方法,可以反向兼容传统的手柄、拨盘、按钮等控制方式。
尤其地,在带有力反馈的手部动作捕获装置上增加追踪器,追踪器可以为带有力反馈 的手部动作捕获装置提供空间中的位置和角度。可选地,追踪器与底座1可以刚性连接,追踪器与底座1也可以是电连接,追踪器通过无线或者有线方式为带有力反馈的手部动作捕获装置提供所在空间中的位置和角度,例如,追踪器可以通过无线方式直接向上位机发送该装置在空间中的位置信息和角度信息,或者,追踪器还可以通过有线方式或者无线方式向第一处理器51发送该装置在空间中的位置信息和角度信息,再由第一处理器51将该装置在空间中的位置信息和角度信息发送给上位机。
本实施例中,在带有力反馈的手部动作捕获装置增加追踪器,除了提供五指的输入方式之外,还可以通过追踪器给电脑、手机等上位机提供新的输入方法,可以反向兼容传统的手柄、拨盘等控制方式。
在其中一个实施例中,如图10a-10c所示,该装置还包括长度可伸缩的伸缩结构;伸缩结构的一端与力反馈装置连接,伸缩结构的另一端与连杆结构连接。本实施例中在力反馈装置和连杆结构之间增加了伸缩机构,伸缩结构的长度可以根据用户的手部大小调整选择最合适,用户手指较长,可以适当伸长伸缩结构,反之亦然。
可选地,伸缩结构包括第二连杆101、第三连杆102、连杆衬套103和螺丝104;第二连杆101的一端与力反馈装置2连接,第二连杆的101另一端与连杆衬套103连接;第三连杆102的一端与连杆结构连接,第三连杆102的另一端伸入连杆衬套103,螺丝104通过连杆衬套103上的开孔105与第三连杆102的另一端的螺丝孔106连接第三连杆102和连杆衬套103。
本实施例中,连杆衬套103上有波浪状开孔105,在第三连杆102的末端也有设有单个螺丝孔106,当根据手型确定长度之后,将螺丝104打入波浪状开孔105与第三连杆102的另一端的螺丝孔106中,锁紧第三连杆102和连杆衬套103。
可选地,底座1中还设置有电源装置,电源装置用于为带有力反馈的手部动作捕获装置中的第一处理器、第二处理器、各旋转传感器、电机等用电装置提供电能,以保证带有力反馈的手部动作捕获装置正常运转。该电源装置可以包括电池,还可以包括有线电源,无线电源、无线充电装置等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种带有力反馈的手部动作捕获装置,其特征在于,包括:底座、与所述底座连接的力反馈装置、与所述力反馈装置连接的连杆结构、以及用于将所述连杆结构和底座固定于手部的固定组件;
    所述力反馈装置包括驱动机构和第一连杆,所述第一连杆的第一端部与所述驱动机构连接,所述第一连杆的第二端部与所述连杆结构活动连接;
    角度传感器组件,所述角度传感器组件被配置为检测所述连杆结构的旋转角度或所述力反馈装置相对所述底座的旋转角度并生成检测信号;和
    控制电路,所述控制电路电连接至所述角度传感器组件和所述驱动机构,被配置为将所述角度传感器的检测信号发送至上位机,并根据所述上位机发送的一个或多个控制信号控制所述驱动机构向所述第一连杆输出位置以及相应大小的反馈。
  2. 根据权利要求1所述的装置,其特征在于,所述控制电路包括第一处理器和第二处理器,所述第一处理器设置于所述底座,所述第二处理器电连接至第一处理器,所述第二处理器被配置为根据所述第一处理器的控制指令,控制所述驱动机构向所述第一连杆输出位置以及相应大小的反馈。
  3. 根据权利要求1所述的装置,其特征在于,所述驱动机构包括电机,所述电机与所述第一连杆的第一端部连接。
  4. 根据权利要求3所述的装置,其特征在于,所述驱动机构还包括变速箱;所述变速箱分别与所述电机和所述第一连杆的第一端部连接。
  5. 根据权利要求1-4任一项所述的装置,其特征在于,所述角度传感器组件包括拇指感应传感器组件和至少一组非拇指感应传感器组件,所述力反馈装置包括拇指力反馈装置和至少一个非拇指力反馈装置;所述拇指感应传感器组件和所述非拇指感应传感器组件均包括多个旋转传感器,所述拇指力反馈装置和所述非拇指力反馈装置均包括至少一个力反馈模块。
  6. 根据权利要求5所述的装置,其特征在于,所述拇指感应传感器组件包括分别与所述控制电路连接的第一旋转传感器、第二旋转传感器和第三旋转传感器,所述第三旋转传感器安装在所述底座上,所述第一旋转传感器设置在所述拇指力反馈装置中,且所述第一旋转传感器与所述拇指力反馈装置中的第一连杆的第一端部连接;所述第二旋转传感器分别与所述第一旋转传感器和所述第三旋转传感器连接,且所述第一旋转传感器的轴线和所述第二旋转传感器的轴线之间的夹角度数在预设的第一角度范围内,所述第二旋转传感器的轴线和所述第三旋转传感器的轴线之间的夹角度数在所述第一角度范围内;
    每个所述非拇指感应传感器组件均包括分别与所述控制电路电连接的第四旋转传感器和第五旋转传感器,所述第四旋转传感器均设置在对应的所述非拇指力反馈装置中,且所述第四旋转传感器与所述非拇指力反馈装置中的第一连杆的第一端部连接;所述第五旋转传感器均安装在所述底座上,所述第四旋转传感器的轴线与所述第五旋转传感器的轴线 之间的夹角度数在所述第一角度范围内,且四个所述第五旋转传感器的轴线之间的夹角度数在预设的第二角度范围内,四个所述第五旋转传感器的轴线与所述底座的底面之间的夹角度数在所述第一角度范围内。
  7. 根据权利要求1-4任一项所述的装置,其特征在于,所述连杆结构包括可调节长度的直杆,和,可调节长度或可更换形状的异形连接杆,所述固定组件设置在所述异形连接杆上,所述直杆的一端设置有调整结构,所述第一连杆的第二端部与所述调整结构连接,所述直杆的另一端与所述异形连接杆活动连接。
  8. 根据权利要求1-4任一项所述的装置,其特征在于,所述装置还包括长度可伸缩的伸缩结构;所述伸缩结构的一端与所述力反馈装置连接,所述伸缩结构的另一端与所述连杆结构连接。
  9. 根据权利要求8所述的装置,其特征在于,所述伸缩结构包括第二连杆、第三连杆、连杆衬套和螺丝;所述第二连杆的一端与所述力反馈装置连接,所述第二连杆的另一端与所述连杆衬套连接;所述第三连杆的一端与所述连杆结构连接,所述第三连杆的另一端伸入所述连杆衬套,所述螺丝通过所述连杆衬套上的开孔与所述第三连杆的另一端的螺丝孔连接所述第三连杆和所述连杆衬套。
  10. 根据权利要求1-4任一项所述的装置,其特征在于,所述装置还包括与所述底座连接的外部附件,所述外部附件包括触摸屏、操纵杆、按钮、追踪器和拨盘中的至少一个。
  11. 根据权利要求10所述的装置,其特征在于,所述外部附件与所述底座电连接。
  12. 根据权利要求10所述的装置,其特征在于,所述外部附件与所述底座通过附件连接结构可拆卸连接,所述附件连接结构包括滑槽、可滑入所述滑槽的滑块连接杆和螺丝,所述滑槽设置在所述底座上;所述螺丝用于在所述滑块连接杆的一端滑入所述滑槽时,将所述滑块连接杆固定在所述底座上,所述滑块连接杆的另一端与所述外部附件可拆卸连接。
  13. 根据权利要求2所述的装置,其特征在于,所述第一处理器包括无线通信模块。
  14. 根据权利要求1-4任一项所述的装置,其特征在于,所述底座中还设置有电源装置。
  15. 根据权利要求14所述的装置,其特征在于,所述电源装置包括电池。
  16. 根据权利要求1-4任一项所述的装置,其特征在于,所述固定组件包括手掌固定装置和手指固定装置。
  17. 根据权利要求16所述的装置,其特征在于,所述手掌固定装置为绑带结构、手套结构、手指套结构或手环结构。
  18. 根据权利要求16所述的装置,其特征在于,所述手指固定组件为扎带结构或指套结构。
PCT/CN2019/097382 2018-11-01 2019-07-24 带有力反馈的手部动作捕获装置 WO2020087999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811296950.8 2018-11-01
CN201811296950.8A CN109407849A (zh) 2018-11-01 2018-11-01 带有力反馈的手部动作捕获装置

Publications (1)

Publication Number Publication Date
WO2020087999A1 true WO2020087999A1 (zh) 2020-05-07

Family

ID=65470933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097382 WO2020087999A1 (zh) 2018-11-01 2019-07-24 带有力反馈的手部动作捕获装置

Country Status (2)

Country Link
CN (1) CN109407849A (zh)
WO (1) WO2020087999A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109407849A (zh) * 2018-11-01 2019-03-01 深圳岱仕科技有限公司 带有力反馈的手部动作捕获装置
CN109445594A (zh) * 2018-11-01 2019-03-08 深圳岱仕科技有限公司 手部动作捕获装置
CN110859688B (zh) * 2019-12-06 2021-07-16 中国科学院长春光学精密机械与物理研究所 一种用于假肢控制的智能鞋及假肢的控制方法
CN111026278A (zh) * 2020-01-08 2020-04-17 北京仙进机器人有限公司 远程操作装置操作轴的力反馈方法及力反馈装置
CN111813259B (zh) * 2020-06-05 2023-08-22 南京信息工程大学 一种触摸屏用指套式力触觉装置及其反馈控制办法
CN112298623A (zh) * 2020-09-29 2021-02-02 北京空间飞行器总体设计部 一种自适应抓捕消旋装置
CN114533117B (zh) * 2022-02-17 2024-09-06 北京胡桃计算机技术有限公司 一种基于力反馈远程同步超声系统
CN115033099A (zh) * 2022-06-08 2022-09-09 苏州大学 双指夹持力触觉反馈装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070105673A1 (en) * 2003-12-15 2007-05-10 Florian Gosselin Manual interface including an actucuation block and train of articulated segments
CN103158162A (zh) * 2011-12-19 2013-06-19 苏茂 外构架式双向力反馈数据手套
CN206426118U (zh) * 2016-12-09 2017-08-22 王陈正志 一种连杆力量反馈手套
CN109407849A (zh) * 2018-11-01 2019-03-01 深圳岱仕科技有限公司 带有力反馈的手部动作捕获装置
CN209216041U (zh) * 2018-11-01 2019-08-06 深圳岱仕科技有限公司 带有力反馈的手部动作捕获装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070105673A1 (en) * 2003-12-15 2007-05-10 Florian Gosselin Manual interface including an actucuation block and train of articulated segments
CN103158162A (zh) * 2011-12-19 2013-06-19 苏茂 外构架式双向力反馈数据手套
CN206426118U (zh) * 2016-12-09 2017-08-22 王陈正志 一种连杆力量反馈手套
CN109407849A (zh) * 2018-11-01 2019-03-01 深圳岱仕科技有限公司 带有力反馈的手部动作捕获装置
CN209216041U (zh) * 2018-11-01 2019-08-06 深圳岱仕科技有限公司 带有力反馈的手部动作捕获装置

Also Published As

Publication number Publication date
CN109407849A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020087999A1 (zh) 带有力反馈的手部动作捕获装置
US10838495B2 (en) Devices for controlling computers based on motions and positions of hands
JP5969626B2 (ja) 高められたジェスチャ・ベースの対話のためのシステム及び方法
US10894204B2 (en) Exo-tendon motion capture glove device with haptic grip response
US10534431B2 (en) Tracking finger movements to generate inputs for computer systems
Achibet et al. Elastic-Arm: Human-scale passive haptic feedback for augmenting interaction and perception in virtual environments
US7161579B2 (en) Hand-held computer interactive device
US20100090949A1 (en) Method and Apparatus for Input Device
US20090322680A1 (en) Radio frequency pointing device
WO2017009707A1 (en) Apparatus and method for hybrid type of input of buttons/keys and "finger writing" and low profile/variable geometry hand-based controller
RU187548U1 (ru) Перчатка виртуальной реальности
RU179301U1 (ru) Перчатка виртуальной реальности
CN209216041U (zh) 带有力反馈的手部动作捕获装置
JP2017168060A (ja) スマートインターフェースリング
US20230142242A1 (en) Device for Intuitive Dexterous Touch and Feel Interaction in Virtual Worlds
CN202512510U (zh) 一种肢体姿势识别系统
WO2020088015A1 (zh) 手部动作捕获装置
RU176318U1 (ru) Перчатка виртуальной реальности
RU2670649C9 (ru) Способ изготовления перчатки виртуальной реальности (варианты)
CN105630178A (zh) 一种基于拇指霍尔摇杆的蓝牙手套鼠标
RU186397U1 (ru) Перчатка виртуальной реальности
Ahmad et al. UbiHand: a wearable input device for 3D interaction
RU2673406C1 (ru) Способ изготовления перчатки виртуальной реальности
CN111610857A (zh) 一种具有vr体感互动装置的手套
Chang et al. TanGo: Exploring Expressive Tangible Interactions on Head-Mounted Displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880868

Country of ref document: EP

Kind code of ref document: A1