WO2020087733A1 - 一种短流程熔融还原炼铁系统及方法 - Google Patents

一种短流程熔融还原炼铁系统及方法 Download PDF

Info

Publication number
WO2020087733A1
WO2020087733A1 PCT/CN2018/124111 CN2018124111W WO2020087733A1 WO 2020087733 A1 WO2020087733 A1 WO 2020087733A1 CN 2018124111 W CN2018124111 W CN 2018124111W WO 2020087733 A1 WO2020087733 A1 WO 2020087733A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
reduction section
coke
iron
gas
Prior art date
Application number
PCT/CN2018/124111
Other languages
English (en)
French (fr)
Inventor
马春元
付加鹏
王涛
周滨选
张振
赵希强
夏霄
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2020087733A1 publication Critical patent/WO2020087733A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0066Preliminary conditioning of the solid carbonaceous reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces

Definitions

  • the invention belongs to the technical field of ironmaking, and in particular relates to a short-flow smelting reduction ironmaking system and method.
  • the current ironmaking technology is mainly based on blast furnace ironmaking. After a long period of continuous improvement and improvement, blast furnace ironmaking technology has developed into a mature and advanced production process, and its competitiveness has reached an unprecedented level. However, there are also many problems in the development of blast furnaces. The overall production process of blast furnace ironmaking technology is too long. The production process of sinters, pellets and coke causes serious air, water and dust pollution; at the same time, the large consumption of blast furnace coking coal and its reserves Less contradictory problems will inevitably bring a crisis to the subsequent development of the blast furnace.
  • an object of the present invention is to provide a short-flow smelting reduction ironmaking system.
  • high-temperature powdered coke is circulated in the furnace, and at the same time, hydrogen-rich gas with high calorific value is prepared.
  • the coal powder gasification reducing gas is used to directly reduce iron ore powder; at the same time, coal powder and Iron ore powder will also undergo contact charcoal thermal reduction reaction under high temperature environment. Finally, both coal powder and iron ore powder are melted in the bottom molten iron reduction pool to achieve the final reduction of iron ore production.
  • the technical solutions of the present invention are:
  • a short-flow smelting reduction ironmaking system includes a coal powder preparation device, an iron ore powder preparation device, an iron ore powder direct reduction and powder coke preparation device, and a gas-solid separation device; an iron ore powder direct reduction and powder coke preparation device is the bottom A U-shaped structure with two sides, a low-temperature reduction section and a high-temperature reduction section on both sides, and a smelting reduction section at the bottom. The molten iron is obtained at the bottom of the smelting reduction section. 1. The bottom is connected, the low temperature reduction section is connected to the gas-solid separation device, and the gas-solid separation device is respectively connected to the top combustion device and the middle of the high temperature reduction section.
  • This application proposes a three-stage reduction ironmaking short-flow smelting reduction ironmaking system, making full use of the reducing characteristics of different components of pulverized coal, to achieve multi-stage reduction of pulverized coal and iron ore powder, and finally to achieve coal and iron Comprehensive, efficient and clean utilization of the mine.
  • the iron ore powder preparation device includes an iron ore bunker, a crushed bunker, a first pulverizer, a bag dust collector, an ore powder bunker, and an ore powder feeder connected in sequence.
  • the pulverized coal preparation device includes a raw coal bunker, a crusher, a pulverized coal bunker, a second pulverizer, a coarse coal separator, a coarse coal powder bunker, and a coal powder feeder connected in sequence.
  • the coarse coal separator is connected to the bag filter.
  • the feeding method of the iron ore powder preparation device and the coal powder preparation device is one of hedging, round cutting and W-shaped.
  • the gas-solid separation device includes a gas-solid separator from top to bottom, a first feed leg, a separation raw material bin, and a second feed leg.
  • the first feed leg is combusted at the top of the high-temperature reduction section
  • the device is connected, the second feed leg is connected to the middle of the high-temperature reduction section, and a second discharge port is provided on the top of the gas-solid separation device.
  • the gas-solid separation device includes a coke iron separation device and a powder coke separation device connected in sequence, the coke iron separation device is connected to the middle of the high-temperature reduction section, and the powder coke separation device is burned at the top of the high-temperature reduction section ⁇ ⁇ Connected.
  • the coke iron separation device includes a coke iron separator from top to bottom, a semi-reduced iron powder bin, and iron powder L feed legs.
  • the coke iron separation device separates semi-reduced iron powder, and the powder coke separation device separates powder coke.
  • the powder coke separation device includes a powder coke separator and powder coke L legs from top to bottom.
  • a first discharge port is provided at the top of the powder coke separator.
  • the generated gas is discharged from the discharge port for subsequent processing.
  • the smelting reduction section is respectively a slag outlet, a carbon-iron smelting reduction section, and a molten iron outlet from top to bottom.
  • Impurities form slag under the action of flux the density of the slag is low, and it is discharged at the upper outlet, and the molten iron flows out at the bottom outlet.
  • the pulverized coal preparation device can realize the classification utilization of coarse and fine powder of the pulverized coal, and at the same time can realize the balanced matching of the consumption between the coarse and fine powder; the iron ore powder prepared device can grind the iron ore to the required particle size input In the system furnace, the flux needed for iron making is added at the same time.
  • the gas-solid separation device returns a part of the raw materials flying out of the low-temperature reduction section to the high-temperature reduction section.
  • the above-mentioned short-flow smelting reduction ironmaking system performs the method of reducing ironmaking, the specific steps are:
  • Raw coal and iron ore enter the pulverized coal bunker and ore bunker through the process of crushing, pulverization and separation, and are reserved;
  • the input pulverized coal is gasified and combusted to further produce gas.
  • the coarse coal powder cannot be completely gasified to obtain powder coke.
  • the iron ore powder is under the action of reducing gas Further reduction reaction occurs, and the produced gas, powder coke and semi-reduced iron ore powder enter the coke-iron separation device from the top of the low-temperature reduction section;
  • the powder coke separation device sends the separated powder coke to the burner at the top of the high-temperature reduction section. Under the action of the combustion-supporting gas (air or oxygen-enriched gas), a gasification combustion reaction occurs to produce reducing gas and coke;
  • the iron separation device sends the separated semi-reduced iron ore powder to the middle of the high-temperature reduction section. Under the action of reducing gas and high temperature, the semi-reduced iron ore powder, coal gas, and high-temperature powder coke further undergo a reduction reaction;
  • the unreacted ore powder and powder coke in the low-temperature reduction section and the high-temperature reduction section enter into the smelting reduction section in a molten state under the action of high temperature and undergo a reduction reaction to finally obtain molten iron.
  • the pulverized coal is divided into coarse pulverized coal and fine pulverized coal in the coarse coal separator.
  • the fine pulverized coal enters the bag dust collector, mixes with the iron ore powder and enters the furnace low temperature reduction section.
  • the particle size of the coarse coal powder in the coarse coal powder silo is 0.05-5 mm, and the particle size of the mineral powder in the mineral powder silo is 0.05-8 mm.
  • the temperature in the low-temperature reduction section is 900-1100 ° C, and the temperature in the high-temperature reduction section is 1300-1600 ° C.
  • the first stage of low-temperature gas reduces iron ore powder
  • the second stage of high-temperature gas and powder coke reduces semi-reduced iron ore powder
  • the third stage of molten coke reduces iron ore powder
  • the third-stage reduced iron ore powder is fully utilized
  • the novel short-flow ironmaking system process of the coal powder smelting reduction of iron ore powder of the present invention can realize the full utilization of the pulverization of the coal powder, thereby achieving the full pre-reduction of the iron ore powder, thereby achieving a better full reduction effect;
  • the high-temperature reduction section uses the heat of powder coke combustion to make the powder coke and ore powder react.
  • the unreacted ore powder and powder coke melt and fall into the high-temperature melting section, which fully raises the temperature of the reactants and improves the melting section The temperature promotes the contact reduction reaction in the melting section.
  • FIG. 1 is a structural diagram of a short-flow smelting reduction ironmaking system of the present invention
  • FIG. 2 is a structural diagram of another short-flow smelting reduction ironmaking system of the present invention.
  • FIG. 3 is a structural diagram of a short flow smelting reduction ironmaking system according to Embodiment 3 of the present invention.
  • Low temperature reduction Section 16, high-temperature reduction section; 17, coke iron separator; 18, semi-reduced iron powder silo; 19, powder coke separator, 20, powder coke L leg; 21, iron powder L leg; 22, combustion 23; slag outlet; 24, carbon-iron smelting reduction section; 25, molten iron outlet; 26, discharge outlet; 2-1, gas-solid separator; 2-2, first L leg; 2-3, separation Raw material silo; 2-4, second L feed leg; 1-1, coal powder preparation device; 1-2, iron ore powder preparation device; 1-3, gas-solid separation device; 1-4 third L feed leg; 1-5.
  • the fourth L feed leg The fourth L feed leg.
  • a short-flow smelting reduction ironmaking system including coal powder preparation device 1-1, iron ore powder preparation device 1-2, iron ore powder direct reduction and powder coke preparation device, gas-solid separation device 1-3; iron ore powder
  • the direct reduction and powder coke preparation device is a U-shaped structure with the bottom connected, two sides are a low temperature reduction section 15 and a high temperature reduction section 16, the bottom is a smelting reduction section 24, the coal powder preparation device 1-1, iron ore powder preparation
  • the device 1-2 is connected to the middle and bottom of the low-temperature reduction section 15 respectively, the low-temperature reduction section 15 is connected to the gas-solid separation device 1-3, and the gas-solid separation device 1-3 is connected to the top burner 22 and the middle of the high-temperature reduction section 16 respectively .
  • a short-flow smelting reduction ironmaking system including coal powder preparation device 1-1, iron ore powder preparation device 1-2, iron ore powder direct reduction and powder coke preparation device, gas-solid separation device 1-3; iron ore powder
  • the direct reduction and powder coke preparation device is a U-shaped structure with the bottom connected, two sides are a low temperature reduction section 15 and a high temperature reduction section 16, the bottom is a smelting reduction section 24, the coal powder preparation device 1-1, iron ore powder preparation
  • the device 1-2 is connected to the middle and bottom of the low-temperature reduction section 15 respectively, the low-temperature reduction section 15 is connected to the gas-solid separation device 1-3, and the gas-solid separation device 1-3 is connected to the top burner 22 and the middle of the high-temperature reduction section 16 respectively .
  • the coal powder preparation device 1-1 includes an ore powder bin 6 and an ore powder feeder 7 from top to bottom.
  • the iron ore powder preparation device 1-2 includes a coarse coal powder silo 13 and a coal powder feeder 14 from top to bottom.
  • the gas-solid separation device 1-3 includes a gas-solid separator 2-1 from top to bottom, a first L feed leg 2-2, a separation raw material silo 2-3, a second L feed leg 2-4, and a first L feed
  • the leg 2-2 is connected to the top burner 22 of the high-temperature reduction section 16
  • the second L feed leg 2-4 is connected to the middle of the high-temperature reduction section 16, and a discharge port 26 is provided at the top of the gas-solid separation device 1-3.
  • the smelting reduction section 24 is respectively a slag outlet 23, a carbon-iron smelting reduction section 24, and a molten iron outlet 25 from top to bottom.
  • a short-flow smelting reduction ironmaking system including coal powder preparation device 1-1, iron ore powder preparation device 1-2, iron ore powder direct reduction and powder coke preparation device, gas-solid separation device 1-3; iron ore powder
  • the direct reduction and powder coke preparation device is a U-shaped structure with the bottom connected, two sides are a low temperature reduction section 15 and a high temperature reduction section 16, the bottom is a smelting reduction section 24, the coal powder preparation device 1-1, iron ore powder preparation
  • the device 1-2 is connected to the middle and bottom of the low-temperature reduction section 15 respectively, the low-temperature reduction section 15 is connected to the gas-solid separation device 1-3, and the gas-solid separation device 1-3 is connected to the top burner 22 and the middle of the high-temperature reduction section 16 respectively .
  • the iron ore powder preparation device includes an iron ore bin 1, an iron ore crusher 2, an ore crushing bin 3, a first pulverizer 4, a bag dust collector 5, an ore powder bin 6, and an ore powder feeder 7 connected in sequence.
  • the pulverized coal preparation device includes a raw coal bunker 8, a pulverized coal crusher 9, a pulverized coal bunker 10, a second pulverizer 11, a coarse coal separator 12, a coarse pulverized coal silo 13, and a pulverized coal feeder 14 connected in sequence .
  • the coarse coal separator 12 is connected to the bag filter 5.
  • the feeding method of the iron ore powder preparation device and the coal powder preparation device is one of hedging, round cutting or W-shaped.
  • the gas-solid separation device includes a coke iron separation device and a powder coke separation device connected in sequence, the coke iron separation device is connected to the middle of the high temperature reduction section 16, and the powder coke separation device is connected to the top burner 22 of the high temperature reduction section 16.
  • the coke iron separation device includes a coke iron separator 17 from top to bottom, a semi-reduced iron powder bin 18, and iron powder L feed legs 21.
  • the powder coke separation device includes a powder coke separator 19 and a powder coke L leg 20 from top to bottom.
  • a discharge port 31 is provided at the top of the powder coke separator 19.
  • Mineral powder feeder and coal powder feeder are weighing feeders.
  • the slag outlet 23 From the top to the bottom of the smelting reduction section are the slag outlet 23, the carbon-iron smelting reduction section 24, and the molten iron outlet 25, respectively.
  • the above-mentioned short-flow smelting reduction ironmaking system performs the method of reducing ironmaking, the specific steps are:
  • Raw coal and iron ore enter the pulverized coal bunker and ore bunker through the process of crushing, pulverization and separation, and are reserved;
  • the input pulverized coal is gasified and combusted to further produce gas.
  • the coarse coal powder cannot be completely gasified to obtain powder coke.
  • the iron ore powder is under the action of reducing gas Further reduction reaction occurs, and the produced gas, powder coke and semi-reduced iron ore powder enter the coke-iron separation device from the top of the low-temperature reduction section;
  • the powder coke separation device sends the separated powder coke to the burner at the top of the high-temperature reduction section. Under the action of the combustion-supporting gas (air or oxygen-enriched gas), a gasification combustion reaction occurs to produce reducing gas; coke iron separation The device sends the separated semi-reduced iron ore powder to the middle of the high-temperature reduction section. Under the action of reducing gas and high temperature, the semi-reduced iron ore powder, coal gas and high-temperature powder coke further undergo a reduction reaction;
  • the unreacted ore powder and powder coke in the low-temperature reduction section and the high-temperature reduction section enter into the smelting reduction section in a molten state under the action of high temperature and undergo a reduction reaction to finally obtain molten iron.
  • the particle size of the coarse coal powder in the coarse coal powder bunker is 0.1-1mm, and the particle size of the mineral powder in the ore powder bunker is 0.1-1mm.
  • the temperature in the low-temperature reduction section is 1400-1500 ° C, and the temperature in the high-temperature reduction section is 1000-1100 ° C.
  • the above-mentioned short-flow smelting reduction ironmaking system performs the method of reducing ironmaking, the specific steps are:
  • Raw coal and iron ore enter the coarse coal powder silo and ore powder silo through the process of crushing, grinding, and separation.
  • the coarse coal separator separates the coarse coal powder and the fine coal powder, and the fine coal powder enters the cloth bag dust collector;
  • the input pulverized coal is gasified and combusted to further produce coal gas.
  • the coarse pulverized coal cannot be completely gasified to obtain powder coke. Further reduction reaction occurs, and the produced gas, powder coke and semi-reduced iron ore powder enter the coke-iron separation device from the top of the low-temperature reduction section;
  • the powder coke separation device sends the separated powder coke to the burner at the top of the high-temperature reduction section. Under the action of the combustion-supporting gas (air or oxygen-enriched gas), a gasification combustion reaction occurs to produce reducing gas; coke iron separation The device sends the separated semi-reduced iron ore powder to the middle of the high-temperature reduction section. Under the action of reducing gas and high temperature, the semi-reduced iron ore powder, coal gas and high-temperature powder coke further undergo a reduction reaction;
  • the unreacted ore powder and powder coke in the low-temperature reduction section and the high-temperature reduction section enter into the smelting reduction section in a molten state under the action of high temperature and undergo a reduction reaction to finally obtain molten iron.
  • the particle size of the coarse coal powder in the coarse coal powder silo is 1-3mm, and the particle size of the mineral powder in the mineral powder silo is 1-3mm.
  • the temperature in the low-temperature reduction section is 1100-1200 ° C, and the temperature in the high-temperature reduction section is 1500-1700 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种短流程熔融还原炼铁系统及方法,属于炼铁技术领域,包括煤粉制备装置(1-1)、铁矿粉制备装置(1-2)、铁矿粉直接还原与粉焦制备装置、气固分离装置(1-3);铁矿粉直接还原与粉焦制备装置为底部相通的U型结构,两侧分别为低温还原段(15)、高温还原段(16),底部为熔融还原段(24),熔融还原段(24)的底部得到铁水,所述煤粉制备装置(1-1)、铁矿粉制备装置(1-2)分别与低温还原段(15)中下部、底部连接,低温还原段(15)与气固分离装置(1-3)连接,气固分离装置(1-3)分别与高温还原段(16)的顶部燃烧装置(22)、中部连接。经过三级还原铁矿粉,充分利用煤粉不同组分的还原性特点,实现煤粉和铁矿粉的多级还原,最终实现煤和铁矿的综合高效清洁利用,在实现煤粉的分质充分利用的基础上,完成短流程炼铁工艺。

Description

一种短流程熔融还原炼铁系统及方法 技术领域
本发明属于炼铁技术领域,具体涉及一种短流程熔融还原炼铁系统及方法。
背景技术
当前的炼铁技术主要以高炉炼铁为主,高炉炼铁技术经过长时间不断地提高和完善,已经发展成为一个成熟、先进的生产工艺,其竞争力达到前所未有的水平。但高炉的发展也存在诸多问题,高炉炼铁技术整体生产流程过长,其烧结矿、球团矿和焦炭的生产过程造成严重的大气、水及粉尘污染;同时,高炉焦煤的大量消耗与其储量较少之间的矛盾问题,势必给高炉的后续发展带来危机。
近年来随着全球能源市场的变化和环保意识的增强,非高炉炼铁技术作为一种清洁节能的新技术、新工艺,越来越受到业界人士的高度关注。为此,我们提出一种采用煤粉直接还原铁矿粉的新型短流程熔融还原炼铁技术计系统。在此新技术系统中,可以直接使用煤粉实现对铁矿粉三级还原,在保证还原效果的基础上,大大缩短炼铁流程,可以很好地达到节能减排的效果。
发明内容
针对上述现有技术中存在的问题,本发明的一个目的是提供一种短流程熔融还原炼铁系统。通过对煤炭制焦工艺进行优化,实现高温粉状焦在炉内循环,同时制得具有高热值的富氢煤气,利用此煤粉气化还原性煤气直接还原铁矿粉;同时,煤粉和铁矿粉在高温环境下也会发生接触式炭热还原反应,最后煤粉与铁矿粉都熔融于底部熔融铁还原池内,实现铁矿石的最终还原产铁。
为了解决以上技术问题,本发明的技术方案为:
一种短流程熔融还原炼铁系统,包括煤粉制备装置、铁矿粉制备装置、铁矿粉直接还原与粉焦制备装置、气固分离装置;铁矿粉直接还原与粉焦制备装置为底部相通的U型结构,两侧分别为低温还原段、高温还原段,底部为熔融还原段,熔融还原段的底部得到铁水,所述煤粉制备装置、铁矿粉制备装置分别与低温还原段中部、底部连接,低温还原段与气固分离装置连接,气固分离装置分别与高温还原段的顶部燃烧装置、中部连接。
本申请提出了一种三级还原炼铁的短流程熔融还原炼铁的系统,充分利用煤粉不同组分的还原性特点,实现煤粉和铁矿粉的多级还原,最终实现煤和铁矿的综合高效清洁利用。
优选的,铁矿粉制备装置包括依次连接的铁矿石仓、碎矿仓、第一磨粉机、布袋除尘器、矿粉仓、矿粉给料机。
优选的,所述煤粉制备装置包括依次连接的原煤仓、破碎机、碎煤仓、第二磨粉机、粗煤分离器、粗煤粉仓、煤粉给料机。
进一步优选的,粗煤分离器与布袋除尘器连接。
优选的,铁矿粉制备装置和煤粉制备装置的进料方式为对冲、切圆和W型中的一种。
作为本申请的另一种实施方式,气固分离装置包括由上到下的气固分离器、第一料腿、分离原料仓、第二料腿,第一料腿与高温还原段的顶部燃烧装置连接,第二料腿与高温还原段的中部连接,气固分离装置的顶部设置第二排出口。
作为本申请的一种实施方式,气固分离装置包括依次连接的焦铁分离装置和粉焦分离装置,焦铁分离装置与高温还原段的中部连接,粉焦分离装置与高温还原段的顶部燃烧器连接。
进一步优选的,焦铁分离装置包括由上到下焦铁分离器、半还原铁粉仓、铁粉L料腿。
焦铁分离装置分离半还原铁粉,粉焦分离装置分离粉焦。
进一步优选的,粉焦分离装置包括由上到下的粉焦分离器、粉焦L料腿。
更进一步优选的,粉焦分离器的顶部设置第一排出口。
以上两种实施方式为给料方式不同。
排出口排出生成的煤气进行后续处理。
优选的,熔融还原段由上到下分别为熔渣出口、碳铁熔融还原段、铁水出口。
杂质在熔剂的作用下形成熔渣,熔渣密度较低,在上部出口排出,铁水则在底部出口流出。
所述煤粉制备装置能够实现煤粉的粗、细粉分级利用,同时可实现粗、细粉之间的耗量平衡匹配;所述铁矿粉制备装置可将铁矿研磨至所需粒度投入系统炉中,同时实现炼铁所需熔剂的添加。所述气固分离装置将低温还原段飞出的原料一部分返回高温还原段。
上述短流程熔融还原炼铁的系统进行还原炼铁的方法,具体步骤为:
1)原料的制备
原煤和铁矿石经过破碎、磨粉、分离的过程分别进入煤粉仓、矿粉仓,备用;
2)低温还原
在低温还原段内,结合高温还原段输送过来的高温煤气作用,输入的煤粉气化燃烧进一步产生煤气,粗煤粉未能完全气化得到粉焦,铁矿粉在还原性煤气的作用下进一步发生还原反应,产生的煤气、粉焦、半还原铁矿粉由低温还原段顶部进入焦铁分离装置;
3)高温还原
粉焦分离装置将分离下来的粉焦送入高温还原段顶部的燃烧器内,在通入助燃气体(空 气或富氧气体)作用下,发生气化燃烧反应,产生还原性煤气和焦炭;焦铁分离装置将分离下来的半还原铁矿粉送入高温还原段中部,在还原性煤气和高温的作用下,半还原铁矿粉和煤气、高温粉焦进一步发生还原反应;
4)熔融还原
低温还原段、高温还原段未反应完全的矿粉和粉焦在高温作用下呈熔融状态的进入熔融还原段并发生还原反应最终得到了铁水。
优选的,步骤1)中在粗煤分离器将煤粉分成粗煤粉和细煤粉,细煤粉进入布袋除尘器,与铁矿粉混合进入炉膛低温还原段。
优选的,粗煤粉仓的粗煤粉的粒径为0.05-5mm,矿粉仓的矿粉的粒径为0.05-8mm。
优选的,低温还原段的温度为900-1100℃,高温还原段的温度为1300-1600℃。
本发明的有益效果:
1)第一段低温煤气还原铁矿粉,第二段高温煤气和粉焦共同还原半还原铁矿粉,第三段熔融状态粉焦还原铁矿粉,经过三级还原铁矿粉,充分利用煤粉不同组分的还原性特点,实现煤粉和铁矿粉的多级还原,最终实现煤和铁矿的综合高效清洁利用,短流程练铁,同时也会得到一定量的煤气;
2)本发明的煤粉熔融还原铁矿粉的新型短流程炼铁系统工艺可实现煤粉的分质充分利用,从而实现铁矿粉的充分预还原,进而达到更好的充分还原效果;
3)煤粉和矿粉经过破碎、磨粉后,粗煤料进入低温还原段的底部,细煤料进入低温还原段的中下部,细煤粉可以得到充分的气化燃烧得到高氢的煤气,粗煤粉在高温下制得粉焦,一部分还原反应后,剩余的部分在熔融状态下进入熔融段,细煤粉在粗煤粉的上方,可以与矿粉充分的反应,矿粉落下后再与粉焦发生还原反应,使细煤粉和粗煤粉分级利用;
4)高温还原段利用粉焦燃烧的热量使粉焦和矿粉反应,未反应的矿粉、粉焦熔融并落入高温熔融段,充分的提高了反应物的温度,并提高了熔融段的温度,促使熔融段发生接触还原反应。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明的一种短流程熔融还原炼铁系统结构图;
图2为本发明的另一种短流程熔融还原炼铁系统结构图;
图3为本发明的实施例3短流程熔融还原炼铁系统结构图;
其中,
1、铁矿石仓;2、铁矿破碎机;3、碎矿仓,4、第一磨粉机;5、布袋除尘器;6、矿粉仓;7、矿粉给料机;8、原煤仓;9、煤粉破碎机;10、碎煤仓;11、第二磨粉机;12、粗煤分离器;13、粗煤粉仓;14、煤粉给料机;15、低温还原段;16、高温还原段;17、焦铁分离器;18、半还原铁粉仓;19、粉焦分离器,20、粉焦L料腿;21、铁粉L料腿;;22、燃烧器;23、熔渣出口;24、碳铁熔融还原段;25、铁水出口;26、排出口;2-1、气固分离器;2-2、第一L料腿;2-3、分离原料仓;2-4、第二L料腿;1-1、煤粉制备装置;1-2、铁矿粉制备装置;1-3、气固分离装置;1-4第三L料腿;1-5、第四L料腿。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
下面结合实施例对本发明进一步说明
实施例1
如图1所示
一种短流程熔融还原炼铁系统,包括煤粉制备装置1-1、铁矿粉制备装置1-2、铁矿粉直接还原与粉焦制备装置、气固分离装置1-3;铁矿粉直接还原与粉焦制备装置为底部相通的U型结构,两侧分别为低温还原段15、高温还原段16,底部为熔融还原段24,所述煤粉制备装置1-1、铁矿粉制备装置1-2分别与低温还原段15中部、底部连接,低温还原段15与气固分离装置1-3连接,气固分离装置1-3分别与高温还原段16的顶部燃烧器22、中部连接。
实施例2
如图2所示
一种短流程熔融还原炼铁系统,包括煤粉制备装置1-1、铁矿粉制备装置1-2、铁矿粉直接还原与粉焦制备装置、气固分离装置1-3;铁矿粉直接还原与粉焦制备装置为底部相通的U型结构,两侧分别为低温还原段15、高温还原段16,底部为熔融还原段24,所述煤粉制备装置1-1、铁矿粉制备装置1-2分别与低温还原段15中部、底部连接,低温还原段15与气固分离装置1-3连接,气固分离装置1-3分别与高温还原段16的顶部燃烧器22、中 部连接。
煤粉制备装置1-1包括由上到下的矿粉仓6、矿粉给料机7。
铁矿粉制备装置1-2包括由上到下的粗煤粉仓13、煤粉给料机14。
气固分离装置1-3包括由上到下的气固分离器2-1、第一L料腿2-2、分离原料仓2-3、第二L料腿2-4,第一L料腿2-2与高温还原段16的顶部燃烧器22连接,第二L料腿2-4与高温还原段16的中部连接,气固分离装置1-3的顶部设置排出口26。
熔融还原段24由上到下分别为熔渣出口23、碳铁熔融还原段24、铁水出口25。
实施例3
如图3所示
一种短流程熔融还原炼铁系统,包括煤粉制备装置1-1、铁矿粉制备装置1-2、铁矿粉直接还原与粉焦制备装置、气固分离装置1-3;铁矿粉直接还原与粉焦制备装置为底部相通的U型结构,两侧分别为低温还原段15、高温还原段16,底部为熔融还原段24,所述煤粉制备装置1-1、铁矿粉制备装置1-2分别与低温还原段15中部、底部连接,低温还原段15与气固分离装置1-3连接,气固分离装置1-3分别与高温还原段16的顶部燃烧器22、中部连接。
铁矿粉制备装置包括依次连接的铁矿石仓1、铁矿破碎机2、碎矿仓3、第一磨粉机4、布袋除尘器5、矿粉仓6、矿粉给料机7。
所述煤粉制备装置包括依次连接的原煤仓8、煤粉破碎机9、碎煤仓10、第二磨粉机11、粗煤分离器12、粗煤粉仓13、煤粉给料机14。
粗煤分离器12与布袋除尘器5连接。
铁矿粉制备装置和煤粉制备装置的进料方式为对冲、切圆或W型中的一种。
气固分离装置包括依次连接的焦铁分离装置和粉焦分离装置,焦铁分离装置与高温还原段16的中部连接,粉焦分离装置与高温还原段16的顶部燃烧器22连接。
焦铁分离装置包括由上到下焦铁分离器17、半还原铁粉仓18、铁粉L料腿21。
粉焦分离装置包括由上到下的粉焦分离器19、粉焦L料腿20。
粉焦分离器19的顶部设置排出口31。
矿粉给料机和煤粉给料机是称重给料机。
熔融还原段由上到下分别为熔渣出口23、碳铁熔融还原段24、铁水出口25。
实施例4
上述短流程熔融还原炼铁的系统进行还原炼铁的方法,具体步骤为:
1)原料的制备
原煤和铁矿石经过破碎、磨粉、分离的过程分别进入煤粉仓、矿粉仓,备用;
2)低温还原
在低温还原段内,结合高温还原段输送过来的高温煤气作用,输入的煤粉气化燃烧进一步产生煤气,粗煤粉未能完全气化得到粉焦,铁矿粉在还原性煤气的作用下进一步发生还原反应,产生的煤气、粉焦、半还原铁矿粉由低温还原段顶部进入焦铁分离装置;
3)高温还原
粉焦分离装置将分离下来的粉焦送入高温还原段顶部的燃烧器内,在通入助燃气体(空气或富氧气体)作用下,发生气化燃烧反应,产生还原性煤气;焦铁分离装置将分离下来的半还原铁矿粉送入高温还原段中部,在还原性煤气和高温的作用下,半还原铁矿粉和煤气、高温粉焦进一步发生还原反应;
4)熔融还原
低温还原段、高温还原段未反应完全的矿粉和粉焦在高温作用下呈熔融状态的进入熔融还原段并发生还原反应最终得到了铁水。
低温还原段煤粉发生低氧无焰气化。
粗煤粉仓的粗煤粉的粒径为0.1-1mm,矿粉仓的矿粉的粒径为0.1-1mm。
低温还原段的温度为1400-1500℃,高温还原段的温度为1000-1100℃。
实施例5
上述短流程熔融还原炼铁的系统进行还原炼铁的方法,具体步骤为:
1)原料的制备
原煤和铁矿石经过破碎、磨粉、分离的过程分别进入粗煤粉仓、矿粉仓,粗煤分离器将粗煤粉和细煤粉分离,细煤粉进入布袋除尘器;
2)低温还原
在低温还原段内,结合高温还原段输送过来的高温煤气作用,输入的煤粉气化燃烧进一步产生煤气,粗煤粉未能完全气化得到粉焦,铁矿粉在还原性煤气的作用下进一步发生还原反应,产生的煤气、粉焦、半还原铁矿粉由低温还原段顶部进入焦铁分离装置;
3)高温还原
粉焦分离装置将分离下来的粉焦送入高温还原段顶部的燃烧器内,在通入助燃气体(空气或富氧气体)作用下,发生气化燃烧反应,产生还原性煤气;焦铁分离装置将分离下来的半还原铁矿粉送入高温还原段中部,在还原性煤气和高温的作用下,半还原铁矿粉和煤气、高温粉焦进一步发生还原反应;
4)熔融还原
低温还原段、高温还原段未反应完全的矿粉和粉焦在高温作用下呈熔融状态的进入熔融还原段并发生还原反应最终得到了铁水。
低温还原段煤粉发生低氧无焰气化。
粗煤粉仓的粗煤粉的粒径为1-3mm,矿粉仓的矿粉的粒径为1-3mm。
低温还原段的温度为1100-1200℃,高温还原段的温度为1500-1700℃。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种短流程熔融还原炼铁系统,其特征在于:包括煤粉制备装置、铁矿粉制备装置、铁矿粉直接还原与粉焦制备装置、气固分离装置;铁矿粉直接还原与粉焦制备装置为底部相通的U型结构,两侧分别为低温还原段、高温还原段,底部为熔融还原段,所述煤粉制备装置、铁矿粉制备装置分别与低温还原段中下部、底部连接,低温还原段与气固分离装置连接,气固分离装置分别与高温还原段的顶部燃烧装置、中部连接。
  2. 根据权利要求1所述的系统,其特征在于:铁矿粉制备装置包括依次连接的铁矿石仓、碎矿仓、第一磨粉机、布袋除尘器、矿粉仓、矿粉给料机。
  3. 根据权利要求2所述的系统,其特征在于:所述煤粉制备装置包括依次连接的原煤仓、破碎机、碎煤仓、第二磨粉机、粗煤分离器、粗煤粉仓、煤粉给料机;
    优选的,粗煤分离器与布袋除尘器连接。
  4. 根据权利要求1所述的系统,其特征在于:铁矿粉制备装置和煤粉制备装置的进料方式为对冲、切圆和W型中的一种。
  5. 根据权利要求1所述的系统,其特征在于:气固分离装置包括由上到下的气固分离器、第一料腿、分离原料仓、第二料腿,第一料腿与高温还原段的顶部燃烧装置连接,第二料腿与高温还原段的中部连接,气固分离装置的顶部设置第二排出口。
  6. 根据权利要求1所述的系统,其特征在于:气固分离装置包括依次连接的焦铁分离装置和粉焦分离装置,焦铁分离装置与高温还原段的中部连接,粉焦分离装置与高温还原段的顶部燃烧装置连接;
    优选的,焦铁分离装置包括由上到下焦铁分离器、半还原铁粉仓、铁粉L料腿。
  7. 根据权利要求6所述的系统,其特征在于:粉焦分离装置包括由上到下的粉焦分离器、粉焦L料腿;
    优选的,粉焦分离器的顶部设置第一排出口。
  8. 根据权利要求1所述的系统,其特征在于:熔融还原段由上到下分别为熔渣出口、碳铁熔融还原段、铁水出口。
  9. 权利要求1-8任一项所述的短流程熔融还原炼铁系统进行还原炼铁的方法,其特征在于:具体步骤为:
    1)原料的制备
    原煤和铁矿石经过破碎、磨粉、分离的过程分别进入煤粉仓、矿粉仓,备用;
    2)低温还原
    在低温还原段内,结合高温还原段输送过来的高温煤气作用,输入的煤粉气化燃烧进一步产生煤气,粗煤粉未能完全气化得到粉焦,铁矿粉在还原性煤气的作用下进一步发生 还原反应,产生的煤气、粉焦、半还原铁矿粉由低温还原段顶部进入焦铁分离装置;
    3)高温还原
    粉焦分离装置将分离下来的粉焦送入高温还原段顶部的燃烧器内,在通入助燃气体(空气或富氧气体)作用下,发生气化燃烧反应,产生还原性煤气;焦铁分离装置将分离下来的半还原铁矿粉送入高温还原段中部,在还原性煤气和高温的作用下,半还原铁矿粉和煤气、高温粉焦进一步发生还原反应;
    4)熔融还原
    低温还原段、高温还原段未反应完全的矿粉和粉焦在高温作用下呈熔融状态的进入熔融还原段并发生还原反应最终得到了铁水;
    优选的,步骤1)中在粗煤分离器将煤粉分成粗煤粉和细煤粉,细煤粉进入布袋除尘器,与铁矿粉、熔剂混合喷入炉膛。
    优选的,低温还原段的温度为1000-1200℃,高温还原段的温度为1400-1700℃。
  10. 根据权利要求9所述的方法,其特征在于:粗煤粉仓的粗煤粉的粒径为0.05-3mm,矿粉仓的矿粉的粒径为0.05-3mm。
PCT/CN2018/124111 2018-11-02 2018-12-27 一种短流程熔融还原炼铁系统及方法 WO2020087733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811303409.5A CN109321703B (zh) 2018-11-02 2018-11-02 一种短流程熔融还原炼铁系统及方法
CN201811303409.5 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020087733A1 true WO2020087733A1 (zh) 2020-05-07

Family

ID=65259338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124111 WO2020087733A1 (zh) 2018-11-02 2018-12-27 一种短流程熔融还原炼铁系统及方法

Country Status (2)

Country Link
CN (1) CN109321703B (zh)
WO (1) WO2020087733A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110578029B (zh) * 2019-09-25 2020-11-10 山东大学 一种两段式下降气流床炼铁系统及炼铁工艺
CN113025771B (zh) * 2021-03-05 2022-05-17 山东大学 一种烧结机篦式生产直接还原铁的系统及方法
CN115261542B (zh) * 2022-07-11 2024-05-31 山东祥桓环境科技有限公司 一种煤粉与矿粉短流程冶炼的循环流化床直接还原系统及工艺
CN115710610A (zh) * 2022-10-31 2023-02-24 山东祥桓环境科技有限公司 一种基于煤粉和铁矿粉的富氢冶炼装置及工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147419A (ja) * 2001-11-13 2003-05-21 Nkk Corp 還元鉄の製造方法
CN101445850A (zh) * 2008-12-29 2009-06-03 莱芜钢铁集团有限公司 一种含铁物料悬浮二级快速还原工艺方法及其装置
CN101724727A (zh) * 2009-09-28 2010-06-09 莱芜钢铁集团有限公司 一种综合利用能源的短流程转底炉连续炼钢方法
CN101792840A (zh) * 2010-03-30 2010-08-04 莱芜钢铁集团有限公司 一种含铁物料喷射还原炉及含铁物料喷射还原工艺
CN102002546A (zh) * 2010-08-30 2011-04-06 莱芜钢铁集团有限公司 一种含铁物料悬浮还原装置及工艺
CN102061350A (zh) * 2011-01-12 2011-05-18 董亚飞 一种短流程的赤泥综合利用方法及设备
CN102127609A (zh) * 2011-02-21 2011-07-20 唐山市嘉恒实业有限公司 一种短流程铁合金熔炼装置
CN103627836A (zh) * 2013-12-20 2014-03-12 中冶赛迪工程技术股份有限公司 一种炼钢装置及方法
CN107177710A (zh) * 2017-06-14 2017-09-19 神雾科技集团股份有限公司 直接还原铁、建材、煤气化多联产的系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673954B (zh) * 2015-02-13 2017-03-22 湖南长拓高科冶金有限公司 含铁矿粉的直接还原炼铁方法及系统
CN105648134B (zh) * 2016-03-11 2017-08-15 太原理工大学 一种气基和煤基共还原铁矿粉的方法
CN207294823U (zh) * 2017-10-11 2018-05-01 重庆科技学院 双回转联合熔炼炉的铁矿冶炼系统
CN107904398A (zh) * 2017-11-23 2018-04-13 唐竹胜 一种短流程炼铁装置及其无焦无硝节能环保短流程炼铁方法
CN209243092U (zh) * 2018-11-02 2019-08-13 山东大学 一种短流程熔融还原炼铁系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147419A (ja) * 2001-11-13 2003-05-21 Nkk Corp 還元鉄の製造方法
CN101445850A (zh) * 2008-12-29 2009-06-03 莱芜钢铁集团有限公司 一种含铁物料悬浮二级快速还原工艺方法及其装置
CN101724727A (zh) * 2009-09-28 2010-06-09 莱芜钢铁集团有限公司 一种综合利用能源的短流程转底炉连续炼钢方法
CN101792840A (zh) * 2010-03-30 2010-08-04 莱芜钢铁集团有限公司 一种含铁物料喷射还原炉及含铁物料喷射还原工艺
CN102002546A (zh) * 2010-08-30 2011-04-06 莱芜钢铁集团有限公司 一种含铁物料悬浮还原装置及工艺
CN102061350A (zh) * 2011-01-12 2011-05-18 董亚飞 一种短流程的赤泥综合利用方法及设备
CN102127609A (zh) * 2011-02-21 2011-07-20 唐山市嘉恒实业有限公司 一种短流程铁合金熔炼装置
CN103627836A (zh) * 2013-12-20 2014-03-12 中冶赛迪工程技术股份有限公司 一种炼钢装置及方法
CN107177710A (zh) * 2017-06-14 2017-09-19 神雾科技集团股份有限公司 直接还原铁、建材、煤气化多联产的系统和方法

Also Published As

Publication number Publication date
CN109321703B (zh) 2023-09-29
CN109321703A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
WO2020087733A1 (zh) 一种短流程熔融还原炼铁系统及方法
WO2018094886A1 (zh) 一种煤基竖炉直接还原工艺
CN101591731B (zh) 一种用于高价锰矿物的还原焙烧方法及装置
WO2020258806A1 (zh) 一种充分预热和气相预还原的煤气化协同熔融铁还原装置及方法
CN106868245B (zh) 一种两步法的铁水生产工艺
CN103627835A (zh) 一种处理镍冶炼炉渣的方法
CN1940092A (zh) 转底炉熔融还原炼铁工艺
CN101191150A (zh) 高炉瓦斯泥的综合利用方法及加工用的燃烧炉
CN106282467B (zh) 一种铁矿粉煤基生产直接还原铁设施及方法
CN103451451A (zh) 一种利用富氧热风竖炉处理红土镍矿生产镍铁合金工艺
CN108396138B (zh) 一种钒钛磁铁矿富集分离的方法
CN108380360A (zh) 一种优质钢渣铁精粉生产工艺
CN109680114B (zh) 一种粉煤气化协同铁矿石还原的系统及方法
CN109929959B (zh) 一种粉状铁矿石悬浮态直接还原-熔炼生产铁水的方法
CN209243092U (zh) 一种短流程熔融还原炼铁系统
CN111455122B (zh) 一种从钒钛磁铁矿中分离钒、钛、铁的方法
CN105463146A (zh) 一种利用转底炉直接还原处理赤铁矿生产粒铁的方法
KR20020049590A (ko) 미분을 재활용하는 분철광석의 유동층식 용융환원장치 및이를 이용한 용융환원방법
CN110184405A (zh) 一种采用酸性含碳金属化球团生产铁水的方法及其装置
CN205907315U (zh) 处理锌浸出渣的系统
CN201250262Y (zh) 提金废渣生产铁精矿系统
CN101913787A (zh) 煅烧活化页岩做水泥掺合料的方法
CN102586626B (zh) 一种挥发焙烧冶炼锑氧粉的方法
CN107192271A (zh) 一种冶炼生产工艺中杂散烟气回收利用系统及方法
CN210367840U (zh) 一种难选铁矿石煤基浅度氢冶金装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938281

Country of ref document: EP

Kind code of ref document: A1