WO2020087547A1 - 随机接入配置方法、信号发送方法、装置和通信系统 - Google Patents

随机接入配置方法、信号发送方法、装置和通信系统 Download PDF

Info

Publication number
WO2020087547A1
WO2020087547A1 PCT/CN2018/113846 CN2018113846W WO2020087547A1 WO 2020087547 A1 WO2020087547 A1 WO 2020087547A1 CN 2018113846 W CN2018113846 W CN 2018113846W WO 2020087547 A1 WO2020087547 A1 WO 2020087547A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
access resource
time domain
channel
indication information
Prior art date
Application number
PCT/CN2018/113846
Other languages
English (en)
French (fr)
Inventor
蒋琴艳
张磊
王昕�
张国玉
贾美艺
Original Assignee
富士通株式会社
蒋琴艳
张磊
王昕�
张国玉
贾美艺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 蒋琴艳, 张磊, 王昕�, 张国玉, 贾美艺 filed Critical 富士通株式会社
Priority to CN201880097871.6A priority Critical patent/CN112740814A/zh
Priority to JP2021518155A priority patent/JP7386856B2/ja
Priority to PCT/CN2018/113846 priority patent/WO2020087547A1/zh
Priority to EP18938532.1A priority patent/EP3876650A4/en
Publication of WO2020087547A1 publication Critical patent/WO2020087547A1/zh
Priority to US17/221,668 priority patent/US20210227578A1/en
Priority to JP2023034136A priority patent/JP2023065640A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to the field of communications, and in particular, to a random access configuration method, signal transmission method, device, and communication system.
  • Listen before talk is a channel access mechanism that enables wireless LANs to effectively share the same spectrum resources. Because the availability of channels on unlicensed frequency bands cannot always be guaranteed, LBT requires devices to check the channel before sending data, perform channel evaluation, and then send data when the evaluation result is that the channel is free.
  • LBT Long Term Evolution
  • LAA Licensed Assisted Access
  • random access resources may be adjacent in time. If the unlicensed frequency band is considered, it is assumed that the terminal device needs to detect the channel before sending msg.1 using random access resources and can only send msg.1 after detecting that the channel is idle. Adjacent random access resources cannot be used separately Due to the transmission of msg.1 from different terminal devices, it causes waste of resources, reduces spectrum efficiency, and increases random access delay.
  • embodiments of the present invention provide a random access configuration method, a signal transmission method, a device, and a communication system.
  • a random access configuration method includes:
  • the network device sends first indication information, where the first indication information includes at least one of the following information:
  • Random access channel configuration index (first index);
  • Time interval of random access resources adjacent in the time domain
  • a signal transmission method includes:
  • the terminal device determines the third random access resource set
  • the terminal device sends a first message to the fifth random access resource according to the channel detection result before the time domain starting position of the random access resource in the third random access resource set, and the third random access
  • the incoming resource set includes the fifth random access resource.
  • a random access configuration device is provided.
  • the device is configured in a network device, where the device includes:
  • the first sending unit sends first indication information, the first indication information includes at least one of the following information:
  • Random access channel configuration index (first index);
  • Time interval of random access resources adjacent in the time domain
  • a signal sending apparatus which is configured in a terminal device, wherein the apparatus includes:
  • a determining unit which determines a third random access resource set
  • a sending unit which sends a first message to the fifth random access resource according to the channel detection result before the time domain starting position of the random access resource in the third random access resource set, and the third random access resource
  • the incoming resource set includes the fifth random access resource.
  • a network device wherein the network device includes the apparatus according to the foregoing third aspect.
  • a terminal device wherein the terminal device includes the apparatus according to the foregoing fourth aspect.
  • a communication system includes the network device described in the seventh aspect and the terminal device described in the eighth aspect.
  • a computer-readable program wherein when the program is executed in a network device, the program causes the computer to execute the method in the first aspect in the network device .
  • a storage medium storing a computer-readable program, wherein the computer-readable program causes a computer to execute the method described in the first aspect in a network device.
  • a computer readable program wherein when the program is executed in a terminal device, the program causes the computer to execute the method in the foregoing second aspect in the terminal device .
  • a storage medium storing a computer-readable program, wherein the computer-readable program causes a computer to execute the method described in the foregoing second aspect in a terminal device.
  • the beneficial effect of the embodiment of the present invention lies in: ensuring that there is sufficient interval between adjacent random access resources for LBT detection through configuration or a predefined method, or, according to the LBT detection result, at different starting positions or different random Access resources send msg.1, which effectively avoids waste of resources, reduces random access delay, and improves spectrum efficiency.
  • FIG. 1 is a schematic diagram of the communication system of this embodiment
  • Figure 2a is a schematic diagram of random access resources in NR
  • 2b is a schematic diagram of channel detection performed by the terminal device
  • FIG. 3 is a schematic diagram of the random access configuration method of Embodiment 1;
  • FIG. 4 is a schematic diagram of an example of a time-domain position relationship between a first random access resource and a second random access resource
  • FIG. 6 is a schematic diagram of an example of msg.1;
  • FIG. 7 is a schematic diagram of another example of msg.1;
  • FIG. 8 is a schematic diagram of an example of random access resources
  • Figures 10-12 are schematic diagrams of three examples of punching msg.1;
  • FIG. 13 and 14 are schematic diagrams of two examples of fifth random access resources and sixth random access resources
  • FIG. 16 is a schematic diagram of a signal transmission device of Embodiment 4.
  • FIG. 17 is a schematic diagram of the network device of Embodiment 5.
  • FIG. 18 is a schematic diagram of a terminal device of Embodiment 6.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of titles, but do not mean the spatial arrangement or chronological order of these elements, and these elements should not be used by these terms Restricted.
  • the term “and / or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having”, etc. refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), wideband code division multiple access (WCDMA, Wideband Code Division Multiple Access), high-speed message access (HSPA, High-Speed Packet Access) and so on.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE- Advanced wideband code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • High-speed message access High-Speed Packet Access
  • the communication between devices in the communication system can be performed according to any stage of the communication protocol, for example, it can include but is not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and / or other communication protocols that are currently known or will be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects user equipment to a communication network and provides services for the user equipment.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB) and 5G base station (gNB), etc., and may also include a remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low power node (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low power node such as femto, pico, etc.
  • base station may include some or all of their functions, and each base station may provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and / or its coverage area, depending on the context in which the term is used.
  • the term “user equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services, and may also be called a “terminal equipment” (TE, Terminal Equipment).
  • the terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, and so on.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular), personal digital assistants (PDA, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • Cellular Cellular
  • PDA Personal Digital Assistant
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • the terminal device may also be a machine or device that performs monitoring or measurement.
  • the terminal device may include but is not limited to: machine type communication (MTC, Machine Type Communication) terminal, Vehicle-mounted communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, and so on.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the terminal device and the network device are taken as examples.
  • the communication system 100 may include: a network device 101 and a terminal device 102.
  • FIG. 1 only takes one terminal device as an example for description.
  • the network device 101 is, for example, the NR network device gNB.
  • an existing service or a service that can be implemented in the future may be performed between the network device 101 and the terminal device 102.
  • these services include but are not limited to: enhanced mobile broadband (eMBB, enhanced Mobile Broadband), large-scale machine type communication (mMTC, massive Machine Type Communication), and highly reliable low-latency communication (URLLC, Ultra-Reliable and Low- Latency Communication), etc.
  • the terminal device 102 may send data to the network device 101, for example, using an unauthorized transmission method.
  • the network device 101 can receive data sent by one or more terminal devices 102 and feed back information (eg, ACK / non-acknowledgement NACK) information to the terminal device 102.
  • the terminal device 102 can confirm the end of the transmission process according to the feedback information, or can New data transmission is performed, or data retransmission can be performed.
  • Fig. 2a schematically shows a configuration situation by taking Format B1 as an example.
  • the PRACH slot refers to a slot including random access resources, and a slot includes 14 symbols (# 0 to # 13).
  • the terminal device may need to perform channel detection before sending msg.1 using a random access resource, and send msg after detecting that the channel is idle. 1.
  • UE1 selects RO1 and UE2 selects RO2. If UE1 sends msg.1 on RO1, UE2 will not be able to send msg.1 on RO2, and can only reselect the subsequent RO. Therefore, if the unlicensed band (or sharing band) adopts the same random access configuration as NR Rel-15, it may cause waste of resources, reduce spectrum efficiency, and increase random access delay.
  • FIG. 3 is a schematic diagram of the random access configuration method of this embodiment. As shown in FIG. 3, the method includes:
  • Step 301 The network device sends first indication information to the terminal device.
  • the first indication information includes at least one of the following information: a random access channel configuration index (referred to as a first index); random access resources adjacent to the time domain Time interval; unavailable random access resource; at least two time domain start positions of a random access resource; time domain end position of a random access resource; number of channel access attempts; and channel access Types of.
  • the terminal device can perform channel detection based on this Access resources send msg.1, which effectively avoids waste of resources, reduces random access delay, and improves spectrum efficiency.
  • the random access resource is also called PRACH resource, PRACH occupation, RACH occupation (RO), and is a time-frequency resource that can be used to send the first message (msg.1).
  • the frequency domain resources of a random access resource may be continuous or discontinuous.
  • the first index may correspond to a random access channel configuration in a first random access channel configuration set (referred to as a first list).
  • the above-mentioned first list may include at least one of the following parameters: time interval of random access resources adjacent to the time domain; unavailable random access resources; time domain starting position of random access resources in a time slot; one The optional time domain start position of the random access resource; the time domain end position of the random access resource; the number of channel access attempts; and the type of channel access.
  • the random access channel configuration in the first list may only include the time domain location configuration of the random access resource.
  • the terminal device can determine the random access channel configuration corresponding to the first index, and then determine at least one of the above parameters, and according to at least one of the above parameters, the available For random access resources, use appropriate random access resources to send msg.1 through channel detection, which will be specifically described in Embodiment 2.
  • the first list may be a new list.
  • at least one random access channel configuration in the first list is not used for licensed frequency bands, that is, the first list contains at least one Random access channel configuration in an unlicensed frequency band (or sharing frequency band); this embodiment is not limited to this, the first list may also use the current NR list, or add a new one to the current NR list Configuration.
  • at least one random access channel configuration in the first list is not used for unlicensed frequency bands (or sharing bands), that is, the first list includes at least one random access channel that is only used for licensed frequency bands.
  • the current list of NRs can refer to existing standards, such as table 6.3.3.2-3, table 6.3.3.2-4, and the description is omitted here.
  • the first list is shown in Table 1, for example.
  • the time interval of random access resources adjacent in the time domain may be characterized by the number of symbols, or the absolute time length (for example, us), or the second index.
  • the time interval is characterized by the number of symbols, corresponding to different sub-carrier spacing (SCS), the time interval (number of symbols) may be different values. For example, if the subcarrier spacing of the random access resource is 15 kHz or 30 kHz, the number of symbols of the interval is at least 1, and if the subcarrier spacing of the random access resource is 60 kHz or 120 kHz, the number of symbols of the interval is at least 2.
  • the number of symbols or the absolute time length of the interval can be determined by the second index and the SCS, for example, as shown in Table 2, if the time interval indicated in the table is "2", the SCS is 120 kHz Then, through the lookup table 2, the number of symbols or the absolute time length of the interval can be determined as "4".
  • the first list is shown in Table 3, for example.
  • the time domain starting position of the random access resource in one time slot corresponding to at least one random access channel configuration includes at least two starting positions, such as the random access channel configuration with index "1", or the index is "N-2" random access channel configuration, where each starting position corresponds to a group of random access resources (PRACH) in the same time domain starting position.
  • PRACH random access resources
  • the first list is shown in Table 4, for example.
  • the optional time domain starting position of one random access resource corresponding to at least one random access channel configuration includes at least two time domain starting positions, as shown in Table 4 with an index of 0 random access channel configuration , Or the random access channel configuration with index N-2 shown in Table 4.
  • each optional time domain starting position of a random access resource corresponds to a channel access attempt opportunity.
  • the optional time domain starting position is characterized as a relative symbol position in a random access resource, for example. As shown in Table 4, "0" in the penultimate column represents the first symbol in the random access resource, "1" in the penultimate column represents the second symbol, and so on.
  • the form of the first list is similar to the foregoing Table 1 to Table 4, I won't repeat them here.
  • the first indication information may indicate the random access configuration only through the first index, that is, the first indication information may include only the first index; but This embodiment is not limited to this.
  • the first indication information may also include the first index and other information other than the first index in step 301. At least one item to indicate random access configuration.
  • the time interval may be the interval between the first symbol of a random access resource and the last symbol of the previous adjacent random access resource. This embodiment is not limited thereto, and the time interval may be Is the absolute length of time or number of symbols.
  • the first indication information may indicate that the even-numbered random access resource in a random access channel slot (PRACH slot) is unavailable, or indicate An odd number of random access resources in a slot of a random access channel (PRACH slot) is unavailable, or indicates that only the first random access resource is available in a PRACH slot, or indicates a mask of a random access resource, the mask That is, it indicates which random access resources are available random access resources and which random access resources are unavailable random access resources.
  • PRACH slot random access channel slot
  • PRACH slot An odd number of random access resources in a slot of a random access channel
  • indicating at least two time domain starting positions of one random access resource is equivalent to indicating at least two channel access opportunities of one random access resource. Based on this, the terminal device can pass the channel It is detected that msg.1 is sent from one of the time domain starting positions of the random access resource, which will be specifically described in Embodiment 2.
  • the terminal device can accordingly Perform channel detection and send msg.1 after a random access resource.
  • the end position of the time domain may be characterized as a relative symbol position in a random access resource, for example.
  • a relative symbol position in a random access resource for example.
  • the preamble format corresponding to a random access resource is Format B2
  • Format B2 corresponds to 4 symbols
  • the end of the time domain indicates that the random access resource ends at the third symbol, the terminal device The fourth symbol does not send data. The details will be described in Example 2.
  • the terminal device by indicating the number of channel access attempts, the terminal device has more opportunities to perform channel detection and send msg.1 on a random access resource, which effectively avoids resource waste and reduces random access delay , And improved spectrum efficiency.
  • the number of channel access attempts may be the maximum number of channel access attempts corresponding to a random access resource, or the number of channel access attempts may be that the terminal device may send one msg.1
  • the terminal device can also be helped to make a corresponding channel access attempt.
  • the type of channel access includes channel access with a short detection time (for example, 25us) (or called one shot LBT) or no channel access (no LBT).
  • the terminal device accordingly uses a shorter time to access the channel to send msg.1 on a random access resource, which effectively avoids waste of resources, reduces random access delay, and improves spectrum efficiency. The details will be described in Example 2.
  • the first indication information is used to indicate a random access configuration
  • the random access configuration may include the configuration of the first random access resource set and / or the channel access configuration. That is, the first random access resource set and / or channel access configuration can be configured on the terminal device through the foregoing first indication information.
  • the random access configuration is, for example, RACH-ConfigGeneric, RACH-ConfigCommon, RACH-ConfigDedicated, etc.
  • a new name is adopted for an unlicensed frequency band (or sharing frequency band)
  • the random access configuration is, for example, RACH-ConfigGeneric_unlicense, RACH-ConfigCommon_unlicnes, etc. This embodiment is not limited to this.
  • the first random access resource set includes available random access resources, such as a first random access resource and a second random access resource, the first random access resource and the second random access resource
  • the incoming resources may overlap in the time domain.
  • the time domain start position of the second random access resource is before the time domain start position of the first random access resource. Therefore, the terminal device can perform channel detection (for example, LBT) on the available random access resources overlapping in the time domain, and send msg.1 on one random access resource, which will be specifically described in Embodiment 2.
  • FIG. 4 is an example of the time-domain position relationship between the first random access resource and the second random access resource, and the present invention is not limited thereto.
  • all the random access resources included in the first random access resource set may be located in a certain bandwidth part (BWP), for example, located in the first uplink (UL) BWP.
  • BWP bandwidth part
  • All the random access resources in the first random access resource set may also correspond to the same preamble format (for example, A1 / A2 ).
  • the first indication information may be sent through system messages, or through radio resource control (RRC) signaling, or both through system messages and RRC signaling, specifically, for example, through SIB1, BWP -Sending by UplinkCommon, BWP-UplinkDedicated, beamFailureRecoveryConfig, etc.
  • RRC radio resource control
  • the first indication information may also include other information used to indicate a random access configuration, for example, including frequency domain location information indicating a random access resource, for specific reference to the prior art , The description is omitted here.
  • the random access process may be triggered by the terminal device or the network device. If the terminal device triggers, the terminal device performs random access according to the random access configuration indicated by the foregoing first indication information For specific random access procedures, reference may be made to the prior art, and the description is omitted here. If it is triggered by a network device, as shown in FIG. 3, the method further includes:
  • Step 300 The network device sends second indication information to the terminal device, where the second indication information indicates at least one of the following: a second random access resource set; at least two time domain starting positions of one random access resource; The end position of a random access resource in the time domain; the number of channel access attempts; and the type of channel access.
  • the second indication information is used to trigger the terminal device to perform random access, that is, the network device can instruct the terminal device to perform random access through at least one of the foregoing items.
  • the second random access resource set includes available random access resources, such as a third random access resource and a fourth random access resource, and the third random access resource and the fourth random access resource
  • the incoming resources may overlap in the time domain, and the relationship between the two may be the same as the aforementioned first random access resource and second random access resource, which will not be repeated here, but this embodiment is not limited thereto.
  • the random access resources in the second random access resource set and the random access resources in the configuration of the first random access resource set indicated by the first indication information may not be completely the same, for example, At least one random access resource in the second random access resource set may not belong to the first random access resource set.
  • this embodiment is not limited thereto, and the random access resource in the first random access resource set and the random access resource in the second random access resource set may be the same.
  • the second indication information may be sent through RRC signaling, or may be sent through a physical message control channel (PDCCH).
  • PDCCH physical message control channel
  • the second indication information may include other information used to trigger random access in addition to the information mentioned in step 300. For details, reference may be made to the prior art, and the description is omitted here.
  • the first indication information may further include a list index, and the list index is used to indicate a list.
  • the list here may be the foregoing first list or other lists, that is, the first index
  • it can also correspond to random access channel configurations in other lists, for example, corresponding to a random access channel configuration set of a second random access channel (referred to as a second list).
  • the random access channel configuration set can be implemented by one list or multiple lists, which increases the flexibility of random access channel configuration.
  • the terminal device can perform channel detection accordingly and send msg.1 on a random access resource , Effectively avoiding waste of resources, reducing random access delay, and improving spectrum efficiency.
  • This embodiment provides a signal transmission method, which is applied to a terminal device, such as the aforementioned UE.
  • This method is processing on the terminal device side corresponding to the method of Embodiment 1, and the same contents as those of Embodiment 1 will not be repeated.
  • FIG. 5 is a schematic diagram of the signal transmission method of this embodiment. As shown in FIG. 5, the method includes:
  • Step 501 The terminal device determines a third random access resource set
  • Step 502 The terminal device sends a first message to the fifth random access resource according to the channel detection result before the time domain starting position of the random access resource in the third random access resource set.
  • the three random access resource sets include the fifth random access resource.
  • the terminal device determines a random access resource to send msg.1 according to the detection result of the random access resource in the third random access resource set before the time domain start position, which effectively avoids waste of resources and reduces It increases the random access delay and improves the spectrum efficiency.
  • the terminal device may receive first indication information sent by the network device, the first indication information indicates the configuration of the first random access resource set, and the terminal device according to the first indication information ( That is, according to the configuration), a first random access resource set is determined, and the third random access resource set is selected from the first random access resource set. Therefore, the terminal device can determine the above-mentioned available random access resources according to the received first indication information, because the first indication information ensures that there is sufficient interval between random access resources adjacent to the time domain for channel detection, The terminal device can determine a random access resource to send msg.1 according to the detection result, which effectively avoids waste of resources, reduces random access delay, and improves spectrum efficiency.
  • the terminal device may directly determine the first random access resource set according to this, that is, the terminal device
  • the above first indication information can determine the first random access resource set; if the configuration of the first random access resource set does not specify the first random access resource set, the terminal device can determine the first random access resource set in combination with pre-defined or pre-configured rules
  • the first random access resource set that is, the terminal device determines the first random access resource set according to the first indication information and a predefined or pre-configured rule.
  • the above rule may be any of the following:
  • a higher layer (eg, MAC layer) of the terminal device may select (select, may also be referred to as determine) a part of the random access resources from the first random access resource set to perform channel detection.
  • the selected The set composed of these random access resources is called a third random access resource set, and the upper layer of the terminal device notifies the physical layer of the terminal device of the third random random access resource set, and the physical layer is in the third random access resource set
  • the channel is detected before the time domain start position of the random access resource in the server. If the channel idle is detected before the time domain start position of a random access resource and msg.1 is sent in the random access resource, this random access resource
  • the incoming resource is called the fifth random access resource.
  • the first indication information may further include the number of channel access attempts, and the terminal device may also access the resource from the first random access resource according to the number of channel access attempts.
  • a corresponding number of random access resources is selected as the third random access resource set in the set.
  • the terminal device first determines the number of random access resources in the third random access resource set according to the number of channel access attempts, and then selects from the first random access resource set according to the determined number Select a corresponding number of random access resources as the third random access resource set.
  • each random access resource corresponds to 2 channel access attempts. If the number of channel access attempts indicated by the first indication information is 4, then select 2 random access resources from the first random access resource set The incoming resource is used as the third random access resource set.
  • the terminal device may receive second indication information sent by the network device, the second indication information indicates a second random access resource set, and the terminal device may be based on the second random access
  • the resource set determines the foregoing third random access resource set, where the third random access resource set is the second random access resource set, that is, in this embodiment, the network device directly indicates the third Random access resource set.
  • the above channel detection may also be referred to as channel access detection or LBT detection, etc.
  • the channel detection is not limited in this embodiment.
  • the above-mentioned first message may also be called msg.1, including a preamble (preamble), or including preamble and uplink data, and this embodiment is not limited thereto.
  • msg.1 including only the preamble sequence as an example, msg.1 may be a message labeled 1 shown in FIG. 6 or FIG. 7, where FIG. 6 is a schematic diagram of contention-based random access and FIG. 7 is a network trigger Schematic diagram of random (non-contention) random access.
  • the third random access resource set may be associated with the same downlink signal.
  • the downlink signal is a synchronization signal block (SSB) or an NR-U DRS, where the SSB is an SS / PBCH block.
  • NR-U DRS includes at least one SSB, and can also include RMSI, CSI-RS, etc. This embodiment is not limited to this.
  • the same downlink signal refers to a signal corresponding to the same index.
  • SSB a network device sends multiple SSBs in a time period, and each SSB corresponds to an index, which represents the time-frequency domain position of the SSB and / or the transmission beam used.
  • the second indication information may indicate the third random access resource set by indicating the index of the SSB, for example, the third random access resource
  • the set is the random access resource set_0 in FIG. 8, and the value of the SSB index included in the second indication information is 0.
  • NR-U DRS is the same.
  • the fifth random access resource may include at least two time domain starting positions, and the at least two time domain starting positions include a first time domain starting position and a second time domain starting position, The first time domain start position is before the second time domain start position.
  • the terminal device can perform channel detection before the first time domain start position and / or the second time domain start position, and start from the first time domain start position or the second time domain according to the channel detection result The starting position starts to send the above-mentioned first message.
  • FIG. 9 is an example of the fifth random access resource.
  • the time domain resource length occupied by the first message corresponding to the first time domain start position may be greater than the time domain resource length occupied by the first message corresponding to the second time domain start position. That is to say, according to different starting positions in the time domain, the terminal device can send first messages with different lengths in the time domain, which ensures that there is sufficient time interval between adjacent random access resources for channel detection.
  • the first message corresponding to the start position in the time domain refers to sending the first message from the start position in the time domain.
  • the terminal device may send the first message by puncturing a part of the first message.
  • the terminal device may puncture a part of the sequence or a part of the symbol of the first message, thereby reducing the length of the time domain of the first message, and ensuring that the sent first message does not affect subsequent random access Channel detection before the starting position in the time domain of the incoming resource.
  • puncturing a part of the sequence of the first message means not sending a part of the sequence of the first message; puncturing a part of the symbol of the first message means not sending the sequence corresponding to the part of the symbol.
  • 10, 11 and 12 are three examples, respectively, wherein the example of FIG. 12 is only used for the case where the second indication information indicates the end position of the time domain.
  • the terminal device may not perform puncturing transmission on the above-mentioned first message, but instead perform overall offset transmission on the first message.
  • the length of the time domain resource occupied by the first message corresponding to the first time domain start position is equal to the length of the time domain resource occupied by the first message corresponding to the second time domain start position. That is to say, in this way, the first message is transmitted only according to the determined starting position of the time domain without changing the length of the time domain resource occupied by the first message.
  • the third random access resource set may further include other random access resources other than the fifth random access resource, which is called a sixth random access resource.
  • the sixth random access resource and The above fifth random access resources are all random access resources used by the terminal device to send the first message.
  • the time domain starting position of the sixth random access resource may be before the time domain starting position of the fifth random access resource.
  • the terminal device may detect the channel before any one or two of the two time domain starting positions, until detecting idleness, from the time domain starting position of the sixth random access resource or from the fifth random access
  • the first message is sent at the beginning of the time domain of the resource.
  • 13 and 14 are two examples of fifth random access resources and sixth random access resources, where RO2 corresponds to the fifth random access resource and RO1 corresponds to the sixth random access resource.
  • the two optional random access resources may or may not overlap in the time domain, for example, the end position of the sixth random access resource in the time domain may be in the fifth random access resource Before the start of the time domain.
  • the time domain length of the two optional random access resources may be the same or different, for example, the time domain end position of the fifth random access resource and the time domain of the sixth random access resource The end position is the same.
  • the terminal device can perform channel detection accordingly and send msg.1 on a random access resource
  • the terminal device can also send msg.1 at different starting positions or different random access resources according to the channel detection result, which effectively avoids waste of resources, reduces random access delay, and improves spectrum efficiency.
  • This embodiment provides a random access configuration device, which can be configured in a network device. Since the principle of the device to solve the problem is similar to the method of Embodiment 1, the specific implementation can refer to the implementation of the method of Embodiment 1, and the same content will not be repeated.
  • FIG. 15 is a schematic diagram of the random access configuration device of this embodiment.
  • the random access configuration device 1500 includes: a first sending unit 1501 that sends first indication information to the terminal device, the first indication information Include at least one of the following information:
  • Random access channel configuration index (first index);
  • Time interval of random access resources adjacent in the time domain
  • the random access channel configuration index (first index) may correspond to a random access channel configuration in the first random access channel configuration set (first list).
  • the first random access channel configuration set (first list) may include at least one of the following parameters:
  • Time interval of random access resources adjacent in the time domain
  • At least one random access channel configuration in the first random access channel configuration set may not be used for the authorized frequency band; or, the first random access channel configuration set (first At least one random access channel configuration in the list) may not be used in an unlicensed frequency band (or sharing frequency band).
  • the first indication information is used to indicate a random access configuration
  • the random access configuration includes a configuration of a first random access resource set and / or a channel access configuration.
  • the configuration of the first random access resource set includes a first random access resource and a second random access resource.
  • the first random access resource and the second random access resource may be in the time domain Overlap; the time-domain starting position of the second random access resource may be before the time-domain starting position of the first random access resource.
  • all the random access resources included in the configuration of the first random access resource set may be located in the first uplink bandwidth part (UL BWP) or correspond to the same preamble format.
  • the first sending unit 1501 may send the first indication information through system messages and / or radio resource control (RRC) signaling.
  • RRC radio resource control
  • the device 1500 may further include:
  • the second sending unit 1502 sends second indication information to the terminal device, and the second indication information indicates at least one of the following:
  • the second random access resource set
  • the second indication information is used to trigger random access.
  • the second random access resource set may include a third random access resource and a fourth random access resource, and the third random access resource and the fourth random access resource may be in the time domain overlap.
  • one random access resource in the second random access resource set does not belong to the first random access resource set.
  • the second sending unit 1502 may send the second indication information through radio resource control (RRC) signaling or a physical downlink control channel (PDCCH).
  • RRC radio resource control
  • PDCH physical downlink control channel
  • the first indication information may further include a list index
  • the random access channel configuration index (first index) may also correspond to one of the second random access channel configuration set (second list) Random access channel configuration.
  • the terminal device can perform channel detection accordingly and send msg.1 on a random access resource , Effectively avoiding waste of resources, reducing random access delay, and improving spectrum efficiency.
  • An embodiment of the present invention provides a signal sending apparatus, and the apparatus may be configured in a terminal device. Since the principle of the device to solve the problem is similar to the method of Embodiment 2, the specific implementation can refer to the implementation of the method of Embodiment 2, and the same content will not be repeated.
  • FIG. 16 is a schematic diagram of an implementation manner of a signal transmission device according to an embodiment of the present invention.
  • the signal transmission device 1600 includes a determination unit 1601 and a transmission unit 1602.
  • the determining unit 1601 may determine the third random access resource set
  • the sending unit 1602 may determine the fifth random access according to the channel detection result before the time domain starting position of the random access resource in the third random access resource set
  • the resource sends a first message, and the third set of random access resources includes the fifth random access resource.
  • the fifth random access resource is a random access resource in the third random access resource set, and is a random access resource that considers the channel to be idle according to the channel detection result.
  • the terminal device accesses the fifth random access resource
  • the resource sends the first message above.
  • the device 1600 may further include:
  • the first receiving unit 1603 receives the first indication information sent by the network device, where the first indication information indicates the configuration of the first random access resource set.
  • the determining unit 601 may determine a first random access resource set according to the first indication information, and then select a third random access resource set from the first random access resource set.
  • the determining unit 1601 may also determine the first random access resource set according to the first indication information and a predefined or pre-configured rule.
  • the rule can be any of the following:
  • the first indication information may further include the number of channel access attempts, and the determining unit 701 may also determine the random access resource in the third random access resource set according to the number of channel access attempts. A number; and select a third random access resource set from the first random access resource set according to the determined number.
  • the device 1600 may further include:
  • the second receiving unit 1604 receives second indication information sent by the network device, and the second indication information indicates the second random access resource set.
  • the determining unit 1601 may determine the third random access resource set according to the second random access resource set, where the third random access resource set is the second random access resource set.
  • the third random access resource set may be associated with a downlink signal, where the downlink signal is, for example, SSB (SS / PBCH block) or NR-U DRS, and this embodiment is not limited thereto.
  • the downlink signal is, for example, SSB (SS / PBCH block) or NR-U DRS, and this embodiment is not limited thereto.
  • the fifth random access resource may include at least two time domain start positions, and the at least two time domain start positions may include a first time domain start position and a second time domain start position , The first time domain start position is before the second time domain start position.
  • the device 1600 may further include:
  • a first detection unit 1605 which detects a channel before the first time domain start position and / or the second time domain start position; the sending unit 1602 can determine the channel from the first time domain start position or the The second time domain starts to send the first message.
  • the length of the time domain resource occupied by the first message corresponding to the first time domain start position may be greater than the length of the time domain resource occupied by the first message corresponding to the second time domain start position.
  • the sending unit 1602 may send the first message by puncturing a part of the first message.
  • the sending unit 1602 may puncture a part of the sequence or symbol corresponding to the first message.
  • the time domain resource length occupied by the first message corresponding to the first time domain start position may be equal to the time domain resource length occupied by the first message corresponding to the second time domain start position.
  • the third random access resource set may further include a sixth random access resource whose time domain starting position is in the time domain starting position of the fifth random access resource mentioned above prior to.
  • the device 1600 may further include:
  • the second detection unit 1606 detects the channel before the time domain start position of the sixth random access resource and / or before the time domain start position of the fifth random access resource.
  • the sending unit 1602 sends the first message on the idle fifth random access resource or the idle sixth random access resource according to the detection result of the second detection unit 1606.
  • the fifth random access resource and the sixth random access resource may overlap in the time domain.
  • the time domain end position of the sixth random access resource may be before the time domain start position of the fifth random access resource.
  • the length of the time domain of the fifth random access resource and the sixth random access resource may be different.
  • the end positions of the fifth random access resource and the sixth random access resource in the time domain may be the same.
  • the terminal device can perform channel detection accordingly and send msg.1 on a random access resource , Effectively avoiding waste of resources, reducing random access delay, and improving spectrum efficiency.
  • This embodiment provides a network device, such as gNB (base station in NR), etc., where the network device includes the random access configuration apparatus 1500 described in Embodiment 3.
  • gNB base station in NR
  • the network device 1700 may include: a central processing unit (CPU) 1701 and a memory 1702; the memory 1702 is coupled to the central processor 1701.
  • the memory 1702 can store various data; in addition, it stores an information processing program, and executes the program under the control of the central processor 1701 to receive various information sent by the terminal device and send various information to the terminal device.
  • the functions of the device 1500 described in Example 3 can be integrated into the central processor 1701, and the functions of the device 1500 described in Example 3 are implemented by the central processor 1701, as described in Example 3
  • the functions of the device 1500 are incorporated here and will not be repeated here.
  • the device 1500 described in Example 3 can be configured separately from the central processor 1701.
  • the device 1500 described in Example 3 can be configured as a chip connected to the central processor 1701, The controller 1701 controls the functions of the device 1500 described in the third embodiment.
  • the network device 1700 may further include: a transceiver 1703, an antenna 1704, and the like; wherein, the functions of the above components are similar to those in the prior art, and will not be repeated here. It is worth noting that the network device 1700 does not necessarily include all the components shown in FIG. 17; in addition, the network device 1700 may also include components not shown in FIG. 17, and reference may be made to the prior art.
  • This embodiment provides a terminal device, where the terminal device includes the apparatus 1600 described in Embodiment 4.
  • the terminal device 1800 may include a central processor 1801 and a memory 1802; the memory 1802 is coupled to the central processor 1801. It is worth noting that the figure is exemplary; other types of structures can also be used to supplement or replace the structure to implement telecommunications functions or other functions.
  • the functions of the device 1600 described in Example 4 can be integrated into the central processor 1801, and the functions of the device 1600 described in Example 4 are implemented by the central processor 1801, as described in Example 4
  • the functions of the device 1600 are incorporated here and will not be repeated here.
  • the device 1600 described in Example 4 can be configured separately from the central processor 1801.
  • the device 1600 described in Example 4 can be configured as a chip connected to the central processor 1801.
  • the control of 1801 realizes the functions of the device 1600 described in the fourth embodiment.
  • the terminal device 1800 may further include: a communication module 1803, an input unit 1804, an audio processing unit 1805, a display 1806, and a power supply 1807. It is worth noting that the terminal device 1800 does not necessarily include all the components shown in FIG. 18; in addition, the terminal device 1800 may also include components not shown in FIG. 18, and reference may be made to the prior art.
  • the central processor 1801 is sometimes referred to as a controller or operation control, and may include a microprocessor or other processor devices and / or logic devices.
  • the central processor 1801 receives input and controls each of the terminal devices 1800 Operation of components.
  • the memory 1802 may be, for example, one or more of a buffer, flash memory, hard drive, removable medium, volatile memory, non-volatile memory, or other suitable devices. It can store information related to configuration, and can also store programs to execute related information. And the central processor 1801 can execute the program stored in the memory 1802 to realize information storage or processing. The functions of other components are similar to the existing ones and will not be repeated here. Each component of the terminal device 1800 may be implemented by dedicated hardware, firmware, software, or a combination thereof, without departing from the scope of the present invention.
  • An embodiment of the present invention provides a communication system including a network device and a terminal device.
  • the network device is, for example, the network device 1700 described in Embodiment 5
  • the terminal device is, for example, the terminal device 1800 described in Embodiment 6.
  • the network device may be, for example, gNB in NR, which may include the function of the apparatus 1500 described in Embodiment 3 to implement the method described in Embodiment 1, in addition to the network device.
  • the conventional components and functions are as described in Embodiment 5, and will not be repeated here.
  • the terminal device is, for example, a UE served by gNB, which may include the functions of the apparatus 1600 described in Embodiment 4 to implement the method described in Embodiment 2, in addition to the conventional terminal equipment
  • the composition and functions are as described in Embodiment 6, and are not repeated here.
  • An embodiment of the present invention also provides a computer-readable program, wherein when the program is executed in a network device, the program causes the computer to execute the method in Embodiment 1 in the network device.
  • An embodiment of the present invention also provides a storage medium storing a computer-readable program, where the computer-readable program causes a computer to execute the method described in Embodiment 1 in a network device.
  • An embodiment of the present invention also provides a computer-readable program, where when the program is executed in a terminal device, the program causes the computer to execute the method described in Embodiment 2 in the terminal device.
  • An embodiment of the present invention also provides a storage medium storing a computer-readable program, where the computer-readable program causes a computer to execute the method described in Embodiment 2 in a terminal device.
  • the above device and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to such a computer-readable program which, when executed by a logic component, enables the logic component to implement the above-described device or component, or enables the logic component to implement the various methods described above Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the invention also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, and so on.
  • the method / device described in conjunction with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and / or one or more combinations of the functional block diagrams shown in the figures may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be realized by solidifying these software modules using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module may be stored in the MEGA-SIM card or a larger-capacity flash memory device.
  • the functional blocks described in the drawings and / or one or more combinations of the functional blocks it may be implemented as a general-purpose processor, digital signal processor (DSP) for performing the functions described in the present invention ), Application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any suitable combination thereof.
  • DSP digital signal processor
  • ASIC Application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described in the drawings and / or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, multiple microprocessing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a random access configuration device configured in a network device, wherein the device includes:
  • the first sending unit sends first indication information to the terminal device, where the first indication information includes at least one of the following information:
  • Random access channel configuration index (first index);
  • Time interval of random access resources adjacent in the time domain
  • Time interval of random access resources adjacent in the time domain
  • the first indication information is used to indicate a random access configuration
  • the random access configuration includes the configuration of the first random access resource set and / or Or channel access configuration.
  • the configuration of the first random access resource set includes a first random access resource and a second random access resource, the first random access resource and the The second random access resources overlap in the time domain; the time domain start position of the second random access resource is before the time domain start position of the first random access resource.
  • the first sending unit sends the first indication information through system messages and / or radio resource control (RRC) signaling.
  • RRC radio resource control
  • a second sending unit which sends second indication information to the terminal device, the second indication information indicating at least one of the following:
  • the second random access resource set
  • the second random access resource set includes a third random access resource and a fourth random access resource, and the third random access resource and the fourth Random access resources overlap in the time domain.
  • the first indication information indicates a random access configuration
  • the random access configuration includes a configuration of a first random access resource set
  • the second random access resource One random access resource in the set does not belong to the first random access resource set.
  • RRC radio resource control
  • PDCH physical downlink control channel
  • the device further includes a list index
  • the random access channel configuration index (first index) also corresponds to a second random access A random access channel configuration in the channel configuration set (second list).
  • a signal sending device configured in a terminal device, wherein the device includes:
  • a determining unit which determines a third random access resource set
  • a sending unit which sends a first message to the fifth random access resource according to the channel detection result before the time domain starting position of the random access resource in the third random access resource set, and the third random access resource
  • the incoming resource set includes the fifth random access resource.
  • a first receiving unit which receives first indication information sent by a network device, where the first indication information indicates the configuration of a first random access resource set;
  • the determining unit determines a first random access resource set according to the first indication information, and selects the third random access resource set from the first random access resource set.
  • the determining unit determines the first random access resource set according to the first indication information and a predefined or pre-configured rule, and selects the third random access resource from the first random access resource set set.
  • the apparatus further includes the number of channel access attempts, and the determination unit determines the third random access resource according to the number of channel access attempts The number of random access resources in the set; selecting a third random access resource set from the first random access resource set according to the number of random access resources.
  • a second receiving unit which receives second indication information sent by the network device, where the second indication information indicates a second random access resource set;
  • the determining unit determines the third random access resource set according to the second random access resource set, where the third random access resource set is the second random access resource set.
  • the fifth random access resource includes at least two time domain start positions, and the at least two time domain start positions include the first time The start position of the domain and the start position of the second time domain, the start position of the first time domain is before the start position of the second time domain.
  • a first detection unit which detects a channel before the first time domain start position and / or the second time domain start position; the sending unit starts from the first time domain start position according to the channel detection result Or the second time domain starts to send the first message.
  • the third random access resource set further includes a sixth random access resource, and a time domain starting position of the sixth random access resource Before the starting position of the fifth random access resource in the time domain.
  • a second detection unit that detects the channel before the time domain start position of the sixth random access resource and / or before the time domain start position of the fifth random access resource.

Abstract

本发明实施例提供了一种随机接入配置方法、信号发送方法、装置和系统,所述随机接入配置方法包括:网络设备发送第一指示信息,所述第一指示信息包括以下信息的至少一项:随机接入信道配置索引(第一索引);时域相邻的随机接入资源的时间间隔;不可用的随机接入资源;一个随机接入资源的至少两个时域起始位置;一个随机接入资源的时域结束位置;信道接入的尝试次数;以及信道接入的类型。由此,通过上述随机接入配置方法保证了相邻的随机接入资源之间有足够的间隔或者更多的机会进行信道检测,终端设备可以据此进行信道检测并在一个随机接入资源发送msg.1,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。

Description

随机接入配置方法、信号发送方法、装置和通信系统 技术领域
本发明涉及通信领域,特别涉及一种随机接入配置方法、信号发送方法、装置和通信系统。
背景技术
先听后说(Listen Before Talk,LBT)是一种信道接入机制,能使无线局域网之间有效共享相同的频谱资源。因为非授权频段上信道的可用性并不能时刻得到保证,LBT要求设备在发送数据前先检测信道,进行信道评估,在评估结果为信道空闲的情况下再发送数据。
在长期演进(Long Term Evolution,LTE)的授权辅助接入(License Assisted Access,LAA)中采用了两种类型的LBT,即,非固定竞争窗口长度的随机退避LBT(LBT with random back-off with variable size of contention window)以及固定时间长度(例如25us)的LBT。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现,在新无线(New Radio,NR)的版本15(Rel-15)中,随机接入设计只考虑了授权频段,由于非授权频段的随机接入需要考虑信道接入的影响,有必要对随机接入进行增强或重新设计。
具体的,根据NR的Rel-15中的随机接入设计,随机接入资源可能在时间上相邻。若考虑非授权频段,假设终端设备在使用随机接入资源发送msg.1前需要检测信道并在检测到信道空闲后才能发送msg.1,上述时间上相邻的随机接入资源将无法分别用于来自不同终端设备的msg.1的传输,进而造成资源浪费,降低频谱效率,增加随机接入时延。
为了解决上述问题的至少一个或解决其他类似问题,本发明实施例提供了一种随 机接入配置方法、信号发送方法、装置和通信系统。
根据本发明实施例的第一方面,提供了一种一种随机接入配置方法,其中,所述方法包括:
网络设备发送第一指示信息,所述第一指示信息包括以下信息的至少一项:
随机接入信道配置索引(第一索引);
时域相邻的随机接入资源的时间间隔;
不可用的随机接入资源;
一个随机接入资源的至少两个时域起始位置;
一个随机接入资源的时域结束位置;
信道接入的尝试次数;以及
信道接入的类型。
根据本发明实施例的第二方面,提供了一种信号发送方法,其中,所述方法包括:
终端设备确定第三随机接入资源集合;
所述终端设备根据对所述第三随机接入资源集合中的随机接入资源的时域起始位置之前的信道检测结果在第五随机接入资源发送第一消息,所述第三随机接入资源集合包括所述第五随机接入资源。
根据本发明实施例的第三方面,提供了一种一种随机接入配置装置,所述装置配置于网络设备,其中,所述装置包括:
第一发送单元,其发送第一指示信息,所述第一指示信息包括以下信息的至少一项:
随机接入信道配置索引(第一索引);
时域相邻的随机接入资源的时间间隔;
不可用的随机接入资源;
一个随机接入资源的至少两个时域起始位置;
一个随机接入资源的时域结束位置;
信道接入的尝试次数;以及
信道接入的类型。
根据本发明实施例的第四方面,提供了一种信号发送装置,配置于终端设备,其中,所述装置包括:
确定单元,其确定第三随机接入资源集合;
发送单元,其根据对所述第三随机接入资源集合中的随机接入资源的时域起始位置之前的信道检测结果在第五随机接入资源发送第一消息,所述第三随机接入资源集合包括所述第五随机接入资源。
根据本发明实施例的第五方面,提供了一种网络设备,其中,所述网络设备包括前述第三方面所述的装置。
根据本发明实施例的第六方面,提供了一种终端设备,其中,所述终端设备包括前述第四方面所述的装置。
根据本发明实施例的第七方面,提供了一种通信系统,所述通信系统包括前述第七方面所述的网络设备和前述第八方面所述的终端设备。
根据本发明实施例的其它方面,提供了一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行前述第一方面所述的方法。
根据本发明实施例的其它方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行前述第一方面所述的方法。
根据本发明实施例的其它方面,提供了一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行前述第二方面所述的方法。
根据本发明实施例的其它方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行前述第二方面所述的方法。
本发明实施例的有益效果在于:通过配置或者预定义的方式保证相邻的随机接入资源之间有足够的间隔进行LBT检测,或者,根据LBT检测结果在不同的起始位置或不同的随机接入资源发送msg.1,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的 特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1是本实施例的通信系统的示意图;
图2a是NR中随机接入资源的一个示意图;
图2b是终端设备进行信道检测的一个示意图;
图3是实施例1的随机接入配置方法的的示意图;
图4是第一随机接入资源和第二随机接入资源的时域位置关系的一个示例的示意图;
图5是实施例2的信号发送方法的示意图;
图6是msg.1的一个示例的示意图;
图7是msg.1的另一个示例的示意图;
图8是随机接入资源的一个示例的示意图;
图9是随机接入资源的另一个示例的示意图;
图10-图12是对msg.1进行打孔的三个示例的示意图;
图13和图14是第五随机接入资源和第六随机接入资源的两个示例的示意图;
图15是实施例3的随机接入配置装置的示意图;
图16是实施例4的信号发送装置的示意图;
图17是实施例5的网络设备的示意图;
图18是实施例6的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将用户设备接入通信网络并为该用户设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC, Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备,也可以称为“终端设备”(TE,Terminal Equipment)。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
以下通过示例对本发明实施例的场景进行说明,但本发明不限于此。
图1是本发明实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括:网络设备101和终端设备102。为简单起见,图1仅以一个终端设备为例进行说明。网络设备101例如为NR的网络设备gNB。
在本发明实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency  Communication),等等。
其中,终端设备102可以向网络设备101发送数据,例如使用免授权传输方式。网络设备101可以接收一个或多个终端设备102发送的数据,并向终端设备102反馈信息(例如确认ACK/非确认NACK)信息,终端设备102根据反馈信息可以确认结束传输过程、或者还可以再进行新的数据传输,或者可以进行数据重传。
发明人发现,在NR Rel-15的随机接入配置中,针对短序列的物理随机接入信道格式(PRACH Format,又称前导码格式(preamble format)),如Format A1/A2/A3/B1/B2/B3等,一个PRACH时隙(PRACH slot)中配置的时域随机接入资源(time-domain PRACH occasions)(或者说时域相邻的随机接入资源)在时域上是连续的,或者说在时域上不存在间隔。图2a以Format B1为例示意性地给出了一种配置情况。PRACH时隙是指包括随机接入资源的时隙(slot),一个slot包括14个符号(#0~#13)。
然而,针对非授权频段(unlicensed band)(或者共享频段(sharing band)),终端设备可能需要在使用一个随机接入资源发送msg.1前进行信道检测,并在检测到信道空闲后发送msg.1。如图2b所示,假设UE1选择了RO1而UE2选择了RO2,若UE1在RO1上发送了msg.1,UE2将无法在RO2上发送msg.1,只能重新选择之后的RO。因此,若非授权频段(unlicensed band)(或者共享频段(sharing band))采用NR Rel-15相同的随机接入配置,可能造成资源浪费,降低频谱效率,并增加随机接入时延。
下面结合附图对本发明实施例的各种实施方式进行说明。这些实施方式只是示例性的,不是对本发明的限制。
实施例1
本实施例提供了一种随机接入配置方法,该方法应用于网络设备,例如前述的gNB等。图3是本实施例的随机接入配置方法的示意图,如图3所示,该方法包括:
步骤301:网络设备向终端设备发送第一指示信息,该第一指示信息包括以下信息的至少一项:随机接入信道配置索引(称为第一索引);时域相邻的随机接入资源的时间间隔;不可用的随机接入资源;一个随机接入资源的至少两个时域起始位置;一个随机接入资源的时域结束位置;信道接入的尝试次数;以及信道接入的类型。
在本实施例中,通过上述随机接入配置方法,保证了相邻的随机接入资源之间有足够的间隔或者更多的机会进行信道检测,终端设备可以据此进行信道检测并在一个 随机接入资源发送msg.1,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
在本实施例中,随机接入资源也称为PRACH resource,PRACH occasion,RACH occasion(RO),是可用于发送第一消息(msg.1)的时频资源。一个随机接入资源的频域资源可以是连续或不连续的。
在本实施例中,上述第一索引可以对应第一随机接入信道配置集合(称为第一列表)中的一种随机接入信道配置。上述第一列表可以包括以下参数的至少一项:时域相邻的随机接入资源的时间间隔;不可用的随机接入资源;一个时隙中随机接入资源的时域起始位置;一个随机接入资源的可选时域起始位置;随机接入资源的时域结束位置;信道接入的尝试次数;以及信道接入的类型。
在本实施例中,第一列表中的随机接入信道配置可以只包括随机接入资源的时域位置配置。
在本实施例中,通过指示上述第一索引,终端设备可以确定该第一索引对应的随机接入信道配置,进而确定上述参数的至少一项,根据上述参数的至少一项,可以确定可用的随机接入资源,通过信道检测使用合适的随机接入资源发送msg.1,具体将在实施例2中进行说明。
在本实施例中,上述第一列表可以是新的列表,例如,该第一列表中的至少一种随机接入信道配置不用于授权频段,即,该第一列表中包含至少一种仅用于非授权频段(或者共享频段(sharing band))的随机接入信道配置;本实施例不限于此,所述第一列表也可以沿用当前NR的列表,或者在当前NR的列表中增加新的配置。例如,该第一列表中的至少一种随机接入信道配置不用于非授权频段(或者共享频段(sharing band)),即,该第一列表中包含至少一种仅用于授权频段的随机接入信道配置。当前NR的列表可以参考现有标准,例如table 6.3.3.2-3,table 6.3.3.2-4,此处省略说明。
在本实施例中,若第一列表的参数包括时域相邻的随机接入资源的时间间隔,第一列表例如为表1所示。时域相邻的随机接入资源的时间间隔可以表征为符号数,或者绝对时间长度(例如us),或者第二索引。
若该时间间隔表征为符号数,则对应不同的子载波间隔(sub-carrier spacing,SCS),该时间间隔(符号数)可以是不同的数值。例如,若该随机接入资源的子载 波间隔为15kHz或30kHz,间隔的符号数至少为1,若该随机接入资源的子载波间隔为60kHz或120kHz,间隔的符号数至少为2。
若该时间间隔表征为第二索引,则间隔的符号数或绝对时间长度可以由该第二索引以及SCS确定,例如表2所示,如果表中指示的时间间隔为“2”,SCS为120kHz,则通过查找表2,可以确定间隔的符号数或绝对时间长度为“4”。
表1
Figure PCTCN2018113846-appb-000001
表2
Figure PCTCN2018113846-appb-000002
在本实施例中,若第一列表的参数包括一个时隙中随机接入资源的时域起始位置,第一列表例如为表3所示。其中,至少一种随机接入信道配置对应的一个时隙中随机接入资源的时域起始位置包括至少两个起始位置,如索引为“1”的随机接入信道配置,或者索引为“N-2”的随机接入信道配置,其中,每个起始位置分别对应一 组同一时域起始位置的随机接入资源(PRACH occasions)。
表3
Figure PCTCN2018113846-appb-000003
在本实施例中,若第一列表的参数包括一个随机接入资源的可选时域起始位置,第一列表例如为表4所示。其中,至少一种随机接入信道配置对应的一个随机接入资源的可选时域起始位置包括至少两个时域起始位置,如表4所示的索引为0的随机接入信道配置,或者表4所示的索引为N-2的随机接入信道配置。其中,一个随机接入资源的每个可选时域起始位置分别对应一次信道接入尝试机会。该可选时域起始位置例如表征为一个随机接入资源中的相对符号位置。如表4中,倒数第2列中的“0”表示随机接入资源中的第一个符号,倒数第2列中的“1”表示第二个符号,依次类推。
表4
Figure PCTCN2018113846-appb-000004
在本实施例中,若第一列表的参数包括随机接入资源的时域结束位置、信道接入 的尝试次数、或信道接入类型,第一列表的形式与前述表1-表4类似,此处不再赘述。
在本实施例中,如果上述第一列表是新增列表,第一指示信息仅通过上述第一索引即可指示随机接入配置,也即,第一指示信息可以只包括上述第一索引;但本实施例不限于此,在上述第一列表是新增列表或者沿用NR的列表的情况下,上述第一指示信息也可以包括上述第一索引以及步骤301中除第一索引以外的其他信息的至少一项来指示随机接入配置。
在本实施例中,通过指示上述时域相邻的随机接入资源的时间间隔,保证了相邻的随机接入资源之间有足够的间隔进行信道检测,终端设备可以据此进行信道检测并在一个随机接入资源发送msg.1,具体将在实施例2中进行说明。
在本实施例中,该时间间隔可以是一个随机接入资源第一个符号和前一个相邻的随机接入资源的最后一个符号之间的间隔,本实施例不限于此,该时间间隔可以是绝对的时间长度或者符号数。
在本实施例中,通过指示不可用的随机接入资源,保证了相邻的随机接入资源之间有足够的间隔进行信道检测,终端设备可以据此进行信道检测并在一个随机接入资源发送msg.1,具体将在实施例2中进行说明。
在本实施例中,作为不可用的随机接入资源的指示方式,上述第一指示信息可以指示一个随机接入信道的时隙(PRACH slot)中第偶数个随机接入资源不可用,或者指示一个随机接入信道的时隙(PRACH slot)中第奇数个随机接入资源不可用,或者指示一个PRACH slot中仅第一个随机接入资源可用,或者指示随机接入资源的mask,该mask即表明了哪些随机接入资源是可用的随机接入资源,哪些随机接入资源是不可用的随机接入资源。
在本实施例中,通过指示一个随机接入资源的至少两个时域起始位置,相当于指示了一个随机接入资源的至少两个信道接入的机会,基于此,终端设备可以通过信道检测从该随机接入资源的其中一个时域起始位置发送msg.1,具体将在实施例2中进行说明。
在本实施例中,通过指示一个随机接入资源的时域结束位置,保证了该随机接入资源与之后相邻的随机接入资源之间有足够的间隔进行信道检测,终端设备可以据此进行信道检测并在之后一个随机接入资源发送msg.1。
在本实施例中,该时域结束位置例如可以表征为一个随机接入资源中的相对符号 位置。例如,若一个随机接入资源对应的preamble format为Format B2,根据NR Rel-15,Format B2对应4个符号,若时域结束位置指示随机接入资源在第三个符号结束,则终端设备在第四个符号不发送数据。具体将在实施例2中进行说明。
在本实施例中,通过指示信道接入的尝试次数,终端设备有更多的机会进行信道检测并在一个随机接入资源发送msg.1,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
在本实施例中,该信道接入的尝试次数可以是一个随机接入资源对应的信道接入的最大尝试次数,或者,该信道接入的尝试次数可以是终端设备针对一次msg.1发送可以选择的随机接入资源个数或者终端设备针对一次msg.1发送可以选择的所有随机接入资源对应的信道接入的最大尝试次数。具体将在实施例2中进行说明。
在本实施例中,通过指示信道接入的类型,也可以帮助终端设备进行相应的信道接入尝试。例如信道接入的类型包括检测时间短的(例如25us)信道接入(或称为one shot LBT)或者不进行信道接入(no LBT)。终端设备据此用更短的时间接入信道从而在一个随机接入资源发送msg.1,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。具体将在实施例2中进行说明。
在本实施例中,所述第一指示信息用于指示随机接入配置,该随机接入配置可以包括第一随机接入资源集合的配置和/或信道接入的配置。也即,通过上述第一指示信息,可以对终端设备进行第一随机接入资源集合的配置和/或信道接入的配置。
在本实施例中,参考NR Rel-15中的RRC消息名称,该随机接入配置例如为RACH-ConfigGeneric,RACH-ConfigCommon、RACH-ConfigDedicated等。或者,针对非授权频段(或者共享频段(sharing band))采用新的名称,该随机接入配置例如为RACH-ConfigGeneric_unlicense,RACH-ConfigCommon_unlicnes等,本实施例不限于此。
在本实施例中,该第一随机接入资源集合包括可用的随机接入资源,例如第一随机接入资源和第二随机接入资源,该第一随机接入资源和该第二随机接入资源可以在时域上交叠,例如,该第二随机接入资源的时域起始位置在该第一随机接入资源的时域起始位置之前。由此,终端设备可以通过对时域上交叠的可用的随机接入资源进行信道检测(例如LBT),在一个随机接入资源发送msg.1,具体将在实施例2中进行说明。图4为第一随机接入资源和第二随机接入资源的时域位置关系的一个示例,本 发明不限于此。
在本实施例中,上述第一随机接入资源集合中包括的全部随机接入资源可以位于某个带宽部分(BWP)内,例如位于第一上行(UL)BWP内。但本实施例不限于此。上述第一随机接入资源集合中的全部随机接入资源也可以对应相同的preamble format(例如A1/A2…)。
在本实施例中,上述第一指示信息可以通过系统消息发送,也可以通过无线资源控制(RRC)信令发送,或者同时通过系统消息和RRC信令发送,具体地,例如通过SIB 1、BWP-UplinkCommon、BWP-UplinkDedicated、beamFailureRecoveryConfig等发送,本实施例不限于此。此外,除了步骤301中提到的信息以外,该第一指示信息还可以包括其他用于指示随机接入配置的信息,例如包括指示随机接入资源的频域位置信息,具体可以参考现有技术,此处省略说明。
在本实施例中,随机接入过程可能是终端设备触发的,也可能是网络设备触发的,如果是终端设备触发的,则终端设备根据前述第一指示信息指示的随机接入配置进行随机接入,具体的随机接入过程可以参考现有技术,此处省略说明。如果是网络设备触发的,则如图3所示,该方法还包括:
步骤300:网络设备向所述终端设备发送第二指示信息,该第二指示信息指示以下至少一项:第二随机接入资源集合;一个随机接入资源的至少两个时域起始位置;一个随机接入资源的时域结束位置;信道接入的尝试次数;以及信道接入的类型。
在本实施例中,上述第二指示信息用于触发终端设备进行随机接入,也即,网络设备通过上述至少一项可以指示终端设备进行随机接入。
在本实施例中,上述第二随机接入资源集合包括可用的随机接入资源,例如第三随机接入资源和第四随机接入资源,该第三随机接入资源和该第四随机接入资源可以在时域上交叠,两者之间的关系可以与前述第一随机接入资源和第二随机接入资源相同,此处不再赘述,但本实施例不限于此。
在本实施例中,该第二随机接入资源集合中的随机接入资源与上述第一指示信息指示的第一随机接入资源集合的配置中的随机接入资源可以不完全相同,例如,该第二随机接入资源集合中的至少一个随机接入资源可以不属于上述第一随机接入资源集合。但本实施例不限于此,该第一随机接入资源集合中的随机接入资源和该第二随机接入资源集合中的随机接入资源也可以相同。
在本实施例中,上述第二指示信息可以通过RRC信令发送,也可以通过物理消息控制信道(PDCCH)发送,本实施例不限于此。此外,该第二指示信息除了包括步骤300提到的信息以外,还可以包括其他用于触发随机接入的信息,具体可以参考现有技术,此处省略说明。
在本实施例中,上述第一指示信息还可以包括列表索引,该列表索引用于指示列表,这里的列表可以是前述的第一列表,也可以是其他列表,也就是说,上述第一索引除了可以对应上述第一列表中的一种随机接入信道配置以外,还可以对应其他列表的随机接入信道配置,例如对应第二随机接入信道配置集合(称为第二列表)的随机接入信道配置。也就是说,在本实施例中,随机接入信道配置集合可以通过一个列表实现,也可以通过多个列表实现,增加了随机接入信道配置的灵活性。
根据本实施例的方法,保证了相邻的随机接入资源之间有足够的间隔或者更多的机会进行信道检测,终端设备可以据此进行信道检测并在一个随机接入资源发送msg.1,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
实施例2
本实施例提供了一种信号发送方法,该方法应用于终端设备,如前述的UE等。该方法是对应实施例1的方法的终端设备侧的处理,其中与实施例1相同的内容不再重复说明。
图5是本实施例的信号发送方法的示意图,如图5所示,该方法包括:
步骤501:终端设备确定第三随机接入资源集合;
步骤502:所述终端设备根据对所述第三随机接入资源集合中的随机接入资源的时域起始位置之前的信道检测结果在第五随机接入资源发送第一消息,所述第三随机接入资源集合包括所述第五随机接入资源。
在本实施例中,终端设备根据对第三随机接入资源集合中的随机接入资源时域起始位置之前的检测结果确定一个随机接入资源发送msg.1,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
在本实施例的一个实施方式中,终端设备可以接收网络设备发送的第一指示信息,该第一指示信息指示了关于第一随机接入资源集合的配置,终端设备根据该第一指示信息(也即根据该配置)确定第一随机接入资源集合,并从该第一随机接入资源 集合中选择上述第三随机接入资源集合。由此,终端设备根据接收到的第一指示信息可以确定上述可用的随机接入资源,由于该第一指示信息保证了时域相邻的随机接入资源之间有足够的间隔进行信道检测,终端设备可以根据检测结果确定一个随机接入资源发送msg.1,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
在本实施方式中,关于该第一指示信息的内容已经在实施例1中做了说明,其内容被合并于此,此处不再赘述。
在本实施方式中,如果上述第一随机接入资源集合的配置明确了第一随机接入资源集合,则终端设备可以据此直接确定该第一随机接入资源集合,也即,终端设备根据上述第一指示信息即可确定第一随机接入资源集合;如果该第一随机接入资源集合的配置没有明确第一随机接入资源集合,则终端设备可以结合预定义或预配置的规则确定该第一随机接入资源集合,也即,终端设备根据上述第一指示信息以及预定义或预配置的规则确定第一随机接入资源集合。
在本实施方式中,上述规则可以是以下任意一种:
一个时隙中只有第一个随机接入资源可用;
一个时隙中只有第奇数个或第偶数个随机接入资源可用;以及
一个时隙中只有第奇数个或第偶数个随机接入资源可用。
上述规则只是举例说明,本实施例不限于此。
在本实施方式中,终端设备的高层(例如MAC层)可以从上述第一随机接入资源集合中选择(select,也可以称为确定(determine))一部分随机接入资源进行信道检测,选择的这些随机接入资源构成的集合称为第三随机接入资源集合,该终端设备的高层将第三随机随机接入资源集合告知该终端设备的物理层,物理层在第三随机接入资源集合中的随机接入资源的时域起始位置之前检测信道,若在一个随机接入资源的时域起始位置前检测到信道空闲,并在该随机接入资源发送msg.1,这个随机接入资源称为第五随机接入资源。
在本实施方式中,如实施例1所述,上述第一指示信息还可以包括信道接入的尝试次数,则终端设备还可以根据该信道接入的尝试次数从所述第一随机接入资源集合中选择相应数量的随机接入资源作为第三随机接入资源集合。例如,终端设备首先根据该信道接入的尝试次数确定上述第三随机接入资源集合中的随机接入资源的个数,再根据确定的该个数选择从所述第一随机接入资源集合中选择相应数量的随机接入 资源作为第三随机接入资源集合。例如,每个随机接入资源对应2次信道接入尝试次数,若第一指示信息指示的信道接入的尝试次数为4,则从所述第一随机接入资源集合中选择2个随机接入资源作为第三随机接入资源集合。
在本实施例的另一个实施方式中,终端设备可以接收网络设备发送的第二指示信息,该第二指示信息指示了第二随机接入资源集合,该终端设备可以根据该第二随机接入资源集合确定上述第三随机接入资源集合,这里,该第三随机接入资源集合即为该第二随机接入资源集合,也即,在这个实施方式中,网络设备直接指示了该第三随机接入资源集合。
在本实施方式中,关于该第二指示信息的内容已经在实施例1中做了说明,其内容被合并于此,此处不再赘述。
在本实施例中,上述信道检测也可以称为信道接入检测或者LBT检测等,关于信道检测的说法本实施例不做限制。
在本实施例中,上述第一消息也可以称为msg.1,包括前导序列(preamble),或者包括preamble和上行数据,本实施例不限于此。以msg.1仅包括前导序列为例,msg.1可以为图6或图7中所示的标号为1的消息,其中,图6为基于竞争的随机接入的示意图,图7为网络触发的(非竞争的)随机接入的示意图。
在本实施例中,上述第三随机接入资源集合可以与同一下行信号关联。该下行信号是同步信号块(SSB)或者一个NR-U DRS,这里的SSB是SS/PBCH block。其中,NR-U DRS至少包括一个SSB,还可以包括RMSI,CSI-RS等。本实施例不限于此。同一下行信号是指对应相同索引的信号。以SSB为例,网络设备在一个时间周期内发送多个SSB,每个SSB分别对应一个索引,该索引表征了SSB的时频域位置和/或采用的发送波束。
在本实施例中,在网络设备发送第二指示信息触发随机接入的情况下,第二指示信息可通过指示SSB的索引来指示第三随机接入资源集合,例如,第三随机接入资源集合为图8中的随机接入资源集合_0,则第二指示信息中包括的SSB index的取值为0。NR-U DRS同理。
在本实施例中,上述第五随机接入资源可以包括至少两个时域起始位置,该至少两个时域起始位置包括第一时域起始位置和第二时域起始位置,第一时域起始位置在第二时域起始位置之前。由此,终端设备可以在第一时域起始位置和/或第二时域起 始位置之前进行信道检测,并根据信道检测结果从该第一时域起始位置或该第二时域起始位置开始发送上述第一消息。图9为该第五随机接入资源的一个示例。
在本实施例中,上述第一时域起始位置对应的第一消息占用的时域资源长度可以大于第二时域起始位置对应的第一消息占用的时域资源长度。也就是说,根据不同的时域起始位置,终端设备可以发送时域长度不同的第一消息,这样保证了相邻的随机接入资源之间具有足够的时间间隔用于信道检测。这里,“时域起始位置对应的第一消息”是指从该时域起始位置开始发送第一消息。
在一个实施方式中,终端设备可以通过对上述第一消息的一部分进行打孔(puncture)的方式来发送该第一消息。例如,终端设备可以对该第一消息的一部分序列或者一部分符号进行打孔,由此减小了第一消息的时域长度,保证了该发送的第一消息不影响之后的相邻的随机接入资源的时域起始位置之前的信道检测。这里,对该第一消息的一部分序列进行打孔是指不发送该第一消息的一部分序列;对该第一消息的一部分符号打孔也就是不发送该一部分符号对应的序列。图10、图11以及图12分别是三个示例,其中,图12的示例仅用于第二指示信息指示时域结束位置的情况。
在另一个实施方式中,终端设备也可以不对上述第一消息进行打孔传输,而是将该第一消息进行整体偏移传输。例如,第一时域起始位置对应的第一消息占用的时域资源长度等于第二时域起始位置对应的第一消息占用的时域资源长度。也就是说,在这种方式中,只根据确定的时域起始位置传输第一消息,而不改变第一消息占用的时域资源长度。
在本实施例中,上述第三随机接入资源集合还可以包括除上述第五随机接入资源以外的其他随机接入资源,称为第六随机接入资源,该第六随机接入资源和上述第五随机接入资源都作为终端设备可选的用于发送上述第一消息的随机接入资源。
在本实施例中,该第六随机接入资源的时域起始位置可以在该第五随机接入资源的时域起始位置之前。终端设备可以在这两个时域起始位置的任意一个或两个之前检测信道,直到检测到空闲时,从上述第六随机接入资源的时域起始位置或者从上述第五随机接入资源的时域起始位置发送上述第一消息。图13和图14是第五随机接入资源和第六随机接入资源的两个示例,其中,RO2对应第五随机接入资源,RO1对应第六随机接入资源。
在本实施例中,这两个可选的随机接入资源在时域上可以交叠,也可以不交叠, 例如第六随机接入资源的时域结束位置可以在第五随机接入资源的时域起始位置之前。
在本实施例中,这两个可选的随机接入资源的时域长度可以相同,也可以不同,例如,第五随机接入资源的时域结束位置和第六随机接入资源的时域结束位置相同。
根据本实施例的方法,保证了相邻的随机接入资源之间有足够的间隔或者更多的机会进行信道检测,终端设备可以据此进行信道检测并在一个随机接入资源发送msg.1,或者,终端设备也可以根据信道检测结果在不同的起始位置或不同的随机接入资源发送msg.1,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
实施例3
本实施例提供了一种随机接入配置装置,该装置可以配置于网络设备。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参照实施例1的方法的实施,内容相同之处不再重复说明。
图15是本实施例的随机接入配置装置的示意图,请参照图15,该随机接入配置装置1500包括:第一发送单元1501,其向终端设备发送第一指示信息,该第一指示信息包括以下信息的至少一项:
随机接入信道配置索引(第一索引);
时域相邻的随机接入资源的时间间隔;
不可用的随机接入资源;
一个随机接入资源的至少两个时域起始位置;
一个随机接入资源的时域结束位置;
信道接入的尝试次数;以及
信道接入的类型。
关于该第一指示信息的内容,已经在实施例1中做了说明,其内容被合并于此,此处不再赘述。
在本实施例中,上述随机接入信道配置索引(第一索引)可以对应第一随机接入信道配置集合(第一列表)中的一种随机接入信道配置。
在本实施例中,上述第一随机接入信道配置集合(第一列表)可以包括以下参数中的至少一项:
时域相邻的随机接入资源的时间间隔;
不可用的随机接入资源;
一个时隙中随机接入资源的时域起始位置;
一个随机接入资源的可选时域起始位置;
随机接入资源的时域结束位置;
信道接入的尝试次数;以及
信道接入的类型。
在本实施例中,上述第一随机接入信道配置集合(第一列表)中的至少一种随机接入信道配置可以不用于授权频段;或者,上述第一随机接入信道配置集合(第一列表)中的至少一种随机接入信道配置可以不用于非授权频段(或者共享频段(sharing band))。
在本实施例中,上述第一指示信息用于指示随机接入配置,该随机接入配置包括第一随机接入资源集合的配置和/或信道接入的配置。
在本实施例中,上述第一随机接入资源集合的配置包括第一随机接入资源和第二随机接入资源,该第一随机接入资源和该第二随机接入资源可以在时域上交叠;该第二随机接入资源的时域起始位置可以在该第一随机接入资源的时域起始位置之前。
在本实施例中,上述第一随机接入资源集合的配置中包括的全部随机接入资源可以位于第一上行带宽部分(UL BWP)内或者对应相同的前导码格式(preamble format)。
在本实施例中,第一发送单元1501可以通过系统消息和/或无线资源控制(RRC)信令发送上述第一指示信息。
在本实施例中,如图15所示,该装置1500还可以包括:
第二发送单元1502,其向终端设备发送第二指示信息,该第二指示信息指示以下至少一项:
第二随机接入资源集合;
一个随机接入资源的至少两个时域起始位置;
一个随机接入资源的时域结束位置;
信道接入的尝试次数;以及
信道接入的类型。
关于该第二指示信息的具体内容,已经在实施例1中做了说明,此处不再赘述。
在本实施例中,上述第二指示信息用于触发随机接入。
在本实施例中,上述第二随机接入资源集合可以包括第三随机接入资源和第四随机接入资源,该第三随机接入资源和该第四随机接入资源在时域上可以交叠。
在本实施例中,上述第二随机接入资源集合中的一个随机接入资源不属于上述第一随机接入资源集合。
在本实施例中,第二发送单元1502可以通过无线资源控制(RRC)信令或者物理下行控制信道(PDCCH)发送上述第二指示信息。
在本实施例中,上述第一指示信息中还可以包括列表索引,上述随机接入信道配置索引(第一索引)还可以对应第二随机接入信道配置集合(第二列表)中的一种随机接入信道配置。
根据本实施例的装置,保证了相邻的随机接入资源之间有足够的间隔或者更多的机会进行信道检测,终端设备可以据此进行信道检测并在一个随机接入资源发送msg.1,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
实施例4
本发明实施例提供了一种信号发送装置,所述装置可以配置于终端设备。由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参照实施例2的方法的实施,内容相同之处不再重复说明。
图16是本发明实施例的信号发送装置的一个实施方式的示意图,如图16所示,该信号发送装置1600包括:确定单元1601和发送单元1602。确定单元1601可以确定第三随机接入资源集合,发送单元1602可以根据对该第三随机接入资源集合中的随机接入资源的时域起始位置之前的信道检测结果在第五随机接入资源发送第一消息,该第三随机接入资源集合包含该第五随机接入资源。
也就是说,该第五随机接入资源是第三随机接入资源集合中的随机接入资源,并且是根据信道检测结果认为信道空闲的随机接入资源,终端设备在该第五随机接入资源发送上述第一消息。
在本实施例的一个实施方式中,如图16所示,该装置1600还可以包括:
第一接收单元1603,其接收网络设备发送的第一指示信息,该第一指示信息指 示了第一随机接入资源集合的配置。确定单元601可以根据所述第一指示信息确定第一随机接入资源集合,进而从该第一随机接入资源集合中选择第三随机接入资源集合。
在本实施方式中,确定单元1601也可以根据上述第一指示信息以及预定义或预配置的规则确定上述第一随机接入资源集合。其中,该规则可以是以下任意一种:
一个时隙中只有第一个随机接入资源可用;
一个时隙中只有第奇数个或第偶数个随机接入资源可用;以及
一个时隙中只有第奇数个或第偶数个随机接入资源可用。
在本实施方式中,上述第一指示信息还可以包括信道接入的尝试次数,确定单元701还可以根据该信道接入的尝试次数确定上述第三随机接入资源集合中的随机接入资源的个数;并根据确定的该个数从上述第一随机接入资源集合中选择第三随机接入资源集合。
在本实施例的另一个实施方式中,如图16所示,该装置1600还可以包括:
第二接收单元1604,其接收网络设备发送的第二指示信息,该第二指示信息指示了第二随机接入资源集合。确定单元1601可以根据该第二随机接入资源集合确定上述第三随机接入资源集合,该第三随机接入资源集合即为该第二随机接入资源集合。
在本实施例中,上述第三随机接入资源集合可以与一个下行信号关联,这里的下行信号例如为SSB(SS/PBCH block)或者NR-U DRS,本实施例不限于此。
在本实施例中,上述第五随机接入资源可以包括至少两个时域起始位置,该至少两个时域起始位置可以包括第一时域起始位置和第二时域起始位置,该第一时域起始位置在第二时域起始位置之前。
在本实施例中,如图16所示,该装置1600还可以包括:
第一检测单元1605,其在上述第一时域起始位置和/或上述第二时域起始位置之前检测信道;发送单元1602可以根据信道检测结果从该第一时域起始位置或该第二时域起始位置开始发送上述第一消息。
在本实施例中,第一时域起始位置对应的第一消息占用的时域资源长度可以大于第二时域起始位置对应的第一消息占用的时域资源长度。
在本实施例中,发送单元1602可以通过对该第一消息的一部分打孔(puncture) 来发送该第一消息。例如,发送单元1602可以对该第一消息对应的一部分序列或符号打孔(puncture)。
在本实施例中,上述第一时域起始位置对应的第一消息占用的时域资源长度可以等于上述第二时域起始位置对应的第一消息占用的时域资源长度。
在本实施例中,第三随机接入资源集合还可以包括第六随机接入资源,该第六随机接入资源的时域起始位置在上述第五随机接入资源的时域起始位置之前。
在本实施例中,如图16所示,该装置1600还可以包括:
第二检测单元1606,其在第六随机接入资源的时域起始位置之前和/或第五随机接入资源的时域起始位置之前检测信道。发送单元1602根据第二检测单元1606的检测结果,在空闲的第五随机接入资源或空闲的第六随机接入资源发送上述第一消息。
在本实施例中,该第五随机接入资源和该第六随机接入资源在时域上可以交叠。
在本实施例中,该第六随机接入资源的时域结束位置可以在该第五随机接入资源的时域起始位置之前。
在本实施例中,该第五随机接入资源和该第六随机接入资源的时域长度可以不同。
在本实施例中,该第五随机接入资源和该第六随机接入资源的时域结束位置可以相同。
根据本实施例的装置,保证了相邻的随机接入资源之间有足够的间隔或者更多的机会进行信道检测,终端设备可以据此进行信道检测并在一个随机接入资源发送msg.1,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
实施例5
本实施例提供了一种网络设备,例如gNB(NR中的基站)等,其中,该网络设备包括实施例3所述的随机接入配置装置1500。
图17是本发明实施例的网络设备的示意图。如图17所示,网络设备1700可以包括:中央处理器(CPU)1701和存储器1702;存储器1702耦合到中央处理器1701。其中该存储器1702可存储各种数据;此外还存储信息处理的程序,并且在中央处理器1701的控制下执行该程序,以接收终端设备发送的各种信息、并且向终端设备发送各种信息。
在一个实施方式中,实施例3所述的装置1500的功能可以被集成到中央处理器1701中,由中央处理器1701实现实施例3所述的装置1500的功能,其中关于实施例3所述的装置1500的功能被合并于此,在此不再赘述。
在另一个实施方式中,实施例3所述的装置1500可以与中央处理器1701分开配置,例如可以将该实施例3所述的装置1500配置为与中央处理器1701连接的芯片,通过中央处理器1701的控制来实现实施例3所述的装置1500的功能。
此外,如图17所示,网络设备1700还可以包括:收发机1703和天线1704等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1700也并不是必须要包括图17中所示的所有部件;此外,网络设备1700还可以包括图17中没有示出的部件,可以参考现有技术。
通过本实施例的网络设备,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
实施例6
本实施例提供了一种终端设备,其中,该终端设备包括实施例4所述的装置1600。
图18是本发明实施例的终端设备的示意图。如图18所示,该终端设备1800可以包括中央处理器1801和存储器1802;存储器1802耦合到中央处理器1801。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
在一个实施方式中,实施例4所述的装置1600的功能可以被集成到中央处理器1801中,由中央处理器1801实现实施例4所述的装置1600的功能,其中关于实施例4所述的装置1600的功能被合并于此,在此不再赘述。
在另一个实施方式中,实施例4所述的装置1600可以与中央处理器1801分开配置,例如可以将实施例4所述的装置1600配置为与中央处理器1801连接的芯片,通过中央处理器1801的控制来实现实施例4所述的装置1600的功能。
如图18所示,该终端设备1800还可以包括:通信模块1803、输入单元1804、音频处理单元1805、显示器1806、电源1807。值得注意的是,终端设备1800也并不是必须要包括图18中所示的所有部件;此外,终端设备1800还可以包括图18中没有示出的部件,可以参考现有技术。
如图18所示,中央处理器1801有时也称为控制器或操作控件,可以包括微处理器或其它处理器装置和/或逻辑装置,该中央处理器1801接收输入并控制终端设备1800的各个部件的操作。
其中,存储器1802,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存与配置有关的信息,此外还可存储执行有关信息的程序。并且中央处理器1801可执行该存储器1802存储的该程序,以实现信息存储或处理等。其它部件的功能与现有类似,此处不再赘述。终端设备1800的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
通过本实施例的终端设备,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
实施例7
本发明实施例提供了一种通信系统,该通信系统包括网络设备和终端设备,网络设备例如为实施例5所述的网络设备1700,终端设备例如为实施例6所述的终端设备1800。
在本实施例中,该网络设备例如可以是NR中的gNB,其可以包含实施例3所述的装置1500的功能,实现实施例1所述的方法,除此之外,还包括网络设备的常规组成和功能,如实施例5所述,在此不再赘述。
在本实施例中,该终端设备例如是gNB服务的UE,其可以包含实施例4所述的装置1600的功能,实现实施例2所述的方法,除此之外,还包括终端设备的常规组成和功能,如实施例6所述,在此不再赘述。
通过本实施例的通信系统,有效避免了资源浪费,降低了随机接入时延,并提高了频谱效率。
本发明实施例还提供一种计算机可读程序,其中当在网络设备中执行所述程序时,所述程序使得计算机在所述网络设备中执行实施例1所述的方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在网络设备中执行实施例1所述的方法。
本发明实施例还提供一种计算机可读程序,其中当在终端设备中执行所述程序时,所述程序使得计算机在所述终端设备中执行实施例2所述的方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在终端设备中执行实施例2所述的方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。逻辑部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
根据本发明实施例公开的各种实施方式,还公开了如下附记:
1、一种随机接入配置装置,配置于网络设备,其中,所述装置包括:
第一发送单元,其向终端设备发送第一指示信息,所述第一指示信息包括以下信息的至少一项:
随机接入信道配置索引(第一索引);
时域相邻的随机接入资源的时间间隔;
不可用的随机接入资源;
一个随机接入资源的至少两个时域起始位置;
一个随机接入资源的时域结束位置;
信道接入的尝试次数;以及
信道接入的类型。
2、根据附记1所述的装置,其中,所述随机接入信道配置索引(第一索引)对应第一随机接入信道配置集合(第一列表)中的一种随机接入信道配置。
3、根据附记2所述的装置,其中,所述第一随机接入信道配置集合(第一列表)包括以下参数中的至少一项:
时域相邻的随机接入资源的时间间隔;
不可用的随机接入资源;
一个时隙中随机接入资源的时域起始位置;
一个随机接入资源的可选时域起始位置;
随机接入资源的时域结束位置;
信道接入的尝试次数;以及
信道接入的类型。
4、根据附记2所述的装置,其中,所述第一随机接入信道配置集合(第一列表)中的至少一种随机接入信道配置不用于授权频段;或者,所述第一随机接入信道配置集合(第一列表)中的至少一种随机接入信道配置不用于非授权频段。
5、根据附记1-4任意一项所述的装置,其中,所述第一指示信息用于指示随机接入配置,所述随机接入配置包括第一随机接入资源集合的配置和/或信道接入的配置。
6、根据附记5所述的装置,其中,所述第一随机接入资源集合的配置包括第一随机接入资源和第二随机接入资源,所述第一随机接入资源和所述第二随机接入资源在时域上交叠;所述第二随机接入资源的时域起始位置在所述第一随机接入资源的时域起始位置之前。
7、根据附记5所述的装置,其中,所述第一随机接入资源集合的配置中包括的全部随机接入资源位于第一上行带宽部分(UL BWP)内和/或对应相同的前导码格式(preamble format)。
8、根据附记1-7任意一项所述的装置,其中,所述第一发送单元通过系统消息和/或无线资源控制(RRC)信令发送所述第一指示信息。
9、根据附记1-8任意一项所述的装置,其中,所述装置还包括:
第二发送单元,其向所述终端设备发送第二指示信息,所述第二指示信息指示了以下至少一项:
第二随机接入资源集合;
一个随机接入资源的至少两个时域起始位置;
一个随机接入资源的时域结束位置;
信道接入的尝试次数;以及
信道接入的类型。
10、根据附记9所述的装置,其中,所述第二指示信息用于触发随机接入。
11、根据附记9所述的装置,其中,所述第二随机接入资源集合包括第三随机接入资源和第四随机接入资源,所述第三随机接入资源和所述第四随机接入资源在时域上交叠。
12、根据附记9所述的装置,其中,所述第一指示信息指示随机接入配置,所述随机接入配置包括第一随机接入资源集合的配置,所述第二随机接入资源集合中的一个随机接入资源不属于所述第一随机接入资源集合。
13、根据附记9所述的装置,其中,所述第二发送单元通过无线资源控制(RRC)信令或者物理下行控制信道(PDCCH)发送上述第二指示信息。
14、根据附记2-4任意一项所述的装置,其中,所述第一指示信息中还包括列表索引,所述随机接入信道配置索引(第一索引)还对应第二随机接入信道配置集合(第二列表)中的一种随机接入信道配置。
1B、一种信号发送装置,配置于终端设备,其中,所述装置包括:
确定单元,其确定第三随机接入资源集合;
发送单元,其根据对所述第三随机接入资源集合中的随机接入资源的时域起始位置之前的信道检测结果在第五随机接入资源发送第一消息,所述第三随机接入资源集合包括所述第五随机接入资源。
2B、根据附记1B所述的装置,其中,所述装置还包括:
第一接收单元,其接收网络设备发送的第一指示信息,所述第一指示信息指示了第一随机接入资源集合的配置;
所述确定单元根据所述第一指示信息确定第一随机接入资源集合,从所述第一随机接入资源集合中选择所述第三随机接入资源集合。
3B、根据附记2B所述的装置,其中,
所述确定单元根据所述第一指示信息以及预定义或预配置的规则确定所述第一随机接入资源集合,从所述第一随机接入资源集合中选择所述第三随机接入资源集合。
4B、根据权利要求3B所述的装置,其中,所述规则是以下任意一种:
一个时隙中只有第一个随机接入资源可用;
一个时隙中只有第奇数个或第偶数个随机接入资源可用;以及
一个时隙中只有第奇数个或第偶数个随机接入资源可用。
5B、根据权利要求2B所述的装置,其中,所述第一指示信息还包括信道接入的尝试次数,所述确定单元根据所述信道接入的尝试次数确定所述第三随机接入资源集合中的随机接入资源的个数;根据所述随机接入资源的个数从所述第一随机接入资源集合中选择第三随机接入资源集合。
6B、根据附记1B所述的装置,其中,所述装置还包括:
第二接收单元,其接收所述网络设备发送的第二指示信息,所述第二指示信息指示了第二随机接入资源集合;
所述确定单元根据所述第二随机接入资源集合确定所述第三随机接入资源集合, 其中,所述第三随机接入资源集合为所述第二随机接入资源集合。
7B、根据附记1B-6B任意一项所述的装置,其中,所述第三随机接入资源集合与一个下行信号关联;所述下行信号为SSB或NR-U DRS
8B、根据附记1B-6B任意一项所述的装置,其中,所述第五随机接入资源包括至少两个时域起始位置,所述至少两个时域起始位置包括第一时域起始位置和第二时域起始位置,所述第一时域起始位置在所述第二时域起始位置之前。
9B、根据附记8B所述的装置,其中,所述装置还包括:
第一检测单元,其在所述第一时域起始位置和/或所述第二时域起始位置之前检测信道;所述发送单元根据信道检测结果从所述第一时域起始位置或所述第二时域起始位置开始发送所述第一消息。
10B、根据附记8B所述的装置,其中,所述第一时域起始位置对应的第一消息占用的时域资源长度大于所述第二时域起始位置对应的第一消息占用的时域资源长度。
11B、根据附记8B所述的装置,其中,所述发送单元通过对所述第一消息的一部分打孔(puncture)来发送所述第一消息。
12B、根据附记11B所述的装置,其中,所述发送单元对所述第一消息对应的一部分序列或符号打孔(puncture)。
13B、根据附记9B所述的装置,其中,所述第一时域起始位置对应的第一消息占用的时域资源长度等于所述第二时域起始位置对应的第一消息占用的时域资源长度。
14B、根据附记1B-6B任意一项所述的装置,其中,所述第三随机接入资源集合还包括第六随机接入资源,所述第六随机接入资源的时域起始位置在所述第五随机接入资源的时域起始位置之前。
15B、根据附记14B所述的装置,其中,所述装置还包括:
第二检测单元,其在所述第六随机接入资源的时域起始位置之前和/或所述第五随机接入资源的时域起始位置之前检测信道。
16B、根据附记14B所述的装置,其中,所述第五随机接入资源和所述第六随机接入资源在时域上交叠。
17B、根据附记14B所述的装置,其中,所述第六随机接入资源的时域结束位置 在所述第五随机接入资源的时域起始位置之前。
18B、根据附记16B所述的装置,其中,所述第五随机接入资源和所述第六随机接入资源的时域长度不同。
19B、根据附记16B或17B所述的装置,其中,所述第五随机接入资源和所述第六随机接入资源的时域结束位置相同。

Claims (20)

  1. 一种随机接入配置装置,配置于网络设备,其中,所述装置包括:
    第一发送单元,其向终端设备发送第一指示信息,所述第一指示信息包括以下信息的至少一项:
    随机接入信道配置索引(第一索引);
    时域相邻的随机接入资源的时间间隔;
    不可用的随机接入资源;
    一个随机接入资源的至少两个时域起始位置;
    一个随机接入资源的时域结束位置;
    信道接入的尝试次数;以及
    信道接入的类型。
  2. 根据权利要求1所述的装置,其中,所述随机接入信道配置索引(第一索引)对应第一随机接入信道配置集合(第一列表)中的一种随机接入信道配置。
  3. 根据权利要求2所述的装置,其中,所述第一随机接入信道配置集合(第一列表)包括以下参数中的至少一项:
    时域相邻的随机接入资源的时间间隔;
    不可用的随机接入资源;
    一个时隙中随机接入资源的时域起始位置;
    一个随机接入资源的可选时域起始位置;
    随机接入资源的时域结束位置;
    信道接入的尝试次数;以及
    信道接入的类型。
  4. 根据权利要求2所述的装置,其中,所述第一随机接入信道配置集合(第一列表)中的至少一种随机接入信道配置不用于授权频段;或者,所述第一随机接入信道配置集合(第一列表)中的至少一种随机接入信道配置不用于非授权频段。
  5. 根据权利要求1所述的装置,其中,所述第一指示信息用于指示随机接入配置,所述随机接入配置包括第一随机接入资源集合的配置和/或信道接入的配置。
  6. 根据权利要求5所述的装置,其中,所述第一随机接入资源集合的配置包括 第一随机接入资源和第二随机接入资源,所述第一随机接入资源和所述第二随机接入资源在时域上交叠;所述第二随机接入资源的时域起始位置在所述第一随机接入资源的时域起始位置之前。
  7. 根据权利要求5所述的装置,其中,所述第一随机接入资源集合的配置中包括的全部随机接入资源位于第一上行带宽部分(UL BWP)内或者对应相同的前导码格式(preamble format)。
  8. 根据权利要求1所述的装置,其中,所述装置还包括:
    第二发送单元,其向所述终端设备发送第二指示信息,所述第二指示信息指示了以下至少一项:
    第二随机接入资源集合;
    一个随机接入资源的至少两个时域起始位置;
    一个随机接入资源的时域结束位置;
    信道接入的尝试次数;以及
    信道接入的类型。
  9. 根据权利要求8所述的装置,其中,所述第二随机接入资源集合包括第三随机接入资源和第四随机接入资源,所述第三随机接入资源和所述第四随机接入资源在时域上交叠。
  10. 根据权利要求2所述的装置,其中,所述第一指示信息中还包括列表索引,所述随机接入信道配置索引(第一索引)还对应第二随机接入信道配置集合(第二列表)中的一种随机接入信道配置。
  11. 一种信号发送装置,配置于终端设备,其中,所述装置包括:
    确定单元,其确定第三随机接入资源集合;
    发送单元,其根据对所述第三随机接入资源集合中的随机接入资源的时域起始位置之前的信道检测结果在第五随机接入资源发送第一消息,所述第三随机接入资源集合包括所述第五随机接入资源。
  12. 根据权利要求11所述的装置,其中,所述装置还包括:
    第一接收单元,其接收网络设备发送的第一指示信息,所述第一指示信息指示了第一随机接入资源集合的配置;
    所述确定单元根据所述第一指示信息确定第一随机接入资源集合,从所述第一随 机接入资源集合中选择所述第三随机接入资源集合。
  13. 根据权利要求12所述的装置,其中,
    所述确定单元根据所述第一指示信息以及预定义或预配置的规则确定所述第一随机接入资源集合,从所述第一随机接入资源集合中选择所述第三随机接入资源集合。
  14. 根据权利要求13所述的装置,其中,所述规则是以下任意一种:
    一个时隙中只有第一个随机接入资源可用;
    一个时隙中只有第奇数个或第偶数个随机接入资源可用;以及
    一个时隙中只有第奇数个或第偶数个随机接入资源可用。
  15. 根据权利要求12所述的装置,其中,所述第一指示信息还包括信道接入的尝试次数,所述确定单元根据所述信道接入的尝试次数从所述第一随机接入资源集合中选择第三随机接入资源集合。
  16. 根据权利要求11所述的装置,其中,所述装置还包括:
    第二接收单元,其接收所述网络设备发送的第二指示信息,所述第二指示信息指示了第二随机接入资源集合;
    所述确定单元根据所述第二随机接入资源集合确定所述第三随机接入资源集合,其中,所述第三随机接入资源集合为所述第二随机接入资源集合。
  17. 根据权利要求11所述的装置,其中,所述第五随机接入资源包括至少两个时域起始位置,所述至少两个时域起始位置包括第一时域起始位置和第二时域起始位置,所述第一时域起始位置在所述第二时域起始位置之前。
  18. 根据权利要求11所述的装置,其中,所述发送单元通过对所述第一消息的一部分打孔(puncture)来发送所述第一消息。
  19. 根据权利要求18所述的装置,其中,所述发送单元对所述第一消息对应的一部分序列或符号打孔(puncture)。
  20. 根据权利要求11所述的装置,其中,所述第三随机接入资源集合还包括第六随机接入资源,所述第六随机接入资源的时域起始位置在所述第五随机接入资源的时域起始位置之前。
PCT/CN2018/113846 2018-11-02 2018-11-02 随机接入配置方法、信号发送方法、装置和通信系统 WO2020087547A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880097871.6A CN112740814A (zh) 2018-11-02 2018-11-02 随机接入配置方法、信号发送方法、装置和通信系统
JP2021518155A JP7386856B2 (ja) 2018-11-02 2018-11-02 ランダムアクセス構成方法、信号送信方法、装置及び通信システム
PCT/CN2018/113846 WO2020087547A1 (zh) 2018-11-02 2018-11-02 随机接入配置方法、信号发送方法、装置和通信系统
EP18938532.1A EP3876650A4 (en) 2018-11-02 2018-11-02 RANDOM ACCESS CONFIGURATION PROCEDURES, SIGNAL TRANSFER PROCESS AND DEVICE, AND COMMUNICATION SYSTEM
US17/221,668 US20210227578A1 (en) 2018-11-02 2021-04-02 Random access configuration method, signal transmission method, apparatuses thereof and system
JP2023034136A JP2023065640A (ja) 2018-11-02 2023-03-06 ランダムアクセス構成方法、信号送信方法、装置及び通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113846 WO2020087547A1 (zh) 2018-11-02 2018-11-02 随机接入配置方法、信号发送方法、装置和通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/221,668 Continuation US20210227578A1 (en) 2018-11-02 2021-04-02 Random access configuration method, signal transmission method, apparatuses thereof and system

Publications (1)

Publication Number Publication Date
WO2020087547A1 true WO2020087547A1 (zh) 2020-05-07

Family

ID=70463122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113846 WO2020087547A1 (zh) 2018-11-02 2018-11-02 随机接入配置方法、信号发送方法、装置和通信系统

Country Status (5)

Country Link
US (1) US20210227578A1 (zh)
EP (1) EP3876650A4 (zh)
JP (2) JP7386856B2 (zh)
CN (1) CN112740814A (zh)
WO (1) WO2020087547A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913318A (zh) * 2021-01-15 2021-06-04 北京小米移动软件有限公司 随机接入消息盲重传指示方法和装置
EP4277398A4 (en) * 2021-01-05 2024-05-08 Datang mobile communications equipment co ltd MODE INDICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245471B (zh) * 2022-02-28 2022-05-13 成都爱瑞无线科技有限公司 随机接入信号处理方法、随机接入方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941730A (zh) * 2016-01-05 2017-07-11 中兴通讯股份有限公司 随机接入的控制方法和装置
CN108289338A (zh) * 2017-01-09 2018-07-17 北京三星通信技术研究有限公司 随机接入信道选择的方法及用户设备
CN108633056A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种随机接入配置方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10397916B2 (en) * 2015-05-20 2019-08-27 Lg Electronics Inc. Method for performing random access in wireless LAN system and device for same
US10419185B2 (en) * 2015-11-06 2019-09-17 Telefonaktiebolaget Lm Ericsson (Publ) System and method for listen before talk-based random access with partial subframes
US10425973B2 (en) * 2015-11-25 2019-09-24 Qualcomm Incorporated Random access channel signaling on a shared communication medium
CN107371242B (zh) * 2016-05-12 2020-11-10 华为技术有限公司 一种数据传输方法、网络设备及用户设备
CN107517501A (zh) * 2016-06-15 2017-12-26 北京智讯伙伴科技有限公司 一种随机接入方法及装置
CN110140320B (zh) * 2016-11-04 2022-03-18 瑞典爱立信有限公司 用于执行接入过程的方法、设备和网络节点
CN109891965B (zh) * 2016-12-23 2023-05-02 富士通株式会社 上行传输控制方法及其装置、通信系统
CN108271275B (zh) * 2017-01-04 2021-02-05 电信科学技术研究院 一种竞争随机接入的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941730A (zh) * 2016-01-05 2017-07-11 中兴通讯股份有限公司 随机接入的控制方法和装置
CN108289338A (zh) * 2017-01-09 2018-07-17 北京三星通信技术研究有限公司 随机接入信道选择的方法及用户设备
CN108633056A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 一种随机接入配置方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on RACH Configuration", 3GPP DRAFT; R1-1720584, 1 December 2017 (2017-12-01), Reno, USA, pages 1 - 5, XP051370051 *
ERICSSON: "Remaining Details on NR-RACH Formats and Configurations", 3GPP DRAFT; R1-1720940, vol. 1, no. 30, 18 November 2017 (2017-11-18), Reno Nevada, US, pages 1 - 30, XP051370314 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4277398A4 (en) * 2021-01-05 2024-05-08 Datang mobile communications equipment co ltd MODE INDICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN112913318A (zh) * 2021-01-15 2021-06-04 北京小米移动软件有限公司 随机接入消息盲重传指示方法和装置
CN112913318B (zh) * 2021-01-15 2023-07-25 北京小米移动软件有限公司 随机接入消息盲重传指示方法和装置

Also Published As

Publication number Publication date
EP3876650A4 (en) 2021-12-08
US20210227578A1 (en) 2021-07-22
CN112740814A (zh) 2021-04-30
JP7386856B2 (ja) 2023-11-27
JP2023065640A (ja) 2023-05-12
EP3876650A1 (en) 2021-09-08
JP2022504121A (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
TWI706685B (zh) 新無線電/非授權新無線電(nr/nr-u)初步存取及頻道存取
KR102624966B1 (ko) 비면허 스펙트럼에서의 rach 절차
CN111165060B (zh) 随机接入方法、装置以及通信系统
TWI776409B (zh) Nr-u實體隨機存取
TW201939983A (zh) 無需特許頻段新無線電操作之頻道存取方法及先聽候送解決方案
EP2724587B1 (en) Method and apparatus for supporting wideband and multiple bandwidth transmission protocols
US10772126B2 (en) Communication method on unlicensed frequency band, terminal device, and network device
US10419185B2 (en) System and method for listen before talk-based random access with partial subframes
US20210227578A1 (en) Random access configuration method, signal transmission method, apparatuses thereof and system
WO2020199000A1 (zh) 随机接入方法以及装置
CN112655270A (zh) Lbt监测失败的处理方法、装置和系统
TW202027552A (zh) Nr—u簡化實體隨機存取方法及程序
TW201740715A (zh) 設備間通信的方法和裝置
WO2020143060A1 (zh) 数据传输方法及装置
WO2020143064A1 (zh) 数据传输方法及装置
WO2020087543A1 (zh) 一种信号的发送方法、接收方法、发送装置、接收装置和通信系统
WO2017045439A1 (zh) 通信方法、接入点和站点
EP3955686A1 (en) Resource allocation method, base station and terminal
CN113557784B (zh) 上行传输方法、上行调度方法、装置和通信系统
CN113228807B (zh) 数据发送方法、装置和通信系统
WO2020223878A1 (zh) 随机接入的方法、终端设备和网络设备
WO2020029299A1 (zh) 数据中断指示方法及其装置、通信系统
WO2019148451A1 (zh) 信息传输的方法和设备
US10455559B2 (en) License assisted listen-before-talk
WO2020019182A1 (zh) 一种信号传输方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021518155

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018938532

Country of ref document: EP

Effective date: 20210602