WO2020087345A1 - 地面遥控机器人的控制方法和地面遥控机器人 - Google Patents

地面遥控机器人的控制方法和地面遥控机器人 Download PDF

Info

Publication number
WO2020087345A1
WO2020087345A1 PCT/CN2018/113006 CN2018113006W WO2020087345A1 WO 2020087345 A1 WO2020087345 A1 WO 2020087345A1 CN 2018113006 W CN2018113006 W CN 2018113006W WO 2020087345 A1 WO2020087345 A1 WO 2020087345A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
remote control
ground
control robot
road surface
Prior art date
Application number
PCT/CN2018/113006
Other languages
English (en)
French (fr)
Inventor
龚鼎
陶永康
陈超彬
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880038496.8A priority Critical patent/CN110769987A/zh
Priority to PCT/CN2018/113006 priority patent/WO2020087345A1/zh
Publication of WO2020087345A1 publication Critical patent/WO2020087345A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1689Teleoperation

Definitions

  • the invention relates to the field of remote control robots, in particular to a control method of a ground remote control robot and a ground remote control robot.
  • the remote control robot moves on the road surface in different situations, the road surface in different situations will have different effects on the remote control robot.
  • the remote control robot needs to make appropriate adjustments to the road surface in different situations.
  • the traditional approach is for the operator to recognize the current environmental road conditions by himself.
  • the operator cannot obtain the current environmental road conditions, which is not convenient for protecting the remote control robot and improving the control experience of the remote robot .
  • Embodiments of the present invention provide a control method of a ground remote control robot and a ground remote control robot.
  • An embodiment of the present invention provides a method for controlling a ground-based remote control robot.
  • the ground-based remote control robot includes a sensor.
  • the control method includes: detecting motion data of the ground-based remote control robot through the sensor; and identifying an institute based on the motion data Describe the road condition information of the ground where the ground remote control robot is located.
  • An embodiment of the present invention provides a ground remote control robot.
  • the ground remote control robot includes a sensor and a controller.
  • the sensor is used to detect motion data of the ground remote control robot; the controller is used to recognize the motion data based on the motion data.
  • the control method of the ground remote control robot and the ground remote control robot recognize the road condition information of the ground where the ground remote control robot is located according to the motion data detected by the sensor, thereby facilitating the protection of the remote control robot and improving the control experience of the remote control robot.
  • FIG. 1 is a schematic flowchart of a control method of a ground remote control robot according to some embodiments of the present invention
  • FIG. 2 is a schematic diagram of a connection state of a ground remote control robot and a remote control device according to some embodiments of the present invention
  • FIG. 3 is a schematic view of an application scenario from a perspective of a control method of a ground remote control robot according to some embodiments of the present invention
  • FIG. 4 is a schematic diagram of an application scenario from another perspective of a control method of a ground remote control robot according to some embodiments of the present invention.
  • FIG. 5 is a schematic flowchart of a control method of a ground remote control robot according to some embodiments of the present invention.
  • FIG. 6 is a schematic flowchart of a control method of a ground remote control robot according to some embodiments of the present invention.
  • FIG. 7 is a schematic flowchart of a control method of a ground remote control robot according to some embodiments of the present invention.
  • FIG. 8 is a schematic flowchart of a control method of a ground remote control robot according to some embodiments of the present invention.
  • FIG. 9 is a schematic flowchart of a control method of a ground remote control robot according to some embodiments of the present invention.
  • FIG. 10 is a schematic flowchart of a control method of a ground remote control robot according to some embodiments of the present invention.
  • FIG. 11 is a schematic flowchart of a control method of a ground remote control robot according to some embodiments of the present invention.
  • FIG. 12 is a schematic flowchart of a control method of a ground remote control robot according to some embodiments of the present invention.
  • FIG. 13 is a schematic flowchart of a control method of a ground remote control robot according to some embodiments of the present invention.
  • Ground remote control robot 10 Sensor 12, controller 14, actuator 16, remote control device 30, display device 32.
  • the term "installation” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or integrally Connection; it can be a mechanical connection, it can be an electrical connection or can communicate with each other; it can be directly connected, or it can be indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components.
  • installation should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or integrally Connection; it can be a mechanical connection, it can be an electrical connection or can communicate with each other; it can be directly connected, or it can be indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components.
  • An embodiment of the present invention provides a control method of a ground remote control robot 10.
  • the ground remote control robot 10 includes a sensor 12.
  • Control methods include:
  • an embodiment of the present invention provides a ground remote control robot 10.
  • the ground remote control robot 10 includes a sensor 12 and a controller 14.
  • the control method of the ground remote control robot 10 according to the embodiment of the present invention may be implemented by the ground remote control robot 10 according to the embodiment of the present invention.
  • the sensor 12 may be used to execute the control method in 01
  • the controller 14 may be used to execute the method in 02. That is to say, the sensor 12 can be used to detect the motion data of the ground remote control robot 10.
  • the controller 14 may be used to identify the road condition information of the ground where the ground remote control robot 10 is located according to the motion data.
  • the control method of the ground remote control robot 10 and the ground remote control robot 10 recognize the road condition information of the ground where the ground remote control robot 10 is located according to the motion data detected by the sensor 12, thereby facilitating the protection of the ground remote control robot 10 and the lifting of the ground remote control robot 10 Control experience.
  • the ground remote control robot 10 may be a wheeled ground remote control robot 10.
  • the number of wheels may be 1, 2, 3, 4 or more.
  • the embodiment of the present invention will be described by taking the number of wheels as an example.
  • the ground remote control robot 10 may include a sensor 12, a controller 14, and an actuator 16 (the actuator 16 may be wheels).
  • the ground remote control robot 10 can be controlled by an operator through a remote control device 30 (for example, a remote controller).
  • the ground remote control robot 10 can communicate with the remote control device 30 through any communication method, such as Bluetooth, wifi, ZigBee and other wireless communication methods.
  • the remote control device 30 sends a control command to the ground-based remote control robot 10.
  • the control command may be a control command including speed, acceleration, angular velocity, motion position, attitude angle, etc.
  • the controller 14 of the ground-based remote control robot 10 receives After the control command is combined with the motion data of the ground remote control robot 10 detected by the sensor 12, the current motion command is calculated and sent to the actuator 16 for execution, thereby controlling the movement of the ground remote control robot 10.
  • the senor 12 may include one or more of an inertial measurement unit (IMU), a code wheel, a visual sensor, an ultrasonic sensor, a radar device, a hall sensor, an ESC, and a TOF camera.
  • IMU inertial measurement unit
  • the IMU includes an accelerometer and Gyro.
  • the sensor 12 is used to directly detect or calculate one or more of the speed, acceleration, angular velocity, angular acceleration, motion position, attitude angle, wheel speed (or motor speed), and wheel corresponding torque of the ground remote control robot 10 data.
  • the motion data may include at least one of speed, acceleration, angular velocity, angular acceleration, motion position, attitude angle, wheel speed (or motor speed), or torque. That is to say, the motion data may include speed; or, the motion data includes acceleration; or, the motion data includes attitude angle; or, the motion data includes wheel speed and torque; or, the motion data includes speed, acceleration, angular velocity, and attitude angle, etc. , Not listed here one by one.
  • the road condition information may include at least one of pavement smoothness, pavement smoothness, or pavement slope. That is to say, the road condition information may include pavement smoothness; or, the road condition information includes pavement smoothness; or, the road condition information includes pavement slope; or, the pavement information includes pavement smoothness and pavement smoothness; or, the road condition information includes pavement smoothness Degrees, road surface smoothness and road surface slope, etc., not listed here.
  • Pavement smoothness refers to the smoothness of the pavement. The greater the pavement smoothness, the smoother the pavement. The smoothness of the road surface expresses whether the ground remote control robot 10 is easy to slip on the road surface. For example, when icing, the road surface is smooth and easy to slip.
  • Pavement flatness refers to the smoothness of the pavement. The greater the pavement flatness, the smoother the pavement. The smoothness of the road surface is expressed by whether the ground remote control robot 10 moves on the current road surface or not. For example, when the ground is rough roads such as gravel roads, potholes, etc., the road surface is not smooth and relatively bumpy.
  • the slope of the road surface refers to the slope of the road surface. When the slope of the road surface is larger, it indicates that the road surface is more inclined. The slope of the road surface is uphill, flat or downhill.
  • the sensor 12 will output different motion data a, b, and c under three different road conditions A, B, and C, respectively.
  • the motion data a, b, and c all include at least one of speed, acceleration, angular velocity, angular acceleration, motion position, attitude angle, wheel speed, or torque.
  • the controller 14 can correspondingly recognize which road condition the ground remote control robot 10 is based on different motion data.
  • the controller 14 recognizes at least one of the ground smoothness of the ground where the ground remote control robot 10 is located, the road smoothness is high, and the road slope is low according to the motion data a, and the controller 14 recognizes based on the motion data b At least one of the ground smoothness of the ground where the ground remote control robot 10 is located, the medium smoothness of the road, and the high slope of the road, the controller 14 recognizes that the ground smoothness of the ground where the ground remote control robot 10 is located is low according to the motion data c, At least one of low pavement smoothness and moderate pavement slope.
  • the result of the road condition information recognized by the controller 14 based on the motion data is not limited to the above example.
  • control method further includes:
  • the controller 14 may be used to perform the method in 03. That is to say, the controller 14 can also be used to control the movement state of the ground remote control robot 10 according to the road condition information.
  • the controller 14 may correspondingly control or adjust the speed, acceleration, angular velocity, angular acceleration, motion position, posture angle, and wheel of the ground remote control robot 10 according to at least one of road smoothness, road smoothness, or road slope. At least one of the rotation speed or the torque is adapted to different road conditions, so as to protect the equipment safety of the ground remote control robot 10 and enhance the control experience of the ground remote control robot 10.
  • control method further includes:
  • the controller 14 may be used to perform the method in 04. That is to say, the controller 14 can also be used to send the road condition information to the display device 32 for display.
  • the display device 32 may be the display screen of the remote control device 30, or the display screen of the ground remote control robot 10, or other display devices 32 that communicate with the ground remote control robot 10.
  • the display device 32 is used to display road condition information to remind the operator so that the operator can timely understand the road surface condition and perform corresponding operations.
  • the controller 14 can maintain the predetermined frequency to send the road condition information to The display device 32 performs display to save power consumption; when the road surface information becomes larger and larger, for example, any one or more of the road surface smoothness, road surface smoothness, or road surface gradient is greater than or greater than the previous moment When it is equal to a threshold, the controller 14 can appropriately increase the frequency of sending the road condition information to the display device 32 for display, so that the user can learn about the change of the road condition in a more timely manner.
  • control method further includes:
  • the controller 14 may be used to perform the methods in 05 and 06. That is to say, the controller 14 can also be used to: generate user operation suggestions based on the road condition information; and send the user operation suggestions to the display device 32 for display.
  • the display device 32 may be the display screen of the remote control device 30, or the display screen of the ground remote control robot 10, or other display devices 32 that communicate with the ground remote control robot 10.
  • the controller 14 generates a user operation suggestion according to the road condition information, and sends the user operation suggestion to the display device 32 for display.
  • the operator can control the ground remote control robot 10 according to the user operation suggestion. For example, if the smoothness of the ground where the ground remote control robot 10 is located is recognized based on motion data, the ground is relatively smooth.
  • the ground remote control robot 10 can generate a limited ground remote control robot
  • the user operation suggestion of the speed or acceleration of 10, or the user operation suggestion of slowly rocking the joystick of the remote control device 30 of the ground remote control robot 10 is generated, and the user operation suggestion is sent to the display device 32 of the remote control device 30 for display,
  • the operator can control the ground remote control robot 10 according to user operation suggestions, which is beneficial to improve the operation stability of the ground remote control robot 10 and the handling experience of the ground remote control robot 10.
  • the road condition information includes road surface smoothness.
  • Motion data includes wheel speed and torque.
  • the road condition information (ie 02) for identifying the ground where the ground remote control robot 10 is located according to the motion data includes:
  • the road condition information includes road surface smoothness.
  • Motion data includes wheel speed and torque.
  • the controller 14 may be used to perform the methods in 021 and 022. That is to say, the controller 14 can also be used to: calculate the matching coefficient according to the wheel speed and torque; and determine the road surface smoothness according to the matching coefficient.
  • the matching coefficient may be the ratio (or ratio) of the wheel speed to the torque, and the matching coefficient reflects the maneuverability of the ground remote control robot 10, or the efficiency of the output of the actuator 16.
  • the smoothness of the road surface is directly proportional to the degree of slip of the ground remote control robot 10, that is, the higher the smoothness of the road surface, the more serious the degree of slip of the ground remote control robot 10.
  • the controller 14 may calculate the matching coefficient according to the wheel rotation speed and torque, and determine the road surface smoothness according to the matching coefficient. When the matching coefficient is larger, it indicates that the pavement smoothness is greater; when the matching coefficient is smaller, it indicates that the pavement smoothness is smaller.
  • the controller 14 may also compare the matching coefficient with a predetermined coefficient interval to determine the level of road surface smoothness.
  • the predetermined coefficient intervals include [S1, S2), [S2, S3), [S3, S4), [S4, S5), etc. in sequence.
  • the controller 14 determines that the level of road smoothness is less smooth; when the matching coefficient is within the range of [S2, S3), the controller 14 determines the level of road smoothness as Standard smooth; when the matching coefficient is in the range of [S3, S4), the controller 14 determines that the level of road smoothness is relatively smooth; when the matching coefficient is in the range of [S4, S5), the controller 14 determines the smoothness of the road surface The level is very smooth.
  • the motion data further includes at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle.
  • the road condition information (ie 02) for identifying the ground where the ground remote control robot 10 is located according to the motion data also includes:
  • 023 Determine the adjustment time of at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle according to at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle;
  • Determining the smoothness of the road surface (ie 022) according to the matching coefficient includes:
  • 0221 Determine the smoothness of the road according to the matching coefficient and the adjustment time.
  • the motion data further includes at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle.
  • the controller 14 may be used to execute the methods in 023 and 0221. That is, the controller 14 can also be used to determine the speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle according to at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle The adjustment time of at least one of; and determining the road surface smoothness according to the matching coefficient and the adjustment time.
  • the adjustment time may refer to the time required for the ground remote control robot 10 to adjust from the current motion data to the target motion data, where the target motion data is determined according to the control instruction sent by the remote control device 30.
  • the controller 14 can calculate the speed adjustment time as 1 s.
  • the controller 14 can separately calculate the adjustment times of acceleration, angular velocity, angular acceleration, motion position, and posture angle, which are not described here one by one.
  • the adjustment time reflects the control performance of the ground remote control robot 10.
  • the degree of slip of the ground remote control robot 10 is more serious. Since the maneuverability of the ground remote control robot 10 is not strong, the adjustment time in the control performance will be larger than the normal time. Its intuitive reflection is: the ground remote control robot 10 has a high wheel speed, but the actual torque is small, and the time to adjust to the target speed (or other target motion data) due to the loss of output speed becomes longer, that is, the speed adjustment time changes Big. The acceleration adjustment time will also become larger. At this time, the ground remote control robot 10 may also drift in position or posture (as shown in road conditions B or C in FIG. 4), resulting in an increase in the adjustment time of the movement position and the adjustment time of the attitude angle.
  • the controller 14 can determine the road surface smoothness by combining the matching coefficient and the adjustment time of at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle, so as to make the evaluation result of the road smoothness more accurate.
  • the controller 14 may also first determine the current adjustment time of at least one of speed, acceleration, angular velocity, angular acceleration, movement position, or attitude angle and speed, acceleration, angular velocity, angular acceleration, movement position under standard road conditions , Or the difference between the adjustment times of at least one of the attitude angles, and then the matching coefficient and the difference are combined to determine the smoothness of the road surface.
  • control method further includes:
  • the controller 14 may be used to perform the method in 07. That is to say, the controller 14 can also be used to limit the speed and / or acceleration and / or angular velocity and / or angular acceleration of the ground remote robot 10 when the road smoothness is greater than the predetermined smoothness.
  • the controller 14 may limit the speed and / or acceleration and / or angular velocity and / or angular acceleration of the ground remote control robot 10 when the road surface smoothness is greater than the predetermined smoothness.
  • the speed at which the ground remote control robot 10 moves is 3 m / s.
  • the controller 14 may limit the speed of the ground remote control robot 10 to 5 m / s, that is, the ground remote control robot 10 may also accelerate to a certain degree Reach 5m / s and keep moving at a speed less than or equal to 5m / s.
  • the ground remote control robot 10 may not be accelerated, and may maintain the current speed of 3 m / s or decelerate.
  • the controller 14 may limit the movement speed of the ground remote control robot 10 to 2 m / s. Move at a speed less than or equal to 2m / s.
  • the road condition information includes road surface smoothness.
  • Motion data includes acceleration.
  • the road condition information (ie 02) for identifying the ground where the ground remote control robot 10 is located according to the motion data includes:
  • the road condition information includes road roughness.
  • Motion data includes acceleration.
  • the controller 14 may be used to perform the methods in 024 and 025. That is to say, the controller 14 can also be used to: determine the acceleration change of the ground remote control robot 10 in the vertical direction according to the acceleration; and determine the road surface smoothness according to the acceleration change.
  • the acceleration of the ground remote control robot 10 in the vertical direction is the acceleration along the Z axis (X axis and Y axis are parallel to the ground, and the Y axis is perpendicular to the X axis and Y axis) .
  • the acceleration distribution of the ground remote control robot 10 in the vertical direction will be different.
  • the acceleration of the ground remote control robot 10 in the vertical direction remains almost unchanged.
  • the acceleration of the ground remote control robot 10 in the vertical direction will continue to show up and down fluctuations based on the normal acceleration.
  • the controller 14 can determine the flatness of the road surface according to the acceleration change of the ground remote control robot 10 in the vertical direction.
  • the controller 14 can also compare the acceleration change (amplitude) with a predetermined change (amplitude) interval to determine the level of road surface smoothness.
  • the predetermined change (amplitude) intervals include [F1, F2), [F2, F3), [F3, F4), [F4, F5), etc. in sequence.
  • the controller 14 determines that the level of road surface smoothness is very smooth; when the acceleration change (amplitude) is within the range of [F2, F3), the controller 14 determines the road surface The level of flatness is relatively flat; when the acceleration change (amplitude) is within the range of [F3, F4), the controller 14 determines that the level of road surface smoothness is standard smoothing; when the acceleration change (amplitude) is within the range of [F4, F5) When inside, the controller 14 determines that the level of the road surface smoothness is less smooth.
  • the motion data further includes at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle.
  • the road condition information (ie 02) for identifying the ground where the ground remote control robot 10 is located according to the motion data also includes:
  • 026 Determine the adjustment time of at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle according to at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle;
  • the determination of road surface smoothness (ie 025) according to changes in acceleration includes:
  • the motion data further includes at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle.
  • the controller 14 may be used to perform the methods in 026 and 0251. That is, the controller 14 can also be used to determine the speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle according to at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle Adjustment time of at least one of; and determining road surface smoothness based on acceleration changes and adjustment time.
  • the speed, acceleration, angular velocity, angular acceleration, movement position, or attitude angle of the ground remote control robot 10 may suddenly increase or decrease. Therefore, as time goes by, the calculated adjustment time of at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle also fluctuates.
  • the fluctuation change is larger, that is, the pavement flatness is negatively correlated with the amplitude of the fluctuation.
  • the controller 14 may determine the road surface smoothness in conjunction with the change in the acceleration of the ground remote control robot 10 in the vertical direction and the adjustment time of at least one of speed, acceleration, angular velocity, angular acceleration, motion position, or attitude angle, to Make the evaluation result of road surface smoothness more accurate.
  • the controller 14 may also first determine the current adjustment time of at least one of speed, acceleration, angular velocity, angular acceleration, movement position, or attitude angle and speed, acceleration, angular velocity, angular acceleration, movement position under standard road conditions , Or the difference between the adjustment times of at least one of the posture angles, combined with the acceleration change and the difference to determine the road surface smoothness.
  • control method further includes:
  • the controller 14 may be used to perform the method in 08. That is, the controller 14 can also be used to limit the speed and / or acceleration and / or angular velocity and / or angular acceleration of the ground remote control robot 10 when the road surface smoothness is less than the predetermined flatness.
  • the controller 14 may limit the speed and / or acceleration and / or angular velocity and / or angular acceleration of the ground remote control robot 10 when the road surface smoothness is less than the predetermined flatness.
  • the speed at which the ground remote control robot 10 moves is 3 m / s.
  • the controller 14 may limit the speed of the ground remote control robot 10 to 5 m / s, that is to say, the ground remote control robot 10 may also accelerate to a certain degree to Reach 5m / s and keep moving at a speed less than or equal to 5m / s.
  • the ground remote control robot 10 may not be accelerated, and may maintain the current speed of 3 m / s or decelerate.
  • the controller 14 may limit the speed of the ground remote control robot 10 to 2 m / s. At this time, the ground remote control robot 10 needs to decelerate to 2 m / s and maintain Move at a speed less than or equal to 2m / s.
  • the ground remote control robot 10 can also increase the movement speed of the ground remote control robot 10 according to the control command sent by the operator through the remote control device 30, so that the ground remote control robot 10 quickly passes through the uneven road section.
  • the road condition information includes road surface gradient.
  • Motion data includes attitude angle.
  • the road condition information (ie 02) for identifying the ground where the ground remote control robot 10 is located according to the motion data includes:
  • the road condition information includes road surface gradient.
  • Motion data includes attitude angle.
  • the controller 14 may be used to execute the method in 027. That is to say, the controller 14 can also be used to determine the road surface gradient according to the attitude angle.
  • the attitude angle of the ground remote control robot 10 will change.
  • the pitch angle of the ground remote control robot 10 is +30 degrees; when the road slope is 0 degrees, the ground remote control robot 10 ’s The pitch angle is 0 degrees; when the road surface slope is -30 degrees, the pitch angle of the ground remote control robot 10 is -30 degrees. That is, the magnitude (absolute value) of the road surface gradient is positively correlated with the magnitude (absolute value) of the attitude angle. Therefore, the controller 14 can determine the road surface gradient according to the attitude angle. When the attitude angle is larger, it indicates that the road surface slope is larger; when the attitude angle is smaller, it indicates that the road surface slope is smaller.
  • the controller 14 may also compare the attitude angle with a predetermined attitude angle interval to determine the grade of the road surface gradient.
  • the predetermined attitude angle interval includes [A1, A2), [A2, A3), [A3, A4), [A4, A5), [A5, A6), etc. in sequence.
  • the controller 14 determines that the grade of the road surface slope is a downhill slope with a higher slope; when the attitude angle is within the range of [A2, A3), the controller 14 determines the grade of the road slope.
  • control method further includes:
  • the controller 14 may be used to perform the method in 09. That is, the controller 14 can also be used to limit at least one of the speed, acceleration, angular velocity, angular acceleration, and attitude angle of the ground remote robot 10 when the road surface gradient (absolute value) is greater than the predetermined gradient.
  • the controller 14 may limit at least one of the speed, acceleration, angular velocity, angular acceleration, and attitude angle of the ground remote control robot 10 when the road surface gradient is greater than the predetermined gradient.
  • the speed at which the ground remote control robot 10 moves is 3 m / s.
  • the controller 14 may limit the speed of the ground remote control robot 10 to 5 m / s, that is to say, the ground remote control robot 10 may also accelerate to a certain degree to reach 5 m / s, and keep the movement at a speed less than or equal to 5m / s.
  • the ground remote control robot 10 may not be accelerated, and may maintain the current speed of 3 m / s or decelerate.
  • the controller 14 may limit the speed of the ground remote control robot 10 to 2 m / s. At this time, the ground remote control robot 10 needs to be decelerated to 2 m / s, and kept at less than Or equal to 2m / s speed movement.
  • Any process or method description in a flowchart or otherwise described herein may be understood as representing a module, segment, or portion of code that includes one or more executable instructions for implementing specific logical functions or steps of a process
  • the scope of the preferred embodiment of the present invention includes additional implementations, in which the functions may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in reverse order according to the functions involved, which shall It is understood by those skilled in the art to which the embodiments of the present invention belong.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections with one or more wiring (control method), portable computer cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other appropriate if necessary Process to obtain the program electronically and then store it in computer memory.
  • a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the above embodiments can be completed by instructing relevant hardware through a program.
  • the program can be stored in a computer-readable storage medium. When executed, it includes one of the steps of the method embodiment or a combination thereof.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk.

Abstract

一种地面遥控机器人(10)的控制方法和地面遥控机器人(10)。地面遥控机器人(10)包括传感器(12)。控制方法包括:(01)通过传感器(12)检测地面遥控机器人(10)的运动数据;和(02)根据运动数据识别地面遥控机器人(10)所处地面的路况信息。

Description

地面遥控机器人的控制方法和地面遥控机器人 技术领域
本发明涉及遥控机器人领域,特别涉及一种地面遥控机器人的控制方法和地面遥控机器人。
背景技术
当遥控机器人在不同情况的路面上运动时,不同情况的路面会对遥控机器人造成不同程度的影响。为应对这种变化,需要遥控机器人针对不同情况的路面进行适当的调整。传统的做法是操作员自己识别当前的环境路况,然而,在某些远程环境或光线较弱的环境下,操作员无法获取当前的环境路况,不便于保护遥控器机器人和提升遥控机器人的操控体验。
发明内容
本发明实施方式提供一种地面遥控机器人的控制方法和地面遥控机器人。
本发明实施方式提供一种地面遥控机器人的控制方法,所述地面遥控机器人包括传感器,所述控制方法包括:通过所述传感器检测所述地面遥控机器人的运动数据;和根据所述运动数据识别所述地面遥控机器人所处地面的路况信息。
本发明实施方式提供一种地面遥控机器人,所述地面遥控机器人包括传感器和控制器,所述传感器用于检测所述地面遥控机器人的运动数据;所述控制器用于根据所述运动数据识别所述地面遥控机器人所处地面的路况信息。
本发明实施方式的地面遥控机器人的控制方法和地面遥控机器人根据传感器检测的运动数据识别地面遥控机器人所处地面的路况信息,从而便于保护遥控器机器人和提升遥控机器人的操控体验。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明某些实施方式的地面遥控机器人的控制方法的流程示意图;
图2是本发明某些实施方式的地面遥控机器人与远程控制设备的连接状态示意图;
图3是本发明某些实施方式的地面遥控机器人的控制方法的一个视角的应用场景示意图;
图4是本发明某些实施方式的地面遥控机器人的控制方法的另一个视角的应用场景示意图;
图5是本发明某些实施方式的地面遥控机器人的控制方法的流程示意图;
图6是本发明某些实施方式的地面遥控机器人的控制方法的流程示意图;
图7是本发明某些实施方式的地面遥控机器人的控制方法的流程示意图;
图8是本发明某些实施方式的地面遥控机器人的控制方法的流程示意图;
图9是本发明某些实施方式的地面遥控机器人的控制方法的流程示意图;
图10是本发明某些实施方式的地面遥控机器人的控制方法的流程示意图;
图11是本发明某些实施方式的地面遥控机器人的控制方法的流程示意图;
图12是本发明某些实施方式的地面遥控机器人的控制方法的流程示意图;
图13是本发明某些实施方式的地面遥控机器人的控制方法的流程示意图;
主要元件及符号说明:
地面遥控机器人10、传感器12、控制器14、执行器16、远程控制设备30、显示装置32。
具体实施方式
下面详细描述本发明的实施方式,实施方式的示例在附图中示出,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的实施方式的描述中,需要理解的是,术语“上”、“前”、“后”、“左”、“右”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明的实施方式和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的实施方式的限制。在本发明的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的实施方式的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的实施方式 中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的实施方式的不同结构。为了简化本发明的实施方式的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。
请一并参阅图1和2,本发明实施方式提供一种地面遥控机器人10的控制方法。地面遥控机器人10包括传感器12。控制方法包括:
01:通过传感器12检测地面遥控机器人10的运动数据;和
02:根据运动数据识别地面遥控机器人10所处地面的路况信息。
请参阅图2,本发明实施方式提供一种地面遥控机器人10。地面遥控机器人10包括传感器12和控制器14。本发明实施方式的地面遥控机器人10的控制方法可由本发明实施方式的地面遥控机器人10实现。例如,传感器12可用于执行01中的控制方法,控制器14可用于执行02中的方法。也即是说,传感器12可以用于检测地面遥控机器人10的运动数据。控制器14可以用于根据运动数据识别地面遥控机器人10所处地面的路况信息。
本发明实施方式的地面遥控机器人10的控制方法和地面遥控机器人10根据传感器12检测的运动数据识别地面遥控机器人10所处地面的路况信息,从而便于保护地面遥控器机器人10和提升地面遥控机器人10的操控体验。
具体地,请结合图3和图4,地面遥控机器人10可以是轮式地面遥控机器人10。车轮的个数可以为1个、2个、3个、4个或更多个。本发明实施方式以车轮的数量为4个为例进行说明。地面遥控机器人10可包括传感器12、控制器14和执行器16(执行器16可为车轮)。地面遥控机器人10可由操作员通过远程控制设备30(例如遥控器)进行控制。地面遥控机器人10可通过任意通信方式与远程控制设备30通信,例如蓝牙、wifi,ZigBee等无线通信方式。在一个例子中,远程控制设备30发送控制指令至地面遥控机器人10,控制指令可以是包括有速度、加速度、角速度、运动位置、姿态角等的控制指令,地面遥控机器人10的控制器14接收到控制指令后,结合传感器12检测到的地面遥控机器人10的运动数据,计算出当前的运动指令并将运动指令发送至执行器16执行,从而实现控制地面遥控机器人10的移动。
本发明实施方式中,传感器12可包括惯性测量单元(IMU)、码盘、视觉传感器、超声波传感器、雷达设备、霍尔传感器、电调和TOF相机中的一种或多种,IMU包括加速度计和陀螺仪。传感器12用于直接检测或通过计算得到地面遥控机器人10的速度、加速度、角速度、角加速度、运动位置、姿态角、车轮转速(或电机转速)、车轮对应的扭矩中的一种或者多种运动数据。
与之对应的,运动数据可包括速度、加速度、角速度、角加速度、运动位置、姿态角、车轮转速(或电机转速)、或扭矩中的至少一种。也即是说,运动数据可包括速度;或者,运动数据包括加速度;或者,运动数据包括姿态角;或者,运动数据包括车轮转速和扭矩;或者,运动数据包括速度、加速度、角速度和姿态角等,在此不一一列举。
路况信息可包括路面光滑度、路面平整度、或路面坡度中的至少一种。也即是说,路况信息可包括路面光滑度;或者,路况信息包括路面平整度;或者,路况信息包括路面坡度;或者,路面信息包括路面光滑度和路面平整度;或者,路况信息包括路面光滑度、路面平整度和路面坡度等,在此不一一列举。
路面光滑度指的是路面的光滑程度,当路面光滑度越大时,表明路面越光滑。路面光滑度表现在地面遥控机器人10运动在该路面上是否容易打滑等。例如结冰时,路面光滑度较高,容易打滑。
路面平整度指的是路面的平整程度,当路面平整度越大时,表明路面越平整。路面平整度表现在地面遥控机器人10运动在当前路面上是否颠簸等。例如当地面为石子路、坑洼路等崎岖不平的地面时,路面平整度不高,较为颠簸。
路面坡度指的是路面的倾斜程度,当路面坡度越大时,表明路面越倾斜。路面坡度表现在上坡、平地或下坡等。
以图3和图4为例,当地面遥控机器人10接收了相同的控制指令后,在三种不同路况A、B、C的情况下,传感器12将分别输出不同的运动数据a、b、c。运动数据a、b、c均包括速度、加速度、角速度、角加速度、运动位置、姿态角、车轮转速、或扭矩中的至少一种。控制器14根据不同的运动数据可对应识别出地面遥控机器人10处哪种路况。例如,控制器14根据运动数据a识别出地面遥控机器人10所处地面的路面光滑度较高、路面平整度较高、路面坡度较低中的至少一种,控制器14根据运动数据b识别出地面遥控机器人10所处地面的路面光滑度中等、路面平整度中等、路面坡度较高中的至少一种,控制器14根据运动数据c识别出地面遥控机器人10所处地面的路面光滑度较低、路面平整度较低、路面坡度中等中的至少一种。当然,控制器14根据运动数据识别出的路况信息的结果并不限于上述举例。
请再次参阅图1,在某些实施方式中,控制方法还包括:
03:根据路况信息控制地面遥控机器人10的运动状态。
在某些实施方式中,控制器14可用于执行03中的方法。也即是说,控制器14还可以用于根据路况信息控制地面遥控机器人10的运动状态。
具体地,控制器14可根据路面光滑度、路面平整度、或路面坡度中的至少一种, 对应控制或调节地面遥控机器人10的速度、加速度、角速度、角加速度、运动位置、姿态角、车轮转速、或扭矩中的至少一种,以适应不同的路况,达到保护地面遥控机器人10的设备安全和提升地面遥控机器人10的操控体验的目的。
请参阅图2和图5,在某些实施方式中,控制方法还包括:
04:将路况信息发送至显示装置32进行显示。
在某些实施方式中,控制器14可用于执行04中的方法。也即是说,控制器14还可以用于将路况信息发送至显示装置32进行显示。
具体地,显示装置32可以是远程控制设备30的显示屏,或者是地面遥控机器人10的显示屏,或者是其他与地面遥控机器人10通信的显示装置32。显示装置32用于显示路况信息以提醒操作员,以便操作员能够及时了解到路面情况,进行相应操作。
进一步地,当路面信息变化不大时,例如路面光滑度、路面平整度、或路面坡度相较于上一时刻的变化量均小于一个阈值时,控制器14可保持预定频率将路况信息发送至显示装置32进行显示,以节省功耗;当路面信息变大较大时,例如路面光滑度、路面平整度、或路面坡度中的任意一个或多个相较于上一时刻的变化量大于或等于一个阈值时,控制器14可适当增大将路况信息发送至显示装置32进行显示的频率,以便用户能够更加及时地了解到路况变化。
请参阅图6,在某些实施方式中,控制方法还包括:
05:根据路况信息生成用户操作建议;和
06:将用户操作建议发送至显示装置32进行显示。
在某些实施方式中,控制器14可用于执行05和06中的方法。也即是说,控制器14还可以用于:根据路况信息生成用户操作建议;和将用户操作建议发送至显示装置32进行显示。
具体地,显示装置32可以是远程控制设备30的显示屏,或者是地面遥控机器人10的显示屏,或者是其他与地面遥控机器人10通信的显示装置32。控制器14根据路况信息生成用户操作建议,并将用户操作建议发送至显示装置32进行显示,操作员可依据用户操作建议对地面遥控机器人10进行相应控制。例如,根据运动数据识别地面遥控机器人10所处地面的光滑度较大时,则该地面较为光滑,为了保证地面遥控机器人10可以实现有效控制,防止打滑,地面遥控机器人10可以生成限制地面遥控机器人10的速度或者加速度的用户操作建议,或者生成对地面遥控机器人10的远程控制设备30的摇杆缓慢打杆的用户操作建议,将用户操作建议发送至远程控制设备30的显示装置32进行显示,操作员可依据用户操作建议对地面遥控机器人10进行相应控制,这样有利于提高地面遥控机器人10的操作稳定性,提升地面遥控机 器人10的操控体验。
请参阅图7,在某些实施方式中,路况信息包括路面光滑度。运动数据包括车轮转速和扭矩。根据运动数据识别地面遥控机器人10所处地面的路况信息(即02)包括:
021:根据车轮转速和扭矩计算匹配系数;和
022:根据匹配系数确定路面光滑度。
在某些实施方式中,路况信息包括路面光滑度。运动数据包括车轮转速和扭矩。控制器14可用于执行021和022中的方法。也即是说,控制器14还可以用于:根据车轮转速和扭矩计算匹配系数;和根据匹配系数确定路面光滑度。
具体地,匹配系数可以是车轮转速和扭矩的比例(或比值),匹配系数反映了地面遥控机器人10的机动性能,或者说执行器16输出的效率。
可以理解,路面光滑度与地面遥控机器人10的打滑程度成正比,即路面光滑度越高时,地面遥控机器人10的打滑程度越严重。而当地面遥控机器人10的打滑程度越严重时,由于机动性能不强,车轮转速很高,但实际扭矩却较小,使得根据车轮转速和扭矩计算得到的匹配系数较大。因此,控制器14可以根据车轮转速和扭矩计算匹配系数,并根据匹配系数确定路面光滑度。当匹配系数越大时,表明路面光滑度越大;当匹配系数越小时,表明路面光滑度越小。
进一步地,控制器14还可以将匹配系数与预定系数区间进行对比,以确定路面光滑度的级别。例如,按照数值大小,预定系数区间依次包括[S1,S2),[S2,S3),[S3,S4),[S4,S5)等。当匹配系数处于[S1,S2)范围内时,控制器14确定路面光滑度的级别为较不光滑;当匹配系数处于[S2,S3)范围内时,控制器14确定路面光滑度的级别为标准光滑;当匹配系数处于[S3,S4)范围内时,控制器14确定路面光滑度的级别为较为光滑;当匹配系数处于[S4,S5)范围内时,控制器14确定路面光滑度的级别为非常光滑。
请参阅图8,在某些实施方式中,运动数据还包括速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种。根据运动数据识别地面遥控机器人10所处地面的路况信息(即02)还包括:
023:根据速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种确定速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种的调节时间;
根据匹配系数确定路面光滑度(即022)包括:
0221:根据匹配系数和调节时间确定路面光滑度。
在某些实施方式中,运动数据还包括速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种。控制器14可用于执行023和0221中的方法。也即是说,控制器14还可以用于:根据速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种确定速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种的调节时间;和根据匹配系数和调节时间确定路面光滑度。
具体地,调节时间可以是指地面遥控机器人10由当前运动数据调节至目标运动数据所需的时间,其中,目标运动数据是根据远程控制设备30发送的控制指令确定的。以速度为例,当前速度为1m/s,目标速度为2m/s,而当前加速度为1m/s2,则控制器14可计算出速度的调节时间为1s。采用类似的方式,控制器14可分别计算出加速度、角速度、角加速度、运动位置、姿态角的调节时间,在此不一一举例。调节时间反映了地面遥控机器人10的控制性能。
当路面越光滑时,地面遥控机器人10的打滑程度越严重,由于地面遥控机器人10的机动性能不强,控制性能中的调节时间与正常时间相比会偏大。其直观的反映是:地面遥控机器人10的车轮转速很高,但实际扭矩却较小,因输出速度损失造成调节到目标速度(或其他目标运动数据)的时间变长,即速度的调节时间变大。加速度的调节时间也会变大。此时,地面遥控机器人10还有可能会出现位置或姿态飘移(如图4中路况B或C所示),导致运动位置的调节时间和姿态角的调节时间也会变大。因此,控制器14可结合匹配系数,以及速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种的调节时间来确定路面光滑度,以使路面光滑度的评估结果更为准确。或者,控制器14也可先确定速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种的当前调节时间与在标准路况下的速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种的调节时间之间的差异,再结合匹配系数与该差异来确定路面光滑度。
请参阅图9,在某些实施方式中,控制方法还包括:
07:在路面光滑度大于预定光滑度时,限制地面遥控机器人10运动的速度和/或加速度和/或角速度和/或角加速度。
在某些实施方式中,控制器14可用于执行07中的方法。也即是说,控制器14还可以用于在路面光滑度大于预定光滑度时,限制地面遥控机器人10运动的速度和/或加速度和/或角速度和/或角加速度。
具体地,当路面光滑度较大时,地面遥控机器人10运动的速度和/或加速度和/或角速度和/或角加速度不宜过高,以防止滑到,保护地面遥控机器人10的设备安全。因此,控制器14可在路面光滑度大于预定光滑度时,限制地面遥控机器人10运动的 速度和/或加速度和/或角速度和/或角加速度。
例如,地面遥控机器人10运动的速度为3m/s。在一个例子中,当路面光滑度大于预定光滑度时,控制器14可将地面遥控机器人10运动的速度限制在5m/s,也即是说,地面遥控机器人10还可以进行一定程度的加速以达到5m/s,并保持在小于或等于5m/s的速度运动。当然,地面遥控机器人10也可以不进行加速,保持当前速度3m/s或减速运动均可。在另一个例子中,当路面光滑度大于预定光滑度时,控制器14可将地面遥控机器人10运动的速度限制在2m/s,此时,地面遥控机器人10需要减速至2m/s,并保持在小于或等于2m/s的速度运动。
请参阅图10,在某些实施方式中,路况信息包括路面平整度。运动数据包括加速度。根据运动数据识别地面遥控机器人10所处地面的路况信息(即02)包括:
024:根据加速度确定地面遥控机器人10在垂直方向上的加速度变化;和
025:根据加速度变化确定路面平整度。
在某些实施方式中,路况信息包括路面平整度。运动数据包括加速度。控制器14可用于执行024和025中的方法。也即是说,控制器14还可以用于:根据加速度确定地面遥控机器人10在垂直方向上的加速度变化;和根据加速度变化确定路面平整度。
具体地,请结合图3和图4,地面遥控机器人10在垂直方向上的加速度即是沿Z轴方向的加速度(X轴、Y轴均与地面平行,Y轴垂直于X轴和Y轴)。
当地面遥控机器人10以同样的速度在不同的路况下运动时,地面遥控机器人10在垂直方向上的加速度分布将会不同。例如,在路面平整度较高的地面运动时,地面遥控机器人10在垂直方向上的加速度几乎保持不变。而在路面平整度较低的地面运动时,地面遥控机器人10在垂直方向上的加速度将在正常加速度的基础上不断呈现上下波动的变化。当路面平整度越低时,该波动变化越大,即路面平整度与波动幅度呈负相关。因此,控制器14可根据地面遥控机器人10在垂直方向上的加速度变化确定路面平整度。当加速度变化越大时,表明路面平整度度越小;当加速度变化越小时,表明路面平整度越高。
进一步地,控制器14还可以将加速度变化(幅度)与预定变化(幅度)区间进行对比,以确定路面平整度的级别。例如,按照数值大小,预定变化(幅度)区间依次包括[F1,F2),[F2,F3),[F3,F4),[F4,F5)等。当加速度变化(幅度)处于[F1,F2)范围内时,控制器14确定路面平整度的级别为非常平整;当加速度变化(幅度)处于[F2,F3)范围内时,控制器14确定路面平整度的级别为较为平整;当加速度变化(幅度)处于[F3,F4)范围内时,控制器14确定路面平整度的级别为标准平整;当加 速度变化(幅度)处于[F4,F5)范围内时,控制器14确定路面平整度的级别为较不平整。
请参阅图11,在某些实施方式中,运动数据还包括速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种。根据运动数据识别地面遥控机器人10所处地面的路况信息(即02)还包括:
026:根据速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种确定速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种的调节时间;
根据加速度变化确定路面平整度(即025)包括:
0251:根据加速度变化和调节时间确定路面平整度。
在某些实施方式中,运动数据还包括速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种。控制器14可用于执行026和0251中的方法。也即是说,控制器14还可以用于:根据速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种确定速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种的调节时间;和根据加速度变化和调节时间确定路面平整度。
具体地,前述实施方式中对速度、加速度、角速度、角加速度、运动位置、和姿态角的调节时间的解释说明同样适用于本实施方式中,在此不再重复说明。
当路面平整度较低时,地面遥控机器人10的速度、加速度、角速度、角加速度、运动位置、或姿态角可能突然增大或突然减小。因此,随便时间推移,计算得到速度、加速度、角速度、角加速度、运动位置、或姿态角中至少一种的调节时间也是波动变化的。当路面平整度越低时,该波动变化越大,即路面平整度与波动幅度呈负相关。因此,控制器14可结合地面遥控机器人10在垂直方向上的加速度变化,以及速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种的调节时间来确定路面平整度,以使路面平整度的评估结果更为准确。或者,控制器14也可先确定速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种的当前调节时间与在标准路况下的速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种的调节时间之间的差异,再结合加速度变化与该差异来确定路面平整度。
请参阅图12,在某些实施方式中,控制方法还包括:
08:在路面平整度小于预定平整度时,限制地面遥控机器人10运动的速度和/或加速度和/或角速度和/或角加速度。
在某些实施方式中,控制器14可用于执行08中的方法。也即是说,控制器14还可以用于在路面平整度小于预定平整度时,限制地面遥控机器人10运动的速度和/ 或加速度和/或角速度和/或角加速度。
具体地,当路面平整度较低时,路面崎岖不平,地面遥控机器人10运动的速度和/或加速度和/或角速度和/或角加速度不宜过高,以同时起到保护车轮和防止翻倒的作用,从而保护地面遥控机器人10的设备安全。因此,控制器14可在路面平整度小于预定平整度时,限制地面遥控机器人10运动的速度和/或加速度和/或角速度和/或角加速度。
例如,地面遥控机器人10运动的速度为3m/s。在一个例子中,在路面平整度小于预定平整度时,控制器14可将地面遥控机器人10运动的速度限制在5m/s,也即是说,地面遥控机器人10还可以进行一定程度的加速以达到5m/s,并保持在小于或等于5m/s的速度运动。当然,地面遥控机器人10也可以不进行加速,保持当前速度3m/s或减速运动均可。在另一个例子中,在路面平整度小于预定平整度时,控制器14可将地面遥控机器人10运动的速度限制在2m/s,此时,地面遥控机器人10需要减速至2m/s,并保持在小于或等于2m/s的速度运动。
当然,在其他实施方式中,地面遥控机器人10也可根据操作员通过远程控制设备30发送的控制指令增大地面遥控机器人10运动的速度,以使地面遥控机器人10快速通过该崎岖不平的路段。
请参阅图13,在某些实施方式中,路况信息包括路面坡度。运动数据包括姿态角。根据运动数据识别地面遥控机器人10所处地面的路况信息(即02)包括:
027:根据姿态角确定路面坡度。
在某些实施方式中,路况信息包括路面坡度。运动数据包括姿态角。控制器14可用于执行027中的方法。也即是说,控制器14还可以用于根据姿态角确定路面坡度。
具体地,当路面存在坡度时,地面遥控机器人10的姿态角将会发生变化。例如,路面坡度为+30度时(度数为正表示上坡,度数为负表示下坡),地面遥控机器人10的俯仰角为+30度;当路面坡度为0度时,地面遥控机器人10的俯仰角为0度;当路面坡度为-30度时,地面遥控机器人10的俯仰角为-30度。即,路面坡度的大小(绝对值)与姿态角的大小(绝对值)呈正相关。因此,控制器14可根据姿态角确定路面坡度。当姿态角越大时,表明路面坡度越大;当姿态角越小时,表明路面坡度越小。
进一步地,控制器14还可以将姿态角与预定姿态角区间进行对比,以确定路面坡度的级别。例如,按照数值大小,预定姿态角区间依次包括[A1,A2),[A2,A3),[A3,A4),[A4,A5)、[A5,A6)等。当姿态角处于[A1,A2)范围内时,控制器14确定路面坡度的级别为较高坡度的下坡;当姿态角处于[A2,A3)范围内时,控制器14 确定路面坡度的级别为较低坡度的下坡;当姿态角处于[A3,A4)范围内时,控制器14确定路面坡度的级别为无坡;当姿态角处于[A4,A5)范围内时,控制器14确定路面坡度的级别为较低坡度的上坡;当姿态角处于[A5,A6)范围内时,控制器14确定路面坡度的级别为较高坡度的上坡。
请继续参阅图13,在某些实施方式中,控制方法还包括:
09:在路面坡度(绝对值)大于预定坡度时,限制地面遥控机器人10运动的速度、加速度、角速度、角加速度、姿态角中的至少一种。
在某些实施方式中,控制器14可用于执行09中的方法。也即是说,控制器14还可以用于在路面坡度(绝对值)大于预定坡度时,限制地面遥控机器人10运动的速度、加速度、角速度、角加速度、姿态角中的至少一种。
具体地,当路面坡度较大时,地面遥控机器人10运动的速度、加速度、角速度、角加速度、姿态角不宜过高,以防止车轮空转、扭矩过低或翻倒,不利于爬坡;或是地面遥控机器人10翻倒。因此,控制器14可在路面坡度大于预定坡度时,限制地面遥控机器人10运动的速度、加速度、角速度、角加速度、姿态角中的至少一种。
例如,地面遥控机器人10运动的速度为3m/s。在一个例子中,在路面坡度大于预定坡度时,控制器14可将地面遥控机器人10运动的速度限制在5m/s,也即是说,地面遥控机器人10还可以进行一定程度的加速以达到5m/s,并保持在小于或等于5m/s的速度运动。当然,地面遥控机器人10也可以不进行加速,保持当前速度3m/s或减速运动均可。在另一个例子中,在路面坡度大于预定坡度时,控制器14可将地面遥控机器人10运动的速度限制在2m/s,此时,地面遥控机器人10需要减速至2m/s,并保持在小于或等于2m/s的速度运动。
在本说明书的描述中,参考术语“某些实施方式”等的描述意指结合所述实施方式或示例描述的具体特征、结构或者特点包含于本发明的至少一个实施方式中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式。而且,描述的具体特征、结构或者特点可以在任何的一个或多个实施方式中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中, 以供指令执行系统、装置或设备(如基于计算机的系统、包括处理模块的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(控制方法),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的实施方式的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明的各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (28)

  1. 一种地面遥控机器人的控制方法,其特征在于,所述地面遥控机器人包括传感器,所述控制方法包括:
    通过所述传感器检测所述地面遥控机器人的运动数据;和
    根据所述运动数据识别所述地面遥控机器人所处地面的路况信息。
  2. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:
    根据所述路况信息控制所述地面遥控机器人的运动状态。
  3. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:
    将所述路况信息发送至显示装置进行显示。
  4. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:
    根据所述路况信息生成用户操作建议;和
    将所述用户操作建议发送至显示装置进行显示。
  5. 根据权利要求1所述的控制方法,其特征在于,所述运动数据包括速度、加速度、角速度、角加速度、运动位置、姿态角、车轮转速、或扭矩中的至少一种。
  6. 根据权利要求1所述的控制方法,其特征在于,所述路况信息包括路面光滑度、路面平整度、或路面坡度中的至少一种。
  7. 根据权利要求1所述的控制方法,其特征在于,所述路况信息包括路面光滑度,所述运动数据包括车轮转速和扭矩,所述根据所述运动数据识别所述地面遥控机器人所处地面的路况信息包括:
    根据所述车轮转速和所述扭矩计算匹配系数;和
    根据所述匹配系数确定所述路面光滑度。
  8. 根据权利要求7所述的控制方法,其特征在于,所述运动数据还包括速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种,所述根据所述运动数据识别所述地面遥控机器人所处地面的路况信息还包括:
    根据所述速度、所述加速度、所述角速度、所述角加速度、所述运动位置、或所述姿态角中的至少一种确定所述速度、所述加速度、所述角速度、所述角加速度、所述运动位置、或所述姿态角中的至少一种的调节时间;
    所述根据所述匹配系数确定所述路面光滑度包括:
    根据所述匹配系数和所述调节时间确定所述路面光滑度。
  9. 根据权利要求7或8所述的控制方法,其特征在于,所述控制方法还包括:
    在所述路面光滑度大于预定光滑度时,限制所述地面遥控机器人运动的速度和/或加速度和/或角速度和/或角加速度。
  10. 根据权利要求1所述的控制方法,其特征在于,所述路况信息包括路面平整度,所述运动数据包括加速度,所述根据所述运动数据识别所述地面遥控机器人所处地面的路况信息包括:
    根据所述加速度确定所述地面遥控机器人在垂直方向上的加速度变化;和
    根据所述加速度变化确定所述路面平整度。
  11. 根据权利要求10所述的控制方法,其特征在于,所述运动数据还包括速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种,所述根据所述运动数据识别所述地面遥控机器人所处地面的路况信息还包括:
    根据所述速度、所述加速度、所述角速度、所述角加速度、所述运动位置、或所述姿态角中的至少一种确定所述速度、所述加速度、所述角速度、所述角加速度、所述运动位置、或所述姿态角中的至少一种的调节时间;
    所述根据所述加速度变化确定所述路面平整度包括:
    根据所述加速度变化和所述调节时间确定所述路面平整度。
  12. 根据权利要求10或11所述的控制方法,其特征在于,所述控制方法还包括:
    在所述路面平整度小于预定平整度时,限制所述地面遥控机器人运动的速度和/或加速度和/或角速度和/或角加速度。
  13. 根据权利要求1所述的控制方法,其特征在于,所述路况信息包括路面坡度,所述运动数据包括姿态角,所述根据所述运动数据识别所述地面遥控机器人所处地面的路况信息包括:
    根据所述姿态角确定所述路面坡度。
  14. 根据权利要求13所述的控制方法,其特征在于,所述控制方法还包括:
    在所述路面坡度大于预定坡度时,限制所述地面遥控机器人运动的速度、加速度、角速度、角加速度、姿态角中的至少一种。
  15. 一种地面遥控机器人,其特征在于,所述地面遥控机器人包括:
    传感器,所述传感器用于检测所述地面遥控机器人的运动数据;和
    控制器,所述控制器用于根据所述运动数据识别所述地面遥控机器人所处地面的路况信息。
  16. 根据权利要求15所述的地面遥控机器人,其特征在于,所述控制器还用于:
    根据所述路况信息控制所述地面遥控机器人的运动状态。
  17. 根据权利要求15所述的地面遥控机器人,其特征在于,所述控制器还用于:
    将所述路况信息发送至显示装置进行显示。
  18. 根据权利要求15所述的地面遥控机器人,其特征在于,所述控制器还用于:
    根据所述路况信息生成用户操作建议;和
    将所述用户操作建议发送至显示装置进行显示。
  19. 根据权利要求15所述的地面遥控机器人,其特征在于,所述运动数据包括速度、加速度、角速度、角加速度、运动位置、姿态角、车轮转速、或扭矩中的至少一种。
  20. 根据权利要求15所述的地面遥控机器人,其特征在于,所述路况信息包括路面光滑度、路面平整度、或路面坡度中的至少一种。
  21. 根据权利要求15所述的地面遥控机器人,其特征在于,所述路况信息包括路面光滑度,所述运动数据包括车轮转速和扭矩,所述控制器还用于:
    根据所述车轮转速和所述扭矩计算匹配系数;和
    根据所述匹配系数确定所述路面光滑度。
  22. 根据权利要求21所述的地面遥控机器人,其特征在于,所述运动数据还包括速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种,所述控制器还用于:
    根据所述速度、所述加速度、所述角速度、所述角加速度、所述运动位置、或所述姿态角中的至少一种确定所述速度、所述加速度、所述角速度、所述角加速度、所述运动位置、或所述姿态角中的至少一种的调节时间;和
    根据所述匹配系数和所述调节时间确定所述路面光滑度。
  23. 根据权利要求21或22所述的地面遥控机器人,其特征在于,所述控制器还用于:
    在所述路面光滑度大于预定光滑度时,限制所述地面遥控机器人运动的速度和/或加速度和/或角速度和/或角加速度。
  24. 根据权利要求15所述的地面遥控机器人,其特征在于,所述路况信息包括路面平整度,所述运动数据包括加速度,所述控制器还用于:
    根据所述加速度确定所述地面遥控机器人在垂直方向上的加速度变化;和
    根据所述加速度变化确定所述路面平整度。
  25. 根据权利要求24所述的地面遥控机器人,其特征在于,所述运动数据还包括速度、加速度、角速度、角加速度、运动位置、或姿态角中的至少一种,所述控制器还用于:
    根据所述速度、所述加速度、所述角速度、所述角加速度、所述运动位置、或所述姿态角中的至少一种确定所述速度、所述加速度、所述角速度、所述角加速度、所述运动位置、或所述姿态角中的至少一种的调节时间;和
    根据所述加速度变化和所述调节时间确定所述路面平整度。
  26. 根据权利要求24或25所述的地面遥控机器人,其特征在于,所述控制器还用于:
    在所述路面平整度小于预定平整度时,限制所述地面遥控机器人运动的速度和/或加速度和/或角速度和/或角加速度。
  27. 根据权利要求15所述的地面遥控机器人,其特征在于,所述路况信息包括路面坡度,所述运动数据包括姿态角,所述控制器还用于:
    根据所述姿态角确定所述路面坡度。
  28. 根据权利要求27所述的地面遥控机器人,其特征在于,所述控制器还用于:
    在所述路面坡度大于预定坡度时,限制所述地面遥控机器人运动的速度、加速度、角速度、角加速度、姿态角中的至少一种。
PCT/CN2018/113006 2018-10-31 2018-10-31 地面遥控机器人的控制方法和地面遥控机器人 WO2020087345A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880038496.8A CN110769987A (zh) 2018-10-31 2018-10-31 地面遥控机器人的控制方法和地面遥控机器人
PCT/CN2018/113006 WO2020087345A1 (zh) 2018-10-31 2018-10-31 地面遥控机器人的控制方法和地面遥控机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113006 WO2020087345A1 (zh) 2018-10-31 2018-10-31 地面遥控机器人的控制方法和地面遥控机器人

Publications (1)

Publication Number Publication Date
WO2020087345A1 true WO2020087345A1 (zh) 2020-05-07

Family

ID=69328784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113006 WO2020087345A1 (zh) 2018-10-31 2018-10-31 地面遥控机器人的控制方法和地面遥控机器人

Country Status (2)

Country Link
CN (1) CN110769987A (zh)
WO (1) WO2020087345A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113551706A (zh) * 2021-07-20 2021-10-26 上海擎朗智能科技有限公司 一种机器人巡视的方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001078305A (ja) * 1999-09-07 2001-03-23 Sawafuji Electric Co Ltd リターダ
CN102485528A (zh) * 2010-12-03 2012-06-06 比亚迪股份有限公司 轮边电机打滑处理控制系统及轮边电机的打滑处理方法
CN106155054A (zh) * 2016-07-05 2016-11-23 中国科学院深圳先进技术研究院 轮履复合移动机器人的控制系统及方法
CN207191044U (zh) * 2017-08-03 2018-04-06 鄂尔多斯市普渡科技有限公司 一种基于路面平整度的无人驾驶车速调整装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2070076A4 (en) * 2006-10-06 2012-11-21 Irobot Corp AUTONOMOUS BEHAVIOR FOR A REMOTELY CONTROLLED VEHICLE
US9463574B2 (en) * 2012-03-01 2016-10-11 Irobot Corporation Mobile inspection robot
CN103903435B (zh) * 2012-12-30 2016-08-10 王方淇 一种路况信息获取方法及移动终端
KR101518889B1 (ko) * 2013-07-11 2015-05-12 현대자동차 주식회사 차량의 발진 제어 장치 및 방법
CN105563451B (zh) * 2016-01-20 2018-01-16 詹雨科 一种智能跟随机器人
CN206057967U (zh) * 2016-08-09 2017-03-29 江苏师范大学 自动路况识别机器人
GB2571589B (en) * 2018-03-01 2020-09-16 Jaguar Land Rover Ltd Terrain inference method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001078305A (ja) * 1999-09-07 2001-03-23 Sawafuji Electric Co Ltd リターダ
CN102485528A (zh) * 2010-12-03 2012-06-06 比亚迪股份有限公司 轮边电机打滑处理控制系统及轮边电机的打滑处理方法
CN106155054A (zh) * 2016-07-05 2016-11-23 中国科学院深圳先进技术研究院 轮履复合移动机器人的控制系统及方法
CN207191044U (zh) * 2017-08-03 2018-04-06 鄂尔多斯市普渡科技有限公司 一种基于路面平整度的无人驾驶车速调整装置

Also Published As

Publication number Publication date
CN110769987A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
US20230365136A1 (en) Road friction and wheel slippage assessment for autonomous vehicles
EP3336493B1 (en) Determining control characteristics for an autonomous driving vehicle
KR100561863B1 (ko) 가상 센서를 이용한 로봇의 네비게이션 방법 및 장치
US9290201B1 (en) Detecting driver grip on steering wheel
US10414397B2 (en) Operational design domain decision apparatus
JP6494715B2 (ja) 自律走行車の速度制御率の動的調整方法
CN110667576A (zh) 自动驾驶车辆的弯道通行控制方法、装置、设备和介质
KR101748269B1 (ko) 자율 주행 차량의 조향 제어 방법 및 장치
US20200064850A1 (en) Predicting movement intent of objects
US11796414B2 (en) Determining vehicle load center of mass
CN109070744A (zh) 控制自动驾驶车辆重新进入自动驾驶模式的方法和系统
JP2022524168A (ja) 半自動車両のステアリングにおける運転者の意図を判定するための方法およびシステム
WO2018157386A1 (en) Longitude cascaded controller preset for controlling autonomous driving vehicle reentering autonomous driving mode
US11526170B2 (en) Method for detecting skidding of robot, mapping method and chip
JPWO2019058720A1 (ja) 情報処理装置、自律型移動装置、および方法、並びにプログラム
WO2022247203A1 (zh) 自动驾驶车辆的控制方法、装置、设备以及存储介质
JP2019501809A (ja) 自律走行車の速度を追従する方法及びシステム
BR102017002018A2 (pt) Method
US9604642B2 (en) Positioning autonomous vehicles based on field of view
CN115243949A (zh) 定位误差监控
JP2010224755A (ja) 移動体及び移動体の位置推定方法
WO2020087345A1 (zh) 地面遥控机器人的控制方法和地面遥控机器人
JP2010082717A (ja) 倒立振子型移動機構
US11945443B2 (en) Systems and methods for traction detection and control in a self-driving vehicle
KR20210037767A (ko) 샤시 통합 제어 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938675

Country of ref document: EP

Kind code of ref document: A1