WO2020087320A1 - 一种单板、光模块、olt以及信息处理方法 - Google Patents

一种单板、光模块、olt以及信息处理方法 Download PDF

Info

Publication number
WO2020087320A1
WO2020087320A1 PCT/CN2018/112890 CN2018112890W WO2020087320A1 WO 2020087320 A1 WO2020087320 A1 WO 2020087320A1 CN 2018112890 W CN2018112890 W CN 2018112890W WO 2020087320 A1 WO2020087320 A1 WO 2020087320A1
Authority
WO
WIPO (PCT)
Prior art keywords
dsp
onu
equalization parameter
information
equalizer
Prior art date
Application number
PCT/CN2018/112890
Other languages
English (en)
French (fr)
Inventor
周雷
聂世玮
李胜平
高波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202210430007.1A priority Critical patent/CN114866149A/zh
Priority to KR1020217015041A priority patent/KR102542277B1/ko
Priority to CN201880098594.0A priority patent/CN112889228B/zh
Priority to PCT/CN2018/112890 priority patent/WO2020087320A1/zh
Priority to EP18938707.9A priority patent/EP3860001A4/en
Priority to JP2021547613A priority patent/JP7239722B2/ja
Publication of WO2020087320A1 publication Critical patent/WO2020087320A1/zh
Priority to US17/244,298 priority patent/US11558118B2/en
Priority to US18/065,281 priority patent/US11936430B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6971Arrangements for reducing noise and distortion using equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03878Line equalisers; line build-out devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0071Provisions for the electrical-optical layer interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0046User Network Interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0051Network Node Interface, e.g. tandem connections, transit switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • This application relates to the field of communications, and in particular to a single board, optical module, OLT, and information processing method.
  • PON includes optical line terminal (optical line terminal, OLT), optical distribution network (optical distribution network, ODN), and multiple optical network units (optical network unit, ONU).
  • OLT optical line terminal
  • ODN optical distribution network
  • ONU optical network unit
  • the OLT is used to connect the network backbone
  • the ONU is used to connect the regional network or home users.
  • Common ONUs, such as optical modems, are also called "optical modems”.
  • Communication between the OLT and multiple ONUs is achieved through ODN.
  • the ODN includes feeder fiber, optical splitter and branch line, which are composed of different passive optical devices.
  • the main passive optical devices include: single-mode fiber and optical cable, optical fiber Ribbon and ribbon optical cables, optical connectors, passive optical splitters, passive optical attenuators and fiber connectors.
  • the OLT When the OLT is connected to the ONU, and the OLT receives the optical signal sent by the ONU, it cannot immediately obtain valid information in the optical signal. It is necessary to first perform signal equalization processing on the optical signal through the electrical domain equalization technology, such as optical domain digital signal processing (optical digital signal processing (oDSP) technology. Specifically, the OLT needs to first determine the reference equalization parameter, and use the reference equalization parameter to perform signal equalization processing on the received optical signal through the equalizer to obtain the processed optical signal before the OLT can obtain valid information from it.
  • the electrical domain equalization technology such as optical domain digital signal processing (optical digital signal processing (oDSP) technology.
  • oDSP optical digital signal processing
  • the reference equalization parameters required for the optical signals sent by different ONUs are different. Therefore, in the prior art, each time the OLT receives the optical signal sent by the ONU, it can first preset an initial equalization parameter, which is generally all 0, and then use the optical signal to iteratively converge on the preset initial equalization parameter To get the corresponding reference equalization parameter. Finally, the optical signal is equalized by the reference equalization parameter to obtain an optical signal that the OLT can obtain valid information.
  • the process of iterative convergence requires a period of time, and the OLT needs to wait for the end of the period of time before it can receive the optical signal after signal equalization processing and obtain valid information therefrom, causing a long delay.
  • the embodiments of the present application provide a single board, an optical module, an OLT, and an information processing method, which are used to quickly set the equalization parameters of the equalizer for the ONU during the ONU online phase to reduce time delay.
  • the first aspect of the present application provides a single board, which includes a MAC chip, a DSP and an equalizer.
  • the MAC chip sends first information to the DSP during the ONU online phase, the first information includes the first ONU identifier, the DSP receives the first information, determines the first reference equalization parameter, the first reference equalization parameter and the The first ONU identity is relevant.
  • the DSP sets the equalization parameter of the equalizer to the first reference equalization parameter.
  • the MAC chip can send the first information to the DSP.
  • the first information includes the first ONU identifier. Since the DSP can determine the relevant first reference equalization parameter according to the first ONU identifier, the equalization parameter of the equalizer is set to A reference to the equalization parameters without the need to re-converge, thereby saving time and reducing latency.
  • the OLT when the OLT can periodically "open a window" to register for a new ONU, when the OLT "closes the window", it can enter the ONU online phase.
  • the MAC chip In the ONU online phase, the MAC chip is used to Serve online ONUs.
  • the newly-launched ONU described in steps 301-303 can be used as an online ONU to receive services of single boards (including MAC chips and optical modules, etc., which are not limited here) when the ONU is online.
  • the first information includes an information field, and the information field includes the first ONU identifier to determine the manner of carrying the first ONU identifier.
  • the information field may further include a check field.
  • the check bit also known as parity bit, is a binary number that indicates whether the number of 1s in the given number is odd or even. Binary numbers are the simplest error detection codes and will not be repeated here.
  • the information field may be 10 bits of information (including check digits) including a first ONU identifier and a check digit, where the first ONU identifier may be one of 110110111, 101101110, or 110111011.
  • the DSP is specifically used to obtain the first ONU identifier from the first information after receiving the first information, and before the arrival of the upstream optical signal corresponding to the first ONU identifier, Set the equalization parameter of the equalizer as the first reference equalization parameter, and send a reset signal to the TIA, so that the optical module receives the running optical signal through the TIA during the first uplink transmission time, and the DSP will receive the first information immediately
  • the first reference equalization parameter can be set without storing the first reference equalization parameter to minimize the storage burden of the DSP.
  • the first information includes an information field, and the information field includes at least one piece of timing information, and the at least one piece of timing information includes first timing information, and the first timing information is used to indicate the first ONU identifier and Correspondence of the first uplink transmission time.
  • the DSP is specifically used to determine the first reference equalization parameter corresponding to the first ONU identifier, and before the first uplink transmission time, set the equalization parameter of the equalizer to the first reference equalization parameter, because no re-convergence determination is required
  • the first reference equalization parameter saves time and reduces delay.
  • the first uplink transmission time is the time when the ONU indicated by the first ONU identifier sends an operating optical signal to the OLT.
  • the first uplink transmission time may be a point in time or The time period is not limited here.
  • the DSP obtains the first upstream transmission time corresponding to the first ONU identification, and includes the first upstream transmission time. Instead of setting the equalization parameters of the equalizer immediately, the Before the first uplink transmission time, the equalization parameter of the equalizer is set as the first reference equalization parameter to receive the running optical signal. Since the MAC chip does not need to temporarily send an instruction to set the reference equalization parameter, the DSP can be early indicated to each of the time for setting the reference equalization parameter, so that the MAC chip can arrange working threads more freely.
  • the first information further includes a delimiting field, a start field, and an end field, where the delimiting field is used for recognition by the DSP.
  • the content of the delimiting field may be agreed in advance.
  • the delimiting field is 3 bits of information, such as 010, 110, 101, 111, or 001, or may be 4 bits or more of information , Not limited here. Taking 010 as an example, when the DSP can continuously search for the signal 010, when the 010 is searched, it is determined that the O1O is a delimited field, and then it is determined that the frame containing the delimited field carries the first information, and the DSP can select from the frame Acquire the first ONU identity.
  • the delimiting field may also be a field of 4 bits or other number of bits, which is not limited here.
  • the DSP recognizes the delimited field, it can be determined that the frame where the delimited field is located carries the first information, and then the first ONU identifier can be obtained from the frame.
  • the start field is used to indicate the start of the information field
  • the end field is used to indicate the end of the information field.
  • the start field is 4 bits of information (may be other numbers of bits, which are not limited here), such as 1111 (or 0000, which is not limited here)
  • the end field may be 4 bits of information (may be other numbers of bits, not limited here), such as 0000 (or 1111, not limited here).
  • the first information may also include multiple frames, where each frame in the multiple frames has the same function as the delimitation field, the start field, the information field, and the end field, and is not done here limited.
  • the board also includes a rate selection RATE_SEL pin, which is connected to the MAC chip and the DSP, respectively, and the RATE_SEL pin can be used by the MAC chip to send rate information to the DSP, which can be used by the MAC
  • the chip is used to send the first information to the DSP through the RATE_SEL pin during the ONU online phase, thereby determining the pin where the MAC chip sends the first information to the DSP.
  • the optical module further includes a transimpedance amplifier TIA
  • the DSP is connected to the TIA
  • the DSP is also used to send a reset signal to the TIA.
  • the number of the TIA is at least two, and the TIA includes a 50G optical distribution network PON TIA and a 10G PON TIA. Therefore, there is no need for the MAC chip to send a reset signal to the DSP through 2 RESET pins, so that 2 RESET pins are freed up and can be used for other purposes.
  • the first information further includes a rate field, which is used to indicate whether to send the reset signal to the 50G PON TIA or the 10G PON TIA, so that the DSP determines to which TIA it should be sent Reset signal.
  • the rate field may only have one bit, such as O or 1, if it can be 0, the ONU rate is 10G, and if 1, it means the ONU rate is 50G, and vice versa, it is not limited here. .
  • the rate field is used to indicate the rate of the ONU indicated by the first ONU identifier (if it belongs to 10G or 50G), so that the DSP can determine whether to reset 10G PON TIA or 50G PON TIA.
  • the board also includes: 2 RESET pins.
  • the DSP can send a reset signal to the corresponding TIA. Since no 2 RESET pins are needed to send the reset signal, but the rate field is sent to the DSP through the RATE_SEL pin, the DSP can send a reset signal to the correct TIA based on the rate field to The two RESET pins originally used to transmit the reset signal are vacated.
  • the MAC chip sends two differential clock signals to the DSP through the two RESET pins, so that the board does not need to add pins, nor does it need to access the clock chip from the outside to achieve time synchronization of various originals in the OLT .
  • the equalizer converges during the ONU registration stage to obtain the first reference equalization parameter.
  • the equalizer in the optical module may converge the preset initial equalization parameter through the registered optical signal to obtain a first reference equalization parameter, and the first reference equalization parameter is used to signal the registered optical signal Balanced processing.
  • the preset initial equalization parameter may be set to a random array or a fixed array, such as an array with all 0s (0, 0, 0, ..., 0), here No limitation.
  • the MAC chip is also used to allocate the first ONU identity to the newly-launched ONU during the ONU registration phase, and send the first ONU identity to the DSP.
  • the DSP stores the correspondence between the first ONU identifier and the first reference equalization parameter.
  • the DSP is further used to store a correspondence relationship group, where the correspondence relationship group includes a correspondence relationship between at least the first ONU identifier and the first reference equalization parameter.
  • the DSP may obtain the first reference equalization parameter determined from the equalizer, and then save the first reference equalization parameter [such as: (Cp0, Cp1, Cp2 ,..., Cpn)] and the first ONU identifier (eg, 110110111).
  • the corresponding relationship may be stored in the configuration table.
  • the DSP may also store a plurality of correspondences, referred to herein as a correspondence group, and the correspondence group includes at least the correspondence between the first ONU identifier and the first reference equalization parameter.
  • the corresponding relationship group may be saved in the configuration table.
  • the determining of the first reference equalization parameter by the DSP includes the DSP searching for the first reference equalization parameter corresponding to the first ONU identifier in the correspondence relationship group.
  • the paired storage of the first ONU identifier and the first reference equalization parameter is implemented, so that when the first information sent by the MAC chip is received, the first reference equalization parameter can be determined to achieve rapid convergence.
  • the equalizer is also used to converge the first reference equalization parameter to obtain a second reference equalization parameter;
  • the DSP is also used to set the equalization parameter of the equalizer to the second reference equalization parameter. Since the appropriate equalization parameters are related to the network situation, the network situation may not be too large in a short time, so the first reference equalization parameter and the second reference equalization parameter are very close, so the comparison from the preset initial equalization The parameters start to converge, starting from the first reference equalization parameter, which will converge to the appropriate equalization parameter faster, which improves the convergence efficiency and saves time.
  • the board further includes an optical module, the DSP and the equalizer are integrated in the optical module; or, the DSP is integrated with the MAC chip; or, the equalizer is integrated in the DSP, And the DSP is integrated in the optical module, so that the board can be composed of different ways to adapt to different scenarios.
  • the second aspect of the present application provides an optical module including a DSP and an equalizer.
  • the MAC chip sends first information to the DSP during the ONU online phase
  • the first information includes the first ONU identifier
  • the DSP receives the first A message, determining a first reference equalization parameter, the first reference equalization parameter is related to the first ONU identifier, and setting the equalization parameter of the equalizer to the first reference equalization parameter.
  • the DSP in the optical module described in the second aspect of the present application is used to perform the same functions as the DSP in each implementation manner of the single board described in the first aspect of the present application;
  • the equalizer in the optical module described in the second aspect is used to perform the same function as the equalizer in each implementation manner of the single board described in the first aspect of the present application, and details are not described here.
  • a third aspect of the present application provides a MAC chip, the MAC chip is used to send first information to the DSP in the ONU online phase, the first information includes the first ONU identification, the DSP receives the first information, determines the first A reference equalization parameter, the first reference equalization parameter is related to the first ONU identifier, and the equalization parameter of the equalizer is set as the first reference equalization parameter.
  • the MAC chip described in the third aspect of the present application is used to perform the same function as the MAC chip in each implementation manner of the single board described in the first aspect of the present application, and details are not described here.
  • the fourth aspect of the present application provides a DSP, which is used when a MAC chip sends first information to the DSP during an ONU online phase, the first information includes a first ONU identifier, and the DSP receives the first information , A first reference equalization parameter is determined, the first reference equalization parameter is related to the first ONU identifier, and the equalization parameter of the equalizer is set as the first reference equalization parameter.
  • the DSP described in the fourth aspect of the present application is used to perform the same as the DSP in each implementation manner in the single board described in the first aspect or the optical module described in the second aspect The function is not repeated here.
  • a fifth aspect of the present application provides an OLT.
  • the OLT includes a single board.
  • the single board includes a MAC chip, a DSP, and an equalizer.
  • the MAC chip is used to send first information to the DSP during the ONU online phase.
  • a piece of information includes a first ONU identification; the DSP is used to receive the first information and determine a first reference equalization parameter, the first reference equalization parameter is related to the first ONU identification; the DSP is also used to set the equalizer Is the first reference equalization parameter.
  • the single board is used to perform the same function as the single board of each implementation manner of the single board described in the first aspect of the present application, and details are not described here.
  • the sixth aspect of the present application provides an information processing method, including:
  • the MAC chip sends first information to the DSP during the ONU online phase, the first information includes the first ONU identifier; the DSP receives the first information, and determines the first reference equalization parameter, the first reference equalization parameter and the first ONU The identification is related; the DSP sets the equalization parameter of the equalizer to the first reference equalization parameter.
  • the method further executes the method steps implemented by the components described in the above aspects, which will not be repeated here.
  • a seventh aspect of the present application provides a computer-readable storage medium having instructions stored therein, which when executed on a computer, causes the computer to execute the method described in the above aspects.
  • the MAC chip can send the first information to the DSP.
  • the first information includes the first ONU identifier. Since the DSP can determine the relevant first reference equalization parameter according to the first ONU identifier, the equalization parameter of the equalizer is set to A reference to the equalization parameters without the need to re-converge, thereby saving time and reducing latency.
  • Figure 1-1 is a schematic diagram of the position of the PON in the network structure
  • Figure 1-2 is a schematic diagram of an embodiment of a PON architecture
  • Figure 1-3 is a front view of the OLT
  • Figure 1-4 is a schematic diagram of the internal architecture of the board
  • Figures 1-5 are schematic diagrams of another embodiment of a single board architecture
  • Figure 2-1 is a schematic diagram of an embodiment of an information processing method
  • Figure 2-2 shows a schematic diagram of the composition of the timing information frame
  • FIG. 3 is a schematic diagram of another embodiment of an information processing method.
  • FIG. 1-1 it is a schematic diagram of the position of the PON in the network structure.
  • the OLT in the illustration is connected to the network backbone, and can provide services to multiple ONUs simultaneously through ODN, and one ONU can be multiple simultaneously.
  • User equipment services such as mobile phones and computers, are not limited here.
  • FIGS. 1-2 are schematic diagrams of PON architecture embodiments, where PON 100 includes OLT 101, ODN 102, and ONU 103.
  • OLT 101 is used to connect the network backbone
  • ONU 103 is used to connect regional networks or home users
  • OLT 101 and ONU 103 are connected by ODN 102 to achieve communication.
  • the OLT 101 is a core component in the PON 100, and the OLT 101 is generally placed at the central office to provide a fiber interface for a passive fiber network facing the user. It should be noted that the OLT 101 is mainly used to realize the uplink upper layer network, complete the upstream access of the PON 100, and connect the user equipment ONU 103 through the ODN 102 to realize the control, management and registration of the user equipment ONU 103 Features.
  • ONU 103 is a user-end device in PON 100, which is placed at the user end and connected to OLT 101.
  • ONU 103 is mainly used to receive data sent by OLT 101, respond to management commands sent by OLT 101, and respond accordingly Adjustment, buffer the user's Ethernet data, and send in the upstream direction in the sending window allocated by OLT 101 and other user management functions to provide users with voice, data and multimedia services.
  • ODN 102 is composed of passive optical devices. Passive optical devices are also called “optical passive devices". It is a process in which optical-electric energy conversion does not occur in the process of optical fiber communication achieving its own function. Such devices include optical fiber connectors (optical fiber connectors), optical directional couplers (optical directional couplers), optical isolators (optical isolator), optical attenuators (optical attenuator) and other devices.
  • Passive optical devices play a role in optical fiber connection, optical power distribution, optical signal attenuation and optical wavelength division multiplexing in the PON 100 system, with high return loss, low insertion loss, high reliability, stability, mechanical wear resistance It is widely used in long-distance communication, regional network and fiber-to-the-home, video transmission, fiber sensing and so on. Passive optical devices are an important part of the PON 100 system and an indispensable component in the field of optical fiber applications.
  • the OLT 101 When the OLT 101 is connected to the ONU 103 through the ODN 102 and receives the optical signal sent by the ONU 103, the valid information in the optical signal cannot be obtained immediately, but it is necessary to first perform signal equalization processing on the optical signal through signal equalization technology and convert it to In order to obtain effective information from electrical signals. Before this, the OLT 101 needs to first determine the equalization parameters of the equalizer. The equalizer uses the equalization parameters to perform signal equalization processing on the received optical signal to obtain the processed optical signal and convert it into an electrical signal before the OLT 101 can obtain it from it. Effective information.
  • the OLT 101 may be as shown in FIG. 1-3 (a front view of the OLT), and the OLT 101 may include multiple boards, and the multiple boards include a service board and a main board.
  • the control board and the Jijia management board, etc., the OLT 101 may also include a dust filter, a cable management frame, a fan module, etc., which is not limited here.
  • a single board as a service board as an example, a single board may have a single board slot area, and the single board slot area may include multiple slots, and each slot may be provided for insertion of an optical module.
  • the board 104 may include a media access control (MAC) chip 1041 and digital signal processing (digital signal processing, DSP) 1042.
  • MAC media access control
  • DSP digital signal processing
  • the MAC chip 1041 can control the node's access to the physical layer through the MAC protocol.
  • the DSP 1042 can perform photoelectric conversion on the received optical signal.
  • the function of the DSP 1042 can realize photoelectric conversion through a chip that can realize digital signal processing technology, that is, convert the electrical signal into an optical signal at the sending end and convert the optical signal into an electrical signal at the receiving end, which is not limited here.
  • the board may further include an equalizer and an optical module, the DSP and the equalizer are integrated in the optical module, or the DSP is integrated with the MAC chip, or the equalizer is integrated in the DSP , And the DSP is integrated in the optical module, which is not limited here.
  • the optical module may be integrated in the single board or may be used as an external device of the single board, which is not limited herein.
  • the optical module includes a DSP and an equalizer.
  • the optical module is attached to the board and communicates with the MAC chip in the board through multiple pins in the attached port Information exchange, including 2 RESET pins and 1 RATE_SEL pin to receive the power provided by the board, and convert the electrical signals transmitted by the board into optical signals, or convert the received optical signals into electrical signals , Sent to the board to achieve photoelectric conversion.
  • DSP 1042 is integrated in the optical module 105
  • the MAC chip 1041 is in the single board 104
  • the optical module 105 is a single
  • the external device of the board 104 is attached to the board 104 as an example for description.
  • the optical module 105 further includes an equalizer 1043, which is used to perform signal equalization processing on the received optical signal.
  • the equalizer 1043 is a component for correcting the amplitude frequency characteristic and the phase frequency characteristic of the transmission channel.
  • the equalizer 1043 may be a digital equalizer 1043 or an analog equalizer 1043, which is not limited here.
  • the equalizer 1043 may be integrated in the DSP 1042 or an independent module, which is not limited here.
  • the optical module 105 further includes at least one TIA.
  • the optical module 105 includes two or more TIAs, the optical module 105 is called an integrated optical module 105.
  • the optical module 105 includes two TIAs, namely 10G PON TIA 1044-0 and 50G PON TIA 1044-1, where 10G PON TIA 1044-0 corresponds to an uplink and downlink rate of 10Gb / s 10G PON system, 50G PON TIA 1044-1 corresponds to a 50G PON system with an upstream and downstream rate of 50Gb / s, so that the optical module 105 can receive and process optical signals sent by ONUs with a rate of 10G or 50G.
  • the MAC chip 1041 will send to the corresponding TIA through one of the two RESET pins (the pins used to send the reset signal to 10G PON TIA 1044-0 or 50G PON TIA 1044-1, respectively) Reset the signal so that the corresponding TIA can receive the optical signal.
  • the MAC chip 1041 does not need to send a reset signal to the DSP 1042 through 2 RESET pins, so that 2 RESET pins are freed, Can be used for other purposes.
  • a clock chip 1045 may be built in the single board 104, and two differential clock signals are sent to the DSP 1042 through the two RESETs vacated above.
  • the clock signal is generated by the clock generator and has a fixed clock frequency. It is usually used in synchronization circuits to determine when the state of the logic unit is updated. It is a semaphore with a fixed period and independent of operation. , Thereby playing the role of a timer, to ensure that related electronic components can operate synchronously.
  • the clock generator uses an oscillator that can provide a square wave output to generate the clock.
  • the oscillator circuit always uses the feedback method to oscillate the oscillator.
  • the oscillator works at a specific frequency.
  • two differential clock signals are transmitted through the differential transmission mode and the two RESET pins to ensure that the MAC chip 1041 and the DSP 1042 operate synchronously.
  • the clock chip 1045 may also be integrated in the MAC chip 1041, which is not limited herein.
  • the OLT due to different passive devices and distances connected between different ONUs and the OLT, the required equalization parameters for optical signals sent by different ONUs are different. Therefore, in the prior art, each time the OLT receives the optical signal sent by the ONU, it will first set a preset initial equalization parameter, which is generally (0, 0, ..., 0), and then use the ONU to send The optical signal performs convergence processing on a preset initial equalization parameter to obtain a corresponding reference equalization parameter, and performs signal equalization processing on the received optical signal through the reference equalization parameter and converts it into an electrical signal to obtain an electrical signal that the OLT can obtain valid information .
  • the process of converging from the preset initial equalization parameter to the reference equalization parameter requires a period of time, which causes a long delay in the process of receiving the OLT service by the ONU.
  • the MAC chip may send the first information to the DSP, the first information includes the first ONU identifier, because the DSP may determine the related first reference equalization parameter according to the first ONU identifier, thereby setting the equalization parameter of the equalizer It is the first reference equalization parameter without re-convergence, which saves time and reduces delay.
  • an embodiment of the present application also provides an information processing method, including:
  • the optical module detects the registered optical signal during the ONU registration phase.
  • the OLT will periodically open a window to enter the ONU registration stage.
  • the online ONU will temporarily not send optical signals, but the newly online ONU will send optical signals; or, the optical module will not receive the optical signals sent by the online ONU temporarily, but monitor the light sent by the newly online ONU. signal.
  • the optical signal since the optical signal is used to register the ONU, it is called a registered optical signal.
  • the DSP will send a reset signal to the TIA, so that the TIA receives the registered optical signal.
  • the equalizer performs convergence during the ONU registration phase to obtain the first reference equalization parameter.
  • the DSP after the TIA receives the registered optical signal, the DSP cannot directly convert the registered optical signal into an electrical signal, but needs to first perform signal equalization processing on the registered optical signal to obtain the processed registered optical signal, In order to be converted into electrical signals. It should be noted that performing signal equalization processing on the optical signal needs to determine the reference equalization parameter of the equalizer, so as to perform signal equalization processing on the optical signal through the reference equalization parameter.
  • Intersymbol interference is a mobile wireless communication channel
  • the "equalization" achieved by the equalizer is an effective means to deal with the intersymbol interference. Due to the randomness and time-varying nature of mobile fading channels, this requires that the equalizer must be able to track the time-varying characteristics of the mobile communication channel in real time, also known as "adaptive equalizer".
  • the equalizer uses signal equalization technology to achieve convergence at the ONU registration stage to obtain the first reference equalization parameter.
  • the equalization technique is to insert an adjustable filter in the digital communication system to correct and compensate the system characteristics and reduce the impact of inter-symbol interference.
  • the equalizer is usually implemented with a filter.
  • the filter is used to compensate for the distorted pulses.
  • the demodulated output samples obtained by the arbiter are samples corrected by the equalizer or after the intersymbol interference is removed.
  • the equalizer continuously adjusts the gain directly from the actual digital signal transmitted according to a certain algorithm, so it can adapt to the random changes of the channel, so that the equalizer always maintains the best state, thereby having better distortion compensation performance.
  • the equalizer generally includes two working modes, namely training mode and tracking mode. Taking the training mode as an example, first, the transmitter transmits a known fixed-length training sequence so that the equalizer at the receiver can make the correct settings.
  • a typical training sequence is a binary pseudo-random signal or a series of pre-specified data bits, and user data is transmitted immediately after the training sequence.
  • the equalizer at the receiver will evaluate the channel characteristics through a recursive algorithm and modify the filter coefficients to compensate the channel.
  • the equalizer When designing the training sequence, it is required that the equalizer can obtain the correct filter coefficients through this training sequence even under the worst channel conditions. In this way, after receiving the training sequence, the filter coefficients of the equalizer are already close to the optimal value.
  • the adaptive algorithm of the equalizer can track the changing channel, and the adaptive equalizer will continuously change its filtering characteristics.
  • the equalizer needs to do repeated training periodically.
  • user data is divided into several segments and transmitted in the corresponding time period. Whenever a new time period is received, the equalizer will use the same training sequence to modify it.
  • the equalizer is generally implemented in the baseband or IF part of the receiver.
  • the complex expression of the baseband envelope can describe the bandpass signal waveform, so the channel response, demodulated signal, and adaptive algorithm can usually be simulated and implemented in the baseband part. .
  • the equalizer in the optical module may converge the preset initial equalization parameter through the registered optical signal to obtain a first reference equalization parameter, and the first reference equalization parameter is used to signal the registered optical signal Balanced processing.
  • the preset initial equalization parameter may be set to a random array or a fixed array, such as an array with all 0s (0, 0, 0, ..., 0), here No limitation.
  • the goal is to calculate an array whose mean square error is less than a preset value.
  • an array (C10, C11, C12, ..., C1n) can be obtained, the mean square error of the array is calculated, and if it is greater than a preset value, the iteration continues.
  • an array (Cm0, Cm1, Cm2, ..., Cmn) is obtained, the mean square error of the array is calculated, and if it is greater than a preset value, the iteration continues.
  • an array (Cp0, Cp1, Cp2, ..., Cpn) is obtained, and the mean square error of the array is calculated. If it is less than the preset value, the array (Cp0, Cp1, Cp2, ..., Cpn) As the first reference equalization parameter. In some feasible embodiments, it is not enough to calculate the mean square error with only one array calculation.
  • the preset value is not enough, and it needs to be calculated multiple times in a row for less than the preset value, such as 500 times (also can be 1000 times, or other values, here Without limitation), during the 500 iterations, if the mean square error is less than the preset value, the 500th array is determined as the first reference equalization parameter.
  • the DSP when the equalizer converges to obtain the first reference equalization parameter, the DSP obtains the first reference equalization parameter from the equalizer, and sets the equalizer parameter of the equalizer to the first reference equalization parameter to The registered optical signal is subjected to signal equalization processing to obtain the processed registered optical signal. Since the MAC chip cannot process optical signals and can only process electrical signals, it is necessary for the DSP to convert the received registered optical signals into electrical signals. In the embodiment of the present application, after obtaining the processed registered optical signal, the DSP converts the processed registered optical signal into an available electrical signal, referred to herein as a registered electrical signal, and sends the registered electrical signal to the MAC chip. Then, the MAC chip can obtain valid information from the registered electrical signal, such as the serial number of the newly online ONU, and then the MAC chip can complete registration for the newly online ONU according to the serial number.
  • the MAC chip allocates the first ONU identity to the newly-launched ONU during the ONU registration phase, and sends the first ONU identity to the DSP.
  • the MAC chip in the ONU registration stage, when the MAC chip receives the registration electrical signal sent by the DSP, it may assign a logo to the newly-launched ONU to obtain the first ONU logo.
  • the first ONU identifier may be an 8-bit array, such as 110110111 or 10011110, which is not limited herein. After the MAC chip determines the first ONU identity, the first ONU identity may be sent to the DSP, so that the DSP saves the first ONU identity.
  • the board also includes a rate selection RATE_SEL pin, which is connected to the MAC chip and the DSP, respectively, and the RATE_SEL pin can be used by the MAC chip to send rate information to the DSP, and can be used by the MAC chip Sending the first ONU identifier to the DSP can also be used to send other information in some feasible embodiments, which is not limited herein. It should be noted that, when the MAC chip performs subsequent information exchange with the newly online ONU to complete the registration of the newly online ONU, it will not be repeated here.
  • the DSP stores a correspondence relationship group, where the correspondence relationship group includes a correspondence relationship between at least the first ONU identifier and the first reference equalization parameter.
  • the DSP may obtain the first reference equalization parameter determined in step 301 from the equalizer, and then save the first reference equalization parameter [eg: (Cp0, Cp1, Cp2, ..., Cpn)] and the first ONU identifier (eg, 110110111).
  • the corresponding relationship may be stored in the configuration table.
  • ONU serial number ONU logo Reference equalization parameters 1 110110111 (Cp0, Cp1, Cp2, ..., Cpn)
  • the DSP may further store a plurality of correspondences, which is referred to herein as a correspondence group, and the correspondence group includes at least the correspondence between the first ONU identifier and the first reference equalization parameter.
  • the corresponding relationship group may be saved in the configuration table.
  • a corresponding relationship group is stored in the configuration table, and the corresponding relationship group includes a corresponding relationship between multiple groups of ONU identifiers and reference equalization parameters.
  • the corresponding relationship in the corresponding relationship group in Table 2 may become more and more complete to gradually cover all ONUs served by the OLT, here Do not repeat them.
  • the MAC chip sends first information to the DSP during the ONU online phase, where the first information includes the first ONU identifier.
  • the OLT when the OLT can periodically "open a window" to register for a new ONU that is online, when the OLT "closes the window", it can enter the ONU online phase.
  • the newly-launched ONU described in steps 301-303 can be used as an online ONU to receive services of single boards (including MAC chips and optical modules, etc., which are not limited here) when the ONU is online.
  • the MAC chip can stipulate the upstream transmission time of the newly-launched ONU to upload the optical signal (herein referred to as the running optical signal) during the ONU online phase, so that the newly-launched ONU can be on the upstream
  • the transmission time sends the running optical signal to the OLT.
  • the uplink transmission time can be a period of time (such as the first second per minute) or a fixed period of time (such as 11:09:30 on October 27, 2018 This one second period) may also be a time point (such as 11:09:30 on October 27, 2018), which is not limited here.
  • the upstream transmission time of the ONU indicated by the first ONU identifier becomes the first upstream transmission time.
  • the MAC chip may send the first information to the DSP, the first information includes the first ONU identification, so that the DSP sets the equalizer when the ONU indicated by the first ONU identification sends the running optical signal Is the first reference equalization parameter.
  • the MAC chip may send the first information to the DSP through the RATE_SEL pin.
  • the first information may be carried on a single frame or multiple frames and sent. Taking a single frame as an example for description, if the first information is carried in a single frame, the first information may include an information field, and the information field may include a first ONU identifier. In some feasible embodiments, the information field may further include a check field.
  • the check bit also known as parity bit, is a binary number that indicates whether the number of 1s in the given number is odd or even. Binary numbers are the simplest error detection codes and will not be repeated here.
  • the information field may be 10 bits of information (including check digits) including a first ONU identifier and a check digit, where the first ONU identifier may be 110110111, 101101110, or 110111011 as shown in Table 2.
  • the first information further includes a delimited field, a start field, and an end field.
  • the delimitation field is used to be recognized by the DSP.
  • the DSP recognizes the delimited field, it can be determined that the frame where the delimited field is located carries the first information, and then the first ONU identifier can be obtained from the frame.
  • the content of the delimiting field may be pre-agreed, as shown in FIG. 2-2, the delimiting field is 3 bits of information (a schematic diagram of the composition of a timing information frame, where t is the transmission of one bit Duration), such as 010, 110, 101, 111, or 001, or 4 bits or more bits of information, which is not limited here.
  • the delimiting field may also be a field of 4 bits or other number of bits, which is not limited here.
  • the start field is used to indicate the start of the information field
  • the end field is used to indicate the end of the information field.
  • the start field is 4 bits of information (may be other numbers of bits, which are not limited here), such as 1111 (or 0000, which is not limited here)
  • the end field may be 4 bits of information (may be other numbers of bits, not limited here), such as 0000 (or 1111, not limited here).
  • the first information may also include multiple frames, where each frame in the multiple frames has the same function as the delimitation field, the start field, the information field, and the end field, and is not done here limited.
  • the DSP searches the corresponding relationship group for the first reference equalization parameter corresponding to the first ONU identifier, where the first reference equalization parameter is related to the first ONU identifier.
  • the DSP may determine the corresponding first reference equalization parameter in the corresponding relationship group (such as Table 2). For example, the acquired first ONU identifier is the ONU identifier of serial number 2: 101101110, then it can be determined that the corresponding first reference equalization parameter is (Dp0, Dp1, Dp2, ..., Dpn); if the acquired first ONU identifier is serial number G The ONU ID of 110111011, then it can be determined that the corresponding first reference equalization parameter is (Bp0, Bp1, Bp2, ..., Bpn).
  • the DSP sets the equalization parameter of the equalizer to the first reference equalization parameter.
  • the DSP receives the running optical signal sent by the ONU at the receiving first uplink transmission time.
  • the DSP uses the first reference equalization parameter to perform signal equalization processing on the operating optical signal to obtain a processed operating optical signal.
  • the DSP may determine the first reference equalization parameter according to the first ONU identifier in the first information, and set the equalization parameter of the equalizer to the first reference equalization parameter.
  • the first information may indicate the first uplink transmission time in two different ways.
  • the DSP immediately determines the first reference equalization parameter according to the first ONU identifier in the first information.
  • This method corresponds to that the MAC chip sends the first information before the first upstream transmission time.
  • the DSP does not save the correspondence between the first ONU identification and the first upstream transmission time, but sets the balance immediately after receiving the first information.
  • the equalization parameter of the device is a first reference equalization parameter, so that the optical module can receive the operating optical signal of the ONU during the upstream transmission time, and perform signal equalization processing on the operating optical signal using the first reference equalization parameter.
  • the DSP after receiving the first information, the DSP obtains the first ONU identifier from the first information, and determines the first reference equalization parameter according to the first ONU identifier, and can send a reset signal to the TIA to make the optical
  • the module receives the operating optical signal through the TIA during the first upstream transmission time.
  • the information field included in the first information includes at least one piece of timing information, and the at least one piece of timing information includes a correspondence between an ONU identifier and an upstream transmission time.
  • the at least one piece of timing information includes first timing information, and the first timing information is used to indicate a correspondence between the first ONU identifier and the first uplink transmission time.
  • the first uplink transmission time is the time when the ONU indicated by the first ONU identifier sends an operating optical signal to the OLT. It should be noted that the first uplink transmission time may be a point in time or The time period is not limited here.
  • the DSP after receiving the first information, the DSP obtains the first upstream transmission time corresponding to the first ONU identification, and includes the first upstream transmission time. Instead of setting the equalization parameters of the equalizer immediately, the Before the first uplink transmission time, the equalization parameter of the equalizer is set as the first reference equalization parameter to receive the running optical signal.
  • the first information may also indicate the uplink transmission time in other ways, which is not limited herein.
  • the number of the TIA is at least two, and the TIA includes a 50G optical distribution network PON TIA and a 10G PON TIA.
  • the first information further includes a rate field, which is used to indicate whether the reset signal is to be sent to the 50G PON TIA or the 10G PON TIA. After the DSP receives the first information, it can determine the rate field, and then determine whether the reset signal should be sent to the 10G PON TIA or 50G PON TIA before the first upstream transmission time according to the rate field, so that the correct TIA can receive the operating optical signal.
  • the rate field may only have one bit, such as O or 1, if it can be 0, the ONU rate is 10G, and if 1, it means the ONU rate is 50G, and vice versa, it is not limited here. .
  • the rate field is used to indicate the rate of the ONU indicated by the first ONU identifier (if it belongs to 10G or 50G), so that the DSP can determine whether to reset 10G PON TIA or 50G PON TIA.
  • the optical module has multiple TIAs with different rates, the number of bits in the rate field information can be increased. For example, if the optical module has 6 TIAs with different rates, the rate field can be 3 bits.
  • the rate field may be between the delimited field and the start field, or between the start field and the information field, or between the information field and Between the end fields, there is no limitation here.
  • the MAC chip and the MAC chip can send a reset signal to the DSP of the integrated optical module through two reset (RESET) pins.
  • One of the two RESET pins is sent to 10G PON TIA, and the other RESET pin is used to send to 50G PON TIA.
  • the DSP can send a reset signal to the corresponding TIA. Since the 2 RESET pins are no longer needed to send the reset signal, but the rate field is sent to the DSP through the RATE_SEL pin, the DSP can correct the rate field according to the rate field.
  • the TIA sends a reset signal to make the two RESET pins that were originally used to transmit the reset signal free.
  • the DSP can receive the two differential clock signals sent by the board through the two RESET pins, so that the board does not need to add pins or access the clock chip from the outside. Realize the time synchronization of each original in the OLT.
  • the first reference equalization parameter is used to perform signal equalization processing on the operating optical signal to obtain a processed operating optical signal, and the processing
  • the running optical signal is converted into running electrical signal and sent to the MAC chip.
  • the MAC chip can send the first information to the DSP.
  • the first information includes the first ONU identifier. Since the DSP can determine the relevant first reference equalization parameter according to the first ONU identifier, the equalization parameter of the equalizer is set to A reference to the equalization parameters without the need to re-converge, thereby saving time and reducing latency.
  • Figure 3 is an information processing method, including:
  • the optical module detects the registered optical signal during the ONU registration phase.
  • the equalizer performs convergence during the ONU registration stage to obtain the first reference equalization parameter.
  • the MAC chip allocates the first ONU identity to the newly-launched ONU during the ONU registration phase, and sends the first ONU identity to the DSP.
  • the DSP stores a correspondence relationship group, where the correspondence relationship group includes a correspondence relationship between at least the first ONU identifier and the first reference equalization parameter.
  • the MAC chip sends first information to the DSP during the ONU online phase, where the first information includes the first ONU identifier.
  • the DSP searches the corresponding relationship group for the first reference equalization parameter corresponding to the first ONU identifier, where the first reference equalization parameter is related to the first ONU identifier.
  • the equalizer further converges the first reference equalization parameter to obtain a second reference equalization parameter.
  • the DSP sets the equalization parameter of the equalizer to the second reference equalization parameter.
  • the DSP receives the running optical signal sent by the ONU at the first uplink transmission time.
  • the DSP uses the first reference equalization parameter to perform signal equalization processing on the operating optical signal to obtain a processed operating optical signal.
  • the equalizer when the equalization parameter of the equalizer is set in step 309, since the first reference equalization parameter is obtained by the equalizer during the ONU registration phase, the first reference equalization parameter is adapted to Network conditions, so you can recalculate the appropriate equalization parameters.
  • the equalizer after the DSP is set to acquire the first reference equalization parameter, the equalizer may also converge on the first reference equalization parameter to obtain a second reference equalization parameter, and the DSP is also used to set the equalizer Is the second reference equalization parameter.
  • the network situation may not be too large in a short time, so the first reference equalization parameter and the second reference equalization parameter are very close, so the comparison from the preset initial equalization The parameters start to converge, starting from the first reference equalization parameter, which will converge to the appropriate equalization parameter faster, which improves the convergence efficiency and saves time.
  • the equalizer is used to iteratively converge the first reference equalization parameter using the running optical signal, and the first reference equalization parameter after iterative convergence is obtained, the first reference after the iterative convergence can be used
  • the corresponding relationship group of the equalization parameters in the configuration table replaces the original first reference equalization parameter, and is paired with and stored with the corresponding first ONU identifier to update the corresponding relationship group in the configuration table in real time to adapt to the time-varying characteristics of the channel.
  • the MAC chip can send the first information to the DSP.
  • the first information includes the first ONU identifier. Since the DSP can determine the relevant first reference equalization parameter according to the first ONU identifier, the equalization parameter of the equalizer is set to A reference to the equalization parameters without the need to re-converge, thereby saving time and reducing latency.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present invention are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, Solid State Disk (SSD)) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)
  • Dc Digital Transmission (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请实施例公开了一种单板、光模块、MAC芯片、DSP以及信息处理方法。本申请实施例方法包括:媒体接入控制MAC芯片、数字信号处理模块DSP和均衡器;所述MAC芯片,用于在ONU在线阶段向所述DSP发送第一信息,所述第一信息包括第一ONU标识;所述DSP,用于接收所述第一信息,确定第一参考均衡参数,所述第一参考均衡参数与所述第一ONU标识相关;所述DSP,还用于设置所述均衡器的均衡参数为所述第一参考均衡参数。

Description

一种单板、光模块、OLT以及信息处理方法 技术领域
本申请涉及通信领域,尤其涉及一种单板、光模块、OLT以及信息处理方法。
背景技术
在当前的网络结构中,由于光纤的大量铺设,密集型光波复用(dense wavelength division multiplexing,DWDM)等新技术的应用,实现了网络主干的铺设。另外,由于宽带接入技术的发展,通过无源光纤网络(passive optical network,PON)系统的大规模普及和迅速扩建,实现了连接网络主干和局域网或家庭用户之间的一段,这就是常说的“最后一公里”。
其中,PON包括光线路终端(optical line terminal,OLT)、光配线网络(optical distribution network,ODN)和多个光网络单元(optical network unit,ONU)。OLT用于连接网络主干,ONU用于连接区域网或家庭用户。常见的ONU如光调制解调器(optical modem),亦称为“光猫”。OLT和多个ONU之间通过ODN实现通信,ODN包括馈线光纤、光分路器和支线,它们分别由不同的无源光器件组成,主要的无源光器件包括:单模光纤和光缆、光纤带和带状光缆、光连接器、无源光分支器、无源光衰减器和光纤接头等。
当OLT与ONU进行连接,OLT接收ONU发送的光信号时,无法立刻获取光信号中的有效信息,需要首先通过电域的均衡技术对光信号进行信号均衡处理,如光域数字信号处理(optical digital signal processing,oDSP)技术。具体的,OLT需要首先确定参考均衡参数,通过均衡器使用参考均衡参数对接收的光信号进行信号均衡处理,得到处理后的光信号,OLT才能从中获取有效信息。
由于OLT与不同的ONU连接的无源器件和距离的不同,造成对不同的ONU发送的光信号所需要的参考均衡参数不相同。因此,在现有技术中,每次OLT接收ONU发送的光信号时,可以首先预设一个初始均衡参数,一般是全为0,然后使用该光信号对预设的初始均衡参数进行迭代收敛处理,得到对应的参考均衡参数。最后,通过该参考均衡参数对该光信号进行信号均衡处理,得到OLT可以获取有效信息的光信号。但是,在迭代收敛的过程需要一段时间,OLT需要等待该段时间结束后,才能从接收到信号均衡处理后的光信号,并从中获取有效信息,造成了较长的时延。
发明内容
本申请实施例提供了一种单板、光模块、OLT以及信息处理方法,用于在ONU在线阶段为ONU快速设置均衡器的均衡参数,以减少时延。
本申请的第一方面提供了一种单板,该单板包括MAC芯片、DSP和均衡器。
其中,该MAC芯片在ONU在线阶段向该DSP发送第一信息,该第一信息包括第一ONU标识,该DSP接收该第一信息,确定第一参考均衡参数,该第一参考均衡参数与该第一ONU标识相关。该DSP设置该均衡器的均衡参数为该第一参考均衡参数。
在本申请中,MAC芯片可以向DSP发送第一信息,第一信息包括第一ONU标识,由于 DSP可以根据第一ONU标识确定相关的第一参考均衡参数,从而设置均衡器的均衡参数为第一参考均衡参数,而不需要重新进行收敛,从而节省了的时间,减少了时延。
在本申请实施例中,当OLT可以周期性地“开窗”,为新上线的ONU进行注册,当OLT“关窗”后,可以进入ONU在线阶段,在该ONU在线阶段,MAC芯片用于对在线的ONU进行服务。需要说明的是,上述步骤301-303所述的新上线的ONU,在ONU在线阶段时,可以作为在线的ONU以接收单板(包括MAC芯片和光模块等,此处不做限定)的服务。
在一些可行的实现方式中,该第一信息包括信息字段,该信息字段包括该第一ONU标识,以确定承载该第一ONU标识的方式。在一些可行的实施例中,该信息字段还可以包括校验字段,校验位又称奇偶校验位(parity bit)是一个表示给定位数的二进制数中1的个数是奇数还是偶数的二进制数,是最简单的错误检测码,此处不做赘述。例如,信息字段可以为包括第一ONU标识和校验位的10个比特(含校验位)的信息,其中第一ONU标识可以为110110111、101101110或110111011中的一个。
在一些可行的实现方式中,该DSP具体用于在接收到该第一信息后,从该第一信息中获取第一ONU标识,且在该第一ONU标识所对应的上行光信号到来之前,设置该均衡器的均衡参数为该第一参考均衡参数,可以向TIA发送复位信号,以使得光模块在第一上行传输时间内通过TIA接收运行光信号,则DSP在接收到第一信息后即可设置第一参考均衡参数,不需要存储该第一参考均衡参数,以最小化DSP的存储负担。
在一些可行的实现方式中,该第一信息包括信息字段,该信息字段包括至少一条时序信息,该至少一条时序信息中包括第一时序信息,该第一时序信息用于指示第一ONU标识和第一上行传输时间的对应关系。该DSP具体用于确定该第一ONU标识对应的第一参考均衡参数,并在该第一上行传输时间之前,设置该均衡器的均衡参数为该第一参考均衡参数,由于不需要重新收敛确定第一参考均衡参数,节省了时间,减少了时延。在一些可行的实施例中,该第一上行传输时间为第一ONU标识所指示的ONU向OLT发送运行光信号的时间,需要说明的是,该第一上行传输时间可以为时间点,也可以为时间段,此处不做限定。在这种方式下,该DSP接收第一信息后,获取第一ONU标识所对应的第一上行传输时间,并包括该第一上行传输时间,不立刻设置均衡器的均衡参数,而是在该第一上行传输时间之前,设置该均衡器的均衡参数为该第一参考均衡参数,以接收运行光信号。由于MAC芯片不需要临时发送指示设置参考均衡参数,可以提早向DSP指示各个设置参考均衡参数的时间,以使得MAC芯片可以更自由地安排工作线程。
在一些可行的实现方式中,该第一信息还包括定界字段、起始字段和结束字段,其中,定界字段用于被DSP辨识。在本申请实施例中,可以预先约定定界字段的内容,定界字段为3个比特的信息,如010、110、101、111或001,还是可以是4个比特或更多个比特的信息,此处不做限定。以010为例,当DSP可以持续搜索信号010,当搜索到010时,则确定该O1O为定界字段,则确定包含该定界字段的帧承载着第一信息,则DSP可以从该帧中获取第一ONU标识。在一些可行的实施例中,定界字段也可以为4个比特,或者其他数量比特的字段,此处不做限定。当DSP辨识到定界字段时,可以确定该定界字段所在的帧承载着该第一信息,则可以从该帧中获取第一ONU标识。
在一些可行的实施例中,该起始字段用于指示该信息字段开始,该结束字段用于指示 该信息字段的结束。在一些可行的实施例中,起始字段为4个比特的信息(也可以为其他数量个比特,此处不做限定),如1111(或0000,此处不做限定),结束字段可以为4个比特的信息(也可以为其他数量个比特,此处不做限定),如0000(或1111,此处不做限定)。在一些可行的实施例中,第一信息也可以包括多个帧,其中多个帧中的各个帧分别与定界字段、起始字段、信息字段和结束字段具有相同的功能,此处不做限定。
在一些可行的实现方式中,该的单板还包括速率选择RATE_SEL管脚,该RATE_SEL管脚分别连接MAC芯片和DSP,该RATE_SEL管脚可以用于MAC芯片向DSP发送速率信息,可以被该MAC芯片用于在该ONU在线阶段通过该RATE_SEL管脚向该DSP发送该第一信息,以此确定了MAC芯片向DSP发送该第一信息的管脚。
在一些可行的实现方式中,该光模块还包括跨阻放大器TIA,该DSP与该TIA连接,该DSP还用于向该TIA发送复位信号。在一些可行的实现方式中,该TIA的数量为至少两个,该TIA包括50G光配线网络PON TIA和10G PON TIA。因此,不需要MAC芯片通过2个RESET管脚向DSP发送复位信号,使得空出了2个RESET管脚,可以用于其他用途。
在一些可行的实现方式中,该第一信息还包括速率字段,该速率字段用于指示要将该复位信号发送给该50G PON TIA还是该10G PON TIA,以使得让DSP确定应该向哪个TIA发送复位信号。需要说明的是,该速率字段可以只有一个比特,如O或1,如为可以0表示该ONU的速率为10G,为1可以表示该ONU的速率为50G,反之亦可,此处不做限定。该速率字段用于指示该第一ONU标识所指示的ONU的速率(如属于10G还是50G),以使得DSP可以确定要对10G PON TIA进行复位,还是50G PON TIA进行复位。
在一些可行的实现方式中,单板还包括:2个RESET管脚。DSP可以发送复位信号给相应的TIA,由于不再需要2个RESET管脚发送复位信号,而是通过RATE_SEL管脚向DSP发送速率字段,DSP就可以根据速率字段向正确的TIA发送复位信号,以使得原来用于传输复位信号的2个RESET管脚空出来了。该MAC芯片通过该2个RESET管脚向该DSP发送2路差分时钟信号,以使得单板不需要增加管脚,也不需要从外部接入时钟芯片,实现OLT中各个原件的时间上的同步。
在一些可行的实现方式中,该均衡器在ONU注册阶段进行收敛,得到该第一参考均衡参数。在本申请实施例中,光模块中的均衡器可以通过该注册光信号对预设的初始均衡参数进行收敛,得到第一参考均衡参数,该第一参考均衡参数用于对注册光信号进行信号均衡处理。在一些可行的实施例中,预设的初始均衡参数可以设置为随机数组,也可以设置为固定数组,如设置为全为0的数组(0,0,0,……,0),此处不做限定。该MAC芯片,还用于在该ONU注册阶段为新上线的ONU分配该第一ONU标识,并向该DSP发送该第一ONU标识。该DSP存储该第一ONU标识和该第一参考均衡参数的对应关系。
在一些可行的实现方式中,该DSP,还用于存储对应关系组,该对应关系组包括至少该第一ONU标识和该第一参考均衡参数的对应关系。在本申请实施例中,当DSP接收到该第一ONU标识后,可以从均衡器中获取在中确定的第一参考均衡参数,然后保存第一参考均衡参数[如:(Cp0,Cp1,Cp2,……,Cpn)]和第一ONU标识(如:110110111)的对应关系,在一些可行的实施例中,可以将上述对应关系保存在配置表中。在一些可行的实施例中,DSP中还可以存储有多个对应关系,在此称为对应关系组,该对应关系组包括至少 该第一ONU标识和该第一参考均衡参数的对应关系。在一些可行的实施例中,对应关系组可以保存在配置表中。
该DSP确定第一参考均衡参数包括:该DSP在该对应关系组中查找该第一ONU标识对应的该第一参考均衡参数。实现了对第一ONU标识和该第一参考均衡参数的配对保存,以使得当接收MAC芯片发送的第一信息后,可以确定第一参考均衡参数,实现快速收敛。
在一些可行的实现方式中,该DSP设置该均衡器的均衡参数为该第一参考均衡参数之后,该均衡器还用于对该第一参考均衡参数进行收敛,得到第二参考均衡参数;该DSP还用于设置该均衡器的均衡参数为该第二参考均衡参数。由于适合的均衡参数与网络情况有关系,在短时间内网络情况可能不会发生太大,因此第一参考均衡参数和第二参考均衡参数之间非常接近,因此相比较从预设的初始均衡参数开始收敛,从第一参考均衡参数开始收敛,会更快收敛到合适的均衡参数,提高了收敛效率,节省了时间。
在一些可行的实现方式中,该单板还包括光模块,该DSP和该均衡器集成在该光模块中;或者,该DSP与该MAC芯片集成;或者,该均衡器集成在该DSP中,且该DSP集成在该光模块中,使得单板可以由不同的构成方式,适应不同的场景。
本申请的第二方面提供了一种光模块,包括DSP和均衡器,当MAC芯片在ONU在线阶段向该DSP发送第一信息时,该第一信息包括第一ONU标识,该DSP接收该第一信息,确定第一参考均衡参数,该第一参考均衡参数与该第一ONU标识相关,并设置该均衡器的均衡参数为该第一参考均衡参数。
在一些可行的实现方式中,本申请的第二方面所述的光模块中的DSP,用于执行与本申请第一方面所述的单板中各个实现方式的DSP一样的功能;本申请的第二方面所述的光模块中的均衡器用于执行与本申请第一方面所述的单板中各个实现方式的均衡器相同的功能,此处不做赘述。
本申请的第三方面提供了一种MAC芯片,该MAC芯片用于在ONU在线阶段向该DSP发送第一信息,该第一信息包括第一ONU标识,该DSP接收该第一信息,确定第一参考均衡参数,该第一参考均衡参数与该第一ONU标识相关,并设置该均衡器的均衡参数为该第一参考均衡参数。
在一些可行的实现方式中,本申请的第三方面所述的MAC芯片用于执行与本申请第一方面所述的单板中各个实现方式的MAC芯片相同的功能,此处不做赘述。
本申请的第四方面提供了一种DSP,该DSP用于,当MAC芯片在ONU在线阶段向该DSP发送第一信息时,该第一信息包括第一ONU标识,该DSP接收该第一信息,确定第一参考均衡参数,该第一参考均衡参数与该第一ONU标识相关,并设置该均衡器的均衡参数为该第一参考均衡参数。
在一些可行的实现方式中,本申请的第四方面中所述的DSP用于执行与本申请第一方面所述的单板中或第二方面所述的光模块中各个实现方式的DSP相同的功能,此处不做赘述。
本申请的第五方面提供了一种OLT,该OLT包括单板,该单板包括MAC芯片、DSP和均衡器;该MAC芯片,用于在ONU在线阶段向该DSP发送第一信息,该第一信息包括第一ONU标识;该DSP,用于接收该第一信息,确定第一参考均衡参数,该第一参考均衡参数与该 第一ONU标识相关;该DSP,还用于设置该均衡器的均衡参数为该第一参考均衡参数。
在一些可行的实现方式中,所述的单板用于执行与本申请第一方面所述的单板各个实现方式的单板相同的功能,此处不做赘述。
本申请的第六方面提供了一种信息处理方法,包括:
MAC芯片在ONU在线阶段向DSP发送第一信息,该第一信息包括第一ONU标识;该DSP接收该第一信息,并确定第一参考均衡参数,该第一参考均衡参数与该第一ONU标识相关;该DSP设置该均衡器的均衡参数为该第一参考均衡参数。
在一些可行的实现方式中,所述方法还执行与上述各方面所述的各个部件所实现的方法步骤,此处不做赘述。
本申请的第七方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
在本申请中,MAC芯片可以向DSP发送第一信息,第一信息包括第一ONU标识,由于DSP可以根据第一ONU标识确定相关的第一参考均衡参数,从而设置均衡器的均衡参数为第一参考均衡参数,而不需要重新进行收敛,从而节省了的时间,减少了时延。
附图说明
图1-1为PON在网络结构中的位置的示意图;
图1-2为PON的架构实施例示意图;
图1-3为OLT的前视图;
图1-4为单板内部架构的示意图;
图1-5为单板的架构的另一实施例示意图;
图2-1为一种信息处理方法的实施例示意图;
图2-2所示为时序信息帧的构成的示意图;
图3为一种信息处理方法的另一实施例示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在当前的网络结构中,已经实现了网络主干的铺设.通过PON的大规模普及和迅速扩建,实现了连接网络主干和局域网或家庭用户之间的一段。如参考图1-1所示,为PON在网络结构中的位置的示意图,图示中的OLT连接网络主干,可以通过ODN同时为多个ONU提供 服务,而1个ONU又可以同时为多个用户设备服务,如手机、电脑等,此处不做限定。
请参考图1-2,为PON的架构实施例示意图,其中,PON 100包括OLT 101、ODN 102和ONU 103。其中,OLT 101用于连接网络主干,ONU 103用于连接区域网或家庭用户,OLT101和ONU 103之间通过ODN 102连接以实现通信。
在本申请实施例中,OLT 101是PON 100中的核心部件,OLT 101一般放置在局端,提供面向用户的无源光纤网络的光纤接口。需要说明的是,OLT 101主要用于实现上联上层网络,完成PON 100的上行接入,以及通过ODN 102下连用户端设备ONU 103,实现对用户端设备ONU 103的控制、管理和注册的功能。
在本申请实施例中,ONU 103是PON 100中的用户端设备,放置在用户端,与OLT 101连接,ONU 103主要用于接收OLT 101发送的数据、响应OLT 101发出的管理命令并作相应的调整、对用户的以太网数据进行缓存,并在OLT 101分配的发送窗口中向上行方向发送以及其他的用户管理功能,以实现为用户提供语音、数据和多媒体等业务。
在本申请实施例中,ODN 102是由无源光器件组成的,无源光器件也称为“光无源器件”,是在光纤通信实现自身功能过程中,内部不发生光电能量转换的一类器件,包括光纤连接器(optical fiber connector)、光定向耦合器(optical directional coupler)、光学隔离器(optical isolator)、光衰减器(optical attenuator)等器件。无源光器件在PON 100的系统中起光纤连接、光功率分配、光信号的衰减和光波分复用等作用,具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等。无源光器件是PON 100的系统的重要组成部分,也是光纤应用领域不可缺少的元器件。
当OLT 101通过ODN 102与ONU 103进行连接,接收ONU 103发送的光信号时,无法立刻获取光信号中的有效信息,而是需要首先通过信号均衡技术对光信号进行信号均衡处理,并转换为电信号,才能从电信号中获取有效信息。在此之前,OLT 101需要首先确定均衡器的均衡参数,通过均衡器使用均衡参数对接收的光信号进行信号均衡处理,得到处理后的光信号,并转化为电信号,该OLT 101才能从中获取有效信息。
在一些可行的实施例中,该OLT 101可以为如图1-3所示(为OLT的前视图),在该OLT 101中,可以包括多个单板,多个单板包括业务板、主控板和集佳管理板等,该OLT 101还可以包括防尘网、理线架、风扇模块等,此处不做限定。以单板为业务板为例,一个单板可以有单板插槽区,单板插槽区可以包括多个插槽,每个插槽可以提供给光模块插附。
在本申请实施例中,通过对OLT中的内部器件的信息交互的过程进行了改进,以实现上述的方法以及效果。以下对单板的内部架构进行描述,请参考图1-4(为单板内部架构的示意图),单板104可以包括媒体接入控制(media access control,MAC)芯片1041和数字信号处理(digital signal processing,DSP)1042。
需要说明的是,MAC芯片1041可以通过MAC协议控制节点对物理层的访问。在本申请实施例中,DSP 1042可以对接收的光信号进行光电转换。具体的,DSP 1042的功能可通过能够实现数字信号处理技术的芯片实现光电转换,即在发送端把电信号转换为光信号,在接收端把光信号转换为电信号,此处不做限定。
在一些可行的实施例中,该单板还可以包括均衡器和光模块,该DSP和该均衡器集成 在该光模块中,或者该DSP与该MAC芯片集成,或者该均衡器集成在该DSP中,且该DSP集成在该光模块中,此处不做限定。
在一些可行的实施例中,光模块可以集成在单板中,也可以作为单板的外接设备,此处不做限定。当光模块作为单板的外接设备时,该光模块包括DSP和均衡器,该光模块插附在单板上,通过插附的端口中的多个管脚与该单板中的MAC芯片进行信息交互,其中包括2个RESET管脚和1个RATE_SEL管脚,以接收单板提供的电源,并将单板传输过来的电信号转换成光信号,或将通过接收的光信号转换成电信号,发送给单板,以实现光电转换。
以下举例进行说明,如图1-5所示(为单板的架构的另一实施例示意图),以DSP 1042集成在光模块105中,MAC芯片1041在单板104中,光模块105为单板104的外接设备,插附在单板104为例进行说明。
在本申请实施例中,光模块105还包括均衡器1043,该均衡器1043用于对接收到的光信号进行信号均衡处理。均衡器1043是用于校正传输信道幅度频率特性和相位频率特性的部件,在一些可行的实施例中,均衡器1043可以是数字均衡器1043,也可以采用模拟均衡器1043,此处不做限定。需要说明的是,该均衡器1043可以集成在DSP 1042中,也可以为独立的模块,此处不做限定。
在本申请实施例中,该光模块105还包括至少一个TIA。当光模块105包括2个或以上数量的TIA时,则光模块105称为集成光模块105。如图1-5所示,该光模块105包括2个TIA,分别为10G PON TIA 1044-0和50G PON TIA 1044-1,其中,10G PON TIA 1044-0对应为上下行速率为10Gb/s的10G PON系统,50G PON TIA 1044-1对应上下行速率为50Gb/s的50G PON系统,使得该光模块105可以接收和处理速率为10G或50G的ONU发送的光信号。
在现有技术中,MAC芯片1041会通过2个RESET管脚(为分别用于发送复位信号到10G PON TIA 1044-0或50G PON TIA 1044-1的管脚)中的一个向相应的TIA发送复位信号,以使得相应的TIA可以接收光信号。在本申请实施例中,通过对MAC芯片1041和DSP 1042之间交互信息的改进,不需要MAC芯片1041通过2个RESET管脚向DSP 1042发送复位信号,使得空出了2个RESET管脚,可以用于其他用途。
如在一些可行的实施例中,单板104中可以内置时钟芯片1045,通过上述空出的2个RESET向DSP 1042发送2路差分时钟信号。需要说明的是,时钟信号是由时钟发生器产生的,具有固定的时钟频率,通常被用于同步电路当中,决定逻辑单元中的状态何时更新,是有固定周期并与运行无关的信号量,从而扮演计时器的角色,保证相关的电子组件得以同步运作。时钟发生器是用一个可以提供方波输出的振荡器来生成时钟的,振荡器电路始终使用反馈的方式来使振荡器振荡,通过反馈相应的参数,使得振荡器工作在一个特定频率。在本申请实施例中,通过差分传输的方式和2个RESET管脚传输2路差分时钟信号,以保证MAC芯片1041和DSP 1042以同步运作。在一些可行的实施例中,时钟芯片1045也可以集成在MAC芯片1041中,此处不做限定。
在现有技术中,由于不同的ONU与OLT连接的无源器件和距离不同,造成对不同的ONU发送的光信号所需要的均衡参数不相同。因此,在现有技术中,每次OLT接收ONU发送的光信号时,会首先设置一个预设的初始均衡参数,一般是为(0,0,……,0),然后使用 该ONU发送的光信号对预设的初始均衡参数进行收敛处理,得到对应的参考均衡参数,通过该参考均衡参数对接收的光信号进行信号均衡处理,并转换为电信号,得到OLT可以获取有效信息的电信号。但是,一般来说,在从预设的初始均衡参数收敛到参考均衡参数的过程,需要一段时间,造成在ONU接收OLT服务的过程中,有较长的时延。
在本申请实施例中,MAC芯片可以向DSP发送第一信息,第一信息包括第一ONU标识,由于DSP可以根据第一ONU标识确定相关的第一参考均衡参数,从而设置均衡器的均衡参数为第一参考均衡参数,而不需要重新进行收敛,从而节省了的时间,减少了时延。
为此,下面对在本申请实施例中单板的各个内部器件的信息交互过程的进行描述,具体的,根据设置均衡参数的不同,可以分两个实施例来描述。
一、设置均衡器的均衡参数为第一均衡参数。
请参考图2-1,本申请实施例还提供了一种信息处理方法,包括:
201、光模块在ONU注册阶段检测注册光信号。
在本申请实施例中,在该OLT会周期性地开窗,进入ONU注册阶段。在ONU注册阶段,在线的ONU会暂时不发送光信号,而由新上线的ONU发送光信号;或,光模块暂时不接收在线的ONU发送的光信号,而是监测新上线的ONU发送的光信号。在本申请实施例中,由于该光信号用于对ONU的注册,称为注册光信号。当光模块监测到注册光信号时,DSP会向TIA发送复位信号,以使该TIA接收注册光信号。
需要说明的是,在可编程的芯片(如单片机)、可编程控制器、微机等电子设备的运行中,会出现程序跑飞的情况或程序跳转,可用手动或自动的方法发给硬件特定接口使软件的运行恢复到特定的程序段运行,这一过程就是复位过程。而在这一过程中,通过手动或自动的方法发给硬件特定接口的信号,就是复位信号。
202、该均衡器在ONU注册阶段进行收敛,得到该第一参考均衡参数。
在本申请实施例中,当TIA接收到注册光信号后,DSP无法直接把该注册光信号转换为电信号,而是需要首先对注册光信号进行信号均衡处理,得到处理后的注册光信号,才能转换为电信号。需要说明的是,对光信号进行信号均衡处理需要确定均衡器的参考均衡参数,以通过参考均衡参数对光信号进行信号均衡处理。
需要说明的是,在通信中,在带宽受限的信道中,由于多径影响的码间干扰会使被传输的信号产生变形,从而在接收时发生误码,码间干扰是移动无线通信信道中传输高速数据时的主要障碍。因此,接收端的均衡器可以通过产生与信道相反的特性,用来抵消信道的时变多径传播特性引起的码间干扰,均衡器所实现的“均衡”是对付码间干扰的有效手段。由于移动衰落信道具有随机性和时变性,这就要求均衡器必须能够实时地跟踪移动通信信道的时变特性,也称为“自适应均衡器”。
在本申请实施例中,均衡器通过信号的均衡技术实现在ONU注册阶段进行收敛,得到第一参考均衡参数。需要说明的是,均衡技术是在数字通信系统中插入一种可调滤波器可以校正和补偿系统特性,减少码间干扰的影响。均衡器通常是用滤波器来实现的,使用滤波器来补偿失真的脉冲,判决器得到的解调输出样本,是经过均衡器修正过的或者清除了码间干扰之后的样本。均衡器直接从传输的实际数字信号中根据某种算法不断调整增益,因而能适应信道的随机变化,使均衡器总是保持最佳的状态,从而有更好的失真补偿性能。
均衡器一般包含两种工作模式,即训练模式和跟踪模式。以训练模式为例,首先,发射机发射一个已知的定长的训练序列,以便接收机处的均衡器可以做出正确的设置。典型的训练序列是一个二进制伪随机信号或是一串预先指定的数据位,而紧跟在训练序列后被传送的是用户数据。接收机处的均衡器将通过递归算法来评估信道特性,并且修正滤波器系数以对信道做出补偿。在设计训练序列时,要求做到即使在最差的信道条件下,均衡器也能通过这个训练序列获得正确的滤波系数。这样就可以在收到训练序列后,使得均衡器的滤波系数已经接近于最佳值。而在接收数据时,均衡器的自适应算法就可以跟踪不断变化的信道,自适应均衡器将不断改变其滤波特性。
需要说明的是,均衡器从调整参数至形成收敛,整个过程是均衡器算法、结构和通信变化率的函数。为了能有效的消除码间干扰,均衡器需要周期性的做重复训练。在数字通信系统中用户数据是被分为若干段并被放在相应的时间段中传送的,每当收到新的时间段,均衡器将用同样的训练序列进行修正。均衡器一般被放在接收机的基带或中频部分实现,基带包络的复数表达式可以描述带通信号波形,所以信道响应、解调信号和自适应算法通常都可以在基带部分被仿真和实现。
在本申请实施例中,光模块中的均衡器可以通过该注册光信号对预设的初始均衡参数进行收敛,得到第一参考均衡参数,该第一参考均衡参数用于对注册光信号进行信号均衡处理。在一些可行的实施例中,预设的初始均衡参数可以设置为随机数组,也可以设置为固定数组,如设置为全为0的数组(0,0,0,……,0),此处不做限定。
在本申请实施例中,若初始均衡数组为(C00,C01,C02,……,C0n),目标是计算出均方误差小于预设值的数组。经过一次迭代后,可以得到数组(C10,C11,C12,……,C1n),计算该数组的均方误差,若大于预设值,则继续迭代。经过m次迭代后,得到数组(Cm0,Cm1,Cm2,……,Cmn),计算该数组的均方误差,若大于预设值,则继续迭代。经过p次迭代后,得到数组(Cp0,Cp1,Cp2,……,Cpn),计算该数组的均方误差,若小于预设值,则将数组(Cp0,Cp1,Cp2,……,Cpn)作为第一参考均衡参数。在一些可行的实施例中,只有一次数组计算起均方误差小预设值是不够的,需要连续多次计算小于预设值,如500次(也可以为1000次,或其他数值,此处不做限定),在这500次迭代的过程中,若起均方误差小于预设值,则从确定第500次的数组作为该第一参考均衡参数。
203、向MAC芯片发送注册电信号。
在本申请实施例中,当均衡器进行收敛,得到第一参考均衡参数后,DSP从均衡器中获取第一参考均衡参数,设置均衡器的均衡参数为该第一参考均衡参数,以对该注册光信号进行信号均衡处理,得到处理后的注册光信号。由于MAC芯片并不能处理光信号,只能处理电信号,需要DSP将接收到的注册光信号转换为电信号。在本申请实施例中,得到处理后的注册光信号后,DSP将该理后的注册光信号转换为可以电信号,在此称为注册电信号,并将该注册电信号发送给MAC芯片,则MAC芯片可以从该注册电信号中获取有效信息,如新上线的ONU的序列号,则该MAC芯片可以根据该序列号为该新上线的ONU完成注册。
204、该MAC芯片在该ONU注册阶段为新上线的ONU分配该第一ONU标识,并向该DSP发送该第一ONU标识。
在本申请实施例中,在该ONU注册阶段,当MAC芯片接收到DSP发送的注册电信号后, 可以为新上线的ONU分配标识,得到第一ONU标识。在一些可行的实施例中,第一ONU标识可以为8个比特的数组,如110110111或10011110,此处不做限定。当MAC芯片确定了第一ONU标识后,可以将该第一ONU标识发送给DSP,以使得该DSP对该第一ONU标识进行保存。在一些可行的实施例中,单板还包括速率选择RATE_SEL管脚,该RATE_SEL管脚分别连接MAC芯片和DSP,该RATE_SEL管脚可以用于MAC芯片向DSP发送速率信息,可以用于该MAC芯片向该DSP发送该第一ONU标识,在一些可行的实施例中,还可以用于发送其他信息,此处不做限定。需要说明的是,当MAC芯片通过后续的与该新上线的ONU进行信息交互,以完成该新上线的ONU的注册,此处不做赘述。
205、该DSP存储对应关系组,该对应关系组包括至少该第一ONU标识和该第一参考均衡参数的对应关系。
在本申请实施例中,当DSP接收到该第一ONU标识后,可以从均衡器中获取在上述步骤301中确定的第一参考均衡参数,然后保存第一参考均衡参数[如:(Cp0,Cp1,Cp2,……,Cpn)]和第一ONU标识(如:110110111)的对应关系,在一些可行的实施例中,可以将上述对应关系保存在配置表中。
如表1所示,得到第一ONU标识和第一参考均衡参数的对应关系。
ONU序号 ONU标识 参考均衡参数
1 110110111 (Cp0,Cp1,Cp2,……,Cpn)
表1
在一些可行的实施例中,DSP中还可以存储有多个对应关系,在此称为对应关系组,该对应关系组包括至少该第一ONU标识和该第一参考均衡参数的对应关系。在一些可行的实施例中,对应关系组可以保存在配置表中。
如表2所示,该配置表中保存有对应关系组,该对应关系组包括多组ONU标识和参考均衡参数的对应关系。
ONU序号 ONU标识 参考均衡参数
1 110110111 (Cp0,Cp1,Cp2,……,Cpn)
2 101101110 (Dp0,Dp1,Dp2,……,Dpn)
…… …… ……
G 110111011 (Bp0,Bp1,Bp2,……,Bpn)
表2
在一些可行的实施例中,随着单板为新上线的ONU进行注册,如表2中的对应关系组中的对应关系可以越来越完备,以逐渐涵盖OLT所服务的所有ONU,此处不做赘述。
206、该MAC芯片在ONU在线阶段向该DSP发送第一信息,该第一信息包括第一ONU标识。
在本申请实施例中,当OLT可以周期性地“开窗”,为新上线的ONU进行注册,当OLT“关窗”后,可以进入ONU在线阶段,在该ONU在线阶段,MAC芯片用于对在线的ONU进行服务。需要说明的是,上述步骤301-303所述的新上线的ONU,在ONU在线阶段时,可以作为在线的ONU以接收单板(包括MAC芯片和光模块等,此处不做限定)的服务。
需要说明的是,在ONU注册阶段,MAC芯片可以新上线的ONU约定在ONU在线阶段上 传光信号(在此称为运行光信号)的上行传输时间,以使得该新上线的ONU可以在该上行传输时间向OLT发送运行光信号。需要说明的是,该上行传输时间可以为一个周期内的时间段(如每分钟的第一秒),也可以为一个固定的时间段(如2018年10月27日11点09分30秒的这一秒钟期间),也可以为也可以为时间点(如2018年10月27日11点09分30秒),此处不做限定。在本申请实施例中,第一ONU标识所指示的ONU的上行传输时间成为第一上行传输时间。
在ONU在线阶段,MAC芯片可以向DSP发送第一信息,该第一信息包括第一ONU标识,以使得该DSP在该第一ONU标识所指示的ONU在发送运行光信号的时候,设置均衡器的均衡参数为第一参考均衡参数。在一些可行的实施例中,MAC芯片可以通过RATE_SEL管脚向DSP发送的该第一信息。
在一些可行的实施例中,该第一信息可以承载在单帧或多个帧上进行发送。以单帧为例进行说明,若第一信息承载在单帧中,该第一信息可以包括信息字段,该信息字段可以包括第一ONU标识。在一些可行的实施例中,该信息字段还可以包括校验字段,校验位又称奇偶校验位(parity bit)是一个表示给定位数的二进制数中1的个数是奇数还是偶数的二进制数,是最简单的错误检测码,此处不做赘述。例如,信息字段可以为包括第一ONU标识和校验位的10个比特(含校验位)的信息,其中第一ONU标识可以如表2所示的110110111、101101110或110111011。
在一些可行的实施例中,该第一信息还包括定界字段、起始字段和结束字段。其中,定界字段用于被DSP辨识。当DSP辨识到定界字段时,可以确定该定界字段所在的帧承载着该第一信息,则可以从该帧中获取第一ONU标识。
在本申请实施例中,可以预先约定定界字段的内容,如图2-2所示,定界字段为3个比特的信息(为时序信息帧的构成的示意图,其中,t为传输一个比特的持续时间),如010、110、101、111或001,还是可以是4个比特或更多个比特的信息,此处不做限定。以010为例,当DSP可以持续搜索信号010,当搜索到010时,则确定该O1O为定界字段,则确定包含该定界字段的帧承载着第一信息,则DSP可以从该帧中获取第一ONU标识。在一些可行的实施例中,定界字段也可以为4个比特,或者其他数量比特的字段,此处不做限定。
在一些可行的实施例中,该起始字段用于指示该信息字段开始,该结束字段用于指示该信息字段的结束。在一些可行的实施例中,起始字段为4个比特的信息(也可以为其他数量个比特,此处不做限定),如1111(或0000,此处不做限定),结束字段可以为4个比特的信息(也可以为其他数量个比特,此处不做限定),如0000(或1111,此处不做限定)。在一些可行的实施例中,第一信息也可以包括多个帧,其中多个帧中的各个帧分别与定界字段、起始字段、信息字段和结束字段具有相同的功能,此处不做限定。
207、该DSP在该对应关系组中查找该第一ONU标识对应的该第一参考均衡参数,该第一参考均衡参数与该第一ONU标识相关。
在本申请实施例中,当DSP接收到第一ONU标识后,可以在对应关系组中(如表2)确定对应的第一参考均衡参数。例如获取的第一ONU标识为序号2的ONU标识:101101110,则可以确定对应的第一参考均衡参数为(Dp0,Dp1,Dp2,……,Dpn);如获取的第一ONU标识为序号G的ONU标识:110111011,则可以确定对应的第一参考均衡参数为(Bp0,Bp1, Bp2,……,Bpn)。
208、该DSP设置该均衡器的均衡参数为该第一参考均衡参数。
209、该DSP在该接收第一上行传输时间接收该ONU发送的运行光信号。
210、该DSP使用该第一参考均衡参数对该运行光信号进行信号均衡处理,得到处理后的运行光信号。
在本申请实施例中,当DSP接收到第一信息后,可以根据该第一信息中的该第一ONU标识确定该第一参考均衡参数,并设置该均衡器的均衡参数为第一参考均衡参数。在一些可行的实施例中,该第一信息可以通过2种不同的方式指示第一上行传输时间。
第一种方式,DSP接收第一信息后,立刻根据第一信息中的第一ONU标识确定第一参考均衡参数。这种方式对应了MAC芯片在第一上行传输时间之前发送第一信息,DSP并没有保存第一ONU标识和第一上行传输时间的对应关系,而是在接收到第一信息后,立刻设置均衡器的均衡参数为第一参考均衡参数,以使得光模块可以在该上行传输时间接收ONU的运行光信号,并使用该第一参考均衡参数对该运行光信号进行信号均衡处理。在这种方式下,DSP接收到第一信息后,从该第一信息中获取第一ONU标识,并根据该第一ONU标识确定第一参考均衡参数,可以向TIA发送复位信号,以使得光模块在第一上行传输时间内通过TIA接收运行光信号。
第二种方式,第一信息包括的信息字段中,包括至少一条时序信息,该至少一条时序信息包括ONU标识和上行传输时间的对应关系。该至少一条时序信息包括第一时序信息,该第一时序信息用于指示第一ONU标识和第一上行传输时间的对应关系。在一些可行的实施例中,该第一上行传输时间为第一ONU标识所指示的ONU向OLT发送运行光信号的时间,需要说明的是,该第一上行传输时间可以为时间点,也可以为时间段,此处不做限定。在这种方式下,该DSP接收第一信息后,获取第一ONU标识所对应的第一上行传输时间,并包括该第一上行传输时间,不立刻设置均衡器的均衡参数,而是在该第一上行传输时间之前,设置该均衡器的均衡参数为该第一参考均衡参数,以接收运行光信号。
在一些可行的实施例中,该第一信息还可以通过其他方式指示上行传输时间,此处不做限定。
在一些可行的实施例中,该TIA的数量为至少两个,该TIA包括50G光配线网络PON TIA和10G PON TIA。在一些可行的实施例中,该第一信息还包括速率字段,该速率字段用于指示要将该复位信号发送给该50G PON TIA还是该10G PON TIA。DSP接收到了第一信息后,可以确定速率字段,然后根据该速率字段确定在第一上行传输时间之前应该向10G PON TIA还是50G PON TIA发送复位信号,以使得正确的TIA可以接收运行光信号。
需要说明的是,该速率字段可以只有一个比特,如O或1,如为可以0表示该ONU的速率为10G,为1可以表示该ONU的速率为50G,反之亦可,此处不做限定。该速率字段用于指示该第一ONU标识所指示的ONU的速率(如属于10G还是50G),以使得DSP可以确定要对10G PON TIA进行复位,还是50G PON TIA进行复位。在一些可行的实施例中,若该光模块具有多个不同速率的TIA,速率字段的信息的比特数可以增加,如该光模块具有6个不同速率的TIA,速率字段可以为3位,此处不做限定。在一些可行的实施例中,在承载第一信息的帧中,该速率字段可以在定界字段和起始字段之间,也可以在起始字段和信 息字段之间,也可以在信息字段和结束字段之间,此处不做限定。
需要说明的是,在现有技术中,与MAC芯片可以通过2个复位(RESET)管脚向集成光模块的DSP发送复位信号。2个RESET管脚中的一个RESET管脚发送给10G PON TIA,另一个RESET管脚用于发送给50G PON TIA。在本申请实施例中,DSP可以发送复位信号给相应的TIA,由于不再需要2个RESET管脚发送复位信号,而是通过RATE_SEL管脚向DSP发送速率字段,DSP就可以根据速率字段向正确的TIA发送复位信号,以使得原来用于传输复位信号的2个RESET管脚空出来了。因此,在本申请实施例中,该DSP可以通过2个RESET管脚接收该单板发送的2路差分时钟信号,以使得单板不需要增加管脚,也不需要从外部接入时钟芯片,实现OLT中各个原件的时间上的同步。
在一些可行的实施例中,当该DSP设置获取第一参考均衡参数之后,使用该第一参考均衡参数对该运行光信号进行信号均衡处理,得到处理后的运行光信号,并对该处理后的运行光信号转换为运行电信号,并发送给MAC芯片。
在本申请中,MAC芯片可以向DSP发送第一信息,第一信息包括第一ONU标识,由于DSP可以根据第一ONU标识确定相关的第一参考均衡参数,从而设置均衡器的均衡参数为第一参考均衡参数,而不需要重新进行收敛,从而节省了的时间,减少了时延。
请参考图3,为一种信息处理方法,包括:
一、设置均衡器的均衡参数为第二均衡参数。
301、光模块在ONU注册阶段检测注册光信号。
302、该均衡器在ONU注册阶段进行收敛,得到该第一参考均衡参数。
303、向MAC芯片发送注册电信号。
304、该MAC芯片在该ONU注册阶段为新上线的ONU分配该第一ONU标识,并向该DSP发送该第一ONU标识。
305、该DSP存储对应关系组,该对应关系组包括至少该第一ONU标识和该第一参考均衡参数的对应关系。
306、该MAC芯片在ONU在线阶段向该DSP发送第一信息,该第一信息包括第一ONU标识。
307、该DSP在该对应关系组中查找该第一ONU标识对应的该第一参考均衡参数,该第一参考均衡参数与该第一ONU标识相关。
上述步骤301-307与上述步骤201-207相同此处不做赘述。
308、该均衡器还对该第一参考均衡参数进行收敛,得到第二参考均衡参数。
309、该DSP设置该均衡器的均衡参数为该第二参考均衡参数。
310、该DSP在该接收第一上行传输时间接收该ONU发送的运行光信号。
311、该DSP使用该第一参考均衡参数对该运行光信号进行信号均衡处理,得到处理后的运行光信号。
在本申请实施例中,当使用步骤309的方式设置均衡器的均衡参数时,由于第一参考均衡参数是均衡器在ONU注册阶段进行收敛得到的,因此该第一参考均衡参数适应的是当时网络情况,因此可以重新对计算适合的均衡参数。在本申请实施例中,当该DSP设置获取第一参考均衡参数之后,该均衡器还可以对该第一参考均衡参数进行收敛,得到第二参 考均衡参数,该DSP还用于设置该均衡器的均衡参数为该第二参考均衡参数。
由于适合的均衡参数与网络情况有关系,在短时间内网络情况可能不会发生太大,因此第一参考均衡参数和第二参考均衡参数之间非常接近,因此相比较从预设的初始均衡参数开始收敛,从第一参考均衡参数开始收敛,会更快收敛到合适的均衡参数,提高了收敛效率,节省了时间。
需要说明的是,若使用该均衡器使用该运行光信号对该第一参考均衡参数进行迭代收敛的方式,得到迭代收敛后的第一参考均衡参数后,可以使用该迭代收敛后的第一参考均衡参数在配置表中的对应关系组取代原来的第一参考均衡参数,并与对应的第一ONU标识配对保存,以实时更新配置表中的对应关系组,适应信道的时变特性。
在本申请中,MAC芯片可以向DSP发送第一信息,第一信息包括第一ONU标识,由于DSP可以根据第一ONU标识确定相关的第一参考均衡参数,从而设置均衡器的均衡参数为第一参考均衡参数,而不需要重新进行收敛,从而节省了的时间,减少了时延。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (26)

  1. 一种单板,其特征在于,所述单板包括:
    媒体接入控制MAC芯片、数字信号处理模块DSP和均衡器;
    所述MAC芯片,用于在ONU在线阶段向所述DSP发送第一信息,所述第一信息包括第一ONU标识;
    所述DSP,用于接收所述第一信息,确定第一参考均衡参数,所述第一参考均衡参数与所述第一ONU标识相关;
    所述DSP,还用于设置所述均衡器的均衡参数为所述第一参考均衡参数。
  2. 根据权利要求1所述的单板,其特征在于,所述第一信息包括信息字段,所述信息字段包括所述第一ONU标识。
  3. 根据权利要求2所述的单板,其特征在于,所述DSP具体用于在接收到所述第一信息后,且在所述第一ONU标识所对应的上行光信号到来之前,设置所述均衡器的均衡参数为所述第一参考均衡参数。
  4. 根据权利要求1所述的单板,其特征在于,所述第一信息包括信息字段,所述信息字段包括至少一条时序信息,所述至少一条时序信息中包括第一时序信息,所述第一时序信息用于指示第一ONU标识和第一上行传输时间的对应关系。
  5. 根据权利要求4所述的单板,其特征在于,所述DSP具体用于确定所述第一ONU标识对应的第一参考均衡参数;并在所述第一上行传输时间之前,设置所述均衡器的均衡参数为所述第一参考均衡参数。
  6. 根据权利要求2至5任一项所述的单板,其特征在于,所述第一信息还包括定界字段、起始字段和结束字段。
  7. 根据权利要求1至6任一项所述的单板,其特征在于,还包括速率选择RATE_SEL管脚;
    所述MAC芯片在ONU在线阶段向所述DSP发送第一信息包括:
    所述MAC芯片在所述ONU在线阶段通过所述RATE_SEL管脚向所述DSP发送所述第一信息。
  8. 根据权利要求1至7任一项所述的单板,其特征在于,所述光模块还包括跨阻放大器TIA,所述DSP与所述TIA连接,所述DSP还用于向所述TIA发送复位信号。
  9. 根据权利要求8所述的单板,其特征在于,所述TIA的数量为至少两个,所述TIA包括50G光配线网络PON TIA和10G PON TIA。
  10. 根据权利要求9所述的单板,其特征在于,所述第一信息还包括速率字段,所述速率字段用于指示要将所述复位信号发送给所述50G PON TIA还是所述10G PON TIA。
  11. 根据权利要求10所述的单板,其特征在于,还包括:
    2个RESET管脚,所述MAC芯片通过所述2个RESET管脚向所述DSP发送2路差分时钟信号。
  12. 根据权利要求1至11任一项所述的单板,其特征在于,
    所述DSP,还用于存储对应关系组,所述对应关系组包括至少所述第一ONU标识和所述第一参考均衡参数的对应关系;
    所述DSP确定第一参考均衡参数包括:所述DSP在所述对应关系组中查找所述第一ONU标识对应的所述第一参考均衡参数。
  13. 根据权利要求12所述的单板,其特征在于,
    所述均衡器,还用于在ONU注册阶段进行收敛,得到所述第一参考均衡参数;
    所述MAC芯片,还用于在所述ONU注册阶段为新上线的ONU分配所述第一ONU标识,并向所述DSP发送所述第一ONU标识;
    所述DSP存储所述第一ONU标识和所述第一参考均衡参数的对应关系。
  14. 根据权利要求1-13中任一项所述的单板,其特征在于,
    所述DSP设置所述均衡器的均衡参数为所述第一参考均衡参数之后,所述均衡器还用于对所述第一参考均衡参数进行收敛,得到第二参考均衡参数;
    所述DSP还用于设置所述均衡器的均衡参数为所述第二参考均衡参数。
  15. 根据权利要求1-14中任一项所述的单板,其特征在于,所述单板还包括光模块,所述DSP和所述均衡器集成在所述光模块中;或者,所述DSP与所述MAC芯片集成;或者,所述均衡器集成在所述DSP中,且所述DSP集成在所述光模块中。
  16. 一种光模块,其特征在于,包括DSP,所述DSP用于执行上述权利要求1-14所述的DSP的功能。
  17. 根据权利要求16所述的光模块,其特征在于,所述光模块还包括均衡器,所述均衡器用于执行上述权利要求1-14所述的均衡器的功能。
  18. 一种MAC芯片,其特征在于,所述MAC芯片用于执行上述权利要求1-15所述的MAC芯片的功能。
  19. 一种DSP,其特征在于,所述DSP用于执行上述权利要求1-15所述的DSP的功能。
  20. 一种光线路终端OLT,其特征在于,所述OLT包括权利要求1-15所述的单板。
  21. 一种信息处理方法,其特征在于,包括:
    MAC芯片在ONU在线阶段向DSP发送第一信息,所述第一信息包括第一ONU标识;
    所述DSP接收所述第一信息,并确定第一参考均衡参数,所述第一参考均衡参数与所述第一ONU标识相关;
    所述DSP设置所述均衡器的均衡参数为所述第一参考均衡参数。
  22. 根据权利要求21所述方法,其特征在于,所述第一信息包括信息字段,所述信息字段包括所述第一ONU标识。
  23. 根据权利要求22所述方法,其特征在于,所述DSP具体用于在接收到所述第一信息后,且在所述第一ONU标识所对应的上行光信号到来之前,设置所述均衡器的均衡参数为所述第一参考均衡参数。
  24. 根据权利要求21至23任一项所述方法,其特征在于,所述方法还包括:
    所述DSP存储对应关系组,所述对应关系组包括至少所述第一ONU标识和所述第一参考均衡参数的对应关系;
    所述DSP确定第一参考均衡参数包括:
    所述DSP在所述对应关系组中查找所述第一ONU标识对应的所述第一参考均衡参数。
  25. 根据权利要求24所述方法,其特征在于,
    所述DSP从所述均衡器中获取第一参考均衡参数,所述第一参考均衡参数由所述均衡器在ONU注册阶段进行收敛得到的;
    所述MAC向所述DSP发送所述第一ONU标识,所述第一ONU标识由所述MAC芯片在所述ONU注册阶段为新上线的ONU分配的标识;
    所述DSP存储所述第一ONU标识和所述第一参考均衡参数的对应关系。
  26. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求21-25所述的方法。
PCT/CN2018/112890 2018-10-31 2018-10-31 一种单板、光模块、olt以及信息处理方法 WO2020087320A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202210430007.1A CN114866149A (zh) 2018-10-31 2018-10-31 一种单板、光模块、olt以及信息处理方法
KR1020217015041A KR102542277B1 (ko) 2018-10-31 2018-10-31 보드, 광 모듈, olt 및 정보 처리 방법
CN201880098594.0A CN112889228B (zh) 2018-10-31 2018-10-31 一种单板、光模块、olt以及信息处理方法
PCT/CN2018/112890 WO2020087320A1 (zh) 2018-10-31 2018-10-31 一种单板、光模块、olt以及信息处理方法
EP18938707.9A EP3860001A4 (en) 2018-10-31 2018-10-31 SINGLE CARD, OPTICAL MODULE, OLT AND INFORMATION PROCESSING PROCESS
JP2021547613A JP7239722B2 (ja) 2018-10-31 2018-10-31 基板、光モジュール、olt、および情報処理方法
US17/244,298 US11558118B2 (en) 2018-10-31 2021-04-29 Board, optical module, OLT, and information processing method
US18/065,281 US11936430B2 (en) 2018-10-31 2022-12-13 Board, optical module, OLT, and information processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112890 WO2020087320A1 (zh) 2018-10-31 2018-10-31 一种单板、光模块、olt以及信息处理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/244,298 Continuation US11558118B2 (en) 2018-10-31 2021-04-29 Board, optical module, OLT, and information processing method

Publications (1)

Publication Number Publication Date
WO2020087320A1 true WO2020087320A1 (zh) 2020-05-07

Family

ID=70461921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112890 WO2020087320A1 (zh) 2018-10-31 2018-10-31 一种单板、光模块、olt以及信息处理方法

Country Status (6)

Country Link
US (2) US11558118B2 (zh)
EP (1) EP3860001A4 (zh)
JP (1) JP7239722B2 (zh)
KR (1) KR102542277B1 (zh)
CN (2) CN112889228B (zh)
WO (1) WO2020087320A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112889228B (zh) * 2018-10-31 2022-04-29 华为技术有限公司 一种单板、光模块、olt以及信息处理方法
CN114339481A (zh) * 2020-09-30 2022-04-12 上海诺基亚贝尔股份有限公司 用于光通信的方法、设备、装置和计算机可读介质
US11350061B1 (en) * 2021-11-11 2022-05-31 Frontier Communications Holdings, Llc Systems and methods for collecting information regarding optical connections in a fiber distribution hub of a passive optical network
US11391894B1 (en) 2021-11-11 2022-07-19 Frontier Communications Holdings, Llc Passive optical couplers having passive optical activity indicators and methods of operating the same
US11356177B1 (en) 2021-11-11 2022-06-07 Frontier Communications Holdings, Llc Systems and methods for mapping optical connections in a fiber distribution hub of a passive optical network
US20240187764A1 (en) * 2022-12-01 2024-06-06 Cortina Access, Inc. Optical network unit and power reduction method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2043286A1 (en) * 2007-09-26 2009-04-01 Nokia Siemens Networks Oy Method to equalize delays in an optical network
CN101674501A (zh) * 2009-09-22 2010-03-17 中兴通讯股份有限公司 吉比特无源光网络注册流程的实现方法及系统
CN102142894A (zh) * 2011-02-12 2011-08-03 华为技术有限公司 一种光网络单元的控制方法、装置及系统
US20180302164A1 (en) * 2015-03-25 2018-10-18 Futurewei Technologies, Inc. Channel Ranging Adjustment in Multiple-Wavelength Passive Optical Networks (PONs)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958697B2 (en) * 2003-06-10 2015-02-17 Alexander I. Soto System and method for optical layer management in optical modules and remote control of optical modules
WO2005019970A2 (en) * 2003-07-03 2005-03-03 Ubi Systems, Inc. Communication system and method for an optical local area network
JP4551280B2 (ja) * 2005-06-08 2010-09-22 株式会社日立製作所 光アクセス網システム
WO2010116487A1 (ja) * 2009-04-07 2010-10-14 株式会社日立製作所 光多重終端装置、受動光網システム、波長割当て方法
US9577758B2 (en) * 2014-04-10 2017-02-21 Tibit Communications, Inc. Method and system for scheduling cascaded PON
US9591386B2 (en) * 2014-08-27 2017-03-07 Calix, Inc. Optical network device with integrated port mirroring
US9860618B2 (en) * 2014-09-30 2018-01-02 Futurewei Technologies, Inc. Upstream wavelength calibration in optical networks
CN106851439B (zh) * 2015-12-07 2020-04-24 深圳市中兴微电子技术有限公司 一种多个光网络单元的接入方法及装置
JP6629769B2 (ja) * 2017-01-17 2020-01-15 日本電信電話株式会社 局側装置及び分散補償方法
US10778364B2 (en) * 2017-04-15 2020-09-15 Futurewei Technologies, Inc. Reduced power consumption for digital signal processing (DSP)-based reception in time-division multiplexing (TDM) passive optical networks (PONs)
CN112889228B (zh) * 2018-10-31 2022-04-29 华为技术有限公司 一种单板、光模块、olt以及信息处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2043286A1 (en) * 2007-09-26 2009-04-01 Nokia Siemens Networks Oy Method to equalize delays in an optical network
CN101674501A (zh) * 2009-09-22 2010-03-17 中兴通讯股份有限公司 吉比特无源光网络注册流程的实现方法及系统
CN102142894A (zh) * 2011-02-12 2011-08-03 华为技术有限公司 一种光网络单元的控制方法、装置及系统
US20180302164A1 (en) * 2015-03-25 2018-10-18 Futurewei Technologies, Inc. Channel Ranging Adjustment in Multiple-Wavelength Passive Optical Networks (PONs)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3860001A4 *

Also Published As

Publication number Publication date
EP3860001A1 (en) 2021-08-04
US11558118B2 (en) 2023-01-17
KR102542277B1 (ko) 2023-06-13
JP2022509322A (ja) 2022-01-20
US11936430B2 (en) 2024-03-19
US20230116204A1 (en) 2023-04-13
CN112889228A (zh) 2021-06-01
CN114866149A (zh) 2022-08-05
CN112889228B (zh) 2022-04-29
JP7239722B2 (ja) 2023-03-14
EP3860001A4 (en) 2021-10-20
US20210250096A1 (en) 2021-08-12
KR20210076120A (ko) 2021-06-23

Similar Documents

Publication Publication Date Title
WO2020087320A1 (zh) 一种单板、光模块、olt以及信息处理方法
WO2020051753A1 (zh) 数据传输方法、相关装置及系统
US20230396333A1 (en) Olt receiver parameter configuration method and device, storage medium and electronic device
WO2012088878A1 (zh) 光线路终端、光网络单元和无源光网络系统
WO2021254222A1 (zh) 一种训练序列的确定方法及相关设备
US20160254875A1 (en) Synchronous Time-Division Duplexing Amplifier Architecture
WO2008086670A1 (fr) Dispositif de réception et d'émission par ethernet à base de réseau à câble coaxial et procédé de transmission par ethernet
US11350191B2 (en) Optical line terminal and a method therefor
US10601462B2 (en) Coordinated background training in a full-duplex hybrid fiber-coaxial network
CN111988127B (zh) 一种信息同步的方法和装置
WO2018085995A1 (zh) 网络拓扑发现方法、装置及混合光纤同轴电缆网络
WO2022247380A1 (zh) 一种信号发送方法、装置、电子设备及存储介质
CN101227294B (zh) 基于同轴电缆网上的以太网收发装置及以太网传输方法
JP6093281B2 (ja) 光通信システム、信号送信制御方法及び局側光回線終端装置
KR102410664B1 (ko) 음성 패킷 통신 장치 및 그 제어방법
CN113347510B (zh) 通信设备、mac芯片、光模块
JP6085244B2 (ja) 光通信システム、信号送信制御方法及び加入者側光回線終端装置
WO2008052452A1 (fr) Procédé de configuration, système et dispositif émetteur-récepteur pour transmission de données ethernet
JP2009177318A (ja) 光通信システム及び局側装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021547613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018938707

Country of ref document: EP

Effective date: 20210430

ENP Entry into the national phase

Ref document number: 20217015041

Country of ref document: KR

Kind code of ref document: A