WO2020087298A1 - 触控显示面板与弯折检测方法 - Google Patents

触控显示面板与弯折检测方法 Download PDF

Info

Publication number
WO2020087298A1
WO2020087298A1 PCT/CN2018/112782 CN2018112782W WO2020087298A1 WO 2020087298 A1 WO2020087298 A1 WO 2020087298A1 CN 2018112782 W CN2018112782 W CN 2018112782W WO 2020087298 A1 WO2020087298 A1 WO 2020087298A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
bending detection
touch
display panel
display
Prior art date
Application number
PCT/CN2018/112782
Other languages
English (en)
French (fr)
Inventor
朱剑磊
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201880096014.4A priority Critical patent/CN112703547A/zh
Priority to PCT/CN2018/112782 priority patent/WO2020087298A1/zh
Publication of WO2020087298A1 publication Critical patent/WO2020087298A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to the field of touch technology, and in particular, to a touch display panel capable of recognizing a bending operation and its bending detection method.
  • Touch display panels have been increasingly used in electronic products. At the same time, electronic products are increasingly demanding flexibility for touch display panels, such as bendable e-books and mobile communication terminals. Adopt flexible touch display panel. How to simply detect the bending of the touch panel with a simple structure has become an urgent problem to be solved.
  • a touch display panel capable of bending detection is provided.
  • a touch display panel includes a display area, a non-display area, and a bending detection unit.
  • the display area includes a plurality of pixel units, the non-display area is provided in a peripheral area of the display area, a display circuit for performing image display by the plurality of pixel units is provided, the bend detection unit, the The bending detection unit is disposed in the non-display area and is electrically connected to the display circuit, and detects the bending of the touch display panel under the driving of the bending detection driving signal provided when the display circuit operates.
  • a bending detection method of the foregoing touch display panel includes:
  • the bending detection unit is provided in the non-display area, and the two detection electrodes in the bending detection unit are electrically connected to the display circuit and the touch circuit respectively, thereby effectively reducing the bending detection electrode
  • the complexity of the wiring and saves the space of the bending detection electrode occupying the touch display panel, and reduces the cost.
  • FIG. 1 is a schematic plan view of a touch display panel according to an embodiment of the invention.
  • FIG. 2 is a schematic plan view of the non-display area shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a specific circuit structure of a display driving unit
  • FIG. 4 is a schematic cross-sectional structure diagram of a touch display panel as shown in FIG. 1;
  • FIG. 5 is a schematic plan view of the first electrode and the second electrode shown in FIG. 4;
  • FIG. 6 is a timing diagram of the touch circuit as shown in FIGS. 1-3 identifying the bending of the touch display panel;
  • FIG. 8 is a schematic diagram of a side structure of the touch display panel in a planar state
  • 9-10 are schematic side views of the touch display panel in a bent state.
  • FIG. 1 is a schematic plan view of a touch display panel according to an embodiment of the invention.
  • the touch display panel 10 includes a display area AA and a non-display area NA.
  • the display area AA includes a plurality of pixel units PX for image display and a touch unit TU for sensing touch operation.
  • the non-display area NA is provided with a display circuit DS, a touch circuit TC and a timing control circuit TCON.
  • the display circuit DS is used to drive the pixel unit PX to perform image display
  • the touch circuit TC is used to drive the touch
  • the unit TU performs sensing applied to the touch operation received on the touch display panel 10
  • the timing control circuit TCON is used to output a synchronization control signal SYNC to control the operating states of the display circuit DS and the touch circuit TC.
  • the synchronization control signal SYNC is used to control the display circuit DS and the touch circuit TC to perform image display, touch operation, and bending detection of the touch display panel 10 in synchronization.
  • FIG. 2 is a schematic plan view of the non-display area shown in FIG. 1.
  • the display circuit DS includes a plurality of display driving units DU that sequentially output driving signals that control the pixel unit PX to receive image signals.
  • the non-display area NA is further provided with a plurality of first electrodes W1 and a second electrode W2 arranged along the first direction F1 and insulated from each other, the second electrode W2 and the
  • the plurality of first electrodes W1 constitute a plurality of capacitors, and the capacitors serve as a bending detection unit WU to detect the bending state of the touch display panel 10 and output a bending detection signal.
  • the first electrode W1 is used to receive the bending detection driving signal. After the first electrode W1 receives the bending detection driving signal, an electric field is formed by the capacitor formed with the second electrode W2 and corresponds to the second electrode W2 outputs the bending detection sensor signal.
  • the bending detection driving signal is applied by the display circuit DS, that is, the bending detection unit WU detects the bending state of the touch display panel 10 under the driving of the display circuit DS.
  • the plurality of display driving units DU are electrically connected to the first electrode W1.
  • the display circuit DS includes M display driving units DU, wherein N of the display driving units DU are electrically connected to the first electrode W1, the M and N are integers greater than 1, and M is greater than N.
  • the display driving unit DU is a scanning driving unit and outputs an image scanning signal.
  • the first electrode W1 receives an electrical signal from the display driving unit DU as a bending detection driving signal.
  • the display circuit DS further includes a data driving circuit SU for providing an image signal to the pixel unit PX when the pixel unit receives the scan signal.
  • the first electrode W1 After receiving the image scanning signal, the first electrode W1 forms a capacitance with the second electrode W2 and generates an electric field, and forms a bending detection sensing signal by detecting whether the electric field generated by the first electrode W1 and the second electrode W2 changes.
  • the circuit TC receives the bending detection sensing signal through the second electrode W2 to identify the bending state and the bending position of the touch display panel 10.
  • FIG. 3 is a schematic diagram of a circuit structure of an exemplary display driving unit DU.
  • the display driving unit DU includes an input terminal STV, a first transistor T1, a pull-up point PU, a first capacitor C, a second transistor T2, a third transistor T3, a fourth transistor T4, a scan clock signal CKV, and a scan signal output terminal Gout.
  • the gate and the drain of the first transistor T1 are directly electrically connected and electrically connected to the input terminal STV together, and are used to receive the start signal.
  • the source of the first transistor T1 is electrically connected to the gate of the second transistor T2 through a pull-up point PU.
  • the source of the second transistor T2 receives the scan clock signal CKV, and the drain of the second transistor T2 is electrically connected to the scan signal output terminal Gout.
  • the first capacitor C is electrically connected to the pull-up point PU and the scan signal output terminal Gout.
  • the gate of the third transistor T3 and the gate of the fourth transistor T4 are directly electrically connected to receive the reset signal Sre, the drain of the third transistor T3 and the drain of the fourth transistor T4 are electrically connected to the ground terminal VSS,
  • the source of the three transistors T3 is electrically connected to the pull-up point PU, and the source of the fourth transistor T4 is electrically connected to the scan signal output terminal Gout.
  • the input terminal STV is used to receive a start signal, which is used to control the first transistor T1 to be turned on, and transmit the start signal to the second transistor T2 through the pull-up point PU.
  • the second transistor T2 is turned on under the control of the start signal, and the scan clock signal is transmitted to the scan signal output terminal Gout through the second transistor T2 as the scan signal.
  • the first capacitor C is used to maintain the pull-up point PU in a high-voltage state to accurately maintain the second transistor T2 in a conductive state.
  • the circuit of the display driving unit DU is not limited to the above-mentioned 4T1C circuit structure composed of 4 transistors and 1 capacitor, for example, 4T2C composed of 4 transistors and 2 capacitors, etc., which can realize display driving The circuit structure of is not repeated here.
  • the pull-up point PU is also electrically connected to the first electrode W1 at the same time, that is, the voltage signal of the pull-up point PU is used as a bending detection driving signal of the first electrode W1.
  • the pull-up point PU is connected to the first electrode W1.
  • FIG. 4 is a schematic diagram of the side structure of the touch display panel shown in FIG. 1.
  • the touch display panel 10 includes a substrate BA, corresponding to the display area AA, and a display driving layer SD, a display medium layer SM, an encapsulation layer TFE and a touch medium layer TM are sequentially arranged on one side of the substrate BA ;
  • the display circuit DS, the packaging layer TFE and the plurality of bending detection units WU are sequentially arranged on one side of the substrate BA, and the packaging layer TFE includes an opening corresponding to the display circuit DS V1, the pull-up point PU is electrically connected to the first electrode W1 through the opening V1.
  • the pixel unit PX (FIG. 1) is provided on the display medium layer SM, the display drive layer SD is used to set the corresponding electronic components driving the pixel unit PX, and the encapsulation layer TFE is used to protect the aforementioned display drive layer SD and display medium layer SM and display circuit DS.
  • FIG. 5 is a schematic plan view of the first electrode W1 and the second electrode W2 shown in FIG. 4.
  • each first electrode W1 includes a first portion and a second portion, wherein the first portion is a stripe extending along the first direction F1
  • the second portion is a plurality of branch conductive wires that extend along the second direction F2 and are electrically connected to the first portion and are spaced apart along the first direction F1.
  • the second direction F2 is perpendicular to the first direction F1.
  • the second electrode W2 includes a third portion and a fourth portion, wherein the third portion is a strip-shaped conductive line extending along the first direction F1, and the fourth portion is extending along the second direction F2 while intersecting the third portion and A plurality of branch conductive lines arranged at intervals along the first direction F1, wherein the second portion and the fourth portion extend along opposite directions in the second direction F2 and are staggered along the first direction F1.
  • the first direction F1 is the direction in which the touch display panel 10 is bent.
  • the plurality of first electrodes W1 in the touch display panel 10 may be sequentially arranged as first electrodes W11, W12, W13 ... W1N (not shown in the figure) along the first direction F1.
  • the display drive units DU connected by two adjacent first electrodes W1 are separated by n display drive units DU, that is to say, the first electrode W11 is electrically connected to the display drive unit DU1; the first electrode W12 is electrically connected to the display drive unit Dun + 1; the first electrode W13 is electrically connected to the display driving unit DU2n + 1, and so on.
  • the plurality of display driving units DU output image scan signals in time-sharing, and correspondingly, the plurality of first electrodes W1 also time-shares the bending provided by the pull-up point PU in the plurality of display driving units DU Fold detection drive signal.
  • the plurality of first electrodes W1 and second electrodes W2 constitute a self-capacitance sensing unit. That is, the plurality of first electrodes W1 sequentially receive the bending scan signal from the touch circuit TC according to a preset time length, and then the second electrode W2 receives the bending sensing signal. When the touch display panel 10 is bent, the bending position can be identified by analyzing the bending scan signal.
  • FIG. 6 is a timing diagram for the touch circuit to identify the bending of the touch display panel 10 as shown in FIGS. 1-3
  • FIG. 7 is a flowchart of the touch circuit to identify the bending of the touch display panel 10. 5. Specifically describe the bending detection method, which includes the steps of:
  • Step 701 Apply a bending detection driving signal to the bending detection unit WU.
  • the display driving unit DU in the display circuit applies the bending detection driving signal to the bending detection unit WU during operation, then the bending detection unit WU starts to detect the touch display panel 10 under the driving of the display circuit Bends.
  • each display driving unit DU sequentially applies the image scanning signal at a predetermined time length 1H in the order of position arrangement, and at the same time, the plurality of first electrodes W1 in the bending detection unit WU follow the predetermined time length Sequentially and continuously obtain the bending detection driving signal from the corresponding display driving unit DU.
  • the predetermined interval of time 1H can be determined according to the scan duration required by each display drive unit DU, for example, the scan time required for each line of display drive unit DU is 2H (see FIG. 6) , The predetermined interval of time is 1H, etc.
  • the predetermined interval of time may also be 1 / 2H, which is not limited to this.
  • H represents a unit time length.
  • the bending detection of the touch display panel 10 includes a plurality of consecutive working periods t, each working period t includes a predetermined duration, and one working period t corresponds to one first electrode W1. Wherein, each working period t is the same as the length of time that one display driving unit DU outputs the image scanning signal.
  • the bending scan signal is applied to the first electrode W1 sorted in the first position; in the time period t2, the bending scan signal is applied to the first electrode W1 sorted in the second position; in the time period t3 , Apply a bending scan signal to the first electrode W1 sorted at the third position, and so on, and all the first electrodes W1 sequentially obtain the bending detection driving signal provided by the display driving unit DU.
  • Step 702 Receive a bending detection sensing signal through a bending detection unit WU, wherein the bending detection sensing signal corresponds to the bending detection driving signal.
  • the bending detection unit WU detects the bending state of the touch display panel 10 and receives the bending detection sensing signal from the second electrode W2, because the second electrode W2 and the first electrode W1 constitute a self-capacity bending The detection unit WU, so that when a bending detection driving signal is applied to the first electrode W1, the bending detection unit WU outputs a bending detection sensing signal from the second electrode W2.
  • Step 703 Identify whether the touch display panel 10 is bent according to the bending detection sensing signal.
  • the received bending detection sensing signal is processed to obtain the processed bending detection sensing signal, and whether the touch display panel is bent is determined by comparing the processed bending detection sensing signal value with a preset threshold fold.
  • a timer can be set in the touch circuit TC.
  • the preset threshold is set to the average value of the capacitor integration over a period of time.
  • FIGS. 8-10 are schematic diagrams of the side structure of the display panel in a planar state and a bent state, respectively.
  • the capacitance between the plurality of first electrodes W1 and the plurality of second electrodes W2 may be decomposed into the first capacitance C1 and the second capacitance C2.
  • the first capacitor C1 serves as the main capacitor
  • the second capacitor C2 serves as the main capacitor
  • the second capacitor C2 cannot be detected, and only the first capacitor C1 needs to be detected.
  • the total bending length is ⁇ r
  • the width of the first electrode W1 and the second electrode W2 is L
  • the spacing is W
  • Step 704 Determine the bending position of the touch display panel 10 according to the bending detection sensing signal.
  • each first electrode W1 corresponds to one of the display driving units DU, and each first electrode W1 obtains a bending detection driving signal corresponding to a time at which the corresponding display driving unit DU outputs an image scanning signal, so The position of the first electrode W1 can be obtained by recognizing the time when the bending detection driving signal is obtained.
  • the position at which the bending occurs can be obtained by the time when the image scanning signal is output when the bending occurs, wherein the time at which the image scanning signal is output can output the image scanning from the image driving unit DU starting from the output of the synchronization control signal SYNC to the corresponding position
  • the signal time is determined, for example, the time DT when bending occurs, the position of the first electrode W1 and its corresponding image driving unit DU can be obtained by the ratio of DT to T (DT / T)
  • the value of the sensed signal processed during the time period t2 exceeds the preset threshold, that is, it can be confirmed that the capacitance of the first electrode W12 at the second position has changed due to bending, so that it can be confirmed
  • the position where the touch display panel 10 is bent is the first electrode W12 at the second position, that is, the position corresponding to the first electrode W1 corresponding to the image driving unit DUn + 1 is bent.
  • the bending detection unit WU is provided in the non-display area, and the two detection electrodes in the bending detection unit are electrically connected to the display circuit DS and the touch circuit TC, respectively
  • the circuit DS receives the bending detection driving signal, and at the same time outputs the corresponding bending detection sensing signal to the touch circuit TC, and the touch circuit TC can identify whether the touch display panel 10 sends a bending and a bending occurs through the bending detection signal
  • the folded position effectively reduces the complexity of the wiring of the bending detection electrode, saves the space of the bending detection electrode occupying the touch display panel, and reduces the cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控显示面板(10),包括显示区(AA)、非显示区(NA)以及弯折检测单元(WU)。所述显示区(AA)包含有多个像素单元(PX),所述非显示区(NA)设置于所述显示区(AA)周边区域,设置有用于所述多个像素单元(PX)执行图像显示的显示电路(DS),所述弯折检测单元(WU)设置于所述非显示区(NA)内并且电性连接所述显示电路(DS),且在所述显示电路(DS)工作时提供的弯折检测驱动信号的驱动下检测所述触控显示面板(10)的弯折。进一步提供上述触控显示面板(10)的弯折检测方法。

Description

触控显示面板与弯折检测方法 技术领域
本发明涉及触控技术领域,尤其涉及一种能够识别弯折操作的触控显示面板及其弯折检测方法。
背景技术
触控显示面板已越来越多地应用到电子产品中,同时,电子产品针对触控显示面板的柔韧性需求也越来越多,例如具有可弯折性的电子书、移动通信终端均需要采用柔性触控显示面板。如何结构简单地检测触控面板的弯折成为急需解决的一个问题。
发明内容
为解决前述问题,提供一种可进行弯折检测的触控显示面板。
一种触控显示面板,包括显示区、非显示区以及弯折检测单元。所述显示区包含有多个像素单元,所述非显示区设置于所述显示区周边区域,设置有用于所述多个像素单元执行图像显示的显示电路,所述弯折检测单元,所述弯折检测单元设置于所述非显示区内并且电性连接所述显示电路,且在所述显示电路工作时提供的弯折检测驱动信号的驱动下检测所述触控显示面板的弯折。
一种前述触摸显示面板的弯折检测方法,所述弯折检测方法包括:
施加弯折检测驱动信号至弯折检测单元,所述弯折检测单元自所述显示电路施加所述弯折检测驱动信号;
通过弯折检测单元接收对应于所述弯折检测驱动信号的弯折检测感应信号;
依据所述感测信号识别所述触控显示面板是否弯折。
相较于现有技术,通过在非显示区设置弯折检测单元,并且所述弯折检测单元中的两个检测电极分别电性连接显示电路与触控电路,从而有效降低了弯 折检测电极走线的复杂程度,且节省了弯折检测电极占据触控显示面板的空间,降低了成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中触控显示面板的平面结构示意图;
图2是如图1所示非显示区的平面结构示意图;
图3是为显示驱动单元的具体电路结构示意图;
图4是如图1所示触控显示面板截面结构示意图;
图5是如图4所示第一电极与第二电极的平面结构示意图;
图6是如图1-3所示触控电路识别触摸显示面板弯折的时序图;
图7是触控电路识别触摸显示面板弯折的流程图;
图8是触控显示面板处于平面状态的侧面结构示意图;
图9-10是触控显示面板处于弯折状态的侧面结构示意图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。显然,所描述的实施方式是本发明的一部分实施方式,而不是全部实施方式。在本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式,都应属在本发明保护的范围。
下面结合附图具体说明触控显示面板的结构以及工作原理。
请参阅图1,其为本发明一实施例中触控显示面板的平面结构示意图。
如图1所示,触控显示面板10包括显示区AA与非显示区NA。
显示区AA包括多个用作图像显示的像素单元PX与用于感测触摸操作的触控单元TU。
非显示区NA设有显示电路DS、触控电路TC与时序控制电路TCON,所述显示电路DS用于驱动所述像素单元PX执行图像显示,所述触控电路TC用于驱动所述触控单元TU执行施加于触控显示面板10上所接收的触摸操作的感测,时序控制电路TCON用于输出同步控制信号SYNC控制显示电路DS与触控电路TC的工作状态。本实施例中,同步控制信号SYNC用于控制显示电路DS与触控电路TC同步执行图像显示、触摸操作以及触控显示面板10的弯折检测。
请参阅图2,其为图1所示非显示区的平面结构示意图。
显示电路DS包括多个显示驱动单元DU,所述多个显示驱动单元DU依次输出控制像素单元PX接收图像信号的驱动信号。
进一步的,请一并参阅图4,非显示区NA还设有多个沿着第一方向F1排列设置且相互绝缘的第一电极W1与一个第二电极W2,所述第二电极W2与所述多个第一电极W1构成多个电容,所述电容作为弯折检测单元WU以检测所述触控显示面板10的弯折状态并且输出弯折检测信号。本实施例中,第一电极W1用于接收弯折检测驱动信号,当第一电极W1接收到弯折检测驱动信号后,通过与第二电极W2构成的电容形成电场,且对应自第二电极W2输出弯折检测感应信号。通过识别弯折检测感应信号即可获知触摸显示面板10是否发生弯折以及发送弯折的具体位置。较佳地,所述弯折检测驱动信号是显示电路DS提供施加的,也即是说弯折检测单元WU在显示电路DS驱动下检测触控显示面板10的弯折状态。
在本实施例中,所述多个显示驱动单元DU电性连接第一电极W1。较佳地,显示电路DS包括M个显示驱动单元DU,其中N个所述显示驱动单元DU电性连接第一电极W1,所述M、N为大于1的整数,且M大于N。
本实施例中,显示驱动单元DU为扫描驱动单元,并且输出图像扫描信号,对应地,第一电极W1自所述显示驱动单元DU接收作电信号的作为弯折检测驱动信号。且显示电路DS还包括数据驱动电路SU,数据驱动电路SU用于当像素单元接收到扫描信号时提供图像信号至所述像素单元PX。
第一电极W1在接收到图像扫描信号后与第二电极W2构成电容并且产生电场,通过检测第一电极W1与第二电极W2产生的电场是否变化而形成弯折 检测感应信号,所述触控电路TC则通过所述第二电极W2接收弯折检测感应信号,以识别所述触控显示面板10的弯折状态与弯折位置。
请参阅图3,其为示例性的显示驱动单元DU的电路结构示意图。
所述显示驱动单元DU包括输入端STV、第一晶体管T1、上拉点PU、第一电容C、第二晶体管T2、第三晶体管T3、第四晶体管T4、扫描时钟信号CKV以及扫描信号输出端Gout。
具体地,第一晶体管T1的栅极与漏极直接电性连接并且一并电性连接于输入端STV,用于接收启动信号。第一晶体管T1的源极通过上拉点PU电性连接至第二晶体管T2的栅极。第二晶体管T2的源极接收扫描时钟信号CKV,第二晶体管T2的漏极电性连接扫描信号输出端Gout。
第一电容C电性连接于上拉点PU与扫描信号输出端Gout。
第三晶体管T3的栅极与第四晶体管T4的栅极直接电性连接用于接收复位信号Sre,第三晶体管T3的漏极与第四晶体管T4的漏极电性连接至接地端VSS,第三晶体管T3的源极电性连接上拉点PU,第四晶体管T4的源极电性连接至扫描信号输出端Gout。
输入端STV用于接收启动信号,所述启动信号用于控制所述第一晶体管T1导通,并且将所述启动信号通过所述上拉点PU传输至所述第二晶体管T2。
第二晶体管T2在启动信号控制下处于导通状态,扫描时钟信号通过第二晶体管T2传输至所述扫描信号输出端Gout作为所述扫描信号。
第一电容C用于保持上拉点PU维持在高压状态以准确维持第二晶体管T2处于导通状态。
可以理解的,显示驱动单元DU的电路不局限于上述的由4个晶体管与1个电容构成的4T1C电路结构,例如还可以为由4个晶体管与2个电容构成的4T2C等其他可以实现显示驱动的电路结构,在此不做赘述。
本实施例中,上拉点PU同时还电性连接第一电极W1,即是上拉点PU的电压信号作为第一电极W1的弯折检测驱动信号。具体地,上拉点PU与第一电极W1连接的方式请参阅图4。
请参阅图4,其为如图1所示触控显示面板侧面结构示意图。如图4所示,所述触控显示面板10包括基底BA,对应显示区AA,所述基底BA一侧依次 设置有显示驱动层SD、显示介质层SM、封装层TFE与触控介质层TM;对应非显示区NA,基底BA一侧依次设置有所述显示电路DS、所述封装层TFE以及所述多个弯折检测单元WU,且所述封装层TFE对应所述显示电路DS包括开口V1,所述上拉点PU通过所述开口V1电性连接所述第一电极W1。
其中,像素单元PX(图1)设置于显示介质层SM,显示驱动层SD则用于设置相应的驱动像素单元PX的电子元件,封装层TFE用于保护前述的显示驱动层SD、显示介质层SM以及显示电路DS。
请参阅图5,其为如图4所示第一电极W1与第二电极W2的平面结构示意图。
多个第一电极W1沿着所述第一方向F1并列且相互绝缘的排列设置,每个第一电极W1包括第一部分和第二部分,其中第一部分为沿第一方向F1延伸设置的条形导电线,第二部分为沿着第二方向F2延伸,同时与第一部分电性连接且沿第一方向F1间隔设置的多个分支导电线。其中,第二方向F2垂直于第一方向F1。第二电极W2包括第三部分和第四部分,其中第三部分为沿第一方向F1延伸设置的条形导电线,第四部分为沿着第二方向F2延伸,同时与第三部分相交且沿第一方向F1间隔设置的多个分支导电线,其中第二部分和第四部分沿第二方向F2上相反方向延伸且沿着第一方向F1交错设置。本实施例中,第一方向F1为触控显示面板10发生弯折的方向。
本实施方式中,触控显示面板10中多个第一电极W1可以依次沿着第一方向F1排列为第一电极W11、W12、W13……W1N(图中未标示)。其中,相邻两个第一电极W1连接的显示驱动单元DU间隔n个显示驱动单元DU,也即是说第一电极W11电性连接显示驱动单元DU1;第一电极W12电性连接显示驱动单元Dun+1;第一电极W13电性连接显示驱动单元DU2n+1,依次类推。其中,需要说明的是,多个显示驱动单元DU为分时输出图像扫描信号,对应地,多个第一电极W1也分时地接受到多个显示驱动单元DU中上拉点PU提供的弯折检测驱动信号。
本实施方式中,多个第一电极W1与第二电极W2构成自容式感测单元。也即是多个第一电极W1按照预设的时间长度依次自触控电路TC接收弯折扫描信号,然后第二电极W2接收弯折感测信号。当触控显示面板10产生弯折 时,通过分析弯折扫描信号即可识别出弯折位置。
请参阅图6,其为如图1-3所示触控电路识别触摸显示面板10弯折的时序图,图7为触控电路识别触摸显示面板10弯折的流程图,现结合图1-5,具体说明弯折检测方法,所述弯折检测方法包括步骤:
步骤701、施加弯折检测驱动信号至弯折检测单元WU。其中,显示电路中显示驱动单元DU在工作过程中施加所述弯折检测驱动信号至所述弯折检测单元WU,则所述弯折检测单元WU开始在显示电路驱动下检测触控显示面板10的弯折。
具体的,依据同步控制信号SYNC,各个显示驱动单元DU按照位置排列的顺序依次间隔预定时间长度1H施加图像扫描信号,与此同时,弯折检测单元WU中的多个第一电极W1按照预定时长依次、连续地自对应的显示驱动单元DU获得弯折检测驱动信号。本实施例中,所述间隔预定时间长度1H可以依据每一个显示驱动单元DU所需的扫描时长来进行确定,例如每一行显示驱动单元DU所需的扫描时间长度为2H(请参阅图6),则间隔预定时间长度为1H等,当然,间隔预定时间长度也可以为1/2H,并不以此为限。其中,H表示一个单位时间长度。
如图6所示,触摸显示面板10的弯折检测包括多个连续的工作时段t,每个工作时段t包括预定时长,并且一个工作时段t对应一个第一电极W1。其中,每个工作时段t与一个显示驱动单元DU输出图像扫描信号的时长相同。
例如,在时间段t1,施加弯折扫描信号至排序在第一位置的第一电极W1;在时间段t2,施加弯折扫描信号至排序在第二位置的第一电极W1;在时间段t3,施加弯折扫描信号至排序在第三位置的第一电极W1,依次类推,所有第一电极W1依次获得显示驱动单元DU提供的弯折检测驱动信号。
步骤702、通过弯折检测单元WU接收弯折检测感应信号,其中,所述弯折检测感应信号对应所述弯折检测驱动信号。
具体的,通过弯折检测单元WU检测触控显示面板10的弯折状态且自第二电极W2接收弯折检测感应信号,由于第二电极W2与第一电极W1构成了自容式的弯折检测单元WU,从而当第一电极W1被施加弯折检测驱动信号时,弯折检测单元WU则自第二电极W2输出弯折检测感应信号。
步骤703、依据所述弯折检测感应信号识别触控显示面板10是否弯折。
本实施例中,对接收到的弯折检测感应信号进行处理,得到处理后的弯折检测感应信号,通过比较处理过的弯折检测感应信号值与预设阈值来确定触控显示面板是否弯折。例如可在触控电路TC中设置一计时器,当发生弯折时,检测到的弯折感应信号中的的电容值发生变化,则对应该弯折时间节点的电容积分值也会发生变化,预设阈值设为一段时间的电容积分平均值,当处理过的弯折检测感应信号值大于预设阈值时,确定此时间点触控显示面板发生弯折。
请参阅图8-10,其分别为显示面板处于平面状态以及弯折状态时的侧面结构示意图。
如图8-9所示,当显示面板处于弯折状态时,多个第一电极W1和多个第二电极W2之间的电容可以分解为第一电容C1和第二电容C2。
当弯曲半径r较大时候第一电容C1作为主电容,当弯曲半径r较小时,第二电容C2作为主电容。
当显示面板处于平面状态时,第二电容C2无法检测到,仅需检测第一电容C1。
举例而言,如图10所示,当弯曲半径r为5mm进行弯折时,总弯曲长度为πr,第一电极W1与第二电极W2的宽度为L,间距为W,那么,总弯曲长度上一共有πr/(W+L)个相互靠近的电容,而弯曲后金属上表面半径为r’=5mm-H,因为弯曲,每个电容的电极间距离靠近的距离表示为:△W=πH/(πr/(W+L))=H*(W+L)/r,基于电容值的计算公式C=kS/d,可以获得触控显示面板10处于弯折状态时电容的变化值为:
Figure PCTCN2018112782-appb-000001
较佳地,当一个触控显示面板10处于弯折状态时,弯折范围内最少包括2个电容,那么L=1/2*πr,又W=5μm,则获得△C/C≈18.6%,也即是当第一电极W1与第二电极W2构成的电容对应的电容值变化超过18.6%,即可认为触控显示面板10处于弯折状态。
步骤704、依据弯折检测感应信号确定触控显示面板10的弯折发生位置。
具体地,由于每个第一电极W1均对应其中一个显示驱动单元DU,并且每个第一电极W1获得弯折检测驱动信号与对应的显示驱动单元DU输出图像扫描信号的时间一一对应,故而通过识别到获得弯折检测驱动信号的时间即可获取所述第一电极W1所在位置。即通过发生弯折时的图像扫描信号输出的时间即可获取弯折发生位置,其中,图像扫描信号输出的时间可以通过自同步控制信号SYNC输出开始至对应位置的图像驱动单元DU输出该图像扫描信号时间来确定,例如发生弯折时的时间DT,则通过DT与T的比值(DT/T)即可获得第一电极W1及其对应的图像驱动单元DU的位置
如图6所示,在时间段t2处理过的感测信号值超过预设阈值,也即是即可确认处于第二位置的第一电极W12的电容由于弯折发生了变化,如此即可确认触控显示面板10发生弯折的位置为第二位置的第一电极W12,也即是对应图像驱动单元DUn+1对应的第一电极W1的位置发生了弯折。
相较于现有技术,通过在非显示区设置弯折检测单元WU,并且所述弯折检测单元中的两个检测电极分别电性连接显示电路DS与触控电路TC,以自所述显示电路DS接收弯折检测驱动信号,同时输出对应的弯折检测感应信号至触控电路TC,触控电路TC则可以通过所述弯折检测信号识别触控显示面板10是否发送弯折以及发生弯折的位置,从而有效降低了弯折检测电极走线的复杂程度,且节省了弯折检测电极占据触控显示面板的空间,降低了成本。
以上对本发明实施例所提供的触控显示面板及其弯折检测方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (15)

  1. 一种触控显示面板,其特征在于,包括:
    显示区,包含有多个像素单元;
    非显示区,设置于所述显示区周边区域,设置有用于所述多个像素单元执行图像显示的显示电路;以及,
    弯折检测单元,所述弯折检测单元设置于所述非显示区内并且电性连接所述显示电路,且在所述显示电路工作时提供的弯折检测驱动信号的驱动下检测所述触控显示面板的弯折。
  2. 如权利要求1所述的触控显示面板,其特征在于,所述显示区包括:
    触控电路,设置于所述非显示区,并用于感测触摸操作,所述触控电路电性连接所述弯折检测单元,且所述弯折检测单元依据所述显示电路提供的弯折检测驱动信号输出对应的弯折检测感应信号至所述触控电路,所述触控电路依据所述弯折检测感应信号识别所述触控显示面板的弯折。
  3. 如权利要求2所述的触控显示面板,其特征在于,所述非显示区包括:
    所述显示电路包括多个显示驱动单元,所述显示驱动单元用于输出图像扫描信号驱动所述多个像素单元进行图像显示,所述弯折检测单元电性连接所述显示驱动单元,并且在所述显示驱动单元输出所述图像扫描信号时自所述显示驱动单元获得所述弯折检测驱动信号。
  4. 如权利要求3所述的触控显示面板,其特征在于,所述弯折检测单元包括多个第一电极与一个第二电极,所述多个第一电极与所述第二电极沿着第一方向构成多个电容,所述多个第一电极分别电性连接于多个不同的所述显示驱动单元,所述第二电极电性连接所述触控电路。
  5. 如权利要求4所述的触控显示面板,其特征在于,所述第一电极在所述显示驱动单元输出图像扫描信号时自所述显示驱动单元接收弯折检测驱动信 号,对应所述弯折检测驱动信号所述第二电极输出弯折检测感应信号,所述触控电路依据所述弯折检测感应信号识别所述触控显示面板的弯折状态。
  6. 如权利要求5所述的触控显示面板,其特征在于,所述触控电路通过接收到的所述弯折检测感应信号的时间识别所述触控显示面板的弯折发生位置。
  7. 如权利要求6所述的触控显示面板,其特征在于,所述多个第一电极的数量小于所述显示驱动单元的数量,每个所述第一电极连接一个所述显示驱动单元。
  8. 如权利要求7所述的触控显示面板,其特征在于,相邻两个第一电极电性连接的两个所述显示驱动单元间隔相同数量的显示驱动单元。
  9. 如权利要求6所述的触控显示面板,其特征在于,所述多个第一电极沿着第一方向并列且相互绝缘的排列设置,每个所述第一电极包括第一部分和第二部分,其中所述第一部分为沿所述第一方向延伸设置的条形导电线,所述第二部分为沿着第二方向延伸,同时与所述第一部分电性连接且沿所述第一方向间隔设置的多个分支导电线,其中,所述第二方向垂直于所述第一方向,所述第二电极包括第三部分和第四部分,所述第三部分为沿第一方向延伸设置的条形导电线,所述第四部分为沿着所述第二方向延伸,同时与所述第三部分相交且沿所述第一方向间隔设置的多个分支导电线,所述第二部分和所述第四部分沿所述第二方向上相反方向延伸且沿着所述第一方向交错设置,所述第一方向为所述触控显示面板发生弯折的方向。
  10. 一种如权利要求1-9任意一项所述的触控显示面板的弯折检测方法,其特征在于,包括以下步骤:
    施加弯折检测驱动信号至弯折检测单元,所述弯折检测单元自所述显示电路施加所述弯折检测驱动信号;
    通过弯折检测单元接收对应于所述弯折检测驱动信号的弯折检测感应信 号;
    依据所述感测信号识别所述触控显示面板是否弯折。
  11. 如权利要求10所述的弯折检测方法,其特征在于,在识别所述触控显示面板是否弯折后还包括步骤:
    依据所述弯折检测感应信号确定所述触控显示面板的弯折发生位置。
  12. 如权利要求11所述的弯折检测方法,其特征在于,所述“施加弯折检测驱动信号至弯折检测单元”具体为:
    所述触控电路通过显示电路按照预定时长依次、连续施加所述弯折检测驱动信号至所述弯折检测单元的所述多个第一电极。
  13. 如权利要求11所述的弯折检测方法,其特征在于,所述“通过弯折检测单元接收弯折检测感应信号”具体为:
    通过所述弯折检测单元检测所述触控显示面板弯折状态且自所述第二电极接收所述弯折检测感应信号。
  14. 如权利要求11所述的弯折检测方法,其特征在于,所述“依据所述弯折检测感应信号识别所述触控显示面板是否弯折”具体为:
    对接收到的弯折检测感应信号进行处理,得到处理后的感测信号,通过比较处理过的弯折检测感应信号值与预设阈值来确定触控显示面板是否弯折。
  15. 如权利要求11所述的弯折检测方法,其特征在于,所述“依据所述弯折检测感应信号确定所述触控显示面板的弯折发生位置”具体为:
    通过发生弯折时的弯折扫描时间获取弯折发生位置。
PCT/CN2018/112782 2018-10-30 2018-10-30 触控显示面板与弯折检测方法 WO2020087298A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880096014.4A CN112703547A (zh) 2018-10-30 2018-10-30 触控显示面板与弯折检测方法
PCT/CN2018/112782 WO2020087298A1 (zh) 2018-10-30 2018-10-30 触控显示面板与弯折检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112782 WO2020087298A1 (zh) 2018-10-30 2018-10-30 触控显示面板与弯折检测方法

Publications (1)

Publication Number Publication Date
WO2020087298A1 true WO2020087298A1 (zh) 2020-05-07

Family

ID=70463367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112782 WO2020087298A1 (zh) 2018-10-30 2018-10-30 触控显示面板与弯折检测方法

Country Status (2)

Country Link
CN (1) CN112703547A (zh)
WO (1) WO2020087298A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079879B1 (en) * 2020-01-22 2021-08-03 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Flexible touch display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100053A1 (en) * 2011-10-20 2013-04-25 Samsung Electronics Co., Ltd. Flexible display device
KR20140048007A (ko) * 2012-10-15 2014-04-23 디케이 유아이엘 주식회사 플렉시블 디스플레이 장치
CN104731436A (zh) * 2015-04-15 2015-06-24 京东方科技集团股份有限公司 柔性显示装置及其驱动方法
CN205193771U (zh) * 2015-09-09 2016-04-27 敦泰电子有限公司 一种触控显示屏
CN105741687A (zh) * 2014-12-26 2016-07-06 乐金显示有限公司 包括弯曲传感器的显示装置
CN106951133A (zh) * 2017-03-30 2017-07-14 厦门天马微电子有限公司 触控面板的驱动方法、触控面板及触控显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086403A (ja) * 2007-10-01 2009-04-23 Brother Ind Ltd 画像表示装置
KR102436553B1 (ko) * 2015-08-31 2022-08-25 엘지디스플레이 주식회사 연성 표시 장치
CN108352149B (zh) * 2015-12-02 2020-11-03 夏普株式会社 挠性显示装置及其弯曲状态检测方法
CN105487734B (zh) * 2015-12-15 2019-04-12 昆山工研院新型平板显示技术中心有限公司 电容触控式柔性显示面板及其柔性显示器
CN105702193B (zh) * 2016-04-25 2019-05-07 上海中航光电子有限公司 柔性显示面板及其驱动方法、柔性显示装置
KR102605388B1 (ko) * 2016-12-22 2023-11-24 엘지디스플레이 주식회사 벤드 센싱 회로, 폴더블 디스플레이 장치 및 그 구동 방법
CN107195667B (zh) * 2017-06-30 2020-02-21 武汉天马微电子有限公司 一种柔性有机发光显示面板和电子设备
KR101960708B1 (ko) * 2017-07-25 2019-03-22 주식회사 하이딥 터치 입력 장치
CN107491209B (zh) * 2017-08-11 2020-10-09 上海天马微电子有限公司 触控显示装置
CN107657894B (zh) * 2017-11-02 2019-06-18 上海天马微电子有限公司 一种柔性显示面板及显示装置
CN108666355B (zh) * 2018-05-21 2020-12-04 武汉华星光电半导体显示技术有限公司 Amoled模组及其弯折状态的显示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100053A1 (en) * 2011-10-20 2013-04-25 Samsung Electronics Co., Ltd. Flexible display device
KR20140048007A (ko) * 2012-10-15 2014-04-23 디케이 유아이엘 주식회사 플렉시블 디스플레이 장치
CN105741687A (zh) * 2014-12-26 2016-07-06 乐金显示有限公司 包括弯曲传感器的显示装置
CN104731436A (zh) * 2015-04-15 2015-06-24 京东方科技集团股份有限公司 柔性显示装置及其驱动方法
CN205193771U (zh) * 2015-09-09 2016-04-27 敦泰电子有限公司 一种触控显示屏
CN106951133A (zh) * 2017-03-30 2017-07-14 厦门天马微电子有限公司 触控面板的驱动方法、触控面板及触控显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079879B1 (en) * 2020-01-22 2021-08-03 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Flexible touch display device

Also Published As

Publication number Publication date
CN112703547A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
US10520978B1 (en) Foldable display panel and foldable display device
US9946349B2 (en) Shift register, driving method, gate driving circuit and display device
US9454250B2 (en) Touch panel having scan electrodes with different widths
TWI541710B (zh) 附觸控面板之液晶顯示裝置
JP6105725B2 (ja) 静電容量方式のインセル型タッチスクリーンパネル及び表示装置
US20140232954A1 (en) Driver ic and image display device
CN111142701B (zh) 用于带有柔性电路的触摸传感器面板的迹线转移技术
US9195327B2 (en) Touch panel and display device employing the same
CN108279796B (zh) 一种集成触控显示面板和一种触控显示设备
US9268190B1 (en) Pixel structure, manufacturing method of pixel structure, array substrate, and display panel
US9563095B2 (en) Pixel structure and manufacturing method therefor, array structure, display panel and display device
WO2017181740A1 (zh) 触控显示面板及其驱动方法
CN107145261B (zh) 一种显示面板和显示装置
WO2015081653A1 (zh) 内嵌式触控显示面板及其触摸定位方法、显示装置
US20150355749A1 (en) Display device, touch screen device, and touch driver for the same
CN107807757B (zh) 触控感测单元及具有该触控感测单元的指纹触控装置
WO2020087298A1 (zh) 触控显示面板与弯折检测方法
CN106951133B (zh) 触控面板的驱动方法、触控面板及触控显示装置
US20180107042A1 (en) Touch screen panel
US20150338976A1 (en) Touch display device
EP3816776A1 (en) Data detection method and device, storage medium, and touch device
WO2020191810A1 (zh) 触控显示装置
TW202001533A (zh) 觸控裝置及驅動觸控裝置的方法
CN108513653B (zh) 触摸屏及具有触摸屏的终端设备
KR102210216B1 (ko) 터치 스크린의 구동장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938508

Country of ref document: EP

Kind code of ref document: A1