WO2020085192A1 - Dispersant composition for hydraulic compositions for centrifugal molding or vibration molding - Google Patents

Dispersant composition for hydraulic compositions for centrifugal molding or vibration molding Download PDF

Info

Publication number
WO2020085192A1
WO2020085192A1 PCT/JP2019/040893 JP2019040893W WO2020085192A1 WO 2020085192 A1 WO2020085192 A1 WO 2020085192A1 JP 2019040893 W JP2019040893 W JP 2019040893W WO 2020085192 A1 WO2020085192 A1 WO 2020085192A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
molding
hydraulic
hydraulic composition
centrifugal
Prior art date
Application number
PCT/JP2019/040893
Other languages
French (fr)
Japanese (ja)
Inventor
恒平 島田
知也 大前
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201980056420.2A priority Critical patent/CN112638838B/en
Publication of WO2020085192A1 publication Critical patent/WO2020085192A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • C04B24/2647Polyacrylates; Polymethacrylates containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Definitions

  • the present invention relates to a dispersant composition for a hydraulic composition for centrifugal molding or vibration molding and a method for producing the same, a hydraulic composition for centrifugal molding or vibration molding and a method for producing the same, and a method for producing a cured product of the hydraulic composition.
  • Centrifugal molding is known as a method for producing hollow cylindrical concrete molded products such as pipes, piles and poles.
  • This centrifugal molding method is a method in which a kneaded concrete material is put into a mold and the concrete is pressed against the inner surface of the mold by centrifugal force generated by rotating the mold at a high speed.
  • the formwork has joints parallel to the rotation axis, and during the centrifugal compaction process of concrete, large vibrations are applied to the concrete due to the joints of the formframes splashing the formwork during centrifugal molding. It is one of the factors that contribute to firmness.
  • naphthalene-based dispersants are often used as the dispersant from the viewpoint of moldability of centrifugally molded products, but there is a growing need for higher strength and earthquake resistance both in Japan and overseas.
  • a region where a high-strength hardened body is required in a region where the unit water amount of concrete is small, a region where it is difficult to knead with a naphthalene-based dispersant appears, which makes practical use difficult.
  • Centrifugal compaction is a property that indicates the degree of compaction of concrete during centrifugal molding. It depends on the filling property of mortar in the aggregate gap during centrifugal molding and the shape retention (property to maintain the shape) after molding. It is considered to be dominated. Therefore, it is considered that the centrifugal compaction property of the concrete during centrifugal molding reflects the thixotropic property of the concrete as a fluid.
  • centrifugal compaction property of the centrifugally molded product is not good, the strength development of the cured product after centrifugal molding will be reduced, the centrifugal compaction process will take time, and the productivity will be impaired. Defects such as exfoliation of hardened concrete (shelf drop) will occur. Therefore, a hydraulic composition for centrifugal molding is desired to exhibit more excellent centrifugal compaction property.
  • Japanese Patent Application Laid-Open No. 61-122147 discloses a concrete containing amorphous ultrafine silica, a high-performance raw water additive and a centrifugal molding aid, and having a water cement ratio of 35% or less, and a centrifugal force of 35 G or less at a medium speed. There is disclosed a method for producing concrete, which is characterized by compacting with.
  • the structural unit (II) derived from (b) and the structural unit (III) derived from the unsaturated monocarboxylic acid-based monomer (c) are included as essential structural units, and the structural unit (I) and the structural unit ( II) and the structural unit (III) each account for 1% by weight or more of all the structural units, and the total ratio of the structural unit (I) and the structural unit (II) is 50 mol% or less in the total structural unit.
  • the cement admixture containing the copolymer (A) as an essential component is described.
  • Japanese Unexamined Patent Publication No. 2002-348161 discloses a constitutional unit (I) derived from a specific unsaturated polyalkylene glycol ether monomer (a1) and a specific unsaturated monocarboxylic acid type monomer (b) derived from the structural unit (I).
  • a cement dispersant containing a copolymer containing a structural unit (II) as an essential component, wherein the structural unit (II) includes at least a structure derived from methacrylic acid (salt). has been done.
  • JP-A-58-74552 discloses a specific polyalkylene glycol mono (meth) acrylic acid ester-based monomer, a specific (meth) acrylic acid-based monomer, and any monomer polymerizable with these.
  • a cement dispersant containing, as a main component, a copolymer or a neutralized product thereof derived from the above is described.
  • the present invention provides a dispersant composition for a hydraulic composition capable of imparting excellent vibration moldability to a hydraulic composition that is molded using an external force such as centrifugal molding or vibration molding.
  • the present invention includes, as constituent monomers, acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a compound represented by the following general formula (1), and a total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof.
  • a hydraulic composition for centrifugal molding or vibration molding which contains a copolymer having a proportion of acrylic acid or a salt thereof of 20 mol% or more and 70 mol% or less and a weight average molecular weight of 30,000 or more and 100,000 or less. Dispersant composition.
  • R 1 and R 3 are the same or different and each represents an alkyl group having 1 to 3 carbon atoms, R 2 represents a hydrogen atom or a methyl group, and n is an average number of moles added and is 5 to 150. Indicates the number.
  • the present invention also contains the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder, and the water / hydraulic powder ratio is 10% by mass or more. 25% by mass or less of the hydraulic composition for centrifugal molding or vibration molding.
  • the present invention also relates to a method for improving the compaction property of a hydraulic composition by centrifugal force, using the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention.
  • the present invention also relates to a method for producing a hydraulic composition, which comprises mixing the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder.
  • the present invention is to produce a hydraulic composition by mixing the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder, and the hydraulic composition
  • the present invention relates to a method for producing a cured product of a hydraulic composition, in which a mold is filled with an object and then the mold is clamped by applying a centrifugal force.
  • the present invention is to produce a hydraulic composition by mixing the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder, and the hydraulic composition
  • the present invention relates to a method for producing a cured product of a hydraulic composition, in which a mold is filled with a product and then the mold is clamped with vibration.
  • the dispersant composition for hydraulic composition for centrifugal molding or vibration molding of the present invention may be referred to as the dispersant composition for hydraulic composition of the present invention or the dispersant composition of the present invention. Further, the hydraulic composition for centrifugal molding or vibration molding of the present invention may be referred to as the hydraulic composition of the present invention.
  • a dispersant composition for a hydraulic composition which can impart excellent vibration moldability to a hydraulic composition used for molding using vibration such as centrifugal molding and vibration molding.
  • the absolute coating area of the surface of the hydraulic particles is reduced, the hydration reaction is promoted (a delay in setting is avoided), and a dense structure is formed by the hydration product, which results in a hydraulic composition. It is considered that the thixotropy of the product is improved and the excellent vibration response is brought about. In addition, since the vibration is generated by the rotation of the metallic mold during centrifugal molding, it is considered that during centrifugal molding, when fluidized, it fluidizes and the filling of the aggregate progresses, resulting in excellent centrifugal compaction.
  • the component (A) is a copolymer having a predetermined weight average molecular weight containing acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a compound represented by the following general formula (1) as constituent monomers.
  • the component (A) has a proportion of acrylic acid or a salt thereof of 20 mol% or more and 70 mol% or less in the total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof.
  • the component (A) has a proportion of acrylic acid or a salt thereof of 20 mol% or more, preferably 30 mol% or more in the total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof, from the viewpoint of vibration response and centrifugal compaction property. , More preferably 40 mol% or more, and 70 mol% or less, preferably 65 mol% or less, more preferably 60 mol% or less.
  • the component (A) is acrylic acid or its salt in the total of acrylic acid or its salt, methacrylic acid or its salt, and the compound represented by the above general formula (1).
  • the total proportion of the salt and methacrylic acid or its salt is preferably 50 mol% or more, more preferably 60 mol% or more, further preferably 65 mol% or more, and preferably 95 mol% or less, more preferably 85 mol% or less, further preferably Is 77 mol% or less.
  • the total proportion of acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and the compound represented by the general formula (1) in the total amount of the constituent monomers is preferably 50 mol% or more, It is more preferably 70 mol% or more, and preferably 100 mol% or less, and may be 100 mol%.
  • Examples of the salt of acrylic acid and the salt of methacrylic acid include an alkali metal salt, an alkaline earth metal salt (1/2 atom), an ammonium salt, an alkylammonium salt, or an alkenylammonium salt, and preferably an alkali metal salt.
  • R 1 is preferably a methyl group.
  • R 2 is preferably a hydrogen atom.
  • R 3 is preferably a methyl group or a hydrogen atom.
  • n is the average number of moles added, preferably 10 or more, more preferably 20 or more, further preferably 30 or more, still more preferably 40 or more, and preferably 90 or less, more preferably Is 80 or less, more preferably 70 or less, even more preferably 60 or less, still more preferably 55 or less.
  • the component (A) has a weight average molecular weight of 30,000 or more, preferably 32,000 or more, more preferably 35,000 or more, from the viewpoint of imparting excellent vibration moldability to the hydraulic composition. It is 100,000 or less, preferably 60,000 or less, more preferably 50,000 or less, still more preferably 45,000 or less, still more preferably 40,000 or less. This weight average molecular weight is measured by gel permeation chromatography (GPC) under the following conditions.
  • the dispersant composition for hydraulic composition of the present invention may further contain a strength improver and / or a retarder.
  • the strength improver examples include a polyol compound, an alkali metal thiosulfate, an alkaline earth metal thiosulfate, an alkaline metal thiocyanate, an alkaline earth metal thiocyanate, an alkaline metal sulfate and an alkaline earth metal sulfate.
  • the strength improver is preferably one or more selected from polyol compounds.
  • the polyol compound include glycerin, glycerin ester derivatives, glycol compounds, and sugar alcohols.
  • the polyol compound is preferably glycerin.
  • the retarder examples include oxycarboxylic acid, polyvalent carboxylic acid, reducing polysaccharide and sugar alcohol.
  • the retarder is preferably one or more selected from oxycarboxylic acids.
  • the oxycarboxylic acid is gluconic acid and / or its salt, glycolic acid and / or its salt, tartronic acid and / or its salt, glyceric acid and / or its salt, tartaric acid and / or its salt, citric acid and / or its Salt, salicylic acid and / or its salt, gallic acid and / or its salt are mentioned.
  • the oxycarboxylic acid is preferably gluconic acid and / or a salt thereof.
  • the dispersant composition for hydraulic compositions of the present invention preferably contains component (A) in an amount of 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and preferably 90% by mass.
  • the following content is more preferably 70% by mass or less, further preferably 50% by mass or less.
  • the dispersant composition for hydraulic compositions of the present invention may have a content of the component (A) of 100% by mass, that is, a component (A).
  • the dispersant composition for a hydraulic composition of the present invention contains a strength improver
  • its content is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and , Preferably 10% by mass or less, more preferably 5% by mass or less.
  • the mass ratio of the content of the component (A) to the content of the strength improver is the content of the strength improver / (
  • the content of component A) is preferably 0.01 or more, more preferably 0.03 or more, still more preferably 0.045 or more, and preferably 1 or less, more preferably 0.5 or less, still more preferably 0. 0.2 or less, more preferably 0.1 or less, still more preferably 0.07 or less.
  • the content thereof is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and It is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the mass ratio of the content of the component (A) and the content of the retarder is the content of the retarder / the component of (A).
  • Content is preferably 0.01 or more, more preferably 0.02 or more, and preferably 1 or less, more preferably 0.5 or less, still more preferably 0.2 or less, still more preferably 0.1 or less. Or less, more preferably 0.07 or less, still more preferably 0.05 or less.
  • the dispersant composition for hydraulic compositions of the present invention may further contain a polycarboxylic acid dispersant (hereinafter referred to as other polycarboxylic acid dispersant) composed of a copolymer other than the component (A). it can.
  • a polycarboxylic acid dispersant hereinafter referred to as other polycarboxylic acid dispersant
  • Other polycarboxylic acid-based dispersants include copolymers of methacrylic acid or a salt thereof and a compound represented by the general formula (1), which have a known structure and composition as a dispersant. Can be mentioned.
  • the mass ratio of other polycarboxylic acid type dispersant / (A) component is preferably 0.01.
  • the mass ratio of the total content of the strength improver and the retarder and the total content of the component (A) and the other polycarboxylic acid-based dispersant is ( (Total content of strength improver and retarder) / (total content of (A) component and other polycarboxylic acid-based dispersant), preferably 0.02 or more, more preferably 0.05 or more, and It is preferably 2 or less, more preferably 1 or less, still more preferably 0.5 or less, even more preferably 0.3 or less, even more preferably 0.2 or less, still more preferably 0.1 or less.
  • This mass ratio includes the case where the content of one of the strength improver and the retarder is 0.
  • the dispersant composition for hydraulic compositions of the present invention contains, as other optional components, an AE agent, a foaming agent, a thickener, a foaming agent, a waterproofing agent, a fluidizing agent, a defoaming agent, and the like. You can
  • the dispersant composition for hydraulic composition of the present invention may contain water.
  • the dispersant composition for hydraulic composition of the present invention may be a liquid composition.
  • the dispersant composition for hydraulic composition of the present invention may be a dispersant composition for hydraulic composition for centrifugal molding.
  • the dispersant composition for hydraulic composition of the present invention may be a dispersant composition for hydraulic composition for vibration molding.
  • the dispersant composition for a hydraulic composition for centrifugal molding is one of the preferred embodiments of the dispersant composition for a hydraulic composition of the present invention.
  • the present invention provides the use of the dispersant composition for hydraulic compositions of the present invention as a dispersant for hydraulic compositions for centrifugal molding or vibration molding.
  • the present invention also provides use of the copolymer of component (A) as a dispersant for a hydraulic composition for centrifugal molding or vibration molding.
  • the present invention also provides the use of the copolymer of component (A) for producing a dispersant for a hydraulic composition for centrifugal molding or vibration molding.
  • the matters described in the dispersant composition for a hydraulic composition of the present invention can be appropriately applied to these uses.
  • the present invention provides a hydraulic composition for centrifugal molding or vibration molding containing the dispersant composition for hydraulic composition of the present invention, water, and hydraulic powder.
  • the hydraulic composition of the present invention is a copolymer [(A) component] containing acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a compound represented by the following general formula (1) as constituent monomers.
  • a hydraulic composition for centrifugal molding or vibration molding containing a hydraulic powder wherein the copolymer is acrylic acid or a salt thereof and methacrylic acid or a salt thereof in total, acrylic acid or A hydraulic composition for centrifugal molding or vibration molding in which the proportion of the salt is 20 mol% or more and 70 mol% or less.
  • the matters described in the dispersant composition for a hydraulic composition of the present invention can be appropriately applied to the hydraulic composition of the present invention.
  • the specific examples and preferred embodiments of the component (A) are the same as those of the dispersant composition for a hydraulic composition of the present invention.
  • the hydraulic composition of the present invention preferably contains the component (A) in an amount of 0.01 parts by mass or more, and more preferably 0 parts, relative to 100 parts by mass of the hydraulic powder. 1 part by mass or more, and preferably 9 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 1 part by mass or less.
  • Hydraulic powder is a powder that has the property of being hardened by a hydration reaction, and examples thereof include cement and gypsum.
  • the hydraulic powder is preferably cement, more preferably ordinary portland cement, belite cement, moderate heat cement, early-strength cement, ultra-early-strength cement, sulfate-resistant cement and the like.
  • blast furnace slag cement, fly ash cement, silica fume cement, etc. to which powder such as blast furnace slag, fly ash, silica fume and the like having pozzolanic action and / or latent hydraulic property, or stone powder (calcium carbonate powder) is added to cement etc. But it's okay.
  • the hydraulic composition of the present invention has a water / hydraulic powder ratio of preferably 10% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, It is more preferably 25% by mass or less.
  • the water / hydraulic powder ratio is a mass percentage (mass%) of water and the hydraulic powder in the hydraulic composition, and is calculated by mass of water / mass of hydraulic powder ⁇ 100. .
  • the water / hydraulic powder ratio is calculated based on the amount of water and the amount of powder having physical properties that harden due to a hydration reaction.
  • the powder having the physical properties of being hardened by the hydration reaction includes a powder having a pozzolanic action, a powder having latent hydraulicity, and a stone powder (calcium carbonate powder), in the present invention, those powders are selected.
  • the amount is also included in the amount of hydraulic powder.
  • the powder having the physical properties of being hardened by the hydration reaction contains the high-strength admixture, the amount of the high-strength admixture is also included in the amount of hydraulic powder. This also applies to the following parts by mass that relate to the mass of the hydraulic powder.
  • the hydraulic composition of the present invention preferably contains an aggregate.
  • aggregates include aggregates selected from fine aggregates and coarse aggregates.
  • fine aggregate one specified by No. 2311 in JIS A0203-2014 can be mentioned.
  • fine aggregate river sand, land sand, mountain sand, sea sand, lime sand, silica sand and crushed sand of these, blast furnace slag fine aggregate, ferronickel slag fine aggregate, lightweight fine aggregate (artificial and natural) and recycled Fine aggregates and the like can be mentioned.
  • coarse aggregate one specified by the number 2312 in JIS A0203-2014 can be mentioned.
  • the bulk volume is preferably 50% or more, more preferably 55% or more, further preferably 60% or more, and preferably 100% or less, more preferably 90% or less, further preferably 80% or less. Is.
  • the bulk volume is the ratio of the volume (including voids) of coarse aggregate in 1 m 3 of concrete.
  • the amount of the fine aggregate used is preferably 500 kg / m 3 or more, more preferably 600 kg / m 3 or more, from the viewpoint of improving the filling property into the mold and the like. It is preferably 700 kg / m 3 or more, and preferably 1,000 kg / m 3 or less, more preferably 900 kg / m 3 or less.
  • the amount of fine aggregate used is preferably 800 kg / m 3 or more, more preferably 900 kg / m 3 or more, even more preferably 1,000 kg / m 3 or more, and preferably Is 2,000 kg / m 3 or less, more preferably 1,800 kg / m 3 or less, and further preferably 1,700 kg / m 3 or less.
  • the hydraulic composition of the present invention may contain a high-strength admixture.
  • the high-strength admixture include powders having a Blaine value of 2,500 cm 2 / g or more or a BET specific surface area of 10 m 2 / g or more, and inorganic powders (excluding cement).
  • a powder selected from anhydrous gypsum, silica fume, and fly ash can be mentioned.
  • the content of the high-strength admixture is preferably 0.1 part by mass or more, more preferably 0.1 part by mass or more based on 100 parts by mass of hydraulic powder and cement. It is preferably 1 part by mass or more, and preferably 20 parts by mass or less, more preferably 10 parts by mass or less.
  • the hydraulic composition of the present invention may be a centrifugal molding hydraulic composition.
  • the hydraulic composition of the present invention may be a vibration molding hydraulic composition.
  • the hydraulic composition for centrifugal molding is one of the preferable embodiments of the hydraulic composition of the present invention.
  • the present invention contains the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder, and the water / hydraulic powder ratio is 10% by mass or more and 25% by mass.
  • the use of the following composition as a hydraulic composition for centrifugal molding or vibration molding is provided.
  • the present invention also contains the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder, and the water / hydraulic powder ratio is 10% by mass or more and 25% or more.
  • a composition which is less than or equal to% by weight, for producing a hydraulic composition for centrifugal molding or vibration molding.
  • the matters described in the dispersant composition for hydraulic composition and the hydraulic composition of the present invention can be appropriately applied.
  • the present invention provides a method for producing a hydraulic composition, which comprises mixing the dispersant composition for a hydraulic composition of the present invention, water, and a hydraulic powder.
  • the method for producing a hydraulic composition of the present invention is a copolymer containing acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a compound represented by the following general formula (1) as constituent monomers [(A Component), water, and a hydraulic powder are mixed, wherein the copolymer is acrylic acid or a salt thereof and methacrylic acid or a salt thereof.
  • a method for producing a hydraulic composition, wherein the ratio of the acid or its salt is 20 mol% or more and 70 mol% or less.
  • specific examples and preferred embodiments of the component (A) are the same as those of the dispersant composition for a hydraulic composition of the present invention.
  • the specific examples and preferred embodiments of the hydraulic powder used in the method for producing the hydraulic composition of the present invention are the same as those described for the hydraulic composition of the present invention.
  • the hydraulic powder is preferably used so that the water / hydraulic powder ratio falls within the range described in the hydraulic composition of the present invention.
  • Specific examples and preferred embodiments of the aggregate are the same as those described for the hydraulic composition of the present invention.
  • the amount of aggregate used is also the same as that described for the hydraulic composition of the present invention.
  • the component (A) and the hydraulic powder such as cement are preliminarily mixed to obtain the hydraulic powder. Mixing is preferred.
  • the mixing of the hydraulic powder, water, the component (A), and the component used as necessary can be performed using a mixer such as a mortar mixer and a forced biaxial mixer. Further, the mixture is preferably mixed for 1 minute or more, more preferably 2 minutes or more, and preferably 5 minutes or less, more preferably 3 minutes or less.
  • a mixer such as a mortar mixer and a forced biaxial mixer.
  • the mixture is preferably mixed for 1 minute or more, more preferably 2 minutes or more, and preferably 5 minutes or less, more preferably 3 minutes or less.
  • the materials, agents and their amounts described in the hydraulic composition can be used.
  • the obtained hydraulic composition is further filled in a mold to cure and cure.
  • the formwork include a formwork for buildings and a formwork for concrete products.
  • Examples of the method for filling the mold include a method of directly charging from a mixer and a method of pumping the hydraulic composition with a pump to introduce it into the mold.
  • the hydraulic composition When the hydraulic composition is cured, it may be cured by heating to accelerate the curing.
  • the heat curing can hold the hydraulic composition at a temperature of 40 ° C. or higher and 90 ° C. or lower to accelerate the curing.
  • the present invention is to prepare a hydraulic composition by mixing the dispersant composition for hydraulic composition of the present invention, water, and a hydraulic powder, and fill the mold with the hydraulic composition.
  • a method for producing a cured product of a hydraulic composition that is cured is a copolymer containing acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a compound represented by the following general formula (1) as constituent monomers.
  • Component (A) water and hydraulic powder are mixed to produce a hydraulic composition, and the hydraulic composition is filled in a mold and cured to cure the composition.
  • the matters described in the dispersant composition for hydraulic composition, the hydraulic composition and the method for producing the hydraulic composition of the present invention can be appropriately applied to the method for producing the hydraulic composition of the present invention.
  • specific examples and preferred embodiments of the component (A) are the same as those of the dispersant composition for hydraulic composition of the present invention.
  • the specific examples and preferred embodiments of the hydraulic powder used in the method for producing the hydraulic composition of the present invention are the same as those described for the hydraulic composition of the present invention.
  • the hydraulic powder is preferably used so that the water / hydraulic powder ratio falls within the range described in the hydraulic composition of the present invention.
  • it is preferable to mix an aggregate In the method for producing a hydraulic composition of the present invention, it is preferable to mix an aggregate. Specific examples and preferred embodiments of the aggregate are the same as those described for the hydraulic composition of the present invention.
  • the amount of aggregate used is also the same as that described for the hydraulic composition of the present invention.
  • the hydraulic composition produced by the method for producing a cured product of the present invention is preferably the hydraulic composition of the present invention.
  • a dispersant composition for a hydraulic composition of the present invention water, and a hydraulic powder are mixed to produce a hydraulic composition, and the hydraulic composition is A method for producing a cured body of a hydraulic composition is described, in which the mold is filled with a centrifugal force and then the mold is clamped.
  • This method comprises, as constituent monomers, acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a copolymer [(A) component] containing a compound represented by the following general formula (1), and water:
  • a method for producing a cured product of a hydraulic composition which comprises mixing a hydraulic powder to produce a hydraulic composition, filling the hydraulic composition in a mold, and then clamping the mold by applying centrifugal force.
  • the copolymer is a cured product of a hydraulic composition in which the proportion of acrylic acid or a salt thereof in the total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof is 20 mol% or more and 70 mol% or less.
  • This is a manufacturing method (hereinafter referred to as a centrifugal method).
  • the centrifugal method is what is called centrifugal compaction molding.
  • a hydraulic composition is produced by mixing a dispersant composition for a hydraulic composition of the present invention, water, and a hydraulic powder, and the hydraulic composition
  • a method for producing a cured product of a hydraulic composition, in which a product is filled in a mold and then the mold is clamped by applying vibration, can be mentioned.
  • This method comprises, as constituent monomers, acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a copolymer [(A) component] containing a compound represented by the following general formula (1), and water:
  • a method for producing a cured body of a hydraulic composition which comprises mixing a hydraulic powder to produce a hydraulic composition, filling the hydraulic composition in a mold, and then clamping with vibration.
  • the copolymer is a cured product of a hydraulic composition in which the proportion of acrylic acid or a salt thereof in the total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof is 20 mol% or more and 70 mol% or less.
  • Method hereinafter referred to as vibration method).
  • the vibration method is what is called vibration compaction molding.
  • the method of adding the mixture containing water and the component (A) to the aggregate and the hydraulic powder and mixing the mixture is easy and uniform even when the hydraulic composition is produced. preferable.
  • the hydraulic composition may be prepared by mixing the hydraulic powder and the aggregate, adding a mixture containing water and the component (A) so that the mixture amount is as described above, and kneading. it can.
  • a mold suitable for the centrifugal method and the vibration method is appropriately selected in consideration of the use of the cured body of the hydraulic composition.
  • the filling of the hydraulic composition into the mold can be performed by a known method.
  • Examples of the method of filling the obtained hydraulic composition in a mold include a method in which the hydraulic composition after kneading is discharged from the kneading means and manually charged into the mold.
  • the hydraulic composition for centrifugal molding filled in a mold is subjected to centrifugal force to clamp the mold. At this time, it is preferable to change the centrifugal force at least once.
  • the hydraulic composition for centrifugal molding can be clamped by applying a gradually changing centrifugal force. That is, in the present invention, the hydraulic composition for centrifugal molding is clamped at least once by changing the centrifugal force, and further, it is clamped by applying a centrifugal force that changes stepwise and increases stepwise. You can
  • centrifugal force of centrifugal molding is preferably 0.5 G or more and 30 G or less, more preferably 25 G or less. From the viewpoint of energy cost reduction and moldability, it is preferable to keep the centrifugal force in the range of 15 minutes or more, 30 G or less, and further 25 G or less (also referred to as high centrifugal force) for 1 minute or more.
  • the compaction by centrifugal force is, for example, 0.5 G or more and 30 G or less, preferably 5 minutes or more, more preferably 7 minutes or more, further preferably 9 minutes or more, and preferably 40 minutes or less.
  • compaction by maintaining a high centrifugal force for example, a centrifugal force of 20 G or more, is preferably 1 minute or more, more preferably 3 minutes or more, further preferably 5 minutes or more, and preferably Do less than 15 minutes. That is, in the present invention, the centrifugal force of 0.5 G or more and 30 G or less is applied to the hydraulic composition over 5 minutes or more, more preferably 7 minutes or more, further preferably 9 minutes or more, and preferably 40 minutes or less. You can clamp things. Further, in the present invention, compaction by holding a centrifugal force of 20 G or more can be performed for preferably 1 minute or more, more preferably 3 minutes or more, further preferably 5 minutes or more, and preferably 15 minutes or less.
  • Compaction by centrifugal force can be performed in stages, and from the viewpoint of moldability, it is preferable to increase the centrifugal force G stepwise. It can be carried out under the following stage conditions until the desired centrifugal force is achieved.
  • the initial velocity of the first stage is 0.5 G or more and less than 2 G
  • the second stage of the second stage is 2 G Centrifugal force of 5G or more and more than 0 minutes and 15 minutes or less
  • third speed, which is the third stage is 5G or more and less than 10G, more than 0 minutes and 15 minutes or less
  • fourth stage the fourth speed Is 10 G or more and less than 20 G with a centrifugal force of more than 0 minutes and 15 minutes or less
  • the fifth stage is a centrifugal force of 20 G or more and 30 G or less with a centrifugal force of more than
  • Heat curing is preferably performed at 75 ° C or higher, and preferably 100 ° C or lower, more preferably 90 ° C or lower.
  • the heating and curing may include a step of holding at 75 ° C. or higher for 1 hour or longer.
  • the temperature of heating and curing is the temperature of the atmosphere around the mold filled with the hydraulic composition.
  • the ambient temperature is preferably 35 ° C. or lower, more preferably 30 ° C. or lower, more preferably 25 ° C. or lower, and strength developability. From this viewpoint, the temperature is preferably 10 ° C or higher, more preferably 15 ° C or higher, and further preferably 20 ° C or higher.
  • low temperature curing it is preferable to carry out low temperature curing for 1 hour or more, starting from the point of time when water first contacts the hydraulic powder during the mixing, before starting the heating curing.
  • the low temperature curing is preferably performed at 0 ° C or higher, more preferably 10 ° C or higher, and preferably 40 ° C or lower, more preferably 30 ° C or lower.
  • the low temperature curing is preferably carried out for 1 hour or longer, more preferably 2 hours or longer, and preferably 5 hours or shorter, more preferably 4 hours or shorter.
  • the heating curing is performed by steam curing.
  • the steam curing is performed, for example, by applying steam around the mold filled with the centrifugally-molded hydraulic composition and maintaining it at a predetermined temperature for a certain period of time.
  • the hydraulic composition can be cooled and released from the mold.
  • the cured body of the demolded hydraulic composition can be cured at room temperature and atmospheric pressure.
  • the ambient temperature may be cooled to room temperature, for example, 20 ° C., or the ambient temperature may be room temperature, for example, 20 ° C. at a temperature decreasing rate of 5 ° C. or more and 20 ° C. or less per hour. You may cool down to.
  • the molded body is released from the mold.
  • the rate of temperature decrease is preferably 20 ° C. or less per hour from the viewpoint of suppressing a decrease in strength due to cracking of the cured body.
  • the cured product of the obtained hydraulic composition can be cured at room temperature and atmospheric pressure. Specifically, it can be stored at 20 ° C. under atmospheric pressure.
  • the hardened product of the hydraulic composition obtained by the centrifugal method can be used as a centrifugally molded concrete product, and specific examples thereof include piles, poles, and fume tubes.
  • the hardened product of the hydraulic composition obtained by the centrifugal method has excellent compaction properties, so that the inner surface and end surface irregularities of the product are small, the surface aesthetics are excellent, and the inner surface of the product is finished smoothly. The obstacles of the cutting machine during the Nakabori method are improved.
  • the vibration method involves filling the mold with the hydraulic composition used to manufacture the cured product, and vibrating the hydraulic composition in the mold.
  • the operation of applying vibration to the hydraulic composition is also referred to as vibration molding.
  • Vibration molding can be performed at a frequency of 20 Hz to 350 Hz, for example. Further, the vibration molding can be performed in, for example, 3 seconds or more and 180 seconds or less. When the mold cannot be sufficiently filled by one filling, when filling the additional hydraulic composition, even if vibration of the previous hydraulic composition is stopped or continued to be applied, either Good.
  • a method for producing a cured product of the hydraulic composition of the present invention a method for producing a cured product of a hydraulic composition containing a polycarboxylic acid-based dispersant, hydraulic powder and water, A method for producing a cured product of a hydraulic composition, in which vibration is applied after filling the composition with a mold, can be mentioned.
  • Another example of the method for producing a cured product of the hydraulic composition of the present invention is a method for producing a cured product of a hydraulic composition containing a polycarboxylic acid-based dispersant, hydraulic powder and water. Then, a method for producing a cured product of a hydraulic composition, in which a hydraulic composition used for producing a cured product is filled in a mold and the hydraulic composition in the mold is vibrated, can be mentioned.
  • the moldability during vibration molding can be improved.
  • a method for improving the moldability of a hydraulic composition in a vibration molding step using the dispersant composition for a hydraulic composition of the present invention is provided.
  • the dispersant composition for hydraulic composition of the present invention By using the dispersant composition for hydraulic composition of the present invention, it is possible to improve compaction property of the hydraulic composition by centrifugal force during centrifugal molding. According to the present invention, there is provided a method for improving the compaction property of a hydraulic composition by centrifugal force, using the dispersant composition for a hydraulic composition of the present invention.
  • the strength of the cured product of the hydraulic composition is improved.
  • the present invention provides a method for improving the strength of a cured product of a hydraulic composition using the dispersant composition for a hydraulic composition of the present invention.
  • Example ⁇ (A) component> the constitution of the copolymer will be shown with acrylic acid or its salt as AA, methacrylic acid or its salt as MAA, and the compound represented by the general formula (1) as compound (1). Further, the ratio (mol%) of acrylic acid or a salt thereof in the total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof is shown as an AA ratio.
  • Copolymer 8: AA / MAA / Compound (1) sodium acrylate
  • Example 1 and Comparative Example 1 (1) Mortar formulation The mortar formulation is shown below.
  • the standard rod is gradually lowered from near the surface of the mortar by its own weight, and the indentation length of the standard rod into the mortar at the time when the mortar stops is measured immediately after the mortar is prepared.
  • the standard indentation depth of the standard rod is gradually lowered from near the surface of the mortar to the surface of the mortar at intervals of 10 seconds after the first standard rod is lowered, and when the lowering is stopped, the distance between the tip of the standard rod and the bottom plate is 0.1 mm. It was read and recorded in units, and the time until the distance between the tip of the standard rod and the bottom plate remained unchanged three times was measured. The results are shown in Table 1.
  • the AA ratio is the ratio (mol%) of AA in the total of AA and MAA.
  • Mw is a weight average molecular weight.
  • EOp is the average number of moles of ethylene oxide added, and corresponds to n in the general formula (1).
  • the addition amount is a mass part in terms of effective components with respect to 100 mass parts of the hydraulic powder (cement and high-strength admixture) (hereinafter the same).
  • standard bar depth is the standard bar depth immediately after mortar preparation.
  • the "invariant time of indentation depth” is the time until the distance between the tip of the standard rod and the bottom plate does not change three consecutive times.
  • Dispersant A is a dispersant having the following composition (the same applies hereinafter).
  • Copolymer 1 / copolymer 5 / glycerin / sodium gluconate 80/14/4/2 (mass ratio)
  • Example 2 and Comparative Example 2 (1) Mortar formulation The mortar formulation is shown below.
  • Formula (II) f (x): approximate expression under rising shear conditions
  • Example 3 and Comparative Example 3> Concrete mix The concrete mix is shown below.
  • Example 3-1 a predetermined amount of AA was used as a constituent monomer for Comparative Example 3-1 using a copolymer not containing AA as a constituent monomer and Comparative Example 3-2 containing no compound (1).
  • Examples 3-1a to 3-1e and Example 3-2 using the copolymers containing them showed good centrifugal compaction properties. This means that, at the end of molding, the copolymers of Examples showed a high yield value due to the network structure of the formed hydration product as a result of the hydration of cement particles being promoted by the flexible molecular structure, and the centrifugal force. It is considered that this is because the concrete was fluidized due to the rattling accompanying the rotation of the metal mold during the molding, and the filling property of the mortar component into the aggregate gap was improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The present invention is a dispersant composition for hydraulic compositions for centrifugal molding or vibration molding, which contains a copolymer that has a weight average molecular weight of from 30,000 to 100,000 (inclusive) and contains, as constituent monomers, an acrylic acid or a salt thereof, a methacrylic acid or a salt thereof, and a compound represented by general formula (1), with the ratio of the acrylic acid or a salt thereof in the total of the acrylic acid or a salt thereof and the methacrylic acid or a salt thereof being from 20 mol% to 70 mol% (inclusive). (In the formula, R1 and R3 may be the same or different and each represents a hydrogen atom or an alkyl group having from 1 to 3 (inclusive) carbon atoms; R2 represents a hydrogen atom or a methyl group; and n represents the average number of added moles, which is a number of from 5 to 150 (inclusive).)

Description

遠心成形又は振動成形用水硬性組成物用分散剤組成物Dispersant composition for hydraulic composition for centrifugal molding or vibration molding
 本発明は、遠心成形又は振動成形用水硬性組成物用分散剤組成物及びその製造方法、遠心成形又は振動成形用水硬性組成物及びその製造方法、並びに水硬性組成物硬化体の製造方法に関する。 The present invention relates to a dispersant composition for a hydraulic composition for centrifugal molding or vibration molding and a method for producing the same, a hydraulic composition for centrifugal molding or vibration molding and a method for producing the same, and a method for producing a cured product of the hydraulic composition.
背景技術
 管類、パイル、ポール等の中空円筒型コンクリート成形品を製造する方法として、遠心成形法が知られている。この遠心成形法は、型枠内に混練したコンクリート材料を投入し、型枠を高速回転させて生じる遠心力によって、型枠内面にコンクリートを押し付けるようにして締固める方法である。型枠は回転軸に並行な継ぎ目を有しており、遠心成形時に型枠の継ぎ目により型枠がはねることにより、コンクリートの遠心締固め工程に於いてはコンクリートに大きな振動が加わり、これが遠心締固め性に寄与する一つの要因となる。
BACKGROUND ART Centrifugal molding is known as a method for producing hollow cylindrical concrete molded products such as pipes, piles and poles. This centrifugal molding method is a method in which a kneaded concrete material is put into a mold and the concrete is pressed against the inner surface of the mold by centrifugal force generated by rotating the mold at a high speed. The formwork has joints parallel to the rotation axis, and during the centrifugal compaction process of concrete, large vibrations are applied to the concrete due to the joints of the formframes splashing the formwork during centrifugal molding. It is one of the factors that contribute to firmness.
 遠心成形用水硬性組成物において、遠心成形製品の成形性の観点から、分散剤はナフタレン系分散剤を用いることが多いが、国内外を問わず、高強度化、耐震強化へのニーズが高まっているが、高強度の硬化体を求められる領域では、コンクリートの単位水量が少ない領域においてはナフタレン系分散剤で混練が困難な領域が現れ、実運用が困難である。そのため、減水性の高いポリカルボン酸系分散剤の利用が進んでいるが、ポリカルボン酸系分散剤を利用した際に問題となるのが遠心成形製品の遠心(振動)締固め性である。日本建築学会構造系論文集、第606号、29-34頁(一般財団法人 日本建築学会、2006年8月発行)では、水結合材比が20%以上の領域でナフタレン系分散剤を用いている。 In hydraulic compositions for centrifugal molding, naphthalene-based dispersants are often used as the dispersant from the viewpoint of moldability of centrifugally molded products, but there is a growing need for higher strength and earthquake resistance both in Japan and overseas. However, in a region where a high-strength hardened body is required, in a region where the unit water amount of concrete is small, a region where it is difficult to knead with a naphthalene-based dispersant appears, which makes practical use difficult. For this reason, the use of polycarboxylic acid-based dispersants having high water-reducing properties has been promoted, but a problem when using the polycarboxylic acid-based dispersants is the centrifugal (vibration) compaction property of the centrifugally molded product. In the Architectural Institute of Japan Structural Papers, No. 606, pages 29-34 (General Incorporated Foundation, Architectural Institute of Japan, published in August 2006), a naphthalene-based dispersant is used in a region where the water binder ratio is 20% or more. There is.
 遠心締固め性は、遠心成形時のコンクリートの締め固まり具合を示す性質であり、遠心成形時の骨材間隙へのモルタル分の充填性、成形終了後の保形性(形を保つ性質)により支配されると考えられる。そのことにより、遠心成形時のコンクリートの遠心締固め性は、コンクリートの流体としてのチキソトロピー性を反映するものであると考えられる。 Centrifugal compaction is a property that indicates the degree of compaction of concrete during centrifugal molding. It depends on the filling property of mortar in the aggregate gap during centrifugal molding and the shape retention (property to maintain the shape) after molding. It is considered to be dominated. Therefore, it is considered that the centrifugal compaction property of the concrete during centrifugal molding reflects the thixotropic property of the concrete as a fluid.
 遠心成形製品の遠心締固め性が良好でないと、遠心成形後の硬化体の強度発現性が低下することや、遠心締固め工程に時間を要し、生産性を損なうこと、遠心成形後の未硬化のコンクリートの剥落(棚落ち)等の欠陥が生じることとなる。そのため、遠心成形用の水硬性組成物には、より優れた遠心締固め性を発現することが望まれる。 If the centrifugal compaction property of the centrifugally molded product is not good, the strength development of the cured product after centrifugal molding will be reduced, the centrifugal compaction process will take time, and the productivity will be impaired. Defects such as exfoliation of hardened concrete (shelf drop) will occur. Therefore, a hydraulic composition for centrifugal molding is desired to exhibit more excellent centrifugal compaction property.
 特開昭61-122147号公報には、非晶質超微粒子シリカと高性能原水剤及び遠心成形助剤を含有し、水セメント比が35%以下のコンクリートを、遠心力35G以下の中速回転で締固めることを特徴とするコンクリートの製造方法が開示されている。 Japanese Patent Application Laid-Open No. 61-122147 discloses a concrete containing amorphous ultrafine silica, a high-performance raw water additive and a centrifugal molding aid, and having a water cement ratio of 35% or less, and a centrifugal force of 35 G or less at a medium speed. There is disclosed a method for producing concrete, which is characterized by compacting with.
 特開2017-122027号公報には、(A)溶液中で単量体を重合反応させ、水硬性組成物用分散剤を得る反応工程、(B)前記反応工程後に、更に加熱し、未反応の単量体の重合反応を進める熟成工程、(C)前記熟成工程で得られた、水硬性組成物用分散剤を含む溶液の温度を調整する冷却工程、(D)前記冷却工程で得られた、水硬性組成物用分散剤を含む溶液のpHを中和し調整する中和工程、(E)前記中和工程で得られた、水硬性組成物用分散剤を含む溶液の濃度を調整する希釈工程を、この順で行う水硬性組成物用分散剤の製造方法が記載されている。 In JP-A-2017-122027, (A) a reaction step of polymerizing a monomer in a solution to obtain a dispersant for a hydraulic composition, and (B) after the reaction step, further heating is performed and unreacted. The aging step of advancing the polymerization reaction of the monomer, (C) the cooling step of adjusting the temperature of the solution containing the dispersant for the hydraulic composition obtained in the aging step, and the (D) obtained in the cooling step. And a neutralization step of neutralizing and adjusting the pH of the solution containing the dispersant for hydraulic composition, and (E) adjusting the concentration of the solution containing the dispersant for hydraulic composition obtained in the neutralization step. The method for producing a dispersant for a hydraulic composition is described in which the diluting steps are performed in this order.
 特開2003-221266号公報には、特定の不飽和(ポリ)アルキレングリコールエーテル系単量体(a)由来の構成単位(I)、他の特定の不飽和ポリアルキレングリコールエーテル系単量体(b)由来の構成単位(II)、及び不飽和モノカルボン酸系単量体(c)由来の構成単位(III)を必須の構成単位として有し、かつ、構成単位(I)、構成単位(II)、及び構成単位(III)が各々全構成単位中の1重量%以上を占め、構成単位(I)と構成単位(II)との占める割合の合計が全構成単位中の50モル%以下である共重合体(A)を必須成分とするセメント混和剤が記載されている。 In Japanese Patent Laid-Open No. 2003-221266, a structural unit (I) derived from a specific unsaturated (poly) alkylene glycol ether-based monomer (a), another specific unsaturated polyalkylene glycol ether-based monomer ( The structural unit (II) derived from (b) and the structural unit (III) derived from the unsaturated monocarboxylic acid-based monomer (c) are included as essential structural units, and the structural unit (I) and the structural unit ( II) and the structural unit (III) each account for 1% by weight or more of all the structural units, and the total ratio of the structural unit (I) and the structural unit (II) is 50 mol% or less in the total structural unit. The cement admixture containing the copolymer (A) as an essential component is described.
 特開2002-348161号公報には、特定の不飽和ポリアルキレングリコールエーテル系単量体(a1)由来の構成単位(I)と、特定の不飽和モノカルボン酸系単量体(b)由来の構成単位(II)とを含んでなる共重合体を必須成分として含むセメント分散剤であって、前記構成単位(II)がメタクリル酸(塩)に由来する構造を少なくとも含む、セメント分散剤が記載されている。 Japanese Unexamined Patent Publication No. 2002-348161 discloses a constitutional unit (I) derived from a specific unsaturated polyalkylene glycol ether monomer (a1) and a specific unsaturated monocarboxylic acid type monomer (b) derived from the structural unit (I). A cement dispersant containing a copolymer containing a structural unit (II) as an essential component, wherein the structural unit (II) includes at least a structure derived from methacrylic acid (salt). Has been done.
 特開昭58-74552号公報には、特定のポリアルキレングリコールモノ(メタ)アクリル酸エステル系単量体、特定の(メタ)アクリル酸系単量体、これらと重合可能な任意の単量体を所定の比率で用いて導かれた共重合体又はその中和物を主成分とするセメント分散剤が記載されている。 JP-A-58-74552 discloses a specific polyalkylene glycol mono (meth) acrylic acid ester-based monomer, a specific (meth) acrylic acid-based monomer, and any monomer polymerizable with these. A cement dispersant containing, as a main component, a copolymer or a neutralized product thereof derived from the above is described.
発明の概要
 本発明は、遠心成形や振動成形などの外力を用いた成形が行われる水硬性組成物に、優れた加振成形性を付与できる水硬性組成物用分散剤組成物を提供する。
SUMMARY OF THE INVENTION The present invention provides a dispersant composition for a hydraulic composition capable of imparting excellent vibration moldability to a hydraulic composition that is molded using an external force such as centrifugal molding or vibration molding.
 本発明は、構成単量体として、アクリル酸又はその塩、メタクリル酸又はその塩、及び下記一般式(1)で表される化合物を含み、アクリル酸又はその塩とメタクリル酸又はその塩の合計中、アクリル酸又はその塩の割合が20mol%以上70mol%以下であり、重量平均分子量が30,000以上100,000以下である共重合体を含有する、遠心成形又は振動成形用水硬性組成物用分散剤組成物に関する。 The present invention includes, as constituent monomers, acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a compound represented by the following general formula (1), and a total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof. Among them, for a hydraulic composition for centrifugal molding or vibration molding, which contains a copolymer having a proportion of acrylic acid or a salt thereof of 20 mol% or more and 70 mol% or less and a weight average molecular weight of 30,000 or more and 100,000 or less. Dispersant composition.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは同一又は異なって炭素数1以上3以下のアルキル基を示し、Rは水素原子又はメチル基を示し、nは平均付加モル数であり5以上150以下の数を示す。) (In the formula, R 1 and R 3 are the same or different and each represents an alkyl group having 1 to 3 carbon atoms, R 2 represents a hydrogen atom or a methyl group, and n is an average number of moles added and is 5 to 150. Indicates the number.)
 また、本発明は、前記本発明の遠心成形又は振動成形用水硬性組成物用分散剤組成物と、水と、水硬性粉体とを含有し、水/水硬性粉体比が10質量%以上25質量%以下である、遠心成形又は振動成形用水硬性組成物に関する。 The present invention also contains the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder, and the water / hydraulic powder ratio is 10% by mass or more. 25% by mass or less of the hydraulic composition for centrifugal molding or vibration molding.
 また、本発明は、前記本発明の遠心成形又は振動成形用水硬性組成物用分散剤組成物を用いて、水硬性組成物の遠心力による締固め性を向上させる方法に関する。 The present invention also relates to a method for improving the compaction property of a hydraulic composition by centrifugal force, using the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention.
 また、本発明は、前記本発明の遠心成形又は振動成形用水硬性組成物用分散剤組成物と、水と、水硬性粉体とを混合する、水硬性組成物の製造方法に関する。 The present invention also relates to a method for producing a hydraulic composition, which comprises mixing the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder.
 また、本発明は、前記本発明の遠心成形又は振動成形用水硬性組成物用分散剤組成物と、水と、水硬性粉体とを混合して水硬性組成物を製造し、該水硬性組成物を型枠内に充填した後、遠心力をかけて型締めする、水硬性組成物の硬化体の製造方法に関する。 Further, the present invention is to produce a hydraulic composition by mixing the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder, and the hydraulic composition The present invention relates to a method for producing a cured product of a hydraulic composition, in which a mold is filled with an object and then the mold is clamped by applying a centrifugal force.
 また、本発明は、前記本発明の遠心成形又は振動成形用水硬性組成物用分散剤組成物と、水と、水硬性粉体とを混合して水硬性組成物を製造し、該水硬性組成物を型枠内に充填した後、振動をかけて型締めする、水硬性組成物の硬化体の製造方法に関する。 Further, the present invention is to produce a hydraulic composition by mixing the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder, and the hydraulic composition The present invention relates to a method for producing a cured product of a hydraulic composition, in which a mold is filled with a product and then the mold is clamped with vibration.
 前記共重合体を、以下、(A)成分という。
 また、本発明の遠心成形又は振動成形用水硬性組成物用分散剤組成物を、本発明の水硬性組成物用分散剤組成物ないし本発明の分散剤組成物という場合もある。
 また、本発明の遠心成形又は振動成形用水硬性組成物を、本発明の水硬性組成物という場合もある。
Hereinafter, the copolymer will be referred to as component (A).
The dispersant composition for hydraulic composition for centrifugal molding or vibration molding of the present invention may be referred to as the dispersant composition for hydraulic composition of the present invention or the dispersant composition of the present invention.
Further, the hydraulic composition for centrifugal molding or vibration molding of the present invention may be referred to as the hydraulic composition of the present invention.
 本発明によれば、遠心成形や振動成形などの振動を用いた成形に用いられる水硬性組成物に、優れた加振成形性を付与できる水硬性組成物用分散剤組成物が提供される。 According to the present invention, there is provided a dispersant composition for a hydraulic composition, which can impart excellent vibration moldability to a hydraulic composition used for molding using vibration such as centrifugal molding and vibration molding.
発明を実施するための形態
 本発明者らは、(A)成分を含有する分散剤組成物を使用したコンクリートは、遠心成形法による遠心締固め性などの加振成形性が向上することを見出した。このような効果が発現する理由は必ずしも定かではないが、以下のように推測される。アクリル酸又はその塩の構造単位は、その高い分子運動性から(A)成分の共重合体に柔軟性をもたらし、当該構造単位を含むポリカルボン酸系分散剤の排除体積は、当該構造を含まないものに比べ大きくなる。このことにより、水硬性粒子表面の絶対被覆面積が低減され、水和反応が促される(凝結遅延が回避される)ことにより、水和生成物により密な組織が形成されることで水硬性組成物のチキソトロピー性が向上し、優れた振動応答性がもたらされるものと考えられる。また、遠心成形時には金属性の型枠の回転により振動が生じるため、遠心成形時、加振時には流動化し骨材の充填が進み、優れた遠心締固め性がもたらされるものと考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that concrete using a dispersant composition containing the component (A) has improved vibration moldability such as centrifugal compaction property by centrifugal molding. It was The reason why such an effect is exhibited is not always clear, but it is presumed as follows. The structural unit of acrylic acid or a salt thereof imparts flexibility to the copolymer of the component (A) due to its high molecular mobility, and the excluded volume of the polycarboxylic acid-based dispersant containing the structural unit contains the structure. It will be bigger than the one without. As a result, the absolute coating area of the surface of the hydraulic particles is reduced, the hydration reaction is promoted (a delay in setting is avoided), and a dense structure is formed by the hydration product, which results in a hydraulic composition. It is considered that the thixotropy of the product is improved and the excellent vibration response is brought about. In addition, since the vibration is generated by the rotation of the metallic mold during centrifugal molding, it is considered that during centrifugal molding, when fluidized, it fluidizes and the filling of the aggregate progresses, resulting in excellent centrifugal compaction.
<水硬性組成物用分散剤組成物>
 (A)成分は、構成単量体として、アクリル酸又はその塩、メタクリル酸又はその塩、及び下記一般式(1)で表される化合物を含む所定の重量平均分子量を有する共重合体であり、(A)成分は、アクリル酸又はその塩とメタクリル酸又はその塩の合計中、アクリル酸又はその塩の割合が20mol%以上70mol%以下である。
<Dispersant composition for hydraulic composition>
The component (A) is a copolymer having a predetermined weight average molecular weight containing acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a compound represented by the following general formula (1) as constituent monomers. The component (A) has a proportion of acrylic acid or a salt thereof of 20 mol% or more and 70 mol% or less in the total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof.
 (A)成分は、振動応答性、遠心締固め性の観点から、アクリル酸又はその塩とメタクリル酸又はその塩の合計中、アクリル酸又はその塩の割合が20mol%以上、好ましくは30mol%以上、より好ましくは40mol%以上、そして、70mol%以下、好ましくは65mol%以下、より好ましくは60mol%以下である。 The component (A) has a proportion of acrylic acid or a salt thereof of 20 mol% or more, preferably 30 mol% or more in the total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof, from the viewpoint of vibration response and centrifugal compaction property. , More preferably 40 mol% or more, and 70 mol% or less, preferably 65 mol% or less, more preferably 60 mol% or less.
 (A)成分は、振動応答性、遠心締固め性の観点から、アクリル酸又はその塩、メタクリル酸又はその塩、及び前記一般式(1)で表される化合物の合計中、アクリル酸又はその塩及びメタクリル酸又はその塩の合計の割合が、好ましくは50mol%以上、より好ましくは60mol%以上、更に好ましくは65mol%以上、そして、好ましくは95mol%以下、より好ましくは85mol%以下、更に好ましくは77mol%以下、である。 From the viewpoint of vibration responsiveness and centrifugal compaction property, the component (A) is acrylic acid or its salt in the total of acrylic acid or its salt, methacrylic acid or its salt, and the compound represented by the above general formula (1). The total proportion of the salt and methacrylic acid or its salt is preferably 50 mol% or more, more preferably 60 mol% or more, further preferably 65 mol% or more, and preferably 95 mol% or less, more preferably 85 mol% or less, further preferably Is 77 mol% or less.
 (A)成分は、構成単量体の全量中、アクリル酸又はその塩、メタクリル酸又はその塩、及び前記一般式(1)で表される化合物の合計の割合が、好ましくは50mol%以上、より好ましくは70mol%以上、そして、好ましくは100mol%以下であり、100mol%であってよい。 In the component (A), the total proportion of acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and the compound represented by the general formula (1) in the total amount of the constituent monomers is preferably 50 mol% or more, It is more preferably 70 mol% or more, and preferably 100 mol% or less, and may be 100 mol%.
 アクリル酸の塩及びメタクリル酸の塩としては、それぞれ、アルカリ金属塩、アルカリ土類金属塩(1/2原子)、アンモニウム塩、アルキルアンモニウム塩、又はアルケニルアンモニウム塩が挙げられ、好ましくはアルカリ金属塩、アルカリ土類金属塩(1/2原子)、アルキルアンモニウム塩、又はアルケニルアンモニウム塩であり、より好ましくはアルカリ金属塩、アルカリ土類金属塩(1/2原子)、又はアルキルアンモニウム塩である。 Examples of the salt of acrylic acid and the salt of methacrylic acid include an alkali metal salt, an alkaline earth metal salt (1/2 atom), an ammonium salt, an alkylammonium salt, or an alkenylammonium salt, and preferably an alkali metal salt. , An alkaline earth metal salt (1/2 atom), an alkyl ammonium salt, or an alkenyl ammonium salt, and more preferably an alkali metal salt, an alkaline earth metal salt (1/2 atom), or an alkyl ammonium salt.
 一般式(1)中、Rは、好ましくはメチル基である。
 一般式(1)中、Rは、好ましくは水素原子である。
 一般式(1)中、Rは、好ましくはメチル基又は水素原子である。
 一般式(1)中、nは、平均付加モル数であり、好ましくは10以上、より好ましくは20以上、更に好ましくは30以上、より更に好ましくは40以上、そして、好ましくは90以下、より好ましくは80以下、更に好ましくは70以下、より更に好ましくは60以下、より更に好ましくは55以下の数である。
In general formula (1), R 1 is preferably a methyl group.
In general formula (1), R 2 is preferably a hydrogen atom.
In general formula (1), R 3 is preferably a methyl group or a hydrogen atom.
In the general formula (1), n is the average number of moles added, preferably 10 or more, more preferably 20 or more, further preferably 30 or more, still more preferably 40 or more, and preferably 90 or less, more preferably Is 80 or less, more preferably 70 or less, even more preferably 60 or less, still more preferably 55 or less.
 (A)成分は、水硬性組成物に優れた加振成形性を付与できる観点から、重量平均分子量が、30,000以上、好ましくは32,000以上、より好ましくは35,000以上、そして、100,000以下、好ましくは60,000以下、より好ましくは50,000以下、更に好ましくは45,000以下、より更に好ましくは40,000以下である。この重量平均分子量は、以下の条件のゲルパーミエーションクロマトグラフィ(GPC)により測定されたものである。
*GPC条件
装置:GPC(HLC-8320GPC)東ソー株式会社製
カラム:G4000PWXL+G2500PWXL(東ソー株式会社製)
溶離液:0.2Mリン酸バッファー/CHCN=9/1
流量:1.0mL/min
カラム温度:40℃
検出:RI
サンプルサイズ:0.2mg/mL
標準物質:ポリエチレングリコール換算(単分散のポリエチレングリコール:分子量87,500、250,000、145,000、46,000、24,000)
The component (A) has a weight average molecular weight of 30,000 or more, preferably 32,000 or more, more preferably 35,000 or more, from the viewpoint of imparting excellent vibration moldability to the hydraulic composition. It is 100,000 or less, preferably 60,000 or less, more preferably 50,000 or less, still more preferably 45,000 or less, still more preferably 40,000 or less. This weight average molecular weight is measured by gel permeation chromatography (GPC) under the following conditions.
* GPC condition device: GPC (HLC-8320GPC) Tosoh Corporation column: G4000PWXL + G2500PWXL (Tosoh Corporation)
Eluent: 0.2 M phosphoric acid buffer / CH 3 CN = 9/1
Flow rate: 1.0 mL / min
Column temperature: 40 ° C
Detection: RI
Sample size: 0.2mg / mL
Standard substance: Polyethylene glycol equivalent (monodisperse polyethylene glycol: molecular weight 87,500, 250,000, 145,000, 46,000, 24,000)
 本発明の水硬性組成物用分散剤組成物は、更に、強度向上剤及び/又は遅延剤を含むことができる。 The dispersant composition for hydraulic composition of the present invention may further contain a strength improver and / or a retarder.
 強度向上剤としては、ポリオール化合物、チオ硫酸アルカリ金属塩、チオ硫酸アルカリ土類金属塩、チオシアン酸アルカリ金属塩、チオシアン酸アルカリ土類金属塩、硫酸アルカリ金属塩、硫酸アルカリ土類金属塩が挙げられる。強度向上剤は、ポリオール化合物から選択される一種類以上が好ましい。ポリオール化合物は、グリセリン、グリセリンエステル誘導体、グリコール化合物、糖アルコールが挙げられる。ポリオール化合物はグリセリンが好ましい。 Examples of the strength improver include a polyol compound, an alkali metal thiosulfate, an alkaline earth metal thiosulfate, an alkaline metal thiocyanate, an alkaline earth metal thiocyanate, an alkaline metal sulfate and an alkaline earth metal sulfate. To be The strength improver is preferably one or more selected from polyol compounds. Examples of the polyol compound include glycerin, glycerin ester derivatives, glycol compounds, and sugar alcohols. The polyol compound is preferably glycerin.
 遅延剤としては、オキシカルボン酸、多価カルボン酸、還元性多糖類、糖アルコールが挙げられる。遅延剤は、オキシカルボン酸から選択される一種類以上が好ましい。オキシカルボン酸は、グルコン酸及び/又はその塩、グリコール酸及び/又はその塩、タルトロン酸及び/又はその塩、グリセリン酸及び/又はその塩、酒石酸及び/又はその塩、クエン酸及び/又はその塩、サリチル酸及び/又はその塩、没食子酸及び/又はその塩が挙げられる。オキシカルボン酸は、グルコン酸及び/又はその塩が好ましい。 Examples of the retarder include oxycarboxylic acid, polyvalent carboxylic acid, reducing polysaccharide and sugar alcohol. The retarder is preferably one or more selected from oxycarboxylic acids. The oxycarboxylic acid is gluconic acid and / or its salt, glycolic acid and / or its salt, tartronic acid and / or its salt, glyceric acid and / or its salt, tartaric acid and / or its salt, citric acid and / or its Salt, salicylic acid and / or its salt, gallic acid and / or its salt are mentioned. The oxycarboxylic acid is preferably gluconic acid and / or a salt thereof.
 本発明の水硬性組成物用分散剤組成物は、(A)成分を、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、そして、好ましくは90質量%以下、より好ましくは70質量%以下、更に好ましくは50質量%以下含有する。本発明の水硬性組成物用分散剤組成物は、(A)成分の含有量が100質量%、すなわち(A)成分からなるものであってもよい。 The dispersant composition for hydraulic compositions of the present invention preferably contains component (A) in an amount of 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass or more, and preferably 90% by mass. The following content is more preferably 70% by mass or less, further preferably 50% by mass or less. The dispersant composition for hydraulic compositions of the present invention may have a content of the component (A) of 100% by mass, that is, a component (A).
 本発明の水硬性組成物用分散剤組成物が強度向上剤を含有する場合、その含有量は、組成物中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、そして、好ましくは10質量%以下、より好ましくは5質量%以下である。 When the dispersant composition for a hydraulic composition of the present invention contains a strength improver, its content is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and , Preferably 10% by mass or less, more preferably 5% by mass or less.
 また、本発明の水硬性組成物用分散剤組成物が強度向上剤を含有する場合、(A)成分の含有量と強度向上剤の含有量の質量比は、強度向上剤の含有量/(A)成分の含有量で、好ましくは0.01以上、より好ましくは0.03以上、更に好ましくは0.045以上、そして、好ましくは1以下、より好ましくは0.5以下、更に好ましくは0.2以下、より更に好ましくは0.1以下、より更に好ましくは0.07以下である。 When the dispersant composition for hydraulic composition of the present invention contains a strength improver, the mass ratio of the content of the component (A) to the content of the strength improver is the content of the strength improver / ( The content of component A) is preferably 0.01 or more, more preferably 0.03 or more, still more preferably 0.045 or more, and preferably 1 or less, more preferably 0.5 or less, still more preferably 0. 0.2 or less, more preferably 0.1 or less, still more preferably 0.07 or less.
 本発明の水硬性組成物用分散剤組成物が遅延剤を含有する場合、その含有量は、組成物中、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、そして、好ましくは10質量%以下、より好ましくは5質量%以下である。 When the hydraulic composition dispersant composition of the present invention contains a retarder, the content thereof is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and It is preferably 10% by mass or less, more preferably 5% by mass or less.
 また、本発明の水硬性組成物用分散剤組成物が遅延剤を含有する場合、(A)成分の含有量と遅延剤の含有量の質量比は、遅延剤の含有量/(A)成分の含有量で、好ましくは0.01以上、より好ましくは0.02以上、そして、好ましくは1以下、より好ましくは0.5以下、更に好ましくは0.2以下、より更に好ましくは0.1以下、より更に好ましくは0.07以下、より更に好ましくは0.05以下である。 When the dispersant composition for a hydraulic composition of the present invention contains a retarder, the mass ratio of the content of the component (A) and the content of the retarder is the content of the retarder / the component of (A). Content is preferably 0.01 or more, more preferably 0.02 or more, and preferably 1 or less, more preferably 0.5 or less, still more preferably 0.2 or less, still more preferably 0.1 or less. Or less, more preferably 0.07 or less, still more preferably 0.05 or less.
 本発明の水硬性組成物用分散剤組成物は、更に(A)成分以外の共重合体からなるポリカルボン酸系分散剤(以下、その他のポリカルボン酸系分散剤という)を含有することができる。その他のポリカルボン酸系分散剤としては、メタクリル酸又はその塩と前記一般式(1)で表される化合物の共重合体であって、分散剤として公知の構造、組成を有する共重合体が挙げられる。
 本発明の水硬性組成物用分散剤組成物が、その他のポリカルボン酸系分散剤を含有する場合、その他のポリカルボン酸系分散剤/(A)成分の質量比は、好ましくは0.01以上、より好ましくは0.1以上、そして、好ましくは10以下、より好ましくは1以下、更に好ましくは0.5以下、より更に好ましくは0.3以下、より更に好ましくは0.2以下である。
 本発明の水硬性組成物用分散剤組成物は、強度向上剤と遅延剤の合計含有量と、(A)成分とその他のポリカルボン酸系分散剤の合計含有量との質量比が、(強度向上剤と遅延剤の合計含有量)/((A)成分とその他のポリカルボン酸系分散剤の合計含有量)で、好ましくは0.02以上、より好ましくは0.05以上、そして、好ましくは2以下、より好ましくは1以下、更に好ましくは0.5以下、より更に好ましくは0.3以下、より更に好ましくは0.2以下、より更に好ましくは0.1以下、である。この質量比は、強度向上剤及び遅延剤の一方の含有量が0である場合を含む。
The dispersant composition for hydraulic compositions of the present invention may further contain a polycarboxylic acid dispersant (hereinafter referred to as other polycarboxylic acid dispersant) composed of a copolymer other than the component (A). it can. Other polycarboxylic acid-based dispersants include copolymers of methacrylic acid or a salt thereof and a compound represented by the general formula (1), which have a known structure and composition as a dispersant. Can be mentioned.
When the dispersant composition for hydraulic composition of the present invention contains other polycarboxylic acid type dispersant, the mass ratio of other polycarboxylic acid type dispersant / (A) component is preferably 0.01. Or more, more preferably 0.1 or more, and preferably 10 or less, more preferably 1 or less, still more preferably 0.5 or less, even more preferably 0.3 or less, still more preferably 0.2 or less. .
In the dispersant composition for hydraulic composition of the present invention, the mass ratio of the total content of the strength improver and the retarder and the total content of the component (A) and the other polycarboxylic acid-based dispersant is ( (Total content of strength improver and retarder) / (total content of (A) component and other polycarboxylic acid-based dispersant), preferably 0.02 or more, more preferably 0.05 or more, and It is preferably 2 or less, more preferably 1 or less, still more preferably 0.5 or less, even more preferably 0.3 or less, even more preferably 0.2 or less, still more preferably 0.1 or less. This mass ratio includes the case where the content of one of the strength improver and the retarder is 0.
 本発明の水硬性組成物用分散剤組成物は、その他の任意成分として、AE剤、起泡剤、増粘剤、発泡剤、防水剤、流動化剤、消泡剤等などを含有することができる。 The dispersant composition for hydraulic compositions of the present invention contains, as other optional components, an AE agent, a foaming agent, a thickener, a foaming agent, a waterproofing agent, a fluidizing agent, a defoaming agent, and the like. You can
 本発明の水硬性組成物用分散剤組成物は、水を含有することができる。本発明の水硬性組成物用分散剤組成物は、液体組成物であってもよい。 The dispersant composition for hydraulic composition of the present invention may contain water. The dispersant composition for hydraulic composition of the present invention may be a liquid composition.
 本発明の水硬性組成物用分散剤組成物は、遠心成形用水硬性組成物用分散剤組成物であってよい。
 本発明の水硬性組成物用分散剤組成物は、振動成形用水硬性組成物用分散剤組成物であってよい。
 遠心成形用水硬性組成物用分散剤組成物は、本発明の水硬性組成物用分散剤組成物の好ましい態様の1つである。
The dispersant composition for hydraulic composition of the present invention may be a dispersant composition for hydraulic composition for centrifugal molding.
The dispersant composition for hydraulic composition of the present invention may be a dispersant composition for hydraulic composition for vibration molding.
The dispersant composition for a hydraulic composition for centrifugal molding is one of the preferred embodiments of the dispersant composition for a hydraulic composition of the present invention.
 本発明は、本発明の水硬性組成物用分散剤組成物の、遠心成形又は振動成形用水硬性組成物用分散剤としての使用を提供する。
 また、本発明は、(A)成分の共重合体の、遠心成形又は振動成形用水硬性組成物用分散剤としての使用を提供する。
 また、本発明は、(A)成分の共重合体の、遠心成形又は振動成形用水硬性組成物用分散剤を製造するための使用を提供する。
 これらの使用には、本発明の水硬性組成物用分散剤組成物で述べた事項を適宜適用することができる。
The present invention provides the use of the dispersant composition for hydraulic compositions of the present invention as a dispersant for hydraulic compositions for centrifugal molding or vibration molding.
The present invention also provides use of the copolymer of component (A) as a dispersant for a hydraulic composition for centrifugal molding or vibration molding.
The present invention also provides the use of the copolymer of component (A) for producing a dispersant for a hydraulic composition for centrifugal molding or vibration molding.
The matters described in the dispersant composition for a hydraulic composition of the present invention can be appropriately applied to these uses.
<水硬性組成物>
 本発明は、本発明の水硬性組成物用分散剤組成物と、水と、水硬性粉体とを含有する遠心成形又は振動成形用水硬性組成物を提供する。本発明の水硬性組成物は、構成単量体として、アクリル酸又はその塩、メタクリル酸又はその塩、及び下記一般式(1)で表される化合物を含む共重合体〔(A)成分〕と、水と、水硬性粉体とを含有する遠心成形又は振動成形用水硬性組成物であって、前記共重合体は、アクリル酸又はその塩とメタクリル酸又はその塩の合計中、アクリル酸又はその塩の割合が20mol%以上70mol%以下である、遠心成形又は振動成形用水硬性組成物である。
 本発明の水硬性組成物用分散剤組成物で述べた事項は、本発明の水硬性組成物に適宜適用することができる。
<Hydraulic composition>
The present invention provides a hydraulic composition for centrifugal molding or vibration molding containing the dispersant composition for hydraulic composition of the present invention, water, and hydraulic powder. The hydraulic composition of the present invention is a copolymer [(A) component] containing acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a compound represented by the following general formula (1) as constituent monomers. And water, and a hydraulic composition for centrifugal molding or vibration molding containing a hydraulic powder, wherein the copolymer is acrylic acid or a salt thereof and methacrylic acid or a salt thereof in total, acrylic acid or A hydraulic composition for centrifugal molding or vibration molding in which the proportion of the salt is 20 mol% or more and 70 mol% or less.
The matters described in the dispersant composition for a hydraulic composition of the present invention can be appropriately applied to the hydraulic composition of the present invention.
 本発明の水硬性組成物において、(A)成分の具体例及び好ましい態様は、本発明の水硬性組成物用分散剤組成物と同じである。
 本発明の水硬性組成物は、分散性及び遠心締固め性の観点から、水硬性粉体100質量部に対して、(A)成分を、好ましくは0.01質量部以上、より好ましくは0.1質量部以上、そして、好ましくは9質量部以下、より好ましくは5質量部以下、更に好ましくは1質量部以下含有する。
In the hydraulic composition of the present invention, the specific examples and preferred embodiments of the component (A) are the same as those of the dispersant composition for a hydraulic composition of the present invention.
From the viewpoint of dispersibility and centrifugal compaction property, the hydraulic composition of the present invention preferably contains the component (A) in an amount of 0.01 parts by mass or more, and more preferably 0 parts, relative to 100 parts by mass of the hydraulic powder. 1 part by mass or more, and preferably 9 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 1 part by mass or less.
 水硬性粉体とは、水和反応により硬化する物性を有する粉体のことであり、セメント、石膏等が挙げられる。水硬性粉体は、好ましくはセメント、より好ましくは普通ポルトランドセメント、ビーライトセメント、中庸熱セメント、早強セメント、超早強セメント、耐硫酸塩セメント等のセメントである。また、セメント等に高炉スラグ、フライアッシュ、シリカフュームなどのポゾラン作用及び/又は潜在水硬性を有する粉体や、石粉(炭酸カルシウム粉末)等が添加された高炉スラグセメント、フライアッシュセメント、シリカフュームセメント等でもよい。 Hydraulic powder is a powder that has the property of being hardened by a hydration reaction, and examples thereof include cement and gypsum. The hydraulic powder is preferably cement, more preferably ordinary portland cement, belite cement, moderate heat cement, early-strength cement, ultra-early-strength cement, sulfate-resistant cement and the like. In addition, blast furnace slag cement, fly ash cement, silica fume cement, etc. to which powder such as blast furnace slag, fly ash, silica fume and the like having pozzolanic action and / or latent hydraulic property, or stone powder (calcium carbonate powder) is added to cement etc. But it's okay.
 本発明の水硬性組成物は、水/水硬性粉体比が、好ましくは10質量%以上、そして、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、より好ましくは25質量%以下である。ここで、水/水硬性粉体比は、水硬性組成物中の水と水硬性粉体の質量百分率(質量%)であり、水の質量/水硬性粉体の質量×100により算出される。水/水硬性粉体比は、水の量と、水和反応により硬化する物性を有する粉体の量とに基づいて算出される。水和反応により硬化する物性を有する粉体が、ポゾラン作用を有する粉体、潜在水硬性を有する粉体、及び石粉(炭酸カルシウム粉末)から選ばれる粉体を含む場合、本発明では、それらの量も水硬性粉体の量に算入する。また、水和反応により硬化する物性を有する粉体が、高強度混和材を含有する場合、高強度混和材の量も水硬性粉体の量に算入する。これは、水硬性粉体の質量が関係する以下の質量部においても同様である。 The hydraulic composition of the present invention has a water / hydraulic powder ratio of preferably 10% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, It is more preferably 25% by mass or less. Here, the water / hydraulic powder ratio is a mass percentage (mass%) of water and the hydraulic powder in the hydraulic composition, and is calculated by mass of water / mass of hydraulic powder × 100. . The water / hydraulic powder ratio is calculated based on the amount of water and the amount of powder having physical properties that harden due to a hydration reaction. When the powder having the physical properties of being hardened by the hydration reaction includes a powder having a pozzolanic action, a powder having latent hydraulicity, and a stone powder (calcium carbonate powder), in the present invention, those powders are selected. The amount is also included in the amount of hydraulic powder. When the powder having the physical properties of being hardened by the hydration reaction contains the high-strength admixture, the amount of the high-strength admixture is also included in the amount of hydraulic powder. This also applies to the following parts by mass that relate to the mass of the hydraulic powder.
 本発明の水硬性組成物は、骨材を含有することが好ましい。骨材としては、細骨材及び粗骨材から選ばれる骨材が挙げられる。細骨材として、JIS A0203-2014中の番号2311で規定されるものが挙げられる。細骨材としては、川砂、陸砂、山砂、海砂、石灰砂、珪砂及びこれらの砕砂、高炉スラグ細骨材、フェロニッケルスラグ細骨材、軽量細骨材(人工及び天然)及び再生細骨材等が挙げられる。また、粗骨材として、JIS A0203-2014中の番号2312で規定されるものが挙げられる。例えば粗骨材としては、川砂利、陸砂利、山砂利、海砂利、石灰砂利、これらの砕石、高炉スラグ粗骨材、フェロニッケルスラグ粗骨材、軽量粗骨材(人工及び天然)及び再生粗骨材等が挙げられる。細骨材、粗骨材は種類の違うものを混合して使用しても良く、単一の種類のものを使用しても良い。
 水硬性組成物がコンクリートの場合、粗骨材の使用量は、水硬性組成物の強度の発現とセメント等の水硬性粉体の使用量を低減し、型枠等への充填性を向上する観点から、嵩容積は、好ましくは50%以上、より好ましくは55%以上、更に好ましくは60%以上であり、そして、好ましくは100%以下、より好ましくは90%以下、更に好ましくは80%以下である。嵩容積は、コンクリート1m中の粗骨材の容積(空隙を含む)の割合である。また、水硬性組成物がコンクリートの場合、細骨材の使用量は、型枠等への充填性を向上する観点から、好ましくは500kg/m以上、より好ましくは600kg/m以上、更に好ましくは700kg/m以上であり、そして、好ましくは1,000kg/m以下、より好ましくは900kg/m以下である。
 水硬性組成物がモルタルの場合、細骨材の使用量は、好ましくは800kg/m以上、より好ましくは900kg/m以上、更に好ましくは1,000kg/m以上であり、そして、好ましくは2,000kg/m以下、より好ましくは1,800kg/m以下、更に好ましくは1,700kg/m以下である。
The hydraulic composition of the present invention preferably contains an aggregate. Examples of aggregates include aggregates selected from fine aggregates and coarse aggregates. As the fine aggregate, one specified by No. 2311 in JIS A0203-2014 can be mentioned. As fine aggregate, river sand, land sand, mountain sand, sea sand, lime sand, silica sand and crushed sand of these, blast furnace slag fine aggregate, ferronickel slag fine aggregate, lightweight fine aggregate (artificial and natural) and recycled Fine aggregates and the like can be mentioned. Further, as the coarse aggregate, one specified by the number 2312 in JIS A0203-2014 can be mentioned. For example, as coarse aggregate, river gravel, land gravel, mountain gravel, sea gravel, lime gravel, crushed stone of these, blast furnace slag coarse aggregate, ferronickel slag coarse aggregate, lightweight coarse aggregate (artificial and natural) and recycled Examples include coarse aggregate. Fine aggregates and coarse aggregates may be used by mixing different types, or may be used by a single type.
When the hydraulic composition is concrete, the amount of coarse aggregate used reduces the development of the strength of the hydraulic composition and the amount of hydraulic powder such as cement, and improves the filling property of the formwork etc. From the viewpoint, the bulk volume is preferably 50% or more, more preferably 55% or more, further preferably 60% or more, and preferably 100% or less, more preferably 90% or less, further preferably 80% or less. Is. The bulk volume is the ratio of the volume (including voids) of coarse aggregate in 1 m 3 of concrete. Further, when the hydraulic composition is concrete, the amount of the fine aggregate used is preferably 500 kg / m 3 or more, more preferably 600 kg / m 3 or more, from the viewpoint of improving the filling property into the mold and the like. It is preferably 700 kg / m 3 or more, and preferably 1,000 kg / m 3 or less, more preferably 900 kg / m 3 or less.
When the hydraulic composition is a mortar, the amount of fine aggregate used is preferably 800 kg / m 3 or more, more preferably 900 kg / m 3 or more, even more preferably 1,000 kg / m 3 or more, and preferably Is 2,000 kg / m 3 or less, more preferably 1,800 kg / m 3 or less, and further preferably 1,700 kg / m 3 or less.
 本発明の水硬性組成物は、高強度混和材を含有することができる。高強度混和材としては、ブレーン値が2,500cm/g以上又はBET比表面積が10m/g以上の粉体、更に無機粉体(セメントを除く)が挙げられる。高強度混和材の構成成分として、無水石膏、シリカフューム、及びフライアッシュから選ばれる粉体が挙げられる。高強度混和材は、市販品として、デンカΣ1000(デンカ株式会社)、デンカΣ2000(デンカ株式会社)、太平洋ウルトラスーパーミックス(太平洋マテリアル株式会社)等が挙げられる。本発明の水硬性組成物が高強度混和材を含有する場合、高強度混和材の含有量は、水硬性粉体、更にセメント100質量部に対して、好ましくは0.1質量部以上、より好ましくは1質量部以上、そして、好ましくは20質量部以下、より好ましくは10質量部以下である。 The hydraulic composition of the present invention may contain a high-strength admixture. Examples of the high-strength admixture include powders having a Blaine value of 2,500 cm 2 / g or more or a BET specific surface area of 10 m 2 / g or more, and inorganic powders (excluding cement). As a constituent component of the high-strength admixture, a powder selected from anhydrous gypsum, silica fume, and fly ash can be mentioned. Commercially available high-strength admixtures include Denka Σ1000 (Denka Co., Ltd.), Denka Σ2000 (Denka Co., Ltd.), and Taiheiyo Ultra Super Mix (Pacific Materials Co., Ltd.). When the hydraulic composition of the present invention contains a high-strength admixture, the content of the high-strength admixture is preferably 0.1 part by mass or more, more preferably 0.1 part by mass or more based on 100 parts by mass of hydraulic powder and cement. It is preferably 1 part by mass or more, and preferably 20 parts by mass or less, more preferably 10 parts by mass or less.
 本発明の水硬性組成物は、遠心成形用水硬性組成物であってよい。
 本発明の水硬性組成物は、振動成形用水硬性組成物であってよい。
 遠心成形用水硬性組成物は、本発明の水硬性組成物の好ましい態様の1つである。
The hydraulic composition of the present invention may be a centrifugal molding hydraulic composition.
The hydraulic composition of the present invention may be a vibration molding hydraulic composition.
The hydraulic composition for centrifugal molding is one of the preferable embodiments of the hydraulic composition of the present invention.
 本発明は、本発明の遠心成形又は振動成形用水硬性組成物用分散剤組成物と、水と、水硬性粉体とを含有し、水/水硬性粉体比が10質量%以上25質量%以下である組成物の、遠心成形又は振動成形用水硬性組成物としての使用を提供する。
 また、本発明は、本発明の遠心成形又は振動成形用水硬性組成物用分散剤組成物と、水と、水硬性粉体とを含有し、水/水硬性粉体比が10質量%以上25質量%以下である組成物の、遠心成形又は振動成形用水硬性組成物を製造するための使用を提供する。
 これらの使用には、本発明の水硬性組成物用分散剤組成物及び水硬性組成物で述べた事項を適宜適用することができる。
The present invention contains the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder, and the water / hydraulic powder ratio is 10% by mass or more and 25% by mass. The use of the following composition as a hydraulic composition for centrifugal molding or vibration molding is provided.
The present invention also contains the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding of the present invention, water, and a hydraulic powder, and the water / hydraulic powder ratio is 10% by mass or more and 25% or more. Provided is the use of a composition, which is less than or equal to% by weight, for producing a hydraulic composition for centrifugal molding or vibration molding.
For these uses, the matters described in the dispersant composition for hydraulic composition and the hydraulic composition of the present invention can be appropriately applied.
<水硬性組成物の製造方法>
 本発明は、本発明の水硬性組成物用分散剤組成物と、水と、水硬性粉体とを混合する、水硬性組成物の製造方法を提供する。本発明の水硬性組成物の製造方法は、構成単量体として、アクリル酸又はその塩、メタクリル酸又はその塩、及び下記一般式(1)で表される化合物を含む共重合体〔(A)成分〕と、水と、水硬性粉体とを混合する、水硬性組成物の製造方法であって、前記共重合体は、アクリル酸又はその塩とメタクリル酸又はその塩の合計中、アクリル酸又はその塩の割合が20mol%以上70mol%以下である、水硬性組成物の製造方法である。
 本発明の水硬性組成物用分散剤組成物及び水硬性組成物で述べた事項は、本発明の水硬性組成物の製造方法に適宜適用することができる。
<Method for producing hydraulic composition>
The present invention provides a method for producing a hydraulic composition, which comprises mixing the dispersant composition for a hydraulic composition of the present invention, water, and a hydraulic powder. The method for producing a hydraulic composition of the present invention is a copolymer containing acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a compound represented by the following general formula (1) as constituent monomers [(A Component), water, and a hydraulic powder are mixed, wherein the copolymer is acrylic acid or a salt thereof and methacrylic acid or a salt thereof. A method for producing a hydraulic composition, wherein the ratio of the acid or its salt is 20 mol% or more and 70 mol% or less.
The matters described in the dispersant composition for hydraulic composition and the hydraulic composition of the present invention can be appropriately applied to the method for producing the hydraulic composition of the present invention.
 本発明の水硬性組成物の製造方法において、(A)成分の具体例及び好ましい態様は、本発明の水硬性組成物用分散剤組成物と同じである。
 また、本発明の水硬性組成物の製造方法に用いられる水硬性粉体の具体例及び好ましい態様は、本発明の水硬性組成物で述べたものと同じである。水硬性粉体は、好ましくは、水/水硬性粉体比が、本発明の水硬性組成物で述べた範囲となるように用いる。
 また、本発明の水硬性組成物の製造方法では、骨材を混合することが好ましい。骨材の具体例及び好ましい態様は、本発明の水硬性組成物で述べたものと同じである。また、骨材の使用量も、本発明の水硬性組成物で述べたものと同じである。
In the method for producing a hydraulic composition of the present invention, specific examples and preferred embodiments of the component (A) are the same as those of the dispersant composition for a hydraulic composition of the present invention.
The specific examples and preferred embodiments of the hydraulic powder used in the method for producing the hydraulic composition of the present invention are the same as those described for the hydraulic composition of the present invention. The hydraulic powder is preferably used so that the water / hydraulic powder ratio falls within the range described in the hydraulic composition of the present invention.
Further, in the method for producing a hydraulic composition of the present invention, it is preferable to mix an aggregate. Specific examples and preferred embodiments of the aggregate are the same as those described for the hydraulic composition of the present invention. The amount of aggregate used is also the same as that described for the hydraulic composition of the present invention.
 本発明の水硬性組成物の製造方法では、(A)成分とセメント等の水硬性粉体とを円滑に混合する観点から、(A)成分と水とを予め混合し、水硬性粉体と混合することが好ましい。 In the method for producing the hydraulic composition of the present invention, from the viewpoint of smoothly mixing the component (A) and the hydraulic powder such as cement, the component (A) and water are preliminarily mixed to obtain the hydraulic powder. Mixing is preferred.
 水硬性粉体と、水と、(A)成分と、必要に応じて用いられる成分との混合は、モルタルミキサー、強制二軸ミキサー等のミキサーを用いて行うことができる。
 また、好ましくは1分間以上、より好ましくは2分間以上、そして、好ましくは5分間以下、より好ましくは3分間以下混合する。水硬性組成物の調製にあたっては、水硬性組成物で説明した材料や薬剤及びそれらの量を用いることができる。
The mixing of the hydraulic powder, water, the component (A), and the component used as necessary can be performed using a mixer such as a mortar mixer and a forced biaxial mixer.
Further, the mixture is preferably mixed for 1 minute or more, more preferably 2 minutes or more, and preferably 5 minutes or less, more preferably 3 minutes or less. In preparing the hydraulic composition, the materials, agents and their amounts described in the hydraulic composition can be used.
 得られた水硬性組成物は、更に、水硬性組成物を型枠に充填し養生し硬化させる。型枠として、建築物の型枠、コンクリート製品用の型枠等が挙げられる。型枠への充填方法として、ミキサーから直接投入する方法、水硬性組成物をポンプで圧送して型枠に導入する方法等が挙げられる。 The obtained hydraulic composition is further filled in a mold to cure and cure. Examples of the formwork include a formwork for buildings and a formwork for concrete products. Examples of the method for filling the mold include a method of directly charging from a mixer and a method of pumping the hydraulic composition with a pump to introduce it into the mold.
 水硬性組成物の養生の際、硬化を促進するために加熱養生し、硬化を促進させても良い。ここで、加熱養生は、40℃以上90℃以下の温度で水硬性組成物を保持して硬化を促進することができる。 When the hydraulic composition is cured, it may be cured by heating to accelerate the curing. Here, the heat curing can hold the hydraulic composition at a temperature of 40 ° C. or higher and 90 ° C. or lower to accelerate the curing.
<水硬性組成物の硬化体の製造方法>
 本発明は、本発明の水硬性組成物用分散剤組成物と、水と、水硬性粉体とを混合して水硬性組成物を製造し、該水硬性組成物を型枠に充填して硬化させる、水硬性組成物の硬化体の製造方法を提供する。
 本発明の水硬性組成物の硬化体の製造方法は、構成単量体として、アクリル酸又はその塩、メタクリル酸又はその塩、及び下記一般式(1)で表される化合物を含む共重合体〔(A)成分〕と、水と、水硬性粉体とを混合して水硬性組成物を製造し、該水硬性組成物を型枠に充填して硬化させる、水硬性組成物の硬化体の製造方法であって、前記共重合体は、アクリル酸又はその塩とメタクリル酸又はその塩の合計中、アクリル酸又はその塩の割合が20mol%以上70mol%以下である、水硬性組成物の硬化体の製造方法である。
 本発明の水硬性組成物用分散剤組成物、水硬性組成物及び水硬性組成物の製造方法で述べた事項は、本発明の水硬性組成物の製造方法に適宜適用することができる。
<Method for producing cured body of hydraulic composition>
The present invention is to prepare a hydraulic composition by mixing the dispersant composition for hydraulic composition of the present invention, water, and a hydraulic powder, and fill the mold with the hydraulic composition. Provided is a method for producing a cured product of a hydraulic composition that is cured.
The method for producing a cured product of a hydraulic composition of the present invention is a copolymer containing acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a compound represented by the following general formula (1) as constituent monomers. [Component (A)], water and hydraulic powder are mixed to produce a hydraulic composition, and the hydraulic composition is filled in a mold and cured to cure the composition. The method for producing a hydraulic composition according to claim 1, wherein the copolymer has a ratio of acrylic acid or a salt thereof in the range of 20 mol% to 70 mol% in a total amount of acrylic acid or a salt thereof and methacrylic acid or a salt thereof. It is a method for producing a cured product.
The matters described in the dispersant composition for hydraulic composition, the hydraulic composition and the method for producing the hydraulic composition of the present invention can be appropriately applied to the method for producing the hydraulic composition of the present invention.
 本発明の水硬性組成物の硬化体の製造方法において、(A)成分の具体例及び好ましい態様は、本発明の水硬性組成物用分散剤組成物と同じである。
 また、本発明の水硬性組成物の製造方法に用いられる水硬性粉体の具体例及び好ましい態様は、本発明の水硬性組成物で述べたものと同じである。水硬性粉体は、好ましくは、水/水硬性粉体比が、本発明の水硬性組成物で述べた範囲となるように用いる。
 また、本発明の水硬性組成物の製造方法では、骨材を混合することが好ましい。骨材の具体例及び好ましい態様は、本発明の水硬性組成物で述べたものと同じである。また、骨材の使用量も、本発明の水硬性組成物で述べたものと同じである。
 本発明の硬化体の製造方法で製造する水硬性組成物は、本発明の水硬性組成物が好ましい。
In the method for producing a cured product of the hydraulic composition of the present invention, specific examples and preferred embodiments of the component (A) are the same as those of the dispersant composition for hydraulic composition of the present invention.
The specific examples and preferred embodiments of the hydraulic powder used in the method for producing the hydraulic composition of the present invention are the same as those described for the hydraulic composition of the present invention. The hydraulic powder is preferably used so that the water / hydraulic powder ratio falls within the range described in the hydraulic composition of the present invention.
Further, in the method for producing a hydraulic composition of the present invention, it is preferable to mix an aggregate. Specific examples and preferred embodiments of the aggregate are the same as those described for the hydraulic composition of the present invention. The amount of aggregate used is also the same as that described for the hydraulic composition of the present invention.
The hydraulic composition produced by the method for producing a cured product of the present invention is preferably the hydraulic composition of the present invention.
 本発明の硬化体の製造方法として、本発明の水硬性組成物用分散剤組成物と、水と、水硬性粉体とを混合して水硬性組成物を製造し、該水硬性組成物を型枠内に充填した後、遠心力をかけて型締めする、水硬性組成物の硬化体の製造方法が挙げられる。この方法は、構成単量体として、アクリル酸又はその塩、メタクリル酸又はその塩、及び下記一般式(1)で表される化合物を含む共重合体〔(A)成分〕と、水と、水硬性粉体とを混合して水硬性組成物を製造し、該水硬性組成物を型枠内に充填した後、遠心力をかけて型締めする、水硬性組成物の硬化体の製造方法であって、前記共重合体は、アクリル酸又はその塩とメタクリル酸又はその塩の合計中、アクリル酸又はその塩の割合が20mol%以上70mol%以下である、水硬性組成物の硬化体の製造方法(以下、遠心法という)である。遠心法は、いわゆる遠心力締固め成形を行うものである。 As a method for producing a cured product of the present invention, a dispersant composition for a hydraulic composition of the present invention, water, and a hydraulic powder are mixed to produce a hydraulic composition, and the hydraulic composition is A method for producing a cured body of a hydraulic composition is described, in which the mold is filled with a centrifugal force and then the mold is clamped. This method comprises, as constituent monomers, acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a copolymer [(A) component] containing a compound represented by the following general formula (1), and water: A method for producing a cured product of a hydraulic composition, which comprises mixing a hydraulic powder to produce a hydraulic composition, filling the hydraulic composition in a mold, and then clamping the mold by applying centrifugal force. Wherein the copolymer is a cured product of a hydraulic composition in which the proportion of acrylic acid or a salt thereof in the total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof is 20 mol% or more and 70 mol% or less. This is a manufacturing method (hereinafter referred to as a centrifugal method). The centrifugal method is what is called centrifugal compaction molding.
 また、本発明の硬化体の製造方法として、本発明の水硬性組成物用分散剤組成物と、水と、水硬性粉体とを混合して水硬性組成物を製造し、該水硬性組成物を型枠内に充填した後、振動をかけて型締めする、水硬性組成物の硬化体の製造方法が挙げられる。この方法は、構成単量体として、アクリル酸又はその塩、メタクリル酸又はその塩、及び下記一般式(1)で表される化合物を含む共重合体〔(A)成分〕と、水と、水硬性粉体とを混合して水硬性組成物を製造し、該水硬性組成物を型枠内に充填した後、振動をかけて型締めする、水硬性組成物の硬化体の製造方法であって、前記共重合体は、アクリル酸又はその塩とメタクリル酸又はその塩の合計中、アクリル酸又はその塩の割合が20mol%以上70mol%以下である、水硬性組成物の硬化体の製造方法(以下、振動法という)である。振動法は、いわゆる振動締固め成形を行うものである。 Further, as a method for producing a cured product of the present invention, a hydraulic composition is produced by mixing a dispersant composition for a hydraulic composition of the present invention, water, and a hydraulic powder, and the hydraulic composition A method for producing a cured product of a hydraulic composition, in which a product is filled in a mold and then the mold is clamped by applying vibration, can be mentioned. This method comprises, as constituent monomers, acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a copolymer [(A) component] containing a compound represented by the following general formula (1), and water: A method for producing a cured body of a hydraulic composition, which comprises mixing a hydraulic powder to produce a hydraulic composition, filling the hydraulic composition in a mold, and then clamping with vibration. The copolymer is a cured product of a hydraulic composition in which the proportion of acrylic acid or a salt thereof in the total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof is 20 mol% or more and 70 mol% or less. Method (hereinafter referred to as vibration method). The vibration method is what is called vibration compaction molding.
 本発明では、水と(A)成分とを含む混合物を、骨材及び水硬性粉体に添加して混合する方法が、水硬性組成物を製造する際でも、容易に均一に混合できる点で好ましい。 In the present invention, the method of adding the mixture containing water and the component (A) to the aggregate and the hydraulic powder and mixing the mixture is easy and uniform even when the hydraulic composition is produced. preferable.
 水硬性組成物は、水硬性粉体と骨材とを混合し、水と(A)成分とを含む混合物を、前記のような混合量となるように添加し、混練して調製することができる。 The hydraulic composition may be prepared by mixing the hydraulic powder and the aggregate, adding a mixture containing water and the component (A) so that the mixture amount is as described above, and kneading. it can.
 型枠は、水硬性組成物の硬化体の用途を考慮して、遠心法、振動法に適したものがそれぞれ適宜選定される。前記水硬性組成物の型枠への充填は、公知の方法により行うことができる。
 得られた水硬性組成物を型枠に充填する方法は、例えば、混練後の水硬性組成物を混練手段から排出し、手作業にて型枠へ投入してならす方法が挙げられる。
A mold suitable for the centrifugal method and the vibration method is appropriately selected in consideration of the use of the cured body of the hydraulic composition. The filling of the hydraulic composition into the mold can be performed by a known method.
Examples of the method of filling the obtained hydraulic composition in a mold include a method in which the hydraulic composition after kneading is discharged from the kneading means and manually charged into the mold.
 遠心法では、型枠に充填した遠心成形用水硬性組成物を、遠心力をかけて型締めする。
このとき、少なくとも1回は遠心力を変えることが好ましい。本発明では、遠心成形用水硬性組成物を、段階的に変化する遠心力をかけて型締めすることができる。すなわち、本発明で、遠心成形用水硬性組成物を、少なくとも1回は遠心力を変えて型締めする、更に、段階的に変化する、更に段階的に大きくなる遠心力をかけて型締めすることができる。
In the centrifugal method, the hydraulic composition for centrifugal molding filled in a mold is subjected to centrifugal force to clamp the mold.
At this time, it is preferable to change the centrifugal force at least once. In the present invention, the hydraulic composition for centrifugal molding can be clamped by applying a gradually changing centrifugal force. That is, in the present invention, the hydraulic composition for centrifugal molding is clamped at least once by changing the centrifugal force, and further, it is clamped by applying a centrifugal force that changes stepwise and increases stepwise. You can
 遠心法では、型枠に充填した水硬性組成物を、0.5G以上の遠心力で型締めすることが好ましい。遠心成形の遠心力は、好ましくは0.5G以上、そして、30G以下、より好ましくは25G以下である。エネルギーコスト低減面と成形性の面から、1分以上、遠心力を15G以上、そして、30G以下、更に25G以下の範囲(高遠心力ともいう)に保持することが好ましい。 In the centrifugal method, it is preferable to clamp the hydraulic composition filled in the mold with a centrifugal force of 0.5 G or more. The centrifugal force of centrifugal molding is preferably 0.5 G or more and 30 G or less, more preferably 25 G or less. From the viewpoint of energy cost reduction and moldability, it is preferable to keep the centrifugal force in the range of 15 minutes or more, 30 G or less, and further 25 G or less (also referred to as high centrifugal force) for 1 minute or more.
 遠心力での締め固めは、例えば0.5G以上30G以下の遠心力で、好ましくは5分以上、より好ましくは7分以上、更に好ましくは9分以上、そして、好ましくは40分以下行なう。成形体を平滑に締め固める観点から、高遠心力、例えば20G以上の遠心力の保持による締め固めは、好ましくは1分以上、より好ましくは3分以上、更に好ましくは5分以上、そして、好ましくは15分以下行なう。すなわち、本発明では、0.5G以上30G以下の遠心力を、好ましくは5分以上、より好ましくは7分以上、更に好ましくは9分以上、そして、好ましくは40分以下かけて、水硬性組成物を型締めすることができる。また、本発明では、20G以上の遠心力の保持による締め固めを、好ましくは1分以上、より好ましくは3分以上、更に好ましくは5分以上、そして、好ましくは15分以下行なうことができる。 The compaction by centrifugal force is, for example, 0.5 G or more and 30 G or less, preferably 5 minutes or more, more preferably 7 minutes or more, further preferably 9 minutes or more, and preferably 40 minutes or less. From the viewpoint of compacting the molded body smoothly, compaction by maintaining a high centrifugal force, for example, a centrifugal force of 20 G or more, is preferably 1 minute or more, more preferably 3 minutes or more, further preferably 5 minutes or more, and preferably Do less than 15 minutes. That is, in the present invention, the centrifugal force of 0.5 G or more and 30 G or less is applied to the hydraulic composition over 5 minutes or more, more preferably 7 minutes or more, further preferably 9 minutes or more, and preferably 40 minutes or less. You can clamp things. Further, in the present invention, compaction by holding a centrifugal force of 20 G or more can be performed for preferably 1 minute or more, more preferably 3 minutes or more, further preferably 5 minutes or more, and preferably 15 minutes or less.
 遠心力での締め固めは、段階に分けて行うことができ、成形性の観点から、段階的に遠心力Gを大きくする方法が好ましい。以下に示すような段階条件で所望の遠心力となるまで行うことができる。例えば、五段階の場合、本発明では、(1)一段階目である初速が0.5G以上2G未満の遠心力で0分間超15分間以下、(2)二段階目である二速が2G以上5G未満の遠心力で0分間超15分間以下、(3)三段階目である三速が5G以上10G未満の遠心力で0分間超15分間以下、(4)四段階目である四速が10G以上20G未満の遠心力で0分間超15分間以下、(5)五段階目である五速が20G以上30G以下の遠心力で0分間超15分間以下、の条件により水硬性組成物の型締めを行うことが好ましい。 Compaction by centrifugal force can be performed in stages, and from the viewpoint of moldability, it is preferable to increase the centrifugal force G stepwise. It can be carried out under the following stage conditions until the desired centrifugal force is achieved. For example, in the case of five stages, according to the present invention, (1) the initial velocity of the first stage is 0.5 G or more and less than 2 G, and the centrifugal force of more than 0 minutes and 15 minutes or less, and (2) the second stage of the second stage is 2 G Centrifugal force of 5G or more and more than 0 minutes and 15 minutes or less, (3) third speed, which is the third stage, is 5G or more and less than 10G, more than 0 minutes and 15 minutes or less, and (4) fourth stage, the fourth speed Is 10 G or more and less than 20 G with a centrifugal force of more than 0 minutes and 15 minutes or less, and (5) the fifth stage is a centrifugal force of 20 G or more and 30 G or less with a centrifugal force of more than 0 minutes and 15 minutes or less. It is preferable to perform mold clamping.
 遠心法では、水硬性組成物を、遠心力をかけて型締めした後、加熱養生を行うことが好ましい。 In the centrifugal method, it is preferable to heat-cure the hydraulic composition after clamping the mold by applying a centrifugal force.
 加熱養生は、好ましくは75℃以上、そして、好ましくは100℃以下、より好ましくは90℃以下で行う。加熱養生は、75℃以上で1時間以上保持する工程を含んでもよい。なお、加熱養生の温度は、水硬性組成物が充填された型枠の周囲雰囲気の温度である。 Heat curing is preferably performed at 75 ° C or higher, and preferably 100 ° C or lower, more preferably 90 ° C or lower. The heating and curing may include a step of holding at 75 ° C. or higher for 1 hour or longer. The temperature of heating and curing is the temperature of the atmosphere around the mold filled with the hydraulic composition.
 遠心力をかけて型締めする場合、スランプロスの観点から、周囲温度(型枠の周囲温度)は、好ましくは35℃以下、更に好ましくは30℃以下、より好ましくは25℃以下、強度発現性の観点から、好ましくは10℃以上、更に好ましくは15℃以上、より好ましくは20℃以上である。 When the mold is clamped by applying a centrifugal force, from the viewpoint of slump loss, the ambient temperature (ambient temperature of the mold) is preferably 35 ° C. or lower, more preferably 30 ° C. or lower, more preferably 25 ° C. or lower, and strength developability. From this viewpoint, the temperature is preferably 10 ° C or higher, more preferably 15 ° C or higher, and further preferably 20 ° C or higher.
 本発明では、加熱養生を開始する前に、前記混合の際に最初に水と水硬性粉体とが接触した時点を始点として、1時間以上の低温養生を行うことが好ましい。
 低温養生は、好ましくは0℃以上、より好ましくは10℃以上、そして、好ましくは40℃以下、より好ましくは30℃以下で行う。
 低温養生は、好ましくは1時間以上、より好ましくは2時間以上、そして、好ましくは5時間以下、より好ましくは4時間以下行う。
In the present invention, it is preferable to carry out low temperature curing for 1 hour or more, starting from the point of time when water first contacts the hydraulic powder during the mixing, before starting the heating curing.
The low temperature curing is preferably performed at 0 ° C or higher, more preferably 10 ° C or higher, and preferably 40 ° C or lower, more preferably 30 ° C or lower.
The low temperature curing is preferably carried out for 1 hour or longer, more preferably 2 hours or longer, and preferably 5 hours or shorter, more preferably 4 hours or shorter.
 本発明では、加熱養生は、蒸気養生で行うことが好ましい。蒸気養生は、例えば、遠心成形水硬性組成物が充填された型枠の周囲に水蒸気を適用し、所定の温度で一定時間保持して行われる。 In the present invention, it is preferable that the heating curing is performed by steam curing. The steam curing is performed, for example, by applying steam around the mold filled with the centrifugally-molded hydraulic composition and maintaining it at a predetermined temperature for a certain period of time.
 加熱養生の後、水硬性組成物を冷却して、型枠から脱型することができる。また、脱型した水硬性組成物の硬化体を常温常圧で養生することができる。
 例えば、加熱養生の後、例えば、直ちに周囲温度を室温、例えば20℃まで冷却しても良いし、例えば、1時間当たり5℃以上20℃以下の降温速度で、周囲温度を室温、例えば20℃まで冷却しても良い。冷却後、成形体を脱型する。降温速度は、硬化体のひび割れによる強度低下を抑える観点から、1時間当たり20℃以下が好ましい。また、得られた水硬性組成物の硬化体を常温常圧で養生することができる。具体的には、20℃、大気圧下で保存することができる。
After heating and curing, the hydraulic composition can be cooled and released from the mold. In addition, the cured body of the demolded hydraulic composition can be cured at room temperature and atmospheric pressure.
For example, immediately after heating and curing, for example, the ambient temperature may be cooled to room temperature, for example, 20 ° C., or the ambient temperature may be room temperature, for example, 20 ° C. at a temperature decreasing rate of 5 ° C. or more and 20 ° C. or less per hour. You may cool down to. After cooling, the molded body is released from the mold. The rate of temperature decrease is preferably 20 ° C. or less per hour from the viewpoint of suppressing a decrease in strength due to cracking of the cured body. Further, the cured product of the obtained hydraulic composition can be cured at room temperature and atmospheric pressure. Specifically, it can be stored at 20 ° C. under atmospheric pressure.
 遠心法により得られる水硬性組成物の硬化体は、遠心成形コンクリート製品として使用でき、具体的には、パイル、ポール、ヒューム管等が挙げられる。遠心法により得られる水硬性組成物の硬化体は、締め固め性に優れることから、当該製品の内面及び端面凹凸が少なく、表面美観に優れるとともに、更に製品内面が平滑に仕上がることから、パイル打ち込み、中堀工法時の切削機の障害が改善される。 The hardened product of the hydraulic composition obtained by the centrifugal method can be used as a centrifugally molded concrete product, and specific examples thereof include piles, poles, and fume tubes. The hardened product of the hydraulic composition obtained by the centrifugal method has excellent compaction properties, so that the inner surface and end surface irregularities of the product are small, the surface aesthetics are excellent, and the inner surface of the product is finished smoothly. The obstacles of the cutting machine during the Nakabori method are improved.
 振動法は、硬化体の製造に用いる水硬性組成物を型枠に充填すること、型枠内の水硬性組成物に振動をかけることを行う。以下、水硬性組成物に振動をかける操作を振動成形ともいう。 The vibration method involves filling the mold with the hydraulic composition used to manufacture the cured product, and vibrating the hydraulic composition in the mold. Hereinafter, the operation of applying vibration to the hydraulic composition is also referred to as vibration molding.
 振動成形は、例えば、20Hz以上350Hz以下の振動数で行うことができる。また、振動成形は、例えば、3秒以上180秒以下で行うことができる。一回の充填により型枠を十分に満たすことができない場合、追加の水硬性組成物を充填する際は、先の水硬性組成物に対する振動を止めていても、かけ続けていても、どちらでもよい。 Vibration molding can be performed at a frequency of 20 Hz to 350 Hz, for example. Further, the vibration molding can be performed in, for example, 3 seconds or more and 180 seconds or less. When the mold cannot be sufficiently filled by one filling, when filling the additional hydraulic composition, even if vibration of the previous hydraulic composition is stopped or continued to be applied, either Good.
 本発明の水硬性組成物の硬化体の製造方法の一例として、ポリカルボン酸系分散剤と水硬性粉体と水とを含有する水硬性組成物の硬化体の製造方法であって、水硬性組成物を型枠に充填後に振動をかける、水硬性組成物の硬化体の製造方法が挙げられる。 As an example of a method for producing a cured product of the hydraulic composition of the present invention, a method for producing a cured product of a hydraulic composition containing a polycarboxylic acid-based dispersant, hydraulic powder and water, A method for producing a cured product of a hydraulic composition, in which vibration is applied after filling the composition with a mold, can be mentioned.
 また、本発明の水硬性組成物の硬化体の製造方法の他の例として、ポリカルボン酸系分散剤と水硬性粉体と水とを含有する水硬性組成物の硬化体の製造方法であって、硬化体の製造に用いる水硬性組成物を型枠に充填し、型枠内の水硬性組成物に振動をかける、水硬性組成物の硬化体の製造方法が挙げられる。 Another example of the method for producing a cured product of the hydraulic composition of the present invention is a method for producing a cured product of a hydraulic composition containing a polycarboxylic acid-based dispersant, hydraulic powder and water. Then, a method for producing a cured product of a hydraulic composition, in which a hydraulic composition used for producing a cured product is filled in a mold and the hydraulic composition in the mold is vibrated, can be mentioned.
 本発明の水硬性組成物用分散剤組成物を用いることで、振動成形時の成形性を向上させることができる。本発明により、本発明の水硬性組成物用分散剤組成物を用いて、水硬性組成物の加振成形工程における成形性を向上させる方法が提供される。 By using the dispersant composition for hydraulic composition of the present invention, the moldability during vibration molding can be improved. According to the present invention, there is provided a method for improving the moldability of a hydraulic composition in a vibration molding step using the dispersant composition for a hydraulic composition of the present invention.
 本発明の水硬性組成物用分散剤組成物を用いることで、遠心成形の際の、水硬性組成物の遠心力による締固め性を向上させることができる。本発明により、本発明の水硬性組成物用分散剤組成物を用いて、水硬性組成物の遠心力による締固め性を向上させる方法が提供される。 By using the dispersant composition for hydraulic composition of the present invention, it is possible to improve compaction property of the hydraulic composition by centrifugal force during centrifugal molding. According to the present invention, there is provided a method for improving the compaction property of a hydraulic composition by centrifugal force, using the dispersant composition for a hydraulic composition of the present invention.
 また、本発明の水硬性組成物用分散剤組成物を用いることにより、水硬性組成物の硬化体の強度が向上する。本発明により、本発明の水硬性組成物用分散剤組成物を用いて、水硬性組成物の硬化体の強度を向上させる方法が提供される。 By using the dispersant composition for hydraulic composition of the present invention, the strength of the cured product of the hydraulic composition is improved. The present invention provides a method for improving the strength of a cured product of a hydraulic composition using the dispersant composition for a hydraulic composition of the present invention.
実施例
<(A)成分>
 以下、アクリル酸又はその塩をAA、メタクリル酸又はその塩をMAA、一般式(1)で表される化合物を化合物(1)として共重合体の構成を示す。また、アクリル酸又はその塩とメタクリル酸又はその塩の合計中の、アクリル酸又はその塩の割合(mol%)をAA比として示す。
共重合体1:AA/MAA/化合物(1)=アクリル酸ナトリウム/メタクリル酸ナトリウム/メトキシポリエチレングリコール(45)モノメタクリレート(該単量体のカッコ内は平均付加モル数、以下同様)=29mol%/45mol%/26mol%、重量平均分子量=30,000、AA比が39mol%
共重合体2:AA/MAA/化合物(1)=アクリル酸ナトリウム/メタクリル酸ナトリウム/メトキシポリエチレングリコール(45)モノメタクリレート=31mol%/44mol%/25mol%、重量平均分子量=37,000、AA比が41mol%
共重合体3:AA/MAA/化合物(1)=アクリル酸ナトリウム/メタクリル酸ナトリウム/メトキシポリエチレングリコール(50)モノメタクリレート=35mol%/35mol%/30mol%、重量平均分子量=35,000、AA比が50mol%
共重合体4:AA/MAA/化合物(1)=アクリル酸ナトリウム/メタクリル酸ナトリウム/メトキシポリエチレングリコール(45)モノメタクリレート=51mol%/22mol%/27mol%、重量平均分子量=30,000、AA比が70mol%
Example <(A) component>
Hereinafter, the constitution of the copolymer will be shown with acrylic acid or its salt as AA, methacrylic acid or its salt as MAA, and the compound represented by the general formula (1) as compound (1). Further, the ratio (mol%) of acrylic acid or a salt thereof in the total of acrylic acid or a salt thereof and methacrylic acid or a salt thereof is shown as an AA ratio.
Copolymer 1: AA / MAA / Compound (1) = sodium acrylate / sodium methacrylate / methoxy polyethylene glycol (45) monomethacrylate (average number of moles in parentheses of the monomer, the same applies hereinafter) = 29 mol% / 45 mol% / 26 mol%, weight average molecular weight = 30,000, AA ratio is 39 mol%
Copolymer 2: AA / MAA / Compound (1) = sodium acrylate / sodium methacrylate / methoxy polyethylene glycol (45) monomethacrylate = 31 mol% / 44 mol% / 25 mol%, weight average molecular weight = 37,000, AA ratio Is 41 mol%
Copolymer 3: AA / MAA / Compound (1) = sodium acrylate / sodium methacrylate / methoxypolyethylene glycol (50) monomethacrylate = 35 mol% / 35 mol% / 30 mol%, weight average molecular weight = 35,000, AA ratio Is 50 mol%
Copolymer 4: AA / MAA / Compound (1) = sodium acrylate / sodium methacrylate / methoxy polyethylene glycol (45) monomethacrylate = 51 mol% / 22 mol% / 27 mol%, weight average molecular weight = 30,000, AA ratio Is 70 mol%
<その他のポリカルボン酸系分散剤>
共重合体5:MAA/化合物(1)=メタクリル酸ナトリウム/メトキシポリエチレングリコール(25)モノメタクリレート=75mol%/25mol%、重量平均分子量=50,000、AA比が0mol%
共重合体6:MAA/化合物(1)=メタクリル酸ナトリウム/メトキシポリエチレングリコール(45)モノメタクリレート=75mol%/25mol%、重量平均分子量=57,000、AA比が0mol%
共重合体7:AA/その他の単量体=アクリル酸ナトリウム/ポリエチレングリコール(45)モノイソプレニルエーテル=75mol%/25mol%、重量平均分子量=46,000、AA比が100mol%(構成単量体として化合物(1)を含まない)
共重合体8:AA/MAA/化合物(1)=アクリル酸ナトリウム/メタクリル酸ナトリウム/メトキシポリエチレングリコール(45)モノメタクリレート=50mol%/30mol%/20mol%、重量平均分子量=28,000、AA比が63mol%
<Other polycarboxylic acid type dispersants>
Copolymer 5: MAA / compound (1) = sodium methacrylate / methoxy polyethylene glycol (25) monomethacrylate = 75 mol% / 25 mol%, weight average molecular weight = 50,000, AA ratio is 0 mol%
Copolymer 6: MAA / compound (1) = sodium methacrylate / methoxypolyethylene glycol (45) monomethacrylate = 75 mol% / 25 mol%, weight average molecular weight = 57,000, AA ratio is 0 mol%
Copolymer 7: AA / other monomer = sodium acrylate / polyethylene glycol (45) monoisoprenyl ether = 75 mol% / 25 mol%, weight average molecular weight = 46,000, AA ratio is 100 mol% (constituting unit amount Does not contain the compound (1) as a body)
Copolymer 8: AA / MAA / Compound (1) = sodium acrylate / sodium methacrylate / methoxy polyethylene glycol (45) monomethacrylate = 50 mol% / 30 mol% / 20 mol%, weight average molecular weight = 28,000, AA ratio Is 63 mol%
<実施例1及び比較例1>
(1)モルタル配合
 下記にモルタル配合を示した。Pはセメント(略号C)と高強度混和材(略号A)の合計質量であり、W/P(=C+A)は、水/水硬性粉体の比(質量%)である。
<Example 1 and Comparative Example 1>
(1) Mortar formulation The mortar formulation is shown below. P is the total mass of cement (abbreviation C) and high-strength admixture (abbreviation A), and W / P (= C + A) is the ratio of water / hydraulic powder (mass%).
*モルタル配合
セメント(C):800g(太平洋セメント(株)製早強ポルトランドセメントと住友大阪セメント(株)製早強ポルトランドセメントの1:1混合物、比重3.16)
高強度混和材(A):64g(電気化学工業株式会社製、比重2.45)
水道水(W):171g(共重合体又は分散剤を含む)
W/P:20質量%
砂(S):1195g(京都府城陽産、比重2.50)
 なお、全ての材料は20℃に調整し、水道水中の共重合体又は分散剤の量は、モルタル配合に対して微量であるため、水道水の量に算入してW/Pを計算した。
* Cement with mortar (C): 800 g (1: 1 mixture of early strength Portland cement manufactured by Taiheiyo Cement Co., Ltd. and early strength Portland cement manufactured by Sumitomo Osaka Cement Co., Ltd., specific gravity 3.16)
High-strength admixture (A): 64 g (manufactured by Denki Kagaku Kogyo Co., Ltd., specific gravity 2.45)
Tap water (W): 171 g (including copolymer or dispersant)
W / P: 20 mass%
Sand (S): 1195g (produced by Joyo, Kyoto Prefecture, specific gravity 2.50)
In addition, all the materials were adjusted to 20 ° C., and the amount of the copolymer or the dispersant in tap water was a minute amount relative to the mortar formulation, so the W / P was calculated by including it in the amount of tap water.
(2)モルタル調製
 表1の添加量となるように共重合体((A)成分又はその他のポリカルボン酸系分散剤)及び水を含有する組成物を調製した。なお、共重合体は、表1の添加量で用いた。前記モルタル配合材料の水(W)に前記組成物を添加し、他のモルタル配合材料と共に調製した。モルタルは、JIS R 5201に規定されるモルタルミキサーを使用して配合成分を混練(60rpm、540秒)して調製した。
(2) Preparation of mortar A composition containing a copolymer ((A) component or other polycarboxylic acid-based dispersant) and water was prepared so that the addition amount was as shown in Table 1. The copolymer was used in the addition amount shown in Table 1. The composition was added to water (W) of the mortar compounding material and prepared together with other mortar compounding materials. The mortar was prepared by kneading the compounding components (60 rpm, 540 seconds) using a mortar mixer specified by JIS R5201.
(3)モルタルの遠心締固め性の評価(I)
 (2)の方法で調製したモルタルを400mLのアルミ容器に750gサンプリングし、JIS R 5201セメントの物理試験方法9.2.1 ビカー針装置、9.2.1 b)に記載の標準棒(有効長さが45mm以上、直径10.0±0.2mmの円筒形の非腐食金属性)を用い、JIS R 5201セメントの物理試験方法9.4.3「凝結の始発及び終結の測定」に倣い標準棒をモルタルに降下させたときの状況によりモルタル遠心締固め性を評価した。具体的には、モルタル調製直後から10秒以内に、標準棒をモルタルの表面近くから自重により徐々に降下させ、降下が止まった時点のモルタルへの標準棒の陥入長さを、モルタル調製直後の標準棒の陥入深さとした。また、最初の標準棒の降下から10秒間隔で標準棒をモルタルの表面近くからモルタルの表面に徐々に降下させ、降下が止まった時点で、標準棒の先端と底板との間隔を0.1mm単位で読み記録し、標準棒の先端と底板との間隔が3回連続して変わらなくなるまでの時間を測定した。結果を表1に示す。
(3) Evaluation of centrifugal compaction property of mortar (I)
The mortar prepared by the method of (2) was sampled in an aluminum container of 400 mL in an amount of 750 g, and the standard rod described in JIS R 5201 cement physical test method 9.2.1 Vicat needle device, 9.2.1 b) (effective). Using a cylindrical non-corrosive metal with a length of 45 mm or more and a diameter of 10.0 ± 0.2 mm), following the physical test method of JIS R 5201 cement, 9.4.3 "Measurement of initial and final setting of setting" The mortar centrifugal compaction property was evaluated by the situation when the standard rod was lowered into the mortar. Specifically, within 10 seconds immediately after preparing the mortar, the standard rod is gradually lowered from near the surface of the mortar by its own weight, and the indentation length of the standard rod into the mortar at the time when the mortar stops is measured immediately after the mortar is prepared. The standard indentation depth of In addition, the standard rod is gradually lowered from near the surface of the mortar to the surface of the mortar at intervals of 10 seconds after the first standard rod is lowered, and when the lowering is stopped, the distance between the tip of the standard rod and the bottom plate is 0.1 mm. It was read and recorded in units, and the time until the distance between the tip of the standard rod and the bottom plate remained unchanged three times was measured. The results are shown in Table 1.
(4)モルタルの遠心締固め性の評価(II)
 前記のモルタルの遠心締固め性の評価(I)の結果から、この評価系では、モルタル調製直後の貫入深さが大きいほどモルタルが流動化して骨材の充填性が向上すると考察し、モルタル調製直後の標準棒の陥入深さ(P;mm)で“充填性”を、モルタル調製直後から標準棒の先端と底板との間隔が3回連続して変わらなくなるまでに要する時間(t;sec)で“保形性”を評価することができる(保形性の発現に要する時間が短いほど棚落ち等の欠陥が生じにくい)と考え、下記計算式(I)のP/tを遠心締固め性の指標として評価した。P/tの値が大きいほど、遠心締固め性が良好であると判断できる。この評価では、P/tの値が0.015以上であることが好ましい。結果を表1に示す。
    遠心締固め性=P/t     …式(I)
 P:モルタル調製直後の標準棒の陥入深さ(mm)
 t:モルタル調製から標準棒の陥入深さが3回連続して変わらなくなるまでに要する時間(sec)
(4) Evaluation of centrifugal compaction of mortar (II)
From the result of the evaluation (I) of the centrifugal compaction property of the mortar, it is considered that in this evaluation system, the larger the penetration depth immediately after the mortar preparation is, the more the mortar is fluidized and the filling property of the aggregate is improved. Immediately after the indentation depth (P; mm) of the standard rod, the "fillability" is determined by the time (t; sec) immediately after the mortar preparation until the distance between the tip and the bottom plate of the standard rod does not change three consecutive times. ), It is possible to evaluate the "shape retention" (the shorter the time required to develop the shape retention, the less likely defects such as shelving) will occur, and the P / t in the following calculation formula (I) will be centrifugally tightened. It was evaluated as an index of firmness. It can be judged that the centrifugal compaction property is better as the value of P / t is larger. In this evaluation, the value of P / t is preferably 0.015 or more. The results are shown in Table 1.
Centrifugal compactability = P / t Formula (I)
P: Depth of depth of standard bar immediately after mortar preparation (mm)
t: Time (sec) required from the preparation of mortar until the indentation depth of the standard rod does not change three times in a row
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表中、AA比は、AAとMAAの合計中の、AAの割合(mol%)である。
 表中、Mwは重量平均分子量である。
 表中、EOpは、エチレンオキシドの平均付加モル数であり、一般式(1)中のnに相当する。
 表中、添加量は、水硬性粉体(セメントと高強度混和材)100質量部に対する有効分換算の質量部である(以下同様)。
 表中、「標準棒の陥入深さ」は、モルタル調製直後の標準棒の陥入深さである。
 表中、「陥入深さの不変時間」は、標準棒の先端と底板との間隔が3回連続して変わらなくなるまでの時間である。
 表中、「分散剤A」は、以下の組成の分散剤である(以下同様)。
 共重合体1/共重合体5/グリセリン/グルコン酸ナトリウム=80/14/4/2(質量比)
In the table, the AA ratio is the ratio (mol%) of AA in the total of AA and MAA.
In the table, Mw is a weight average molecular weight.
In the table, EOp is the average number of moles of ethylene oxide added, and corresponds to n in the general formula (1).
In the table, the addition amount is a mass part in terms of effective components with respect to 100 mass parts of the hydraulic powder (cement and high-strength admixture) (hereinafter the same).
In the table, "standard bar depth" is the standard bar depth immediately after mortar preparation.
In the table, the "invariant time of indentation depth" is the time until the distance between the tip of the standard rod and the bottom plate does not change three consecutive times.
In the table, "Dispersant A" is a dispersant having the following composition (the same applies hereinafter).
Copolymer 1 / copolymer 5 / glycerin / sodium gluconate = 80/14/4/2 (mass ratio)
 表1中、構成単量体としてAAを含まない共重合体を用いた比較例1-1~1-2及び化合物(1)を含まない比較例1-3に対して、構成単量体としてAAを所定量含む共重合体を用いた実施例1-1~1-5は、優れた遠心締固め性を示した。これは、実施例の共重合体は柔軟な分子構造を有しており、セメント粒子の水和が促進され、水和生成物によるネットワーク構造により高い保形成を発現したためであると考察される。また、重量平均分子量が本発明の範囲外である共重合体を用いた比較例1-4も、実施例と比べて遠心締固め性が劣ることがわかる。 In Table 1, as compared with Comparative Examples 1-1 and 1-2 using a copolymer containing no AA as a constituent monomer and Comparative Example 1-3 containing no compound (1), a constituent monomer was used. Examples 1-1 to 1-5 using the copolymer containing a predetermined amount of AA showed excellent centrifugal compaction property. It is considered that this is because the copolymers of Examples had a flexible molecular structure, promoted hydration of cement particles, and exhibited high retention due to the network structure of the hydration product. It is also found that Comparative Examples 1-4 using a copolymer having a weight average molecular weight outside the range of the present invention are inferior in centrifugal compaction property as compared with Examples.
<実施例2及び比較例2>
(1)モルタル配合
 下記にモルタル配合を示した。Pはセメント(略号C)と高強度混和材(略号A)の合計質量であり、W/P(=C+A)は、水/水硬性粉体の比(質量%)である。
<Example 2 and Comparative Example 2>
(1) Mortar formulation The mortar formulation is shown below. P is the total mass of cement (abbreviation C) and high-strength admixture (abbreviation A), and W / P (= C + A) is the ratio of water / hydraulic powder (mass%).
*モルタル配合
セメント(C):800g(太平洋セメント(株)製早強ポルトランドセメントと住友大阪セメント(株)製早強ポルトランドセメントの1:1混合物、比重3.16)
高強度混和材(A):64g(電気化学工業株式会社製、比重2.45)
水道水(W):209g(共重合体を含む)
W/P:24質量%
砂(S):1195g(京都府城陽産、比重2.50)
 なお、全ての材料は20℃に調整し、水道水中の共重合体の量は、モルタル配合に対して微量であるため、水道水の量に算入してW/Pを計算した。
* Cement with mortar (C): 800 g (1: 1 mixture of early strength Portland cement manufactured by Taiheiyo Cement Co., Ltd. and early strength Portland cement manufactured by Sumitomo Osaka Cement Co., Ltd., specific gravity 3.16)
High-strength admixture (A): 64 g (manufactured by Denki Kagaku Kogyo Co., Ltd., specific gravity 2.45)
Tap water (W): 209 g (including copolymer)
W / P: 24 mass%
Sand (S): 1195g (produced by Joyo, Kyoto Prefecture, specific gravity 2.50)
In addition, all the materials were adjusted to 20 ° C., and the amount of the copolymer in tap water was a minute amount relative to the mortar formulation, so the W / P was calculated by including it in the amount of tap water.
(2)モルタル調製
 表2の添加量となるように共重合体((A)成分又はその他のポリカルボン酸系分散剤)及び水を含有する組成物を調製した。前記モルタル配合材料の水(W)に前記組成物を添加し、他のモルタル配合材料と共に調製した。モルタルは、JIS R 5201に規定されるモルタルミキサーを使用して配合成分を混練(60rpm、540秒)して調製した。なお、共重合体は、表2の添加量で用いた。
(2) Preparation of Mortar A composition containing a copolymer ((A) component or other polycarboxylic acid-based dispersant) and water was prepared so that the addition amount was as shown in Table 2. The composition was added to water (W) of the mortar compounding material and prepared together with other mortar compounding materials. The mortar was prepared by kneading the compounding components (60 rpm, 540 seconds) using a mortar mixer specified by JIS R5201. The copolymer was used in the addition amount shown in Table 2.
(3)モルタルレオロジーの測定方法
 (2)の方法で調製したモルタルを400mLのアルミ容器に750gサンプリングし、Anton Paar社製レオメータPhysica MCR301を用いて下記測定条件でレオロジー測定を実施した。
<チクソループ測定>
治具:Ball type、d=8(mm)
測定点数:20点
測定間隔:10(sec.)
せん断速度:0.004~4(1/sec.)
(3) Method of measuring mortar rheology The mortar prepared by the method of (2) was sampled in an aluminum container of 400 mL by 750 g, and rheology was measured using the rheometer Physica MCR301 manufactured by Anton Paar under the following measurement conditions.
<Thixoloop measurement>
Jig: Ball type, d = 8 (mm)
Number of measurement points: 20 points Measurement interval: 10 (sec.)
Shear rate: 0.004-4 (1 / sec.)
(4)モルタルレオロジーの評価方法
 (3)の方法で測定したモルタルレオロジーの測定結果をもとに、前記コンクリートの遠心締固め性に関する考察から、モルタルのチキソトロピー性が向上するほど遠心締固め性が向上すると考察し、下記式(II)に基づいてチキソトロピー性の指標となるヒステリシス(ΔH;Pa/s)を算出した。ヒステリシスの値が大きいほど、チキソトロピー性に優れると判断できる。この評価では、ヒステリシスの値が4000以上であることが好ましい。結果を表2に示す。
ヒステリシス(ΔH;Pa/s)=∫{f(x)-g(x)}dx   …式(II)
  f(x):昇せん断条件での近似式
  g(x):降せん断条件での近似式
(4) Evaluation method of mortar rheology Based on the measurement result of mortar rheology measured by the method of (3), from the consideration on the centrifugal compaction property of the concrete, the more the thixotropic property of the mortar is improved, the more the centrifugal compaction property is improved. Considering that it improves, the hysteresis (ΔH; Pa / s) that is an index of thixotropic property was calculated based on the following formula (II). It can be judged that the larger the value of hysteresis is, the more excellent the thixotropy is. In this evaluation, the hysteresis value is preferably 4000 or more. The results are shown in Table 2.
Hysteresis (ΔH; Pa / s) = ∫ {f (x) -g (x)} dx ... Formula (II)
f (x): approximate expression under rising shear conditions g (x): approximate expression under falling shear conditions
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2中、構成単量体としてAAを含まない共重合体を用いた比較例2-1~2-2及び化合物(1)を含まない比較例2-3に対して、構成単量体としてAAを所定量含む共重合体を用いた実施例2-1~2-4は、大きなヒステリシス、チキソトロピー性を示した。これは、実施例の共重合体が昇せん断条件下では柔軟な分子構造を有することによりセメント粒子の水和が促進された結果、形成された水和生成物によるネットワーク構造が高いせん断応力を示し、降せん断条件下ではせん断によってネットワーク構造が破壊され、せん断応力が低下したためであると考察される。また、重量平均分子量が本発明の範囲外である共重合体を用いた比較例2-4も、実施例と比べてヒステリシス、チキソトロピー性が小さいことがわかる。 In Table 2, as compared with Comparative Examples 2-1 to 2-2 using a copolymer containing no AA as a constituent monomer and Comparative Example 2-3 containing no compound (1), a constituent monomer was used. Examples 2-1 to 2-4 using the copolymer containing a predetermined amount of AA showed large hysteresis and thixotropy. This is because the copolymer of the example has a flexible molecular structure under the conditions of increasing shear, which promotes the hydration of cement particles, and as a result, the network structure of the formed hydration product shows high shear stress. It is considered that the shear stress was reduced due to the destruction of the network structure by shearing under the falling shearing condition. It is also found that Comparative Example 2-4 using a copolymer having a weight average molecular weight outside the range of the present invention has smaller hysteresis and thixotropy as compared with the Examples.
<実施例3及び比較例3>
(1)コンクリート配合
 下記にコンクリート配合を示した。Pはセメント(略号C)と高強度混和材(略号A)の合計質量であり、W/P(=C+A)は、水/水硬性粉体の比(質量%)である。
<Example 3 and Comparative Example 3>
(1) Concrete mix The concrete mix is shown below. P is the total mass of cement (abbreviation C) and high-strength admixture (abbreviation A), and W / P (= C + A) is the ratio of water / hydraulic powder (mass%).
*コンクリート配合1
セメント(C):12.6kg(太平洋セメント(株)製早強ポルトランドセメント、比重3.16)
高強度混和材(A):1.0kg(電気化学工業株式会社製、比重2.45)
水道水(W):2.7kg(共重合体を含む)
W/P:20質量%
砂(S):18.9kg(滋賀県甲賀産、比重2.58)
砂利(G):28.4kg(兵庫県家島産、比重2.63)
 なお、全ての材料は20℃に調整し、水道水中の共重合体の量は、モルタル配合に対して微量であるため、水道水の量に算入してW/Pを計算した。
* Concrete mix 1
Cement (C): 12.6 kg (early strength Portland cement manufactured by Taiheiyo Cement Co., Ltd., specific gravity 3.16)
High-strength admixture (A): 1.0 kg (Denki Kagaku Kogyo Co., Ltd., specific gravity 2.45)
Tap water (W): 2.7 kg (including copolymer)
W / P: 20 mass%
Sand (S): 18.9 kg (from Koga, Shiga prefecture, specific gravity 2.58)
Gravel (G): 28.4 kg (Ieshima, Hyogo, specific gravity 2.63)
In addition, all the materials were adjusted to 20 ° C., and the amount of the copolymer in tap water was a minute amount relative to the mortar formulation, so the W / P was calculated by including it in the amount of tap water.
*コンクリート配合2
セメント(C):11.1kg(太平洋セメント(株)製普通ポルトランドセメント、比重3.16)
高強度混和材(A):0.3kg(電気化学工業株式会社製、比重2.45)
水道水(W):2.9kg(共重合体を含む)
W/P:25質量%
砂(1)(S(1)):9.4kg(岐阜県揖斐川産、比重2.55)
砂(2)(S(2)):10.3kg(滋賀県甲賀産、比重2.58)
砂利(G):28.4kg(兵庫県家島産、比重2.63)
 なお、全ての材料は20℃に調整し、水道水中の共重合体の量は、モルタル配合に対して微量であるため、水道水の量に算入してW/Pを計算した。
* Concrete mix 2
Cement (C): 11.1 kg (ordinary Portland cement manufactured by Taiheiyo Cement Co., Ltd., specific gravity 3.16)
High-strength admixture (A): 0.3 kg (Denki Kagaku Kogyo Co., Ltd., specific gravity 2.45)
Tap water (W): 2.9 kg (including copolymer)
W / P: 25 mass%
Sand (1) (S (1)): 9.4kg (produced by Ibigawa, Gifu prefecture, specific gravity 2.55)
Sand (2) (S (2)): 10.3 kg (from Koga, Shiga prefecture, specific gravity 2.58)
Gravel (G): 28.4 kg (Ieshima, Hyogo, specific gravity 2.63)
In addition, all the materials were adjusted to 20 ° C., and the amount of the copolymer in tap water was a minute amount relative to the mortar formulation, so the W / P was calculated by including it in the amount of tap water.
(2)コンクリート調製
 表3の添加量となるように共重合体及び水を含有する組成物を調製した。なお、共重合体は、表3の添加量で用いた。前記コンクリート配合材料の水(W)に前記組成物を添加し、撹拌して調製した。コンクリートは、強制2軸型ミキサー(KYC社製)に、砂利、約半量の砂、早強セメントと高強度混和材の混合物、残部の砂の順に投入し、空練りを30秒間行い、次いで、すばやく前記調製した水を添加し、240秒間練り混ぜてコンクリートを得た。
(2) Preparation of concrete A composition containing a copolymer and water was prepared so that the addition amounts shown in Table 3 were obtained. The copolymer was used in the addition amount shown in Table 3. The composition was added to water (W) of the concrete compounding material and stirred to prepare. For concrete, in a forced twin-screw mixer (manufactured by KYC), gravel, about half the amount of sand, a mixture of early-strength cement and high-strength admixture, and the balance of sand were added in that order, and kneading was carried out for 30 seconds, then, The water prepared above was quickly added, and the mixture was kneaded for 240 seconds to obtain concrete.
(3)遠心締固め性の評価
 混練から10分後のコンクリートを遠心成形型枠(内径20cm、外径25cm、高さ40cm)に入れて、初速が1Gで2分間、二速が3Gで2分間、三速が7Gで2分間、四速が15Gで3分間、五速が25Gで3分間の条件で遠心締め固めを行った。遠心締固めを終えた筒状の成形体に対し、指を貫入する簡易試験を実施し、下記評価基準に基づいて1~5の5段階で遠心締固め性の評価を実施した。結果を表3に示す。
(3) Evaluation of Centrifugal Compactability Concrete 10 minutes after kneading is put into a centrifugal molding form (inner diameter 20 cm, outer diameter 25 cm, height 40 cm), initial speed is 1 G for 2 minutes, and second speed is 3 G. Centrifugal compaction was carried out under the conditions of 3 minutes, 7G for 2 minutes, 4th speed for 15G for 3 minutes, and 5th speed for 25G for 3 minutes. A simple test of penetrating a finger was carried out on the tubular molded body that had been subjected to centrifugal compaction, and the centrifugal compactibility was evaluated on a scale of 1 to 5 based on the following evaluation criteria. The results are shown in Table 3.
<遠心締固め性評価基準>
1:共重合体又は分散剤の添加量を調整してもスラッジやジャンカといった明らかな成形不良が発生する。
2:明らかな成形不良の発生はないが、端面の充填性が悪い又は成形体が柔らかいため、成形体内側表面に触れただけでスラッジが付着する。
3:成形不良の発生がなく、端面の充填性も良好だが、成形体内側表面に人差し指をあてて押し込もうとすると容易に貫入する。
4:成形不良の発生がなく、端面の充填性も良好で、成形体内側表面に人差し指をあてて押し込もうとしても容易には貫入が起らない。
5:成形不良の発生がなく、端面の充填性も良好で、成形体内側表面に人差し指をあてて押し込もうとしても貫入が起らない。
 なお、これらの評価において成形体内側表面を人差し指で押し込む力と同様の力で人差し指で天秤の皿を押したところ、指の接触面は直径約1cmの円であり、天秤の目盛りは500gであった。
<Evaluation criteria for centrifugal compaction>
1: Even if the amount of the copolymer or dispersant added is adjusted, obvious molding defects such as sludge and junkers occur.
2: Although no obvious molding failure occurs, sludge adheres only by touching the inner surface of the molded body because the end face has poor filling properties or the molded body is soft.
3: No defective molding occurs, and the end face filling property is good, but it easily penetrates when the index finger is pressed against the inner surface of the molded product.
4: No defective molding occurred, the end face was well filled, and no penetration easily occurred even when the index finger was pressed against the inner surface of the molded product to press it.
5: No defective molding occurs, the end face filling property is good, and no penetration occurs even when the index finger is pressed against the inner surface of the molded body by pushing.
In these evaluations, when the plate of the balance was pressed with the index finger with the same force as the force for pushing the inner surface of the molded body with the index finger, the contact surface of the finger was a circle with a diameter of about 1 cm, and the scale of the balance was 500 g. It was
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3中、構成単量体としてAAを含まない共重合体を用いた比較例3-1及び化合物(1)を含まない比較例3-2に対して、構成単量体としてAAを所定量含む共重合体を用いた実施例3-1a~3-1e及び実施例3-2は良好な遠心締固め性を示した。これは、実施例の共重合体は、成形終了時点では、柔軟な分子構造によりセメント粒子の水和が促進された結果、形成された水和生成物によるネットワーク構造が高い降伏値を示し、遠心成形中は金属型枠の回転に伴うガタつきによりコンクリートが流動化し、骨材間隙へのモルタル分の充填性が向上したためであると考察される。 In Table 3, a predetermined amount of AA was used as a constituent monomer for Comparative Example 3-1 using a copolymer not containing AA as a constituent monomer and Comparative Example 3-2 containing no compound (1). Examples 3-1a to 3-1e and Example 3-2 using the copolymers containing them showed good centrifugal compaction properties. This means that, at the end of molding, the copolymers of Examples showed a high yield value due to the network structure of the formed hydration product as a result of the hydration of cement particles being promoted by the flexible molecular structure, and the centrifugal force. It is considered that this is because the concrete was fluidized due to the rattling accompanying the rotation of the metal mold during the molding, and the filling property of the mortar component into the aggregate gap was improved.

Claims (21)

  1.  構成単量体として、アクリル酸又はその塩、メタクリル酸又はその塩、及び下記一般式(1)で表される化合物を含み、アクリル酸又はその塩とメタクリル酸又はその塩の合計中、アクリル酸又はその塩の割合が20mol%以上70mol%以下であり、重量平均分子量が30,000以上100,000以下である共重合体を含有する、遠心成形又は振動成形用水硬性組成物用分散剤組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは同一又は異なって水素原子又は炭素数1以上3以下のアルキル基を示し、Rは水素原子又はメチル基を示し、nは平均付加モル数であり5以上150以下の数を示す。)
    Acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and a compound represented by the following general formula (1) are included as constituent monomers. Alternatively, a dispersant composition for a hydraulic composition for centrifugal molding or vibration molding, which contains a copolymer having a salt content of 20 mol% or more and 70 mol% or less and a weight average molecular weight of 30,000 or more and 100,000 or less. .
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 3 are the same or different and represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 2 represents a hydrogen atom or a methyl group, and n is an average number of moles added and is 5 or more. Indicates a number of 150 or less.)
  2.  前記共重合体は、アクリル酸又はその塩、メタクリル酸又はその塩、及び前記一般式(1)で表される化合物の合計中、アクリル酸又はその塩及びメタクリル酸又はその塩の合計の割合が50mol%以上95mol%以下である、請求項1に記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 The copolymer has a ratio of the total amount of acrylic acid or a salt thereof and methacrylic acid or a salt thereof in the total of acrylic acid or a salt thereof, methacrylic acid or a salt thereof, and the compound represented by the general formula (1). The dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to claim 1, which is 50 mol% or more and 95 mol% or less.
  3.  前記一般式(1)中、nが10以上90以下の数である、請求項1又は2に記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to claim 1 or 2, wherein n is a number of 10 or more and 90 or less in the general formula (1).
  4.  更に、強度向上剤及び/又は遅延剤を含む、請求項1~3の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to any one of claims 1 to 3, further comprising a strength improver and / or a retarder.
  5.  強度向上剤がポリオール化合物から選択される一種類以上である、請求項4に記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to claim 4, wherein the strength improver is one or more selected from polyol compounds.
  6.  強度向上剤がグリセリンである、請求項4又は5に記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to claim 4 or 5, wherein the strength improver is glycerin.
  7.  遅延剤がオキシカルボン酸から選択される一種類以上である、請求項4~6の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to any one of claims 4 to 6, wherein the retarder is one or more selected from oxycarboxylic acids.
  8.  遅延剤がグルコン酸及び/又はその塩である、請求項4~7の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to any one of claims 4 to 7, wherein the retarder is gluconic acid and / or a salt thereof.
  9.  前記共重合体の含有量と強度向上剤の含有量の質量比が、強度向上剤の含有量/共重合体の含有量で、0.01以上1以下である、請求項4~8の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 9. The mass ratio between the content of the copolymer and the content of the strength improver is 0.01 or more and 1 or less (strength improver content / copolymer content). The dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to item 1.
  10.  前記共重合体の含有量と遅延剤の含有量の質量比が、遅延剤の含有量/共重合体の含有量で、0.01以上1以下である、請求項4~9の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 10. The mass ratio between the content of the copolymer and the content of the retarder is 0.01 or more and 1 or less, in terms of the content of the retarder / the content of the copolymer, 1 to 9. Item 10. A dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to item.
  11.  更に前記共重合体以外の共重合体からなるポリカルボン酸系分散剤を含有する、請求項1~10の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to any one of claims 1 to 10, which further contains a polycarboxylic acid-based dispersant composed of a copolymer other than the copolymer.
  12.  強度向上剤と遅延剤の合計含有量と、前記共重合体と前記ポリカルボン酸系分散剤の合計含有量との質量比が、(強度向上剤と遅延剤の合計含有量)/(前記共重合体と前記ポリカルボン酸系分散剤の合計含有量)で、0.02以上2以下である、請求項4~10の何れか1項を引用する請求項11記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 The mass ratio of the total content of the strength improver and the retarder and the total content of the copolymer and the polycarboxylic acid-based dispersant is (total content of the strength improver and the retarder) / (the above-mentioned copolymer The centrifugal molding or vibration molding water according to claim 11, wherein the total content of the polymer and the polycarboxylic acid dispersant is 0.02 or more and 2 or less. A dispersant composition for a hard composition.
  13.  遠心成形用である、請求項1~12の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物。 The dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to any one of claims 1 to 12, which is for centrifugal molding.
  14.  請求項1~13の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物と、水と、水硬性粉体とを含有し、水/水硬性粉体比が10質量%以上25質量%以下である、遠心成形又は振動成形用水硬性組成物。 A centrifugal-molding or vibration-molding dispersant composition for hydraulic composition according to any one of claims 1 to 13, water and hydraulic powder, and a water / hydraulic powder ratio of 10 mass. % Or more and 25 mass% or less, hydraulic composition for centrifugal molding or vibration molding.
  15.  遠心成形用である、請求項14に記載の遠心成形又は振動成形用水硬性組成物。 The hydraulic composition for centrifugal molding or vibration molding according to claim 14, which is for centrifugal molding.
  16.  請求項1~13の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物を用いて、水硬性組成物の遠心力による締固め性を向上させる方法。 A method for improving compaction property of a hydraulic composition by centrifugal force, using the dispersant composition for hydraulic composition for centrifugal molding or vibration molding according to any one of claims 1 to 13.
  17.  請求項1~13の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物と、水と、水硬性粉体とを混合する、水硬性組成物の製造方法。 A method for producing a hydraulic composition, which comprises mixing the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to any one of claims 1 to 13, water and hydraulic powder.
  18.  請求項1~13の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物と、水と、水硬性粉体とを混合して水硬性組成物を製造し、該水硬性組成物を型枠内に充填した後、遠心力をかけて型締めする、水硬性組成物の硬化体の製造方法。 A hydraulic composition is produced by mixing the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to any one of claims 1 to 13, water, and a hydraulic powder to prepare the hydraulic composition. A method for producing a cured product of a hydraulic composition, which comprises filling a mold composition with the hard composition and then clamping the mold by applying a centrifugal force.
  19.  請求項1~13の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物と、水と、水硬性粉体とを混合して水硬性組成物を製造し、該水硬性組成物を型枠内に充填した後、振動をかけて型締めする、水硬性組成物の硬化体の製造方法。 A hydraulic composition is produced by mixing the dispersant composition for a hydraulic composition for centrifugal molding or vibration molding according to any one of claims 1 to 13, water, and a hydraulic powder to prepare the hydraulic composition. A method for producing a cured product of a hydraulic composition, which comprises filling a mold composition with the hard composition and then clamping the mold by applying vibration.
  20.  請求項1~13の何れか1項に記載の組成物の、遠心成形又は振動成形用水硬性組成物用分散剤としての使用。 Use of the composition according to any one of claims 1 to 13 as a dispersant for a hydraulic composition for centrifugal molding or vibration molding.
  21.  請求項1~13の何れか1項記載の遠心成形又は振動成形用水硬性組成物用分散剤組成物と、水と、水硬性粉体とを含有し、水/水硬性粉体比が10質量%以上25質量%以下である組成物の、遠心成形又は振動成形用水硬性組成物としての使用。 A centrifugal-molding or vibration-molding dispersant composition for hydraulic composition according to any one of claims 1 to 13, water and hydraulic powder, and a water / hydraulic powder ratio of 10 mass. % Or more and 25% by mass or less, as a hydraulic composition for centrifugal molding or vibration molding.
PCT/JP2019/040893 2018-10-25 2019-10-17 Dispersant composition for hydraulic compositions for centrifugal molding or vibration molding WO2020085192A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980056420.2A CN112638838B (en) 2018-10-25 2019-10-17 Dispersant composition for hydraulic composition for centrifugal molding or vibration molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018200817A JP6963540B2 (en) 2018-10-25 2018-10-25 Dispersant composition for water-hardening composition for centrifugal molding or vibration molding
JP2018-200817 2018-10-25

Publications (1)

Publication Number Publication Date
WO2020085192A1 true WO2020085192A1 (en) 2020-04-30

Family

ID=70332210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040893 WO2020085192A1 (en) 2018-10-25 2019-10-17 Dispersant composition for hydraulic compositions for centrifugal molding or vibration molding

Country Status (3)

Country Link
JP (1) JP6963540B2 (en)
CN (1) CN112638838B (en)
WO (1) WO2020085192A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430770A (en) * 2020-03-24 2022-05-03 株式会社Lg化学 Surface protective film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692703A (en) * 1992-03-24 1994-04-05 Kao Corp Cement admixture
JP2005022906A (en) * 2003-06-30 2005-01-27 Kao Corp Method for producing centrifugally formed concrete product
JP2015212216A (en) * 2014-04-16 2015-11-26 日本製紙株式会社 Cement dispersant and cement composition
WO2018147378A1 (en) * 2017-02-08 2018-08-16 シーカ・テクノロジー・アーゲー Hydraulic composition admixture

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118375B2 (en) * 1998-01-20 2008-07-16 株式会社日本触媒 Cement admixture, cement composition using the same, and preparation method thereof
JP4362672B2 (en) * 2000-04-10 2009-11-11 ライオン株式会社 Method for producing polycarboxylic acid copolymer metal salt and powder cement dispersant
AU2004318289A1 (en) * 2004-06-25 2006-01-12 Sika Ltd. Cement dispersant and concrete composition containing the dispersant
JP4494143B2 (en) * 2004-09-15 2010-06-30 花王株式会社 Admixture for hydraulic composition
FR2911131B1 (en) * 2007-01-09 2009-02-06 Coatex S A S Soc Par Actions S USE OF A RHEOLOGICAL ADDITIVE IN THE MANUFACTURE BY VIBROCOMPACTION OF A FORMULATION BASED ON WATER AND HYDRAULIC BINDER, FORMULATION OBTAINED.
JP5101982B2 (en) * 2007-10-17 2012-12-19 花王株式会社 Dispersant for hydraulic composition
JP5312900B2 (en) * 2008-07-01 2013-10-09 花王株式会社 Additive composition for hydraulic composition
AU2010294679B2 (en) * 2009-09-15 2014-09-18 Basf Se Aqueous dispersions containing antimicrobials in a hybrid network
JP5841834B2 (en) * 2011-12-26 2016-01-13 花王株式会社 Admixture for hydraulic composition
JP6636941B2 (en) * 2014-03-27 2020-01-29 シーカ テクノロジー アクチェンゲゼルシャフト Block copolymer
EP3305740A4 (en) * 2015-06-08 2019-01-16 Kao Corporation Dispersant composition for hydraulic composition for centrifugal molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692703A (en) * 1992-03-24 1994-04-05 Kao Corp Cement admixture
JP2005022906A (en) * 2003-06-30 2005-01-27 Kao Corp Method for producing centrifugally formed concrete product
JP2015212216A (en) * 2014-04-16 2015-11-26 日本製紙株式会社 Cement dispersant and cement composition
WO2018147378A1 (en) * 2017-02-08 2018-08-16 シーカ・テクノロジー・アーゲー Hydraulic composition admixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430770A (en) * 2020-03-24 2022-05-03 株式会社Lg化学 Surface protective film
CN114430770B (en) * 2020-03-24 2023-08-29 株式会社Lg化学 Surface protective film

Also Published As

Publication number Publication date
JP2020066553A (en) 2020-04-30
JP6963540B2 (en) 2021-11-10
CN112638838A (en) 2021-04-09
CN112638838B (en) 2023-01-10

Similar Documents

Publication Publication Date Title
EP2520553B1 (en) Hardening accelerator for hydraulic composition
JP5351472B2 (en) Hydraulic composition for ultra high strength concrete
JP6963540B2 (en) Dispersant composition for water-hardening composition for centrifugal molding or vibration molding
JP5351473B2 (en) Hydraulic composition for ultra high strength concrete
JP5676238B2 (en) Dispersant composition for hydraulic composition
JP2011116587A (en) Early strengthening agent for hydraulic composition
JP3206982B2 (en) Admixture for concrete
JP6470131B2 (en) Hydraulic composition for centrifugal molding
JP7346512B2 (en) Additive composition for hydraulic composition containing latent hydraulic powder
JP4290387B2 (en) Cement dispersant
JP3206981B2 (en) Admixture for concrete
JP6470116B2 (en) Method for producing cured body of hydraulic composition
JP6198439B2 (en) Hydraulic composition
JP6887739B2 (en) Surface aesthetic improver composition for hydraulic composition
WO2021070699A1 (en) Dispersant composition for hydraulic compositions for centrifugal molding
JP5554080B2 (en) Additive composition for hydraulic composition
JP2023075405A (en) Hydraulic composition for centrifugal molding
JP2023075404A (en) Hydraulic composition for centrifugal molding
JP6146679B2 (en) Cement composition
JP2004168635A (en) Dispersant for hydraulic composition
JP2022018729A (en) Dispersant for hydraulic composition
JP5780465B2 (en) Method for producing hardened cement
JP2004292283A (en) High-strength concrete
JP2023028709A (en) Fluidity-retaining agent composition for hydraulic composition
JP2022119650A (en) Concrete composition and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876445

Country of ref document: EP

Kind code of ref document: A1