WO2020084809A1 - Infrared sensor - Google Patents
Infrared sensor Download PDFInfo
- Publication number
- WO2020084809A1 WO2020084809A1 PCT/JP2019/012430 JP2019012430W WO2020084809A1 WO 2020084809 A1 WO2020084809 A1 WO 2020084809A1 JP 2019012430 W JP2019012430 W JP 2019012430W WO 2020084809 A1 WO2020084809 A1 WO 2020084809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- infrared sensor
- infrared
- opening
- light guide
- guide member
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 56
- 238000001514 detection method Methods 0.000 claims abstract description 29
- 238000005259 measurement Methods 0.000 claims abstract description 22
- 230000005855 radiation Effects 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 210000000078 claw Anatomy 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910020637 Co-Cu Inorganic materials 0.000 description 1
- 229910002519 Co-Fe Inorganic materials 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
Definitions
- the present invention relates to an infrared sensor that detects infrared rays from a measurement target and measures the temperature of the measurement target.
- an infrared sensor is placed facing the object to be measured and receives the radiant heat to measure the temperature.
- an infrared sensor is placed facing the object to be measured and receives the radiant heat to measure the temperature.
- a resin film provided on a holder having a light guide portion, an infrared detecting heat sensitive element provided on the resin film for detecting infrared rays through the light guide portion, and a resin film are provided.
- an infrared temperature sensor provided with a temperature-compensating thermosensitive element that is provided in a light-shielded state and detects the temperature of a holder.
- Patent Document 2 proposes an infrared sensor device that includes an infrared sensor element and a visual field control unit that has an opening and covers a part of the visual field of the infrared sensor element.
- a light guide path member is installed as a light guide section or a view control section in order to limit the incidence of radiant heat from the outside at a constant viewing angle.
- Patent Document 3 describes an infrared sensor in which a sensor body having a heat-sensitive element for detection and compensation is installed in a light guide member having a rectangular tube shape.
- the above-mentioned conventional technique has the following problems.
- the light guide member is installed on the substrate in order to limit the incident viewing angle of the radiant heat to the heat sensitive part, but the light guide member itself also absorbs infrared rays and generates heat.
- heat is transferred from the light guide member to the heat-sensitive portion, which affects the measurement by the heat-sensitive portion and deteriorates accuracy.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide an infrared sensor that suppresses heat transfer from a light guide member and enables highly accurate measurement.
- the infrared sensor according to the first aspect of the present invention includes an insulating substrate having a light receiving area on the upper surface of which infrared rays are incident, a heat-sensitive element for detection arranged directly below or at the light receiving area, and above the light receiving area.
- the light guide member is in the shape of a rectangular tube having a rectangular opening
- the light receiving region is arranged in the center of the light guide member in the direction of the long side of the opening and has a short opening. Since it has a substantially rectangular shape having long sides in the side direction, the light receiving region is arranged far from the pair of side wall portions in the longitudinal direction of the light guide member, thereby suppressing the influence of radiant heat from these side wall portions. be able to. That is, the temperature change of the infrared sensor main body due to the influence of the light guide member is suppressed, and the detection error can be suppressed and the sensitivity can be improved.
- the light receiving region is formed in a substantially rectangular shape having a long side in the short side direction of the opening, even if the infrared sensor body is displaced in the short side direction of the light guide member, a detection error is suppressed. be able to.
- the light receiving region is wide in the direction of the short side of the opening, so that highly sensitive measurement is possible.
- An infrared sensor is the infrared sensor according to the first aspect, which includes a mounting substrate and an infrared sensor body provided on an upper surface of the mounting substrate, the infrared sensor body including the insulating substrate and the detection substrate.
- the compensation heat-sensitive element is arranged directly below the infrared shielding portion, the infrared light incident from the opening of the light guide member is shielded by the infrared shielding portion, and the compensation heat-sensitive element directly below it is Since the temperature does not reach, the temperature measurement for compensation can be performed with high accuracy.
- An infrared sensor is the infrared sensor according to the second invention, wherein the infrared shielding portion is arranged on one side in a long side direction of the opening, and an upper surface of the mounting substrate is inside the light guide member. It is characterized in that it is exposed to the other side more widely than the one side in the long side direction of the opening. That is, in this infrared sensor, the infrared shielding portion is arranged on one side in the long side direction of the opening, and the upper surface of the mounting substrate is located in the light guide member more than one side in the long side direction of the opening.
- the infrared shielding portion side (one side in the long side direction of the opening) in the light guide member is covered with much of the upper surface of the mounting board by the infrared shielding portion.
- the temperature becomes low without absorbing the light, but at the light receiving area in the light guide member and on the other side (the side opposite to the infrared shielding part), the upper surface of the mounting board is widely exposed together with the light receiving area to absorb a large amount of infrared rays.
- An infrared sensor is the infrared sensor according to any one of the first to third aspects of the present invention, wherein the infrared sensor is arranged to face a measurement target that is constant in width and long in a constant direction, and the opening has the long side direction in the long side direction. It is characterized in that it is arranged along the length direction of the measuring object. That is, in this infrared sensor, since the openings are arranged along the long side direction of the measurement object, a wide viewing angle can be obtained in the measurement object length direction and the measurement object can be obtained. A narrow viewing angle can be obtained in the width direction, and a viewing angle corresponding to the shape of the measurement object can be obtained.
- An infrared sensor is characterized in that, in the fourth aspect, the measurement object is a fixing roller used in an image forming apparatus. That is, in this infrared sensor, since the measuring object is the fixing roller used in the image forming apparatus, the viewing angle corresponding to each of the length and width (diameter) of the cylindrical fixing roller can be easily obtained. To be In particular, when measuring the temperature of the fixing roller, the viewing angle in the width (diameter) direction of the fixing roller is important, but the light receiving area is long along the width direction of the fixing roller and the viewing angle is narrow in the width direction. It becomes possible to measure the temperature of the fixing roller with high accuracy and high sensitivity.
- the present invention has the following effects. That is, according to the infrared sensor of the present invention, the light guide member has a rectangular tube shape having a rectangular opening, and the light receiving region is arranged at the center of the light guide member in the long side direction of the opening. In addition, since it has a substantially rectangular shape having a long side in the short side direction of the opening, it is possible to suppress the influence of radiant heat from the pair of side wall portions in the longitudinal direction of the light guide member, and to open the opening. Highly sensitive measurement is possible in the short side direction. Therefore, in the infrared sensor of the present invention, the infrared sensor main body is unlikely to be affected by heat from the light guide member, and high-precision measurement is possible. In particular, the infrared sensor of the present invention is suitable for measuring the temperature of the fixing roller.
- FIG. 2 is a sectional view taken along the line AA of FIG. 1.
- FIG. 3 is a plan view showing an infrared sensor main body mounted on a base member in the present embodiment.
- FIG. 5 is a sectional view taken along line BB of FIG. 4.
- FIG. 3 is a plan view showing an infrared sensor main body in the present embodiment. It is a top view which shows a base member in this embodiment.
- FIG. 3 is an explanatory diagram showing a viewing angle (a) in the width direction (diameter direction) and a viewing angle (b) in the length direction of the fixing roller in the present embodiment.
- FIGS. 1 to 8 An embodiment of the infrared sensor according to the present invention will be described below with reference to FIGS. 1 to 8.
- the scale is appropriately changed in order to make each member recognizable or easily recognizable.
- the infrared sensor 10 includes a mounting board 21, an infrared sensor body 1 provided on the upper surface of the mounting board 21 via a base member 11, and an upper surface of the mounting board 21. And a cylindrical light guide member 22 having an opening 22b above the infrared sensor body 1 and covering the periphery of the infrared sensor body 1.
- the infrared sensor main body 1 is provided on the insulating substrate 2, the detecting thermal element 3A and the compensating thermal element 3B provided on the insulating substrate 2, and the insulating substrate 2.
- the upper surface of the insulating substrate 2 is provided with an infrared ray receiving region 6 in which the infrared ray is not blocked by the infrared ray shielding portion 5.
- the light receiving region 6 is a region on the upper surface of the insulating substrate 2 on which infrared rays are incident. Further, since the light guide member 22 covers the periphery of the infrared sensor body 1, it also covers the periphery of the light receiving region 6.
- the detecting heat-sensitive element 3A is arranged directly below the light receiving region 6, and the compensating heat-sensitive element 3B is arranged directly below the infrared shielding portion 5.
- the thermosensitive element for detection 3A and the thermosensitive element for compensation 3B are mounted on the lower surface of the insulating substrate 2.
- the light guide member 22 is in the shape of a rectangular tube having a rectangular opening 22b.
- the light receiving region 6 is arranged in the center of the light guide member 22 in the long side direction of the opening 22b and has a substantially rectangular shape having a long side in the short side direction of the opening 22b. Note that, as shown in FIG. 3, the direction of arrow x is the long side direction of the opening 22b, and the direction of arrow y is the short side direction of the opening 22b.
- the infrared shielding part 5 includes a main shielding part 5a having a compensation heat-sensitive element 3B disposed directly thereunder, and an outer peripheral shielding part 5b extending along the outer edge of the insulating substrate 2 and surrounding the light receiving region 6.
- the main shielding portion 5a is arranged on one side in the long side direction of the opening 22b, and the upper surface of the mounting substrate 21 in the light guide member 22 is located on the other side in the long side direction of the opening 22b. Widely exposed to the side.
- one side in the long side direction of the opening 22b is a right side portion (a portion denoted by reference symbol R) in the opening 22b in FIG. 2, and the other side in the long side direction of the opening 22b is shown in FIG. Is a left side portion (a portion indicated by reference symbol L) in the opening 22b.
- a pair of adhesive electrodes 4a formed on the insulating substrate 2 are connected to one ends of the detection-side wiring 4A and the compensation-side wiring 4B, respectively, and are formed on the insulating substrate 2 at the other ends.
- the terminal electrode 4c is connected.
- the detection-side wiring 4A and the compensation-side wiring 4B each have a connection wiring portion 4b that extends by connecting the adhesive electrode 4a and the terminal electrode 4c.
- the two pairs of terminal electrodes 4c are arranged near the four corners of the insulating substrate 2.
- the terminal portions of the corresponding thermosensitive element for detection 3A and the thermosensitive element for compensation 3B are bonded to the adhesive electrode 4a with a conductive adhesive such as solder.
- the insulating substrate 2 is formed of an insulating film such as a polyimide resin sheet into a substantially rectangular shape or a substantially square shape, and the infrared shielding portion 5, the detection side wiring 4A and the compensation side wiring 4B are formed of copper foil. That is, these are manufactured by a double-sided flexible substrate in which the infrared shielding portion 5, the copper foils as the detection side wiring 4A and the compensation side wiring 4B are pattern-formed on both sides of the polyimide substrate which is the insulating substrate 2. Is.
- the infrared shielding portion 5 is an infrared reflective film formed of a material having an infrared reflectance higher than that of the insulating substrate 2.
- a copper plating is applied with a gold plating film to form a pattern.
- a mirror-finished aluminum vapor deposition film or an aluminum foil may be used. 1 and 3, the infrared shielding portion 5 is hatched.
- thermosensitive element for detection 3A and the thermosensitive element for compensation 3B are chip thermistors having terminals formed on both ends.
- the thermistor there are NTC type, PTC type, CTR type thermistors, etc., but in the present embodiment, for example, an NTC type thermistor is adopted as the detection heat sensitive element 3A and the compensation heat sensitive element 3B.
- This thermistor is made of a thermistor material such as Mn—Co—Cu based material or Mn—Co—Fe based material.
- the mounting board 21 has a plurality of board-side wirings 23 connected to the detection heat-sensitive element 3A or the compensation heat-sensitive element 3B via the terminal member 13 and the detection-side wiring 4A on the upper surface.
- the board-side wiring 23 is arranged on the upper surface of the mounting board 21 in the light guide member 22 longer than one side (right side in FIG. 1) in the long side direction of the opening 22b to the other side (left side in FIG. 1). Has been done.
- a pad portion 23a is formed at an end of the board-side wiring 23 for connection with an external wiring.
- a plurality of through holes 21 a for mounting the light guide member 22 are formed in the mounting substrate 21.
- the mounting board 21 is, for example, a printed circuit board (PCB) and is formed in a rectangular shape.
- the light guide member 22 has a plurality of fixing claw portions 22a inserted through a plurality of through holes 21a in the lower portion, and a portion of the fixing claw portion 22a protruding from the lower surface of the mounting substrate 21 is bent.
- the fixing claw portions 22a are formed on the lower portions of both side surfaces of the light guide member 22, and the mounting substrate 21 has two through holes 21a corresponding to the two fixing claw portions 22a. Are formed.
- the light guide member 22 has a rectangular tubular shape and is integrally formed of metal or resin together with the fixing claw portion 22a.
- a material for forming the light guide member 22 for example, in the case of metal, a thin metal plate such as stainless steel is adopted, and in the case of resin, polyphenylene sulfide, polyether ether ketone, polycarbonate, polypropylene, vinyl chloride, etc. are adopted.
- the infrared sensor 10 of the present embodiment is arranged so as to face a measurement object M that has a constant width and is long in a constant direction.
- the opening 22b of the light guide member 22 is arranged with its long side direction along the length direction of the measuring object M.
- the measuring object M of this embodiment is a fixing roller used in the image forming apparatus.
- the base member 11 has a substantially rectangular shape or a substantially square shape in plan view, is mounted on the mounting substrate 21, and has the infrared sensor main body 1 mounted on the upper portion thereof.
- the base member 11 has a larger area in plan view than the insulating substrate 2 and is mounted in the light guide member 22 toward one side in the long side direction of the opening 22b. That is, like the insulating substrate 2, the base member 11 is also arranged so as to be biased to one side (compensation side) in the long side direction of the opening 22b from the center of the light guide member 22.
- the base member 11 has an insulating base main body 12 formed of resin or the like, and an upper end portion attached to the base main body 12 and a conductive material such as solder on the terminal electrode 4c.
- a plurality of conductive terminal members 13 which are connected by an adhesive material and whose lower surface is connected to the detection side wiring 4A or the compensation side wiring 4B of the mounting substrate 21 by a conductive adhesive material such as solder are provided.
- the terminal member 13 is formed of a material such as a metal having a higher thermal conductivity than the base body 12, and has a terminal pin portion 13a protruding laterally.
- the base body 12 has a terminal member hole 12a formed in a side portion and into which a terminal pin portion 13a is inserted and fixed, and an element housing hole 12c formed in an upper portion and directly below the heat sensitive elements 3A and 3B.
- And has a groove portion 12d penetrating in the lateral direction and communicating with the space directly below the detection heat-sensitive element 3A and the space directly below the compensation heat-sensitive element 3B.
- the base member 11 has an intermediate hole 12e formed in the upper portion between the detection heat-sensitive element 3A and the compensation heat-sensitive element 3B and deeper than the groove 12d.
- the long protruding terminal pin portion 13a is fixed by being inserted and fitted into the long hole-shaped terminal member hole portion 12a.
- the base body 12 has a thin plate-like block shape formed in a substantially rectangular shape or a substantially square shape in a plan view, and the four terminal members 13 are fitted in the vicinity of the four corners, and both sides facing each other. Two terminal members 13 are arranged in each. That is, two portions that support the infrared sensor body 1 are provided on both sides of the base body 12 with a space between each other, and the infrared sensor body 1 is supported and fixed at a total of four locations.
- the infrared sensor body 1 is supported with a gap provided between the infrared sensor body 1 and the base body 12. That is, the terminal member 13 has an upper portion protruding from the upper surface of the base body 12 by a certain amount, and the infrared sensor body 1 connected to the upper end portion by a conductive adhesive such as soldering is floated from the base body 12. Support in the state.
- the terminal member 13 has a terminal slit portion 13b extending under the terminal pin portion 13a in the direction opposite to the projecting direction of the terminal pin portion 13a, and the base body 12 is a terminal plug for insertion into the terminal slit portion 13b. It has a portion 12b.
- the upper end and the lower end of the terminal member 13 are flat parts for soldering.
- the terminal member 13 has a plate shape formed by stamping, etching, or laser processing a metal plate.
- the light guide member 22 has a rectangular tube shape having the rectangular opening 22b, and the light receiving region 6 is arranged in the center of the light guide member 22. Since the opening 22b has a substantially rectangular shape having a long side in the short side direction, the light receiving region 6 is arranged far from the pair of side wall portions in the longitudinal direction of the light guide member 22, so that the side wall portion It is possible to suppress the influence of radiant heat. That is, the temperature change of the infrared sensor body 1 due to the influence of the light guide member 22 is suppressed, and the detection error can be suppressed and the sensitivity can be improved.
- the light receiving region 6 since the light receiving region 6 has a substantially rectangular shape having a long side in the short side direction of the opening 22b, it is arranged in the short side direction of the light guide path member 22. On the other hand, even if the infrared sensor body 1 is displaced, the detection error can be suppressed. In particular, when the viewing angle ⁇ 1 defined in the direction of the short side of the opening 22b is important in the measurement, the light receiving region 6 is wide in the direction of the short side of the opening 22b, so that highly sensitive measurement is possible.
- the long side direction of the opening 22b is arranged along the length direction of the measurement target M, a wide viewing angle ⁇ 2 is obtained in the length direction of the measurement target M and the measurement target M is measured.
- a narrow viewing angle ⁇ 1 is obtained in the width direction of, and a viewing angle corresponding to the shape of the measuring object M can be obtained.
- the measuring object M is the fixing roller used in the image forming apparatus, the viewing angle corresponding to each of the length and width (diameter) of the cylindrical fixing roller can be easily obtained. can get.
- the viewing angle ⁇ 1 with respect to the width (diameter) direction of the fixing roller is important, but the light receiving region 6 is long along the width direction of the fixing roller and the viewing angle ⁇ 1 in the width direction. Since it is narrow, it becomes possible to measure the temperature of the fixing roller with high accuracy and high sensitivity.
- the main shielding portion 5a is arranged on one side in the long side direction of the opening 22b, and the upper surface of the mounting substrate 21 is on the other side in the light guide member 22 than the one side in the long side direction of the opening 22b. Since it is widely exposed to the side of, the main shielding portion 5a side (one side in the long side direction of the opening 22b) in the light guide member 22 is the main shielding portion 5a, and most of the upper surface of the mounting substrate 21 is Although the temperature is low because it is covered and does not absorb infrared rays, the light receiving region 6 in the light guide member 22 and the other side (the side opposite to the main shielding part) and the upper surface of the mounting substrate 21 are widely exposed together with the light receiving region 6.
- thermosensitive element of the chip thermistor is adopted, but a thermosensitive element formed of a thin film thermistor may be adopted.
- a thermosensitive element formed of a thin film thermistor may be adopted.
- the heat sensitive element a thin film thermistor or a chip thermistor is used as described above, but a pyroelectric element or the like can be adopted in addition to the thermistor.
- the infrared shielding portion is provided on the upper surface of the insulating substrate with copper foil or the like, but the infrared shielding portion may be provided with a plate member or the like on or just above the insulating substrate.
- the detection heat-sensitive element is arranged immediately below the light receiving area, that is, on the lower surface of the insulating substrate, but it may be arranged above the light receiving area. That is, the detection heat sensitive element may be directly mounted on the light receiving region on the upper surface of the insulating substrate.
- SYMBOLS 1 ... Infrared sensor main body, 2 ... Insulating substrate, 3A ... Detection thermal element, 3B ... Compensation thermal element, 4A ... Detection side wiring, 4B ... Compensation side wiring, 5 ... Infrared shielding part, 5a ... Main shielding part, 6 ... Light receiving area, 10 ... Infrared sensor, 21 ... Mounting board, 22 ... Light guide member, M ... Object to be measured
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Provided is an infrared sensor that suppresses transmission of heat from a light guiding path member and allows high-precision measurement. An infrared sensor according to the present invention comprises: a mounting substrate 21; an infrared sensor body 1 that is provided to the mounting substrate; and a light guiding path member 22 that is positioned on the mounting substrate and has an opening section 22b above the infrared sensor body, wherein the infrared sensor body comprises an insulating substrate, a heat-sensitive element for detection and a heat-sensitive element for compensation that are provided to the insulating substrate, an infrared shielding section 5 that is provided to the insulating substrate, and an infrared light receiving region 6 on the insulating substrate, the heat-sensitive element for detection is positioned directly below the light receiving region, the heat-sensitive element for compensation is positioned directly below the infrared shielding section, the light guiding path member is a polygonal tube shape that has a rectangular opening section, and the light receiving region is positioned in the center of the light guiding path member in the direction of the long side of the opening section, and is a substantially rectangular shape that has the long side thereof in the direction of the short side of the opening section 22b.
Description
本発明は、測定対象物からの赤外線を検出して該測定対象物の温度を測定する赤外線センサに関する。
The present invention relates to an infrared sensor that detects infrared rays from a measurement target and measures the temperature of the measurement target.
一般に、複写機やプリンタ等の画像形成装置に使用されている定着ローラ等の測定対象物の温度を測定するために、測定対象物に対向配置させ、その輻射熱を受けて温度を測定する赤外線センサが設置されている。
例えば、特許文献1には、導光部を有した保持体に設置された樹脂フィルムと、該樹脂フィルムに設けられ導光部を介して赤外線を検出する赤外線検出用感熱素子と、樹脂フィルムに遮光状態に設けられ保持体の温度を検出する温度補償用感熱素子とを備えた赤外線温度センサが提案されている。 In general, in order to measure the temperature of an object to be measured such as a fixing roller used in an image forming apparatus such as a copying machine or a printer, an infrared sensor is placed facing the object to be measured and receives the radiant heat to measure the temperature. Is installed.
For example, inPatent Document 1, a resin film provided on a holder having a light guide portion, an infrared detecting heat sensitive element provided on the resin film for detecting infrared rays through the light guide portion, and a resin film are provided. There has been proposed an infrared temperature sensor provided with a temperature-compensating thermosensitive element that is provided in a light-shielded state and detects the temperature of a holder.
例えば、特許文献1には、導光部を有した保持体に設置された樹脂フィルムと、該樹脂フィルムに設けられ導光部を介して赤外線を検出する赤外線検出用感熱素子と、樹脂フィルムに遮光状態に設けられ保持体の温度を検出する温度補償用感熱素子とを備えた赤外線温度センサが提案されている。 In general, in order to measure the temperature of an object to be measured such as a fixing roller used in an image forming apparatus such as a copying machine or a printer, an infrared sensor is placed facing the object to be measured and receives the radiant heat to measure the temperature. Is installed.
For example, in
また、特許文献2には、赤外線センサ素子と、開口部を有し、かつ、赤外線センサ素子の視野の一部を覆う視野制御部とを備えた赤外線センサ装置が提案されている。
これらの赤外線センサでは、外部からの輻射熱の入射を一定の視野角で制限するため、導光部や視野制御部として導光路部材が設置されている。
また、特許文献3には、検出用及び補償用の感熱素子を有したセンサ本体が角筒状の導光路部材内に設置された赤外線センサが記載されている。 In addition,Patent Document 2 proposes an infrared sensor device that includes an infrared sensor element and a visual field control unit that has an opening and covers a part of the visual field of the infrared sensor element.
In these infrared sensors, a light guide path member is installed as a light guide section or a view control section in order to limit the incidence of radiant heat from the outside at a constant viewing angle.
In addition, Patent Document 3 describes an infrared sensor in which a sensor body having a heat-sensitive element for detection and compensation is installed in a light guide member having a rectangular tube shape.
これらの赤外線センサでは、外部からの輻射熱の入射を一定の視野角で制限するため、導光部や視野制御部として導光路部材が設置されている。
また、特許文献3には、検出用及び補償用の感熱素子を有したセンサ本体が角筒状の導光路部材内に設置された赤外線センサが記載されている。 In addition,
In these infrared sensors, a light guide path member is installed as a light guide section or a view control section in order to limit the incidence of radiant heat from the outside at a constant viewing angle.
In addition, Patent Document 3 describes an infrared sensor in which a sensor body having a heat-sensitive element for detection and compensation is installed in a light guide member having a rectangular tube shape.
上記従来の技術には、以下の課題が残されている。
従来の赤外線センサでは、感熱部への輻射熱の入射視野角を制限するために導光路部材を基板上に設置しているが、導光路部材自体も赤外線を吸収して熱を発生させてしまうため、導光路部材から感熱部に熱が伝達されて感熱部による測定に影響を与え、精度が悪化してしまう不都合があった。 The above-mentioned conventional technique has the following problems.
In the conventional infrared sensor, the light guide member is installed on the substrate in order to limit the incident viewing angle of the radiant heat to the heat sensitive part, but the light guide member itself also absorbs infrared rays and generates heat. However, there is a problem that heat is transferred from the light guide member to the heat-sensitive portion, which affects the measurement by the heat-sensitive portion and deteriorates accuracy.
従来の赤外線センサでは、感熱部への輻射熱の入射視野角を制限するために導光路部材を基板上に設置しているが、導光路部材自体も赤外線を吸収して熱を発生させてしまうため、導光路部材から感熱部に熱が伝達されて感熱部による測定に影響を与え、精度が悪化してしまう不都合があった。 The above-mentioned conventional technique has the following problems.
In the conventional infrared sensor, the light guide member is installed on the substrate in order to limit the incident viewing angle of the radiant heat to the heat sensitive part, but the light guide member itself also absorbs infrared rays and generates heat. However, there is a problem that heat is transferred from the light guide member to the heat-sensitive portion, which affects the measurement by the heat-sensitive portion and deteriorates accuracy.
本発明は、前述の課題に鑑みてなされたもので、導光路部材からの熱の伝達を抑制して高精度な測定が可能な赤外線センサを提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an infrared sensor that suppresses heat transfer from a light guide member and enables highly accurate measurement.
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係る赤外線センサは、上面に赤外線が入射する受光領域を備えた絶縁性基板と、前記受光領域又はその直下に配された検出用感熱素子と、前記受光領域の上方に開口部を有して前記受光領域の周囲を覆う筒状の導光路部材とを備え、前記導光路部材が、長方形状の前記開口部を有した角筒状であり、前記受光領域が、前記開口部の長辺方向において前記導光路部材の中央に配されていると共に前記開口部の短辺方向に長辺を有する略長方形状とされていることを特徴とする。
The present invention adopts the following configurations to solve the above problems. That is, the infrared sensor according to the first aspect of the present invention includes an insulating substrate having a light receiving area on the upper surface of which infrared rays are incident, a heat-sensitive element for detection arranged directly below or at the light receiving area, and above the light receiving area. A light guide path member having a cylindrical shape having an opening and covering the periphery of the light receiving area, wherein the light guide path member is a rectangular tube having the rectangular opening, and the light receiving area is It is characterized in that it is arranged in the center of the light guide member in the long side direction of the opening and has a substantially rectangular shape having a long side in the short side direction of the opening.
この赤外線センサでは、導光路部材が、長方形状の開口部を有した角筒状であり、受光領域が、開口部の長辺方向において導光路部材の中央に配されていると共に開口部の短辺方向に長辺を有する略長方形状とされているので、受光領域が導光路部材の長手方向にある一対の側壁部から遠く配されることで、これら側壁部からの輻射熱の影響を抑制することができる。すなわち、導光路部材の影響による赤外線センサ本体の温度変化が抑制され、検出誤差の抑制及び感度の向上が可能になる。
また、受光領域が開口部の短辺方向に長辺を有する略長方形状とされているので、導光路部材の短辺方向に対して赤外線センサ本体の位置ずれが生じても検出誤差を抑制することができる。特に、開口部の短辺方向で規定される視野角が測定において重要な場合、受光領域が開口部の短辺方向に広いため、高感度な測定が可能になる。 In this infrared sensor, the light guide member is in the shape of a rectangular tube having a rectangular opening, and the light receiving region is arranged in the center of the light guide member in the direction of the long side of the opening and has a short opening. Since it has a substantially rectangular shape having long sides in the side direction, the light receiving region is arranged far from the pair of side wall portions in the longitudinal direction of the light guide member, thereby suppressing the influence of radiant heat from these side wall portions. be able to. That is, the temperature change of the infrared sensor main body due to the influence of the light guide member is suppressed, and the detection error can be suppressed and the sensitivity can be improved.
Further, since the light receiving region is formed in a substantially rectangular shape having a long side in the short side direction of the opening, even if the infrared sensor body is displaced in the short side direction of the light guide member, a detection error is suppressed. be able to. In particular, when the viewing angle defined in the direction of the short side of the opening is important in the measurement, the light receiving region is wide in the direction of the short side of the opening, so that highly sensitive measurement is possible.
また、受光領域が開口部の短辺方向に長辺を有する略長方形状とされているので、導光路部材の短辺方向に対して赤外線センサ本体の位置ずれが生じても検出誤差を抑制することができる。特に、開口部の短辺方向で規定される視野角が測定において重要な場合、受光領域が開口部の短辺方向に広いため、高感度な測定が可能になる。 In this infrared sensor, the light guide member is in the shape of a rectangular tube having a rectangular opening, and the light receiving region is arranged in the center of the light guide member in the direction of the long side of the opening and has a short opening. Since it has a substantially rectangular shape having long sides in the side direction, the light receiving region is arranged far from the pair of side wall portions in the longitudinal direction of the light guide member, thereby suppressing the influence of radiant heat from these side wall portions. be able to. That is, the temperature change of the infrared sensor main body due to the influence of the light guide member is suppressed, and the detection error can be suppressed and the sensitivity can be improved.
Further, since the light receiving region is formed in a substantially rectangular shape having a long side in the short side direction of the opening, even if the infrared sensor body is displaced in the short side direction of the light guide member, a detection error is suppressed. be able to. In particular, when the viewing angle defined in the direction of the short side of the opening is important in the measurement, the light receiving region is wide in the direction of the short side of the opening, so that highly sensitive measurement is possible.
第2の発明に係る赤外線センサは、第1の発明において、実装基板と、前記実装基板の上面に設けられた赤外線センサ本体とを備え、前記赤外線センサ本体が、前記絶縁性基板と、前記検出用感熱素子と、前記絶縁性基板に設けられた補償用感熱素子と、前記絶縁性基板の上面又は直上に設けられた赤外線遮蔽部とを備え、前記導光路部材が、前記実装基板の上面に設置され、前記補償用感熱素子が、前記赤外線遮蔽部の直下に配されていることを特徴とする。
この赤外線センサでは、補償用感熱素子が、赤外線遮蔽部の直下に配されているので、導光路部材の開口部から入射された赤外線が赤外線遮蔽部によって遮られ、その直下の補償用感熱素子には届かないことで、補償用の温度測定を高精度に行うことができる。 An infrared sensor according to a second aspect of the present invention is the infrared sensor according to the first aspect, which includes a mounting substrate and an infrared sensor body provided on an upper surface of the mounting substrate, the infrared sensor body including the insulating substrate and the detection substrate. Heat sensitive element, a compensating heat sensitive element provided on the insulating substrate, and an infrared shielding portion provided directly on or above the insulating substrate, wherein the light guide member is provided on the upper surface of the mounting substrate. It is characterized in that the compensating heat-sensitive element is disposed directly below the infrared shielding portion.
In this infrared sensor, since the compensation heat-sensitive element is arranged directly below the infrared shielding portion, the infrared light incident from the opening of the light guide member is shielded by the infrared shielding portion, and the compensation heat-sensitive element directly below it is Since the temperature does not reach, the temperature measurement for compensation can be performed with high accuracy.
この赤外線センサでは、補償用感熱素子が、赤外線遮蔽部の直下に配されているので、導光路部材の開口部から入射された赤外線が赤外線遮蔽部によって遮られ、その直下の補償用感熱素子には届かないことで、補償用の温度測定を高精度に行うことができる。 An infrared sensor according to a second aspect of the present invention is the infrared sensor according to the first aspect, which includes a mounting substrate and an infrared sensor body provided on an upper surface of the mounting substrate, the infrared sensor body including the insulating substrate and the detection substrate. Heat sensitive element, a compensating heat sensitive element provided on the insulating substrate, and an infrared shielding portion provided directly on or above the insulating substrate, wherein the light guide member is provided on the upper surface of the mounting substrate. It is characterized in that the compensating heat-sensitive element is disposed directly below the infrared shielding portion.
In this infrared sensor, since the compensation heat-sensitive element is arranged directly below the infrared shielding portion, the infrared light incident from the opening of the light guide member is shielded by the infrared shielding portion, and the compensation heat-sensitive element directly below it is Since the temperature does not reach, the temperature measurement for compensation can be performed with high accuracy.
第3の発明に係る赤外線センサは、第2の発明において、前記赤外線遮蔽部が、前記開口部の長辺方向で一方の側に配され、前記実装基板の上面が、前記導光路部材内において前記開口部の長辺方向で一方の側よりも他方の側に広く露出していることを特徴とする。
すなわち、この赤外線センサでは、赤外線遮蔽部が、開口部の長辺方向で一方の側に配され、実装基板の上面が、導光路部材内において前記開口部の長辺方向で一方の側よりも他方の側に広く露出しているので、導光路部材内の赤外線遮蔽部側(開口部の長辺方向の一方の側)は赤外線遮蔽部で実装基板の上面の多くの部分が覆われて赤外線を吸収せずに温度が低くなるが、導光路部材内の受光領域及びその他方の側(赤外線遮蔽部の反対側)では受光領域と共に実装基板の上面が広く露出して赤外線を多く吸収するために温度が高くなる。したがって、赤外線遮蔽部側(補償側)と受光領域側(検出側)との温度差が付き易くなって感度を向上させることができる。 An infrared sensor according to a third invention is the infrared sensor according to the second invention, wherein the infrared shielding portion is arranged on one side in a long side direction of the opening, and an upper surface of the mounting substrate is inside the light guide member. It is characterized in that it is exposed to the other side more widely than the one side in the long side direction of the opening.
That is, in this infrared sensor, the infrared shielding portion is arranged on one side in the long side direction of the opening, and the upper surface of the mounting substrate is located in the light guide member more than one side in the long side direction of the opening. Since it is widely exposed to the other side, the infrared shielding portion side (one side in the long side direction of the opening) in the light guide member is covered with much of the upper surface of the mounting board by the infrared shielding portion. However, the temperature becomes low without absorbing the light, but at the light receiving area in the light guide member and on the other side (the side opposite to the infrared shielding part), the upper surface of the mounting board is widely exposed together with the light receiving area to absorb a large amount of infrared rays. The temperature rises. Therefore, the temperature difference between the infrared ray shielding portion side (compensation side) and the light receiving area side (detection side) is likely to occur, and the sensitivity can be improved.
すなわち、この赤外線センサでは、赤外線遮蔽部が、開口部の長辺方向で一方の側に配され、実装基板の上面が、導光路部材内において前記開口部の長辺方向で一方の側よりも他方の側に広く露出しているので、導光路部材内の赤外線遮蔽部側(開口部の長辺方向の一方の側)は赤外線遮蔽部で実装基板の上面の多くの部分が覆われて赤外線を吸収せずに温度が低くなるが、導光路部材内の受光領域及びその他方の側(赤外線遮蔽部の反対側)では受光領域と共に実装基板の上面が広く露出して赤外線を多く吸収するために温度が高くなる。したがって、赤外線遮蔽部側(補償側)と受光領域側(検出側)との温度差が付き易くなって感度を向上させることができる。 An infrared sensor according to a third invention is the infrared sensor according to the second invention, wherein the infrared shielding portion is arranged on one side in a long side direction of the opening, and an upper surface of the mounting substrate is inside the light guide member. It is characterized in that it is exposed to the other side more widely than the one side in the long side direction of the opening.
That is, in this infrared sensor, the infrared shielding portion is arranged on one side in the long side direction of the opening, and the upper surface of the mounting substrate is located in the light guide member more than one side in the long side direction of the opening. Since it is widely exposed to the other side, the infrared shielding portion side (one side in the long side direction of the opening) in the light guide member is covered with much of the upper surface of the mounting board by the infrared shielding portion. However, the temperature becomes low without absorbing the light, but at the light receiving area in the light guide member and on the other side (the side opposite to the infrared shielding part), the upper surface of the mounting board is widely exposed together with the light receiving area to absorb a large amount of infrared rays. The temperature rises. Therefore, the temperature difference between the infrared ray shielding portion side (compensation side) and the light receiving area side (detection side) is likely to occur, and the sensitivity can be improved.
第4の発明に係る赤外線センサは、第1から第3の発明のいずれかにおいて、一定の幅で一定の方向に長い測定対象物に対向配置され、前記開口部が、その長辺方向を前記測定対象物の長さ方向に沿って配されることを特徴とする。
すなわち、この赤外線センサでは、開口部が、その長辺方向を測定対象物の長さ方向に沿って配されるので、測定対象物の長さ方向では広い視野角が得られると共に測定対象物の幅方向では、狭い視野角が得られ、測定対象物の形状に対応した視野角を得ることができる。 An infrared sensor according to a fourth aspect of the present invention is the infrared sensor according to any one of the first to third aspects of the present invention, wherein the infrared sensor is arranged to face a measurement target that is constant in width and long in a constant direction, and the opening has the long side direction in the long side direction. It is characterized in that it is arranged along the length direction of the measuring object.
That is, in this infrared sensor, since the openings are arranged along the long side direction of the measurement object, a wide viewing angle can be obtained in the measurement object length direction and the measurement object can be obtained. A narrow viewing angle can be obtained in the width direction, and a viewing angle corresponding to the shape of the measurement object can be obtained.
すなわち、この赤外線センサでは、開口部が、その長辺方向を測定対象物の長さ方向に沿って配されるので、測定対象物の長さ方向では広い視野角が得られると共に測定対象物の幅方向では、狭い視野角が得られ、測定対象物の形状に対応した視野角を得ることができる。 An infrared sensor according to a fourth aspect of the present invention is the infrared sensor according to any one of the first to third aspects of the present invention, wherein the infrared sensor is arranged to face a measurement target that is constant in width and long in a constant direction, and the opening has the long side direction in the long side direction. It is characterized in that it is arranged along the length direction of the measuring object.
That is, in this infrared sensor, since the openings are arranged along the long side direction of the measurement object, a wide viewing angle can be obtained in the measurement object length direction and the measurement object can be obtained. A narrow viewing angle can be obtained in the width direction, and a viewing angle corresponding to the shape of the measurement object can be obtained.
第5の発明に係る赤外線センサは、第4の発明において、前記測定対象物が、画像形成装置に使用される定着ローラであることを特徴とする。
すなわち、この赤外線センサでは、測定対象物が、画像形成装置に使用される定着ローラであるので、円筒形状である定着ローラの長さ及び幅(直径)のそれぞれに対応した視野角が容易に得られる。特に、定着ローラの温度を測定する場合、定着ローラの幅(直径)方向に対する視野角が重要であるが、受光領域が定着ローラの幅方向に沿って長いと共に前記幅方向で視野角が狭いため、高精度かつ高感度に定着ローラの温度を測定することが可能になる。 An infrared sensor according to a fifth aspect is characterized in that, in the fourth aspect, the measurement object is a fixing roller used in an image forming apparatus.
That is, in this infrared sensor, since the measuring object is the fixing roller used in the image forming apparatus, the viewing angle corresponding to each of the length and width (diameter) of the cylindrical fixing roller can be easily obtained. To be In particular, when measuring the temperature of the fixing roller, the viewing angle in the width (diameter) direction of the fixing roller is important, but the light receiving area is long along the width direction of the fixing roller and the viewing angle is narrow in the width direction. It becomes possible to measure the temperature of the fixing roller with high accuracy and high sensitivity.
すなわち、この赤外線センサでは、測定対象物が、画像形成装置に使用される定着ローラであるので、円筒形状である定着ローラの長さ及び幅(直径)のそれぞれに対応した視野角が容易に得られる。特に、定着ローラの温度を測定する場合、定着ローラの幅(直径)方向に対する視野角が重要であるが、受光領域が定着ローラの幅方向に沿って長いと共に前記幅方向で視野角が狭いため、高精度かつ高感度に定着ローラの温度を測定することが可能になる。 An infrared sensor according to a fifth aspect is characterized in that, in the fourth aspect, the measurement object is a fixing roller used in an image forming apparatus.
That is, in this infrared sensor, since the measuring object is the fixing roller used in the image forming apparatus, the viewing angle corresponding to each of the length and width (diameter) of the cylindrical fixing roller can be easily obtained. To be In particular, when measuring the temperature of the fixing roller, the viewing angle in the width (diameter) direction of the fixing roller is important, but the light receiving area is long along the width direction of the fixing roller and the viewing angle is narrow in the width direction. It becomes possible to measure the temperature of the fixing roller with high accuracy and high sensitivity.
本発明によれば、以下の効果を奏する。
すなわち、本発明に係る赤外線センサによれば、導光路部材が、長方形状の開口部を有した角筒状であり、受光領域が、開口部の長辺方向において導光路部材の中央に配されていると共に開口部の短辺方向に長辺を有する略長方形状とされているので、導光路部材の長手方向にある一対の側壁部からの輻射熱の影響を抑制することができると共に、開口部の短辺方向で高感度な測定が可能になる。
したがって、本発明の赤外線センサでは、導光路部材からの熱の影響を赤外線センサ本体が受け難く、高精度な測定が可能になる。特に、本発明の赤外線センサは、定着ローラの温度測定に好適である。 The present invention has the following effects.
That is, according to the infrared sensor of the present invention, the light guide member has a rectangular tube shape having a rectangular opening, and the light receiving region is arranged at the center of the light guide member in the long side direction of the opening. In addition, since it has a substantially rectangular shape having a long side in the short side direction of the opening, it is possible to suppress the influence of radiant heat from the pair of side wall portions in the longitudinal direction of the light guide member, and to open the opening. Highly sensitive measurement is possible in the short side direction.
Therefore, in the infrared sensor of the present invention, the infrared sensor main body is unlikely to be affected by heat from the light guide member, and high-precision measurement is possible. In particular, the infrared sensor of the present invention is suitable for measuring the temperature of the fixing roller.
すなわち、本発明に係る赤外線センサによれば、導光路部材が、長方形状の開口部を有した角筒状であり、受光領域が、開口部の長辺方向において導光路部材の中央に配されていると共に開口部の短辺方向に長辺を有する略長方形状とされているので、導光路部材の長手方向にある一対の側壁部からの輻射熱の影響を抑制することができると共に、開口部の短辺方向で高感度な測定が可能になる。
したがって、本発明の赤外線センサでは、導光路部材からの熱の影響を赤外線センサ本体が受け難く、高精度な測定が可能になる。特に、本発明の赤外線センサは、定着ローラの温度測定に好適である。 The present invention has the following effects.
That is, according to the infrared sensor of the present invention, the light guide member has a rectangular tube shape having a rectangular opening, and the light receiving region is arranged at the center of the light guide member in the long side direction of the opening. In addition, since it has a substantially rectangular shape having a long side in the short side direction of the opening, it is possible to suppress the influence of radiant heat from the pair of side wall portions in the longitudinal direction of the light guide member, and to open the opening. Highly sensitive measurement is possible in the short side direction.
Therefore, in the infrared sensor of the present invention, the infrared sensor main body is unlikely to be affected by heat from the light guide member, and high-precision measurement is possible. In particular, the infrared sensor of the present invention is suitable for measuring the temperature of the fixing roller.
以下、本発明に係る赤外線センサの一実施形態を、図1から図8を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。
An embodiment of the infrared sensor according to the present invention will be described below with reference to FIGS. 1 to 8. In each drawing used in the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.
本実施形態の赤外線センサ10は、図1から図3に示すように、実装基板21と、実装基板21の上面にベース部材11を介して設けられた赤外線センサ本体1と、実装基板21の上面に設置され赤外線センサ本体1の上方に開口部22bを有して赤外線センサ本体1の周囲を覆う筒状の導光路部材22とを備えている。
As shown in FIGS. 1 to 3, the infrared sensor 10 according to the present embodiment includes a mounting board 21, an infrared sensor body 1 provided on the upper surface of the mounting board 21 via a base member 11, and an upper surface of the mounting board 21. And a cylindrical light guide member 22 having an opening 22b above the infrared sensor body 1 and covering the periphery of the infrared sensor body 1.
上記赤外線センサ本体1は、図4及び図6に示すように、絶縁性基板2と、絶縁性基板2に設けられた検出用感熱素子3A及び補償用感熱素子3Bと、絶縁性基板2に設けられ検出用感熱素子3Aに接続された一対の検出側配線4A及び補償用感熱素子3Bに接続された一対の補償側配線4Bと、絶縁性基板2の上面に設けられた赤外線遮蔽部5と、絶縁性基板2の上面で赤外線遮蔽部5によって赤外線の入射が遮られていない赤外線の受光領域6とを備えている。
すなわち、上記受光領域6は、絶縁性基板2の上面のうち赤外線が入射する領域である。また、導光路部材22は、赤外線センサ本体1の周囲を覆っているため、受光領域6の周囲も覆っている。 As shown in FIGS. 4 and 6, the infrared sensormain body 1 is provided on the insulating substrate 2, the detecting thermal element 3A and the compensating thermal element 3B provided on the insulating substrate 2, and the insulating substrate 2. A pair of detection side wirings 4A connected to the detection heat-sensitive element 3A and a pair of compensation side wirings 4B connected to the compensation heat-sensitive element 3B; and an infrared shielding portion 5 provided on the upper surface of the insulating substrate 2. The upper surface of the insulating substrate 2 is provided with an infrared ray receiving region 6 in which the infrared ray is not blocked by the infrared ray shielding portion 5.
That is, thelight receiving region 6 is a region on the upper surface of the insulating substrate 2 on which infrared rays are incident. Further, since the light guide member 22 covers the periphery of the infrared sensor body 1, it also covers the periphery of the light receiving region 6.
すなわち、上記受光領域6は、絶縁性基板2の上面のうち赤外線が入射する領域である。また、導光路部材22は、赤外線センサ本体1の周囲を覆っているため、受光領域6の周囲も覆っている。 As shown in FIGS. 4 and 6, the infrared sensor
That is, the
上記検出用感熱素子3Aは受光領域6の直下に配されていると共に、補償用感熱素子3Bは赤外線遮蔽部5の直下に配されている。本実施形態では、絶縁性基板2の下面に検出用感熱素子3A及び補償用感熱素子3Bが実装されている。
上記導光路部材22は、長方形状の開口部22bを有した角筒状である。
上記受光領域6は、開口部22bの長辺方向において導光路部材22の中央に配されていると共に開口部22bの短辺方向に長辺を有する略長方形状とされている。
なお、図3に示すように、矢印xの方向が開口部22bの長辺方向であり、矢印yの方向が開口部22bの短辺方向である。 The detecting heat-sensitive element 3A is arranged directly below the light receiving region 6, and the compensating heat-sensitive element 3B is arranged directly below the infrared shielding portion 5. In the present embodiment, the thermosensitive element for detection 3A and the thermosensitive element for compensation 3B are mounted on the lower surface of the insulating substrate 2.
Thelight guide member 22 is in the shape of a rectangular tube having a rectangular opening 22b.
Thelight receiving region 6 is arranged in the center of the light guide member 22 in the long side direction of the opening 22b and has a substantially rectangular shape having a long side in the short side direction of the opening 22b.
Note that, as shown in FIG. 3, the direction of arrow x is the long side direction of theopening 22b, and the direction of arrow y is the short side direction of the opening 22b.
上記導光路部材22は、長方形状の開口部22bを有した角筒状である。
上記受光領域6は、開口部22bの長辺方向において導光路部材22の中央に配されていると共に開口部22bの短辺方向に長辺を有する略長方形状とされている。
なお、図3に示すように、矢印xの方向が開口部22bの長辺方向であり、矢印yの方向が開口部22bの短辺方向である。 The detecting heat-
The
The
Note that, as shown in FIG. 3, the direction of arrow x is the long side direction of the
上記赤外線遮蔽部5は、補償用感熱素子3Bを直下に配した主遮蔽部5aと、絶縁性基板2の外縁に沿って延在し受光領域6を囲んで形成された外周遮蔽部5bとを有している。
上記主遮蔽部5aは、開口部22bの長辺方向で一方の側に配され、実装基板21の上面が、導光路部材22内において開口部22bの長辺方向で一方の側よりも他方の側に広く露出している。なお、開口部22bの長辺方向で一方の側は、図2において開口部22b内の右側の部分(符号Rの部分)であり、開口部22bの長辺方向で他方の側は、図2において開口部22b内の左側の部分(符号Lの部分)である。 Theinfrared shielding part 5 includes a main shielding part 5a having a compensation heat-sensitive element 3B disposed directly thereunder, and an outer peripheral shielding part 5b extending along the outer edge of the insulating substrate 2 and surrounding the light receiving region 6. Have
Themain shielding portion 5a is arranged on one side in the long side direction of the opening 22b, and the upper surface of the mounting substrate 21 in the light guide member 22 is located on the other side in the long side direction of the opening 22b. Widely exposed to the side. It should be noted that one side in the long side direction of the opening 22b is a right side portion (a portion denoted by reference symbol R) in the opening 22b in FIG. 2, and the other side in the long side direction of the opening 22b is shown in FIG. Is a left side portion (a portion indicated by reference symbol L) in the opening 22b.
上記主遮蔽部5aは、開口部22bの長辺方向で一方の側に配され、実装基板21の上面が、導光路部材22内において開口部22bの長辺方向で一方の側よりも他方の側に広く露出している。なお、開口部22bの長辺方向で一方の側は、図2において開口部22b内の右側の部分(符号Rの部分)であり、開口部22bの長辺方向で他方の側は、図2において開口部22b内の左側の部分(符号Lの部分)である。 The
The
上記検出側配線4A及び補償側配線4Bには、その一端部にそれぞれ絶縁性基板2に形成された一対の接着電極4aが接続されていると共に、他端部にそれぞれ絶縁性基板2に形成された端子電極4cが接続されている。また、検出側配線4A及び補償側配線4Bは、接着電極4aと端子電極4cとを接続して延在する接続配線部4bをそれぞれ有している。
二対の端子電極4cは、絶縁性基板2の四隅近傍に配されている。
なお、上記接着電極4aには、それぞれ対応する検出用感熱素子3A及び補償用感熱素子3Bの端子部が半田等の導電性接着材で接着されている。 A pair ofadhesive electrodes 4a formed on the insulating substrate 2 are connected to one ends of the detection-side wiring 4A and the compensation-side wiring 4B, respectively, and are formed on the insulating substrate 2 at the other ends. The terminal electrode 4c is connected. The detection-side wiring 4A and the compensation-side wiring 4B each have a connection wiring portion 4b that extends by connecting the adhesive electrode 4a and the terminal electrode 4c.
The two pairs ofterminal electrodes 4c are arranged near the four corners of the insulating substrate 2.
The terminal portions of the corresponding thermosensitive element fordetection 3A and the thermosensitive element for compensation 3B are bonded to the adhesive electrode 4a with a conductive adhesive such as solder.
二対の端子電極4cは、絶縁性基板2の四隅近傍に配されている。
なお、上記接着電極4aには、それぞれ対応する検出用感熱素子3A及び補償用感熱素子3Bの端子部が半田等の導電性接着材で接着されている。 A pair of
The two pairs of
The terminal portions of the corresponding thermosensitive element for
上記絶縁性基板2は、ポリイミド樹脂シート等の絶縁性フィルムで略長方形状又は略正方形状に形成され、赤外線遮蔽部5,検出側配線4A及び補償側配線4Bが銅箔で形成されている。すなわち、これらは、絶縁性基板2とされるポリイミド基板の両面に、赤外線遮蔽部5,検出側配線4A及び補償側配線4Bとされる銅箔がパターン形成された両面フレキシブル基板によって作製されたものである。
The insulating substrate 2 is formed of an insulating film such as a polyimide resin sheet into a substantially rectangular shape or a substantially square shape, and the infrared shielding portion 5, the detection side wiring 4A and the compensation side wiring 4B are formed of copper foil. That is, these are manufactured by a double-sided flexible substrate in which the infrared shielding portion 5, the copper foils as the detection side wiring 4A and the compensation side wiring 4B are pattern-formed on both sides of the polyimide substrate which is the insulating substrate 2. Is.
上記赤外線遮蔽部5は、絶縁性基板2よりも高い赤外線反射率を有する材料で形成された赤外線反射膜であり、本実施形態では銅箔上に金メッキ膜が施されてパターン形成されている。なお、金メッキ膜の他に、例えば鏡面のアルミニウム蒸着膜やアルミニウム箔等で形成しても構わない。
なお、図1及び図3において赤外線遮蔽部5には、ハッチングを施している。 Theinfrared shielding portion 5 is an infrared reflective film formed of a material having an infrared reflectance higher than that of the insulating substrate 2. In this embodiment, a copper plating is applied with a gold plating film to form a pattern. In addition to the gold plating film, for example, a mirror-finished aluminum vapor deposition film or an aluminum foil may be used.
1 and 3, theinfrared shielding portion 5 is hatched.
なお、図1及び図3において赤外線遮蔽部5には、ハッチングを施している。 The
1 and 3, the
上記検出用感熱素子3A及び補償用感熱素子3Bは、両端部に端子部が形成されたチップサーミスタである。このサーミスタとしては、NTC型、PTC型、CTR型等のサーミスタがあるが、本実施形態では、検出用感熱素子3A及び補償用感熱素子3Bとして、例えばNTC型サーミスタを採用している。このサーミスタは、Mn-Co-Cu系材料、Mn-Co-Fe系材料等のサーミスタ材料で形成されている。
The thermosensitive element for detection 3A and the thermosensitive element for compensation 3B are chip thermistors having terminals formed on both ends. As the thermistor, there are NTC type, PTC type, CTR type thermistors, etc., but in the present embodiment, for example, an NTC type thermistor is adopted as the detection heat sensitive element 3A and the compensation heat sensitive element 3B. This thermistor is made of a thermistor material such as Mn—Co—Cu based material or Mn—Co—Fe based material.
上記実装基板21は、端子部材13及び検出側配線4Aを介して検出用感熱素子3A又は補償用感熱素子3Bに接続される複数の基板側配線23を上面に有している。
上記基板側配線23は、導光路部材22内において開口部22bの長辺方向で一方の側(図1の右側)よりも他方の側(図1の左側)に長く実装基板21の上面に配されている。
基板側配線23の端部には、外部配線との接続用にパッド部23aが形成されている。
実装基板21には、導光路部材22取り付け用に複数の貫通孔21aが形成されている。
この実装基板21は、例えばプリント基板(PCB)であり、長方形状に形成されている。 The mountingboard 21 has a plurality of board-side wirings 23 connected to the detection heat-sensitive element 3A or the compensation heat-sensitive element 3B via the terminal member 13 and the detection-side wiring 4A on the upper surface.
The board-side wiring 23 is arranged on the upper surface of the mounting board 21 in the light guide member 22 longer than one side (right side in FIG. 1) in the long side direction of the opening 22b to the other side (left side in FIG. 1). Has been done.
Apad portion 23a is formed at an end of the board-side wiring 23 for connection with an external wiring.
A plurality of throughholes 21 a for mounting the light guide member 22 are formed in the mounting substrate 21.
The mountingboard 21 is, for example, a printed circuit board (PCB) and is formed in a rectangular shape.
上記基板側配線23は、導光路部材22内において開口部22bの長辺方向で一方の側(図1の右側)よりも他方の側(図1の左側)に長く実装基板21の上面に配されている。
基板側配線23の端部には、外部配線との接続用にパッド部23aが形成されている。
実装基板21には、導光路部材22取り付け用に複数の貫通孔21aが形成されている。
この実装基板21は、例えばプリント基板(PCB)であり、長方形状に形成されている。 The mounting
The board-
A
A plurality of through
The mounting
上記導光路部材22は、下部に複数の貫通孔21aに挿通された複数の固定用爪部22aを有し、固定用爪部22aの実装基板21の下面から突出した部分が折り曲げられている。
なお、本実施形態では、導光路部材22の両側面の下部に固定用爪部22aが形成されていると共に、実装基板21には、2つの固定用爪部22aに対応した2つの貫通孔21aが形成されている。 Thelight guide member 22 has a plurality of fixing claw portions 22a inserted through a plurality of through holes 21a in the lower portion, and a portion of the fixing claw portion 22a protruding from the lower surface of the mounting substrate 21 is bent.
In this embodiment, the fixingclaw portions 22a are formed on the lower portions of both side surfaces of the light guide member 22, and the mounting substrate 21 has two through holes 21a corresponding to the two fixing claw portions 22a. Are formed.
なお、本実施形態では、導光路部材22の両側面の下部に固定用爪部22aが形成されていると共に、実装基板21には、2つの固定用爪部22aに対応した2つの貫通孔21aが形成されている。 The
In this embodiment, the fixing
導光路部材22は、角筒状であり、固定用爪部22aと共に金属または樹脂で一体成形されている。導光路部材22を構成する材質としては、例えば金属の場合、ステンレス等の金属薄板などが採用され、樹脂の場合、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリカーボネート、ポリプロピレン、塩化ビニルなどが採用される。
The light guide member 22 has a rectangular tubular shape and is integrally formed of metal or resin together with the fixing claw portion 22a. As a material for forming the light guide member 22, for example, in the case of metal, a thin metal plate such as stainless steel is adopted, and in the case of resin, polyphenylene sulfide, polyether ether ketone, polycarbonate, polypropylene, vinyl chloride, etc. are adopted.
本実施形態の赤外線センサ10は、図8に示すように、一定の幅で一定の方向に長い測定対象物Mに対向配置されている。
導光路部材22の開口部22bは、その長辺方向を測定対象物Mの長さ方向に沿って配される。
なお、本実施形態の測定対象物Mは、画像形成装置に使用される定着ローラである。 As shown in FIG. 8, theinfrared sensor 10 of the present embodiment is arranged so as to face a measurement object M that has a constant width and is long in a constant direction.
Theopening 22b of the light guide member 22 is arranged with its long side direction along the length direction of the measuring object M.
The measuring object M of this embodiment is a fixing roller used in the image forming apparatus.
導光路部材22の開口部22bは、その長辺方向を測定対象物Mの長さ方向に沿って配される。
なお、本実施形態の測定対象物Mは、画像形成装置に使用される定着ローラである。 As shown in FIG. 8, the
The
The measuring object M of this embodiment is a fixing roller used in the image forming apparatus.
上記ベース部材11は、図7に示すように、平面視で略長方形状又は略正方形状とされ、実装基板21上に実装されていると共に、赤外線センサ本体1を上部に搭載している。
このベース部材11は、絶縁性基板2よりも平面視で広い面積を有していると共に導光路部材22内において開口部22bの長辺方向で一方の側に寄って実装されている。
すなわち、ベース部材11も、絶縁性基板2と同様に、導光路部材22の中心から開口部22bの長辺方向で一方の側(補償側)に偏って配置されている。 As shown in FIG. 7, thebase member 11 has a substantially rectangular shape or a substantially square shape in plan view, is mounted on the mounting substrate 21, and has the infrared sensor main body 1 mounted on the upper portion thereof.
Thebase member 11 has a larger area in plan view than the insulating substrate 2 and is mounted in the light guide member 22 toward one side in the long side direction of the opening 22b.
That is, like the insulatingsubstrate 2, the base member 11 is also arranged so as to be biased to one side (compensation side) in the long side direction of the opening 22b from the center of the light guide member 22.
このベース部材11は、絶縁性基板2よりも平面視で広い面積を有していると共に導光路部材22内において開口部22bの長辺方向で一方の側に寄って実装されている。
すなわち、ベース部材11も、絶縁性基板2と同様に、導光路部材22の中心から開口部22bの長辺方向で一方の側(補償側)に偏って配置されている。 As shown in FIG. 7, the
The
That is, like the insulating
ベース部材11は、図4,図5及び図7に示すように、樹脂等で成形された絶縁性のベース本体12と、ベース本体12に取り付けられ上端部が端子電極4cにはんだ等の導電性接着材で接続されると共に下面が実装基板21の検出側配線4A又は補償側配線4Bにはんだ等の導電性接着材で接続される導電性の複数の端子部材13とを備えている。
As shown in FIGS. 4, 5 and 7, the base member 11 has an insulating base main body 12 formed of resin or the like, and an upper end portion attached to the base main body 12 and a conductive material such as solder on the terminal electrode 4c. A plurality of conductive terminal members 13 which are connected by an adhesive material and whose lower surface is connected to the detection side wiring 4A or the compensation side wiring 4B of the mounting substrate 21 by a conductive adhesive material such as solder are provided.
上記端子部材13は、ベース本体12より熱伝導性の高い金属等の材料で形成されていると共に、側方に突出した端子ピン部13aを有している。
上記ベース本体12は、側部に形成され端子ピン部13aが差し込み固定される端子部材用穴部12aと、上部に形成され感熱素子3A,3Bの直下に配された素子収納用穴部12cと、横方向に貫通し、検出用感熱素子3Aの直下の空間と補償用感熱素子3Bの直下の空間とに連通している溝部12dとを有している。
また、ベース部材11は、上部に検出用感熱素子3Aと補償用感熱素子3Bとの間に溝部12dよりも深く形成された中間穴部12eを有している。
長く突出した端子ピン部13aは、長孔形状の端子部材用穴部12aに差し込まれて嵌め込まれることで固定される。 Theterminal member 13 is formed of a material such as a metal having a higher thermal conductivity than the base body 12, and has a terminal pin portion 13a protruding laterally.
Thebase body 12 has a terminal member hole 12a formed in a side portion and into which a terminal pin portion 13a is inserted and fixed, and an element housing hole 12c formed in an upper portion and directly below the heat sensitive elements 3A and 3B. , And has a groove portion 12d penetrating in the lateral direction and communicating with the space directly below the detection heat-sensitive element 3A and the space directly below the compensation heat-sensitive element 3B.
In addition, thebase member 11 has an intermediate hole 12e formed in the upper portion between the detection heat-sensitive element 3A and the compensation heat-sensitive element 3B and deeper than the groove 12d.
The long protrudingterminal pin portion 13a is fixed by being inserted and fitted into the long hole-shaped terminal member hole portion 12a.
上記ベース本体12は、側部に形成され端子ピン部13aが差し込み固定される端子部材用穴部12aと、上部に形成され感熱素子3A,3Bの直下に配された素子収納用穴部12cと、横方向に貫通し、検出用感熱素子3Aの直下の空間と補償用感熱素子3Bの直下の空間とに連通している溝部12dとを有している。
また、ベース部材11は、上部に検出用感熱素子3Aと補償用感熱素子3Bとの間に溝部12dよりも深く形成された中間穴部12eを有している。
長く突出した端子ピン部13aは、長孔形状の端子部材用穴部12aに差し込まれて嵌め込まれることで固定される。 The
The
In addition, the
The long protruding
本実施形態では、ベース本体12が平面視で略長方形状又は略正方形状に形成された薄板状のブロック形状であり、4つの端子部材13が4つの角部の近傍に嵌め込まれ、対向する両側にそれぞれ2つずつ端子部材13が配されている。すなわち、ベース本体12の両側にそれぞれ赤外線センサ本体1を支持する部分が2つずつ互いに間隔を空けて設けられ、全部で4箇所で赤外線センサ本体1が支持、固定される。
In the present embodiment, the base body 12 has a thin plate-like block shape formed in a substantially rectangular shape or a substantially square shape in a plan view, and the four terminal members 13 are fitted in the vicinity of the four corners, and both sides facing each other. Two terminal members 13 are arranged in each. That is, two portions that support the infrared sensor body 1 are provided on both sides of the base body 12 with a space between each other, and the infrared sensor body 1 is supported and fixed at a total of four locations.
なお、赤外線センサ本体1は、ベース本体12との間に隙間を設けて支持されている。すなわち、上記端子部材13は、その上部がベース本体12の上面から一定量だけ突出しており、上端部にはんだ付け等の導電性接着材で接続された赤外線センサ本体1をベース本体12から浮かせた状態で支持している。
The infrared sensor body 1 is supported with a gap provided between the infrared sensor body 1 and the base body 12. That is, the terminal member 13 has an upper portion protruding from the upper surface of the base body 12 by a certain amount, and the infrared sensor body 1 connected to the upper end portion by a conductive adhesive such as soldering is floated from the base body 12. Support in the state.
上記端子部材13は、端子ピン部13aの下に該端子ピン部13aの突出方向と逆に延在した端子スリット部13bを有し、ベース本体12は、端子スリット部13bに差し込まれる端子用差し込み部12bを有している。
端子部材13の上端部及び下端部は、はんだ付け用に平坦部とされている。
なお、上記端子部材13は、金属板から型抜き加工、エッチング加工又はレーザ加工によって形成された板状である。 Theterminal member 13 has a terminal slit portion 13b extending under the terminal pin portion 13a in the direction opposite to the projecting direction of the terminal pin portion 13a, and the base body 12 is a terminal plug for insertion into the terminal slit portion 13b. It has a portion 12b.
The upper end and the lower end of theterminal member 13 are flat parts for soldering.
Theterminal member 13 has a plate shape formed by stamping, etching, or laser processing a metal plate.
端子部材13の上端部及び下端部は、はんだ付け用に平坦部とされている。
なお、上記端子部材13は、金属板から型抜き加工、エッチング加工又はレーザ加工によって形成された板状である。 The
The upper end and the lower end of the
The
このように本実施形態の赤外線センサ10では、導光路部材22が、長方形状の開口部22bを有した角筒状であり、受光領域6が、導光路部材22の中央に配されていると共に開口部22bの短辺方向に長辺を有する略長方形状とされているので、受光領域6が導光路部材22の長手方向にある一対の側壁部から遠く配されることで、これら側壁部からの輻射熱の影響を抑制することができる。すなわち、導光路部材22の影響による赤外線センサ本体1の温度変化が抑制され、検出誤差の抑制及び感度の向上が可能になる。
As described above, in the infrared sensor 10 according to the present embodiment, the light guide member 22 has a rectangular tube shape having the rectangular opening 22b, and the light receiving region 6 is arranged in the center of the light guide member 22. Since the opening 22b has a substantially rectangular shape having a long side in the short side direction, the light receiving region 6 is arranged far from the pair of side wall portions in the longitudinal direction of the light guide member 22, so that the side wall portion It is possible to suppress the influence of radiant heat. That is, the temperature change of the infrared sensor body 1 due to the influence of the light guide member 22 is suppressed, and the detection error can be suppressed and the sensitivity can be improved.
また、図8の(a)(b)に示すように、受光領域6が開口部22bの短辺方向に長辺を有する略長方形状とされているので、導光路部材22の短辺方向に対して赤外線センサ本体1の位置ずれが生じても検出誤差を抑制することができる。特に、開口部22bの短辺方向で規定される視野角θ1が測定において重要な場合、受光領域6が開口部22bの短辺方向に広いため、高感度な測定が可能になる。
Further, as shown in FIGS. 8A and 8B, since the light receiving region 6 has a substantially rectangular shape having a long side in the short side direction of the opening 22b, it is arranged in the short side direction of the light guide path member 22. On the other hand, even if the infrared sensor body 1 is displaced, the detection error can be suppressed. In particular, when the viewing angle θ1 defined in the direction of the short side of the opening 22b is important in the measurement, the light receiving region 6 is wide in the direction of the short side of the opening 22b, so that highly sensitive measurement is possible.
また、上記開口部22bが、その長辺方向を測定対象物Mの長さ方向に沿って配されるので、測定対象物Mの長さ方向では広い視野角θ2が得られると共に測定対象物Mの幅方向では、狭い視野角θ1が得られ、測定対象物Mの形状に対応した視野角を得ることができる。
特に、本実施形態では、測定対象物Mが、画像形成装置に使用される定着ローラであるので、円筒形状である定着ローラの長さ及び幅(直径)のそれぞれに対応した視野角が容易に得られる。特に、定着ローラの温度を測定する場合、定着ローラの幅(直径)方向に対する視野角θ1が重要であるが、受光領域6が定着ローラの幅方向に沿って長いと共に前記幅方向で視野角θ1が狭いため、高精度かつ高感度に定着ローラの温度を測定することが可能になる。 Further, since the long side direction of theopening 22b is arranged along the length direction of the measurement target M, a wide viewing angle θ2 is obtained in the length direction of the measurement target M and the measurement target M is measured. A narrow viewing angle θ1 is obtained in the width direction of, and a viewing angle corresponding to the shape of the measuring object M can be obtained.
In particular, in this embodiment, since the measuring object M is the fixing roller used in the image forming apparatus, the viewing angle corresponding to each of the length and width (diameter) of the cylindrical fixing roller can be easily obtained. can get. In particular, when measuring the temperature of the fixing roller, the viewing angle θ1 with respect to the width (diameter) direction of the fixing roller is important, but thelight receiving region 6 is long along the width direction of the fixing roller and the viewing angle θ1 in the width direction. Since it is narrow, it becomes possible to measure the temperature of the fixing roller with high accuracy and high sensitivity.
特に、本実施形態では、測定対象物Mが、画像形成装置に使用される定着ローラであるので、円筒形状である定着ローラの長さ及び幅(直径)のそれぞれに対応した視野角が容易に得られる。特に、定着ローラの温度を測定する場合、定着ローラの幅(直径)方向に対する視野角θ1が重要であるが、受光領域6が定着ローラの幅方向に沿って長いと共に前記幅方向で視野角θ1が狭いため、高精度かつ高感度に定着ローラの温度を測定することが可能になる。 Further, since the long side direction of the
In particular, in this embodiment, since the measuring object M is the fixing roller used in the image forming apparatus, the viewing angle corresponding to each of the length and width (diameter) of the cylindrical fixing roller can be easily obtained. can get. In particular, when measuring the temperature of the fixing roller, the viewing angle θ1 with respect to the width (diameter) direction of the fixing roller is important, but the
さらに、主遮蔽部5aが、開口部22bの長辺方向で一方の側に配され、実装基板21の上面が、導光路部材22内において開口部22bの長辺方向で一方の側よりも他方の側に広く露出しているので、導光路部材22内の主遮蔽部5a側(開口部22bの長辺方向で一方の側)は主遮蔽部5aで実装基板21の上面の多くの部分が覆われて赤外線を吸収せずに温度が低くなるが、導光路部材22内の受光領域6及びその他方の側(主遮蔽部の反対側)では受光領域6と共に実装基板21の上面が広く露出して赤外線を多く吸収するために温度が高くなる。したがって、主遮蔽部5a側(補償側)と受光領域6側(検出側)との温度差が付き易くなって感度を向上させることができる。
Further, the main shielding portion 5a is arranged on one side in the long side direction of the opening 22b, and the upper surface of the mounting substrate 21 is on the other side in the light guide member 22 than the one side in the long side direction of the opening 22b. Since it is widely exposed to the side of, the main shielding portion 5a side (one side in the long side direction of the opening 22b) in the light guide member 22 is the main shielding portion 5a, and most of the upper surface of the mounting substrate 21 is Although the temperature is low because it is covered and does not absorb infrared rays, the light receiving region 6 in the light guide member 22 and the other side (the side opposite to the main shielding part) and the upper surface of the mounting substrate 21 are widely exposed together with the light receiving region 6. Then, the temperature rises because it absorbs much infrared rays. Therefore, the temperature difference between the main shielding portion 5a side (compensation side) and the light receiving region 6 side (detection side) is likely to occur, and the sensitivity can be improved.
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
例えば、上記実施形態では、チップサーミスタの感熱素子を採用しているが、薄膜サーミスタで形成された感熱素子を採用しても構わない。
なお、感熱素子としては、上述したように薄膜サーミスタやチップサーミスタが用いられるが、サーミスタ以外に焦電素子等も採用可能である。
また、上記実施形態では、絶縁性基板の上面に銅箔等で赤外線遮蔽部が設けられているが、絶縁性基板の上又は直上に板部材等で赤外線遮蔽部を設けても構わない。
また、上記実施形態では、検出用感熱素子が受光領域の直下、すなわち絶縁性基板の下面に配されているが、受光領域上に配されていても構わない。すなわち、絶縁性基板の上面の受光領域に検出用感熱素子を直接実装しても構わない。 For example, in the above embodiment, the thermosensitive element of the chip thermistor is adopted, but a thermosensitive element formed of a thin film thermistor may be adopted.
As the heat sensitive element, a thin film thermistor or a chip thermistor is used as described above, but a pyroelectric element or the like can be adopted in addition to the thermistor.
Further, in the above embodiment, the infrared shielding portion is provided on the upper surface of the insulating substrate with copper foil or the like, but the infrared shielding portion may be provided with a plate member or the like on or just above the insulating substrate.
Further, in the above-described embodiment, the detection heat-sensitive element is arranged immediately below the light receiving area, that is, on the lower surface of the insulating substrate, but it may be arranged above the light receiving area. That is, the detection heat sensitive element may be directly mounted on the light receiving region on the upper surface of the insulating substrate.
なお、感熱素子としては、上述したように薄膜サーミスタやチップサーミスタが用いられるが、サーミスタ以外に焦電素子等も採用可能である。
また、上記実施形態では、絶縁性基板の上面に銅箔等で赤外線遮蔽部が設けられているが、絶縁性基板の上又は直上に板部材等で赤外線遮蔽部を設けても構わない。
また、上記実施形態では、検出用感熱素子が受光領域の直下、すなわち絶縁性基板の下面に配されているが、受光領域上に配されていても構わない。すなわち、絶縁性基板の上面の受光領域に検出用感熱素子を直接実装しても構わない。 For example, in the above embodiment, the thermosensitive element of the chip thermistor is adopted, but a thermosensitive element formed of a thin film thermistor may be adopted.
As the heat sensitive element, a thin film thermistor or a chip thermistor is used as described above, but a pyroelectric element or the like can be adopted in addition to the thermistor.
Further, in the above embodiment, the infrared shielding portion is provided on the upper surface of the insulating substrate with copper foil or the like, but the infrared shielding portion may be provided with a plate member or the like on or just above the insulating substrate.
Further, in the above-described embodiment, the detection heat-sensitive element is arranged immediately below the light receiving area, that is, on the lower surface of the insulating substrate, but it may be arranged above the light receiving area. That is, the detection heat sensitive element may be directly mounted on the light receiving region on the upper surface of the insulating substrate.
1…赤外線センサ本体、2…絶縁性基板、3A…検出用感熱素子、3B…補償用感熱素子、4A…検出側配線、4B…補償側配線、5…赤外線遮蔽部、5a…主遮蔽部、6…受光領域、10…赤外線センサ、21…実装基板、22…導光路部材、M…測定対象物
DESCRIPTION OFSYMBOLS 1 ... Infrared sensor main body, 2 ... Insulating substrate, 3A ... Detection thermal element, 3B ... Compensation thermal element, 4A ... Detection side wiring, 4B ... Compensation side wiring, 5 ... Infrared shielding part, 5a ... Main shielding part, 6 ... Light receiving area, 10 ... Infrared sensor, 21 ... Mounting board, 22 ... Light guide member, M ... Object to be measured
DESCRIPTION OF
Claims (5)
- 上面に赤外線が入射する受光領域を備えた絶縁性基板と、
前記受光領域又はその直下に配された検出用感熱素子と、
前記受光領域の上方に開口部を有して前記受光領域の周囲を覆う筒状の導光路部材とを備え、
前記導光路部材が、長方形状の前記開口部を有した角筒状であり、
前記受光領域が、前記開口部の長辺方向において前記導光路部材の中央に配されていると共に前記開口部の短辺方向に長辺を有する略長方形状とされていることを特徴とする赤外線センサ。 An insulating substrate having a light receiving area on the upper surface where infrared rays are incident,
A heat-sensitive element for detection arranged in the light-receiving region or immediately below it,
A tubular light guide member having an opening above the light receiving region and covering the periphery of the light receiving region,
The light guide member is a rectangular tube having the rectangular opening,
Infrared radiation characterized in that the light receiving region is arranged in the center of the light guide member in the long side direction of the opening and has a substantially rectangular shape having a long side in the short side direction of the opening. Sensor. - 請求項1に記載の赤外線センサにおいて、
実装基板と、
前記実装基板の上面に設けられた赤外線センサ本体とを備え、
前記赤外線センサ本体が、前記絶縁性基板と、
前記検出用感熱素子と、
前記絶縁性基板に設けられた補償用感熱素子と、
前記絶縁性基板の上面又は直上に設けられた赤外線遮蔽部とを備え、
前記導光路部材が、前記実装基板の上面に設置され、
前記補償用感熱素子が、前記赤外線遮蔽部の直下に配されていることを特徴とする赤外線センサ。 The infrared sensor according to claim 1,
Mounting board,
An infrared sensor main body provided on the upper surface of the mounting board,
The infrared sensor body, the insulating substrate,
A thermal element for detection,
A compensation heat-sensitive element provided on the insulating substrate;
An infrared shielding portion provided on or directly above the insulating substrate,
The light guide member is installed on the upper surface of the mounting substrate,
An infrared sensor, wherein the compensating heat-sensitive element is arranged immediately below the infrared shielding portion. - 請求項2に記載の赤外線センサにおいて、
前記赤外線遮蔽部が、前記開口部の長辺方向で一方の側に配され、
前記実装基板の上面が、前記導光路部材内において前記開口部の長辺方向で一方の側よりも他方の側に広く露出していることを特徴とする赤外線センサ。 The infrared sensor according to claim 2,
The infrared shielding portion is arranged on one side in the long side direction of the opening,
An infrared sensor, wherein an upper surface of the mounting substrate is exposed wider in the light guide member on one side than on the other side in a long side direction of the opening. - 請求項1に記載の赤外線センサにおいて、
一定の幅で一定の方向に長い測定対象物に対向配置され、
前記開口部が、その長辺方向を前記測定対象物の長さ方向に沿って配されることを特徴とする赤外線センサ。 The infrared sensor according to claim 1,
It is placed facing a long object in a certain direction with a certain width,
An infrared sensor, wherein the opening is arranged such that a long side direction thereof is along a length direction of the measurement object. - 請求項4に記載の赤外線センサにおいて、
前記測定対象物が、画像形成装置に使用される定着ローラであることを特徴とする赤外線センサ。
The infrared sensor according to claim 4,
An infrared sensor, wherein the measuring object is a fixing roller used in an image forming apparatus.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018198184A JP2020067288A (en) | 2018-10-22 | 2018-10-22 | Infrared sensor |
JP2018-198184 | 2018-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020084809A1 true WO2020084809A1 (en) | 2020-04-30 |
Family
ID=70331566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012430 WO2020084809A1 (en) | 2018-10-22 | 2019-03-25 | Infrared sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020067288A (en) |
WO (1) | WO2020084809A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07324979A (en) * | 1994-06-01 | 1995-12-12 | Daishinku Co | Infrared detection apparatus of narrow band type |
JPH10318829A (en) * | 1997-05-20 | 1998-12-04 | Ishizuka Denshi Kk | Infrared sensor |
JP2012068115A (en) * | 2010-09-23 | 2012-04-05 | Mitsubishi Materials Corp | Infrared sensor |
JP2013205063A (en) * | 2012-03-27 | 2013-10-07 | Nec Tokin Corp | Viewing angle restricting cover and infrared sensor having the same |
JP2014089108A (en) * | 2012-10-30 | 2014-05-15 | Tdk Corp | Non-contact temperature sensor |
JP2014119280A (en) * | 2012-12-13 | 2014-06-30 | Mitsubishi Materials Corp | Temperature sensor |
JP2014174127A (en) * | 2013-03-13 | 2014-09-22 | Mitsubishi Materials Corp | Infrared sensor device |
JP2017181031A (en) * | 2016-03-28 | 2017-10-05 | 三菱マテリアル株式会社 | Infrared sensor |
-
2018
- 2018-10-22 JP JP2018198184A patent/JP2020067288A/en active Pending
-
2019
- 2019-03-25 WO PCT/JP2019/012430 patent/WO2020084809A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07324979A (en) * | 1994-06-01 | 1995-12-12 | Daishinku Co | Infrared detection apparatus of narrow band type |
JPH10318829A (en) * | 1997-05-20 | 1998-12-04 | Ishizuka Denshi Kk | Infrared sensor |
JP2012068115A (en) * | 2010-09-23 | 2012-04-05 | Mitsubishi Materials Corp | Infrared sensor |
JP2013205063A (en) * | 2012-03-27 | 2013-10-07 | Nec Tokin Corp | Viewing angle restricting cover and infrared sensor having the same |
JP2014089108A (en) * | 2012-10-30 | 2014-05-15 | Tdk Corp | Non-contact temperature sensor |
JP2014119280A (en) * | 2012-12-13 | 2014-06-30 | Mitsubishi Materials Corp | Temperature sensor |
JP2014174127A (en) * | 2013-03-13 | 2014-09-22 | Mitsubishi Materials Corp | Infrared sensor device |
JP2017181031A (en) * | 2016-03-28 | 2017-10-05 | 三菱マテリアル株式会社 | Infrared sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2020067288A (en) | 2020-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011149920A (en) | Infrared sensor | |
JP5736906B2 (en) | Infrared sensor | |
KR20140128973A (en) | Infrared sensor | |
KR20170129755A (en) | Device using infrared temperature sensor, circuit board and infrared temperature sensor | |
KR20140012697A (en) | Infrared sensor | |
JP2010043930A (en) | Noncontact temperature sensor | |
WO2017145670A1 (en) | Infrared sensor device | |
WO2020084809A1 (en) | Infrared sensor | |
EP3410083A1 (en) | Infrared sensor | |
JP6477058B2 (en) | Infrared sensor | |
WO2020084811A1 (en) | Infrared sensor | |
JP5206484B2 (en) | Temperature sensor | |
KR20170131427A (en) | Device using infrared temperature sensor and infrared temperature sensor | |
JP2017181031A (en) | Infrared sensor | |
JP6741201B2 (en) | Infrared sensor | |
JP6128374B2 (en) | Infrared sensor device | |
JP2017181130A (en) | Infrared ray sensor device | |
EP3410084A1 (en) | Infrared sensor | |
JP6743741B2 (en) | Infrared sensor | |
WO2019181717A1 (en) | Infrared sensor device | |
JP2019128178A (en) | Infrared sensor | |
JP7008881B2 (en) | Infrared temperature sensor, temperature detector, and image forming device | |
WO2019176852A1 (en) | Infrared sensor device | |
JP6620608B2 (en) | Infrared sensor | |
JP2020153667A (en) | Light guide path member and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19876418 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/07/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19876418 Country of ref document: EP Kind code of ref document: A1 |