JP2012068115A - Infrared sensor - Google Patents

Infrared sensor Download PDF

Info

Publication number
JP2012068115A
JP2012068115A JP2010212934A JP2010212934A JP2012068115A JP 2012068115 A JP2012068115 A JP 2012068115A JP 2010212934 A JP2010212934 A JP 2010212934A JP 2010212934 A JP2010212934 A JP 2010212934A JP 2012068115 A JP2012068115 A JP 2012068115A
Authority
JP
Japan
Prior art keywords
infrared
film
light receiving
insulating film
heat sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010212934A
Other languages
Japanese (ja)
Other versions
JP5696831B2 (en
Inventor
Mototaka Ishikawa
元貴 石川
Naoki Kuji
直樹 久慈
Kenzo Nakamura
賢蔵 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010212934A priority Critical patent/JP5696831B2/en
Publication of JP2012068115A publication Critical patent/JP2012068115A/en
Application granted granted Critical
Publication of JP5696831B2 publication Critical patent/JP5696831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an infrared sensor which achieves a large difference in temperature between a heat sensitive element for infrared detection and a heat sensitive element for temperature compensation, and which has a structure that can be downsized and realized at low cost.SOLUTION: An infrared sensor includes: an insulation film 2; a first heat sensitive element 3A and a second heat sensitive element 3B which are provided to be away from each other on one surface of the insulation film 2; multiple pairs of conductive wiring films 4 which are formed on such one surface of the insulation film 2, and which are connected to the first heat sensitive element 3A and the second heat sensitive element 3B separately; a light receiving area 5A which is provided on another surface of the insulation film 2 so as to face the first heat sensitive element 3A; and an infrared reflecting film 6 which is provided on such another surface of the insulation film 2 so as to face the second heat sensitive element 3B. The infrared reflecting film 6 is formed so as to cover a periphery of the light receiving area 5A.

Description

本発明は、測定対象物からの赤外線を検知して該測定対象物の温度等を測定する赤外線センサに関する。   The present invention relates to an infrared sensor that detects infrared rays from a measurement object and measures the temperature or the like of the measurement object.

従来、測定対象物から輻射により放射される赤外線を非接触で検知して測定対象物の温度を測定する温度センサとして、赤外線センサが使用されている。
例えば、特許文献1には、保持体に設置した樹脂フィルムと、該樹脂フィルムに設けられ保持体の導光部を介して赤外線を検知する赤外線検知用感熱素子と、樹脂フィルムに遮光状態に設けられ保持体の温度を検知する温度補償用感熱素子と、を備えた赤外線センサが提案されている。この赤外線センサでは、導光部の内側面に赤外線吸収膜を形成すると共に、樹脂フィルムにカーボンブラック等の赤外線吸収材料を含有させて赤外線の吸収を高めている。また、赤外線検知用感熱素子及び温度補償用感熱素子には、薄膜サーミスタが用いられている。
Conventionally, an infrared sensor is used as a temperature sensor that detects the temperature of an object to be measured by detecting infrared rays radiated from the object to be measured in a non-contact manner.
For example, in Patent Document 1, a resin film installed on a holding body, an infrared detection thermal element that is provided on the resin film and detects infrared rays through a light guide portion of the holding body, and a light shielding state is provided on the resin film. An infrared sensor including a temperature-compensating thermosensitive element that detects the temperature of the holder is proposed. In this infrared sensor, an infrared absorption film is formed on the inner side surface of the light guide section, and an infrared absorption material such as carbon black is included in the resin film to enhance infrared absorption. A thin film thermistor is used for the infrared detecting thermal element and the temperature compensating thermal element.

また、特許文献2には、赤外線検知用感熱素子と、温度補償用感熱素子と、これらを密着固定する樹脂フィルムと、赤外線の入射窓側に赤外線検知用感熱素子を配置すると共に赤外線を遮蔽する遮蔽部側に温度補償用感熱素子を配置した枠体を有するケースと、を備えた赤外線検出器が提案されている。この赤外線検出器では、樹脂フィルムにカーボンブラック等の赤外線吸収材料を含有させて赤外線の吸収を高めていると共に、赤外線検知用感熱素子と温度補償用感熱素子との熱勾配を無くすために熱伝導の良い材料で枠体を形成している。また、赤外線検知用感熱素子及び温度補償用感熱素子には、リード線がサーミスタに接続された松葉型のサーミスタが採用されている。   Patent Document 2 discloses a thermal sensing element for detecting infrared rays, a thermal sensing element for temperature compensation, a resin film for tightly fixing them, a thermal sensing element for detecting infrared rays on the infrared incident window side, and a shield for shielding infrared rays. And an infrared detector including a case having a frame body in which a temperature-compensating thermosensitive element is disposed on the part side. In this infrared detector, an infrared absorbing material such as carbon black is included in the resin film to enhance infrared absorption, and heat conduction is performed to eliminate the thermal gradient between the infrared detecting thermal element and the temperature compensating thermal element. The frame is made of a good material. In addition, a pine needle type thermistor in which a lead wire is connected to the thermistor is employed in the infrared detecting thermal element and the temperature compensating thermal element.

特開2002−156284号公報(段落番号0026、図2)JP 2002-156284 A (paragraph number 0026, FIG. 2) 特開平7−260579号公報(特許請求の範囲、図2)JP-A-7-260579 (Claims, FIG. 2)

上記従来の技術には、以下の課題が残されている。
すなわち、特許文献1及び2の赤外線センサでは、樹脂フィルムにカーボンブラック等の赤外線吸収材料を含有させると共に一方の感熱素子側を温度補償用に遮光する構造が採用されているが、赤外線吸収材料を含有した樹脂フィルムの熱伝導が高く、赤外線検知用と温度補償用との感熱素子間で温度差分が生じ難いという不都合があった。また、これら感熱素子間で温度差分を大きくするためには、感熱素子間の距離を大きくする必要があり、全体形状が大きくなってしまい、小型化が困難になる問題がある。さらに、温度補償用の感熱素子を遮光する構造をケース自体に設ける必要があるため、高価になってしまう。
また、特許文献2では、熱伝導の良い枠体を採用しているため、赤外線吸収膜からの熱も放熱されてしまい感度が劣化する不都合がある。また、リード線が接続された松葉型のため、サーミスタとリード線との間で熱の空間伝導が生じてしまう。さらに、松葉型やチップ型のサーミスタの場合、スポット計測となってしまい、樹脂フィルムに温度の面内分布が生じた場合に測定誤差が生じてしまう不都合があった。
The following problems remain in the conventional technology.
That is, in the infrared sensors of Patent Documents 1 and 2, a structure in which an infrared absorbing material such as carbon black is contained in a resin film and one heat sensitive element side is shielded for temperature compensation is employed. The contained resin film has a high thermal conductivity, and there is a disadvantage that a temperature difference is hardly generated between the thermal sensing elements for infrared detection and temperature compensation. Also, in order to increase the temperature difference between these thermal elements, it is necessary to increase the distance between the thermal elements, which increases the overall shape and makes it difficult to reduce the size. Furthermore, since it is necessary to provide the case itself with a structure that shields the temperature-compensating thermal element, the cost is increased.
Moreover, in patent document 2, since the frame body with favorable heat conductivity is employ | adopted, the heat from an infrared rays absorption film is also thermally radiated and there exists a problem that a sensitivity deteriorates. In addition, because of the pine needle type to which the lead wire is connected, heat conduction occurs between the thermistor and the lead wire. Furthermore, in the case of a pine needle type or chip type thermistor, spot measurement is performed, and there is a disadvantage that a measurement error occurs when an in-plane distribution of temperature occurs in the resin film.

本発明は、前述の課題に鑑みてなされたもので、赤外線検知用と温度補償用との感熱素子間で高い温度差分が得られると共に小型化が可能で、安価な構造を有している赤外線センサを提供することを目的とする。   The present invention has been made in view of the above-described problems, and can provide a high temperature difference between the thermal sensing elements for infrared detection and temperature compensation, and can be downsized, and has an inexpensive structure. An object is to provide a sensor.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の赤外線センサは、絶縁性フィルムと、該絶縁性フィルムの一方の面に互いに離間させて設けられた第1の感熱素子及び第2の感熱素子と、前記絶縁性フィルムの一方の面に形成され前記第1の感熱素子及び前記第2の感熱素子に別々に接続された複数対の導電性の配線膜と、前記第1の感熱素子に対向して前記絶縁性フィルムの他方の面に設けられた受光領域と、前記第2の感熱素子に対向して前記絶縁性フィルムの他方の面に設けられた赤外線反射膜と、を備え、前記赤外線反射膜が、前記受光領域の周囲も覆って形成されていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the infrared sensor of the present invention includes an insulating film, a first thermal element and a second thermal element provided on one surface of the insulating film so as to be separated from each other, and one of the insulating films. A plurality of pairs of conductive wiring films formed on a surface and separately connected to the first thermal element and the second thermal element; and the other of the insulating films facing the first thermal element A light receiving region provided on the surface, and an infrared reflecting film provided on the other surface of the insulating film so as to face the second heat sensitive element, the infrared reflecting film surrounding the light receiving region Is also formed to cover.

この赤外線センサでは、第1の感熱素子に対向して絶縁性フィルムの他方の面に設けられた受光領域と、第2の感熱素子に対向して絶縁性フィルムの他方の面に設けられた赤外線反射膜と、を備えているので、受光領域による部分的な赤外線吸収と赤外線反射膜による部分的な赤外線反射とにより、薄く熱伝導性の低い絶縁性フィルム上で第1の感熱素子と第2の感熱素子との良好な温度差分を得ることができる。
すなわち、フィルムに赤外線吸収材料等を含有させていない低熱伝導性の絶縁性フィルムでも、受光領域によって絶縁性フィルムの第1の感熱素子の直上部分のみに赤外線吸収による熱を伝導させることができる。また、受光領域の面積を任意に設定可能であるため、測定対象物との距離に合わせた赤外線検出の視野角を面積で設定でき、高い受光効率を得ることができる。
また、赤外線反射膜によって絶縁性フィルムの第2の感熱素子の直上部分における赤外線を反射してその吸収を阻止することができる。
なお、絶縁性フィルム上に受光領域と赤外線反射膜とを設けているので、受光領域と赤外線反射膜との間の熱を伝導する媒体が、空気以外に絶縁性フィルムのみとなり、伝導する断面積が小さくなる。したがって、相互の感熱素子への熱が伝わり難くなり、干渉が少なくなって検出感度が向上する。
このように、低熱伝導性の絶縁性フィルム上で互いに熱の影響が抑制された第1の感熱素子と第2の感熱素子とが、それぞれ受光領域の直下と赤外線反射膜の直下との絶縁性フィルムの部分的な温度を測定する構造を有している。したがって、赤外線検知用とされる第1の感熱素子と温度補償用とされる第2の感熱素子との良好な温度差分を得られ、高感度化を図ることができる。
In this infrared sensor, the light receiving region provided on the other surface of the insulating film facing the first heat sensitive element, and the infrared light provided on the other surface of the insulating film facing the second heat sensitive element. The first heat-sensitive element and the second heat-sensitive element on the thin insulating film having low thermal conductivity due to partial infrared absorption by the light-receiving region and partial infrared reflection by the infrared reflection film. A good temperature difference from the thermal element can be obtained.
That is, even with a low thermal conductive insulating film that does not contain an infrared absorbing material or the like in the film, heat by infrared absorption can be conducted only to the portion directly above the first thermal element of the insulating film by the light receiving region. In addition, since the area of the light receiving region can be set arbitrarily, the viewing angle of infrared detection matched to the distance to the measurement object can be set by area, and high light receiving efficiency can be obtained.
Moreover, the infrared ray can be reflected by the infrared reflection film to prevent the absorption of the infrared ray at the portion directly above the second heat sensitive element of the insulating film.
In addition, since the light receiving region and the infrared reflecting film are provided on the insulating film, the medium that conducts heat between the light receiving region and the infrared reflecting film is only the insulating film other than air, and the conducting cross-sectional area is conducted. Becomes smaller. Accordingly, it is difficult for heat to be transmitted to the mutual heat sensitive elements, interference is reduced, and detection sensitivity is improved.
As described above, the first heat sensitive element and the second heat sensitive element in which the influence of heat on the low thermal conductive insulating film is suppressed are respectively insulative between the light receiving region and the infrared reflective film. It has a structure for measuring the partial temperature of the film. Therefore, it is possible to obtain a good temperature difference between the first thermosensitive element used for infrared detection and the second thermosensitive element used for temperature compensation, thereby achieving high sensitivity.

また、第1の感熱素子と第2の感熱素子との熱結合が低いので、互いに近づけて配置することも可能になり、全体の小型化を図ることができる。さらに、枠体やケースによる遮光構造ではなく、赤外線反射膜によって赤外線の吸収を防いでいるので、安価に作製することができる。
また、赤外線反射膜が導電性材料で構成されていても、絶縁性フィルムを挟んで設置された第2の感熱素子との絶縁が確保されているので、膜の絶縁性を問わずに効率の良い材料の選択が可能になる。
さらに、絶縁性フィルム上に薄く熱伝導性の低い配線膜を設けているので、従来のようにリード線とサーミスタとの間の空間伝導による他の箇所との熱結合を防ぐことができる。
Further, since the thermal coupling between the first thermal element and the second thermal element is low, it is possible to arrange them close to each other, and the overall size can be reduced. Further, since the absorption of infrared rays is prevented by the infrared reflection film rather than the light shielding structure by the frame or case, it can be manufactured at low cost.
In addition, even if the infrared reflective film is made of a conductive material, the insulation with the second thermal element installed with the insulating film interposed therebetween is ensured, so that the efficiency can be improved regardless of the insulation of the film. A good material can be selected.
Furthermore, since a thin wiring film having low thermal conductivity is provided on the insulating film, it is possible to prevent thermal coupling between the lead wire and the thermistor with other portions due to space conduction as in the prior art.

また、赤外線反射膜が、受光領域の周囲も覆って形成されているので、第1の感熱素子側と第2の感熱素子側との間の空気対流による温度勾配が小さくなり、2つの感熱素子の応答速度を同等にすることが可能になる。
例えば、第2の感熱素子に対向する領域のみに赤外線反射膜が形成されている場合、周囲空気の対流により第2の感熱素子側から空気が流れてきたとき、第2の感熱素子の上方の赤外線反射膜が冷えて絶縁性フィルムの温度が局所的に変化してしまう。これに対し、本発明の赤外線センサでは、赤外線反射膜が第1の感熱素子に対向する受光領域の周囲も覆って形成されているため、空気の流れによって第2の感熱素子側の領域が冷えても赤外線反射膜の熱伝導性によって受光領域の周囲の温度も下がり、全体的に温度の差分が生じ難くなって、周囲空気の対流による影響を受け難くなる。なお、第1の感熱素子の上方の受光領域は赤外線反射膜で覆わないため、測定対象物からの赤外線の受光を妨げない。
In addition, since the infrared reflective film is formed so as to cover the periphery of the light receiving region, the temperature gradient due to air convection between the first thermal element side and the second thermal element side is reduced, and the two thermal elements. It becomes possible to make the response speed of the same.
For example, when an infrared reflective film is formed only in a region facing the second heat sensitive element, when air flows from the second heat sensitive element side by convection of the surrounding air, it is located above the second heat sensitive element. The infrared reflective film is cooled and the temperature of the insulating film changes locally. On the other hand, in the infrared sensor of the present invention, since the infrared reflecting film is formed so as to cover the periphery of the light receiving region facing the first thermal element, the region on the second thermal element side is cooled by the air flow. However, the temperature around the light receiving region also decreases due to the thermal conductivity of the infrared reflecting film, and the difference in temperature hardly occurs as a whole, and it is difficult to be affected by the convection of the surrounding air. In addition, since the light reception area | region above the 1st thermal element is not covered with an infrared reflective film, it does not prevent the infrared light reception from a measuring object.

また、本発明の赤外線センサは、前記赤外線反射膜の面積と前記受光領域の面積とが同じに設定されていることを特徴とする。
すなわち、この赤外線センサでは、赤外線反射膜の面積と受光領域の面積とが同じに設定されているので、赤外線反射膜と受光領域との受光面積が同じになり、赤外線反射膜と受光領域とで同じで輻射エネルギーを受けることで、より精度の高い検出が可能になる。
In the infrared sensor of the present invention, the area of the infrared reflection film and the area of the light receiving region are set to be the same.
That is, in this infrared sensor, since the area of the infrared reflecting film and the area of the light receiving region are set to be the same, the light receiving areas of the infrared reflecting film and the light receiving region are the same, and the infrared reflecting film and the light receiving region are the same. By receiving the same radiant energy, more accurate detection becomes possible.

また、本発明の赤外線センサは、前記赤外線反射膜が、前記絶縁性フィルムの他方の面において前記受光領域以外の部分を全て覆っていることを特徴とする。
すなわち、この赤外線センサでは、赤外線反射膜が、絶縁性フィルムの他方の面において受光領域以外の部分を全て覆っているので、他方の面において絶縁性フィルムが直接露出せず、受光領域以外の絶縁性フィルム自体による赤外線吸収を極力抑制して、周囲からの熱伝導による第1の感熱素子及び第2の感熱素子への影響を低減することができる。
In the infrared sensor of the present invention, the infrared reflective film covers all portions other than the light receiving region on the other surface of the insulating film.
That is, in this infrared sensor, since the infrared reflecting film covers all the portions other than the light receiving area on the other surface of the insulating film, the insulating film is not directly exposed on the other surface, and the insulating film other than the light receiving area is insulated. Infrared absorption by the heat-sensitive film itself can be suppressed as much as possible, and the influence on the first and second heat sensitive elements due to heat conduction from the surroundings can be reduced.

また、本発明の赤外線センサは、前記受光領域に赤外線吸収膜が設けられていることを特徴とする。
すなわち、この赤外線センサでは、受光領域に赤外線吸収膜が設けられているので、受光領域に露出した絶縁性フィルムで直接受光する場合よりも、高い赤外線吸収効果を得ることができ、第1の感熱素子と第2の感熱素子とのさらに良好な温度差分を得ることができる。
The infrared sensor of the present invention is characterized in that an infrared absorption film is provided in the light receiving region.
That is, in this infrared sensor, since the infrared absorption film is provided in the light receiving area, a higher infrared absorption effect can be obtained than in the case of directly receiving light with the insulating film exposed in the light receiving area, and the first thermal sensitivity. An even better temperature difference between the element and the second thermosensitive element can be obtained.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る赤外線センサによれば、第2の感熱素子に対向して絶縁性フィルムの他方の面に設けられた赤外線反射膜を備えているので、第1の感熱素子と第2の感熱素子との良好な温度差分を得ることができ、高感度化を図ることができると共に、小型かつ安価に作製可能である。さらに、赤外線反射膜が受光領域の周囲も覆って形成されているので、第1の感熱素子側と第2の感熱素子側との間の空気対流による温度勾配が小さくなり、2つの感熱素子の応答速度を同等にすることが可能になる。したがって、空気対流の影響を抑制して検出誤差を低減することができる。
The present invention has the following effects.
That is, according to the infrared sensor according to the present invention, since the infrared reflective film provided on the other surface of the insulating film is provided so as to face the second thermal element, the first thermal element and the second thermal element are provided. A good temperature difference from the thermosensitive element can be obtained, high sensitivity can be achieved, and the device can be made small and inexpensive. Furthermore, since the infrared reflective film is formed so as to cover the periphery of the light receiving region, the temperature gradient due to air convection between the first heat sensitive element side and the second heat sensitive element side is reduced, and the two heat sensitive elements are It becomes possible to make the response speed equal. Therefore, it is possible to reduce the detection error by suppressing the influence of air convection.

本発明に係る赤外線センサの第1実施形態を示す斜視図である。It is a perspective view which shows 1st Embodiment of the infrared sensor which concerns on this invention. 第1実施形態において、赤外線センサを示す正面図である。In 1st Embodiment, it is a front view which shows an infrared sensor. 第1実施形態において、赤外線センサを示す平面図である。In 1st Embodiment, it is a top view which shows an infrared sensor. 本発明に係る赤外線センサの第2実施形態を示す平面図である。It is a top view which shows 2nd Embodiment of the infrared sensor which concerns on this invention.

以下、本発明に係る赤外線センサの第1実施形態を、図1から図3を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。   Hereinafter, a first embodiment of an infrared sensor according to the present invention will be described with reference to FIGS. 1 to 3. In each drawing used for the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.

本実施形態の赤外線センサ1は、図1から図3に示すように、絶縁性フィルム2と、該絶縁性フィルム2の一方の面(下面)に互いに離間させて設けられた第1の感熱素子3A及び第2の感熱素子3Bと、絶縁性フィルム2の一方の面に銅箔等でパターン形成され第1の感熱素子3A及び第2の感熱素子3Bに別々に接続された複数対の導電性の配線膜4と、第1の感熱素子3Aに対向して絶縁性フィルム2の他方の面(上面)に設けられた受光領域5Aと、第2の感熱素子3Bに対向して絶縁性フィルム2の他方の面に設けられた赤外線反射膜6とを備えている。   As shown in FIGS. 1 to 3, the infrared sensor 1 of the present embodiment includes an insulating film 2 and a first thermosensitive element provided on one surface (lower surface) of the insulating film 2 so as to be separated from each other. 3A and the second thermal element 3B, and a plurality of pairs of conductive elements patterned on one surface of the insulating film 2 with copper foil or the like and separately connected to the first thermal element 3A and the second thermal element 3B The wiring film 4, the light receiving region 5A provided on the other surface (upper surface) of the insulating film 2 so as to face the first heat sensitive element 3A, and the insulating film 2 facing the second heat sensitive element 3B. And an infrared reflecting film 6 provided on the other surface of the optical fiber.

また、上記受光領域5Aには、赤外線吸収膜5が形成されている。すなわち、上記赤外線吸収膜5は、第1の感熱素子3Aの直上に配されていると共に、上記赤外線反射膜6は、第2の感熱素子3Bの直上に配されている。
上記絶縁性フィルム2は、赤外線透過性フィルムで形成されている。なお、本実施形態では、絶縁性フィルム2がポリイミド樹脂シートで形成されている。
In addition, an infrared absorption film 5 is formed in the light receiving region 5A. That is, the infrared absorption film 5 is disposed immediately above the first heat sensitive element 3A, and the infrared reflection film 6 is disposed directly above the second heat sensitive element 3B.
The insulating film 2 is formed of an infrared transmissive film. In the present embodiment, the insulating film 2 is formed of a polyimide resin sheet.

上記第1の感熱素子3A及び第2の感熱素子3Bは、両端部に端子電極3aが形成されたチップサーミスタである。このサーミスタとしては、NTC型、PTC型、CTR型等のサーミスタがあるが、本実施形態では、第1の感熱素子3A及び第2の感熱素子3Bとして、例えばNTC型サーミスタを採用している。このサーミスタは、Mn−Co−Cu系材料、Mn−Co−Fe系材料等のサーミスタ材料で形成されている。なお、これら第1の感熱素子3A及び第2の感熱素子3Bは、各端子電極3aを配線膜4上に接合させて絶縁性フィルム2に実装されている。   The first heat sensitive element 3A and the second heat sensitive element 3B are chip thermistors in which terminal electrodes 3a are formed at both ends. As this thermistor, there are thermistors of NTC type, PTC type, CTR type and the like. In this embodiment, for example, NTC type thermistors are employed as the first thermal element 3A and the second thermal element 3B. This thermistor is formed of a thermistor material such as a Mn—Co—Cu-based material or a Mn—Co—Fe-based material. The first thermal element 3A and the second thermal element 3B are mounted on the insulating film 2 with the terminal electrodes 3a bonded to the wiring film 4.

上記赤外線吸収膜5は、絶縁性フィルム2よりも高い赤外線吸収率を有する材料で形成され、例えば、カーボンブラックやアンチモンドープ酸化錫(ATO)等の赤外線吸収材料を含むフィルムや赤外線吸収性ガラス膜(二酸化珪素を71%含有するホーケー酸ガラス膜など)で形成されている。すなわち、この赤外線吸収膜5によって測定対象物からの輻射による赤外線を吸収する。そして、赤外線を吸収し発熱した赤外線吸収膜5から絶縁性フィルム2を介した熱伝導によって、直下の第1の感熱素子3Aの温度が変化するようになっている。この赤外線吸収膜5は、第1の感熱素子3Aよりも大きなサイズでこれを覆うように形成されている。   The infrared absorption film 5 is formed of a material having an infrared absorption rate higher than that of the insulating film 2. For example, a film or an infrared absorption glass film containing an infrared absorption material such as carbon black or antimony-doped tin oxide (ATO). (Such as a silicate glass film containing 71% silicon dioxide). That is, the infrared absorption film 5 absorbs infrared rays due to radiation from the measurement object. The temperature of the first thermosensitive element 3A immediately below is changed by heat conduction through the insulating film 2 from the infrared absorbing film 5 that absorbs infrared rays and generates heat. The infrared absorption film 5 is formed so as to cover a larger size than the first thermal element 3A.

上記赤外線反射膜6は、絶縁性フィルム2よりも高い赤外線放射率を有する材料で形成され、例えば、鏡面のアルミニウム蒸着膜やアルミニウム箔等で形成されている。この赤外線反射膜6は、第2の感熱素子3Bよりも大きなサイズでこれを覆うように形成されているが、本実施形態では、図3に示すように、赤外線反射膜6(図3のハッチング部)が、受光領域5Aの周囲も覆って形成されている。すなわち、絶縁性フィルム2の他方の面において矩形状の受光領域5A(赤外線吸収膜5)以外の部分を全て赤外線反射膜6で覆っている。   The infrared reflection film 6 is formed of a material having an infrared emissivity higher than that of the insulating film 2, and is formed of, for example, a mirror-deposited aluminum vapor deposition film or an aluminum foil. The infrared reflective film 6 is formed so as to cover a larger size than the second thermal element 3B. In the present embodiment, as shown in FIG. 3, the infrared reflective film 6 (hatching in FIG. 3) is formed. Part) also covers the periphery of the light receiving region 5A. That is, the infrared reflection film 6 covers all the portions other than the rectangular light receiving region 5 </ b> A (infrared absorption film 5) on the other surface of the insulating film 2.

このように本実施形態の赤外線センサ1は、第1の感熱素子3Aに対向して絶縁性フィルム2の他方の面に設けられた受光領域5A(赤外線吸収膜5)と、第2の感熱素子3Bに対向して絶縁性フィルム2の他方の面に設けられた赤外線反射膜6と、を備えているので、受光領域5Aによる部分的な赤外線吸収と赤外線反射膜6による部分的な赤外線反射とにより、薄く熱伝導性の低い絶縁性フィルム2上で第1の感熱素子3Aと第2の感熱素子3Bとの良好な温度差分を得ることができる。   As described above, the infrared sensor 1 of the present embodiment includes the light receiving region 5A (infrared absorbing film 5) provided on the other surface of the insulating film 2 so as to face the first heat sensitive element 3A, and the second heat sensitive element. And the infrared reflection film 6 provided on the other surface of the insulating film 2 so as to face 3B, so that partial infrared absorption by the light receiving region 5A and partial infrared reflection by the infrared reflection film 6 Thus, a good temperature difference between the first thermal element 3A and the second thermal element 3B can be obtained on the thin insulating film 2 having low thermal conductivity.

すなわち、フィルムに赤外線吸収材料等を含有させていない低熱伝導性の絶縁性フィルム2でも、図2に示すように、受光領域5Aの赤外線吸収膜5によって絶縁性フィルム2の第1の感熱素子3Aの直上部分のみに赤外線吸収による熱を伝導させることができる。特に、薄い絶縁性フィルム2を挟んで赤外線吸収膜5の熱が伝導されるため、感度の劣化がなく、高い応答性を有している。また、受光領域5Aの面積を任意に設定可能であるため、測定対象物との距離に合わせた赤外線検出の視野角を面積で設定でき、高い受光効率を得ることができる。   That is, even in the low thermal conductive insulating film 2 in which the film does not contain an infrared absorbing material or the like, as shown in FIG. 2, the first heat sensitive element 3A of the insulating film 2 is formed by the infrared absorbing film 5 in the light receiving region 5A. It is possible to conduct heat due to infrared absorption only to the portion directly above. In particular, since the heat of the infrared absorption film 5 is conducted across the thin insulating film 2, there is no deterioration in sensitivity and high responsiveness is achieved. In addition, since the area of the light receiving region 5A can be set arbitrarily, the viewing angle of infrared detection matched to the distance to the measurement object can be set by area, and high light receiving efficiency can be obtained.

また、赤外線反射膜6によって絶縁性フィルム2の第2の感熱素子3Bの直上部分における赤外線を反射してその吸収を阻止することができる。
なお、絶縁性フィルム2上に赤外線吸収膜5と赤外線反射膜6とを形成しているので、赤外線吸収膜5と赤外線反射膜6との間の熱を伝導する媒体が、空気以外にこれら膜が対向した間の絶縁性フィルム2のみとなり、伝導する断面積が小さくなる。したがって、相互の感熱素子への熱が伝わり難くなり、干渉が少なくなって検出感度が向上する。
In addition, the infrared reflection film 6 can reflect the infrared rays directly above the second heat sensitive element 3B of the insulating film 2 to prevent its absorption.
Since the infrared absorption film 5 and the infrared reflection film 6 are formed on the insulating film 2, the medium that conducts heat between the infrared absorption film 5 and the infrared reflection film 6 is a film other than air. Becomes only the insulating film 2 between the two facing each other, and the cross-sectional area to be conducted becomes small. Accordingly, it is difficult for heat to be transmitted to the mutual heat sensitive elements, interference is reduced, and detection sensitivity is improved.

このように、低熱伝導性の絶縁性フィルム2上で互いに熱の影響が抑制された第1の感熱素子3Aと第2の感熱素子3Bとが、それぞれ受光領域5A(赤外線吸収膜5)の直下と赤外線反射膜6の直下との絶縁性フィルム2の部分的な温度を測定する構造を有している。したがって、赤外線検知用とされる第1の感熱素子3Aと温度補償用とされる第2の感熱素子3Bとの良好な温度差分を得られ、高感度化を図ることができる。   As described above, the first heat sensitive element 3A and the second heat sensitive element 3B, on which the influence of heat on the insulating film 2 with low thermal conductivity is suppressed, are directly below the light receiving region 5A (infrared absorbing film 5). And a structure for measuring a partial temperature of the insulating film 2 immediately below the infrared reflective film 6. Therefore, it is possible to obtain a good temperature difference between the first thermal element 3A for infrared detection and the second thermal element 3B for temperature compensation, thereby achieving high sensitivity.

また、第1の感熱素子3Aと第2の感熱素子3Bとの熱結合が低いので、互いに近づけて配置することも可能になり、全体の小型化を図ることができる。さらに、枠体やケースによる遮光構造ではなく、赤外線反射膜6によって赤外線の吸収を防いでいるので、安価に作製することができる。   Further, since the thermal coupling between the first thermal element 3A and the second thermal element 3B is low, they can be arranged close to each other, and the overall size can be reduced. Furthermore, since the absorption of infrared rays is prevented by the infrared reflection film 6 rather than the light shielding structure by the frame or case, it can be manufactured at low cost.

また、赤外線吸収膜5及び赤外線反射膜6が導電性材料で構成されていても、絶縁性フィルム2を挟んで設置された第1の感熱素子3A及び第2の感熱素子3Bとの絶縁が確保されているので、膜の絶縁性を問わずに効率の良い材料の選択が可能になる。
さらに、絶縁性フィルム2上に薄く熱伝導性の低い配線膜4を設けているので、従来のようにリード線とサーミスタとの間の空間伝導による他の箇所との熱結合を防ぐことができる。
Moreover, even if the infrared absorption film 5 and the infrared reflection film 6 are made of a conductive material, insulation with the first and second thermal elements 3A and 3B installed with the insulating film 2 interposed therebetween is ensured. Therefore, an efficient material can be selected regardless of the insulating properties of the film.
Further, since the wiring film 4 that is thin and has low thermal conductivity is provided on the insulating film 2, it is possible to prevent thermal coupling between the lead wire and the thermistor with other portions due to space conduction as in the prior art. .

また、赤外線反射膜6が、受光領域5Aの周囲も覆って形成されているので、第1の感熱素子3A側と第2の感熱素子3B側との間の空気対流による温度勾配が小さくなり、2つの感熱素子の応答速度を同等にすることが可能になる。
例えば、第2の感熱素子3Bに対向する領域のみに赤外線反射膜6が形成されている場合、周囲空気の対流により第2の感熱素子3B側から空気が流れてきたとき、第2の感熱素子3Bの上方の赤外線反射膜6が冷えて絶縁性フィルム2の温度が局所的に変化してしまう。
Further, since the infrared reflective film 6 is formed so as to cover the periphery of the light receiving region 5A, the temperature gradient due to air convection between the first thermal element 3A side and the second thermal element 3B side is reduced, It becomes possible to make the response speeds of the two thermosensitive elements equal.
For example, when the infrared reflective film 6 is formed only in a region facing the second thermal element 3B, when air flows from the second thermal element 3B side by convection of the surrounding air, the second thermal element The infrared reflective film 6 above 3B is cooled and the temperature of the insulating film 2 is locally changed.

これに対し、本実施形態の赤外線センサ21では、赤外線反射膜6が第1の感熱素子3Aに対向する受光領域5Aの周囲も覆って形成されているため、図2および図3に示すように、空気の流れによって第2の感熱素子3B側の領域が冷えても赤外線反射膜6の熱伝導性によって受光領域5Aの周囲の温度も下がり、全体的に温度の差分が生じ難くなって、周囲空気の対流による影響を受け難くなる。   On the other hand, in the infrared sensor 21 of the present embodiment, the infrared reflecting film 6 is formed so as to cover the periphery of the light receiving region 5A facing the first thermal element 3A, as shown in FIGS. Even if the region on the second thermosensitive element 3B side is cooled by the air flow, the temperature around the light receiving region 5A is lowered due to the thermal conductivity of the infrared reflecting film 6, and the temperature difference is hardly generated as a whole. Less affected by air convection.

また、赤外線反射膜6が、絶縁性フィルム2の他方の面において受光領域5A以外の部分を全て覆っているので、他方の面において絶縁性フィルム2が直接露出せず、受光領域5A以外の絶縁性フィルム2自体による赤外線吸収を極力抑制して、周囲からの熱伝導による第1の感熱素子3A及び第2の感熱素子3Bへの影響を低減することができる。
さらに、受光領域5Aに赤外線吸収膜5が設けられているので、受光領域5Aに露出した絶縁性フィルム2で直接受光する場合よりも、高い赤外線吸収効果を得ることができ、第1の感熱素子3Aと第2の感熱素子3Bとのさらに良好な温度差分を得ることができる。
In addition, since the infrared reflection film 6 covers all the portions other than the light receiving region 5A on the other surface of the insulating film 2, the insulating film 2 is not directly exposed on the other surface, and the insulating portions other than the light receiving region 5A are insulated. Infrared absorption by the heat-sensitive film 2 itself can be suppressed as much as possible, and the influence on the first heat sensitive element 3A and the second heat sensitive element 3B due to heat conduction from the surroundings can be reduced.
Further, since the infrared absorption film 5 is provided in the light receiving region 5A, a higher infrared absorption effect can be obtained than in the case where light is directly received by the insulating film 2 exposed in the light receiving region 5A. A better temperature difference between 3A and the second thermosensitive element 3B can be obtained.

次に、本発明に係る赤外線センサの第2実施形態について、図4を参照して以下に説明する。なお、以下の実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。   Next, a second embodiment of the infrared sensor according to the present invention will be described below with reference to FIG. Note that, in the following description of the embodiment, the same components described in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では、受光領域5A(赤外線吸収膜5)の面積が赤外線反射膜6の面積よりも小さいのに対し、第2実施形態の赤外線センサ21では、図4に示すように、赤外線反射膜6の面積と受光領域5Aの面積とが同じに設定されている点で異なっている。すなわち、第2実施形態では、受光領域5Aの面積が第1実施形態よりも大きく、受光領域5Aが、絶縁性フィルム2の中央よりも第2の感熱素子3B側に広がって形成されている。   The difference between the second embodiment and the first embodiment is that, in the first embodiment, the area of the light receiving region 5A (infrared absorbing film 5) is smaller than the area of the infrared reflecting film 6, whereas the second embodiment. The infrared sensor 21 is different in that the area of the infrared reflection film 6 and the area of the light receiving region 5A are set to be the same as shown in FIG. That is, in the second embodiment, the area of the light receiving region 5A is larger than that of the first embodiment, and the light receiving region 5A is formed so as to spread toward the second heat sensitive element 3B from the center of the insulating film 2.

このように第2実施形態の赤外線センサ21では、赤外線反射膜6の面積と受光領域5Aの面積とが同じに設定されているので、赤外線反射膜6と受光領域5Aとの受光面積が同じになり、赤外線反射膜6と受光領域5Aとで同じで輻射エネルギーを受けることで、より精度の高い検出が可能になる。   As described above, in the infrared sensor 21 of the second embodiment, since the area of the infrared reflection film 6 and the area of the light receiving region 5A are set to be the same, the light receiving areas of the infrared reflection film 6 and the light receiving region 5A are the same. Thus, the infrared reflection film 6 and the light receiving region 5A receive the same radiant energy, thereby enabling detection with higher accuracy.

なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記各実施形態では、チップサーミスタの第1の感熱素子及び第2の感熱素子を採用しているが、薄膜サーミスタで形成された第1の感熱素子及び第2の感熱素子を採用しても構わない。
なお、感熱素子としては、上述したように薄膜サーミスタやチップサーミスタが用いられるが、サーミスタ以外に焦電素子等も採用可能である。
For example, in each of the above embodiments, the first and second thermosensitive elements of the chip thermistor are employed, but the first and second thermosensitive elements formed by the thin film thermistor are employed. It doesn't matter.
As the thermal element, a thin film thermistor or a chip thermistor is used as described above, but a pyroelectric element or the like can be used in addition to the thermistor.

また、絶縁性フィルムの一方の面に固定されて該絶縁性フィルムを支持する筐体を設け、該筐体に、第1の感熱素子及び第2の感熱素子をそれぞれ個別に収納すると共に絶縁性フィルムよりも熱伝導率の低い空気や発泡樹脂で覆う第1の収納部及び第2の収納部を設けても構わない。   In addition, a housing fixed to one surface of the insulating film and supporting the insulating film is provided, and the first heat sensitive element and the second heat sensitive element are individually housed in the housing, and are insulated. You may provide the 1st accommodating part and the 2nd accommodating part which are covered with the air or foaming resin whose heat conductivity is lower than a film.

さらに、上記各実施形態のように第1の感熱素子の上方の受光領域に赤外線吸収膜を形成することが好ましいが、第2の感熱素子の上方および受光領域の周囲に赤外線反射膜を形成してあれば、第1の感熱素子の上方の受光領域に赤外線吸収膜を形成しなくても構わない。すなわち、受光領域は、絶縁性フィルムが直接露出した面でも構わない。   Furthermore, it is preferable to form an infrared absorption film in the light receiving region above the first heat sensitive element as in the above embodiments, but an infrared reflective film is formed above the second heat sensitive element and around the light receiving region. If so, the infrared absorption film may not be formed in the light receiving region above the first thermal element. That is, the light receiving region may be a surface where the insulating film is directly exposed.

1,21…赤外線センサ、2…絶縁性フィルム、3A…第1の感熱素子、3B…第2の感熱素子、4…配線膜、5…赤外線吸収膜、5A…受光領域、6…赤外線反射膜   DESCRIPTION OF SYMBOLS 1,21 ... Infrared sensor, 2 ... Insulating film, 3A ... 1st thermosensitive element, 3B ... 2nd thermosensitive element, 4 ... Wiring film, 5 ... Infrared absorption film, 5A ... Light receiving area, 6 ... Infrared reflective film

Claims (4)

絶縁性フィルムと、
該絶縁性フィルムの一方の面に互いに離間させて設けられた第1の感熱素子及び第2の感熱素子と、
前記絶縁性フィルムの一方の面に形成され前記第1の感熱素子及び前記第2の感熱素子に別々に接続された複数対の導電性の配線膜と、
前記第1の感熱素子に対向して前記絶縁性フィルムの他方の面に設けられた受光領域と、
前記第2の感熱素子に対向して前記絶縁性フィルムの他方の面に設けられた赤外線反射膜と、を備え、
前記赤外線反射膜が、前記受光領域の周囲も覆って形成されていることを特徴とする赤外線センサ。
An insulating film;
A first thermal element and a second thermal element provided on one surface of the insulating film so as to be spaced apart from each other;
A plurality of pairs of conductive wiring films formed on one surface of the insulating film and separately connected to the first thermal element and the second thermal element;
A light receiving region provided on the other surface of the insulating film facing the first thermosensitive element;
An infrared reflection film provided on the other surface of the insulating film facing the second thermosensitive element,
The infrared sensor, wherein the infrared reflecting film is formed so as to cover the periphery of the light receiving region.
請求項1に記載の赤外線センサにおいて、
前記赤外線反射膜の面積と前記受光領域の面積とが同じに設定されていることを特徴とする赤外線センサ。
The infrared sensor according to claim 1,
An infrared sensor, wherein an area of the infrared reflecting film and an area of the light receiving region are set to be the same.
請求項1または2に記載の赤外線センサにおいて、
前記赤外線反射膜が、前記絶縁性フィルムの他方の面において前記受光領域以外の部分を全て覆っていることを特徴とする赤外線センサ。
The infrared sensor according to claim 1 or 2,
The infrared sensor, wherein the infrared reflective film covers all portions other than the light receiving region on the other surface of the insulating film.
請求項1から3のいずれか一項に記載の赤外線センサにおいて、
前記受光領域に赤外線吸収膜が設けられていることを特徴とする赤外線センサ。
In the infrared sensor according to any one of claims 1 to 3,
An infrared sensor, wherein an infrared absorption film is provided in the light receiving region.
JP2010212934A 2010-09-23 2010-09-23 Infrared sensor Active JP5696831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010212934A JP5696831B2 (en) 2010-09-23 2010-09-23 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010212934A JP5696831B2 (en) 2010-09-23 2010-09-23 Infrared sensor

Publications (2)

Publication Number Publication Date
JP2012068115A true JP2012068115A (en) 2012-04-05
JP5696831B2 JP5696831B2 (en) 2015-04-08

Family

ID=46165568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010212934A Active JP5696831B2 (en) 2010-09-23 2010-09-23 Infrared sensor

Country Status (1)

Country Link
JP (1) JP5696831B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163999B2 (en) 2013-08-30 2015-10-20 Fuji Xerox Co., Ltd. Temperature sensor, fixing device, and image forming apparatus
WO2017131151A1 (en) * 2016-01-29 2017-08-03 三菱マテリアル株式会社 Infrared sensor
TWI618648B (en) * 2013-01-30 2018-03-21 Combi Corp Baby carriage
JP2018109567A (en) * 2017-01-05 2018-07-12 三菱マテリアル株式会社 Infrared sensor
WO2018173973A1 (en) * 2017-03-24 2018-09-27 三菱マテリアル株式会社 Infrared sensor
WO2020084811A1 (en) * 2018-10-24 2020-04-30 三菱マテリアル株式会社 Infrared sensor
WO2020084809A1 (en) * 2018-10-22 2020-04-30 三菱マテリアル株式会社 Infrared sensor
EP3605041A4 (en) * 2017-03-29 2020-12-23 Mitsubishi Materials Corporation Infrared sensor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260579A (en) * 1994-03-24 1995-10-13 Ishizuka Denshi Kk Infrared detector
JPH10318830A (en) * 1997-05-20 1998-12-04 Osaka Prefecture Infrared sensor
JPH10318829A (en) * 1997-05-20 1998-12-04 Ishizuka Denshi Kk Infrared sensor
JP2003194630A (en) * 2001-12-27 2003-07-09 Ishizuka Electronics Corp Noncontact temperature sensor and sensing circuit for noncontact temperature sensor
JP2010043930A (en) * 2008-08-12 2010-02-25 Tateyama Kagaku Kogyo Kk Noncontact temperature sensor
JP2010197162A (en) * 2009-02-24 2010-09-09 Mitsubishi Materials Corp Temperature sensor
JP2010281578A (en) * 2009-06-02 2010-12-16 Mitsubishi Materials Corp Temperature sensor
JP2011013213A (en) * 2009-06-02 2011-01-20 Mitsubishi Materials Corp Infrared sensor
JP2011102791A (en) * 2009-10-17 2011-05-26 Mitsubishi Materials Corp Infrared-ray sensor and circuit substrate equipped with the same
JP2011149920A (en) * 2009-12-25 2011-08-04 Mitsubishi Materials Corp Infrared sensor
JP2012032233A (en) * 2010-07-29 2012-02-16 Mitsubishi Materials Corp Infrared sensor
JP2012053011A (en) * 2010-09-03 2012-03-15 Mitsubishi Materials Corp Infrared sensor and temperature sensor device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260579A (en) * 1994-03-24 1995-10-13 Ishizuka Denshi Kk Infrared detector
JPH10318830A (en) * 1997-05-20 1998-12-04 Osaka Prefecture Infrared sensor
JPH10318829A (en) * 1997-05-20 1998-12-04 Ishizuka Denshi Kk Infrared sensor
JP2003194630A (en) * 2001-12-27 2003-07-09 Ishizuka Electronics Corp Noncontact temperature sensor and sensing circuit for noncontact temperature sensor
JP2010043930A (en) * 2008-08-12 2010-02-25 Tateyama Kagaku Kogyo Kk Noncontact temperature sensor
JP2010197162A (en) * 2009-02-24 2010-09-09 Mitsubishi Materials Corp Temperature sensor
JP2010281578A (en) * 2009-06-02 2010-12-16 Mitsubishi Materials Corp Temperature sensor
JP2011013213A (en) * 2009-06-02 2011-01-20 Mitsubishi Materials Corp Infrared sensor
JP2011102791A (en) * 2009-10-17 2011-05-26 Mitsubishi Materials Corp Infrared-ray sensor and circuit substrate equipped with the same
JP2011149920A (en) * 2009-12-25 2011-08-04 Mitsubishi Materials Corp Infrared sensor
JP2012032233A (en) * 2010-07-29 2012-02-16 Mitsubishi Materials Corp Infrared sensor
JP2012053011A (en) * 2010-09-03 2012-03-15 Mitsubishi Materials Corp Infrared sensor and temperature sensor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI618648B (en) * 2013-01-30 2018-03-21 Combi Corp Baby carriage
US9163999B2 (en) 2013-08-30 2015-10-20 Fuji Xerox Co., Ltd. Temperature sensor, fixing device, and image forming apparatus
WO2017131151A1 (en) * 2016-01-29 2017-08-03 三菱マテリアル株式会社 Infrared sensor
CN108369134A (en) * 2016-01-29 2018-08-03 三菱综合材料株式会社 Infrared sensor
US10605651B2 (en) 2016-01-29 2020-03-31 Mitsubishi Materials Corporation Infrared sensor
CN108369134B (en) * 2016-01-29 2020-11-27 三菱综合材料株式会社 Infrared sensor
JP2018109567A (en) * 2017-01-05 2018-07-12 三菱マテリアル株式会社 Infrared sensor
WO2018173973A1 (en) * 2017-03-24 2018-09-27 三菱マテリアル株式会社 Infrared sensor
EP3605041A4 (en) * 2017-03-29 2020-12-23 Mitsubishi Materials Corporation Infrared sensor
WO2020084809A1 (en) * 2018-10-22 2020-04-30 三菱マテリアル株式会社 Infrared sensor
WO2020084811A1 (en) * 2018-10-24 2020-04-30 三菱マテリアル株式会社 Infrared sensor

Also Published As

Publication number Publication date
JP5696831B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5696831B2 (en) Infrared sensor
WO2011046163A1 (en) Infrared sensor and circuit substrate equipped therewith
WO2011078004A1 (en) Infrared sensor
JP5736906B2 (en) Infrared sensor
JP2011013213A (en) Infrared sensor
KR101972196B1 (en) Infrared sensor
JP5754626B2 (en) Infrared sensor
JP2011216323A (en) Induction heating cooker
JP5741830B2 (en) Infrared sensor device
CN108369134B (en) Infrared sensor
CN102478432A (en) Infrared sensor
JP2011033358A (en) Temperature sensor
JP5720999B2 (en) Infrared sensor and circuit board having the same
JP5741924B2 (en) Infrared sensor
JP6477058B2 (en) Infrared sensor
JP2012032233A (en) Infrared sensor
JP5754223B2 (en) Fixing device
JP2017181031A (en) Infrared sensor
JP5573599B2 (en) Infrared sensor and induction heating cooker equipped with the same
JP2013072821A (en) Infrared sensor
JP5569268B2 (en) Battery temperature sensor device
JP5747628B2 (en) Induction heating cooker
JP2018169191A (en) Infrared sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150127

R150 Certificate of patent or registration of utility model

Ref document number: 5696831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150