JP2014089108A - Non-contact temperature sensor - Google Patents

Non-contact temperature sensor Download PDF

Info

Publication number
JP2014089108A
JP2014089108A JP2012239068A JP2012239068A JP2014089108A JP 2014089108 A JP2014089108 A JP 2014089108A JP 2012239068 A JP2012239068 A JP 2012239068A JP 2012239068 A JP2012239068 A JP 2012239068A JP 2014089108 A JP2014089108 A JP 2014089108A
Authority
JP
Japan
Prior art keywords
light receiving
inclined wall
temperature sensor
guide tube
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012239068A
Other languages
Japanese (ja)
Inventor
Kentaro Ushioda
健太郎 潮田
Hiroshi Kobayashi
浩 小林
Seigo Zaima
清悟 在間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012239068A priority Critical patent/JP2014089108A/en
Publication of JP2014089108A publication Critical patent/JP2014089108A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact temperature sensor capable of preventing the increase in man-hour and cost at the manufacturing time, the reduction in productivity, and the deterioration in work environment and natural environment and also capable of suppressing a sensitivity error and a reduction in sensitivity.SOLUTION: A non-contact temperature sensor 100 includes: a guide cylinder 30 provided so as to define a visual field range of the temperature detection by an infrared ray detection heat-sensitive element 15 in a heat source 7A. The guide cylinder 30 includes: an opening P; and a body part 31 including sloped wall parts 31a to 31b to extend slope-wise against the perpendicular direction of a light receiving surface N toward the light receiving surface N arranged with the infrared ray detection heat-sensitive element 15 from the opening P, and further includes a light-shielding space W formed by the body part 31 around a light receiving range Q including the infrared ray detection heat-sensitive element 15.

Description

本発明は、熱源(発熱体)の温度を非接触で測定する非接触温度センサに関する。   The present invention relates to a non-contact temperature sensor that measures the temperature of a heat source (heating element) in a non-contact manner.

一般に、熱源の温度を非接触測定するための非接触温度センサは、熱源から放射される赤外線を吸収する赤外線吸収膜の温度上昇を赤外線検知用感熱素子によって検知し、その放射赤外線の熱量に基づいて熱源の温度を測定する。赤外線検知用感熱素子は、受熱熱量に応じて電気的特性が変化する温度特性を有しており、赤外線吸収膜が吸収した赤外線熱量のみならず外部環境が赤外線検知用感熱素子に付与する熱量によってもその電気的特性は変化する。このため、このような非接触温度センサは、通常、赤外線検知用感熱素子の他に、外部環境と赤外線検知用感熱素子との間で流出入する熱量を検知し、且つ、赤外線検知用感熱素子の測定結果を補正するための温度補償用感熱素子も備えている。   In general, a non-contact temperature sensor for non-contact measurement of the temperature of a heat source detects a temperature rise of an infrared absorption film that absorbs infrared rays radiated from the heat source by a thermal sensor for infrared detection, and is based on the amount of heat of the emitted infrared rays. And measure the temperature of the heat source. The thermal element for infrared detection has a temperature characteristic in which the electrical characteristics change according to the amount of heat received, and not only by the amount of infrared heat absorbed by the infrared absorption film, but also by the amount of heat given to the infrared detection thermal element by the external environment. However, its electrical characteristics change. For this reason, such a non-contact temperature sensor usually detects the amount of heat flowing in and out between the external environment and the infrared detection thermal element in addition to the infrared detection thermal element, and the infrared detection thermal element. There is also provided a temperature compensating thermosensitive element for correcting the measurement result.

かかる非接触温度センサとして、例えば特許文献1には、開口部を有する筒状の保持体(例えばアルミニウム等の金属からなる)の底部側に、赤外線検知用感熱素子が固着された樹脂フィルム(赤外線吸収膜)が設けられたものが記載されている。この非接触温度センサは、赤外線吸収膜の前方に設けられた筒状保持体の開口部が、温度の検知対象物である熱源(複写機の加熱定着ロ−ラ等)に対向して配置される。   As such a non-contact temperature sensor, for example, Patent Document 1 discloses a resin film (infrared ray) in which a thermal sensing element for infrared detection is fixed to the bottom side of a cylindrical holding body (for example, made of metal such as aluminum) having an opening. What is provided with an absorption film) is described. In this non-contact temperature sensor, an opening of a cylindrical holder provided in front of the infrared absorption film is disposed so as to face a heat source (such as a heat fixing roller of a copying machine) that is a temperature detection target. The

特許第4415045号公報Japanese Patent No. 4415045

ここで、上記従来の非接触温度センサにおける筒状保持体は、熱源から放射される赤外線の導光部であり、温度検知の方向を規定し、熱源における温度検知の視野範囲(温度検知視野範囲)を画定するための赤外線「案内筒」として機能するものである。通常、熱源の表面の各点からは、赤外線が全天方向に放射され、そのうちの一部が案内筒の開口部からその内部に入射する。そして、案内筒の内部に入射した赤外線のうち、赤外線吸収膜に直接的に到達する成分と、案内筒の内壁で反射されて赤外線吸収膜に間接的に到達する成分が、赤外線吸収膜に吸収され、両成分のエネルギーの和が赤外線吸収膜の温度上昇に寄与し、非接触温度センサの感度に影響を与え得る。   Here, the cylindrical holder in the conventional non-contact temperature sensor is an infrared light guide radiated from the heat source, defines the direction of temperature detection, and the temperature detection field range (temperature detection field range in the heat source). ) To function as an infrared “guide tube”. Usually, infrared rays are radiated in all directions from each point on the surface of the heat source, and a part of them is incident on the inside from the opening of the guide tube. Of the infrared rays incident on the inside of the guide tube, the component that directly reaches the infrared absorption film and the component that is reflected by the inner wall of the guide tube and indirectly reaches the infrared absorption film are absorbed by the infrared absorption film. In addition, the sum of the energy of both components contributes to the temperature increase of the infrared absorption film, and can affect the sensitivity of the non-contact temperature sensor.

それら赤外線成分のうち、案内筒の内壁で反射される赤外線成分の強度(線束)は、その内壁の反射特性によって影響を受け、その反射特性は、内壁の表面状態に依存して変化し(ばらつき)、さらには、内壁に錆が発生したり汚れ等が付着したりすることによっても変動する。したがって、案内筒の内壁で反射される赤外線成分は、非接触温度センサの感度のばらつきや経年変動の主たる要因となり得る。   Among these infrared components, the intensity (line bundle) of the infrared component reflected by the inner wall of the guide tube is affected by the reflection characteristics of the inner wall, and the reflection characteristics change depending on the surface state of the inner wall (variation). ) Furthermore, it also fluctuates due to the occurrence of rust or dirt on the inner wall. Therefore, the infrared component reflected by the inner wall of the guide tube can be a major factor in non-contact temperature sensor sensitivity variations and aging.

そこで、このような案内筒の内壁で反射される赤外線成分に起因する感度誤差や変動を抑えるべく、案内筒の内壁に入射する赤外線を吸収して反射しないようにする手法が種々提案されている。例えば、上記特許文献1にも、案内筒である筒状保持体の内壁面に、輻射率が0.94以上の黒体吸収膜(プラスチック、ゴム等)を塗布する、陽極酸化処理やアルマイト処理等によって黒体吸収膜を形成するといった方法が提示されている(例えば、同文献の段落0017及び段落0018、図3等参照)。   In order to suppress sensitivity errors and fluctuations due to the infrared component reflected by the inner wall of the guide tube, various methods for absorbing and not reflecting the infrared light incident on the inner wall of the guide tube have been proposed. . For example, also in the above-mentioned Patent Document 1, an anodizing process or an alumite process in which a black body absorbing film (plastic, rubber, etc.) having a radiation rate of 0.94 or more is applied to the inner wall surface of a cylindrical holder that is a guide cylinder. A method of forming a black body absorbing film by the above is proposed (for example, refer to paragraph 0017 and paragraph 0018 of FIG. 3, FIG. 3 etc.).

しかし、そのようにして案内筒の内壁を黒体処理した場合、複数の問題が不可避的に生起されてしまう。すなわち、第一に、黒体処理によって内壁に黒体吸収膜が形成された案内筒は、そこに入射した赤外線を吸収して温度が上昇し易くなる。内壁が温度上昇し、しかも内壁表面は黒体処理されているので放射率も高い。したがって内壁からの赤外線放射が増大し、その一部は、赤外線検知用感熱素子が設けられた赤外線吸収膜に入射してその温度上昇を助長することとなる。本来、熱源は検知対象物だけであるべきところ、黒体処理を施すことによって案内筒の内壁が第二の熱源として作用し、検知対象物の温度に案内筒の内壁の温度も加えた温度が検知されるため、その結果、非接触温度センサの感度誤差を引き起こす要因となってしまう。つまり、赤外線が黒体吸収膜に一旦吸収されても、その熱エネルギーが黒体輻射によって再び放射(二次放射)されるので、案内筒の内壁における赤外線反射の防止作用が意味をなさないおそれがある。   However, when black body processing is performed on the inner wall of the guide tube in this manner, a plurality of problems are inevitably caused. That is, firstly, the guide tube having the black body absorbing film formed on the inner wall by the black body treatment absorbs the infrared rays incident thereon and the temperature easily rises. The temperature of the inner wall rises, and the inner wall surface is blackbody treated, so the emissivity is high. Therefore, infrared radiation from the inner wall increases, and a part of the radiation is incident on an infrared absorbing film provided with a thermal element for detecting infrared rays to promote the temperature rise. Originally, the heat source should be only the object to be detected, but by applying black body processing, the inner wall of the guide cylinder acts as the second heat source, and the temperature of the object to be detected is also the temperature of the inner wall of the guide cylinder As a result, the sensitivity error of the non-contact temperature sensor is caused. In other words, even if infrared rays are once absorbed by the black body absorbing film, the thermal energy is emitted again by the black body radiation (secondary radiation), so that the effect of preventing infrared reflection on the inner wall of the guide tube may not make sense. There is.

第二に、案内筒の内壁の温度変化は、案内筒の熱容量の影響を受けるため、検知対象物の温度変化に比べて遅れが生じる。例えば、検知対象物の温度が急激に上昇したとしても、案内筒の内壁はその放射熱を受けて温度上昇が始まるため、その結果、案内筒の内壁から放射される二次放射も検知対象物の温度上昇から遅れて増大し始めることとなる。逆に、検知対象物の温度が急激に降下し、案内筒の内壁が受ける赤外線量が急減したとしても、案内筒の内壁の温度はゆっくりと低下するため、その結果、案内筒の内壁から放射される二次放射もゆっくりと減少することとなる。つまり、検知対象物の温度変化を瞬時に検知することは難しく、温度検知の応答性に遅れが生じてしまう。   Second, the temperature change of the inner wall of the guide cylinder is affected by the heat capacity of the guide cylinder, and therefore a delay occurs compared to the temperature change of the detection target. For example, even if the temperature of the detection target suddenly rises, the inner wall of the guide tube receives the radiant heat and the temperature starts to rise. As a result, the secondary radiation radiated from the inner wall of the guide tube is also detected. It will begin to increase with a delay from the temperature rise. Conversely, even if the temperature of the object to be detected drops sharply and the amount of infrared rays received by the inner wall of the guide tube decreases sharply, the temperature of the inner wall of the guide tube decreases slowly. The emitted secondary radiation will also decrease slowly. That is, it is difficult to instantaneously detect the temperature change of the detection target, and a delay occurs in the temperature detection responsiveness.

第三に、上述の如く、黒体吸収膜からの赤外線放射に起因して赤外線吸収膜の温度が上昇すると、その熱が非接触温度センサ全体に伝わり、これにより、周囲温度が上昇する。また、案内筒自体の温度上昇による熱も非接触温度センサ全体に伝導するため、周囲温度がさらに上昇する。こうなると、赤外線吸収膜の温度と周囲温度が近接して両者の差異が僅少化し、その結果、非接触温度センサの感度が有意に低下してしまう。   Third, as described above, when the temperature of the infrared absorbing film rises due to infrared radiation from the black body absorbing film, the heat is transferred to the entire non-contact temperature sensor, thereby increasing the ambient temperature. Further, since the heat due to the temperature rise of the guide tube itself is also conducted to the entire non-contact temperature sensor, the ambient temperature further rises. In this case, the temperature of the infrared absorption film and the ambient temperature are close to each other, and the difference between the two becomes small. As a result, the sensitivity of the non-contact temperature sensor is significantly lowered.

第四に、特許文献1に記載されているような塗装処理、陽極酸化処理、アルマイト処理等の黒体処理を施すには、いずれにしても、それらの工程が必要となるため、製造工数及び製造コストの増大を招いてしまう。特に、非接触温度センサが小型の場合、その小さな案内筒の内壁面に塗装等を施すことは極めて難しい。例えば、案内筒の内壁における必要な部分だけに塗装を施すためには、その小さい部品1つ1つを正確にマスキングしなければならない。また、熱源が高温になる場合、黒体吸収膜が高温に曝されるので、その耐久性を向上させるために例えば焼付け塗装等を行うには、高温且つ長時間の乾燥時間が必要となり、生産性が低下するとともに、製造コストが更に増大してしまう。さらに、有機溶剤を用いる塗装処理は、作業環境上及び自然環境上好ましくなく、陽極酸化処理やアルマイト処理は、廃液処理の観点から自然環境上好ましくない。   Fourthly, in order to perform black body treatment such as coating treatment, anodizing treatment, anodizing treatment, etc. as described in Patent Document 1, any of these steps are required, The manufacturing cost will increase. In particular, when the non-contact temperature sensor is small, it is extremely difficult to paint the inner wall surface of the small guide cylinder. For example, in order to apply only a necessary part of the inner wall of the guide tube, each small part must be accurately masked. In addition, when the heat source becomes high temperature, the black body absorbing film is exposed to high temperature, so in order to improve its durability, for example, baking coating or the like requires high temperature and long drying time, and production As a result, the manufacturing cost is further increased. Furthermore, a coating treatment using an organic solvent is not preferable in terms of working environment and natural environment, and anodizing treatment and alumite treatment are not preferable in terms of the natural environment from the viewpoint of waste liquid treatment.

そこで、本発明はかかる事情に鑑みてなされたものであり、感度誤差や感度の低下を抑止しながら検知対象物の温度を瞬時に検知し、且つ、製造時における工数及びコストの増大、生産性の低下、並びに、作業環境及び自然環境の悪化を防止することも可能な非接触温度センサを提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, and detects the temperature of the detection object instantaneously while suppressing sensitivity errors and sensitivity reduction, and increases man-hours and costs during production, and productivity. It is an object of the present invention to provide a non-contact temperature sensor that can prevent the deterioration of the working environment and the natural environment.

上記課題を解決するために、本発明による非接触温度センサは、熱源の温度を非接触測定する非接触温度センサであって、熱源から放射される赤外線の熱量を検知する赤外線検知用感熱素子と、外部環境からの熱量を検知する温度補償用感熱素子と、熱源における赤外線検知用感熱素子による温度検知の視野範囲を画定するように設けられた案内筒と、を備えており、案内筒は、開口と、開口から赤外線検知用感熱素子が配置される受光面に向かって受光面の垂直方向に対して傾斜して延びる傾斜壁部を含む胴部を有し、赤外線検知用感熱素子を含む受光範囲の周囲に、胴部によって形成される遮光空間を有することを特徴とする。   In order to solve the above-described problems, a non-contact temperature sensor according to the present invention is a non-contact temperature sensor that measures the temperature of a heat source in a non-contact manner, and an infrared detection thermosensitive element that detects the amount of infrared radiation emitted from the heat source. A temperature-compensating thermosensitive element that detects the amount of heat from the external environment, and a guide cylinder that is provided so as to demarcate the temperature detection field of view by the infrared-sensitive thermosensitive element in the heat source. A light receiving device including an opening and a body including an inclined wall portion that extends from the opening toward a light receiving surface on which the infrared detecting thermal element is disposed, and is inclined with respect to a vertical direction of the light receiving surface, and includes the infrared detecting thermal element A light-shielding space formed by the body portion is provided around the range.

このように構成された非接触温度センサは、案内筒の開口が熱源に対向するように配置され、熱源からの放射赤外線が、案内筒の開口から、案内筒の内側(内部空間)に入射する。そのように案内筒に導光された放射赤外線のうち、赤外線検知用感熱素子を含む受光範囲に到達したものの熱エネルギーが適宜赤外線吸収手段(赤外線吸収膜等)に付与される。そして、赤外線検知用感熱素子によって検知された赤外線吸収手段の温度上昇、及び、温度補償用感熱素子によって検知された周囲温度に基づいて、放射赤外線の熱量ひいては熱源の温度が測定される。   The non-contact temperature sensor configured in this way is arranged so that the opening of the guide cylinder faces the heat source, and the radiant infrared rays from the heat source enter the inside (internal space) of the guide cylinder from the opening of the guide cylinder. . Among the radiant infrared rays thus guided to the guide tube, the thermal energy of the infrared rays that reach the light receiving range including the infrared detecting thermal element is appropriately applied to the infrared absorbing means (infrared absorbing film or the like). Then, based on the temperature rise of the infrared absorbing means detected by the infrared detecting thermal element and the ambient temperature detected by the temperature compensating thermal element, the amount of radiation infrared radiation and the temperature of the heat source are measured.

このとき、案内筒の開口からその内側に入射した放射赤外線は、その一部が赤外線検知用感熱素子を含む受光範囲に直接的に到達し、残部は、案内筒胴部の内壁に向かって進行し、或いは、案内筒の胴部の内壁で反射され得るが、かかる放射赤外線の少なくとも一部、好ましくは全部が、受光面の垂直方向に対して傾斜して延びる傾斜壁部を含む胴部によって、赤外線検知用感熱素子を含む受光範囲の周囲に形成される遮光空間へと方向付けられ、赤外線検知用感熱素子を含む受光範囲に到達することが妨げられる。よって、従来の如く案内筒の内壁等に黒体処理を施さなくとも、案内筒の内壁で反射される赤外線成分に起因する非接触温度センサの感度誤差や感度の低下及びその経年変動が防止される。   At this time, a part of the radiant infrared rays incident on the inner side from the opening of the guide cylinder directly reach the light receiving range including the infrared detecting thermal element, and the remaining part proceeds toward the inner wall of the guide cylinder body. Alternatively, it can be reflected by the inner wall of the body portion of the guide tube, but at least a part, preferably all, of the radiated infrared rays can be reflected by a body portion including an inclined wall portion that extends obliquely with respect to the vertical direction of the light receiving surface. The light is directed to a light-shielding space formed around the light receiving range including the infrared detecting thermal element, and is prevented from reaching the light receiving range including the infrared detecting thermal element. Therefore, even if the black body treatment is not applied to the inner wall of the guide tube as in the prior art, the sensitivity error of the non-contact temperature sensor due to the infrared component reflected by the inner wall of the guide tube, the decrease in sensitivity, and its secular variation are prevented. The

また、上述の如く、熱源からの放射赤外線の少なくとも一部、好ましくは全部が、受光面の垂直方向に対して傾斜して延びる傾斜壁部を含む胴部によって、赤外線検知用感熱素子を含む受光範囲の周囲に形成される遮光空間へと方向付けられる。つまり、熱源からの放射赤外線が案内筒の胴部の内壁で反射されて赤外線吸収膜に間接的に到達することが抑止されるため、検知対象物である熱源の温度変化に対する応答性が改善し、検知対象物である熱源の温度変化のみを瞬時に検知することができるようになる。   In addition, as described above, at least a part, preferably all, of the radiated infrared rays from the heat source is received by the body including the inclined wall portion that is inclined with respect to the vertical direction of the light receiving surface and includes the infrared detecting thermal element. Directed to a light-shielding space formed around the area. In other words, since the radiant infrared rays from the heat source are reflected on the inner wall of the barrel portion of the guide tube and are indirectly prevented from reaching the infrared absorption film, the responsiveness to the temperature change of the heat source as the detection object is improved. Only the temperature change of the heat source that is the detection object can be instantaneously detected.

また、案内筒の胴部の内壁等に黒体処理を施していないため、黒体吸収膜からの赤外線放射に起因する温度上昇による熱や案内筒自体の温度上昇による熱が、非接触温度センサ全体へ伝導することもなく、赤外線吸収膜の温度と周囲温度との差の僅少化が抑止されるため、非接触温度センサの感度の低下を防止することができる。   In addition, since the black body treatment is not applied to the inner wall of the body of the guide tube, the non-contact temperature sensor detects the heat due to the temperature rise caused by infrared radiation from the black body absorbing film and the heat due to the temperature rise of the guide tube itself. Since it is not conducted to the whole and the difference between the temperature of the infrared absorption film and the ambient temperature is suppressed, the sensitivity of the non-contact temperature sensor can be prevented from being lowered.

さらに、案内筒の黒体処理が不要であることから、製造時における工数及びコストの増大、生産性の低下、並びに、作業環境及び自然環境の悪化をも十分に防止することができる。   Further, since the black body treatment of the guide tube is unnecessary, it is possible to sufficiently prevent the increase in man-hours and costs during production, the decrease in productivity, and the deterioration of the work environment and the natural environment.

胴部は、傾斜壁部の開口側端部から案内筒の内側に向かって延びる蓋部を有すると好ましい。この場合、胴部によって形成される遮光空間がより広範囲に確保されるため、熱源からの放射赤外線が案内筒の胴部の内壁で反射されて赤外線検知用感熱素子を含む受光範囲に間接的に到達することを一層妨げることができる。   The trunk portion preferably has a lid portion that extends from the opening side end portion of the inclined wall portion toward the inside of the guide tube. In this case, since the light shielding space formed by the body portion is secured in a wider range, the radiated infrared rays from the heat source are reflected by the inner wall of the body portion of the guide tube and indirectly to the light receiving range including the heat sensing element for detecting infrared rays. It can be further prevented from reaching.

案内筒を断面視した場合、傾斜壁部と受光面とのなす角度をδ、受光面に対する垂線と、受光範囲の中央と傾斜壁部の開口側端部とを結ぶ直線とのなす角度をαとすると、δおよびαは以下の関係式(1)を満たすと好ましい。
0°<δ≦45°+α/2 式(1)
この場合、熱源からの放射赤外線が案内筒の胴部の内壁で反射されて赤外線検知用感熱素子を含む受光範囲の中央、すなわち赤外線検知用感熱素子が存在する領域に到達することが妨げられる。
When the guide tube is viewed in cross section, the angle between the inclined wall portion and the light receiving surface is δ, and the angle between the perpendicular to the light receiving surface and the straight line connecting the center of the light receiving range and the opening side end of the inclined wall portion is α. Then, it is preferable that δ and α satisfy the following relational expression (1).
0 ° <δ ≦ 45 ° + α / 2 Formula (1)
In this case, the radiated infrared rays from the heat source are reflected by the inner wall of the trunk portion of the guide tube and are prevented from reaching the center of the light receiving range including the infrared detecting thermal element, that is, the region where the infrared detecting thermal element exists.

案内筒を断面視した場合、傾斜壁部と受光面とのなす角度をδ、受光面に対する垂線と、受光範囲の周縁端と傾斜壁部の開口側端部とを結ぶ直線とのなす角度をβとすると、δおよびβは以下の関係式(2)を満たすと好ましい。
0°<δ≦45°+β/2 式(2)
この場合、熱源からの放射赤外線が案内筒の胴部の内壁で反射されて赤外線検知用感熱素子を含む受光範囲の全領域に間接的に到達することが妨げられる。つまり、案内筒の胴部の内壁で反射される放射赤外線が受光範囲のいかなる領域にも到達できない。
When the guide tube is viewed in cross-section, the angle between the inclined wall portion and the light receiving surface is δ, and the angle between the perpendicular to the light receiving surface and the straight line connecting the peripheral edge of the light receiving range and the opening side end of the inclined wall portion is Assuming β, δ and β preferably satisfy the following relational expression (2).
0 ° <δ ≦ 45 ° + β / 2 Formula (2)
In this case, the radiant infrared rays from the heat source are reflected by the inner wall of the body portion of the guide tube and are prevented from indirectly reaching the entire region of the light receiving range including the infrared detecting thermal element. That is, the radiant infrared ray reflected by the inner wall of the body portion of the guide tube cannot reach any region of the light receiving range.

胴部は、傾斜壁部の受光面側端部から垂下する直壁部を有すると好ましい。この場合、胴部の広がりが抑えられるため、非接触温度センサの小型化を図ることができる。   The trunk portion preferably has a straight wall portion that hangs down from the light receiving surface side end portion of the inclined wall portion. In this case, since the expansion of the body portion is suppressed, the non-contact temperature sensor can be reduced in size.

本発明の非接触温度センサによれば、感度誤差や感度の低下を抑止しながら検知対象物の温度を瞬時に検知し、且つ、製造時における工数及びコストの増大、生産性の低下、並びに、作業環境及び自然環境の悪化を防止できる。   According to the non-contact temperature sensor of the present invention, the temperature of the detection object is instantaneously detected while suppressing the sensitivity error and the decrease in sensitivity, and the man-hour and cost at the time of manufacture, the decrease in productivity, and Deterioration of work environment and natural environment can be prevented.

本発明の第1実施形態に係る非接触温度センサの構成を示す上面図である。It is a top view which shows the structure of the non-contact temperature sensor which concerns on 1st Embodiment of this invention. 図1におけるI−I線に沿う非接触温度センサの模式切断部端面図であり、非接触温度センサを検知対象物である熱源と共に示す図である。It is a model cutting part end view of the non-contact temperature sensor in alignment with the II line in FIG. 1, and is a figure which shows a non-contact temperature sensor with the heat source which is a detection target. 本発明の第1実施形態に係る非接触温度センサの導光経路を説明するための模式切断部端面図である。It is a model cutting part end elevation for explaining a light guide path of a non-contact temperature sensor concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る非接触温度センサの案内筒の傾斜壁部の好ましい傾斜角度を説明するための模式切断部端面図である。It is a model cutting part end view for demonstrating the preferable inclination angle of the inclination wall part of the guide cylinder of the non-contact temperature sensor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る非接触温度センサの案内筒の傾斜壁部の更に好ましい傾斜角度を説明するための模式切断部端面図である。It is a model cutting part end view for demonstrating the more preferable inclination angle of the inclination wall part of the guide cylinder of the non-contact temperature sensor which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る非接触温度センサの構成を示す上面図である。It is a top view which shows the structure of the non-contact temperature sensor which concerns on 2nd Embodiment of this invention. 図6におけるII−II線に沿う非接触温度センサの模式切断部端面図である。It is a model cutting part end view of the non-contact temperature sensor along the II-II line in FIG. 本発明の第2実施形態に係る非接触温度センサの案内筒の傾斜壁部の好ましい傾斜角度を説明するための模式切断部端面図である。It is a model cutting part end elevation for demonstrating the preferable inclination angle of the inclination wall part of the guide cylinder of the non-contact temperature sensor which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る非接触温度センサの案内筒の傾斜壁部の更に好ましい傾斜角度を説明するための模式切断部端面図である。It is a model cutting part end elevation for demonstrating the more preferable inclination angle of the inclination wall part of the guide cylinder of the non-contact temperature sensor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る非接触温度センサの構成を示す上面図である。It is a top view which shows the structure of the non-contact temperature sensor which concerns on 3rd Embodiment of this invention. 図10におけるIII−III線に沿う非接触温度センサの模式切断部端面図である。It is a model cutting part end view of the non-contact temperature sensor which follows the III-III line in FIG. 本発明の第3実施形態に係る非接触温度センサの案内筒の傾斜壁部の好ましい傾斜角度を説明するための模式切断部端面図である。It is a model cutting part end elevation for demonstrating the preferable inclination angle of the inclination wall part of the guide cylinder of the non-contact temperature sensor which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る非接触温度センサの案内筒の傾斜壁部の更に好ましい傾斜角度を説明するための模式切断部端面図である。It is a model cutting part end elevation for demonstrating the more preferable inclination angle of the inclination wall part of the guide cylinder of the non-contact temperature sensor which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る非接触温度センサの案内筒の傾斜壁部と直壁部との好ましい連結位置について説明するための模式切断部端面図である。It is a model cutting part end view for demonstrating the preferable connection position of the inclination wall part and straight wall part of the guide cylinder of the non-contact temperature sensor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る非接触温度センサの構成を示す上面図である。It is a top view which shows the structure of the non-contact temperature sensor which concerns on 4th Embodiment of this invention. 図15におけるIV−IV線に沿う非接触温度センサの模式切断部端面図である。It is a model cutting part end view of the non-contact temperature sensor in alignment with the IV-IV line in FIG. 本発明の第4実施形態に係る非接触温度センサの案内筒の傾斜壁部の好ましい傾斜角度を説明するための模式切断部端面図である。It is a model cutting part end view for demonstrating the preferable inclination angle of the inclination wall part of the guide cylinder of the non-contact temperature sensor which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る非接触温度センサの案内筒の傾斜壁部の更に好ましい傾斜角度を説明するための模式切断部端面図である。It is a model cutting part end view for demonstrating the more preferable inclination angle of the inclination wall part of the guide cylinder of the non-contact temperature sensor which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る非接触温度センサの案内筒の傾斜壁部と直壁部との好ましい連結位置について説明するための模式切断部端面図である。It is a model cutting part end view for demonstrating the preferable connection position of the inclination wall part and straight wall part of the guide cylinder of the non-contact temperature sensor which concerns on 4th Embodiment of this invention.

以下、本発明の実施の形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。さらに、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。またさらに、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。   Hereinafter, embodiments of the present invention will be described in detail. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios. Furthermore, the following embodiment is an illustration for explaining the present invention, and is not intended to limit the present invention only to the embodiment. Furthermore, the present invention can be variously modified without departing from the gist thereof.

(第1実施形態)
まず、図1及び図2を参照して、本発明の第1実施形態の構成について説明する。図1は、本発明の第1実施形態に係る非接触温度センサ100の構成を示す上面図である。図2は、図1におけるI−I線に沿う非接触温度センサ100の模式切断部端面図であり、非接触温度センサ100を検知対象物である熱源7Aと共に示す図である。
(First embodiment)
First, with reference to FIG.1 and FIG.2, the structure of 1st Embodiment of this invention is demonstrated. FIG. 1 is a top view showing a configuration of a non-contact temperature sensor 100 according to the first embodiment of the present invention. FIG. 2 is a schematic end view of the non-contact temperature sensor 100 taken along line II in FIG. 1, and shows the non-contact temperature sensor 100 together with a heat source 7A that is a detection target.

非接触温度センサ100は、放射赤外線を吸収して発熱する赤外線吸収膜Mが設けられた支持板13が、センサ本体10の台座11とカバー筐体12との間に挟持された構造を有しており、台座11には、有底凹部21が形成されている。また、有底凹部21における赤外線吸収膜Mの図示下面(裏面)には、放射赤外線の熱量を検出する赤外線検知用感熱素子15が固着されている。このように、赤外線検知用感熱素子15は、赤外線吸収膜Mの裏面と有底凹部21の底面との間の空間に設置されている。   The non-contact temperature sensor 100 has a structure in which a support plate 13 provided with an infrared absorption film M that absorbs radiated infrared rays and generates heat is sandwiched between a base 11 of the sensor body 10 and a cover housing 12. A bottomed recess 21 is formed in the base 11. In addition, an infrared detection thermal element 15 for detecting the amount of heat of radiated infrared light is fixed to the lower surface (back surface) of the infrared absorbing film M in the bottomed recess 21 in the figure. Thus, the infrared detecting thermal element 15 is installed in the space between the back surface of the infrared absorbing film M and the bottom surface of the bottomed recess 21.

さらに、有底凹部21は、支持板13で覆われ遮光されている領域を有する。この支持板13で覆われ遮光されている領域の赤外線吸収膜Mの図示下面(裏面)には、周囲温度を検知する温度補償用感熱素子16が固着されている。このように、温度補償用感熱素子16も赤外線検知用感熱素子15と同様に、赤外線吸収膜Mと有底凹部21の底面との間の空間に設置されている。   Furthermore, the bottomed recess 21 has a region covered with the support plate 13 and shielded from light. A temperature-compensating thermosensitive element 16 for detecting the ambient temperature is fixed to the lower surface (rear surface) of the infrared absorbing film M in the region covered with the support plate 13 and shielded from light. As described above, the temperature compensating thermosensitive element 16 is also installed in the space between the infrared absorbing film M and the bottom surface of the bottomed recess 21, similarly to the infrared detecting thermosensitive element 15.

赤外線吸収膜Mの材質は、熱源7Aからの放射赤外線を吸収して発熱するものであれば特に制限されず、遠赤外線と称される4μmから10μmの波長光に対して吸収ピークを有する材質が望ましく、その例として、ポリエステル、ポリイミド、ポリエチレン、ポリカーボネート、PPS(ポリフェニレンスルフィド)系等の樹脂、フッ素系樹脂、シリコーン系樹脂等が挙げられる。さらに、赤外線検知用感熱素子15及び温度補償用感熱素子16は、受熱量に応じて電気的特性が変化する電気素子であれば特に限定されず、抵抗温度特性を有するサーミスタ、サーモパイル、金属測温体等を好ましく例示することができる。またさらに、センサ本体10の材質としては、熱伝導率が高く且つ熱容量が小さい材質が好ましく、例えば、アルミニウムが好適である。   The material of the infrared ray absorbing film M is not particularly limited as long as it absorbs the infrared ray emitted from the heat source 7A and generates heat, and a material having an absorption peak for light having a wavelength of 4 μm to 10 μm called far infrared ray is used. Desirably, examples thereof include polyester, polyimide, polyethylene, polycarbonate, PPS (polyphenylene sulfide) resin, fluorine resin, silicone resin, and the like. Further, the infrared detecting heat sensitive element 15 and the temperature compensating heat sensitive element 16 are not particularly limited as long as the electric characteristics change according to the amount of heat received, and thermistor, thermopile, metal thermometer having resistance temperature characteristics. A body etc. can be illustrated preferably. Furthermore, the material of the sensor body 10 is preferably a material having a high thermal conductivity and a small heat capacity, for example, aluminum.

センサ本体10のカバー筐体12における有底凹部21に対向する部位には、開口Pが形成された角筒状の胴部31を有する案内筒30が設けられており、有底凹部21に対向する位置に配置された赤外線吸収膜Mは、その図示上面(表面)が、案内筒30の底部において、熱源7Aが存在する外部環境Zに露呈している。この案内筒30の底部は、赤外線検知用感熱素子15が配置される受光面Nであり、受光面Nにおける赤外線吸収膜Mが外部環境Zに露呈する領域は、放射赤外線を吸収する赤外線検知用感熱素子15を含む受光範囲Qとなる。本実施形態においては、受光範囲Qの大きさは、開口Pの大きさよりも小さく設定されている。ここで、開口Pの大きさは、受光範囲Qに入射する放射赤外線の角度範囲を画定する。   A guide tube 30 having a rectangular tube-shaped body portion 31 in which an opening P is formed is provided at a portion of the cover body 12 of the sensor body 10 that faces the bottomed recess 21, and faces the bottomed recess 21. The infrared absorption film M arranged at the position where the heat absorption is shown is exposed at the bottom of the guide tube 30 to the external environment Z where the heat source 7A exists. The bottom of the guide tube 30 is a light receiving surface N on which the infrared detecting heat-sensitive element 15 is disposed, and a region of the light receiving surface N where the infrared absorbing film M is exposed to the external environment Z is an infrared detecting element that absorbs radiated infrared rays. The light receiving range Q including the thermal element 15 is obtained. In the present embodiment, the size of the light receiving range Q is set smaller than the size of the opening P. Here, the size of the opening P defines the angular range of the radiated infrared rays incident on the light receiving range Q.

案内筒30の胴部31は、開口Pから受光面Nに向かって、受光面Nの垂直方向に対して傾斜して延びる短辺傾斜壁部31a、31bと長辺傾斜壁部31c、31dの4つの傾斜壁部31a〜31dから構成されている。言い換えると、各傾斜壁部31a〜31dは、案内筒30の内側(内部空間側)に傾く勾配を有し、その先端が、外部環境Zからの放射赤外線が入射する案内筒30の開口Pに向かって、つまり図示斜め上向きに延在している。短辺傾斜壁部31a、31bは、略台形形状を呈しており、非接触温度センサ100を図示上方から平面視した場合、案内筒30の長手方向に互いに対向している。長辺傾斜壁部31c、31dは、略台形形状を呈しており、非接触温度センサ100を図示上方から平面視した場合、案内筒30の短手方向に互いに対向している。これら短辺傾斜壁部31a、31bと長辺傾斜壁部31c、31dの側辺同士が連結して、1つの角筒状の胴部31を構成している。また、各傾斜壁部31a〜31dは開口側端部A〜Dと、受光面側端部I〜Lを有している。ここで、各傾斜壁部31a〜31dの傾斜は、簡便なプレス加工等によって、案内筒30の内側(内部空間側)に折り曲げられ形成されている。なお、本実施形態では、案内筒30の胴部31は角筒状を呈しているが、円筒状を呈していてもよい。   The body portion 31 of the guide tube 30 is formed of a short-side inclined wall portions 31a and 31b and long-side inclined wall portions 31c and 31d extending from the opening P toward the light-receiving surface N while being inclined with respect to the vertical direction of the light-receiving surface N. It is comprised from four inclination wall parts 31a-31d. In other words, each inclined wall part 31a-31d has the inclination which inclines inside the guide cylinder 30 (internal space side), and the front-end | tip is the opening P of the guide cylinder 30 in which the radiation infrared rays from the external environment Z inject. It extends toward the front, that is, obliquely upward in the figure. The short-side inclined wall portions 31a and 31b have a substantially trapezoidal shape, and face each other in the longitudinal direction of the guide tube 30 when the non-contact temperature sensor 100 is viewed from above in the figure. The long-side inclined wall portions 31c and 31d have a substantially trapezoidal shape, and face each other in the short direction of the guide tube 30 when the non-contact temperature sensor 100 is viewed from above in the figure. The side edges of the short side inclined wall portions 31a and 31b and the long side inclined wall portions 31c and 31d are connected to each other to form one rectangular tube-shaped body portion 31. Moreover, each inclination wall part 31a-31d has the opening side edge part AD, and the light-receiving surface side edge part IL. Here, the inclination of each inclined wall part 31a-31d is bent and formed inside the guide cylinder 30 (internal space side) by a simple press work or the like. In addition, in this embodiment, although the trunk | drum 31 of the guide cylinder 30 is exhibiting the square cylinder shape, you may exhibit the cylindrical shape.

また、案内筒30は、その内側(内部空間側)であって、受光範囲Qの周囲に遮光空間Wが形成されている。遮光空間Wは、案内筒30の胴部31によって形成される空間(図示点線で囲まれる領域)であり、具体的には、傾斜壁部31a〜31dと、案内筒30の底部に配置される支持板13と、傾斜壁部31a〜31dの開口側端部A〜Dと支持板13とを結ぶ仮想直線によって囲まれる空間のことである。   The guide tube 30 has a light shielding space W on the inner side (inside space side) and around the light receiving range Q. The light shielding space W is a space (a region surrounded by a dotted line in the figure) formed by the body portion 31 of the guide tube 30, and specifically, is disposed at the inclined wall portions 31 a to 31 d and the bottom portion of the guide tube 30. It is a space surrounded by a virtual straight line connecting the support plate 13, the opening side end portions A to D of the inclined wall portions 31 a to 31 d and the support plate 13.

ここで、遮光空間Wの作用について詳細に説明する。遮光空間Wは、案内筒30の開口Pから入射した放射赤外線のうち、受光範囲Qに到達しなかった成分が集まる。言い換えると、遮光空間Wに集まる成分は、非接触温度センサ100の温度検知に影響を与えないものである。つまり、本実施形態における遮光空間Wは、熱源7Aから放射される放射赤外線のうち、主に、案内筒30の胴部31に反射されて受光面Nに間接的に到達する成分を受光範囲Qに到達しないように機能するための空間である。   Here, the operation of the light shielding space W will be described in detail. In the light shielding space W, components that have not reached the light receiving range Q among the radiant infrared rays incident from the opening P of the guide tube 30 gather. In other words, the components gathered in the light shielding space W do not affect the temperature detection of the non-contact temperature sensor 100. That is, the light-shielding space W in the present embodiment mainly includes components of the infrared rays radiated from the heat source 7A that are reflected by the body 31 of the guide tube 30 and indirectly reach the light-receiving surface N. It is a space to function so as not to reach.

熱源7Aは、例えば、複写機の加熱定着ローラ等であり、その表面から外部へ向かってあらゆる方向(全天方向)に赤外線成分が放射されている。熱源7Aにおける温度検知の視野範囲Yは、赤外線検知用感熱素子15を含む赤外線吸収膜Mの受光範囲Qと、案内筒30の開口Pの開口範囲を規定する長辺端部の先端位置から幾何学的に画定される。すなわち、図2に示されるように、赤外線吸収膜Mの受光範囲Qの縁端Qa、Qbと、そこから見て遠い位置にある開口Pの縁端(短辺傾斜壁部31a、31bの開口側端部)A、Bをそれぞれ結ぶ仮想線(図示二点鎖線、画角ω)が熱源7Aを貫く位置が、温度検知の視野範囲Yの縁端Ya、Ybに相当する。このように案内筒30は、放射赤外線検知の方向と角度を限定する機能を有する。   The heat source 7A is, for example, a heat fixing roller of a copying machine, and infrared components are radiated from the surface to the outside in all directions (all sky directions). The temperature detection visual field range Y in the heat source 7A is geometric from the light receiving range Q of the infrared absorption film M including the infrared detecting thermal element 15 and the tip position of the long side end that defines the opening range of the opening P of the guide tube 30. Defined scientifically. That is, as shown in FIG. 2, the edges Qa and Qb of the light receiving range Q of the infrared absorbing film M and the edges of the openings P far from the edges (openings of the short-side inclined wall portions 31a and 31b). The positions where imaginary lines (two-dot chain lines in the drawing, angle of view ω) respectively connecting the side ends A and B pass through the heat source 7A correspond to the edges Ya and Yb of the temperature detection visual field range Y. Thus, the guide tube 30 has a function of limiting the direction and angle of the radiant infrared detection.

以上のように、本実施形態に係る非接触温度センサ100は、外部環境Zに存在する検知対象物である熱源7Aからの放射赤外線が、導光手段として機能する案内筒30の開口Pから、胴部31の内側(案内筒30の内部空間)に入射する。赤外線吸収膜Mの受光範囲Qに到達した放射赤外線は、赤外線吸収膜Mを加熱し、その熱量が赤外線検知用感熱素子15によって検知され、その値と、温度補償用感熱素子16で検知された熱量の値に基づいて、熱源7Aの温度が測定される。   As described above, in the non-contact temperature sensor 100 according to the present embodiment, the radiant infrared rays from the heat source 7A, which is a detection target existing in the external environment Z, are emitted from the opening P of the guide tube 30 that functions as a light guide. The light enters the inside of the body portion 31 (the internal space of the guide tube 30). The radiant infrared rays that have reached the light receiving range Q of the infrared absorbing film M heat the infrared absorbing film M, the amount of heat detected by the infrared detecting thermal element 15, and the value and the temperature compensating thermal element 16 detected. Based on the value of the amount of heat, the temperature of the heat source 7A is measured.

このとき、案内筒30の開口Pからその内側に入射した放射赤外線は、その一部が赤外線検知用感熱素子15を含む受光範囲Qに直接的に到達し、残部は、案内筒30の胴部31の内壁に向かって進行し、或いは、案内筒30の胴部31の内壁で反射され得るが、かかる放射赤外線の少なくとも一部、好ましくは全部が、受光面Nの垂直方向に対して傾斜して延びる傾斜壁部31a〜31dを含む胴部31によって、赤外線検知用感熱素子15を含む受光範囲Qの周囲に形成される遮光空間Wへと方向付けられ、赤外線検知用感熱素子15を含む受光範囲Qに到達することが妨げられる。よって、従来の如く案内筒30の胴部31の内壁等に黒体処理を施さなくとも、案内筒30の胴部31の内壁で反射される赤外線成分に起因する非接触温度センサ100の感度誤差や感度の低下及びその経年変動を防止することができる。   At this time, a part of the radiant infrared ray that has entered the opening P of the guide tube 30 directly reaches the light receiving range Q including the infrared detecting thermal element 15, and the remaining part is the trunk of the guide tube 30. 31 may proceed toward the inner wall of 31 or may be reflected by the inner wall of the trunk portion 31 of the guide tube 30, but at least a part, preferably all of the radiated infrared rays is inclined with respect to the vertical direction of the light receiving surface N. The body portion 31 including the inclined wall portions 31 a to 31 d extending in the direction is directed to the light shielding space W formed around the light receiving range Q including the infrared detecting thermal element 15, and includes the infrared detecting thermal element 15. Reaching the range Q is prevented. Therefore, the sensitivity error of the non-contact temperature sensor 100 caused by the infrared component reflected by the inner wall of the trunk portion 31 of the guide cylinder 30 without performing black body processing on the inner wall or the like of the trunk portion 31 of the guide cylinder 30 as in the prior art. It is possible to prevent a decrease in sensitivity and its aging.

また、本実施形態に係る非接触温度センサ100は、上述の如く、熱源7Aからの放射赤外線の少なくとも一部、好ましくは全部が、受光面Nの垂直方向に対して傾斜して延びる傾斜壁部31a〜31dを含む胴部31によって、赤外線検知用感熱素子15を含む受光範囲Qの周囲に形成される遮光空間Wへと方向付けられる。つまり、熱源7Aからの放射赤外線が案内筒30の胴部31の内壁で反射されて赤外線吸収膜Mに間接的に到達することが抑止されるため、検知対象物である熱源7Aの温度変化に対する応答性が改善し、検知対象物である熱源7Aの温度変化のみを瞬時に検知することができる。   In addition, as described above, the non-contact temperature sensor 100 according to the present embodiment has an inclined wall portion in which at least a part, preferably all of the radiated infrared rays from the heat source 7A extend with an inclination with respect to the vertical direction of the light receiving surface N. The body part 31 including 31a to 31d is directed to the light shielding space W formed around the light receiving range Q including the infrared detecting thermal element 15. That is, since the radiant infrared rays from the heat source 7A are reflected by the inner wall of the body portion 31 of the guide tube 30 and indirectly reach the infrared absorption film M, the temperature change of the heat source 7A that is the detection target is suppressed. Responsiveness is improved, and only a temperature change of the heat source 7A, which is a detection target, can be detected instantaneously.

また、本実施形態に係る非接触温度センサ100は、案内筒30の胴部31の内壁等に黒体処理を施していないため、黒体吸収膜からの赤外線放射に起因する温度上昇による熱や案内筒30自体の温度上昇による熱が、非接触温度センサ100全体へ伝導することもなく、赤外線吸収膜Mの温度と周囲温度との差の僅少化が抑止されるため、非接触温度センサ100の感度の低下を防止することができる。   Further, since the non-contact temperature sensor 100 according to the present embodiment does not perform black body processing on the inner wall or the like of the trunk portion 31 of the guide cylinder 30, heat or heat due to temperature rise caused by infrared radiation from the black body absorbing film Heat due to the temperature rise of the guide cylinder 30 itself is not conducted to the entire non-contact temperature sensor 100, and the difference between the temperature of the infrared absorption film M and the ambient temperature is suppressed, so that the non-contact temperature sensor 100 The decrease in sensitivity can be prevented.

さらに、本実施形態に係る非接触温度センサ100は、案内筒30の黒体処理が不要であることから、製造時における工数及びコストの増大、生産性の低下、並びに、作業環境及び自然環境の悪化をも十分に防止することができる。   Furthermore, since the non-contact temperature sensor 100 according to the present embodiment does not require the black body treatment of the guide cylinder 30, the man-hour and cost at the time of manufacture, the productivity is lowered, and the working environment and the natural environment are reduced. Deterioration can be sufficiently prevented.

ここで、図3を参照して、本実施形態に係る非接触温度センサ100に対する熱源7Aからの放射赤外線の導光経路について詳細に説明する。図3は、本発明の第1実施形態に係る非接触温度センサ100の導光経路を説明するための模式切断部端面図である。   Here, with reference to FIG. 3, the light guide path | route of the infrared rays from the heat source 7A with respect to the non-contact temperature sensor 100 which concerns on this embodiment is demonstrated in detail. FIG. 3 is a schematic end view of the cut portion for explaining the light guide path of the non-contact temperature sensor 100 according to the first embodiment of the present invention.

図3に示されるように、開口Pから入射する放射赤外線の例として、受光範囲Qに直接的に到達する赤外線成分1000と、案内筒30の傾斜壁部31aの内壁面に到達する赤外線成分1001とすると、赤外線成分1000は、受光範囲Qに直接的に到達するため、案内筒30の傾斜壁部31aの内壁表面の状態の影響を受けずに受光範囲Qに到達する。これに対して、赤外線成分1001は、案内筒30の傾斜壁部31a(胴部31)によって形成された遮光空間Wに到達し、案内筒30の傾斜壁部31aの内壁表面で反射されるため、その反射光は案内筒30の傾斜壁部31aの内壁表面の状態の影響を受ける。ところが、案内筒30の傾斜壁部31aは受光面Nの垂直方向に対して傾斜しているため、その反射光は遮光空間W内に方向付けられ、受光範囲Qの周囲である到達点Vに到達する。したがって案内筒30の傾斜壁部31a(胴部31)の影響を受けることがないため、非接触温度センサ100の感度誤差を防止することができる。仮に、案内筒30の傾斜壁部31aが受光面Nに対して垂直に延在する直壁と捉えた場合、案内筒30の傾斜壁部31aの開口側端部Aから受光面Nに対して垂直に延ばした端部を受光面側端部I´とすると、傾斜壁部31aの開口側端部Aと受光面側端部I´を結ぶ仮想直線AI´が案内筒30の胴部31に相当することとなる。この場合、赤外線成分1001は、仮想直線AI´の表面で反射され、受光範囲Q内に位置する到達点V´に到達することとなる。したがって案内筒30の胴部31の影響を受けて、非接触温度センサ100が感度誤差を引き起こしやすくなる。   As shown in FIG. 3, as an example of radiant infrared rays incident from the opening P, an infrared component 1000 that directly reaches the light receiving range Q and an infrared component 1001 that reaches the inner wall surface of the inclined wall portion 31 a of the guide tube 30. Then, since the infrared component 1000 directly reaches the light receiving range Q, the infrared component 1000 reaches the light receiving range Q without being affected by the state of the inner wall surface of the inclined wall portion 31a of the guide tube 30. On the other hand, the infrared component 1001 reaches the light shielding space W formed by the inclined wall portion 31a (body portion 31) of the guide tube 30 and is reflected by the inner wall surface of the inclined wall portion 31a of the guide tube 30. The reflected light is affected by the state of the inner wall surface of the inclined wall portion 31a of the guide tube 30. However, since the inclined wall portion 31a of the guide tube 30 is inclined with respect to the vertical direction of the light receiving surface N, the reflected light is directed into the light shielding space W and reaches the arrival point V around the light receiving range Q. To reach. Therefore, since it is not influenced by the inclined wall part 31a (body part 31) of the guide cylinder 30, the sensitivity error of the non-contact temperature sensor 100 can be prevented. If the inclined wall portion 31a of the guide tube 30 is regarded as a straight wall extending perpendicularly to the light receiving surface N, the opening side end A of the inclined wall portion 31a of the guide tube 30 is directed to the light receiving surface N. If the end portion extending vertically is the light receiving surface side end portion I ′, a virtual straight line AI ′ connecting the opening side end portion A of the inclined wall portion 31 a and the light receiving surface side end portion I ′ is formed in the body portion 31 of the guide tube 30. It will be equivalent. In this case, the infrared component 1001 is reflected on the surface of the virtual straight line AI ′ and reaches the arrival point V ′ located within the light receiving range Q. Therefore, the non-contact temperature sensor 100 is likely to cause a sensitivity error due to the influence of the body portion 31 of the guide tube 30.

次に、図4を参照して、本実施形態に係る非接触温度センサ100の案内筒30の傾斜壁部31a〜31dと受光面Nとのなす角度δの好ましい傾斜角度について詳細に説明する。図4は、本発明の第1実施形態に係る非接触温度センサ100の案内筒30の傾斜壁部31a〜31dの好ましい傾斜角度を説明するための模式切断部端面図である。   Next, with reference to FIG. 4, a preferable inclination angle of the angle δ formed by the inclined wall portions 31a to 31d of the guide tube 30 of the non-contact temperature sensor 100 according to the present embodiment and the light receiving surface N will be described in detail. FIG. 4 is a schematic cut-part end view for explaining preferred inclination angles of the inclined wall portions 31a to 31d of the guide tube 30 of the non-contact temperature sensor 100 according to the first embodiment of the present invention.

図4に示されるように、案内筒30の傾斜壁部31aは、受光面Nに対して角度δの傾斜を有している。同様に、案内筒30の傾斜壁部31bは、受光面Nに対して角度δの傾斜を有している。ここで、案内筒30の傾斜壁部31a、31bの内壁を反射面とすると、案内筒30の傾斜壁部31aの開口側端部Aの鏡像は、傾斜壁部31bの延長線を対称軸として、線対称の位置にある鏡像点A´となる。同様に、案内筒30の傾斜壁部31a、31bの内壁を反射面とすると、案内筒30の傾斜壁部31bの開口側端部Bの鏡像は、傾斜壁部31aの延長線を対称軸として、線対称の位置にある鏡像点B´となる。   As shown in FIG. 4, the inclined wall portion 31 a of the guide cylinder 30 has an inclination of an angle δ with respect to the light receiving surface N. Similarly, the inclined wall portion 31 b of the guide tube 30 has an angle δ with respect to the light receiving surface N. Here, if the inner walls of the inclined wall portions 31a and 31b of the guide tube 30 are reflection surfaces, the mirror image of the opening-side end portion A of the inclined wall portion 31a of the guide tube 30 has an extension line of the inclined wall portion 31b as an axis of symmetry. , A mirror image point A ′ at a line-symmetrical position. Similarly, when the inner walls of the inclined wall portions 31a and 31b of the guide tube 30 are reflection surfaces, the mirror image of the opening side end portion B of the inclined wall portion 31b of the guide tube 30 has an extension line of the inclined wall portion 31a as an axis of symmetry. , A mirror image point B ′ located in a line-symmetric position.

ところで、熱源7Aからの放射赤外線のうち、受光範囲Qの中央Oに直接的に到達する赤外線成分の範囲は、受光面Nに対する垂線と受光範囲Qの中央Oから傾斜壁部31aの開口側端部Aを結ぶ仮称直線とのなす角度αと、受光面Nに対する垂線と受光範囲Qの中央Oから傾斜壁部31bの開口側端部Bを結ぶ仮想直線とのなす角度αを合わせた角度2αの範囲となる。   By the way, among the radiant infrared rays from the heat source 7A, the range of the infrared component that directly reaches the center O of the light receiving range Q is the normal to the light receiving surface N and the opening O of the inclined wall portion 31a from the center O of the light receiving range Q. An angle 2α obtained by combining an angle α formed with a tentative straight line connecting the part A and an angle α formed between a perpendicular to the light receiving surface N and a virtual straight line connecting the center O of the light receiving range Q to the opening end B of the inclined wall portion 31b. It becomes the range.

一方、熱源7Aからの放射赤外線のうち、案内筒30の傾斜壁部31a、31bに反射されて受光範囲Qの中央Oに間接的に到達する赤外線成分の範囲は、受光範囲Qの中央Oから傾斜壁部31bの開口側端部Bを結ぶ仮想直線と受光範囲Qの中央Oから鏡像点A´を結ぶ仮想直線とのなす角度θ1と、受光範囲Qの中央Oから傾斜壁部31aの開口側端部Aを結ぶ仮想直線と受光範囲Qの中央Oから鏡像点B´を結ぶ仮想直線とのなす角度θ2の範囲となる。例えば、傾斜壁部31aの内壁に反射されて受光範囲Qの中央Oに到達する赤外線成分2000、2001などが存在するということになる。   On the other hand, of the radiant infrared rays from the heat source 7A, the range of the infrared component reflected by the inclined wall portions 31a and 31b of the guide tube 30 and indirectly reaching the center O of the light receiving range Q is from the center O of the light receiving range Q. An angle θ1 formed by a virtual straight line connecting the opening side end B of the inclined wall portion 31b and a virtual straight line connecting the mirror image point A ′ from the center O of the light receiving range Q, and the opening of the inclined wall portion 31a from the center O of the light receiving range Q. The range is an angle θ2 formed by a virtual straight line connecting the side end A and a virtual straight line connecting the mirror image point B ′ from the center O of the light receiving range Q. For example, there are infrared components 2000 and 2001 that are reflected by the inner wall of the inclined wall portion 31a and reach the center O of the light receiving range Q.

このような案内筒30の傾斜壁部31a、31bに反射されて受光範囲Qの中央Oに間接的に到達する赤外線成分を無くすためには、角度θ1と角度θ2が0°となる必要がある。これら角度θ1及び角度θ2は、傾斜角度δに連動して変化するものであって、傾斜角度δを小さくすると、角度θ1及び角度θ2も小さくなり、傾斜角度δと角度αが以下の関係式(3)を満たすときに、角度θ1及び角度θ2が0°となる。
δ=45°+α/2 式(3)
つまり、上記関係式(3)を満たすと、熱源7Aからの放射赤外線のうち、案内筒30の傾斜壁部31a、31bに反射されて受光範囲Qの中央Oに間接的に到達する赤外線成分が無くなる。このとき、受光範囲Qの中央Oから傾斜壁部31bの開口側端部Bを結ぶ仮想直線上に傾斜壁部31bの開口側端部Bと鏡像点A´を結ぶ仮想直線が重なり、受光範囲Qの中央Oから傾斜壁部31aの開口側端部Aを結ぶ仮想直線上に傾斜壁部31aの開口側端部Aと鏡像点B´を結ぶ仮想直線が重なることとなる。言い換えると、傾斜壁部31bの開口側端部Bと傾斜壁部31aの開口側端部Aを結ぶ仮想直線と傾斜壁部31bの開口側端部Bと鏡像点A´を結ぶ仮想直線とのなす角度を二等分する線分(図示しない)に傾斜壁部31bが重なり、傾斜壁部31bの開口側端部Bと傾斜壁部31aの開口側端部Aを結ぶ仮想直線と傾斜壁部31aの開口側端部Aと鏡像点B´を結ぶ仮想直線とのなす角度を二等分する線分101に傾斜壁部31aが重なることとなる。
In order to eliminate the infrared component reflected by the inclined wall portions 31a and 31b of the guide cylinder 30 and indirectly reaching the center O of the light receiving range Q, the angles θ1 and θ2 need to be 0 °. . These angles θ1 and θ2 change in conjunction with the inclination angle δ. When the inclination angle δ is reduced, the angles θ1 and θ2 are also reduced, and the inclination angle δ and the angle α are expressed by the following relational expression ( When 3) is satisfied, the angle θ1 and the angle θ2 are 0 °.
δ = 45 ° + α / 2 Formula (3)
That is, when the above relational expression (3) is satisfied, among infrared rays emitted from the heat source 7A, an infrared component that is reflected by the inclined wall portions 31a and 31b of the guide tube 30 and indirectly reaches the center O of the light receiving range Q is obtained. Disappear. At this time, a virtual straight line connecting the opening side end B of the inclined wall portion 31b and the mirror image point A ′ overlaps with a virtual straight line connecting the center O of the light receiving range Q to the opening side end B of the inclined wall portion 31b. A virtual straight line connecting the opening side end A of the inclined wall portion 31a and the mirror image point B ′ overlaps with a virtual straight line connecting the center O of Q to the opening side end A of the inclined wall portion 31a. In other words, an imaginary straight line connecting the opening side end B of the inclined wall portion 31b and the opening side end A of the inclined wall portion 31a and a imaginary straight line connecting the opening side end B of the inclined wall portion 31b and the mirror image point A ′. An inclined wall portion 31b overlaps a line segment (not shown) that bisects the angle formed, and an imaginary straight line connecting the opening-side end portion B of the inclined wall portion 31b and the opening-side end portion A of the inclined wall portion 31a and the inclined wall portion. The inclined wall portion 31a overlaps the line segment 101 that bisects the angle formed by the opening-side end A of 31a and the virtual straight line connecting the mirror image point B ′.

また、傾斜角度δをさらに小さくしてゆくと、案内筒30の傾斜壁部31a、31bに反射された赤外線成分の間接的に到達できない範囲が、受光範囲Qの中央Oを中心として、受光範囲Qの外側に向かって広がってゆく。したがって、傾斜角度δと角度αが以下の関係式(4)を満たしていると好ましい。
δ≦45°+α/2 式(4)
Further, when the inclination angle δ is further reduced, the range in which the infrared component reflected by the inclined wall portions 31a and 31b of the guide cylinder 30 cannot reach indirectly is centered on the center O of the light receiving range Q. Spread toward the outside of Q. Therefore, it is preferable that the inclination angle δ and the angle α satisfy the following relational expression (4).
δ ≦ 45 ° + α / 2 Formula (4)

以上の説明からも分かるように、本実施形態に係る非接触温度センサ100において、以下の関係式(1)を満たすと、案内筒30の傾斜壁部31a、31bに反射された赤外線成分が、受光範囲Qの中央Oに間接的に到達することを妨げることができる。
0°<δ≦45°+α/2 式(1)
したがって、受光範囲Qの中央Oに到達する赤外線成分は、熱源7Aからの放射赤外線のうち、受光範囲Qの中央Oに直接的に到達する成分だけとなる。つまり、赤外線吸収膜Mから構成される受光範囲Qの中で非接触温度センサ100の感度に最も影響を及ぼす中央Oに、案内筒30の傾斜壁部31a、31bに反射された赤外線成分が間接的に到達することを妨げられる。その結果、非接触温度センサ100の温度検知に案内筒30の胴部31の影響が抑制されるため、非接触温度センサ100の感度誤差を防止することができる。
As can be seen from the above description, in the non-contact temperature sensor 100 according to the present embodiment, when the following relational expression (1) is satisfied, the infrared component reflected by the inclined wall portions 31a and 31b of the guide tube 30 is: Indirectly reaching the center O of the light receiving range Q can be prevented.
0 ° <δ ≦ 45 ° + α / 2 Formula (1)
Accordingly, the infrared component that reaches the center O of the light receiving range Q is only the component that directly reaches the center O of the light receiving range Q among the radiated infrared rays from the heat source 7A. That is, the infrared component reflected by the inclined wall portions 31a and 31b of the guide tube 30 is indirectly in the center O that most affects the sensitivity of the non-contact temperature sensor 100 in the light receiving range Q constituted by the infrared absorption film M. Can't be reached. As a result, the influence of the body portion 31 of the guide tube 30 on the temperature detection of the non-contact temperature sensor 100 is suppressed, so that a sensitivity error of the non-contact temperature sensor 100 can be prevented.

続いて、図5を参照して、本実施形態に係る非接触温度センサ100の案内筒30の傾斜壁部31a〜31dと受光面Nとのなす角度δの更に好ましい傾斜角度について詳細に説明する。図5は、本発明の第1実施形態に係る非接触温度センサ100の案内筒30の傾斜壁部31a〜31dの更に好ましい傾斜角度を説明するための模式切断部端面図である。   Subsequently, with reference to FIG. 5, a more preferable inclination angle of the angle δ formed by the inclined wall portions 31 a to 31 d of the guide tube 30 of the non-contact temperature sensor 100 according to the present embodiment and the light receiving surface N will be described in detail. . FIG. 5 is a schematic cut end face view for explaining more preferable inclination angles of the inclined wall portions 31a to 31d of the guide tube 30 of the non-contact temperature sensor 100 according to the first embodiment of the present invention.

図5に示されるように、案内筒30の傾斜壁部31aは、受光面Nに対して角度δの傾斜を有している。同様に、案内筒30の傾斜壁部31bは、受光面Nに対して角度δの傾斜を有している。ここで、案内筒30の傾斜壁部31a、31bの内壁を反射面とすると、案内筒30の傾斜壁部31aの開口側端部Aの鏡像は、傾斜壁部31bの延長線を対称軸として、線対称の位置にある鏡像点A´となる。同様に、案内筒30の傾斜壁部31a、31bの内壁を反射面とすると、案内筒30の傾斜壁部31bの開口側端部Bの鏡像は、傾斜壁部31aの延長線を対称軸として、線対称の位置にある鏡像点B´となる。   As shown in FIG. 5, the inclined wall portion 31 a of the guide cylinder 30 has an inclination of an angle δ with respect to the light receiving surface N. Similarly, the inclined wall portion 31 b of the guide tube 30 has an angle δ with respect to the light receiving surface N. Here, if the inner walls of the inclined wall portions 31a and 31b of the guide tube 30 are reflection surfaces, the mirror image of the opening-side end portion A of the inclined wall portion 31a of the guide tube 30 has an extension line of the inclined wall portion 31b as an axis of symmetry. , A mirror image point A ′ at a line-symmetrical position. Similarly, when the inner walls of the inclined wall portions 31a and 31b of the guide tube 30 are reflection surfaces, the mirror image of the opening side end portion B of the inclined wall portion 31b of the guide tube 30 has an extension line of the inclined wall portion 31a as an axis of symmetry. , A mirror image point B ′ located in a line-symmetric position.

ところで、熱源7Aからの放射赤外線のうち、受光範囲Qに直接的に到達する赤外線成分の範囲は、受光面Nに対する垂線と受光範囲Qの縁端Qaから傾斜壁部31aの開口側端部Aを結ぶ仮想直線とのなす角度βと、受光面Nに対する垂線と受光範囲Qの縁端Qbから傾斜壁部31bの開口側端部Bを結ぶ仮想直線とのなす角度βを合わせた角度2βの範囲となる。   By the way, among the radiant infrared rays from the heat source 7A, the range of the infrared component that directly reaches the light receiving range Q is the perpendicular to the light receiving surface N and the edge Qa of the light receiving range Q to the opening side end A of the inclined wall portion 31a. And an angle β formed by combining an angle β formed with a virtual straight line connecting the vertical line with respect to the light receiving surface N and a virtual straight line connecting the edge Qb of the light receiving range Q with the opening end B of the inclined wall portion 31b. It becomes a range.

一方、熱源7Aからの放射赤外線のうち、案内筒30の傾斜壁部31a、31bに反射されて受光範囲Qに間接的に到達する赤外線成分の範囲は、受光範囲Qの縁端Qbから傾斜壁部31bの開口側端部Bを結ぶ仮想直線と受光範囲Qの縁端Qbから鏡像点A´を結ぶ仮想直線とのなす角度θ3と、受光範囲Qの縁端Qaから傾斜壁部31aの開口側端部Aとを結ぶ仮想直線と受光範囲Qの縁端Qaから鏡像点B´を結ぶ仮想直線とのなす角度θ4の範囲となる。   On the other hand, of the radiant infrared rays from the heat source 7A, the range of the infrared component reflected by the inclined wall portions 31a and 31b of the guide tube 30 and indirectly reaching the light receiving range Q is the inclined wall from the edge Qb of the light receiving range Q. The angle θ3 formed by the virtual straight line connecting the opening side end B of the portion 31b and the virtual straight line connecting the mirror image point A ′ from the edge Qb of the light receiving range Q, and the opening of the inclined wall portion 31a from the edge Qa of the light receiving range Q The range is an angle θ4 formed by a virtual straight line connecting the side end A and a virtual straight line connecting the mirror image point B ′ from the edge Qa of the light receiving range Q.

このような案内筒30の傾斜壁部31a、31bに反射されて受光範囲Qに間接的に到達する赤外線成分を無くすためには、角度θ3と角度θ4が0°となる必要がある。これら角度θ3及び角度θ4は、傾斜角度δに連動して変化するものであって、傾斜角度δを小さくすると、角度θ3及び角度θ4も小さくなり、傾斜角度δと角度βが以下の関係式(5)を満たすときに、角度θ3及び角度θ4が0°となる。
δ=45°+β/2 式(5)
つまり、上記関係式(5)を満たすと、熱源7Aからの放射赤外線のうち、案内筒30の傾斜壁部31a、31bに反射されて受光範囲Qに間接的に到達する赤外線成分が無くなる。このとき、受光範囲Qの縁端Qbから傾斜壁部31bの開口側端部Bを結ぶ仮想直線上に傾斜壁部31bの開口側端部Bと鏡像点A´を結ぶ仮想直線が重なり、受光範囲Qの縁端Qaから傾斜壁部31aの開口側端部Aを結ぶ仮想直線上に傾斜壁部31aの開口側端部Aと鏡像点B´を結ぶ仮想直線が重なることとなる。言い換えると、傾斜壁部31bの開口側端部Bと傾斜壁部31aの開口側端部Aを結ぶ仮想直線と傾斜壁部31bの開口側端部Bと鏡像点A´を結ぶ仮想直線とのなす角度を二等分する線分(図示しない)に傾斜壁部31bが重なり、傾斜壁部31bの開口側端部Bと傾斜壁部31aの開口側端部Aを結ぶ仮想直線と傾斜壁部31aの開口側端部Aと鏡像点B´を結ぶ仮想直線とのなす角度を二等分する線分111に傾斜壁部31aが重なることとなる。
In order to eliminate the infrared component that is reflected by the inclined wall portions 31a and 31b of the guide cylinder 30 and indirectly reaches the light receiving range Q, the angles θ3 and θ4 need to be 0 °. These angles θ3 and θ4 change in conjunction with the inclination angle δ. When the inclination angle δ is reduced, the angles θ3 and θ4 are also reduced, and the inclination angle δ and the angle β are expressed by the following relational expression ( When 5) is satisfied, the angle θ3 and the angle θ4 are 0 °.
δ = 45 ° + β / 2 Formula (5)
That is, when the relational expression (5) is satisfied, the infrared component reflected from the inclined wall portions 31a and 31b of the guide tube 30 and indirectly reaching the light receiving range Q is eliminated from the radiated infrared rays from the heat source 7A. At this time, a virtual straight line connecting the opening side end B of the inclined wall part 31b and the mirror image point A ′ overlaps with a virtual straight line connecting the edge Qb of the light receiving range Q to the opening side end B of the inclined wall part 31b. A virtual straight line connecting the opening side end A of the inclined wall portion 31a and the mirror image point B ′ overlaps with a virtual straight line connecting the edge Qa of the range Q to the opening side end A of the inclined wall portion 31a. In other words, an imaginary straight line connecting the opening side end B of the inclined wall portion 31b and the opening side end A of the inclined wall portion 31a and a imaginary straight line connecting the opening side end B of the inclined wall portion 31b and the mirror image point A ′. An inclined wall portion 31b overlaps a line segment (not shown) that bisects the angle formed, and an imaginary straight line connecting the opening-side end portion B of the inclined wall portion 31b and the opening-side end portion A of the inclined wall portion 31a and the inclined wall portion. The inclined wall 31a overlaps the line segment 111 that bisects the angle formed by the opening-side end A of 31a and the virtual straight line connecting the mirror image point B ′.

また、傾斜角度δをさらに小さくしてゆくと、案内筒30の傾斜壁部31a、31bに反射された赤外線成分は受光範囲Qの領域外にしか到達できなくなる。したがって、傾斜角度δと角度βが以下の関係式(6)を満たしていると好ましい。
δ≦45°+β/2 式(6)
Further, when the inclination angle δ is further reduced, the infrared component reflected by the inclined wall portions 31a and 31b of the guide tube 30 can reach only outside the light receiving range Q. Therefore, it is preferable that the inclination angle δ and the angle β satisfy the following relational expression (6).
δ ≦ 45 ° + β / 2 Formula (6)

以上の説明からも分かるように、本実施形態に係る非接触温度センサ100において、以下の関係式(2)を満たすと、案内筒30の傾斜壁部31a、31bに反射された赤外線成分が、受光範囲Qに間接的に到達することを妨げることができる。
0°<δ≦45°+β/2 式(2)
したがって、受光範囲Qに到達する赤外線成分は、熱源7Aからの放射赤外線のうち、受光範囲Qに直接的に到達する成分だけとなる。つまり、赤外線吸収膜Mから構成される受光範囲Qの中で非接触温度センサ100の感度に影響を及ぼす全領域に対して、案内筒30の傾斜壁部31a、31bに反射された赤外線成分が間接的に到達することを妨げられる。その結果、非接触温度センサ100の温度検知に案内筒30の胴部31の影響がなくなり、非接触温度センサ100の感度誤差を防止することができる。
As can be seen from the above description, in the non-contact temperature sensor 100 according to the present embodiment, when the following relational expression (2) is satisfied, the infrared component reflected by the inclined wall portions 31a and 31b of the guide tube 30 is: Indirectly reaching the light receiving range Q can be prevented.
0 ° <δ ≦ 45 ° + β / 2 Formula (2)
Therefore, the infrared component that reaches the light receiving range Q is only the component that directly reaches the light receiving range Q among the radiated infrared rays from the heat source 7A. That is, the infrared component reflected by the inclined wall portions 31a and 31b of the guide cylinder 30 is in the entire light-receiving range Q constituted by the infrared absorption film M and affects the sensitivity of the non-contact temperature sensor 100. It is prevented from reaching indirectly. As a result, the temperature detection of the non-contact temperature sensor 100 is not affected by the body portion 31 of the guide tube 30, and a sensitivity error of the non-contact temperature sensor 100 can be prevented.

(第2実施形態)
次に、図6及び図7を参照して、本発明の第2実施形態の構成について説明する。図6は、本発明の第2実施形態に係る非接触温度センサ200の構成を示す上面図である。図7は、図6におけるII−II線に沿う非接触温度センサ200の模式切断部端面図である。第2実施形態に係る非接触温度センサ200は、案内筒130の胴部131が蓋部131e〜131hを有する点において、第1実施形態に係る非接触温度センサ100と異なっている。以下、第1実施形態と異なる点を中心に説明する。
(Second Embodiment)
Next, the configuration of the second embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a top view showing a configuration of a non-contact temperature sensor 200 according to the second embodiment of the present invention. FIG. 7 is a schematic end view of the non-contact temperature sensor 200 taken along line II-II in FIG. The non-contact temperature sensor 200 according to the second embodiment is different from the non-contact temperature sensor 100 according to the first embodiment in that the body 131 of the guide tube 130 includes lid portions 131e to 131h. Hereinafter, a description will be given focusing on differences from the first embodiment.

非接触温度センサ200は、第1実施形態の非接触温度センサ100と同様に、センサ本体10のカバー筐体12における有底凹部21に対向する部位に、開口Pが形成された角筒状の胴部131を有する案内筒130が設けられている。   Similarly to the non-contact temperature sensor 100 of the first embodiment, the non-contact temperature sensor 200 has a rectangular tube shape in which an opening P is formed at a portion facing the bottomed recess 21 in the cover housing 12 of the sensor body 10. A guide tube 130 having a body 131 is provided.

案内筒130の胴部131は、傾斜壁部131a〜131dを有している。但し、本実施形態では、胴部131が蓋部131e〜131hをさらに備えており、この点が第1実施形態と相違する。   The body 131 of the guide tube 130 has inclined wall portions 131a to 131d. However, in this embodiment, the trunk | drum 131 is further provided with the cover parts 131e-131h, and this point is different from 1st Embodiment.

蓋部131e〜131hは、それぞれ傾斜壁部131a〜131dの開口側端部A〜Dから案内筒130の内側(内部空間側)に向かって延びている。本実施形態では、蓋部131e〜131hは、受光面Nの延在方向と平行な方向に延びている。これら傾斜壁部131a〜131dと蓋部131e〜131hで構成される胴部131によって、案内筒130の内側(内部空間側)であって、受光範囲Qの周囲に遮光空間Wが形成されている。具体的には、傾斜壁部131a〜131dと、蓋部131e〜131hと、案内筒130の底部に配置される支持板13と、蓋部131e〜131hの開口側端部E〜Hと支持板13を結ぶ仮想直線によって囲まれる空間のことである。   The cover parts 131e-131h are extended toward the inner side (internal space side) of the guide cylinder 130 from the opening side edge part AD of inclined wall part 131a-131d, respectively. In the present embodiment, the lid portions 131e to 131h extend in a direction parallel to the extending direction of the light receiving surface N. A light shielding space W is formed around the light receiving range Q on the inner side (inside the inner space) of the guide tube 130 by the body 131 composed of the inclined walls 131a to 131d and the lids 131e to 131h. . Specifically, the inclined wall portions 131a to 131d, the lid portions 131e to 131h, the support plate 13 disposed at the bottom of the guide tube 130, the opening side end portions E to H of the lid portions 131e to 131h, and the support plate. 13 is a space surrounded by a virtual straight line connecting 13.

以上のように、本実施形態に係る非接触温度センサ200においては、胴部131が、傾斜壁部131a〜131dの開口側端部A〜Dから案内筒130の内側に向かって延びる蓋部131e〜131hを有している。このため、胴部131によって形成される遮光空間Wがより広範囲に確保されるため、熱源7Aからの放射赤外線が案内筒130の胴部131の内壁で反射されて赤外線検知用感熱素子15を含む受光範囲Qに間接的に到達することを一層妨げることができる。   As described above, in the non-contact temperature sensor 200 according to the present embodiment, the body portion 131 has the lid portion 131e extending from the opening side end portions A to D of the inclined wall portions 131a to 131d toward the inside of the guide tube 130. ~ 131h. For this reason, since the light-shielding space W formed by the body 131 is secured in a wider range, the radiant infrared rays from the heat source 7A are reflected by the inner wall of the body 131 of the guide tube 130 and include the infrared detecting thermal element 15. Indirectly reaching the light receiving range Q can be further prevented.

また、本実施形態に係る非接触温度センサ200では、蓋部131e〜131hを有しているため、案内筒130の先端が検知対象物である熱源7Aに誤って接触した場合であっても、蓋部131e〜131hによる緩衝効果によって、検知対象物である熱源7Aの破損を防止することができる。   In addition, since the non-contact temperature sensor 200 according to the present embodiment includes the lid portions 131e to 131h, even when the tip of the guide tube 130 is in contact with the heat source 7A that is a detection target, Due to the buffering effect of the lid portions 131e to 131h, the heat source 7A that is the detection target can be prevented from being damaged.

次に、図8を参照して、本実施形態に係る非接触温度センサ200の案内筒130の傾斜壁部131a〜131dと受光面Nとのなす角度δの好ましい傾斜角度について詳細に説明する。図8は、本発明の第2実施形態に係る非接触温度センサ200の案内筒130の傾斜壁部131a〜131dの好ましい傾斜角度を説明するための模式切断部端面図である。   Next, a preferable inclination angle of the angle δ formed by the inclined wall portions 131a to 131d of the guide tube 130 of the non-contact temperature sensor 200 according to the present embodiment and the light receiving surface N will be described in detail with reference to FIG. FIG. 8 is an end view of a schematic cut portion for explaining preferred inclination angles of the inclined wall portions 131a to 131d of the guide tube 130 of the non-contact temperature sensor 200 according to the second embodiment of the present invention.

本実施形態に係る非接触温度センサ200は、第1実施形態と同様に、以下の関係式(1)を満たすと、案内筒130の傾斜壁部131a、131bに反射された赤外線成分が、受光範囲Qの中央Oに間接的に到達することを妨げることができる。
0°<δ≦45°+α/2 式(1)
したがって、受光範囲Qの中央Oに到達する赤外線成分は、熱源7Aからの放射赤外線のうち、受光範囲Qの中央Oに直接的に到達する成分だけとなる。つまり、赤外線吸収膜Mから構成される受光範囲Qの中で非接触温度センサ200の感度に最も影響を及ぼす中央Oに、案内筒130の傾斜壁部131a、131bに反射された赤外線成分が間接的に到達することを妨げられる。その結果、非接触温度センサ200の温度検知に案内筒130の胴部131の影響が抑制されるため、非接触温度センサ200の感度誤差を防止することができる。
As in the first embodiment, the non-contact temperature sensor 200 according to the present embodiment satisfies the following relational expression (1), and the infrared component reflected by the inclined wall portions 131a and 131b of the guide tube 130 receives light. Indirect access to the center O of the range Q can be prevented.
0 ° <δ ≦ 45 ° + α / 2 Formula (1)
Accordingly, the infrared component that reaches the center O of the light receiving range Q is only the component that directly reaches the center O of the light receiving range Q among the radiated infrared rays from the heat source 7A. That is, the infrared component reflected by the inclined wall portions 131a and 131b of the guide tube 130 is indirectly in the center O that most affects the sensitivity of the non-contact temperature sensor 200 in the light receiving range Q formed by the infrared absorption film M. Can't be reached. As a result, the influence of the body 131 of the guide tube 130 on the temperature detection of the non-contact temperature sensor 200 is suppressed, so that a sensitivity error of the non-contact temperature sensor 200 can be prevented.

続いて、図9を参照して、本実施形態に係る非接触温度センサ200の案内筒130の傾斜壁部131a〜131dと受光面Nとのなす角度δの更に好ましい傾斜角度について詳細に説明する。図9は、本発明の第2実施形態に係る非接触温度センサ200の案内筒130の傾斜壁部131a〜131dの更に好ましい傾斜角度を説明するための模式切断部端面図である。   Subsequently, with reference to FIG. 9, a more preferable inclination angle of the angle δ formed by the inclined wall portions 131 a to 131 d of the guide tube 130 of the non-contact temperature sensor 200 according to the present embodiment and the light receiving surface N will be described in detail. . FIG. 9 is a schematic cut-part end view for explaining more preferable inclination angles of the inclined wall portions 131a to 131d of the guide tube 130 of the non-contact temperature sensor 200 according to the second embodiment of the present invention.

本実施形態に係る非接触温度センサ200は、第1実施形態と同様に、以下の関係式(2)を満たすと、案内筒130の傾斜壁部131a、131bに反射された赤外線成分が、受光範囲Qに間接的に到達することを妨げることができる。
0°<δ≦45°+β/2 式(2)
したがって、受光範囲Qに到達する赤外線成分は、熱源7Aからの放射赤外線のうち、受光範囲Qに直接的に到達する成分だけとなる。つまり、赤外線吸収膜Mから構成される受光範囲Qの中で非接触温度センサ200の感度に影響を及ぼす全領域に対して、案内筒130の傾斜壁部131a、131bに反射された赤外線成分が間接的に到達することを妨げられる。その結果、非接触温度センサ200の温度検知に案内筒130の胴部131の影響がなくなり、非接触温度センサ200の感度誤差を防止することができる。
As in the first embodiment, the non-contact temperature sensor 200 according to the present embodiment satisfies the following relational expression (2), and the infrared component reflected by the inclined wall portions 131a and 131b of the guide tube 130 receives light. It is possible to prevent the range Q from being reached indirectly.
0 ° <δ ≦ 45 ° + β / 2 Formula (2)
Therefore, the infrared component that reaches the light receiving range Q is only the component that directly reaches the light receiving range Q among the radiated infrared rays from the heat source 7A. That is, the infrared component reflected by the inclined wall portions 131a and 131b of the guide tube 130 with respect to the entire region that affects the sensitivity of the non-contact temperature sensor 200 in the light receiving range Q constituted by the infrared absorbing film M. It is prevented from reaching indirectly. As a result, the temperature of the non-contact temperature sensor 200 is not affected by the body 131 of the guide tube 130, and a sensitivity error of the non-contact temperature sensor 200 can be prevented.

(第3実施形態)
次に、図10及び図11を参照して、本発明の第3実施形態の構成について説明する。図10は、本発明の第3実施形態に係る非接触温度センサ300の構成を示す上面図である。図11は、図10におけるIII−III線に沿う非接触温度センサ300の模式切断部端面図である。第3実施形態に係る非接触温度センサ300は、案内筒230の胴部231が直壁部231i〜231lを有する点において、第1実施形態に係る非接触温度センサ100と異なっている。以下、第1実施形態と異なる点を中心に説明する。
(Third embodiment)
Next, the configuration of the third embodiment of the present invention will be described with reference to FIGS. 10 and 11. FIG. 10 is a top view showing a configuration of a non-contact temperature sensor 300 according to the third embodiment of the present invention. FIG. 11 is a schematic end view of the non-contact temperature sensor 300 taken along line III-III in FIG. The non-contact temperature sensor 300 according to the third embodiment is different from the non-contact temperature sensor 100 according to the first embodiment in that the body portion 231 of the guide tube 230 has straight wall portions 231i to 231l. Hereinafter, a description will be given focusing on differences from the first embodiment.

非接触温度センサ300は、第1実施形態の非接触温度センサ100と同様に、センサ本体10のカバー筐体12における有底凹部21に対向する部位に、開口Pが形成された角筒状の胴部231を有する案内筒230が設けられている。   Similarly to the non-contact temperature sensor 100 of the first embodiment, the non-contact temperature sensor 300 has a rectangular tube shape in which an opening P is formed at a portion facing the bottomed recess 21 in the cover housing 12 of the sensor body 10. A guide tube 230 having a body portion 231 is provided.

案内筒230の胴部231は、傾斜壁部231a〜231dを有している。但し、本実施形態では、胴部231が直壁部231i〜231lをさらに備えており、この点が第1実施形態と相違する。   The trunk portion 231 of the guide tube 230 has inclined wall portions 231a to 231d. However, in this embodiment, the trunk | drum 231 is further provided with the straight wall parts 231i-231l, and this point is different from 1st Embodiment.

直壁部231i〜231lは、それぞれ傾斜壁部231a〜231dの受光面側端部I〜Lから受光面Nに向かって垂下している。本実施形態では、直壁部231i〜231lは、受光面Nの垂直方向に対して平行な方向に延びている。これら傾斜壁部231a〜231dと直壁部231i〜231lで構成される胴部231によって、案内筒230の内側(内部空間側)であって、受光範囲Qの周囲に遮光空間Wが形成されている。具体的には、傾斜壁部231a〜231dと、直壁部231i〜231lと、案内筒230の底部に配置される支持板13と、傾斜壁部231a〜231dの開口側端部A〜Dと支持板13を結ぶ仮想直線によって囲まれる空間のことである。なお、本実施形態では、直壁部231i〜231lは、受光面Nの垂直方向に対して平行な方向に延びているが、傾斜壁部231a〜231dの受光面Nの垂直方向に対する傾斜角度δよりも傾きが小さければ、受光面Nの垂直方向に対して傾斜していてもよい。   The straight wall portions 231i to 231l are suspended from the light receiving surface side end portions I to L of the inclined wall portions 231a to 231d toward the light receiving surface N, respectively. In the present embodiment, the straight wall portions 231 i to 231 l extend in a direction parallel to the vertical direction of the light receiving surface N. A light shielding space W is formed around the light receiving range Q on the inner side (inside the inner space) of the guide tube 230 by the trunk portion 231 constituted by the inclined wall portions 231a to 231d and the straight wall portions 231i to 231l. Yes. Specifically, the inclined wall portions 231a to 231d, the straight wall portions 231i to 231l, the support plate 13 disposed at the bottom of the guide tube 230, and the opening side end portions A to D of the inclined wall portions 231a to 231d, It is a space surrounded by a virtual straight line connecting the support plates 13. In the present embodiment, the straight wall portions 231i to 231l extend in a direction parallel to the vertical direction of the light receiving surface N, but the inclination angle δ with respect to the vertical direction of the light receiving surface N of the inclined wall portions 231a to 231d. May be inclined with respect to the vertical direction of the light receiving surface N.

以上のように、本実施形態に係る非接触温度センサ300においては、胴部231が、傾斜壁部231a〜231dの受光面側端部I〜Lから受光面Nに向かって垂下する直壁部231i〜231lを有している。このため、胴部231の広がりが抑えられ、非接触温度センサ300の小型化を図ることができる。   As described above, in the non-contact temperature sensor 300 according to the present embodiment, the body portion 231 is a straight wall portion depending from the light receiving surface side end portions I to L of the inclined wall portions 231a to 231d toward the light receiving surface N. 231i to 231l. For this reason, the breadth of the trunk | drum 231 is suppressed and the non-contact temperature sensor 300 can be reduced in size.

次に、図12を参照して、本実施形態に係る非接触温度センサ300の案内筒230の傾斜壁部231a〜231dと受光面Nとのなす角度δの好ましい傾斜角度について詳細に説明する。図12は、本発明の第3実施形態に係る非接触温度センサ300の案内筒230の傾斜壁部231a〜231dの好ましい傾斜角度を説明するための模式切断部端面図である。   Next, with reference to FIG. 12, a preferable inclination angle of the angle δ formed by the inclined wall portions 231a to 231d of the guide tube 230 of the non-contact temperature sensor 300 according to this embodiment and the light receiving surface N will be described in detail. FIG. 12 is a schematic cut portion end view for explaining preferred inclination angles of the inclined wall portions 231a to 231d of the guide tube 230 of the non-contact temperature sensor 300 according to the third embodiment of the present invention.

本実施形態に係る非接触温度センサ300は、第1実施形態と同様に、以下の関係式(1)を満たすと、案内筒230の傾斜壁部231a、231bに反射された赤外線成分が、受光範囲Qの中央Oに間接的に到達することを妨げることができる。
0°<δ≦45°+α/2 式(1)
したがって、受光範囲Qの中央Oに到達する赤外線成分は、熱源7Aからの放射赤外線のうち、受光範囲Qの中央Oに直接的に到達する成分だけとなる。つまり、赤外線吸収膜Mから構成される受光範囲Qの中で非接触温度センサ300の感度に最も影響を及ぼす中央Oに、案内筒230の傾斜壁部231a、231bに反射された赤外線成分が間接的に到達することを妨げられる。その結果、非接触温度センサ300の温度検知に案内筒230の胴部231の影響が抑制されるため、非接触温度センサ300の感度誤差を防止することができる。
Similarly to the first embodiment, the non-contact temperature sensor 300 according to the present embodiment satisfies the following relational expression (1), and the infrared component reflected by the inclined wall portions 231a and 231b of the guide tube 230 receives light. Indirect access to the center O of the range Q can be prevented.
0 ° <δ ≦ 45 ° + α / 2 Formula (1)
Accordingly, the infrared component that reaches the center O of the light receiving range Q is only the component that directly reaches the center O of the light receiving range Q among the radiated infrared rays from the heat source 7A. That is, the infrared component reflected by the inclined wall portions 231a and 231b of the guide tube 230 is indirectly in the center O that most affects the sensitivity of the non-contact temperature sensor 300 in the light receiving range Q formed of the infrared absorption film M. Can't be reached. As a result, the influence of the body 231 of the guide tube 230 on the temperature detection of the non-contact temperature sensor 300 is suppressed, so that a sensitivity error of the non-contact temperature sensor 300 can be prevented.

続いて、図13を参照して、本実施形態に係る非接触温度センサ300の案内筒230の傾斜壁部231a〜231dと受光面Nとのなす角度δの更に好ましい傾斜角度について詳細に説明する。図13は、本発明の第3実施形態に係る非接触温度センサ300の案内筒230の傾斜壁部231a〜231dの更に好ましい傾斜角度を説明するための模式切断部端面図である。   Next, with reference to FIG. 13, a more preferable inclination angle of the angle δ formed by the inclined wall portions 231a to 231d of the guide tube 230 of the non-contact temperature sensor 300 according to the present embodiment and the light receiving surface N will be described in detail. . FIG. 13 is a schematic cut-part end view for explaining more preferable inclination angles of the inclined wall portions 231a to 231d of the guide tube 230 of the non-contact temperature sensor 300 according to the third embodiment of the present invention.

本実施形態に係る非接触温度センサ300は、第1実施形態と同様に、以下の関係式(2)を満たすと、案内筒230の傾斜壁部231a、231bに反射された赤外線成分が、受光範囲Qに間接的に到達することを妨げることができる。
0°<δ≦45°+β/2 式(2)
したがって、受光範囲Qに到達する赤外線成分は、熱源7Aからの放射赤外線のうち、受光範囲Qに直接的に到達する成分だけとなる。つまり、赤外線吸収膜Mから構成される受光範囲Qの中で非接触温度センサ300の感度に影響を及ぼす全領域に対して、案内筒230の傾斜壁部231a、231bに反射された赤外線成分が間接的に到達することを妨げられる。その結果、非接触温度センサ300の温度検知に案内筒230の胴部231の影響がなくなり、非接触温度センサ300の感度誤差を防止することができる。
Similarly to the first embodiment, the non-contact temperature sensor 300 according to the present embodiment satisfies the following relational expression (2), and the infrared component reflected by the inclined wall portions 231a and 231b of the guide tube 230 receives light. It is possible to prevent the range Q from being reached indirectly.
0 ° <δ ≦ 45 ° + β / 2 Formula (2)
Therefore, the infrared component that reaches the light receiving range Q is only the component that directly reaches the light receiving range Q among the radiated infrared rays from the heat source 7A. That is, the infrared component reflected by the inclined wall portions 231a and 231b of the guide tube 230 with respect to the entire region that affects the sensitivity of the non-contact temperature sensor 300 in the light receiving range Q constituted by the infrared absorbing film M. It is prevented from reaching indirectly. As a result, the influence of the body 231 of the guide tube 230 on the temperature detection of the non-contact temperature sensor 300 is eliminated, and a sensitivity error of the non-contact temperature sensor 300 can be prevented.

ここで、図14を参照して、案内筒230の傾斜壁部231a〜231dと直壁部231i〜231lの好ましい連結位置について詳細に説明する。図14は、本発明の第3実施形態に係る非接触温度センサ300の案内筒230の傾斜壁部231a〜231dと直壁部231i〜231lとの好ましい連結位置について説明するための模式切断部端面図である。   Here, with reference to FIG. 14, the preferable connection position of the inclined wall parts 231a-231d and the straight wall parts 231i-231l of the guide cylinder 230 is demonstrated in detail. FIG. 14 is a schematic cut portion end surface for explaining a preferable connection position between the inclined wall portions 231a to 231d and the straight wall portions 231i to 231l of the guide tube 230 of the non-contact temperature sensor 300 according to the third embodiment of the present invention. FIG.

まず、案内筒230の傾斜壁部231aと直壁部231iとの連結する位置を連結点Sとし、直壁部231iの受光面Nと交わる点を受光面側端部Tとし、受光範囲Q上の任意の点を点Rとし、点Rと傾斜壁部231aの開口側端部Aを結ぶ仮想直線と受光面Nに対する垂線とのなす角度を角度γとする。このとき、案内筒230の傾斜壁部231aで反射された赤外線成分が受光範囲Qの点Rよりも内側に到達しない傾斜角度δは以下の式(7)となる。
δ=45°+γ/2 式(7)
つまり、点Rに到達する赤外線成分は、傾斜壁部231bの開口側端部Bから入射して傾斜壁部231aの最上部(開口側端部A)となる。仮に、案内筒230の胴部231が第1実施形態のように、傾斜壁部231aのみから構成されていると捉えた場合、傾斜壁部231aの最上部よりも低い位置で反射する赤外線成分は全て受光範囲Qの点Rよりも外側に到達することとなる。すなわち、傾斜壁部231aの低い位置で反射されるにしたがって、受光範囲Qの点Rよりも外側に到達することとなる。ところが、本実施形態のように、案内筒230の胴部231が傾斜壁部231aと直壁部231iから構成される場合、傾斜壁部231aで反射される赤外線成分の到達点に比べて直壁部231iで反射される赤外線成分の到達点が内側に位置することとなる。このとき、傾斜壁部231bの開口側端部Bから入射して直壁部231iの最上部(図示上方)で反射する赤外線成分3000の受光面N上に到達する到達点を点Rと一致するように連結点Sを設定すると、赤外線成分3000よりも深い角度、すなわち直壁部231iの最上部以外に向かって入射する赤外線成分(図示しない)は、直壁部231iによって、赤外線成分3000が反射される直壁部231iの位置よりも低い位置(図示下方)で反射されるため、点Rよりも外側に位置する受光面Nに到達する。
First, a position where the inclined wall portion 231a and the straight wall portion 231i of the guide tube 230 are connected is defined as a connection point S, and a point where the light receiving surface N of the straight wall portion 231i intersects is defined as a light receiving surface side end portion T. Is defined as a point R, and an angle between a virtual straight line connecting the point R and the opening-side end A of the inclined wall portion 231a and a perpendicular to the light receiving surface N is defined as an angle γ. At this time, the inclination angle δ at which the infrared component reflected by the inclined wall portion 231a of the guide tube 230 does not reach the inner side of the point R of the light receiving range Q is expressed by the following equation (7).
δ = 45 ° + γ / 2 Formula (7)
That is, the infrared component that reaches the point R is incident from the opening side end B of the inclined wall portion 231b and becomes the uppermost portion (opening side end A) of the inclined wall portion 231a. If it is assumed that the body 231 of the guide tube 230 is composed only of the inclined wall 231a as in the first embodiment, the infrared component reflected at a position lower than the top of the inclined wall 231a is All of them reach outside the point R of the light receiving range Q. That is, the light reaches the outside of the point R of the light receiving range Q as it is reflected at a lower position of the inclined wall 231a. However, when the trunk portion 231 of the guide tube 230 includes the inclined wall portion 231a and the straight wall portion 231i as in the present embodiment, the straight wall is larger than the arrival point of the infrared component reflected by the inclined wall portion 231a. The arrival point of the infrared component reflected by the part 231i is located inside. At this time, the arrival point that reaches the light receiving surface N of the infrared component 3000 incident from the opening side end B of the inclined wall portion 231b and reflected by the uppermost portion (upward in the drawing) of the straight wall portion 231i coincides with the point R. When the connection point S is set as described above, the infrared component 3000 is reflected by the straight wall portion 231i at an angle deeper than that of the infrared component 3000, that is, an infrared component (not shown) that enters the portion other than the uppermost portion of the straight wall portion 231i. Since the light is reflected at a position (lower in the figure) lower than the position of the straight wall portion 231i, the light-receiving surface N that is located outside the point R is reached.

次に、直壁部231iを鏡面とすると、傾斜壁部231bの開口側端部Bの鏡像は、直壁部231iの延長線を対称軸として、線対称の位置にある鏡像点B´´となり、傾斜壁部231aの開口側端部Aの鏡像は、直壁部231iの延長線を対称軸として、線対称の位置にある鏡像点A´´となる。また、傾斜壁部231bの開口側端部Bから受光面Nへ下ろした垂線と受光面Nとの交わる点が交点Xとなり、直壁部231iを鏡面とすると、交点Xの鏡像は、直壁部231iの延長線を対称軸として、線対称の位置にある鏡像点X´となる。さらに、傾斜壁部231aの開口側端部Aから受光面Nへ下ろした垂線と受光面Nとの交わる点が交点Uとなり、直壁部231iを鏡面とすると、交点Uの鏡像は、直壁部231iの延長線を対称軸として、線対称の位置にある鏡像点U´となる。   Next, if the straight wall portion 231i is a mirror surface, the mirror image of the opening-side end portion B of the inclined wall portion 231b becomes a mirror image point B ″ at a line-symmetric position with the extension line of the straight wall portion 231i as the symmetry axis. The mirror image of the opening-side end A of the inclined wall portion 231a is a mirror image point A ″ at a line-symmetric position with the extension line of the straight wall portion 231i as the axis of symmetry. In addition, when the perpendicular line dropped from the opening-side end B of the inclined wall portion 231b to the light receiving surface N and the light receiving surface N intersect with each other, the intersection X is a mirror surface, and when the straight wall portion 231i is a mirror surface, the mirror image of the intersection X is a straight wall With the extended line of the portion 231i as the axis of symmetry, the mirror image point X ′ is located in a line-symmetric position. Furthermore, when the perpendicular line dropped from the opening side end A of the inclined wall portion 231a to the light receiving surface N and the light receiving surface N intersect with each other, and the straight wall portion 231i is a mirror surface, the mirror image of the intersection U is a straight wall With the extended line of the portion 231i as an axis of symmetry, it becomes a mirror image point U ′ at a line-symmetric position.

そして、傾斜壁部231bの開口側端部Bと傾斜壁部231aの開口側端部Aとの距離をd、傾斜壁部231bの開口側端部B及び傾斜壁部231aの開口側端部Aの高さをh、点Rと交点Uとの距離をrとし、交点Uを原点としたx軸が受光面Nの延在方向に沿ったxy直交座標系として連結点Sの座標を(x,y)とすると、この座標系において、赤外線成分3000が点Rに到達する軌跡が以下の式(8)及び式(9)から求まる。つまり、点R、連結点S、及び直壁部231iの受光面側端部Tを結ぶ三角形RSTと点R、鏡像点B´´、及び鏡像点X´を結ぶ三角形RB´´X´は相似であるから、以下の式(8)の関係を満たすこととなる。
(r+x)/y=(r+2x+d)/h 式(8)
この式(8)を解いた式(9)が赤外線成分3000の点Rに到達する軌跡となる。
y=h×(r+x)/(r+2x+d) 式(9)
したがって、式(9)から赤外線成分3000の点Rに到達する軌跡は、x=−(r+d)/2、y=h/2を漸近線とする直角双曲線の一部であると導き出すことができる。ここで、式(7)の傾斜角度δで延ばした傾斜壁部231aと式(9)で表される直角双曲線の交わる点を連結点Sとすると、赤外線成分のうち、傾斜壁部231aに反射されて受光面Nに到達する成分と、直壁部231iに反射されて受光面Nに到達する成分のいずれもが点Rよりも外側に到達することとなる。
The distance between the opening-side end B of the inclined wall 231b and the opening-side end A of the inclined wall 231a is d, the opening-side end B of the inclined wall 231b and the opening-side end A of the inclined wall 231a. Is the height of h, the distance between the point R and the intersection U is r, and the x-axis with the intersection U as the origin is the xy orthogonal coordinate system along the extending direction of the light receiving surface N. , Y), the locus of the infrared component 3000 reaching the point R in this coordinate system can be obtained from the following equations (8) and (9). That is, the triangle RST that connects the point R, the connection point S, and the light receiving surface side end T of the straight wall portion 231i, and the triangle RB ″ X ′ that connects the point R, the mirror image point B ″, and the mirror image point X ′ are similar. Therefore, the relationship of the following formula (8) is satisfied.
(R + x) / y = (r + 2x + d) / h Formula (8)
The equation (9) obtained by solving the equation (8) is a locus to reach the point R of the infrared component 3000.
y = h × (r + x) / (r + 2x + d) Equation (9)
Therefore, it can be derived from the equation (9) that the locus reaching the point R of the infrared component 3000 is a part of a right-angled hyperbola with x = − (r + d) / 2 and y = h / 2 asymptotic lines. . Here, when the point where the inclined wall portion 231a extended by the inclination angle δ of Expression (7) and the right-angled hyperbola expressed by Expression (9) intersect is a connection point S, the infrared component is reflected on the inclined wall portion 231a. Thus, both of the component that reaches the light receiving surface N and the component that is reflected by the straight wall portion 231i and reaches the light receiving surface N reach outside the point R.

以上のように、赤外線成分3000の傾斜壁部231a又は直壁部231iに反射されて受光面Nの最も内側に到達する点は点Rとなるため、この点Rの位置によって案内筒230の胴部231で反射されて受光範囲Qに到達する赤外線成分の範囲を定めることができる。つまり、点Rを受光範囲Qの領域外に設定し、設定した点Rから求まる直角双曲線と傾斜壁部231aとが交わる点を傾斜壁部231aと直壁部231iとの連結点Sとすることにより、案内筒230の傾斜壁部231aに反射された赤外線成分が受光範囲Qに間接的に到達することを妨げられるとともに、案内筒230の胴部231の広がりを抑えて、非接触温度センサ300の小型化を図ることができる。   As described above, the point that is reflected by the inclined wall portion 231a or the straight wall portion 231i of the infrared component 3000 and reaches the innermost side of the light receiving surface N is the point R. Therefore, the body of the guide tube 230 depends on the position of this point R. The range of the infrared component reflected by the unit 231 and reaching the light receiving range Q can be determined. That is, the point R is set outside the region of the light receiving range Q, and the point where the right-angled hyperbola obtained from the set point R and the inclined wall portion 231a intersect is set as a connection point S between the inclined wall portion 231a and the straight wall portion 231i. Thus, the infrared component reflected by the inclined wall portion 231a of the guide tube 230 is prevented from indirectly reaching the light receiving range Q, and the spread of the body portion 231 of the guide tube 230 is suppressed, so that the non-contact temperature sensor 300 is prevented. Can be miniaturized.

次に、案内筒230の胴部231に反射された赤外線成分が受光範囲Qの中央Oに間接的に到達しない場合の案内筒230の傾斜壁部231a〜231dと直壁部231i〜231lの具体的な連結位置について、さらに詳細に説明する。   Next, the specifics of the inclined wall portions 231a to 231d and the straight wall portions 231i to 231l of the guide tube 230 when the infrared component reflected on the body portion 231 of the guide tube 230 does not indirectly reach the center O of the light receiving range Q. A detailed connection position will be described in more detail.

案内筒230の胴部231に反射されて受光範囲Qの中央Oに間接的に到達する赤外線成分を無くすためには、赤外線成分の胴部231に反射されて受光面Nの最も内側に到達する点Rを受光範囲Qの中央Oと一致させることにより求まる。つまり、距離rがd/2となるので、式(9)で表される直角双曲線の軌跡は、式(10)となる。
y=h×(x+d/2)/(2x+3d/2) 式(10)
ここで、式(1)の傾斜角度δで延ばした傾斜壁部231aと式(10)で表される直角双曲線の交わる点を連結点Sとすると、赤外線成分の傾斜壁部231a及び直壁部231iに反射されて受光範囲Qの中央Oに間接的に到達することが無くなる。したがって、案内筒230の傾斜壁部231aに反射された赤外線成分が受光範囲Qの中央Oに間接的に到達することを妨げられるとともに、案内筒230の胴部231の広がりを抑えて、非接触温度センサ300の小型化を図ることができる。
In order to eliminate the infrared component reflected by the barrel 231 of the guide tube 230 and indirectly reaching the center O of the light receiving range Q, the infrared component is reflected by the barrel 231 of the infrared component and reaches the innermost side of the light receiving surface N. It is obtained by matching the point R with the center O of the light receiving range Q. That is, since the distance r is d / 2, the locus of the right-angled hyperbola expressed by the equation (9) is the equation (10).
y = h × (x + d / 2) / (2x + 3d / 2) Formula (10)
Here, when the point where the inclined wall portion 231a extended by the inclination angle δ of the equation (1) and the right-angled hyperbola represented by the equation (10) intersect is a connecting point S, the inclined wall portion 231a and the straight wall portion of the infrared component. The light does not reach the center O of the light receiving range Q by being reflected by 231i. Accordingly, the infrared component reflected by the inclined wall portion 231a of the guide tube 230 is prevented from indirectly reaching the center O of the light receiving range Q, and the spread of the body portion 231 of the guide tube 230 is suppressed, thereby preventing contact. The size of the temperature sensor 300 can be reduced.

続いて、案内筒230の胴部231に反射された赤外線成分が受光範囲Qに間接的に到達しない場合の案内筒230の傾斜壁部231a〜231dと直壁部231i〜231lの具体的な連結位置について、さらに詳細に説明する。   Subsequently, the specific connection of the inclined wall portions 231a to 231d and the straight wall portions 231i to 231l of the guide tube 230 when the infrared component reflected on the body portion 231 of the guide tube 230 does not reach the light receiving range Q indirectly. The position will be described in more detail.

案内筒230の胴部231に反射されて受光範囲Qに間接的に到達する赤外線成分を無くすためには、赤外線成分の胴部231に反射されて受光面Nの最も内側に到達する点Rを受光範囲Qの縁端Qa、Qbと一致させることにより求まる。つまり、受光範囲Qの縁端Qaと交点Uとの距離をQkとすると、距離rがQkとなるので、式(9)で表される直角双曲線の軌跡は、式(11)となる。
y=h×(x+Qk)/(2x+Qk+d) 式(11)
ここで、受光範囲Qの幅をQfとすると、距離Qkが(d−Qf)/2となるので、式(11)で表される直角双曲線の軌跡は、式(12)となる。
y=h×(x+(d−Qf)/2)/(2x+(3d−Qf)/2) 式(12)
ここで、式(2)の傾斜角度δで延ばした傾斜壁部231aと式(12)で表される直角双曲線の交わる点を連結点Sとすると、赤外線成分の傾斜壁部231a及び231iに反射されて受光範囲Qに間接的に到達することが無くなる。したがって、案内筒230の傾斜壁部231aに反射された赤外線成分が受光範囲Qに到達することを妨げられるとともに、案内筒230の胴部231の広がりを抑えて、非接触温度センサ300の小型化を図ることができる。
In order to eliminate the infrared component reflected by the body 231 of the guide tube 230 and indirectly reaching the light receiving range Q, a point R that is reflected by the body 231 of the infrared component and reaches the innermost side of the light receiving surface N is set. It is obtained by matching with the edges Qa and Qb of the light receiving range Q. That is, if the distance between the edge Qa of the light receiving range Q and the intersection U is Qk, the distance r is Qk, and therefore the locus of the right-angled hyperbola expressed by the equation (9) is the equation (11).
y = h × (x + Qk) / (2x + Qk + d) Equation (11)
Here, assuming that the width of the light receiving range Q is Qf, the distance Qk is (d−Qf) / 2, and therefore, the locus of the right-angled hyperbola represented by Expression (11) is Expression (12).
y = h × (x + (d−Qf) / 2) / (2x + (3d−Qf) / 2) Equation (12)
Here, when the point where the inclined wall portion 231a extended by the inclination angle δ of the equation (2) and the right-angled hyperbola expressed by the equation (12) intersect is defined as the connection point S, the infrared light component is reflected by the inclined wall portions 231a and 231i. Thus, the light receiving range Q is not indirectly reached. Therefore, the infrared component reflected by the inclined wall portion 231a of the guide tube 230 is prevented from reaching the light receiving range Q, and the spread of the body portion 231 of the guide tube 230 is suppressed, so that the non-contact temperature sensor 300 is reduced in size. Can be achieved.

(第4実施形態)
次に、図15及び図16を参照して、本発明の第4実施形態の構成について説明する。図15は、本発明の第4実施形態に係る非接触温度センサ400の構成を示す上面図である。図16は、図15におけるIV−IV線に沿う非接触温度センサ400の模式切断部端面図である。第4実施形態に係る非接触温度センサ400は、案内筒330の胴部331が蓋部331e〜331hと直壁部331i〜331lを有する点において、第1実施形態に係る非接触温度センサ100と異なっている。以下、第1実施形態と異なる点を中心に説明する。
(Fourth embodiment)
Next, the configuration of the fourth embodiment of the present invention will be described with reference to FIGS. FIG. 15 is a top view showing a configuration of a non-contact temperature sensor 400 according to the fourth embodiment of the present invention. FIG. 16 is a schematic end view of the non-contact temperature sensor 400 along the line IV-IV in FIG. The non-contact temperature sensor 400 according to the fourth embodiment is different from the non-contact temperature sensor 100 according to the first embodiment in that the body portion 331 of the guide tube 330 includes lid portions 331e to 331h and straight wall portions 331i to 331l. Is different. Hereinafter, a description will be given focusing on differences from the first embodiment.

非接触温度センサ400は、第1実施形態の非接触温度センサ100と同様に、センサ本体10のカバー筐体12における有底凹部21に対向する部位に、開口Pが形成された角筒状の胴部331を有する案内筒330が設けられている。   Similarly to the non-contact temperature sensor 100 of the first embodiment, the non-contact temperature sensor 400 has a rectangular tube shape in which an opening P is formed at a portion facing the bottomed recess 21 in the cover housing 12 of the sensor body 10. A guide tube 330 having a body portion 331 is provided.

案内筒330の胴部331は、傾斜壁部331a〜331dを有している。但し、本実施形態では、胴部331が蓋部331e〜331hと直壁部331i〜331lをさらに備えており、この点が第1実施形態と相違する。   The body portion 331 of the guide tube 330 has inclined wall portions 331a to 331d. However, in this embodiment, the trunk | drum 331 is further provided with the cover parts 331e-331h and the straight wall parts 331i-331l, and this point is different from 1st Embodiment.

蓋部331e〜331hは、それぞれ傾斜壁部331a〜331dの開口側端部A〜Dから案内筒330の内側(内部空間側)に向かって延びている。本実施形態では、蓋部331e〜331hは、受光面Nの延在方向と平行な方向に延びている。   The lid portions 331e to 331h extend from the opening side end portions A to D of the inclined wall portions 331a to 331d toward the inside (inside space side) of the guide tube 330, respectively. In the present embodiment, the lid portions 331e to 331h extend in a direction parallel to the extending direction of the light receiving surface N.

直壁部331i〜331lは、それぞれ傾斜壁部331a〜331dの受光面側端部I〜Lから受光面Nに向かって垂下している。本実施形態では、直壁部331i〜331lは、受光面Nの垂直方向に対して平行な方向に延びている。   The straight wall portions 331i to 331l hang down from the light receiving surface side end portions I to L of the inclined wall portions 331a to 331d toward the light receiving surface N, respectively. In the present embodiment, the straight wall portions 331 i to 331 l extend in a direction parallel to the vertical direction of the light receiving surface N.

これら傾斜壁部331a〜331dと蓋部331e〜331hと直壁部331i〜331lで構成される胴部331によって、案内筒330の内側(内部空間側)であって、受光範囲Qの周囲に遮光空間Wが形成されている。具体的には、傾斜壁部331a〜331dと、蓋部331e〜331hと、直壁部331i〜331lと、案内筒330の底部に配置される支持板13と、蓋部331e〜331hの開口側端部E〜Hと支持板13を結ぶ仮想直線によって囲まれる空間のことである。なお、本実施形態では、直壁部331i〜331lは、受光面Nの垂直方向に対して平行な方向に延びているが、傾斜壁部331a〜331dの受光面Nの垂直方向に対する傾斜角度δよりも傾きが小さければ、受光面Nの垂直方向に対して傾斜していてもよい。   Light is shielded inside the guide tube 330 (on the inner space side) and around the light receiving range Q by the body portion 331 including the inclined wall portions 331a to 331d, the lid portions 331e to 331h, and the straight wall portions 331i to 331l. A space W is formed. Specifically, the inclined wall portions 331a to 331d, the lid portions 331e to 331h, the straight wall portions 331i to 331l, the support plate 13 disposed at the bottom of the guide tube 330, and the opening side of the lid portions 331e to 331h It is a space surrounded by a virtual straight line connecting the end portions E to H and the support plate 13. In the present embodiment, the straight wall portions 331i to 331l extend in a direction parallel to the vertical direction of the light receiving surface N, but the inclination angle δ with respect to the vertical direction of the light receiving surface N of the inclined wall portions 331a to 331d. May be inclined with respect to the vertical direction of the light receiving surface N.

以上のように、本実施形態に係る非接触温度センサ400においては、胴部331が、傾斜壁部331a〜331dの開口側端部A〜Dから案内筒330の内側に向かって延びる蓋部331e〜331hを有している。このため、胴部331によって形成される遮光空間Wがより広範囲に確保されるため、熱源7Aからの放射赤外線が案内筒330の胴部331の内壁で反射されて赤外線検知用感熱素子15を含む受光範囲Qに間接的に到達することを一層妨げることができる。   As described above, in the non-contact temperature sensor 400 according to the present embodiment, the body portion 331 has the lid portion 331e extending from the opening side end portions A to D of the inclined wall portions 331a to 331d toward the inside of the guide tube 330. ~ 331h. For this reason, since the light shielding space W formed by the trunk portion 331 is secured in a wider range, the radiant infrared rays from the heat source 7A are reflected by the inner wall of the trunk portion 331 of the guide tube 330 and include the infrared detecting thermal element 15. Indirectly reaching the light receiving range Q can be further prevented.

また、本実施形態に係る非接触温度センサ400においては、胴部331が、傾斜壁部331a〜331dの受光面側端部I〜Lから受光面Nに向かって垂下する直壁部331i〜331lを有している。このため、胴部331の広がりが抑えられ、非接触温度センサ400の小型化を図ることができる。   Further, in the non-contact temperature sensor 400 according to the present embodiment, the body portion 331 is a straight wall portion 331i to 331l that hangs down from the light receiving surface side end portions I to L of the inclined wall portions 331a to 331d toward the light receiving surface N. have. For this reason, the breadth of the trunk | drum 331 is suppressed and the size reduction of the non-contact temperature sensor 400 can be achieved.

次に、図17を参照して、本実施形態に係る非接触温度センサ400の案内筒330の傾斜壁部331a〜331dと受光面Nとのなす角度δの好ましい傾斜角度について詳細に説明する。図17は、本発明の第4実施形態に係る非接触温度センサ400の案内筒330の傾斜壁部331a〜331dの好ましい傾斜角度を説明するための模式切断部端面図である。   Next, with reference to FIG. 17, a preferable inclination angle of the angle δ formed by the inclined wall portions 331a to 331d of the guide tube 330 of the non-contact temperature sensor 400 according to the present embodiment and the light receiving surface N will be described in detail. FIG. 17 is a schematic cut end face view for explaining preferred inclination angles of the inclined wall portions 331a to 331d of the guide tube 330 of the non-contact temperature sensor 400 according to the fourth embodiment of the present invention.

本実施形態に係る非接触温度センサ400は、第1実施形態と同様に、以下の関係式(1)を満たすと、案内筒330の傾斜壁部331a、331bに反射された赤外線成分が、受光範囲Qの中央Oに間接的に到達することを妨げることができる。
0°<δ≦45°+α/2 式(1)
したがって、受光範囲Qの中央Oに到達する赤外線成分は、熱源7Aからの放射赤外線のうち、受光範囲Qの中央Oに直接的に到達する成分だけとなる。つまり、赤外線吸収膜Mから構成される受光範囲Qの中で非接触温度センサ400の感度に最も影響を及ぼす中央Oに、案内筒330の傾斜壁部331a、331bに反射された赤外線成分が間接的に到達することを妨げられる。その結果、非接触温度センサ400の温度検知に案内筒330の胴部331の影響が抑制されるため、非接触温度センサ400の感度誤差を防止することができる。
Similarly to the first embodiment, the non-contact temperature sensor 400 according to the present embodiment satisfies the following relational expression (1), and the infrared component reflected by the inclined wall portions 331a and 331b of the guide tube 330 receives light. Indirect access to the center O of the range Q can be prevented.
0 ° <δ ≦ 45 ° + α / 2 Formula (1)
Accordingly, the infrared component that reaches the center O of the light receiving range Q is only the component that directly reaches the center O of the light receiving range Q among the radiated infrared rays from the heat source 7A. That is, the infrared component reflected by the inclined wall portions 331a and 331b of the guide tube 330 is indirectly directed to the center O that most affects the sensitivity of the non-contact temperature sensor 400 in the light receiving range Q constituted by the infrared absorption film M. Can't be reached. As a result, the influence of the body 331 of the guide tube 330 on the temperature detection of the non-contact temperature sensor 400 is suppressed, so that a sensitivity error of the non-contact temperature sensor 400 can be prevented.

続いて、図18を参照して、本実施形態に係る非接触温度センサ400の案内筒330の傾斜壁部331a〜331dと受光面Nとのなす角度δの更に好ましい傾斜角度について詳細に説明する。図18は、本発明の第4実施形態に係る非接触温度センサ400の案内筒330の傾斜壁部331a〜331dの更に好ましい傾斜角度を説明するための模式切断部端面図である。   Next, with reference to FIG. 18, a more preferable inclination angle of the angle δ formed by the inclined wall portions 331a to 331d of the guide tube 330 of the non-contact temperature sensor 400 according to the present embodiment and the light receiving surface N will be described in detail. . FIG. 18 is a schematic cut end face view for explaining more preferable inclination angles of the inclined wall portions 331a to 331d of the guide tube 330 of the non-contact temperature sensor 400 according to the fourth embodiment of the present invention.

本実施形態に係る非接触温度センサ400は、第1実施形態と同様に、以下の関係式(2)を満たすと、案内筒330の傾斜壁部331a、331bに反射された赤外線成分が、受光範囲Qに間接的に到達することを妨げることができる。
0°<δ≦45°+β/2 式(2)
したがって、受光範囲Qに到達する赤外線成分は、熱源7Aからの放射赤外線のうち、受光範囲Qに直接的に到達する成分だけとなる。つまり、赤外線吸収膜Mから構成される受光範囲Qの中で非接触温度センサ400の感度に影響を及ぼす全領域に対して、案内筒330の傾斜壁部331a、331bに反射された赤外線成分が間接的に到達することを妨げられる。その結果、非接触温度センサ400の温度検知に案内筒330の胴部331の影響がなくなり、非接触温度センサ400の感度誤差を防止することができる。
Similarly to the first embodiment, the non-contact temperature sensor 400 according to the present embodiment satisfies the following relational expression (2), and the infrared component reflected by the inclined wall portions 331a and 331b of the guide tube 330 receives light. It is possible to prevent the range Q from being reached indirectly.
0 ° <δ ≦ 45 ° + β / 2 Formula (2)
Therefore, the infrared component that reaches the light receiving range Q is only the component that directly reaches the light receiving range Q among the radiated infrared rays from the heat source 7A. That is, the infrared component reflected by the inclined wall portions 331a and 331b of the guide tube 330 is all over the region that affects the sensitivity of the non-contact temperature sensor 400 in the light receiving range Q constituted by the infrared absorbing film M. It is prevented from reaching indirectly. As a result, the temperature detection of the non-contact temperature sensor 400 is not affected by the body 331 of the guide tube 330, and a sensitivity error of the non-contact temperature sensor 400 can be prevented.

ここで、図19を参照して、案内筒330の傾斜壁部331a〜331dと直壁部331i〜331lの好ましい連結位置について詳細に説明する。図19は、本発明の第4実施形態に係る非接触温度センサ400の案内筒330の傾斜壁部331a〜331dと直壁部331i〜331lとの好ましい連結位置について説明するための模式切断部端面図である。   Here, with reference to FIG. 19, the preferable connection position of the inclined wall part 331a-331d and the straight wall part 331i-331l of the guide cylinder 330 is demonstrated in detail. FIG. 19 is a schematic cut portion end surface for explaining a preferable connection position between the inclined wall portions 331a to 331d and the straight wall portions 331i to 331l of the guide tube 330 of the non-contact temperature sensor 400 according to the fourth embodiment of the present invention. FIG.

まず、案内筒330の傾斜壁部331aと直壁部331iとの連結する位置を連結点Sとし、直壁部331iの受光面Nと交わる点を受光面側端部Tとし、受光範囲Q上の任意の点を点Rとし、点Rと傾斜壁部331aの開口側端部Aを結ぶ仮想直線と受光面Nに対する垂線とのなす角度を角度γとする。このとき、案内筒330の傾斜壁部331aで反射された赤外線成分が受光範囲Qの点Rよりも内側に到達しない傾斜角度δは以下の式(7)となる。
δ=45°+γ/2 式(7)
つまり、点Rに到達する赤外線成分は、傾斜壁部331bの開口側端部Bから入射して傾斜壁部331aの最上部(開口側端部A)となる。仮に、案内筒330の胴部331が第1実施形態のように、傾斜壁部331aのみから構成されていると捉えた場合、傾斜壁部331aの最上部よりも低い位置で反射する赤外線成分は全て受光範囲Qの点Rよりも外側に到達することとなる。すなわち、傾斜壁部331aの低い位置で反射されるにしたがって、受光範囲Qの点Rよりも外側に到達することとなる。ところが、本実施形態のように、案内筒330の胴部331が傾斜壁部331aと直壁部331iから構成される場合、傾斜壁部331aで反射される赤外線成分の到達点に比べて直壁部331iで反射される赤外線成分の到達点が内側に位置することとなる。このとき、傾斜壁部331bの開口側端部Bから入射して直壁部331iの最上部(図示上方)で反射する赤外線成分4000の受光面N上に到達する到達点を点Rと一致するように連結点Sを設定すると、赤外線成分4000よりも深い角度、すなわち直壁部331iの最上部以外に向かって入射する赤外線成分(図示しない)は、直壁部331iによって、赤外線成分4000が反射される直壁部331iの位置よりも低い位置(図示下方)で反射されるため、点Rよりも外側に位置する受光面Nに到達する。
First, a position where the inclined wall portion 331a and the straight wall portion 331i of the guide tube 330 are connected is a connection point S, a point where the light receiving surface N of the straight wall portion 331i intersects is a light receiving surface side end portion T, Is defined as a point R, and an angle between a virtual straight line connecting the point R and the opening side end A of the inclined wall portion 331a and a perpendicular to the light receiving surface N is defined as an angle γ. At this time, the inclination angle δ at which the infrared component reflected by the inclined wall portion 331a of the guide tube 330 does not reach the inside of the point R of the light receiving range Q is expressed by the following equation (7).
δ = 45 ° + γ / 2 Formula (7)
That is, the infrared component that reaches the point R is incident from the opening side end B of the inclined wall portion 331b and becomes the uppermost portion (opening side end A) of the inclined wall portion 331a. If it is assumed that the body portion 331 of the guide tube 330 is composed only of the inclined wall portion 331a as in the first embodiment, the infrared component reflected at a position lower than the uppermost portion of the inclined wall portion 331a is All of them reach outside the point R of the light receiving range Q. That is, the light reaches the outside of the point R of the light receiving range Q as it is reflected at a lower position of the inclined wall portion 331a. However, when the trunk portion 331 of the guide tube 330 is composed of the inclined wall portion 331a and the straight wall portion 331i as in this embodiment, the straight wall is larger than the arrival point of the infrared component reflected by the inclined wall portion 331a. The arrival point of the infrared component reflected by the part 331i is located inside. At this time, the arrival point that reaches the light receiving surface N of the infrared component 4000 that is incident from the opening-side end portion B of the inclined wall portion 331b and reflected by the uppermost portion (upward in the drawing) of the straight wall portion 331i coincides with the point R. When the connection point S is set as described above, an infrared component (not shown) incident at an angle deeper than the infrared component 4000, that is, an infrared component (not shown) that is incident on a portion other than the uppermost portion of the straight wall portion 331i is reflected by the straight wall portion 331i. Since the light is reflected at a position (lower in the figure) lower than the position of the straight wall portion 331i, the light receiving surface N that is located outside the point R is reached.

次に、直壁部331iを鏡面とすると、蓋部331fの開口側端部Fの鏡像は、直壁部331iの延長線を対称軸として、線対称の位置にある鏡像点F´となり、蓋部331eの開口側端部Eの鏡像は、直壁部331iの延長線を対称軸として、線対称の位置にある鏡像点E´となる。また、蓋部331fの開口側端部Fから受光面Nへ下ろした垂線と受光面Nとの交わる点が交点Xfとなり、直壁部331iを鏡面とすると、交点Xfの鏡像は、直壁部331iの延長線を対称軸として、線対称の位置にある鏡像点Xf´となる。さらに、蓋部331eの開口側端部Eから受光面Nへ下ろした垂線と受光面Nとの交わる点が交点Ueとなり、直壁部331iを鏡面とすると、交点Ueの鏡像は、直壁部331iの延長線を対称軸として、線対称の位置にある鏡像点Ue´となる。   Next, when the straight wall portion 331i is a mirror surface, the mirror image of the opening-side end portion F of the lid portion 331f is a mirror image point F ′ at a line-symmetric position with the extension line of the straight wall portion 331i as an axis of symmetry. The mirror image of the opening-side end portion E of the portion 331e is a mirror image point E ′ at a line-symmetric position with the extension line of the straight wall portion 331i as the symmetry axis. Further, when the perpendicular line drawn from the opening-side end F of the lid 331f to the light receiving surface N and the point where the light receiving surface N intersects is an intersection Xf, and the straight wall 331i is a mirror surface, the mirror image of the intersection Xf is a straight wall portion. With the extended line of 331i as the axis of symmetry, this is the mirror image point Xf ′ at the line-symmetric position. Furthermore, when the perpendicular line dropped from the opening-side end E of the lid 331e to the light receiving surface N and the point where the light receiving surface N intersects are the intersection Ue, and the straight wall 331i is a mirror surface, the mirror image of the intersection Ue is a straight wall With the extended line of 331i as the axis of symmetry, it becomes a mirror image point Ue 'at a line-symmetric position.

そして、傾斜壁部331bの開口側端部Bと傾斜壁部331aの開口側端部Aとの距離をd、蓋部331fの開口側端部F及び蓋部331eの開口側端部Eの高さをh、点Rと交点Ueとの距離をrとし、交点Ueを原点としたx軸が受光面Nの延在方向に沿ったxy直交座標系として連結点Sの座標を(x,y)とすると、この座標系において、赤外線成分4000が点Rに到達する軌跡が以下の式(8)及び式(9)から求まる。つまり、点R、連結点S、及び直壁部331iの受光面側端部Tを結ぶ三角形RSTと点R、鏡像点Xf´、及び鏡像点F´を結ぶ三角形RXf´F´は相似であるから、以下の式(8)の関係を満たすこととなる。
(r+x)/y=(r+2x+d)/h 式(8)
この式(8)を解いた式(9)が赤外線成分4000の点Rに到達する軌跡となる。
y=h×(r+x)/(r+2x+d) 式(9)
したがって、式(9)から赤外線成分4000の点Rに到達する軌跡は、x=−(r+d)/2、y=h/2を漸近線とする直角双曲線の一部であると導き出すことができる。ここで、式(7)の傾斜角度δで延ばした傾斜壁部331aと式(9)で表される直角双曲線の交わる点を連結点Sとすると、赤外線成分のうち、傾斜壁部331aに反射されて受光面Nに到達する成分と、直壁部331iに反射されて受光面Nに到達する成分のいずれもが点Rよりも外側に到達することとなる。
The distance between the opening side end B of the inclined wall portion 331b and the opening side end A of the inclined wall portion 331a is d, and the height of the opening side end F of the lid portion 331f and the opening side end portion E of the lid portion 331e is high. The distance between the point R and the intersection Ue is r, and the x axis with the intersection Ue as the origin is an xy orthogonal coordinate system along the extending direction of the light receiving surface N, and the coordinates of the connection point S are (x, y ), The locus of the infrared component 4000 reaching the point R in this coordinate system can be obtained from the following equations (8) and (9). That is, the triangle RST connecting the point R, the connection point S, and the light receiving surface side end T of the straight wall portion 331i and the triangle RXf′F ′ connecting the point R, the mirror image point Xf ′, and the mirror image point F ′ are similar. Therefore, the relationship of the following formula (8) is satisfied.
(R + x) / y = (r + 2x + d) / h Formula (8)
The equation (9) obtained by solving the equation (8) is a locus to reach the point R of the infrared component 4000.
y = h × (r + x) / (r + 2x + d) Equation (9)
Therefore, it can be derived from the equation (9) that the locus of reaching the point R of the infrared component 4000 is a part of a right-angled hyperbola with x = − (r + d) / 2 and y = h / 2 asymptotic lines. . Here, when the point where the inclined wall portion 331a extended by the inclination angle δ of the equation (7) and the right-angled hyperbola expressed by the equation (9) intersect is defined as the connection point S, the infrared component is reflected on the inclined wall portion 331a. Thus, both the component that reaches the light receiving surface N and the component that reaches the light receiving surface N after being reflected by the straight wall portion 331i reach outside the point R.

以上のように、赤外線成分の傾斜壁部331a又は直壁部331iに反射されて受光面Nの最も内側に到達する点は点Rとなるため、この点Rの位置によって案内筒330の胴部331で反射されて受光範囲Qに到達する赤外線成分の範囲を定めることができる。つまり、点Rを受光範囲Qの領域外に設定し、設定した点Rから求まる直角双曲線と傾斜壁部331aとが交わる点を傾斜壁部331aと直壁部331iとの連結点Sとすることにより、案内筒330の傾斜壁部331aに反射された赤外線成分が受光範囲Qに間接的に到達することを妨げられるとともに、案内筒330の胴部331の広がりを抑えて、非接触温度センサ400の小型化を図ることができる。   As described above, the point that is reflected by the inclined wall portion 331a or the straight wall portion 331i of the infrared component and reaches the innermost side of the light receiving surface N is the point R. Therefore, the trunk portion of the guide tube 330 is determined by the position of this point R. The range of the infrared component reflected by 331 and reaching the light receiving range Q can be determined. That is, the point R is set outside the region of the light receiving range Q, and the point where the right-angled hyperbola obtained from the set point R and the inclined wall portion 331a intersect is set as a connection point S between the inclined wall portion 331a and the straight wall portion 331i. Accordingly, the infrared component reflected by the inclined wall portion 331a of the guide tube 330 is prevented from indirectly reaching the light receiving range Q, and the spread of the body portion 331 of the guide tube 330 is suppressed, so that the non-contact temperature sensor 400 is prevented. Can be miniaturized.

以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not necessarily limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

例えば、連結点Sの位置は、代数的に解いて連結点Sの座標を数値として求めることができる。本発明の第4実施形態において、蓋部331f、331eの長さをcとすると、傾斜角度δの傾斜壁部331aの延長線は、以下の式(13)となる。
y=−x×tanδ+c×tanδ+h 式(13)
この式(13)と式(9)とを連立して連結点Sの座標(x,y)を求めると、座標x及び座標yがそれぞれ以下の式(14)及び式(15)となる。
x=c/2−4(d+Qk)/4+(h/2)×cotδ+(1/2)×√[{c+(d+Qk)/2}+h×(2c+3d−Qk)×cotδ+hcotδ] 式(14)
y=h/2+h/2×(Qk−d)/[c/2+(d+r)/4+h/2×√[{c+(d+Qk)/2}+h×(2c+3d−Qk)×cotδ+hcotδ]] 式(15)
なお、赤外線成分における案内筒330の傾斜壁部331a又は直壁部331iのいずれかで反射されて受光面Nに到達する点が、直壁部331iの最上部で反射されて受光面N上に到達する点Rよりも外側に位置する場合は、式(14)及び式(15)に以下の式(16)の条件を付加すればよい。
cotγ=h/(r+c) 式(16)
For example, the position of the connection point S can be solved algebraically and the coordinates of the connection point S can be obtained as numerical values. In the fourth embodiment of the present invention, when the length of the lid portions 331f and 331e is c, the extension line of the inclined wall portion 331a having the inclination angle δ is expressed by the following equation (13).
y = −x × tan δ + c × tan δ + h Equation (13)
When the equations (13) and (9) are combined to obtain the coordinates (x, y) of the connection point S, the coordinates x and the coordinates y become the following equations (14) and (15), respectively.
x = c / 2-4 (d + Qk) / 4 + (h / 2) × cotδ + (1/2) × √ [{c + (d + Qk) / 2} 2 + h × (2c + 3d−Qk) × cotδ + h 2 cot 2 δ] Formula (14)
y = h / 2 + h / 2 × (Qk−d) / [c / 2 + (d + r) / 4 + h / 2 × √ {{c + (d + Qk) / 2} 2 + h × (2c + 3d−Qk) × cotδ + h 2 cot 2 δ ]] Formula (15)
In addition, the point that is reflected by either the inclined wall portion 331a or the straight wall portion 331i of the guide tube 330 in the infrared component and reaches the light receiving surface N is reflected by the uppermost portion of the straight wall portion 331i and on the light receiving surface N. When located outside the reaching point R, the following equation (16) may be added to the equations (14) and (15).
cot γ = h / (r + c) Formula (16)

複写機の加熱定着ロ−ラといった検知対象物をはじめ、その他の種々の熱源の温度を非接触にて測定する用途に広く且つ有効に利用することができる。   It can be used widely and effectively for non-contact measurement of the temperature of various other heat sources, including objects to be detected such as a heat fixing roller of a copying machine.

7A…熱源、10…センサ本体、11…台座、12…カバー筐体、13…支持板、15…赤外線検知用感熱素子、16…温度補償用感熱素子、21…有底凹部、30,130,230,330…案内筒、31,131,231,331…胴部、31a〜31d,131a〜131d,231a〜231d,331a〜331d…傾斜壁部、100,200,300,400…非接触温度センサ、101,111…二等分する線分、131e〜131h,331e〜331h…蓋部、231i〜231l,331i〜331l…直壁部、1000,1001,2000,2001,3000,4000…赤外線成分、A〜D…傾斜壁部の開口側端部、A´,A´´,B´,B´´,E´,F´,U´,Ue´,X´,Xf´…鏡像点、AI´…仮想直線、E〜H…蓋部の開口側端部、I〜L…傾斜壁部の受光面側端部、I´…傾斜壁部の仮想受光面側端部、M…赤外線吸収膜、N…受光面、O…受光範囲の中央、P…開口、Q…受光範囲、Qa,Qb…受光範囲の縁端、Qf…受光範囲の幅、Qk…受光範囲の縁端と交点との距離、R…受光範囲Q上の任意の点、S…連結点、T…直壁部の受光面側端部、U,Ue,X,Xf…交点、V…到達点、V´…仮想到達点、W…遮光空間、Y…温度検知の視野範囲、Ya,Yb…温度検知の視野範囲の縁端、Z…外部環境、α,β,γ,θ1〜θ4…角度、δ…傾斜角度、c…蓋部の長さ、d…傾斜壁部の開口側端部間の距離、h…傾斜壁部の開口側端部の高さ、r…到達点と交点との距離、x,y…連結点の座標   7A ... Heat source, 10 ... Sensor body, 11 ... Base, 12 ... Cover housing, 13 ... Support plate, 15 ... Thermal sensing element for infrared detection, 16 ... Thermal sensing element for temperature compensation, 21 ... Bottomed recess, 30, 130, 230, 330 ... guide cylinder, 31, 131, 231, 331 ... trunk, 31a-31d, 131a-131d, 231a-231d, 331a-331d ... inclined wall, 100, 200, 300, 400 ... non-contact temperature sensor 101, 111 ... bisecting line segment, 131e-131h, 331e-331h ... lid, 231i-231l, 331i-331l ... straight wall, 1000, 1001, 2000, 2001, 3000, 4000 ... infrared component, A to D: Opening end of inclined wall, A ′, A ″, B ′, B ″, E ′, F ′, U ′, Ue ′, X ′, Xf ′ ... Mirror image point, AI ′ ... virtual straight line E to H: opening side end of lid, I to L: light receiving surface side end of inclined wall, I ′: virtual light receiving surface side end of inclined wall, M: infrared absorbing film, N: light receiving surface , O ... center of light receiving range, P ... aperture, Q ... light receiving range, Qa, Qb ... edge of light receiving range, Qf ... width of light receiving range, Qk ... distance between edge of light receiving range and intersection, R ... light receiving Arbitrary point on range Q, S ... connection point, T ... light receiving surface side end of straight wall, U, Ue, X, Xf ... intersection, V ... arrival point, V '... virtual arrival point, W ... light shielding Space, Y ... temperature detection field of view, Ya, Yb ... edge of temperature detection field of view, Z ... external environment, α, β, γ, θ1 to θ4 ... angle, δ ... inclination angle, c ... of the lid Length, d: distance between the opening side end portions of the inclined wall portion, h: height of the opening side end portion of the inclined wall portion, r: distance between the reaching point and the intersection, x, y: coordinates of the connection point

Claims (5)

熱源の温度を非接触測定する非接触温度センサであって、前記熱源から放射される赤外線の熱量を検知する赤外線検知用感熱素子と、外部環境からの熱量を検知する温度補償用感熱素子と、前記熱源における前記赤外線検知用感熱素子による温度検知の視野範囲を画定するように設けられた案内筒と、を備えており、前記案内筒は、開口と、前記開口から前記赤外線検知用感熱素子が配置される受光面に向かって前記受光面の垂直方向に対して傾斜して延びる傾斜壁部を含む胴部を有し、前記赤外線検知用感熱素子を含む受光範囲の周囲に、前記胴部によって形成される遮光空間を有することを特徴とする非接触温度センサ。   A non-contact temperature sensor that measures the temperature of the heat source in a non-contact manner, a thermal sensor for detecting infrared radiation that detects the amount of infrared radiation emitted from the heat source, and a thermal sensor for temperature compensation that detects the amount of heat from the external environment, A guide tube provided so as to demarcate a visual field range of temperature detection by the infrared detection thermal element in the heat source, and the guide cylinder has an opening, and the infrared detection thermal element from the opening. A body portion including an inclined wall portion extending obliquely with respect to a light receiving surface to be disposed with respect to a vertical direction of the light receiving surface, and around the light receiving range including the infrared detecting thermal element by the body portion A non-contact temperature sensor having a light-shielding space formed. 前記胴部は、前記傾斜壁部の開口側端部から前記案内筒の内側に向かって延びる蓋部を有することを特徴とする請求項1に記載の非接触温度センサ。   The non-contact temperature sensor according to claim 1, wherein the body portion includes a lid portion that extends from an opening-side end portion of the inclined wall portion toward the inside of the guide tube. 前記案内筒を断面視した場合、前記傾斜壁部と前記受光面とのなす角度をδ、前記受光面に対する垂線と、前記受光範囲の中央と前記傾斜壁部の開口側端部とを結ぶ直線とのなす角度をαとすると、δおよびαは以下の関係式(1)を満たすことを特徴とする請求項1または2に記載の非接触温度センサ。
0°<δ≦45°+α/2 式(1)
When the guide tube is viewed in cross-section, an angle formed by the inclined wall portion and the light receiving surface is δ, a perpendicular to the light receiving surface, and a straight line connecting the center of the light receiving range and the opening side end portion of the inclined wall portion. The non-contact temperature sensor according to claim 1, wherein δ and α satisfy the following relational expression (1), where α is an angle formed by:
0 ° <δ ≦ 45 ° + α / 2 Formula (1)
前記案内筒を断面視した場合、前記傾斜壁部と前記受光面とのなす角度をδ、前記受光面に対する垂線と、前記受光範囲の周縁端と前記傾斜壁部の開口側端部とを結ぶ直線とのなす角度をβとすると、δおよびβは以下の関係式(2)を満たすことを特徴とする請求項1または2に記載の非接触温度センサ。
0°<δ≦45°+β/2 式(2)
When the guide tube is viewed in cross-section, the angle formed by the inclined wall portion and the light receiving surface is δ, the perpendicular to the light receiving surface is connected to the peripheral edge of the light receiving range and the opening side end of the inclined wall portion. 3. The non-contact temperature sensor according to claim 1, wherein δ and β satisfy the following relational expression (2), where β is an angle formed with a straight line.
0 ° <δ ≦ 45 ° + β / 2 Formula (2)
前記胴部は、前記傾斜壁部の受光面側端部から垂下する直壁部を有することを特徴とする請求項3または4に記載の非接触温度センサ。   5. The non-contact temperature sensor according to claim 3, wherein the body portion includes a straight wall portion that hangs down from a light receiving surface side end portion of the inclined wall portion.
JP2012239068A 2012-10-30 2012-10-30 Non-contact temperature sensor Pending JP2014089108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012239068A JP2014089108A (en) 2012-10-30 2012-10-30 Non-contact temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012239068A JP2014089108A (en) 2012-10-30 2012-10-30 Non-contact temperature sensor

Publications (1)

Publication Number Publication Date
JP2014089108A true JP2014089108A (en) 2014-05-15

Family

ID=50791122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012239068A Pending JP2014089108A (en) 2012-10-30 2012-10-30 Non-contact temperature sensor

Country Status (1)

Country Link
JP (1) JP2014089108A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008215A1 (en) * 2016-07-04 2018-01-11 株式会社堀場製作所 Infrared ray detector and radiation thermometer
JP6346391B1 (en) * 2017-06-06 2018-06-20 株式会社芝浦電子 Infrared temperature sensor and manufacturing method thereof
WO2018116535A1 (en) * 2016-12-20 2018-06-28 株式会社芝浦電子 Infrared temperature sensor
EP3421952A4 (en) * 2016-02-22 2019-10-23 Mitsubishi Materials Corporation Infrared sensor device
WO2020084811A1 (en) * 2018-10-24 2020-04-30 三菱マテリアル株式会社 Infrared sensor
WO2020084809A1 (en) * 2018-10-22 2020-04-30 三菱マテリアル株式会社 Infrared sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626925A (en) * 1992-07-06 1994-02-04 Fujitsu Ltd Infrared ray detector
JP2008501963A (en) * 2004-06-09 2008-01-24 パーキンエルマー オプトエレクトロニクス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コー. カーゲー Sensor
WO2012049683A1 (en) * 2010-10-14 2012-04-19 Semi Conductor Devices-Elbit Systems-Rafael Partnership Dewar assembly for ir detection systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626925A (en) * 1992-07-06 1994-02-04 Fujitsu Ltd Infrared ray detector
JP2008501963A (en) * 2004-06-09 2008-01-24 パーキンエルマー オプトエレクトロニクス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コー. カーゲー Sensor
WO2012049683A1 (en) * 2010-10-14 2012-04-19 Semi Conductor Devices-Elbit Systems-Rafael Partnership Dewar assembly for ir detection systems

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421952A4 (en) * 2016-02-22 2019-10-23 Mitsubishi Materials Corporation Infrared sensor device
WO2018008215A1 (en) * 2016-07-04 2018-01-11 株式会社堀場製作所 Infrared ray detector and radiation thermometer
WO2018116535A1 (en) * 2016-12-20 2018-06-28 株式会社芝浦電子 Infrared temperature sensor
CN109073468A (en) * 2016-12-20 2018-12-21 株式会社芝浦电子 Infrared temperature sensor
US10533898B2 (en) 2016-12-20 2020-01-14 Shibaura Electronics Co., Ltd. Infrared temperature sensor
CN109073468B (en) * 2016-12-20 2020-04-28 株式会社芝浦电子 Infrared temperature sensor and method for manufacturing same
JP6346391B1 (en) * 2017-06-06 2018-06-20 株式会社芝浦電子 Infrared temperature sensor and manufacturing method thereof
WO2018225141A1 (en) * 2017-06-06 2018-12-13 株式会社芝浦電子 Infrared temperature sensor and production method therefor
US11441952B2 (en) 2017-06-06 2022-09-13 Shibaura Electronics Co., Ltd. Infrared temperature sensor and method of manufacturing the same
WO2020084809A1 (en) * 2018-10-22 2020-04-30 三菱マテリアル株式会社 Infrared sensor
WO2020084811A1 (en) * 2018-10-24 2020-04-30 三菱マテリアル株式会社 Infrared sensor

Similar Documents

Publication Publication Date Title
JP2014089108A (en) Non-contact temperature sensor
EP1899709A1 (en) Optical cavity for a gas sensor
WO2018008215A1 (en) Infrared ray detector and radiation thermometer
CN106053023A (en) Analysis method for stray radiation of infrared measurement system
Pfänder et al. Infrared temperature measurements on solar trough absorber tubes
CN207352198U (en) A kind of anti-dazzling screen and camera lens module
JP5708217B2 (en) Non-contact temperature sensor
JP6520894B2 (en) Optical ranging device
JP5488751B1 (en) Temperature sensor, fixing device, and image forming apparatus
CN103134443B (en) A kind of large-caliber large-caliber-thicknreflector reflector surface shape auto-collimation detection device and method
KR20090118810A (en) Thermopile infrared ray detection device
US10054490B2 (en) Medical thermometer having an improved optics system
JP6635849B2 (en) Optical measuring device and measuring method
CN104634765A (en) Device and method for measuring atmospheric transmissivity by optical radiation measurement instrument
Ho et al. Evaluation of a New Tool for Heliostat Field Flux Mapping.
CN205642633U (en) Temperature measurement equipment and system based on ray radiation
Pfänder et al. Pyrometric temperature measurements on solar thermal high temperature receivers
WO2017126294A1 (en) Optical range-finding device
CN105466855A (en) Sample detecting device based on Herroitt multi-reflect pool
US10948405B2 (en) Gas sensor
JP6382472B2 (en) Infrared temperature sensor
CN110062878A (en) System for detecting electromagnetic radiation
CN210625861U (en) Infrared thermal imaging temperature measurement core and infrared thermal imaging equipment
US10228321B1 (en) System and method for infrared reflection avoidance
CN211457413U (en) Heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161011