JP6635849B2 - Optical measuring device and measuring method - Google Patents

Optical measuring device and measuring method Download PDF

Info

Publication number
JP6635849B2
JP6635849B2 JP2016071809A JP2016071809A JP6635849B2 JP 6635849 B2 JP6635849 B2 JP 6635849B2 JP 2016071809 A JP2016071809 A JP 2016071809A JP 2016071809 A JP2016071809 A JP 2016071809A JP 6635849 B2 JP6635849 B2 JP 6635849B2
Authority
JP
Japan
Prior art keywords
light
incident
sample
reflected light
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016071809A
Other languages
Japanese (ja)
Other versions
JP2017181405A (en
Inventor
龍哉 播磨
龍哉 播磨
勉 長浜
勉 長浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2016071809A priority Critical patent/JP6635849B2/en
Publication of JP2017181405A publication Critical patent/JP2017181405A/en
Application granted granted Critical
Publication of JP6635849B2 publication Critical patent/JP6635849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光学測定装置及び測定方法に関する。   The present invention relates to an optical measuring device and a measuring method.

従来、ウインドウフィルムや壁材等の建造物外皮に再帰反射特性を付与することで、日射を水平面より上方の天空方向に反射させる技術が実用化されている。このような技術によって、地表方向に反射する日射を低減し、ヒートアイランド(HI)現象の緩和や、温熱環境の改善に一定の効果が得られることが確認されている(例えば、特許文献1及び2参照)。   2. Description of the Related Art Conventionally, a technique has been put to practical use in which solar radiation is reflected in a sky direction above a horizontal plane by providing a retroreflective property to a building skin such as a window film or a wall material. It has been confirmed that such a technique can reduce the amount of solar radiation reflected in the direction of the ground surface, and can provide a certain effect in alleviating the heat island (HI) phenomenon and improving the thermal environment (for example, Patent Documents 1 and 2). reference).

再帰反射は、入射光が入射方向に反射する現象であるため、再帰反射による反射光を測定するためには、入射光路上の反射光を測定する必要がある。しかし、受光器を入射光路上に設置すると、受光器によって入射光が遮られてしまう。そこで、ハーフミラー等の光束を分割する光学素子を入射光路上に設置し、入射光源側に反射した光の進行方向を変えることで、入射光を遮らない位置に設置した受光器によって再帰反射による反射光を測定することが、従前より行われている(例えば、特許文献3参照)。このような再帰反射による反射光は、ゴニオメーターを用いて測定される。その測定値は、特定の反射角度における立体角反射率に相当し、反射角度特性を表すのに用いられる。   Since retroreflection is a phenomenon in which incident light is reflected in the incident direction, it is necessary to measure reflected light on an incident optical path in order to measure reflected light due to retroreflection. However, if the light receiver is placed on the incident light path, the light is blocked by the light receiver. Therefore, by installing an optical element such as a half mirror that divides the light beam on the incident light path and changing the traveling direction of the light reflected to the incident light source side, the light reflected by the light receiver installed at a position where the incident light is not blocked Measuring reflected light has been conventionally performed (for example, see Patent Document 3). The light reflected by such retroreflection is measured using a goniometer. The measured value corresponds to the solid angle reflectance at a specific reflection angle, and is used to represent the reflection angle characteristic.

一方、広い角度範囲の反射率の測定には、一般的に積分球を用いた測定系が用いられ、上述の建造物外皮への日射に相当する、高角度入射での反射光測定が可能なものが提案されている(例えば、特許文献4参照)。   On the other hand, for measurement of the reflectance in a wide angle range, a measurement system using an integrating sphere is generally used, and reflected light measurement at a high angle incidence, which is equivalent to the above-described solar radiation on the building skin, is possible. Some have been proposed (for example, see Patent Document 4).

特開2010−160467号公報JP 2010-160467 A 特開2011−137342号公報JP 2011-137342 A 特表2013−508749号公報JP-T-2013-508749 特開2007−033334号公報JP 2007-033334 A

ところで、建造物外皮の再帰反射特性には、反射面の構造等によって、反射光の拡散や分離が生じる。そこで、HI現象の改善効果の定量化に当たっては、図1に示すように、水平面より上方(天空)の全方位(天空側角度範囲)に反射した光を測定し、反射率を求めることが要求される。   By the way, in the retroreflection characteristics of the building outer skin, diffusion and separation of reflected light occur depending on the structure of the reflection surface and the like. Therefore, in quantifying the improvement effect of the HI phenomenon, as shown in FIG. 1, it is necessary to measure the light reflected in all directions (sky side angle range) above the sky plane (sky) and obtain the reflectance. Is done.

従来のゴニオメーターを用いた測定方法によって、上述のような三次元方向に広く分布する反射光を測定する場合、反射光の分布に対して受光器が小さいことから、受光器の角度を連続的に変化させて測定し、各測定値を積分することで反射率を求める方法が考えられる。しかしながら、この場合、広い角度範囲の測定に時間を要し、また角度送りの際の機械誤差、測定エリアの重なりや抜け等が生じやすいため、精度的にも測定が困難であった。一方、積分球での反射測定は、主に試料の全方位の反射(半球反射)を測定するものであり、特定角度範囲の反射率を測定することはできなかった。このように、従来は、立体角反射率及び半球反射率をそれぞれ異なる測定方法で測定することは可能であったが、所望の角度範囲の反射率を測定することはできなかった。   When measuring the reflected light widely distributed in the three-dimensional direction as described above by the measuring method using the conventional goniometer, since the receiver is small relative to the distribution of the reflected light, the angle of the receiver is continuously changed. And a method of calculating the reflectance by integrating the measured values. However, in this case, it takes time to measure a wide angle range, and it is difficult to accurately measure the angle because a mechanical error at the time of angle feed and an overlap or omission of measurement areas are likely to occur. On the other hand, the reflection measurement with the integrating sphere mainly measures the omnidirectional reflection (hemispherical reflection) of the sample, and cannot measure the reflectance in a specific angle range. As described above, conventionally, it was possible to measure the solid angle reflectance and the hemispherical reflectance by different measurement methods, but it was not possible to measure the reflectance in a desired angle range.

上記のような課題に鑑みてなされた本発明の目的は、所望の角度範囲の反射率を測定することができる光学測定装置及び測定方法を提供することにある。   An object of the present invention, which has been made in view of the above problems, is to provide an optical measuring device and a measuring method capable of measuring a reflectance in a desired angle range.

上記した課題を解決すべく、本発明に係る光学測定装置は、開口部を有し、当該開口部を介して外部の光源からの入射光を入射する積分球と、表面が前記積分球内に露出して配置される試料の、前記入射光が入射する位置における法線を含む平面のうち、前記入射光と鏡面反射光とを含む入射面以外の任意の平面である境界面を介して、前記入射光と反対側の全方位の反射光を吸収するように設置される反射光吸収体と、を備える。   In order to solve the above-described problem, an optical measuring device according to the present invention has an opening, an integrating sphere through which incident light from an external light source is incident, and a surface inside the integrating sphere. Of the sample placed exposed, of the plane including the normal at the position where the incident light is incident, through a boundary surface that is any plane other than the incident surface including the incident light and the specular reflected light, A reflected light absorber installed to absorb omnidirectional reflected light on the side opposite to the incident light.

また、本発明に係る光学測定装置は、前記開口部の全体を覆う着脱可能なハーフミラーをさらに備えることが好ましい。   It is preferable that the optical measurement device according to the present invention further includes a detachable half mirror that covers the entire opening.

また、本発明に係る光学測定装置は、前記試料の裏面側に設置され、前記試料を透過する透過光を吸収する透過光吸収体をさらに備えることが好ましい。   In addition, it is preferable that the optical measurement device according to the present invention further includes a transmitted light absorber that is provided on the back surface side of the sample and absorbs transmitted light transmitted through the sample.

また、本発明に係る光学測定装置は、前記透過光吸収体は、前記試料を透過する透過光が入射する開口を有する箱状体からなることが好ましい。   Further, in the optical measuring device according to the present invention, it is preferable that the transmitted light absorber is formed of a box-shaped body having an opening through which the transmitted light transmitted through the sample enters.

また、上記した課題を解決すべく、本発明に係る測定方法は、前記光学測定装置を用いる測定方法であって、前記積分球内で前記入射光が入射しない位置に前記試料を配置し、かつ、標準反射体を前記入射光が入射する位置に配置して、基準反射光量を得るステップと、前記試料と前記標準反射体とを入れ替えて、入射側全方位反射光量を得るステップと、前記基準反射光量と前記入射側全方位反射光量とに基づいて、入射側全方位反射率を求めるステップと、を含む。   Further, in order to solve the above-described problem, a measurement method according to the present invention is a measurement method using the optical measurement device, wherein the sample is arranged at a position where the incident light does not enter in the integrating sphere, and Arranging a standard reflector at a position where the incident light is incident, and obtaining a reference reflected light amount; exchanging the sample and the standard reflector to obtain an incident side omnidirectional reflected light amount; Obtaining an incident-side omnidirectional reflectance based on the amount of reflected light and the amount of incident-side omnidirectional reflected light.

また、上記した課題を解決すべく、本発明に係る測定方法は、前記光学測定装置を用いる測定方法であって、前記ハーフミラーの反射率をρh、前記ハーフミラー設置時の測定反射率をRh、前記ハーフミラー非設置時の測定反射率をRnとすると、前記開口部から前記積分球の外部に散逸する再帰反射光を補償した散逸光補償反射率を、式:Rn+(Rh−Rn)/ρhによって得る。   In order to solve the above-mentioned problem, a measuring method according to the present invention is a measuring method using the optical measuring device, wherein the reflectance of the half mirror is ρh, and the measured reflectance when the half mirror is installed is Rh. Assuming that the measured reflectance when the half mirror is not installed is Rn, the dissipated light-compensated reflectance that compensates for the retroreflected light that escapes from the opening to the outside of the integrating sphere is represented by the formula: Rn + (Rh−Rn) / Obtained by ρh.

本発明に係る光学測定装置及び測定方法によれば、所望の角度範囲の反射率を測定することができる。   According to the optical measuring device and the measuring method according to the present invention, it is possible to measure the reflectance in a desired angle range.

上方反射の概要を示す図である。It is a figure which shows the outline | summary of upward reflection. 本発明の一実施形態に係る光学測定装置を示す概略図である。It is a schematic diagram showing the optical measuring device concerning one embodiment of the present invention. 反射光吸収体を示す概略図である。It is the schematic which shows a reflected light absorber. 反射光吸収体の他の例を示す図である。It is a figure showing other examples of a reflected light absorber. 拡散性の大きい試料を用いた例を示す図である。It is a figure showing an example using a sample with large diffusivity. 透過光吸収体を説明する図である。It is a figure explaining a transmitted light absorber. 箱状透過光吸収体を説明する図である。It is a figure explaining a box-shaped transmitted light absorber. 吸収体による積分球の壁面からの反射光の吸収を示す概略図である。It is the schematic which shows the absorption of the reflected light from the wall surface of the integrating sphere by an absorber. 吸収体による光量損失の測定法を説明する図である。It is a figure explaining the measuring method of the light quantity loss by an absorber. 試料Aを示す断面図である。FIG. 2 is a cross-sectional view showing a sample A. 測定誤差となる吸収体の吸収率の測定結果を示す図である。It is a figure which shows the measurement result of the absorptivity of the absorber which becomes a measurement error. 半球反射率の測定結果を示す図である。It is a figure showing the measurement result of hemispherical reflectance. 標準反射体と試料とを入れ替える測定法を説明する図である。It is a figure explaining the measuring method which replaces a standard reflector and a sample. 試料Aでの反射光を説明する図である。FIG. 3 is a diagram illustrating reflected light on a sample A. 試料Aでの反射光を説明する図である。FIG. 3 is a diagram illustrating reflected light on a sample A. 測定例1に係る開口部のハーフミラー設置の有無による半球反射率の測定結果を示す図である。FIG. 9 is a diagram showing measurement results of hemispherical reflectance depending on whether or not a half mirror is installed in an opening according to Measurement Example 1. 測定例1に係る試料Aの各反射率の測定結果を示す図である。FIG. 7 is a diagram illustrating measurement results of each reflectance of a sample A according to Measurement Example 1. 測定例1に係る試料Bの各反射率の測定結果を示す図である。FIG. 9 is a diagram illustrating measurement results of each reflectance of a sample B according to Measurement Example 1. 測定例2に係る開口部のハーフミラー設置の有無による半球反射率の測定結果を示す図である。FIG. 9 is a diagram illustrating measurement results of hemispherical reflectance depending on whether or not a half mirror is installed in an opening according to Measurement Example 2. ハーフミラーの反射率を示す図である。FIG. 4 is a diagram illustrating a reflectance of a half mirror. 散逸光補償反射率及び散逸光無しでの反射率の測定結果を示す図である。It is a figure which shows the measurement result of the scattered light compensation reflectance and the reflectance without scattered light.

以下、諸図面を参照しながら、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施形態)
図2(a)及び図2(b)に示すように、本発明の一実施形態に係る光学測定装置1は、積分球10と、反射光吸収体30と、受光部40とを備える。
(First embodiment)
As shown in FIGS. 2A and 2B, the optical measurement device 1 according to one embodiment of the present invention includes an integrating sphere 10, a reflected light absorber 30, and a light receiving unit 40.

積分球10は、開口部11を有する。積分球10は、この開口部11を介して外部の光源からの入射光Lを入射可能である。開口部11には、この開口部11の全体を覆うハーフミラーが着脱可能に設置される。   The integrating sphere 10 has an opening 11. The integrating sphere 10 can receive incident light L from an external light source through the opening 11. A half mirror that covers the entirety of the opening 11 is detachably installed in the opening 11.

ここで、光学測定装置1は、試料100を、積分球10内に露出するように設置可能である。光学測定装置1は、具体的には、試料100を、外部の光源からの入射光Lが試料表面110に入射角θ(例えば、図2では60°)で直接入射する位置に設置可能である。なお、試料100は、図2(a)に示すように、積分球10の底面に設けられた外部に連通する開口を塞ぐように設置されてもよい。この場合、試料100は、例えば、図2(a)に示すように試料台20の上に設置されてもよい。また、積分球10が底面に開口を有さない場合には、試料100は積分球10内部の底面に設置されてもよい。   Here, the optical measurement device 1 can be installed so that the sample 100 is exposed inside the integrating sphere 10. Specifically, the optical measurement apparatus 1 can place the sample 100 at a position where incident light L from an external light source is directly incident on the sample surface 110 at an incident angle θ (for example, 60 ° in FIG. 2). . As shown in FIG. 2A, the sample 100 may be installed so as to cover an opening provided on the bottom surface of the integrating sphere 10 and communicating with the outside. In this case, the sample 100 may be installed on the sample stage 20, for example, as shown in FIG. When the integrating sphere 10 has no opening in the bottom surface, the sample 100 may be set on the bottom surface inside the integrating sphere 10.

反射光吸収体30は、光吸収膜等によって構成され、試料100における鏡面反射側全方位の反射光を吸収するように、試料100の試料表面110上に設置される。ここで、鏡面反射側全方位とは、試料表面110の入射光Lが入射する位置における法線Oを含む平面のうち、入射光Lと鏡面反射光とを含む入射面以外の任意の平面を境界面Pとするとき、境界面Pを介して入射光と反対側の全方位を意味する。   The reflected light absorber 30 is formed of a light absorbing film or the like, and is disposed on the sample surface 110 of the sample 100 so as to absorb the reflected light in all directions on the specular reflection side of the sample 100. Here, the specular reflection side omnidirectional refers to any plane other than the incident surface including the incident light L and the specular reflected light among the planes including the normal line O at the position where the incident light L on the sample surface 110 is incident. When the boundary surface P is used, it means all directions on the opposite side to the incident light via the boundary surface P.

反射光吸収体30は、例えば図3に示すように、入射光Lと鏡面反射光とを含む入射面と交差する斜面31と、斜面31と連結する一対の側面32とから構成され、鏡面反射側全方位を覆うようにして設置される。なお、拡散性が小さく、鏡面反射光の光束の広がりが小さい試料を用いる場合は、反射光吸収体30は、図4に示すような板状の斜面31のみからなるものを用いてもよい。反射光吸収体30は、鏡面反射側全方位の反射光を吸収するものである限り、測定を行う試料の反射方位の範囲等によらず、その形態は適宜変更することができる。なお、反射光吸収体30を設置しない状態での光量が一般的な半球反射による光量であるため、基準反射光量との比から半球反射率を求めることができる。   For example, as shown in FIG. 3, the reflected light absorber 30 includes a slope 31 intersecting an incident surface including the incident light L and the specular reflected light, and a pair of side surfaces 32 connected to the slope 31. It is installed so as to cover all directions. In the case of using a sample having a small diffusivity and a small spread of the light beam of the specular reflected light, the reflected light absorber 30 may be composed of only the plate-shaped slope 31 as shown in FIG. As long as the reflected light absorber 30 absorbs reflected light in all directions on the specular reflection side, its form can be appropriately changed regardless of the range of the reflection direction of the sample to be measured. Since the amount of light in a state where the reflected light absorber 30 is not installed is the amount of light due to general hemispherical reflection, the hemispherical reflectance can be obtained from the ratio with the reference amount of reflected light.

ところで、試料100として拡散性の大きいものを用いる場合には、入射光Lが入射する入射領域内で入射側への再帰反射光と鏡面反射方向への反射が混在する。そのため、鏡面反射方向の反射光を選択的に吸収することができない。例えば、図5(a)及び図5(b)に示す例では、入射領域Sが、境界面Pによって区画される入射光側(再帰反射側)と入射光と反対側(鏡面反射側)との両側にまたがって存在している。ここで、図5(a)及び図5(b)では、入射側への反射光を実線の矢印で示し、鏡面反射側への反射光を破線の矢印で示す。   By the way, when a sample 100 having a high diffusivity is used, retroreflected light toward the incident side and reflection in the specular reflection direction are mixed in the incident area where the incident light L is incident. Therefore, the reflected light in the specular reflection direction cannot be selectively absorbed. For example, in the example illustrated in FIGS. 5A and 5B, the incident area S includes an incident light side (retroreflection side) defined by the boundary surface P and a side opposite to the incident light (specular reflection side). Exists on both sides. Here, in FIGS. 5A and 5B, the reflected light to the incident side is indicated by a solid arrow, and the reflected light to the specular reflection side is indicated by a broken arrow.

図5(a)及び図5(b)に示すように、入射領域Sの鏡面反射側の端である地点Aでは、受光部40で取り込まれるべき再帰反射側へ向かう反射光の一部が反射光吸収体30に吸収される。一方、入射領域Sの再帰反射側の端である地点Bでは、反射光吸収体30に吸収されるべき鏡面反射側へ向かう反射光の一部が反射光吸収体30に吸収されることなく積分球10の内面に向かい、受光部40に取り込まれる。従って、結果的にこれら過不足分が相殺されることになる。例えば、試料100として完全拡散性の試料を用いた場合、受光部40によって取り込まれる反射光の光量は、反射光吸収体30を設置しない場合に受光部40によって取り込まれる光量の50%となることが知られている。   As shown in FIGS. 5A and 5B, at a point A which is an end on the specular reflection side of the incident area S, a part of the reflected light to be captured by the light receiving unit 40 toward the retroreflection side is reflected. The light is absorbed by the light absorber 30. On the other hand, at point B, which is the end of the incident area S on the retroreflective side, part of the reflected light to be absorbed by the reflected light absorber 30 toward the specular reflection side is integrated without being absorbed by the reflected light absorber 30. The light is directed toward the inner surface of the sphere 10 and is captured by the light receiving unit 40. Therefore, as a result, the excess or deficiency is offset. For example, when a completely diffusible sample is used as the sample 100, the amount of reflected light captured by the light receiving unit 40 is 50% of the amount of light captured by the light receiving unit 40 when the reflected light absorber 30 is not installed. It has been known.

ここで、光学測定装置1において、試料100が透過性を有する場合は、図6(a)に示すように、透過光吸収体50を備えることが好ましい。透過光吸収体50は、光吸収膜等によって構成され、試料100を透過する透過光が入射する位置に配置される。透過光吸収体50は、図6(a)に示すように、試料100の試料表面110と対向する面(試料裏面120)側に設置され、好ましくは試料裏面120に近接するように配置される。透過光吸収体50を設けることで、試料100を透過した透過光を吸収することができる。これにより、試料100の透過光が反射して再度試料100を透過して積分球10内に入射し、受光部40によって反射光として取り込まれることにより生じる測定誤差を低減することができる。   Here, in the optical measurement device 1, when the sample 100 has transparency, it is preferable to include a transmitted light absorber 50 as shown in FIG. The transmitted light absorber 50 is formed of a light absorbing film or the like, and is disposed at a position where the transmitted light transmitted through the sample 100 is incident. As shown in FIG. 6A, the transmitted light absorber 50 is provided on the surface of the sample 100 facing the sample surface 110 (the sample back surface 120), and is preferably arranged so as to be close to the sample back surface 120. . By providing the transmitted light absorber 50, transmitted light transmitted through the sample 100 can be absorbed. Accordingly, a measurement error caused by the transmitted light of the sample 100 being reflected, transmitting the sample 100 again, entering the integrating sphere 10, and being captured as reflected light by the light receiving unit 40 can be reduced.

しかしながら、入射角が高角度になると、透過光吸収体50の界面反射(フレネル反射)が増大する。これにより、図6(a)に示すように、透過光の一部が吸収されずに積分球10内に戻り、反射光として検出されうる。図6(b)は、試料100を用いずに透過光吸収体50に直接入射光を入射させたときの、入射角θ=10°と、入射角θ=70°とのそれぞれの場合における分光反射率を測定した結果を示す図である。図6(b)に示すように、入射角θ=70°では、各波長で約10%反射されることが分かる。   However, when the incident angle becomes high, the interface reflection (Fresnel reflection) of the transmitted light absorber 50 increases. As a result, as shown in FIG. 6A, a part of the transmitted light returns to the integrating sphere 10 without being absorbed, and can be detected as reflected light. FIG. 6B shows the spectra when the incident angle θ = 10 ° and the incident angle θ = 70 ° when incident light is directly incident on the transmitted light absorber 50 without using the sample 100. It is a figure showing the result of having measured reflectance. As shown in FIG. 6B, at an incident angle θ = 70 °, about 10% is reflected at each wavelength.

そこで、透過光吸収体50は、図7(a)に示すように、試料100を透過する透過光が入射する開口を有し、内部空間Rを区画する箱状体からなる箱状透過光吸収体51であることが好ましい。これにより、箱状透過光吸収体51の底面に所定以上の大きさの入射角で入射した透過光が、箱状透過光吸収体51の側面に向けて反射されて吸収されるので、積分球10内への透過光の戻りを低減することができる。図7(b)は、試料100を用いずに箱状透過光吸収体51に直接入射光を入射させたときの、入射角θ=10°と、入射角θ=70°とのそれぞれの場合における分光反射率を測定した結果を示す図である。図7(b)から明らかなように、図6(b)と比較して、入射角θ=70°では、反射光として検出される割合が低減された。   Therefore, as shown in FIG. 7A, the transmitted light absorber 50 has an opening through which the transmitted light passing through the sample 100 is incident, and is a box-shaped transmitted light absorbing member formed of a box-shaped body that partitions the internal space R. It is preferably the body 51. As a result, the transmitted light that has entered the bottom surface of the box-shaped transmitted light absorber 51 at an incident angle of a predetermined value or more is reflected toward the side surface of the box-shaped transmitted light absorber 51 and is absorbed. The return of the transmitted light to the inside 10 can be reduced. FIG. 7B shows the case where the incident angle θ = 10 ° and the incident angle θ = 70 ° when the incident light is directly incident on the box-shaped transmitted light absorber 51 without using the sample 100. FIG. 6 is a diagram showing the result of measuring the spectral reflectance at. As is clear from FIG. 7B, the ratio of reflected light detected at an incident angle θ = 70 ° was reduced as compared with FIG. 6B.

受光部40は、積分球10の内部で、入射光L及び試料100からの反射光が直接入射しないように光を遮る形態をとり任意の位置に設置される。受光部40は、例えば光ファイバ等の光学部材と、この光学部材に反射光を集光させるレンズ等の光学系とを含んで構成される。受光部40に取り込まれた光は、積分球10の外部に設置された分光器等で検出され、例えば300nm〜1650nmの波長域の紫外線、可視光、赤外線等の強度が検出される。   The light receiving unit 40 is installed at an arbitrary position inside the integrating sphere 10 so as to block light so that the incident light L and the reflected light from the sample 100 do not directly enter. The light receiving unit 40 is configured to include an optical member such as an optical fiber and an optical system such as a lens that collects reflected light on the optical member. The light captured by the light receiving unit 40 is detected by a spectroscope or the like provided outside the integrating sphere 10, and the intensity of, for example, ultraviolet light, visible light, infrared light, or the like in a wavelength range of 300 nm to 1650 nm is detected.

次に、光学測定装置1を用いた再帰反射光の測定方法について説明する。ここで、本測定方法に使用する光学測定装置1は、上述した箱状透過光吸収体51を備えるものとする。   Next, a method of measuring retroreflected light using the optical measurement device 1 will be described. Here, it is assumed that the optical measuring device 1 used in the present measuring method includes the box-shaped transmitted light absorber 51 described above.

光学測定装置1が備える反射光吸収体30及び箱状透過光吸収体51は、入射光Lが試料100に入射した際の鏡面反射側全方位の反射光と、試料100の透過光とをそれぞれ吸収する目的で設置されるものである。しかしながら、図8に示すように、積分球10の壁面で拡散反射、多重反射が生じる過程で、検出されるべき光の一部が反射光吸収体30及び箱状透過光吸収体51によって吸収されるため、測定誤差が生じうる。   The reflected light absorber 30 and the box-shaped transmitted light absorber 51 included in the optical measuring device 1 respectively reflect the reflected light in all directions on the specular reflection side when the incident light L enters the sample 100 and the transmitted light of the sample 100. It is installed for the purpose of absorbing. However, as shown in FIG. 8, in the process where diffuse reflection and multiple reflection occur on the wall surface of the integrating sphere 10, a part of the light to be detected is absorbed by the reflected light absorber 30 and the box-shaped transmitted light absorber 51. Therefore, a measurement error may occur.

このような測定誤差の要因となる光量の損失は、以下のようにして測定される。まず、図9(a)に示すように、積分球10内に、標準反射体200のみを、設置し、標準反射体200に例えば入射角θ=10°で入射光Lを入射させた際の反射光量を基準光量する。同じく、標準反射体200に入射光Lを入射させた状態で、図9(b)に示すように、その隣接する位置に試料100、反射光吸収体30及び箱状透過光吸収体51を配置して測定した光量を測定光量とする。基準光量から測定光量を減じたものを吸収光量とし、吸収光量を基準光量で除することで、吸収率を求める。これらの結果から、反射光吸収体30及び箱状透過光吸収体51による光量の損失が明らかとなる。   The light amount loss that causes such a measurement error is measured as follows. First, as shown in FIG. 9A, only the standard reflector 200 is installed in the integrating sphere 10, and the incident light L is incident on the standard reflector 200 at an incident angle θ = 10 °, for example. The reflected light amount is used as a reference light amount. Similarly, with the incident light L incident on the standard reflector 200, the sample 100, the reflected light absorber 30, and the box-shaped transmitted light absorber 51 are arranged at adjacent positions as shown in FIG. 9B. The measured light amount is defined as a measured light amount. The absorption light amount is obtained by subtracting the measured light amount from the reference light amount, and the absorption light amount is divided by the reference light amount to obtain the absorption rate. From these results, the loss of the light amount due to the reflected light absorber 30 and the box-shaped transmitted light absorber 51 becomes apparent.

そこで、この光量の損失が生じた状態の光量を基準反射光量とすることで、反射光吸収体30及び箱状透過光吸収体51による吸収の影響を除外することが可能となる。また、標準反射体200の反射率が積分球10内壁の反射率と一致しない場合、標準反射体200の測定時も同様に積分球10内の拡散反射、多重反射の過程で光量の誤差が生じることから、標準反射体200と、試料100、反射光吸収体30及び箱状透過光吸収体51とを入れ替えて入射光照射位置に配置し、基準反射光量と測定光量を測定することにより、各々の誤差を補正することができる。   Therefore, by setting the light amount in the state where the light amount loss occurs as the reference reflected light amount, the influence of the absorption by the reflected light absorber 30 and the box-shaped transmitted light absorber 51 can be excluded. If the reflectance of the standard reflector 200 does not match the reflectance of the inner wall of the integrating sphere 10, an error in the amount of light occurs in the process of diffuse reflection and multiple reflection in the integrating sphere 10 when measuring the standard reflector 200 as well. Therefore, the standard reflector 200, the sample 100, the reflected light absorber 30, and the box-shaped transmitted light absorber 51 are exchanged and arranged at the incident light irradiation position, and the reference reflected light amount and the measured light amount are measured. Can be corrected.

なお、本発明は、上記実施形態にのみ限定されるものではなく、幾多の変形又は変更が可能である。   It should be noted that the present invention is not limited only to the above-described embodiment, and various modifications or changes can be made.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

本実施例に用いた光学測定装置1が備える各構成は、以下のとおりである。積分球10として、ラムダビジョン社製の反射用入射可変積分球を用いた。光の検出には分光器及び分光光度計を用いた。具体的には、分光器として、ラムダビジョン社製の分光器1(350〜1100nm)及び分光器2(950〜1650nm)を用い、分光光度計として、日立ハイテクサイエンス社製の分光光度計(商品名:U4100)を用いた。反射光吸収体30及び箱状透過光吸収体51として、Acktar社製の吸収体(商品名:Spectral Black)を用いた。ハーフミラーとして、シグマ光機社製のハーフミラー(商品名:PMH−25.4C03−10−4/20)を用いた。標準反射体200として、Labsphere社製の標準反射体(商品名:Spectralon SRS−99−020)を用いた。   The components of the optical measuring device 1 used in the present embodiment are as follows. As the integrating sphere 10, an incident variable integrating sphere for reflection manufactured by Lambda Vision was used. A spectrometer and a spectrophotometer were used for light detection. Specifically, a spectrometer 1 (350 to 1100 nm) and a spectrometer 2 (950 to 1650 nm) manufactured by Lambda Vision Co., Ltd. are used as spectrometers, and a spectrophotometer (product of Hitachi High-Tech Science) is used as a spectrophotometer. Name: U4100) was used. As the reflected light absorber 30 and the box-shaped transmitted light absorber 51, an absorber manufactured by Acktar (trade name: Spectral Black) was used. A half mirror (trade name: PMH-25.4C03-10-4 / 20) manufactured by Sigma Koki Co., Ltd. was used as the half mirror. As the standard reflector 200, a standard reflector (trade name: Spectralon SRS-99-020) manufactured by Labsphere was used.

また、本実施例で用いた試料100は、以下の試料A及び試料Bである。試料Aは、熱線再帰フィルム(商品名:ALBEEDO、デクセリアルズ社製)とフロートガラス(50mm×40mm×t3mm)とを粘着剤にて貼合し、フロートガラス表面が試料表面となるように成形した熱線再帰フィルム貼合ガラス(50mm×40mm×t3.2mm)である。試料Aが有する熱線再帰フィルムは、図10に示すように、光が入射する平滑な面を有する光学層151と、該光学層151内に1次元配列された略三角断面形状の凹凸部152と、該凹凸部152の形状面上に形成された赤外波長を選択的に反射する反射層153とを有する。試料Bは、フロートガラス(50mm×40mm×t3mm)である。   The sample 100 used in this example is the following sample A and sample B. For sample A, a hot-wire recurring film (trade name: ALBEEDO, manufactured by Dexerials) and a float glass (50 mm × 40 mm × t3 mm) were bonded with an adhesive, and a hot wire formed such that the float glass surface became the sample surface. It is a recursive film-laminated glass (50 mm x 40 mm x t3.2 mm). As shown in FIG. 10, the heat ray recurring film included in the sample A includes an optical layer 151 having a smooth surface on which light is incident, and an uneven portion 152 having a substantially triangular cross-section and one-dimensionally arranged in the optical layer 151. And a reflective layer 153 formed on the shape surface of the uneven portion 152 and selectively reflecting infrared wavelengths. Sample B is float glass (50 mm × 40 mm × t3 mm).

[測定誤差の補正]
上述した、検出されるべき光が反射光吸収体30及び箱状透過光吸収体51に吸収されることで生じる測定誤差を、以下のように補正した。
[Correction of measurement error]
The above-described measurement error caused by the light to be detected being absorbed by the reflected light absorber 30 and the box-shaped transmitted light absorber 51 was corrected as follows.

まず、図9(a)に示したように、積分球10内に標準反射体200のみを設置し、標準反射体200に入射角θ=10°で入射光Lを入射させた際の反射光量を基準光量とした。同じく、標準反射体200に入射光Lを入射させた状態で、図9(b)に示したように、その隣接する位置に試料100、反射光吸収体30及び箱状透過光吸収体51を配置して測定した光量を測定光量とした。基準光量から測定光量を減じたものを吸収光量とし、吸収光量を基準光量で除することで、吸収率を求めた。図11(a)に、吸収体として箱状透過光吸収体51のみを用いたときの吸収率を示し、図11(b)に、吸収体として反射光吸収体30及び箱状透過光吸収体51を用いたときの吸収率を示す。ここで、吸収体として箱状透過光吸収体51のみを用いた際は、図11(a)に示すように、試料A及び試料Bの測定に加えて、試料無しでの測定も行った。一方、吸収体として反射光吸収体30及び箱状透過光吸収体51を用いた際は、反射光吸収体30は試料100の上に設置されるものであるため、試料無しでの測定は行わず、試料A及び試料Bの測定を行った。これらの結果から、吸収体による光量の損失が明らかとなり、また、同じ吸収体を用いても、試料の反射特性によってその吸収率が異なることが分かった。   First, as shown in FIG. 9A, only the standard reflector 200 is installed in the integrating sphere 10 and the amount of reflected light when the incident light L is incident on the standard reflector 200 at an incident angle θ = 10 °. Was set as a reference light amount. Similarly, in a state where the incident light L is made incident on the standard reflector 200, as shown in FIG. 9B, the sample 100, the reflected light absorber 30, and the box-shaped transmitted light absorber 51 are placed adjacent to each other. The light amount measured with the arrangement was defined as the measured light amount. The absorption light amount was obtained by subtracting the measured light amount from the reference light amount, and the absorption amount was obtained by dividing the absorption light amount by the reference light amount. FIG. 11A shows the absorptance when only the box-shaped transmitted light absorber 51 is used as the absorber, and FIG. 11B shows the reflected light absorber 30 and the box-shaped transmitted light absorber as the absorber. The absorptivity when using No. 51 is shown. Here, when only the box-shaped transmitted light absorber 51 was used as the absorber, as shown in FIG. 11A, the measurement without the sample was performed in addition to the measurement of the sample A and the sample B. On the other hand, when the reflected light absorber 30 and the box-shaped transmitted light absorber 51 are used as the absorber, the measurement without the sample is performed because the reflected light absorber 30 is placed on the sample 100. , Samples A and B were measured. From these results, the loss of the light amount due to the absorber became clear, and it was found that even when the same absorber was used, the absorptance varied depending on the reflection characteristics of the sample.

そこで、この光量の損失が生じた状態の光量を基準反射光量とすることで、吸収体による吸収の影響を除外することが可能となる。また、標準反射体200の反射率が積分球10内壁の反射率と一致しない場合、標準反射体200測定時も同様に積分球10内の拡散反射、多重反射の過程で光量の誤差が生じることから、標準反射体200と、試料100、反射光吸収体30及び箱状透過光吸収体51とを入れ替えて入射光照射位置に配置し、基準反射光量と測定光量を測定することにより、各々の誤差を補正することができる。   Therefore, the influence of absorption by the absorber can be excluded by setting the light amount in the state where the light amount loss occurs as the reference reflected light amount. If the reflectance of the standard reflector 200 does not match the reflectance of the inner wall of the integrating sphere 10, an error in the amount of light may occur in the process of diffuse reflection and multiple reflection in the integrating sphere 10 when measuring the standard reflector 200 as well. From the above, the standard reflector 200, the sample 100, the reflected light absorber 30, and the box-shaped transmitted light absorber 51 are replaced and arranged at the incident light irradiation position, and the reference reflected light amount and the measured light amount are measured. The error can be corrected.

上述の測定法において、試料Aについて、箱状透過光吸収体51のみを用いて反射用入射可変積分球で測定した半球反射率と、市販の分光光度計(商品名:U4100)で測定した半球反射率との比較を行った結果を図12に示す。試料への入射角度はいずれも、θ=10°、Φ=10°とした。ここで、Φは、試料表面に沿って凹凸部152の稜線と垂直となる角度を0°としたときの、試料Aへの入射光Lの方位角である。測定装置及び測定方法は異なるものの、両者は良好に一致した。   In the above-mentioned measurement method, the hemispherical reflectance of the sample A measured with the incident variable integrating sphere for reflection using only the box-shaped transmitted light absorber 51 and the hemisphere measured with a commercially available spectrophotometer (trade name: U4100) FIG. 12 shows the result of comparison with the reflectance. The angles of incidence on the samples were all θ = 10 ° and Φ = 10 °. Here, Φ is the azimuthal angle of the incident light L on the sample A when the angle perpendicular to the ridge line of the uneven portion 152 along the sample surface is set to 0 °. Although the measuring device and the measuring method were different, they agreed well.

[入射側全方位反射率の測定]
測定には試料100、反射光吸収体30及び箱状透過光吸収体51を内部に設置するものであって、かつ、入射光Lが入射する開口部11以外の開口を有さない積分球10を用いた。そして、図13(a)及び図13(b)に示すように、標準反射体200と、試料100、反射光吸収体30及び箱状透過光吸収体51とを入れ替える測定法で反射率を求めた。
[Measurement of incident-side omnidirectional reflectance]
For the measurement, the sample 100, the reflected light absorber 30, and the box-shaped transmitted light absorber 51 are installed inside, and the integrating sphere 10 having no opening other than the opening 11 into which the incident light L is incident. Was used. Then, as shown in FIGS. 13A and 13B, the reflectance is obtained by a measurement method in which the standard reflector 200 is replaced with the sample 100, the reflected light absorber 30, and the box-shaped transmitted light absorber 51. Was.

[測定例1]
試料100への入射角度をθ=60°、Φ=10°とした。これにより、入射側への反射光は積分球10の内壁に入射するため、開口部11からの反射光の散逸を防ぐことができる。ここで、上記の条件で開口部11からの反射光の散逸を防ぐことができる理由について説明する。
[Measurement Example 1]
The incident angle on the sample 100 was θ = 60 ° and Φ = 10 °. Thereby, since the reflected light on the incident side is incident on the inner wall of the integrating sphere 10, the dissipation of the reflected light from the opening 11 can be prevented. Here, the reason why the reflected light from the opening 11 can be prevented from dissipating under the above conditions will be described.

試料Aは、図14(a)及び図14(b)に示すように、試料表面に対して入射角θ=60°、試料表面に沿い凹凸部152の稜線と垂直となる方向からの方位角Φ=0°で、入射方向へ赤外波長域のみが選択的に再帰反射するように設計されている。また、試料Aは、拡散性がなく、試料表面が略平面で形成されているため、入射角θ=60°を保ったまま方位角Φを変化させた場合、光の広がりは小さく、図15に示すように、主に試料表面であるフロートガラス表面での鏡面反射光L1と、方位角2Φとする入射側への反射光L2とに分かれる。よって、前述のθ=60°、Φ=0°の条件では、入射側への反射光L2の大部分が入射光Lと同じ角度で再帰反射され、開口部11から散逸することになるため、測定誤差が生じる。一方、本測定例の条件である、θ=60°、Φ=10°では、入射側への反射光L2が積分球10の内壁に入射するため、開口部11から散逸が生じない。そのため、開口部11からの反射光の散逸を防ぐことができる。   As shown in FIGS. 14A and 14B, the sample A has an incident angle θ = 60 ° with respect to the sample surface, and an azimuth from a direction along the sample surface and perpendicular to the ridgeline of the uneven portion 152. At Φ = 0 °, only the infrared wavelength region is selectively retroreflected in the incident direction. Further, since the sample A has no diffusivity and the surface of the sample is formed as a substantially flat surface, when the azimuth angle Φ is changed while maintaining the incident angle θ = 60 °, the spread of light is small, and FIG. As shown in (1), the light is mainly divided into specular reflected light L1 on the float glass surface as the sample surface and reflected light L2 on the incident side with an azimuth angle of 2Φ. Therefore, under the above-mentioned conditions of θ = 60 ° and Φ = 0 °, most of the reflected light L2 to the incident side is retroreflected at the same angle as the incident light L, and is dissipated from the opening 11, so that A measurement error occurs. On the other hand, under the conditions of the present measurement example, θ = 60 ° and Φ = 10 °, the reflected light L2 to the incident side is incident on the inner wall of the integrating sphere 10, and thus does not dissipate from the opening 11. Therefore, the dissipation of the reflected light from the opening 11 can be prevented.

試料Aを用い、開口部11のハーフミラー設置の有無による、半球反射率の測定を行った。結果を図16に示す。図16に示すように、ハーフミラー設置の有無による反射率の差異は非常に小さく、反射光の散逸がないことが確認できた。   Using Sample A, the hemispherical reflectance was measured depending on whether or not a half mirror was provided in the opening 11. FIG. 16 shows the results. As shown in FIG. 16, the difference in reflectance depending on the presence or absence of the half mirror was very small, and it was confirmed that there was no dissipation of reflected light.

次に、試料A及び試料Bを用い、それぞれ、反射光吸収体30の有無による測定を行い、半球反射率と入射側全方位反射率とを求めた。また、半球反射率と入射側全方位反射率との差分から、鏡面反射側の全方位反射率を計算で求めた。試料Aの結果を図17、試料Bの結果を図18にそれぞれ示す。   Next, using the sample A and the sample B, measurement was performed with and without the reflected light absorber 30, and the hemispherical reflectance and the incident-side omnidirectional reflectance were obtained. From the difference between the hemispherical reflectance and the omnidirectional reflectance on the incident side, the omnidirectional reflectance on the specular reflection side was calculated. FIG. 17 shows the result of Sample A, and FIG. 18 shows the result of Sample B.

図17に示すように、試料Aの入射側全方位反射率は、可視域の反射率が非常に低く、近赤外域の反射率が高いことが確認された。これは、熱線再帰フィルム150の反射層である光学層151は赤外波長の選択反射層であり、また光学層151は反射方向が入射側となる凹凸面上に形成されているため、設計上、入射側への反射光は近赤外光に限定されるためと考えられる。   As shown in FIG. 17, it was confirmed that the incident-side omnidirectional reflectance of the sample A was very low in the visible region and high in the near-infrared region. This is because the optical layer 151, which is the reflection layer of the heat ray recurring film 150, is a selective reflection layer for infrared wavelengths, and the optical layer 151 is formed on an uneven surface whose reflection direction is on the incident side. It is considered that the reflected light on the incident side is limited to near-infrared light.

一方、図18に示すように、試料Bの反射は、空気界面の鏡面反射のみであるため、入射側全方位反射率はほぼゼロであり、鏡面反射側全方位反射率が半球反射率と等しくなる。試料Aの鏡面反射側全方位反射率は、試料Bのものにほぼ等しいことから、これも上述の設計上の特性を再現している結果と考えられる。   On the other hand, as shown in FIG. 18, since the reflection of the sample B is only specular reflection at the air interface, the omnidirectional reflectance on the incident side is almost zero, and the omnidirectional reflectance on the specular reflection side is equal to the hemispherical reflectance. Become. Since the specular reflection side omnidirectional reflectance of the sample A is almost equal to that of the sample B, this is also considered to be a result of reproducing the above-described design characteristics.

[測定例2]
試料への入射角度をθ=60°、Φ=0°とした。これにより、上述のとおり入射側への反射光の大部分が入射光Lと同じ角度で再帰反射されるため、開口部11から散逸する。
[Measurement Example 2]
The incident angle on the sample was θ = 60 ° and Φ = 0 °. As a result, most of the reflected light on the incident side is retroreflected at the same angle as the incident light L as described above, and is thus scattered from the opening 11.

試料Aを用い、開口部11にハーフミラーを設置した場合と設置しなかった場合の半球反射率の測定をそれぞれ行った。結果を図19に示す。図19に示すように、ハーフミラーの有無いずれの場合も、散逸光の光量損失によって、前述の散逸光のないθ=60°、Φ=10°の入射条件での反射率よりも検出される反射率が低下することが確認された。   Using the sample A, the measurement of the hemispherical reflectance in the case where the half mirror was installed in the opening 11 and the case where the half mirror was not installed were respectively performed. The results are shown in FIG. As shown in FIG. 19, regardless of the presence or absence of the half mirror, due to the loss of the amount of dissipated light, it is detected more than the reflectance under the incident condition of θ = 60 ° and φ = 10 ° without the dissipated light. It was confirmed that the reflectance decreased.

次に、このハーフミラーの有無による半球反射率、及び図20に示すハーフミラーの反射率から、散逸光補償反射率を関係式(散逸光補償反射率=Rn+(Rh−Rn)/ρh)より求めた。ここで、ハーフミラー設置時の測定反射率をRh、ハーフミラー非設置時の測定反射率をRn、ハーフミラーの反射率をρhとする。本関係式において、ハーフミラー有無の反射率の差分(Rh−Rn)がハーフミラーで積分球内に反射された光量に相当するため、これをハーフミラーの反射率(ρh)で除することにより、ハーフミラーに入射した試料からの反射光の光量を求めることができる。ハーフミラーへの反射光は、すなわち開口部11からの散逸光となるため、これとハーフミラーを設置しなかったときの反射率Rnとの和を取ることにより、散逸光を含む全反射光量の反射率を求めることができる。   Next, based on the hemispherical reflectance depending on the presence or absence of the half mirror and the reflectance of the half mirror shown in FIG. 20, the dissipated light compensation reflectance is calculated from a relational expression (dissipated light compensation reflectance = Rn + (Rh−Rn) / ρh). I asked. Here, the measured reflectance when the half mirror is installed is Rh, the measured reflectance when the half mirror is not installed is Rn, and the reflectance of the half mirror is ρh. In this relational expression, since the difference (Rh−Rn) between the reflectances with and without the half mirror corresponds to the amount of light reflected into the integrating sphere by the half mirror, this is divided by the reflectance (ρh) of the half mirror. The amount of reflected light from the sample that has entered the half mirror can be determined. Since the reflected light to the half mirror is the dissipated light from the opening 11, the sum of the reflected light and the reflectance Rn when the half mirror is not installed is calculated to obtain the total reflected light amount including the dissipated light. The reflectance can be determined.

図21に示すように、上述の散逸光補償反射率は、測定例1で測定された、散逸光無しでの反射率とほぼ完全に一致することが確認され、入射光Lの入射角と同じ反射角の再帰反射光が測定可能であることが分かった。   As shown in FIG. 21, it was confirmed that the above-described scattered light-compensated reflectance almost completely coincided with the reflectance measured without measurement of the scattered light, and was the same as the incident angle of the incident light L. It has been found that the retroreflected light at the reflection angle can be measured.

本発明によれば、所望の角度範囲の反射率を測定することができる。   According to the present invention, it is possible to measure the reflectance in a desired angle range.

1 光学測定装置
10 積分球
11 開口部
20 試料台
30 反射光吸収体
31 斜面
32 側面
40 受光部
50 透過光吸収体
51 箱状透過光吸収体
100 試料
110 試料表面
120 試料裏面
150 熱線再帰フィルム
151 光学層
152 凹凸部
153 反射層
160 フロートガラス
200 標準反射体
L 入射光
L1 鏡面反射光
L2 入射側への反射光
O 法線
P 境界面
R 内部空間
S 入射領域
REFERENCE SIGNS LIST 1 optical measuring device 10 integrating sphere 11 opening 20 sample table 30 reflected light absorber 31 slope 32 side surface 40 light receiving unit 50 transmitted light absorber 51 box-shaped transmitted light absorber 100 sample 110 sample surface 120 sample back surface 150 heat ray recurring film 151 Optical layer 152 Concavo-convex portion 153 Reflective layer 160 Float glass 200 Standard reflector L Incident light L1 Specular reflected light L2 Reflected light O to incident side O Normal line P Boundary surface R Internal space S Incident area

Claims (6)

開口部を有し、当該開口部を介して外部の光源からの入射光を入射する積分球と、
表面が前記積分球内に露出して配置される試料の、前記入射光が入射する位置における法線を含む平面のうち、前記入射光と鏡面反射光とを含む入射面以外の任意の平面である境界面を介して、前記入射光と反対側の全方位の反射光を吸収するように設置される反射光吸収体と、
光学測定装置。
An integrating sphere having an opening, and receiving incident light from an external light source through the opening;
Among the planes including the normal line at the position where the incident light is incident on the sample whose surface is disposed exposed in the integrating sphere, any plane other than the incident plane including the incident light and the specular reflected light Through a certain boundary surface, a reflected light absorber installed to absorb omnidirectional reflected light opposite to the incident light,
Optical measuring device.
前記開口部の全体を覆う着脱可能なハーフミラーをさらに備える、請求項1に記載の光学測定装置。   The optical measurement device according to claim 1, further comprising a detachable half mirror that covers the entirety of the opening. 前記試料の裏面側に設置され、前記試料を透過する透過光を吸収する透過光吸収体をさらに備える、請求項1又は2に記載の光学測定装置。   The optical measurement device according to claim 1, further comprising a transmitted light absorber installed on a back surface side of the sample and absorbing transmitted light transmitted through the sample. 前記透過光吸収体は、前記試料を透過する透過光が入射する開口を有する箱状体からなる、請求項3に記載の光学測定装置。   The optical measurement device according to claim 3, wherein the transmitted light absorber is a box-shaped body having an opening through which the transmitted light transmitted through the sample is incident. 請求項1から4の何れか一項に記載の光学測定装置を用いる測定方法であって、
前記積分球内で前記入射光が入射しない位置に前記試料を配置し、かつ、標準反射体を前記入射光が入射する位置に配置して、基準反射光量を得るステップと、
前記試料と前記標準反射体とを入れ替えて、入射側全方位反射光量を得るステップと、
前記基準反射光量と前記入射側全方位反射光量とに基づいて、入射側全方位反射率を求めるステップと、
を含む測定方法。
A measurement method using the optical measurement device according to any one of claims 1 to 4,
Arranging the sample at a position where the incident light does not enter in the integrating sphere, and arranging a standard reflector at a position where the incident light enters, to obtain a reference reflected light amount,
Replacing the sample and the standard reflector to obtain an incident-side omnidirectional reflected light amount;
Based on the reference reflected light amount and the incident-side omnidirectional reflected light amount, obtaining the incident-side omnidirectional reflectance,
Measurement method including:
請求項2に記載の光学測定装置を用いる測定方法であって、
前記ハーフミラーの反射率をρh、前記ハーフミラー設置時の測定反射率をRh、前記ハーフミラー非設置時の測定反射率をRnとすると、前記開口部から前記積分球の外部に散逸する再帰反射光を補償した散逸光補償反射率を、
式:Rn+(Rh−Rn)/ρh
によって得る測定方法。
A measurement method using the optical measurement device according to claim 2,
Assuming that the reflectance of the half mirror is ρh, the measured reflectance when the half mirror is installed is Rh, and the measured reflectance when the half mirror is not installed is Rn, the retroreflection dissipated from the opening to the outside of the integrating sphere. The light-compensated diffused light compensation reflectance is
Formula: Rn + (Rh−Rn) / ρh
Measurement method obtained by
JP2016071809A 2016-03-31 2016-03-31 Optical measuring device and measuring method Active JP6635849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016071809A JP6635849B2 (en) 2016-03-31 2016-03-31 Optical measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016071809A JP6635849B2 (en) 2016-03-31 2016-03-31 Optical measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2017181405A JP2017181405A (en) 2017-10-05
JP6635849B2 true JP6635849B2 (en) 2020-01-29

Family

ID=60004478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016071809A Active JP6635849B2 (en) 2016-03-31 2016-03-31 Optical measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP6635849B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2676973C1 (en) * 2017-06-26 2019-01-14 Макарова Надежда Ильинична Light-absorbing device
RU2677052C1 (en) * 2017-08-24 2019-01-15 Макарова Надежда Ильинична Light-absorbing device
RU2679477C1 (en) * 2018-02-19 2019-02-11 Макарова Надежда Ильинична Light-absorbing device

Also Published As

Publication number Publication date
JP2017181405A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
Bartell et al. The theory and measurement of bidirectional reflectance distribution function (BRDF) and bidirectional transmittance distribution function (BTDF)
TWI581049B (en) Projection screen
EP2920508B1 (en) Artificial lighting system for simulating a natural lighting
JP5721070B2 (en) Optical property measuring device
JP6635849B2 (en) Optical measuring device and measuring method
US9007590B2 (en) Apparatus for measuring transmittance
KR20130101055A (en) Dewar assembly for ir detection systems
KR20190051024A (en) Glass building material
US7592588B2 (en) Calibration source infrared assembly for an infrared detector
Nilsson et al. Light-scattering properties of a Venetian blind slat used for daylighting applications
Harima et al. Evaluation methods for retroreflectors and quantitative analysis of near-infrared upward reflective solar control window film—Part I: Theory and evaluation methods
CN114216559B (en) Partial aperture factor measuring method and device for on-board calibration mechanism
CN104634765A (en) Device and method for measuring atmospheric transmissivity by optical radiation measurement instrument
JP4742616B2 (en) Three-dimensional elliptical optical device
KR840002359B1 (en) Infared fays film tick measuring instrument
CN110234968A (en) Electron optic elements and method for detecting environment light
RU2464587C2 (en) Radiation sensor for detecting position and intensity of radiation source
CN206594055U (en) Moisture content determining device
US20190331526A1 (en) A Photometric Test System for Light Emitting Devices
JP2009041958A (en) Thermopile infrared detector
KR100749829B1 (en) 3 dimensional light measuring apparatus
CN204405544U (en) The device of atmospheric transmittance is measured based on optical radiation measuring instrument
WO2023221663A1 (en) Spectral sensor, spectral sensor module, sensor apparatus and electronic device
US20220326418A1 (en) High energy laser sensor substrate
US10732031B2 (en) Reflective light collecting enclosure for a light meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191217

R150 Certificate of patent or registration of utility model

Ref document number: 6635849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250