WO2020083543A1 - Optisches system, insbesondere für die mikrolithographie - Google Patents

Optisches system, insbesondere für die mikrolithographie Download PDF

Info

Publication number
WO2020083543A1
WO2020083543A1 PCT/EP2019/071886 EP2019071886W WO2020083543A1 WO 2020083543 A1 WO2020083543 A1 WO 2020083543A1 EP 2019071886 W EP2019071886 W EP 2019071886W WO 2020083543 A1 WO2020083543 A1 WO 2020083543A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam splitter
optical system
optical
fluoride
crystal
Prior art date
Application number
PCT/EP2019/071886
Other languages
English (en)
French (fr)
Inventor
Johannes Kraus
Original Assignee
Carl Zeiss Smt Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Smt Gmbh filed Critical Carl Zeiss Smt Gmbh
Priority to JP2021521466A priority Critical patent/JP7223129B2/ja
Publication of WO2020083543A1 publication Critical patent/WO2020083543A1/de
Priority to US17/229,167 priority patent/US11906753B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • G03F7/70966Birefringence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the invention relates to an optical system, in particular for microlithography.
  • the invention relates in particular to an optical pulse stretcher with at least one beam splitter and can furthermore advantageously be used in particular in a laser light source for use in a microlithographic projection exposure system.
  • Microlithography is used to manufacture microstructured, electronic components.
  • the microlithography process is carried out in a so-called projection exposure system, which has an illumination device and a projection objective.
  • a light-sensitive layer photoresist
  • optical components made of cubic crystalline material such as calcium fluoride (CaF 2 ) and others are used, particularly in the area of high radiation exposure Avoiding compaction effects.
  • CaF 2 calcium fluoride
  • optical pulse stretcher Optical Pulse Strings
  • the radiation in question is deflected over orbital paths with the aim of breaking down pulses (of e.g. 20ns pulse length) generated by the laser light source into a plurality of temporally staggered partial pulses and thus the pulse over a longer period of e.g. (100-150) ns to reduce otherwise high power peaks that occur to avoid degradation of subsequent optical components.
  • a problem that occurs in practice in the operation of such laser light sources or optical pulse paths is an undesirable disturbance in the polarization properties of the electromagnetic radiation, which can be observed especially when generating laser radiation with a comparatively high light output.
  • IDB intrinsic birefringence
  • SDB stress birefringence
  • a delay associated with this birefringence (this is used to denote the difference between the optical paths of two orthogonal polarization states) can cause a disturbance in the polarization properties and, for example, a specifically set polarized lighting setting can be undesirably influenced.
  • the result is an undesirable deviation of the electromagnetic radiation coupled into the projection exposure system from the desired polarization state (and, for example, aimed at achieving a maximum image contrast) and thus an impairment of the performance of the projection exposure system.
  • an optical system in particular for microlithography, has:
  • a beam splitter which has at least one light entry surface; -
  • the beam splitter is arranged in the optical system in such a way that the angles of incidence which occur on the light entry surface during operation of the optical system and are related to the surface normal are in the range of 45 ° ⁇ 5 °;
  • the beam splitter is made in [110] crystal cut.
  • the beam splitter is arranged in the optical system such that the (001) crystal direction lies in a common plane with a beam incident on the beam splitter and the associated beam reflected on the beam splitter.
  • the invention is based in particular on the concept of a beam splitter used within an optical pulse stretcher, which is typically at an angle of 45 ° to the incident electromagnetic radiation within a laser light source such as e.g. an argon fluoride excimer laser is operated, by using a suitable crystal cut and a suitable rotational orientation with regard to the installation position, to ensure that the undesired effect of thermally induced or degradation-induced stress birefringence described above and a delay caused thereby and the associated disturbance of the polarization occur - is as little as possible.
  • a laser light source such as e.g. an argon fluoride excimer laser
  • the invention is based on the consideration which is illustrated below, that in operation of a beam splitter a certain installation position or a certain crystal cut basically prove to be favorable with regard to the minimization of voltage birefringence for a beam directly entering the beam splitter through the light entry surface
  • the same installation position or the same crystal section for a beam which, after the circulation within the pulse stretcher which is characteristic of an optical pulse stretcher, enters the beam splitter at a then changed angle to the respective crystal directions may be particularly unfavorable.
  • the configuration or arrangement of a beam splitter with regard to its crystal cut and its (rotational) orientation in the optical system takes place in such a way that minimization of a voltage birefringence caused by material stress and the associated disturbances in the polarization properties of the optical system continuous electromagnetic radiation is achieved not only for the beam directly entering the beam splitter, but also for a beam initially reflected on the beam splitter and only entering the beam splitter after it has circulated in the optical system, so that overall undesirable disturbances in the polarization properties are minimized .
  • the use according to the invention of a beam splitter produced in the [110] crystal cut and a suitable (rotational) orientation achieve that — as will be illustrated further below — the beam propagation in the material of the beam splitter both in the case of the directly entering beam and also in the case of the beam that only enters the optical system after it has circulated, is only slightly tilted against a (111) crystal direction or a crystal direction (for example 11 -1) which is equally favorable with regard to said minimization of the stress birefringence.
  • the configuration according to the invention has the further advantage that the crystal cut and orientation determination according to the invention is robust with respect to a variation of the rotational orientation by 180 ° or a reversal of the entry and exit surfaces, with the result that, in terms of production technology, it is a characteristic - Specification of the corresponding blanks only with regard to the axis position of a (001) -type crystal axis (for example by marking lines on the edge of the respective one) Blanks), but not with respect to the corresponding axis directions.
  • the beam splitter is arranged in the optical system such that a beam entering the beam splitter through the light entry surface passes through the beam splitter at an angle of less than 10 ° to the (111) crystal direction.
  • the beam splitter is arranged in the optical system such that a beam reflected at the beam splitter enters the beam splitter after it has circulated in the optical system during operation of the optical system.
  • the beam entering the beam splitter after circulation in the optical system passes through the beam splitter at an angle of less than 10 ° to the (11 -1) crisis 11 direction.
  • the beam splitter has a plane-parallel geometry.
  • the beam splitter is made from a cubic crystalline material.
  • the beam splitter is made from a material selected from the group consisting of magnesium fluoride (MgF 2 ), lithium fluoride (LiF), aluminum fluoride (AIF 3 ), calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) .
  • MgF 2 magnesium fluoride
  • LiF lithium fluoride
  • AIF 3 aluminum fluoride
  • CaF 2 calcium fluoride
  • BaF 2 barium fluoride
  • the optical system is designed for a working wavelength of less than 200 nm.
  • the invention further relates to an optical pulse stretcher for use in an optical system with the features described above, and to a laser light source, in particular for a microlithographic projection exposure system, with at least one such optical pulse stretcher. Further refinements of the invention can be found in the description and the subclaims.
  • FIGS. 1-3 are schematic representations to explain an embodiment of a beam splitter used in an optical system according to the invention.
  • FIG. 4 shows a schematic illustration to explain a problem that occurs during operation of a conventional beam splitter.
  • optical Pulse Streicher of a laser light source such as, for example, an argon fluoride excimer laser is also assumed.
  • a portion of the electromagnetic radiation is diverted over orbital paths with the aim of breaking down pulses generated by the laser light source (of, for example, 20 ns pulse length) into a plurality of temporally offset partial pulses and thus the pulse over a longer period of time For example, stretch (100-150) ns to avoid degradation of subsequent optical components.
  • FIG. 4 shows a schematic illustration of a beam splitter 40 in the form of a plane-parallel plate made of calcium fluoride (CaF 2 ).
  • the crystal section is usually not chosen arbitrarily, but in an orientation that is favorable with regard to a possible form of stress birefringence.
  • the determination of the crystalline orientation can affect both the crystal cut and the rotational orientation of the plate.
  • the beam splitter 40 is located in the typical installation position at an angle of 45 ° to the impinging beam 45, the beam path reflecting both for a beam 46 passing through the beam splitter 40 via a light entry surface 41 and for a beam reflected on the light entry surface 41 and initially sketched within the optical pulse extender 47.
  • the circulating beam 47 finally enters, as indicated in FIG. 4, over a further surface 42 of the beam splitter 40.
  • a beam path along the (111) crystal direction leads in a manner known per se with mechanical stress present in the crystal material (e.g., thermally induced) to cause stress birefringence to a minimal extent.
  • the present invention now includes the concept of using a beam splitter in the [110] crystal section operated at an angle of 45 ° to the incident electromagnetic radiation, in particular within an optical pulse extender of a laser light source, to ensure that both for the (directly) passing beam as well as for the beam entering the optical pulse stretcher after being circulated, the beam splitter passes through the beam splitter close to a crystal direction which is favorable for minimizing stress birefringence.
  • FIG. 1 Such a configuration according to the invention is illustrated in FIG. 1, again using a beam splitter 10 made of calcium fluoride (CaF 2 ), for example.
  • a beam splitter 10 made of calcium fluoride (CaF 2 ), for example.
  • parallel geometry is arranged at an angle of 45 ° to the electromagnetic radiation impinging on a light entry surface 11 of the beam splitter 10.
  • Fig. 1 Shown in Fig. 1 is both the schematic beam path for a beam 16 passing through the light entry surface 11 through the beam splitter 10 and for a beam 17 initially reflected on the light entry surface 11 and thus initially circulating within the optical pulse stretcher, which beam finally only passes over another one Surface 12 enters the beam splitter 10.
  • the beam splitter 10 according to FIG. 1 is produced in the [110] crystal section and, furthermore, as can also be seen from FIG. 1, is arranged with respect to its rotational orientation in such a way that the (001) crystal direction is in a common plane with that incident on the beam splitter 10. lending beam 15 and the rotating beam 17 reflected at the beam splitter.
  • this rotational orientation of the beam splitter 10 implies that the crystalline (111) and (11 -1) directions also lie in the plane of the beam spread and each have an angle of 35 ° to the (110) direction.
  • This configuration according to the invention now has the consequence, on the one hand, that the beam 16 passing through is close to the (111) crystal direction which is favorable with regard to the desired minimization of stress birefringence. Furthermore, the configuration according to the invention has the further consequence that a configuration which is favorable in terms of minimizing stress birefringence, namely a beam path close to the (11 -1) crystal direction, is also achieved for the beam 17 circulating around it.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Lasers (AREA)

Abstract

Die Erfindung betrifft ein optisches System, insbesondere für die Mikrolithographie, mit einem Strahlteiler (10), welcher wenigstens eine Lichteintrittsfläche (11) aufweist, wobei der Strahlteiler in dem optischen System derart angeordnet ist, dass die im Betrieb des optischen Systems an der Lichteintrittsfläche (11) auftretenden, auf die Oberflächennormale bezogenen Einfallswinkel im Bereich von 45°±5° liegen, und wobei der Strahlteiler (10) im [110]-Kristallschnitt hergestellt ist.

Description

Optisches System insbesondere für die Mikrolithograohie
Die vorliegende Anmeldung beansprucht die Priorität der Deutschen Patent- anmeldung DE 10 2018 218 064.4, angemeldet am 22. Oktober 2018. Der Inhalt dieser DE-Anmeldung wird durch Bezugnahme („incorporation by reference“) mit in den vorliegenden Anmeldungstext aufgenommen.
HINTERGRUND DER ERFINDUNG
Gebiet der Erfindung
Die Erfindung betrifft ein optisches System, insbesondere für die Mikrolithographie. Die Erfindung betrifft insbesondere einen optischen Pulsstrecker mit wenigstens einem Strahlteiler und ist weiter insbesondere in einer Laserlichtquelle zur Verwen- dung in einer mikrolithographischen Projektionsbelichtungsanlage vorteilhaft an- wendbar.
Stand der Technik
Mikrolithographie wird zur Herstellung mikrostrukturierter, elektronischer Bauele- mente angewendet. Der Mikrolithographieprozess wird in einer sogenannten Projek- tionsbelichtungsanlage durchgeführt, welche eine Beleuchtungseinrichtung und ein Projektionsobjektiv aufweist. Das Bild einer mittels der Beleuchtungseinrichtung be- leuchteten Maske (= Retikel) wird hierbei mittels des Projektionsobjektivs auf ein mit einer lichtempfindlichen Schicht (Photoresist) beschichtetes und in der Bildebene des Projektionsobjektivs angeordnetes Substrat (z.B. ein Siliziumwafer) projiziert, um die Maskenstruktur auf die lichtempfindliche Beschichtung des Substrats zu übertragen. In einer für den Betrieb im DUV-Bereich (z.B. bei Arbeitswellenlängen von weniger als 250nm, insbesondere weniger als 200nm) ausgelegten Projektionsbelichtungs- anlage werden insbesondere im Bereich hoher Strahlenbelastung optische Kompo- nenten aus kubisch kristallinem Material wie z.B. Kalziumfluorid (CaF2) u.a. zur Vermeidung von Kompaktierungseffekten eingesetzt. Dies gilt insbesondere auch für Komponenten innerhalb der zur Erzeugung der elektromagnetischen Strahlung ein- gesetzten Laserlichtquelle, wobei bei einer Arbeitswellenlänge von 193nm Argon- fluorid-Excimerlaser, bei einer Arbeitswellenlänge von 248nm Kryptonfluorid- Excimerlaser zum Einsatz kommen.
Bei den vorstehend genannten, hoher Strahlenbelastung ausgesetzten optischen Komponenten kann es sich insbesondere um Strahlteiler handeln, welche in einem optischen Pulsstrecker (engl.:„Optical Pulse Streicher“) zur Auskopplung eines Teils der elektromagnetischen Strahlung innerhalb der Laserlichtquelle eingesetzt wer- den. In einem solchen optischen Pulsstrecker wird die betreffende Strahlung über Umlaufstrecken umgelenkt mit dem Ziel, von der Laserlichtquelle erzeugte Pulse (von z.B. 20ns Pulslänge) in eine Mehrzahl von zeitlich versetzten Teilpulsen zu zer- legen und den Puls so auf eine größere Zeitdauer von z.B. (100-150)ns zu strecken, um anderenfalls auftretende hohe Leistungsspitzen zur Vermeidung einer Degrad- ation nachfolgender optischer Komponenten entsprechend zu reduzieren.
Ein im Betrieb solcher Laserlichtquellen bzw. optischen Pulsstrecken in der Praxis auftretendes Problem ist eine vor allem bei Erzeugung von Laserstrahlung mit ver- gleichsweise hoher Lichtleistung zu beobachtende, unerwünschte Störung der Polarisationseigenschaften der elektromagnetischen Strahlung. Zwar ist bei der ge- nannten Arbeitswellenlänge von 193nm der in kubisch kristallinem Material auftre- tende bekannte Effekt der sogenannten intrinsischen Doppelbrechung (IDB) noch vergleichsweise wenig ausgeprägt, jedoch treten bei Erzeugung hoher Lichtleistun- gen infolge lokaler Erwärmung innerhalb der jeweiligen optischen Komponenten bzw. Strahlteiler thermisch induzierte mechanische Spannungen auf, welche dann in für sich bekannter Weise zu Spannungsdoppelbrechung (SDB) führen. Desgleichen können dauerhafte Störungen der Translationssymmetrie durch degradationsbeding- te strukturelle Veränderungen des Materials Ursache bleibender Doppelbrechung sein. Durch eine mit dieser Doppelbrechung einhergehende Verzögerung (hiermit wird die Differenz der optischen Wege zweier orthogonaler Polarisationszustände bezeichnet) kann eine Störung der Polarisationseigenschaften bewirkt und ein z.B. gezielt eingestelltes polarisiertes Beleuchtungssetting in unerwünschter Weise be- einflusst werden.
Die Folge ist letztlich eine unerwünschte Abweichung der in die Projektionsbelich- tungsanlage eingekoppelten elektromagnetischen Strahlung vom erwünschten (und etwa zur Erzielung eines maximalen Abbildungskontrastes angestrebten) Polarisati- onszustand und damit eine Beeinträchtigung der Leistungsfähigkeit der Projektions- belichtungsanlage.
Zum Stand der Technik wird lediglich auf beispielhaft auf DE 20 2004 020 810 U 1 , EP 2 036 170 B1 und US 7,564,888 B2 verwiesen.
ZUSAMMENFASSUNG DER ERFINDUNG
Es ist eine Aufgabe der vorliegenden Erfindung, ein optisches System, insbesondere für die Mikrolithographie, mit wenigstens einem Strahlteiler bereitzustellen, welches auch bei hoher Strahlungsbelastung des Strahlteilers eine möglichst gute Beibehal- tung der Polarisationseigenschaften elektromagnetischer Strahlung unter Vermei- dung der vorstehend beschriebenen Probleme ermöglicht.
Diese Aufgabe wird durch die Merkmale des unabhängigen Patentanspruchs 1 ge- löst.
Gemäß der Erfindung weist ein optisches System, insbesondere für die Mikrolitho- graphie, auf:
- einen Strahlteiler, welcher wenigstens eine Lichteintrittsfläche aufweist; - wobei der Strahlteiler in dem optischen System derart angeordnet ist, dass die im Betrieb des optischen Systems an der Lichteintrittsfläche auftretenden, auf die Oberflächennormale bezogenen Einfallswinkel im Bereich von 45°±5° liegen; und
- wobei der Strahlteiler im [110]-Kristallschnitt hergestellt ist.
Gemäß einer Ausführungsform ist der Strahlteiler in dem optischen System derart angeordnet, dass die (001 )-Kristallrichtung in einer gemeinsamen Ebene mit einem auf den Strahlteiler einfallenden Strahl und dem zugehörigen, an dem Strahlteiler re- flektierten Strahl liegt.
Der Erfindung liegt insbesondere das Konzept zugrunde, in einem innerhalb eines optischen Pulsstreckers (=„Optical Pulse Streicher“) eingesetzten Strahlteiler, wel- cher typischerweise unter einem Winkel von 45° zur auftreffenden elektromagneti- schen Strahlung innerhalb einer Laserlichtquelle wie z.B. einem Argonfluorid- Excimerlaser betrieben wird, durch Verwendung eines geeigneten Kristallschnitts sowie einer hinsichtlich der Einbaulage geeigneten Drehorientierung zu gewährlei s- ten, dass der eingangs beschriebene unerwünschte Effekt der thermisch induzierten oder durch Degradation bedingten Spannungsdoppelbrechung und eine hierdurch verursachte Verzögerung und damit einhergehende Störung der Polarisationseigen- schaften möglichst wenig ausgeprägt ist.
Dabei liegt der Erfindung insbesondere die im Weiteren noch veranschaulichte Überlegung zugrunde, dass im Betrieb eines Strahlteilers grundsätzlich eine be- stimmte Einbaulage bzw. ein bestimmter Kristallschnitt sich zwar hinsichtlich der Minimierung von Spannungsdoppelbrechung für einen in den Strahlteiler durch die Lichteintrittsfläche direkt eintretenden Strahl als günstig erweisen kann, dass jedoch dieselbe Einbaulage bzw. derselbe Kristallschnitt für einen Strahl, welcher nach dem für einen optischen Pulsstrecker charakteristischen Umlauf innerhalb des Pulsstre- ckers in den Strahlteiler unter einem dann veränderten Winkel zu den jeweiligen Kristallrichtungen eintritt, gerade besonders ungünstig sein kann. Von dieser Überlegung ausgehend erfolgt erfindungsgemäß die Ausgestaltung bzw. Anordnung eines Strahlteilers hinsichtlich seines Kristallschnitts sowie seiner (Dreh-) Orientierung im optischen System in solcher Weise, dass eine Minimierung einer bei Auftreten von Materialverspannung verursachten Spannungsdoppelbrechung und hiermit einhergehender Störungen der Polarisationseigenschaften der das optische System durchlaufenden elektromagnetischen Strahlung nicht nur für den direkt in den Strahlteiler eintretenden Strahl, sondern auch für einen zunächst am Strahlteiler reflektierten und erst nach Umlauf im optischen System in den Strahlteiler eintreten- den Strahl erzielt wird, so dass insgesamt unerwünschte Störungen der Polarisati- onseigenschaften minimiert werden.
Konkret wird durch die erfindungsgemäße Verwendung eines im [110]-Kristallschnitt hergestellten Strahlteilers sowie eine geeignete (Dreh-) Orientierung erreicht, dass - wie im Weiteren noch veranschaulicht - die Strahlausbreitung im Material des Strahl- teilers sowohl im Falle des direkt eintretenden Strahls als auch im Falle des erst nach Umlauf im optischen System eintretenden Strahl nur geringfügig verkippt ge- gen eine (111 )-Kristallrichtung oder eine im Hinblick auf besagte Minimierung der Spannungsdoppelbrechung gleichermaßen günstige Kristallrichtung (z.B. 11 -1 ) ist.
Im Ergebnis wird auf diese Weise sowohl für den (direkt) durch den Strahlteiler hin- durchtretenden Strahl als auch für den erst nach Umlauf innerhalb des optischen Pulsstreckers in den Strahlteiler eintretenden Strahl erreicht, dass eine im Material des Strahlteilers auftretende mechanische Spannung in möglichst minimalem Aus- maß zu Spannungsdoppelbrechung führt, so dass eine unerwünschte Störung der Polarisationseigenschaften minimiert wird.
Die erfindungsgemäße Konfiguration hat den weiteren Vorteil, dass die erfindungs- gemäße Kristallschnitt- sowie Orientierungsfestlegung robust gegenüber einer Varia- tion der Drehorientierung um 180° bzw. einer Vertauschung von Eintritts- und Aus- trittsfläche ist mit der Folge, dass in fertigungstechnischer Hinsicht eine Kennzeich- nung der entsprechenden Rohlinge lediglich hinsichtlich der Achsenlage einer Kris- tallachse vom (001 )-Typ (z.B. durch Strichkennzeichnung am Rand des jeweiligen Rohlings), nicht jedoch hinsichtlich der entsprechenden Achsenrichtungen zu erfol- gen braucht.
Gemäß einer Ausführungsform ist der Strahlteiler in dem optischen System derart angeordnet, dass ein in den Strahlteiler durch die Lichteintrittsfläche eintretender Strahl den Strahlteiler unter einem Winkel von weniger als 10° zur (111 )- Kristallrichtung durchläuft.
Gemäß einer Ausführungsform ist der Strahlteiler in dem optischen System derart angeordnet, dass im Betrieb des optischen Systems ein am Strahlteiler reflektierter Strahl nach Umlauf in dem optischen System in den Strahlteiler eintritt.
Gemäß einer Ausführungsform durchläuft der nach Umlauf in dem optischen System in den Strahlteiler eintretende Strahl den Strahlteiler unter einem Winkel von weniger als 10° zur (11 -1 )- Kri sta 11 ri chtu ng .
Gemäß einer Ausführungsform besitzt der Strahlteiler eine planparallele Geometrie.
Gemäß einer Ausführungsform ist der Strahlteiler aus einem kubisch kristallinen Material hergestellt.
Gemäß einer Ausführungsform ist der Strahlteiler aus einem Material hergestellt, welches aus der Gruppe ausgewählt ist, die Magnesiumfluorid (MgF2), Lithiumfluorid (LiF), Aluminiumfluorid (AIF3), Kalziumfluorid (CaF2) und Bariumfluorid (BaF2) ent- hält.
Gemäß einer Ausführungsform ist das optische System für eine Arbeitswellenlänge von weniger als 200nm ausgelegt.
Die Erfindung betrifft weiter einen optischen Pulsstrecker zur Verwendung in einem optischen System mit den vorstehend beschriebenen Merkmalen, sowie eine Laser- lichtquelle, insbesondere für eine mikrolithographische Projektionsbelichtungsanla- ge, mit wenigstens einem solchen optischen Pulsstrecker. Weitere Ausgestaltungen der Erfindung sind der Beschreibung sowie den Unter- ansprüchen zu entnehmen.
Die Erfindung wird nachstehend anhand eines in den beigefügten Abbildungen dar- gestellten Ausführungsbeispiels näher erläutert.
KURZE BESCHREIBUNG DER ZEICHNUNGEN
Es zeigen:
Figur 1-3 schematische Darstellungen zur Erläuterung einer Ausführungs- form eines in einem erfindungsgemäßen optischen System einge- setzten Strahlteilers; und
Figur 4 eine schematische Darstellung zur Erläuterung eines im Betrieb eines herkömmlichen Strahlteilers auftretenden Problems.
DETAILLIERTE BESCHREIBUNG BEVORZUGTER AUSFUHRUNGSFORMEN
Im Weiteren wird eine Ausführungsform eines in einem erfindungsgemäßen opti- schen System eingesetzten Strahlteilers unter Bezug auf die schematischen Darstel- lungen von Fig. 1-4 erläutert.
Dabei wird im Weiteren vom Einsatz dieses Strahlteilers in einem optischen Puls- strecker (engl.: „Optical Pulse Streicher“) einer Laserlichtquelle wie z.B. einem Argonfluorid-Excimerlaser ausgegangen. Im optischen Pulsstrecker wird ein Teil der elektromagnetischen Strahlung über Umlaufstrecken umgelenkt mit dem Ziel, von der Laserlichtquelle erzeugte Pulse (von z.B. 20ns Pulslänge) in eine Mehrzahl zeit- lich versetzter Teilpulse zu zerlegen und den Puls so auf eine größere Zeitdauer von z.B. (100-150)ns zur Vermeidung einer Degradation nachfolgender optischer Kom- ponenten zu strecken.
Zur Erläuterung und Veranschaulichung des der Erfindung zugrundeliegenden Prob- lems zeigt Fig. 4 in schematischer Darstellung einen Strahlteiler 40 in Form einer planparallelen Platte aus Kalziumfluorid (CaF2). Der Kristallschnitt wird üblicher- weise nicht willkürlich, sondern in einer bezüglich einer möglichen Ausprägung von Spannungsdoppelbrechung günstigen Orientierung gewählt. Die Festlegung der kristallinen Orientierung kann sowohl den Kristallschnitt als auch die Drehorientie- rung der Platte betreffen. Der Strahlteiler 40 befindet sich in der typischen Einbau- lage unter einem Winkel von 45° zum auftreffenden Strahl 45, wobei der Strahlen- gang sowohl für einen über eine Lichteintrittsfläche 41 durch den Strahlteiler 40 durchtretenden Strahl 46 als auch für einen an der Lichteintrittsfläche 41 reflektierten und zunächst innerhalb des optischen Pulsstreckers umlaufenden Strahl 47 skizziert ist. Der umlaufende Strahl 47 tritt wie in Fig. 4 angedeutet schließlich über eine wei- tere Fläche 42 des Strahlteilers 40 ein.
Ein Strahlverlauf entlang der (111 )-Kristallrichtung führt in für sich bekannter Weise bei im Kristallmaterial vorhandener (z.B. thermisch induzierter) mechanischer Span- nung dazu, dass in geringstem Maße Spannungsdoppelbrechung auftritt.
Von dieser Überlegung ausgehend beinhaltet nun die vorliegende Erfindung das Konzept, durch Einsatz eines unter einem Winkel von 45° zur auftreffenden elektro- magnetischen Strahlung insbesondere innerhalb eines optischen Pulsstreckers einer Laserlichtquelle betriebenen Strahlteilers im [110]-Kristallschnitt dafür Sorge zu tragen, dass sowohl für den (direkt) durchtretenden Strahl als auch für den nach Umlauf im optischen Pulsstrecker eintretenden Strahl ein Strahldurchtritt durch den Strahlteiler nahe einer zur Minimierung von Spannungsdoppelbrechung günstigen Kristallrichtung stattfindet.
Eine solche erfindungsgemäße Konfiguration ist in Fig. 1 veranschaulicht, wobei wiederum ein z.B. aus Kalziumfluorid (CaF2) hergestellter Strahlteiler 10 von plan- paralleler Geometrie unter einem Winkel von 45° zur auf eine Lichteintrittsfläche 11 des Strahlteilers 10 auftreffenden elektromagnetischen Strahlung angeordnet ist.
Dargestellt in Fig. 1 ist sowohl der schematische Strahlengang für einen über die Lichteintrittsfläche 11 durch den Strahlteiler 10 durchtretenden Strahl 16 als auch für einen an der Lichteintrittsfläche 11 zunächst reflektierten und somit innerhalb des optischen Pulsstreckers zunächst umlaufenden Strahl 17, welcher schließlich erst über eine weitere Fläche 12 in den Strahlteiler 10 eintritt. Der Strahlteiler 10 gemäß Fig. 1 ist im [110]-Kristallschnitt hergestellt und des Weiteren wie ebenfalls aus Fig. 1 ersichtlich hinsichtlich seiner Drehorientierung derart angeordnet, dass die (001 )- Kristallrichtung in einer gemeinsamen Ebene mit dem auf den Strahlteiler 10 einfal- lenden Strahl 15 und dem am Strahlteiler reflektierten umlaufenden Strahl 17 liegt.
Diese Drehorientierung des Strahlteilers 10 impliziert gemäß Fig. 2, dass auch die kristallinen (111 )- und (11 -1 )-Richtungen in der Ebene der Strahlausbreitung liegen und jeweils einen Winkel von 35° zur (110)-Richtung aufweisen.
Diese erfindungsgemäße Konfiguration hat nun zum einen zur Folge, dass der durchtretende Strahl 16 nahe der im Hinblick auf die gewünschte Minimierung von Spannungsdoppelbrechung günstigen (111 )-Kristallrichtung liegt. Des Weiteren hat die erfindungsgemäße Konfiguration jedoch weiter zur Folge, dass auch für den um laufenden Strahl 17 eine im Hinblick auf die Minimierung von Spannungsdoppelbre- chung günstige Konfiguration, nämlich ein Strahlverlauf nahe der (11 -1 )- Kristallrichtung, erzielt wird.
Im Ergebnis wird auf diese Weise sowohl für den (direkt) durch den Strahlteiler 10 hindurchtretenden Strahl als auch für den erst nach Umlauf innerhalb des optischen Pulsstreckers in den Strahlteiler 10 eintretenden Strahl erreicht, dass eine im Mate- rial des Strahlteilers 10 auftretende thermisch induzierte mechanische Spannung in möglichst minimalem Ausmaß zu Spannungsdoppelbrechung führt, so dass eine unerwünschte Störung der Polarisationseigenschaften minimiert wird. Da die erfindungsgemäße Kristallschnitt- sowie Orientierungsfestlegung robust ge- genüber einer Variation der Drehorientierung um 180° bzw. gegenüber einer Vertau- schung von Eintritts- und Austrittsfläche ist, ist - wie in Fig. 3 angedeutet - eine Kennzeichnung der entsprechenden Rohlinge lediglich hinsichtlich der Achsenlage einer Kristallachse vom (001 )-Typ (z.B. durch Strichkennzeichnung am Rand des jeweiligen Rohlings), nicht jedoch hinsichtlich der entsprechenden Achsenrichtungen erforderlich.
Wenn die Erfindung auch anhand spezieller Ausführungsformen beschrieben wurde, erschließen sich für den Fachmann zahlreiche Variationen und alternative Ausfüh- rungsformen, z.B. durch Kombination und/oder Austausch von Merkmalen einzelner Ausführungsformen. Dementsprechend versteht es sich für den Fachmann, dass derartige Variationen und alternative Ausführungsformen von der vorliegenden Er- findung mit umfasst sind, und die Reichweite der Erfindung nur im Sinne der beige- fügten Patentansprüche und deren Äquivalente beschränkt ist.

Claims

Patentansprüche
1. Optisches System, insbesondere für die Mikrolithographie, mit
• einem Strahlteiler (10), welcher wenigstens eine Lichteintrittsfläche (11 ) aufweist;
• wobei der Strahlteiler in dem optischen System derart angeordnet ist, dass die im Betrieb des optischen Systems an der Lichteintrittsfläche (11 ) auftretenden, auf die Oberflächennormale bezogenen Einfallswinkel im Bereich von 45°±5° liegen; und
• wobei der Strahlteiler (10) im [110]-Kristallschnitt hergestellt ist.
2. Optisches System nach Anspruch 1 , dadurch gekennzeichnet, dass der Strahl- teiler (10) in dem optischen System derart angeordnet ist, dass die (001 )- Kristallrichtung in einer gemeinsamen Ebene mit einem auf den Strahlteiler (10) einfallenden Strahl (15) und dem zugehörigen, an dem Strahlteiler (10) reflek- tierten Strahl (17) liegt.
3. Optisches System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Strahlteiler (10) in dem optischen System derart angeordnet ist, dass ein in den Strahlteiler (10) durch die Lichteintrittsfläche (11 ) eintretender Strahl den Strahl- teiler (10) unter einem Winkel von weniger als 10° zur (111 )-Kristallrichtung durchläuft.
4. Optisches System nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Strahlteiler (10) in dem optischen System derart angeordnet ist, dass ein im Betrieb des optischen Systems am Strahlteiler (10) reflektierter Strahl (17) nach Umlauf in dem optischen System in den Strahlteiler (10) eintritt.
5. Optisches System nach Anspruch 4, dadurch gekennzeichnet, dass dieser nach Umlauf in dem optischen System in den Strahlteiler (10) eintretende Strahl (17) den Strahlteiler (10) unter einem Winkel von weniger als 10° zur (11 -1 )- Kristallrichtung durchläuft.
6. Optisches System nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass der Strahlteiler (10) eine planparallele Geometrie besitzt.
7. Optisches System nach einem vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass der Strahlteiler (10) aus einem kubisch kristallinen Material her- gestellt ist.
8. Optisches System nach einem vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass der Strahlteiler aus einem Material hergestellt ist, welches aus der Gruppe ausgewählt ist, die Kalziumfluorid (CaF2), Magnesiumfluorid (MgF2), Lithiumfluorid (LiF), Aluminiumfluorid (AIF3) und Bariumfluorid (BaF2) enthält.
9. Optisches System nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass dieses wenigstens einen optischen Pulsstrecker aufweist, welcher den Strahlteiler (10) sowie eine Mehrzahl von Spiegeln aufweist.
10. Optisches System nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass dieses eine Laserlichtquelle, insbesondere für eine mikro- lithographische Projektionsbelichtungsanlage, ist.
11. Optisches System nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass dieses für eine Arbeitswellenlänge von weniger als 200nm ausgelegt ist.
12. Optischer Pulsstrecker, zur Verwendung in einem optischen System nach einem der vorhergehenden Ansprüche.
13. Laserlichtquelle, insbesondere für eine mikrolithographische Projektionsbelich- tungsanlage, mit wenigstens einem optischen Pulsstrecker nach Anspruch 12.
PCT/EP2019/071886 2018-10-22 2019-08-14 Optisches system, insbesondere für die mikrolithographie WO2020083543A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021521466A JP7223129B2 (ja) 2018-10-22 2019-08-14 光学系、特にマイクロリソグラフィ用の光学系
US17/229,167 US11906753B2 (en) 2018-10-22 2021-04-13 Optical system in particular for microlithography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018218064.4A DE102018218064B4 (de) 2018-10-22 2018-10-22 Optisches System, insbesondere für die Mikrolithographie
DE102018218064.4 2018-10-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/229,167 Continuation US11906753B2 (en) 2018-10-22 2021-04-13 Optical system in particular for microlithography

Publications (1)

Publication Number Publication Date
WO2020083543A1 true WO2020083543A1 (de) 2020-04-30

Family

ID=67809424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/071886 WO2020083543A1 (de) 2018-10-22 2019-08-14 Optisches system, insbesondere für die mikrolithographie

Country Status (4)

Country Link
US (1) US11906753B2 (de)
JP (1) JP7223129B2 (de)
DE (1) DE102018218064B4 (de)
WO (1) WO2020083543A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022118146B3 (de) * 2022-07-20 2023-12-07 Carl Zeiss Jena Gmbh Verfahren zum Herstellen eines optischen Elements für eine Lithographieanlage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219056A1 (en) * 2001-01-29 2003-11-27 Yager Thomas A. High power deep ultraviolet laser with long life optics
DE202004020810U1 (de) 2004-02-23 2006-02-02 Schott Ag Großvolumige CaF2-Einkristalle, insbesondere als optische Bauelemente mit einer optischen Achse parallel zur (100) oder (110)-Kristallachse
DE102005023939A1 (de) * 2005-05-20 2006-11-23 Carl Zeiss Smt Ag Abbildungssystem, insbesondere Objektiv oder Beleuchtungseinrichtung einer mikrolithographischen Projektionsbelichtungsanlage
EP2036170A2 (de) 2006-06-05 2009-03-18 Cymer, Inc. Hochleistungs-excimer-laser mit impulsstrecker
US20110158281A1 (en) * 2008-04-07 2011-06-30 Gigaphoton Inc. Gas discharge chamber

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389045B1 (en) * 1999-04-19 2002-05-14 Lambda Physik Ag Optical pulse stretching and smoothing for ArF and F2 lithography excimer lasers
WO2002093201A2 (en) * 2001-05-16 2002-11-21 Corning Incorporated Preferred crystal orientation optical elements from cubic materials
US6683710B2 (en) 2001-06-01 2004-01-27 Optical Research Associates Correction of birefringence in cubic crystalline optical systems
US6775063B2 (en) * 2001-07-10 2004-08-10 Nikon Corporation Optical system and exposure apparatus having the optical system
JP2003043223A (ja) * 2001-07-30 2003-02-13 Nikon Corp 結晶材料で形成されたビームスプリッターおよび波長板、並びにこれらの結晶光学部品を備えた光学装置、露光装置並びに検査装置
WO2004025349A1 (de) * 2002-09-09 2004-03-25 Carl Zeiss Smt Ag Katadioptrisches projektionsobjektiv sowie verfahren zur kompensation der intrinsischen doppelbrechung in einem solchen
KR20060039925A (ko) * 2003-07-24 2006-05-09 가부시키가이샤 니콘 조명 광학 장치, 노광 장치 및 노광 방법
CN1925945A (zh) * 2004-03-05 2007-03-07 奥林巴斯株式会社 激光加工装置
US7885309B2 (en) 2005-11-01 2011-02-08 Cymer, Inc. Laser system
US9081193B2 (en) * 2006-06-13 2015-07-14 The Arizona Board Of Regents On Behalf Of The University Of Arizona Interferometric systems and methods
US7916291B2 (en) * 2006-06-13 2011-03-29 The Arizona Board Of Regents On Behalf Of The University Of Arizona Apparatus and method for spectroscopy
US8472111B2 (en) * 2006-06-13 2013-06-25 The Arizona Board Of Regents On Behalf Of The University Of Arizona Apparatus and method for deep ultraviolet optical microscopy
KR20100085974A (ko) * 2007-10-12 2010-07-29 가부시키가이샤 니콘 조명 광학 장치, 및 노광 방법 및 장치
JP2010107611A (ja) * 2008-10-29 2010-05-13 Olympus Imaging Corp 結像光学系及びそれを用いた撮像装置
JP5185727B2 (ja) 2008-08-22 2013-04-17 ギガフォトン株式会社 偏光純度制御装置及びそれを備えたガスレーザ装置
US20120170021A1 (en) * 2008-09-02 2012-07-05 Phillip Walsh Method and apparatus for providing multiple wavelength reflectance magnitude and phase for a sample
US8284815B2 (en) 2008-10-21 2012-10-09 Cymer, Inc. Very high power laser chamber optical improvements
US20120212830A1 (en) * 2011-02-23 2012-08-23 Qioptiq Photonics GmbH Nonpolarizing beam splitter
DE102012213553A1 (de) 2012-08-01 2013-08-22 Carl Zeiss Smt Gmbh Optisches System, insbesondere einer mikrolithographischen Projektionsbelichtungsanlage
WO2014208111A1 (ja) * 2013-06-27 2014-12-31 ギガフォトン株式会社 光ビーム計測装置、レーザ装置及び光ビーム分離装置
CN104319615B (zh) * 2014-11-02 2017-12-26 中国科学院光电技术研究所 一种基于双分束元件的准分子激光脉冲展宽装置
DE102016203749B4 (de) 2016-03-08 2020-02-20 Carl Zeiss Smt Gmbh Optisches System, insbesondere für die Mikroskopie
WO2018229854A1 (ja) * 2017-06-13 2018-12-20 ギガフォトン株式会社 レーザ装置及び光学素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219056A1 (en) * 2001-01-29 2003-11-27 Yager Thomas A. High power deep ultraviolet laser with long life optics
DE202004020810U1 (de) 2004-02-23 2006-02-02 Schott Ag Großvolumige CaF2-Einkristalle, insbesondere als optische Bauelemente mit einer optischen Achse parallel zur (100) oder (110)-Kristallachse
US7564888B2 (en) 2004-05-18 2009-07-21 Cymer, Inc. High power excimer laser with a pulse stretcher
DE102005023939A1 (de) * 2005-05-20 2006-11-23 Carl Zeiss Smt Ag Abbildungssystem, insbesondere Objektiv oder Beleuchtungseinrichtung einer mikrolithographischen Projektionsbelichtungsanlage
EP2036170A2 (de) 2006-06-05 2009-03-18 Cymer, Inc. Hochleistungs-excimer-laser mit impulsstrecker
US20110158281A1 (en) * 2008-04-07 2011-06-30 Gigaphoton Inc. Gas discharge chamber

Also Published As

Publication number Publication date
DE102018218064B4 (de) 2024-01-18
DE102018218064A1 (de) 2020-04-23
JP2022505432A (ja) 2022-01-14
JP7223129B2 (ja) 2023-02-15
US11906753B2 (en) 2024-02-20
US20210231965A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2005059653A2 (de) Polarisationsoptisch wirksame verzögerungsanordnung für eine projektionsbelichtungsanlage der mikrolithografie
DE102006030757A1 (de) Polarisationsoptimiertes Beleuchtungssystem
DE102010029905A1 (de) Optisches System einer mikrolithographischen Projektionsbelichtungsanlage
DE102007042047A1 (de) Teilsystem einer Beleuchtungseinrichtung einer mikrolithographischen Projektionsbelichtungsanlage
DE102008040058B9 (de) Mikrolithographische Projektionsbelichtungsanlage und Verfahren zur mikrolithographischen Herstellung mikrostrukturierter Bauelemente
DE102020207752A1 (de) Heizanordnung und Verfahren zum Heizen eines optischen Elements
WO2003009021A1 (de) Verzögerungselement aus kubischem kristall und optische systeme damit
WO2004102224A2 (de) Axiconsystem und beleuchtungssystem damit
WO2020083543A1 (de) Optisches system, insbesondere für die mikrolithographie
DE102012206153A1 (de) Optisches System einer mikrolithographischen Projektionsbelichtungsanlage
DE102013215541A1 (de) Spiegel, insbesondere für eine mikrolithographische Projektionsbelichtungsanlage
DE102012200368A1 (de) Polarisationsbeeinflussende optische Anordnung, insbesondere in einer mikrolithographischen Projektionsbelichtungsanlage
DE102012223217B9 (de) Optisches System einer mikrolithographischen Projektionsbelichtungsanlage
DE10321598A1 (de) Beleuchtungssystem mit Axikon-Modul
WO2004001480A2 (de) Katadioptrisches reduktionsobjektiv
DE102017209162A1 (de) Retardierungselement, sowie optisches System
DE102013202645A1 (de) Optisches System einer mikrolithographischen Projektionsbelichtungsanlage
DE102012217769A1 (de) Optisches System für eine mikrolithographische Projektionsbelichtungsanlage sowie mikrolithographisches Belichtungsverfahren
EP1726994A2 (de) Lichtintegrator für ein Beleuchtungssystem, insbesondere für eine mikrolithographische Projektionsbelichtungsanlage
DE102013202278A1 (de) Optisches System einer mikrolithographischen Projektionsbelichtungsanlage
DE102012206154A1 (de) Optisches System für eine mikrolithographische Projektionsbelichtungsanlage sowie mikrolithographisches Belichtungsverfahren
DE102012213553A1 (de) Optisches System, insbesondere einer mikrolithographischen Projektionsbelichtungsanlage
DE102012223230A1 (de) Optisches System, insbesondere einer mikrolithographischen Projektionsbelichtungsanlage
DE102021201193A1 (de) Verfahren zur Justage eines optischen Systems, insbesondere für die Mikrolithographie
DE102006008357A1 (de) Beleuchtungseinrichtung einer mikrolithographischen Projektionsbelichtungsanlage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761762

Country of ref document: EP

Kind code of ref document: A1