WO2020083369A1 - 雷达信号处理方法和装置 - Google Patents

雷达信号处理方法和装置 Download PDF

Info

Publication number
WO2020083369A1
WO2020083369A1 PCT/CN2019/113249 CN2019113249W WO2020083369A1 WO 2020083369 A1 WO2020083369 A1 WO 2020083369A1 CN 2019113249 W CN2019113249 W CN 2019113249W WO 2020083369 A1 WO2020083369 A1 WO 2020083369A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar signal
signal
frequency
radar
reflected
Prior art date
Application number
PCT/CN2019/113249
Other languages
English (en)
French (fr)
Inventor
高鲁涛
万蕾
马莎
宋思达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19876754.3A priority Critical patent/EP3842833A4/en
Publication of WO2020083369A1 publication Critical patent/WO2020083369A1/zh
Priority to US17/238,276 priority patent/US11982731B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/536Discriminating between fixed and moving objects or between objects moving at different speeds using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present application relates to the field of microwave radar, in particular to a millimeter wave radar signal processing method and device.
  • ADAS advanced driving assistance systems
  • Embodiments of the present application provide a radar signal processing method and device, which are used to increase the frequency sweep bandwidth of a radar.
  • a radar signal processing method is provided, which is applied to a first device.
  • the method includes: transmitting a first radar signal in a first frequency band; transmitting a second radar signal in a second frequency band; receiving a first reflected signal and The second reflected signal, where the first reflected signal is the electromagnetic wave after the first radar signal is reflected by the target object, and the second reflected signal is the electromagnetic wave after the second radar signal is reflected by the target object; obtaining the distance information and speed information of the target object And at least one of the angle information.
  • the radar signal processing method provided in the embodiment of the present application transmits two radar signals in different frequency bands, respectively receives reflection signals of the two radar signals, and then obtains at least one of distance information, speed information, and angle information of the target object. Since the radar signal can be transmitted using discontinuous frequency domain resources, the radar's sweep frequency bandwidth is expanded, and therefore, the range resolution of the radar is improved.
  • obtaining at least one of the distance information, speed information, and angle information of the target object includes: obtaining the distance information, speed information, and angle information from the first radar signal and the first reflection signal. At least one; or, based on the second radar signal and the second reflected signal, obtaining at least one of distance information, speed information, and angle information; or, based on the first radar signal, the first reflected signal, the second radar signal, and the second Reflect the signal to obtain at least one of distance information, speed information, and angle information.
  • This embodiment provides that at least one of distance information, speed information, and angle information of the target object can be obtained according to the radar signal and the corresponding reflection signal.
  • the first radar signal and the second radar signal are transmitted in the first time unit; the duration of the first radar signal and the second radar signal are the same, and the length of the first time unit is equal to the duration . That is, the durations of the first radar signal and the second radar signal may be the same, and the duration may also be referred to as a sweep time.
  • the duration or sweep time is the duration that the radar signal linearly increases from the initial frequency to the maximum frequency. For example, for a sawtooth wave, the duration can be the duration of one transmission cycle, and for a triangular wave, the duration can be understood as the duration of a half transmission cycle.
  • the first frequency band and the second frequency band do not completely overlap in the frequency domain. That is, the first frequency band and the second frequency band may partially overlap in the frequency domain.
  • At least one of the first radar signal and the second radar signal is a chirped continuous wave, wherein the chirped continuous wave is an electromagnetic wave whose frequency linearly increases or decreases with time.
  • the first radar signal or the second radar signal may be a sawtooth wave, or the first radar signal or the second radar signal are half of the triangle wave, respectively.
  • the frequency change amounts of the first radar signal and the second radar signal in unit time are opposite to each other.
  • it can be expressed as: the slope of the frequency of the first radar signal and the slope of the frequency of the second radar signal are opposite to each other.
  • the signs of the frequency changes of the first radar signal and the second radar signal in unit time are opposite.
  • the sign of the slope of the frequency of the first radar signal is opposite to the sign of the slope of the frequency of the second radar signal.
  • the frequency of the first radar signal and the frequency of the second radar signal increase with time in a unit time; or, the frequency of the first radar signal and the frequency of the second radar signal in a unit time The time decreases with time.
  • the sign of the slope of the frequency of the first radar signal is the same as the sign of the slope of the frequency of the second radar signal. That is, the frequency of the first radar signal and the frequency of the second radar signal can be increased or decreased at the same time.
  • the first radar signal and the second radar signal have the same frequency change amount per unit time.
  • the slope of the frequency of the first radar signal is the same as the slope of the frequency of the second radar signal.
  • a radar signal processing device including: a transmitting unit for transmitting a first radar signal in a first frequency band; a transmitting unit for transmitting a second radar signal in a second frequency band; a receiving unit for For receiving the first reflected signal and the second reflected signal, where the first reflected signal is the electromagnetic wave after the first radar signal is reflected by the target object, and the second reflected signal is the electromagnetic wave after the second radar signal is reflected by the target object; acquisition unit , Used to obtain at least one of distance information, speed information, and angle information of the target object.
  • the obtaining unit is specifically configured to: obtain at least one of distance information, speed information, and angle information according to the first radar signal and the first reflected signal; or, according to the second radar signal and the first Two reflected signals to obtain at least one of distance information, speed information, and angle information; or, based on the first radar signal, first reflected signal, second radar signal, and second reflected signal, to obtain distance information, speed information, and angle information At least one of them.
  • the first radar signal and the second radar signal are transmitted in the first time unit; the duration of the first radar signal and the second radar signal are the same, and the length of the first time unit is equal to the duration .
  • the first frequency band and the second frequency band do not completely overlap in the frequency domain.
  • At least one of the first radar signal and the second radar signal is a chirped continuous wave, wherein the chirped continuous wave is an electromagnetic wave whose frequency linearly increases or decreases with time.
  • the first radar signal or the second radar signal may be a sawtooth wave, or the first radar signal or the second radar signal are half of the triangle wave, respectively.
  • the frequency change amounts of the first radar signal and the second radar signal in unit time are opposite to each other.
  • it can be expressed as: the slope of the frequency of the first radar signal and the slope of the frequency of the second radar signal are opposite to each other.
  • the signs of the frequency changes of the first radar signal and the second radar signal in unit time are opposite.
  • the sign of the slope of the frequency of the first radar signal is opposite to the sign of the slope of the frequency of the second radar signal.
  • the frequency of the first radar signal and the frequency of the second radar signal increase with time in a unit time; or, the frequency of the first radar signal and the frequency of the second radar signal in a unit time The time decreases with time.
  • the sign of the slope of the frequency of the first radar signal is the same as the sign of the slope of the frequency of the second radar signal. That is, the frequency of the first radar signal and the frequency of the second radar signal can be increased or decreased at the same time.
  • the first radar signal and the second radar signal have the same frequency change amount per unit time.
  • the slope of the frequency of the first radar signal is the same as the slope of the frequency of the second radar signal.
  • a radar signal processing device is provided, which is applied to the radar signal processing method described in the first aspect and various possible implementation manners of the first aspect.
  • a storage medium on which a computer program is stored characterized in that, when the computer program is executed by a processor, the radar signal described in the first aspect and various possible implementation manners of the first aspect is implemented Approach.
  • a radar signal processing apparatus including: a processor and a memory, the memory is used to store a program, and the processor calls the program stored in the memory to perform the first aspect and various possible implementation manners of the first aspect The radar signal processing method.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a control device, causes the radar signal processing device to perform the above-described first aspect and various possible implementation manners of the first aspect Radar signal processing method.
  • an embodiment of the present application provides a chip system, including: a processor, configured to support radar signal processing to perform the first aspect and the radar signal processing method described in various possible implementation manners of the first aspect.
  • FIG. 1 is a schematic diagram of a radar system provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a radar provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of the time amplitude of a frequency-modulated continuous wave in the form of a triangular wave provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of the time frequency of a frequency-modulated continuous wave in the form of a triangular wave provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a frequency-modulated continuous wave and a reflected wave of a relatively stationary target object provided by an embodiment of the present application;
  • FIG. 6 is a schematic diagram of a frequency-modulated continuous wave and a reflected wave of a relatively moving target object provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a sawtooth wave ranging principle provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a sawtooth speed measurement principle provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a sawtooth angle measurement principle provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a radar signal processing method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram 1 of radar signals and reflected signals provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram 2 of radar signals and reflected signals provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram 3 of radar signals and reflected signals provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram 4 of radar signals and reflected signals provided by an embodiment of the present application.
  • 15 is a schematic diagram 5 of radar signals and reflected signals provided by an embodiment of the present application.
  • 16 is a schematic diagram 6 of radar signals and reflected signals provided by an embodiment of the present application.
  • 17 is a schematic diagram 7 of radar signals and reflected signals provided by an embodiment of the present application.
  • 18 is a schematic diagram 8 of radar signals and reflected signals provided by an embodiment of the present application.
  • FIG. 19 is a first schematic structural diagram of a radar signal processing device according to an embodiment of the present application.
  • 20 is a second schematic structural diagram of a radar signal processing device according to an embodiment of the present application.
  • FIG. 21 is a third structural diagram of a radar signal processing device provided by an embodiment of the present application.
  • the radar involved in the embodiments of the present application can be applied to vehicle-to-everything (V2X), vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) ), Vehicle-to-pedestrian (V2P), etc.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P Vehicle-to-pedestrian
  • the radar according to the embodiment of the present application may be installed on a motor vehicle 11, an unmanned aerial vehicle 12, a rail car 13, a bicycle 14, a signal light 15, a speed measuring device 16, a radar station 17 or a base station 18, etc.
  • This application does not limit the location of the radar installation and the specific field of application.
  • the radar involved in the embodiments of the present application can also be called a detector or a detection device, and its working principle is to transmit a signal (or called a detection signal) and receive a reflected signal reflected by a target object To detect the corresponding target object.
  • the signal may be a radio signal or an electromagnetic wave signal. For convenience of explanation, it may be collectively referred to as a radar signal.
  • the transmission of the radar signal is periodic.
  • the duration of a complete sawtooth waveform can be understood as the transmission period of the sawtooth radar signal; for another example, for a triangular wave, the duration of a complete triangular waveform can be understood as the duration of the triangular wave radar signal Launch cycle.
  • the radar involved in the embodiments of the present application may be applied to radar speed measurement, distance measurement, angle measurement, etc. between vehicles and vehicles, between vehicles and drones, and other devices.
  • it can be applied to adaptive cruise control (adaptive cruise control (ACC), automatic emergency braking (AEB), lane change assistance (LCA), blind spot detection (blind spot monitoring, BSM), Parking assistance (PA), pedestrian detection (PD), etc.
  • ACC adaptive cruise control
  • AEB automatic emergency braking
  • LCDA lane change assistance
  • BSM blind spot detection
  • PA pedestrian detection
  • PD pedestrian detection
  • the radar involved in the embodiments of the present application may be millimeter wave (mmimeter wave, mmWave) radar, micrometer wave radar, etc.
  • the present application does not limit the properties of electromagnetic waves emitted by the radar.
  • millimeter wave refers to electromagnetic waves with a wavelength of 1-10 mm, and the corresponding frequency range is 30-300 GHz.
  • the characteristics related to millimeter wave are very suitable for the automotive field.
  • Large bandwidth abundant frequency-domain resources and low antenna sidelobe, which is conducive to imaging or quasi-imaging.
  • Short wavelength The volume of the radar equipment and the antenna aperture are reduced, and the weight is reduced.
  • Narrow beam Under the same antenna size, the millimeter wave beam is much narrower than the micrometer wave beam, and the radar resolution is high. Strong penetration: Compared with lidar and optical system, it has better ability to penetrate smoke, dust and fog, and can work around the clock.
  • an embodiment of the present application provides a radar, including: an oscillator 201, a directional coupler 202, a transmitting antenna 203, a receiving antenna 204, a mixer 205, and a processor 206.
  • the embodiment of the present application takes the radar signal as a frequency-modulated continuous wave as an example for description.
  • the oscillator 201 generates a frequency modulated continuous wave (FMCW) and outputs it to the directional coupler 202.
  • FMCW frequency modulated continuous wave
  • the FM continuous wave may be a linear FM continuous wave.
  • the chirped continuous wave is an electromagnetic wave whose frequency linearly increases or decreases with time, that is, the frequency of the chirped continuous wave has a linear relationship with time in a unit of time, or the frequency change of the chirped continuous wave per unit time
  • the absolute value of is the same (for the sawtooth wave, the frequency change is the same; for the triangular wave, the absolute value of the frequency change of the rising edge and the falling edge is the same).
  • the slope of the frequency of the FM continuous wave refers to the slope of the linear relationship between the frequency of the FM continuous wave and time (refer to FIG. 4 for details). The sign of the slope is used to indicate whether the slope is positive or negative.
  • a chirped continuous wave is taken as an example for description, but it is not limited that the chirped continuous wave must be a chirped continuous wave.
  • the directional coupler 202 outputs the FM continuous wave to the mixer 205 as a local oscillator signal on the one hand, and outputs the FM continuous wave to the transmitting antenna 203 on the other hand, and transmits it through the transmitting antenna 203.
  • the FM continuous wave is reflected by the target object and becomes a FM continuous wave reflection.
  • the receiving antenna 204 receives the frequency-modulated continuous wave reflected wave and outputs it to the mixer 205.
  • the mixer 205 mixes the FM continuous wave and the FM continuous wave reflected wave to obtain an intermediate frequency (IF) signal, where the IF signal is the frequency of the FM continuous wave and the FM continuous wave reflected wave at the same time
  • the signal formed by the difference, that is, the frequency of the intermediate frequency signal is the difference between the frequency of the FM continuous wave and the reflected wave of the FM continuous wave at the same time.
  • the mixer 205 filters the intermediate frequency signal obtained by mixing through a low-pass filter, and then amplifies and outputs it to the processor 206.
  • the processor 206 processes the intermediate frequency signal (for example, performs fast Fourier transform on the intermediate frequency signal, After performing spectrum analysis, etc.), at least one of distance information, speed information, and angle information of the target object is obtained.
  • the distance information, speed information and angle information of the target object, or the distance, speed and angle of the target object, or the relative distance, relative speed and relative angle of the target object refer to the relative emission of the target object For FM continuous wave radar, this application does not limit the specific name.
  • the processor 206 may send at least one of the distance information, speed information, and angle information of the target object to the controller on the vehicle for controlling the vehicle.
  • the waveform of the FM continuous wave is generally a sawtooth wave or a triangular wave.
  • the following uses the FM continuous wave as a triangular wave as an example to introduce the working principle of the radar in detail.
  • FIG. 3 it is a schematic diagram of the time amplitude of a frequency-modulated continuous wave in the form of a triangular wave.
  • the frequency of the FM continuous wave increases gradually with time in the time unit [0, T / 2], while the amplitude remains unchanged, where T is the period of the triangle wave.
  • FIG. 4 it is a schematic diagram of the time frequency of the FM continuous wave in the form of a triangular wave.
  • the frequency of the FM continuous wave increases linearly with time in the time unit [0, T / 2].
  • ⁇ F the frequency of the FM continuous wave at time In unit [T / 2, T]
  • ⁇ F decreases linearly with increasing time, where ⁇ F is the maximum change range of the frequency of FM continuous wave.
  • the shape of the FM continuous wave and the reflected wave of the FM continuous wave are the same, but there is a time delay ⁇ t in time.
  • FM continuous wave x 1 is:
  • the reflected wave x 2 of the FM continuous wave is:
  • ⁇ 1 (t) is the angular velocity of the frequency-modulated continuous wave x 1
  • ⁇ 2 (t) is the angular velocity of the frequency-modulated continuous wave x 2
  • the time delay ⁇ t between the FM continuous wave x 1 and the FM continuous wave reflected wave x 2 and the distance R of the target object satisfy:
  • c is the speed of light.
  • the frequency-modulated continuous wave and the frequency-modulated continuous wave reflected wave are mixed in the mixer 205, and the obtained intermediate frequency signal x out is:
  • the frequency IF of the intermediate frequency signal is the product of the slope s of the frequency of the FM continuous wave and the time delay ⁇ t, that is:
  • T is the period of the triangle wave and ⁇ F is the maximum change range of the frequency-modulated continuous wave.
  • the frequency difference between the frequency-modulated continuous wave and the frequency-modulated continuous wave at the same time (frequency IF of the intermediate frequency signal) and the frequency-modulated continuous wave
  • the time delay ⁇ t between the reflected waves of the FM continuous wave is linear, that is, the farther the target object is, the later the FM continuous wave reflected wave received by the radar.
  • the FM continuous wave and the FM continuous wave reflected wave The difference in frequency (frequency IF of the intermediate frequency signal) at the same time is greater, so the distance of the target object can be obtained by judging the size of the intermediate frequency signal frequency IF.
  • the frequency of the reflected wave of the FM continuous wave includes the Doppler shift f d caused by the relative motion of the target object.
  • the frequency f b + of the intermediate frequency signal corresponding to the rising edge of the triangular wave is:
  • the frequency f b- of the intermediate frequency signal corresponding to the falling edge of the triangular wave is:
  • IF is the frequency of the intermediate frequency signal when the target object is relatively stationary with respect to the radar
  • It is the Doppler frequency shift, and its sign is related to the relative movement direction of the target object relative to the radar, where f is the center frequency of the frequency-modulated continuous wave and v is the speed of the target object.
  • the speed of the target object in relative motion with respect to the radar is:
  • the target object can be obtained by detecting the frequency f b + of the intermediate frequency signal of the rising edge of the triangular wave and the frequency f b- of the intermediate frequency signal of the falling edge Distance information or speed information.
  • the distance measuring principle is similar to the triangle wave.
  • the time delay ⁇ between the FM continuous wave and the reflected wave of the FM continuous wave is T c .
  • FM continuous wave x 1 is:
  • x 1 (t) sin ( ⁇ 1 t + ⁇ 1 )
  • the reflected wave x 2 of the FM continuous wave is:
  • ⁇ 1 is the angular velocity of the FM continuous wave x 1 and ⁇ 1 is the initial phase of the FM continuous wave x 1 .
  • the initial phase ⁇ 0 of the intermediate frequency signal is the difference between the phase x 1 of the FM continuous wave and the phase x 2 of the reflected wave of the FM continuous wave:
  • R is the distance of the target object
  • f c is the center frequency of the FM continuous wave
  • the relative distance between the target object and the radar can be obtained by detecting the phase of the intermediate frequency signal.
  • is the wavelength of FM continuous wave.
  • v of the target object is:
  • the angle measuring principle of the radar is also an extension of the distance measuring principle.
  • the radar may have a first receiving antenna 91 and a second receiving antenna 92, and the distance between the two receiving antennas is l.
  • the distance of the reflected wave of the FM continuous wave to the two receiving antennas is different. Since the distance l between the two receiving antennas is much smaller than the distance between the target object and the radar, the direction of the reflected waves received by the two receiving antennas It can be approximated as parallel, and two intermediate frequency signals can be obtained.
  • the phases of the two intermediate frequency signals are different, and the launch angle can be calculated by the difference between the phases of the two.
  • the same radar can be used to transmit two FM continuous waves in different frequency bands, respectively correspondingly receive the reflected waves of the two FM continuous waves, and obtain the two FM continuous wave correspondences using the methods described above.
  • the frequency band mentioned in the embodiments of the present application may be replaced with a frequency band.
  • the same frequency band means that the bandwidth, minimum frequency and maximum frequency of the two frequency bands are the same.
  • An embodiment of the present application provides a radar signal processing method, which is applied to a first device, where the first device may be the radar described above or other devices with control functions, and the device may be independent or integrated into the radar .
  • the radar signal processing method includes:
  • the first radar signal is a first frequency-modulated continuous wave.
  • the initial frequency of the first radar signal is the lowest frequency of the first frequency band. In this design, the transmission power of the first radar signal increases with time.
  • the initial frequency of the first radar signal is the highest frequency of the first frequency band. In this design, the transmission power of the first radar signal decreases with time.
  • the transmitting the first radar signal is to transmit the first radar signal within a first time unit.
  • the initial moment of transmitting the first radar signal is the starting moment of the first time unit.
  • the second radar signal is a second frequency-modulated continuous wave.
  • the initial frequency of the second radar signal is the lowest frequency of the second frequency band. In this design, the transmission power of the second radar signal increases with time.
  • the initial frequency of the second radar signal is the highest frequency of the second frequency band. In this design, the transmission power of the second radar signal decreases with time.
  • the transmitting the second radar signal is to transmit the second radar signal within a first time unit.
  • the initial moment of transmitting the second radar signal is the starting moment of the first time unit.
  • the first frequency band and the second frequency band may not completely overlap in the frequency domain.
  • the incomplete overlap here means that the first frequency band and the second frequency band are different, and any one of the frequency bands is not included in the other frequency band.
  • the first frequency band and the second frequency band do not overlap at all in the frequency domain.
  • the first radar signal and the second radar signal are transmitted in the first time unit T c1 , and the duration of the first radar signal and the second radar signal may be The same, and the length of the first time unit T c1 is equal to the above duration.
  • the first time unit is the sweep time of the first radar signal and the second radar signal.
  • the first time unit may also be understood as a "frequency sweep period", that is, a time unit in which the first radar signal and the second radar signal complete a frequency sweep at the same time. Further, the first time unit can be understood as each frequency sweep period.
  • the durations of the first radar signal and the second radar signal may be different.
  • the first radar signal is transmitted in the second time unit T c2
  • the second time unit T c2 is equal to the length of the duration of the first radar signal
  • a second radar signal is transmitted within a third time unit T c3, T c3 length of the third unit of time equal to the duration of the second radar signal, wherein, T c2 ⁇ T c3 .
  • the length of the first time unit T c1 is greater than or equal to the length of the second time unit T c2 and greater than or equal to the length of the third time unit T c3 .
  • the duration may also be referred to as a sweep time, etc., and the specific name is not limited in the embodiments of the present application.
  • the signal transmission starts from the initial frequency and linearly increases to the maximum frequency within the transmission period (or linearly decreases to the minimum frequency within the transmission period) after a certain time.
  • the duration can be referred to as the duration or sweep time of the chirped continuous wave.
  • the duration or sweep time may be one transmission period or half a transmission period.
  • the duration or sweep time may be one period
  • the length of time or the number of symbols; for triangular waves, the duration or sweep time can be half the length of a cycle or half the number of symbols, that is, half a cycle.
  • the feature "unit time” is introduced, and the unit time may be the first time unit, or may be any period within the first time unit as a calculation unit, such as A symbol, multiple symbols, a slot, or a subframe, etc.
  • the unit time is not specifically limited, so as to clearly describe the change relationship between the frequency and time of the radar signal or the frequency-modulated continuous wave.
  • the sign of the frequency slope of the first radar signal is the same as the sign of the frequency slope of the second radar signal.
  • the slope can be described as the amount of change in the frequency of the chirped continuous wave per unit time.
  • the frequencies of the first radar signal and the second radar signal increase with time in a unit of time unit, or the frequencies of the first radar signal and the second radar signal are in a unit of time unit
  • the time decreases with time.
  • the frequency of the first radar signal and the frequency of the second radar signal increase linearly with time, and the amount of frequency change is a positive value.
  • the frequency of the first radar signal and the frequency of the second radar signal decrease linearly with time in a unit time, and the frequency change amount is a negative value.
  • the slope of the frequency of the first radar signal is the same as the absolute value of the slope of the frequency of the second radar signal.
  • the absolute value of the frequency change amount of the first radar signal is the same as the absolute value of the frequency change amount of the second radar signal.
  • the first radar signal and the second radar signal are transmitted, and the frequencies of the first radar signal and the second radar signal are in units The same frequency change amount changes in time. It can be understood that the first radar signal and the second radar signal are respectively transmitted in the first and second frequency bands, but the waveforms in the first time unit are the same. Further, the duration of the first radar signal and the second radar signal are the same (both are the length of the first time unit), then the first radar signal and the second radar signal may be The length of the first time unit is a period, which is transmitted periodically in its respective frequency band.
  • the slope of the frequency of the first radar signal is the same as the slope of the frequency of the second radar signal.
  • the first radar signal and the second radar signal have the same frequency change amount per unit time.
  • the slope of the frequency of the first radar signal and the slope of the frequency of the second radar signal are both 1.
  • the sign of the slope of the frequency of the first radar signal is opposite to the sign of the slope of the frequency of the second radar signal.
  • the amount of frequency change of the first radar signal and the second radar signal in unit time is opposite to each other.
  • the frequency of the first radar signal increases linearly with time, and the frequency of the second radar signal decreases linearly with time.
  • the sign of the slope of the frequency of the first radar signal is positive, the second The sign of the slope of the frequency of the radar signal is negative.
  • the frequency of the first radar signal decreases linearly with time, and the frequency of the second radar signal increases linearly with time.
  • the sign of the slope of the frequency of the first radar signal is negative, and the second radar signal The sign of the slope of the frequency is positive.
  • the frequency of the first radar signal increases linearly with time, and the frequency of the second radar signal decreases linearly with time; in the latter time unit, the frequency of the first radar signal The frequency decreases linearly with time, and the frequency of the second radar signal increases linearly with time.
  • the frequency of the first radar signal decreases linearly with time
  • the frequency of the second radar signal increases linearly with time; in the latter time unit, the frequency of the first radar signal The frequency increases linearly with time, and the frequency of the second radar signal decreases linearly with time.
  • the rising and falling edges of the triangular wave can be sent out in one time unit, as shown in Figure 4
  • a time unit the rising edge is sent first, and then the falling edge is sent in the next time unit.
  • the time to send the rising and falling edges of the triangle wave is reduced by half.
  • the time to receive the reflected wave of the rising edge and the reflected wave of the falling edge will also be reduced by half, and the total time to obtain the intermediate frequency signal corresponding to the rising edge and the intermediate frequency signal corresponding to the falling edge will also be reduced by half. Therefore, when formula 9 is used to measure the distance information of the target object, or formula 10 is used to measure the speed information of the target object, the time consumption will also be reduced by half. In addition, the resolution of the radar measurement distance information and speed information remains unchanged.
  • the slope of the frequency of the first radar signal and the slope of the frequency of the second radar signal are opposite to each other.
  • the slope of the frequency of the first radar signal is 1, and the slope of the frequency of the second radar signal is -1.
  • the first reflected signal is the electromagnetic wave after the first radar signal or the first frequency-modulated continuous wave is reflected by the target object
  • the second reflected signal is the electromagnetic wave after the second radar signal or the second frequency-modulated continuous wave is reflected by the target object.
  • the first radar signal and the first reflected signal at least one of distance information, speed information, and angle information is obtained.
  • the first intermediate frequency signal is obtained according to the first radar signal and the first reflected signal; according to the first intermediate frequency signal, at least one of distance information, speed information, and angle information is obtained.
  • a second intermediate frequency signal is obtained according to the second radar signal and the second reflected signal; according to the second intermediate frequency signal, at least one of distance information, speed information, and angle information is obtained.
  • At least one of distance information, speed information, and angle information is obtained according to the first radar signal, the first reflected signal, the second radar signal, and the second reflected signal.
  • a first intermediate frequency signal is obtained based on the first radar signal and the first reflected signal;
  • a second intermediate frequency signal is obtained based on the second radar signal and the second reflected signal;
  • distance information is obtained based on the first intermediate frequency signal and the second intermediate frequency signal , At least one of speed information and angle information.
  • the radar signal processing method provided in the embodiment of the present application transmits two radar signals in different frequency bands, respectively receives reflection signals of the two radar signals, and then obtains at least one of distance information, speed information, and angle information of the target object. Since the radar signal can be transmitted using discontinuous frequency domain resources, the radar's sweep frequency bandwidth is expanded, and therefore, the range resolution of the radar is improved.
  • An embodiment of the present application further provides a radar signal processing device, which can be used to execute the radar signal processing method in the foregoing embodiment.
  • the embodiments of the present application may divide the functional modules of the radar signal processing apparatus according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in this application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 19 shows a possible structural schematic diagram of the radar signal processing device involved in the above embodiment.
  • the radar signal processing device 19 may include: a receiving unit 1911 Unit 1912 and transmitting unit 1913.
  • the above units are used to support the radar signal processing device to execute the related method in FIG. 10.
  • the radar signal processing device provided by the present application is used to perform the above-mentioned radar signal processing method. Therefore, for the corresponding characteristics and the beneficial effects that can be achieved, reference may be made to the beneficial effects in the corresponding embodiments provided above, and no more is provided here Repeat.
  • the receiving unit 1911 is used to support the radar signal processing device 19 to perform the process S103 in FIG. 10.
  • the acquisition unit 1912 is used to support the radar signal processing device 19 to perform the process S104 in FIG. 10.
  • the transmitting unit 1913 is used to support the radar signal processing device 19 to perform the processes S101 and S102 in FIG. 10. Wherein, all relevant content of each step involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • the transmitting unit 1913 is configured to transmit the first radar signal in the first frequency band.
  • the transmitting unit is also used to transmit the second radar signal in the second frequency band.
  • the receiving unit 1911 is configured to receive a first reflected signal and a second reflected signal, where the first reflected signal is an electromagnetic wave after the first radar signal is reflected by the target object, and the second reflected signal is after the second radar signal is reflected by the target object Electromagnetic waves.
  • the obtaining unit 1912 is configured to obtain at least one of distance information, speed information, and angle information of the target object.
  • the obtaining unit 1912 is specifically configured to: obtain at least one of distance information, speed information, and angle information according to the first radar signal and the first reflected signal; or Two reflected signals to obtain at least one of distance information, speed information, and angle information; or, based on the first radar signal, first reflected signal, second radar signal, and second reflected signal, to obtain distance information, speed information, and angle information At least one of them.
  • the first radar signal and the second radar signal are transmitted in the first time unit; the duration of the first radar signal and the second radar signal are the same, and the length of the first time unit is equal to the duration.
  • the first frequency band and the second frequency band do not completely overlap in the frequency domain.
  • At least one of the first radar signal and the second radar signal is a chirped continuous wave, wherein the chirped continuous wave is an electromagnetic wave whose frequency linearly increases or decreases with time.
  • the frequency change amounts of the first radar signal and the second radar signal in a unit time are opposite to each other.
  • the frequencies of the first radar signal and the second radar signal increase with time in a unit time, or the frequencies of the first radar signal and the second radar signal increase with time in a unit unit cut back.
  • the first radar signal and the second radar signal have the same frequency change amount per unit time.
  • FIG. 20 shows yet another possible structural schematic diagram of the radar signal processing device involved in the above embodiment.
  • the radar signal processing device 20 includes a processing module 2022 and a communication module 2023.
  • the radar signal processing device 20 may further include a storage module 2021. The above modules are used to support the radar signal processing device to execute the related method in FIG. 10.
  • the processing module 2022 is used to control and manage the actions of the radar signal processing device 20 or perform corresponding processing functions, such as executing the function of the acquiring unit 1912.
  • the communication module 2023 is used to support the function of the radar signal processing device 20 to communicate with other devices, for example, to perform the functions of the receiving unit 1911 and the transmitting unit 1913.
  • the storage module 2021 is used to store program codes and / or data of the radar signal processing device.
  • the processing module 2022 may be a processor or a controller, such as a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), or an application-specific integrated circuit (application-specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of DSP and microprocessor, and so on.
  • the communication module 2023 may be a network interface or a communication interface.
  • the storage module 2021 may be a memory.
  • the processing module 2022 may be the processor 2132 in FIG. 21, the communication module 2023 may be the RF circuit 2133 in FIG. 21, and the storage module 2021 may be the memory 2131 in FIG.
  • one or more programs are stored in the memory, and the one or more programs include instructions that, when executed by the radar signal processing device, cause the radar signal processing device to perform the related method in FIG. 10.
  • An embodiment of the present application further provides a radar signal processing device, including: a processor and a memory, the memory is used to store a program, and the processor calls the program stored in the memory, so that the radar signal processing device performs the correlation in FIG. 10 method.
  • Embodiments of the present application also provide a computer storage medium that stores one or more programs on which a computer program is stored.
  • the radar signal processing device is caused to perform the related method in FIG. 10.
  • An embodiment of the present application also provides a computer program product containing instructions, which, when the computer program product runs on a radar signal processing device, causes the radar signal processing device to execute the related method in FIG. 10.
  • An embodiment of the present application provides a chip system.
  • the chip system includes a processor for supporting a radar signal processing device to execute the related method in FIG. 10. For example, the first radar signal is transmitted in the first frequency band; the second radar signal is transmitted in the second frequency band; the first reflected signal and the second reflected signal are received, where the first reflected signal is the first radar signal reflected by the target object For electromagnetic waves, the second reflected signal is an electromagnetic wave after the second radar signal is reflected by the target object; at least one of distance information, speed information, and angle information of the target object is obtained.
  • the chip system further includes a memory for storing necessary program instructions and data of the terminal device.
  • the chip system may include a chip, an integrated circuit, or may include a chip and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • the radar signal processing device the computer storage medium, the computer program product, or the chip system provided in this application are all used to perform the radar signal processing method described above. Therefore, for the beneficial effects that can be achieved, please refer to the above The beneficial effects in the embodiment of the embodiment will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the above embodiments it can be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种雷达信号处理方法和装置,适用于毫米波雷达的波形设计,雷达信号处理方法应用于第一装置,例如毫米波雷达或者毫米波雷达内部的芯片系统,雷达信号处理方法包括:在第一频段发射第一雷达信号(S101);在第二频段发射第二雷达信号(S102);接收第一反射信号和第二反射信号(S103),其中,第一反射信号为第一雷达信号被目标物体反射后的电磁波,第二反射信号为第二雷达信号被所述目标物体反射后的电磁波;获得目标物体的距离信息、速度信息和角度信息中的至少一个(S104)。可以提高雷达的扫频带宽,优化信号波形。

Description

雷达信号处理方法和装置 技术领域
本申请涉及微波雷达领域,尤其涉及一种毫米波雷达信号处理方法和装置。
背景技术
随着社会的发展,现代生活中越来越多的机器向自动化、智能化发展,移动出行用的汽车也不例外,智能汽车正在逐步进入人们的日常生活中。近些年,高级驾驶辅助系统(advanced driving assistant system,ADAS)在智能汽车中发挥着十分重要的作用,它是利用安装在车上的各式各样传感器,在汽车行驶过程中随时来感应周围的环境,收集数据,进行静止、移动物体的辨识、侦测与追踪,并结合导航仪地图数据,进行系统的运算与分析,从而预先让驾驶者察觉到可能发生的危险,有效增加汽车驾驶的舒适性和安全性。
现有技术中,受法律法规的限制,雷达,例如毫米波雷达,所能够使用的带宽有限,如何能有效利用有限的带宽资源进行波形设计,以实现雷达高效的工作,是一个亟需解决的技术问题。
发明内容
本申请实施例提供一种雷达信号处理方法和装置,用于提高雷达的扫频带宽。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种雷达信号处理方法,应用于第一装置中,该方法包括:在第一频段发射第一雷达信号;在第二频段发射第二雷达信号;接收第一反射信号和第二反射信号,其中,第一反射信号为第一雷达信号被目标物体反射后的电磁波,第二反射信号为第二雷达信号被目标物体反射后的电磁波;获得目标物体的距离信息、速度信息和角度信息中的至少一个。本申请实施例提供的雷达信号处理方法,在不同频段发射两个雷达信号,相应地分别接收两个雷达信号的反射信号,进而获得目标物体的距离信息、速度信息和角度信息中的至少一个。由于可以利用不连续的频域资源来发射雷达信号,扩大了雷达的扫频带宽,因此,提高了雷达的距离分辨率。
在一种可能的实施方式中,获得目标物体的距离信息、速度信息和角度信息中的至少一个,包括:根据第一雷达信号和第一反射信号,获得距离信息、速度信息和角度信息中的至少一个;或者,根据第二雷达信号和第二反射信号,获得距离信息、速度信息和角度信息中的至少一个;或者,根据第一雷达信号、第一反射信号、第二雷达信号和第二反射信号,获得距离信息、速度信息和角度信息中的至少一个。该实施方式提供了可以根据雷达信号和对应的反射信号获取目标物体的距离信息、速度信息和角度信息中的至少一个。
在一种可能的实施方式中,第一雷达信号和第二雷达信号在第一时间单元内发射; 第一雷达信号和第二雷达信号的持续时间相同,且第一时间单元的长度等于持续时间。即第一雷达信号和第二雷达信号的持续时间可以相同,持续时间也可以称为扫频时间,持续时间或扫频时间为雷达信号从初始频率线性增加至最大频率的持续时间。例如,对于锯齿波,持续时间可以为一个发射周期的时长,对于三角波,持续时间可以理解为半个发射周期的时长。
在一种可能的实施方式中,第一频段和第二频段在频域上不完全重叠。即第一频段和第二频段可以在频域上部分重叠。
在一种可能的实施方式中,第一雷达信号和第二雷达信号中的至少一个为线性调频连续波,其中,线性调频连续波为频率随时间线性增加或减小的电磁波。第一雷达信号或第二雷达信号可以为锯齿波,或者第一雷达信号或第二雷达信号分别为三角波的一半。
在一种可能的实施方式中,第一雷达信号和第二雷达信号在单位时间内的频率变化量互为相反数。或者,可以表述为:第一雷达信号的频率的斜率与第二雷达信号的频率的斜率互为相反数。
在一种可能的实施方式中,第一雷达信号和第二雷达信号在单位时间内的频率变化量的符号相反。或者,可以表述为:第一雷达信号的频率的斜率的符号与第二雷达信号的频率的斜率的符号相反。或者,也可以表述为:第一雷达信号的频率在单位时间内随时间线性增加,第二雷达信号的频率在单位时间内随时间线性减小;或者,第一雷达信号的频率在单位时间内随时间线性减小,第二雷达信号的频率在单位时间内随时间线性增加。在测量目标物体的距离信息时,或者测量目标物体的速度信息时,耗时将减少一半。
在一种可能的实施方式中,第一雷达信号的频率和第二雷达信号的频率在单位时间内随时间增加而增加;或者,第一雷达信号的频率和第二雷达信号的频率在单位时间内随时间增加而减小。或者,也可以表述为:第一雷达信号的频率的斜率的符号与第二雷达信号的频率的斜率的符号相同。即第一雷达信号的频率和第二雷达信号的频率可以同增减。
在一种可能的实施方式中,第一雷达信号和第二雷达信号在单位时间内的频率变化量相同。或者,可以表述为:第一雷达信号的频率的斜率与第二雷达信号的频率的斜率相同。或者,也可以表述为:在单位时间内,第一雷达信号的频率随时间变化的绝对值与第二雷达信号的频率随时间变化的绝对值相同。即第一雷达信号的频率和第二雷达信号的频率的变化量的绝对值可以相同。
第二方面,提供了一种雷达信号处理装置,包括:发射单元,用于在第一频段发射第一雷达信号;发射单元,还用于在第二频段发射第二雷达信号;接收单元,用于接收第一反射信号和第二反射信号,其中,第一反射信号为第一雷达信号被目标物体反射后的电磁波,第二反射信号为第二雷达信号被目标物体反射后的电磁波;获取单元,用于获得目标物体的距离信息、速度信息和角度信息中的至少一个。
在一种可能的实施方式中,获取单元,具体用于:根据第一雷达信号和第一反射信号,获得距离信息、速度信息和角度信息中的至少一个;或者,根据第二雷达信号和第二反射信号,获得距离信息、速度信息和角度信息中的至少一个;或者,根据第 一雷达信号、第一反射信号、第二雷达信号和第二反射信号,获得距离信息、速度信息和角度信息中的至少一个。
在一种可能的实施方式中,第一雷达信号和第二雷达信号在第一时间单元内发射;第一雷达信号和第二雷达信号的持续时间相同,且第一时间单元的长度等于持续时间。
在一种可能的实施方式中,第一频段和第二频段在频域上不完全重叠。
在一种可能的实施方式中,第一雷达信号和第二雷达信号中的至少一个为线性调频连续波,其中,线性调频连续波为频率随时间线性增加或减小的电磁波。第一雷达信号或第二雷达信号可以为锯齿波,或者第一雷达信号或第二雷达信号分别为三角波的一半。
在一种可能的实施方式中,第一雷达信号和第二雷达信号在单位时间内的频率变化量互为相反数。或者,可以表述为:第一雷达信号的频率的斜率与第二雷达信号的频率的斜率互为相反数。
在一种可能的实施方式中,第一雷达信号和第二雷达信号在单位时间内的频率变化量的符号相反。或者,可以表述为:第一雷达信号的频率的斜率的符号与第二雷达信号的频率的斜率的符号相反。或者,也可以表述为:第一雷达信号的频率在单位时间内随时间线性增加,第二雷达信号的频率在单位时间内随时间线性减小;或者,第一雷达信号的频率在单位时间内随时间线性减小,第二雷达信号的频率在单位时间内随时间线性增加。在测量目标物体的距离信息时,或者测量目标物体的速度信息时,耗时将减少一半。
在一种可能的实施方式中,第一雷达信号的频率和第二雷达信号的频率在单位时间内随时间增加而增加;或者,第一雷达信号的频率和第二雷达信号的频率在单位时间内随时间增加而减小。或者,也可以表述为:第一雷达信号的频率的斜率的符号与第二雷达信号的频率的斜率的符号相同。即第一雷达信号的频率和第二雷达信号的频率可以同增减。
在一种可能的实施方式中,第一雷达信号和第二雷达信号在单位时间内的频率变化量相同。或者,可以表述为:第一雷达信号的频率的斜率与第二雷达信号的频率的斜率相同。或者,也可以表述为:在单位时间内,第一雷达信号的频率随时间变化的绝对值与第二雷达信号的频率随时间变化的绝对值相同。即第一雷达信号的频率和第二雷达信号的频率的变化量的绝对值可以相同。
第三方面,提供了一种雷达信号处理装置,应用于第一方面和第一方面的各种可能实施方式所述的雷达信号处理方法。
第四方面,提供了一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现第一方面和第一方面的各种可能实施方式所述的雷达信号处理方法。
第五方面,提供了一种雷达信号处理装置,包括:处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行上述第一方面和第一方面的各种可能实施方式所述的雷达信号处理方法。
第六方面,本申请实施例提供一种计算机程序产品,当该计算机程序产品在控制装置上运行时,使得雷达信号处理装置执行上述第一方面和第一方面的各种可能实施 方式所述的雷达信号处理方法。
第七方面,本申请实施例提供一种芯片系统,包括:处理器,用于支持雷达信号处理执行上述第一方面和第一方面的各种可能实施方式所述的雷达信号处理方法。
第二方面至第七方面的技术效果可以参照第一方面和第一方面的各种可能实施方式所述内容。
附图说明
图1为本申请实施例提供的一种雷达系统的示意图;
图2为本申请实施例提供的一种雷达的结构示意图;
图3为本申请实施例提供的一种三角波形式的调频连续波的时间幅度的示意图;
图4为本申请实施例提供的一种三角波形式的调频连续波的时间频率的示意图;
图5为本申请实施例提供的一种相对静止的目标物体的调频连续波与反射波的示意图;
图6为本申请实施例提供的一种相对运动的目标物体的调频连续波与反射波的示意图;
图7为本申请实施例提供的一种锯齿波测距原理的示意图;
图8为本申请实施例提供的一种锯齿波测速原理的示意图;
图9为本申请实施例提供的一种锯齿波测角原理的示意图;
图10为本申请实施例提供的一种雷达信号处理方法的流程示意图;
图11为本申请实施例提供的雷达信号与反射信号的示意图一;
图12为本申请实施例提供的雷达信号与反射信号的示意图二;
图13为本申请实施例提供的雷达信号与反射信号的示意图三;
图14为本申请实施例提供的雷达信号与反射信号的示意图四;
图15为本申请实施例提供的雷达信号与反射信号的示意图五;
图16为本申请实施例提供的雷达信号与反射信号的示意图六;
图17为本申请实施例提供的雷达信号与反射信号的示意图七;
图18为本申请实施例提供的雷达信号与反射信号的示意图八;
图19为本申请实施例提供的一种雷达信号处理装置的结构示意图一;
图20为本申请实施例提供的一种雷达信号处理装置的结构示意图二;
图21为本申请实施例提供的一种雷达信号处理装置的结构示意图三。
具体实施方式
本申请实施例涉及的雷达可以应用于车联网(vehicle-to-everything,V2X)、车与车通信(vehicle-to-vehicle,V2V)、车与路边设施通信(vehicle-to-infrastructure,V2I)、车与行人通信(vehicle-to-pedestrian,V2P)等等。本申请对雷达应用的场景不作限定。
如图1所示,本申请实施例涉及的雷达可以安装于机动车辆11、无人机12、轨道车13、自行车14、信号灯15、测速装置16、雷达站17或基站18,等等。本申请对雷达安装的位置和所应用的具体的领域不作限定。另外,需要说明的是,本申请实施 例所涉及的雷达,又可以称为探测器或者探测装置,其工作原理是通过发射信号(或者称为探测信号),并接收经过目标物体反射的反射信号,来探测相应的目标物体。其中,所述信号可以为无线电信号或者电磁波信号,为方便阐述,可以统一称为雷达信号。进一步,所述雷达信号的发射是周期性的。例如,对于锯齿波来说,一个完整的锯齿波形的持续时间可以理解为锯齿波雷达信号的发射周期;又如,对于三角波来说,一个完整的三角波形的持续时间可以理解为三角波雷达信号的发射周期。
本申请实施例涉及的雷达可以应用于车辆与车辆之间、车辆与无人机等其他装置之间的雷达测速、测距、测角度等。例如,可以应用于自适应巡航控制(adaptive cruise control,ACC)、自动紧急制动(autonomous emergency braking,AEB)、变道辅助(lane change assist,LCA)、盲点检测(blind spot monitoring,BSM)、泊车辅助(parking assistance,PA)、行人检测(pedestrian detection,PD)等等。本申请对雷达应用的功能不作限定。
本申请实施例涉及的雷达可以为毫米波(millimeter wave,mmWave)雷达、微米波雷达等等,本申请对雷达发射的电磁波的属性不作限定。
具体来说,毫米波是指波长为1-10mm的电磁波,所对应的频率范围为30-300GHz。毫米波相关的特性非常适合应用于车载领域。带宽大:频域资源丰富,天线副瓣低,有利于实现成像或准成像。波长短:雷达设备体积和天线口径得以减小,重量减轻。波束窄:在相同天线尺寸下毫米波的波束要比微米波的波束窄得多,雷达分辨率高。穿透强:相比于激光雷达和光学系统,具有更好的穿透烟、灰尘和雾的能力,可全天候工作。
如图2中所示,本申请实施例提供了一种雷达,包括:振荡器201、定向耦合器202、发射天线203、接收天线204、混频器205和处理器206。为清楚阐述方案,本申请实施例以雷达信号为调频连续波为例进行说明。
振荡器201会产生调频连续波(frequency modulated continuous wave,FMCW)并输出给定向耦合器202。
其中,该调频连续波可以为线性调频连续波。线性调频连续波为频率随时间线性增加或减小的电磁波,即在一时间单元内,调频连续波的频率与时间呈线性关系,或者说,单位时间内,所述调频连续波的频率变化量的绝对值相同(对于锯齿波来说,频率变化量相同;对于三角波来说,上升沿和下降沿的频率变化量的绝对值相同)。在本申请实施例中,调频连续波的频率的斜率指调频连续波的频率与时间之间的线性关系的斜率(具体可以参考图4)。斜率的符号用于指示斜率为正或负。当频率随时间线性增加时为上升沿,斜率的符号为正。当频率随时间线性减小时为下降沿,斜率的符号为负。在本申请实施例中,示例性的以线性调频连续波为例进行说明,但不限定调频连续波必须为线性调频连续波。
定向耦合器202一方面将调频连续波输出给混频器205作为本振信号,另一方面将调频连续波输出给发射天线203,通过发射天线203发射出去。调频连续波经目标物体反射后成为调频连续波的反射波。
接收天线204接收调频连续波的反射波后输出给混频器205。
混频器205将调频连续波与调频连续波的反射波进行混频,得到中频(intermediate  frequency,IF)信号,其中,中频信号为调频连续波与调频连续波的反射波在同一时刻的频率之差所形成的信号,即中频信号的频率为调频连续波与调频连续波的反射波在同一时刻的频率之差。
混频器205将混频得到的中频信号经过低通滤波器进行滤波,再经过放大后输出给处理器206,处理器206对中频信号进行处理(例如,对中频信号进行快速傅里叶变换,进行频谱分析等)后得到目标物体的距离信息、速度信息和角度信息中的至少一个。
本申请实施例中,目标物体的距离信息、速度信息和角度信息,或者,目标物体的距离、速度和角度,或者,目标物体的相对距离、相对速度和相对角度,都是指目标物体相对发射调频连续波的雷达而言,本申请并不限定具体名称。
需要说明的是,当该雷达安装在车辆上时,处理器206可以将目标物体的距离信息、速度信息和角度信息中的至少一个发送给车辆上的控制器用于控制车辆。
调频连续波的波形一般是锯齿波或者三角波,下面以调频连续波为三角波为例详细介绍一下雷达的工作原理。
如图3所示,为三角波形式的调频连续波的时间幅度的示意图。调频连续波的频率在时间单元[0,T/2]内随着时间增加逐渐增加,而幅度保持不变,其中,T为三角波的周期。如图4所示,为三角波形式的调频连续波的时间频率的示意图,调频连续波的频率在时间单元[0,T/2]内随着时间增加线性增加ΔF,调频连续波的频率在时间单元[T/2,T]内随着时间增加线性减小ΔF,其中,ΔF为调频连续波的频率的最大变化范围。
如图5所示,如果目标物体相对于雷达处于相对静止中,则调频连续波与调频连续波的反射波的形状相同,但是在时间上有一个时延Δt。
调频连续波x 1为:
Figure PCTCN2019113249-appb-000001
公式1
调频连续波的反射波x 2为:
Figure PCTCN2019113249-appb-000002
公式2
其中,ω 1(t)为调频连续波x 1的角速度,
Figure PCTCN2019113249-appb-000003
为调频连续波x 1的初相。ω 2(t)为调频连续波x 2的角速度,
Figure PCTCN2019113249-appb-000004
为调频连续波的反射波x 2的初相。
调频连续波x 1与调频连续波的反射波x 2之间的时延Δt和目标物体的距离R满足:
Figure PCTCN2019113249-appb-000005
公式3
其中,c为光速。
调频连续波和调频连续波的反射波在混频器205中进行混频,得到的中频信号x out为:
Figure PCTCN2019113249-appb-000006
公式4
另外,如图5所示,中频信号的频率IF为调频连续波的频率的斜率s与时延Δt的 乘积,即:
Figure PCTCN2019113249-appb-000007
公式5
其中,T为三角波的周期,ΔF为调频连续波的最大变化范围。
所以目标物体的距离R为:
Figure PCTCN2019113249-appb-000008
公式6
通过上面的推导可以看出,对于相对于雷达处于相对静止的目标物体来说,调频连续波与调频连续波的反射波在同一时刻的频率之差(中频信号的频率IF)和调频连续波与调频连续波的反射波之间的时延Δt呈线性关系,即目标物体的距离越远,雷达接收到的调频连续波的反射波的时间就越晚,调频连续波与调频连续波的反射波在同一时刻的频率之差(中频信号的频率IF)越大,因此通过判断中频信号频率IF的大小就可以得到目标物体的距离。
如图6所示,如果目标物体相对于雷达处于相对运动中,则调频连续波的反射波的频率中包括由目标物体的相对运动所引起的多普勒频移f d
因此,与三角波的上升沿对应的中频信号的频率f b+为:
f b+=IF-f d
公式7
与三角波的下降沿对应的中频信号的频率f b-为:
f b-=IF+f d
公式8
其中,IF为目标物体相对于雷达处于相对静止时的中频信号的频率,
Figure PCTCN2019113249-appb-000009
为多普勒频移,其符号与目标物体相对于雷达的相对运动方向有关,其中,f为调频连续波中心频率,v为目标物体的速度。
公式7、8结合公式5可以得到相对于雷达处于相对运动的目标物体的距离R为:
Figure PCTCN2019113249-appb-000010
公式9
还可以得到相对于雷达处于相对运动的目标物体的速度为:
Figure PCTCN2019113249-appb-000011
公式10
通过上面的推导可以看出,对于相对于雷达处于相对运动的目标物体来说,通过检测三角波上升沿的中频信号的频率f b+和下降沿的中频信号的频率f b-,就可以得到目标物体的距离信息或速度信息。
下面以调频连续波为锯齿波为例详细介绍一下雷达的工作原理。
对于锯齿波来说,其测距原理与三角波类似。如图7中所示,调频连续波与调频连续波的反射波之间的时延τ,锯齿波的周期为T c
调频连续波x 1为:
x 1(t)=sin(ω 1t+φ 1)
公式11
调频连续波的反射波x 2为:
x 2(t)=sin(ω 1(t-τ)+φ 1)=sin(ω 1t-2πf cτ+φ 1)
公式12
其中,ω 1为调频连续波x 1的角速度,φ 1为调频连续波x 1的初相。
中频信号的初始相位φ 0为调频连续波的相位x 1与调频连续波的反射波x 2的相位之差:
φ 0=2πf cτ
公式13
又由于公式3所示
Figure PCTCN2019113249-appb-000012
因此,进一步可以得到中频信号的初始相位φ 0
Figure PCTCN2019113249-appb-000013
公式14
则目标物体的距离:
Figure PCTCN2019113249-appb-000014
公式15
其中,
Figure PCTCN2019113249-appb-000015
为调频连续波的波长,R为目标物体的距离,f c为调频连续波中心频率。
通过上面的推导可以看出,通过检测中频信号的相位可以得到目标物体与雷达的相对距离。
为了测量物体的速度,如图8所示,雷达按照间隔时间T c发射两个调频连续波,并分别接收这两个调频连续波的反射波,从而得到两个中频信号。由于目标物体在时间T c内移动了ΔR=vT c的距离,其中,v为目标物体的移动速度,所以根据公式14得到两个中频信号的相位差Δφ为:
Figure PCTCN2019113249-appb-000016
公式16
其中,λ为调频连续波的波长。所以目标物体的速度v为:
Figure PCTCN2019113249-appb-000017
公式17
雷达的测角原理同样为测距原理的扩展,如图9所示,雷达可以具有第一接收天线91和第二接收天线92,两个接收天线之间的距离为l。调频连续波的反射波到达两个接收天线的距离是不同的,由于两个接收天线之间的距离l远远小于目标物体至雷达间的距离,所以两个接收天线所接收的反射波的方向可近似为平行,并且可以得到两个中频信号。根据测距原理即得两个中频信号的相位不同,通过两者相位的差值即可推算出发射角度。
如公式16中所述的,两个中频信号的相位差
Figure PCTCN2019113249-appb-000018
并且ΔR=lsin(θ),所以得到目标物体的角度θ为:
Figure PCTCN2019113249-appb-000019
公式18
在本申请的实施例中,可以使用同一个雷达在不同频段发射两个调频连续波,相应地分别接收两个调频连续波的反射波,采用前文所述的方法分别获得两个调频连续波对应的中频信号,从而获得目标物体的距离信息、速度信息和角度信息中的至少一个。
需要说明的是,本申请实施例中所提到的频段可以替换为频带。两个频段相同意味两个频段的带宽、最低频率、最高频率均相同。
本申请实施例提供了一种雷达信号处理方法,应用于第一装置中,其中,第一装置可以为前文所述的雷达,或者为其他具有控制功能的装置,该装置可以独立或者集成于雷达。如图10中所示,该雷达信号处理方法包括:
S101、在第一频段发射第一雷达信号。
可选的,所述第一雷达信号为第一调频连续波。
一种可选的设计中,所述第一雷达信号的初始频率为所述第一频段的最低频率。该设计中,所述第一雷达信号的发射功率随时间变化而增加。
又一种可选的设计中,所述第一雷达信号的初始频率为所述第一频段的最高频率。该设计中,所述第一雷达信号的发射功率随时间变化而降低。
可选的,所述发射第一雷达信号为在第一时间单元内发射所述第一雷达信号。进一步可选的,所述发射第一雷达信号的初始时刻为所述第一时间单元的起始时刻。
S102、在第二频段发射第二雷达信号。
可选的,所述第二雷达信号为第二调频连续波。
一种可选的设计中,所述第二雷达信号的初始频率为所述第二频段的最低频率。该设计中,所述第二雷达信号的发射功率随时间变化而增加。
又一种可选的设计中,所述第二雷达信号的初始频率为所述第二频段的最高频率。该设计中,所述第二雷达信号的发射功率随时间变化而降低。
可选的,所述发射第二雷达信号为在第一时间单元内发射所述第二雷达信号。进一步可选的,所述发射第二雷达信号的初始时刻为所述第一时间单元的起始时刻。
一种可选的设计中,第一频段和第二频段在频域上可以不完全重叠。如图11所示。这里的不完全重叠是指所述第一频段和第二频段不相同,且其中的任一个频段不包含于另一个频段中。具体的,还可以如图12所示,第一频段和第二频段在频域上完全不重叠。
在一种可能的实施方式中,如图11和图12所示,第一雷达信号和第二雷达信号在第一时间单元T c1内发射,第一雷达信号和第二雷达信号的持续时间可以相同,且第一时间单元T c1的长度等于上述持续时间。例如,所述第一时间单元为所述第一雷达信号和所述第二雷达信号的扫频时间。这里需要说明的是,所述第一时间单元还可以理解为一个“扫频周期”,即所述第一雷达信号和所述第二雷达信号同时完成一次扫频的时间单元。进一步,所述第一时间单元可以理解为每一次扫频周期。
又一种可能的实施方式中,如图13所示,第一雷达信号和第二雷达信号的持续时 间可以不同,例如第一雷达信号在第二时间单元T c2内发射,第二时间单元T c2的长度等于第一雷达信号的持续时间;第二雷达信号在第三时间单元T c3内发射,第三时间单元T c3的长度等于第二雷达信号的持续时间,其中,T c2≠T c3。进一步,所述第一时间单元T c1的长度大于或者等于所述第二时间单元T c2的长度,且大于或者等于第三时间单元T c3的长度。
需要说明的是,持续时间也可以称为扫频时间等,本申请实施例对具体名称不作限定。以线性调频连续波为例,在每个发射周期,信号发射从初始频率开始,经过一定时长线性增加至该发射周期内的最大频率(或者线性减少到该发射周期内的最小频率)。其中,该时长可以称作所述线性调频连续波的持续时间或扫频时间。可选的,对于周期发射的调频连续波来说,持续时间或扫频时间可以为一个发射周期或者半个发射周期,例如,对于锯齿波来说,持续时间或扫频时间可以为一个周期的时间长度或者符号个数;对于三角波来说,持续时间或扫频时间可以为一个周期的时间长度的一半或者符号个数的一半,即半个周期。
以下可能的实施方式中引入了特征“单位时间”,所述单位时间可以为所述第一时间单元,或者,可以为所述第一时间单元内任一段作为一个计算单位的时间段,例如一个符号、多个符号、一个间隙(slot),或者一个子帧等。本申请实施例中不对单位时间进行具体限定,以清楚描述雷达信号或调频连续波的频率和时间之间的变化关系为准。
在一种可能的实施方式中,第一雷达信号的频率的斜率的符号与第二雷达信号的频率的斜率的符号相同。这里的斜率可以描述为单位时间内线性调频连续波的频率的变化量。或者说,所述第一雷达信号和所述第二雷达信号的频率在单位时间单元内随时间增加而增加,或者,所述第一雷达信号和所述第二雷达信号的频率在单位时间单元内随时间增加而减少。示例性的,如图11-图13所示,在单位时间内,第一雷达信号的频率和第二雷达信号的频率随时间线性增加,频率变化量为正值。或者,如图14所示,在单位时间内,第一雷达信号的频率和第二雷达信号的频率随时间线性减小,频率变化量为负值。
在一种可能的实施方式中,所述第一雷达信号的频率的斜率与所述第二雷达信号的频率的斜率的绝对值相同。或者说,在单位时间内,第一雷达信号的频率变化量的绝对值与第二雷达信号的频率的频率变化量的绝对值相同。
进一步,以所述第一时间单元的开始时刻为初始时刻,发射所述第一雷达信号和所述第二雷达信号,并且,所述第一雷达信号和所述第二雷达信号的频率以单位时间内相同的频率变化量变化。可以理解为,所述第一雷达信号和所述第二雷达信号分别在所述第一和第二频段中发射,但是在所述第一时间单元内的波形相同。进一步,所述第一雷达信号和所述第二雷达信号的持续时间相同(均为所述第一时间单元的长度),则所述第一雷达信号和所述第二雷达信号可以以所述第一时间单元的长度为周期,分别在各自的频段上周期的发射。
在该可能的实施方式中,可选的,第一雷达信号的频率的斜率与第二雷达信号的频率的斜率相同。或者说,第一雷达信号与第二雷达信号在单位时间内的频率变化量相同。示例性的,第一雷达信号的频率的斜率和第二雷达信号的频率的斜率均为1。
在该可能的实施方式中,又一可选的,第一雷达信号的频率的斜率的符号与第二雷达信号的频率的斜率的符号相反。或者说,第一雷达信号与第二雷达信号在单位时间内的频率变化量互为相反数。示例性的,如图15所示,第一雷达信号的频率随时间线性增加,第二雷达信号的频率随时间线性减小,此时第一雷达信号的频率的斜率的符号为正,第二雷达信号的频率的斜率的符号为负。或者,如图16所示,第一雷达信号的频率随时间线性减小,第二雷达信号的频率随时间线性增加,此时第一雷达信号的频率的斜率的符号为负,第二雷达信号的频率的斜率的符号为正。或者,如图17所示,在前一时间单元里,第一雷达信号的频率随时间线性增加,第二雷达信号的频率随时间线性减小;在后一时间单元里,第一雷达信号的频率随时间线性减小,第二雷达信号的频率随时间线性增加。或者,如图18所示,在前一时间单元里,第一雷达信号的频率随时间线性减小,第二雷达信号的频率随时间线性增加;在后一时间单元里,第一雷达信号的频率随时间线性增加,第二雷达信号的频率随时间线性减小。
当第一雷达信号的频率的斜率的符号与第二雷达信号的频率的斜率的符号相反时,可以在一个时间单元里将三角波的上升沿和下降沿发送出去,而不需要如图4所示,在一个时间单元里先发送上升沿,再在下一个时间单元里发送下降沿,即将发送三角波的上升沿和下降沿的时间减少一半。相应地,接收上升沿的反射波和下降沿的反射波的时间也将减少一半,得到上升沿对应的中频信号并得到下降沿对应的中频信号的总时间也将减少一半。因此,在采用公式9测量目标物体的距离信息时,或者采用公式10测量目标物体的速度信息时,耗时也将减少一半。另外,还使雷达测量距离信息和速度信息的分辨率保持不变。
进一步的,在一种可能的实施方式中,第一雷达信号的频率的斜率与第二雷达信号的频率的斜率互为相反数。示例性的,第一雷达信号的频率的斜率为1,第二雷达信号的频率的斜率为-1。
S103、接收第一反射信号和第二反射信号。
其中,第一反射信号为第一雷达信号或第一调频连续波被目标物体反射后的电磁波,第二反射信号为第二雷达信号或第二调频连续波被目标物体反射后的电磁波。
S104、获得目标物体的距离信息、速度信息和角度信息中的至少一个。
在一种可能的实施方式中,根据第一雷达信号和第一反射信号,获得距离信息、速度信息和角度信息中的至少一个。示例性的,根据第一雷达信号和第一反射信号得到第一中频信号;根据第一中频信号,获得距离信息、速度信息和角度信息中的至少一个。
或者,在另一种可能的实施方式中,根据第二雷达信号和第二反射信号,获得距离信息、速度信息和角度信息中的至少一个。示例性的,根据第二雷达信号和第二反射信号得到第二中频信号;根据第二中频信号,获得距离信息、速度信息和角度信息中的至少一个。
或者,在又一种可能的实施方式中,根据第一雷达信号、第一反射信号、第二雷达信号和第二反射信号,获得距离信息、速度信息和角度信息中的至少一个。示例性的,根据第一雷达信号和第一反射信号得到第一中频信号;根据第二雷达信号和第二反射信号得到第二中频信号;根据第一中频信号和第二中频信号,获得距离信息、速 度信息和角度信息中的至少一个。
关于如何根据中频信号获得距离信息、速度信息和角度信息中的至少一个,可以参照前文描述,在此不再重复。
本申请实施例提供的雷达信号处理方法,在不同频段发射两个雷达信号,相应地分别接收两个雷达信号的反射信号,进而获得目标物体的距离信息、速度信息和角度信息中的至少一个。由于可以利用不连续的频域资源来发射雷达信号,扩大了雷达的扫频带宽,因此,提高了雷达的距离分辨率。
本申请实施例还提供一种雷达信号处理装置,可以用于执行上述实施方式中的雷达信号处理方法。本申请实施例可以根据上述方法示例对雷达信号处理装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图19示出了上述实施例中所涉及的雷达信号处理装置的一种可能的结构示意图,雷达信号处理装置19可以包括:接收单元1911、获取单元1912和发射单元1913。上述各单元用于支持雷达信号处理装置执行图10中的相关方法。本申请提供的雷达信号处理装置用于执行上述雷达信号处理方法,因此,其相应的特征和所能达到的有益效果可参考上文所提供的对应的实施方式中的有益效果,此处不再赘述。
示例性的,接收单元1911用于支持雷达信号处理装置19执行图10中的过程S103。获取单元1912用于支持雷达信号处理装置19执行图10中的过程S104。发射单元1913用于支持雷达信号处理装置19执行图10中的过程S101和S102。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
一种可能的实施方式中,发射单元1913,用于在第一频段发射第一雷达信号。发射单元,还用于在第二频段发射第二雷达信号。接收单元1911,用于接收第一反射信号和第二反射信号,其中,第一反射信号为第一雷达信号被目标物体反射后的电磁波,第二反射信号为第二雷达信号被目标物体反射后的电磁波。获取单元1912,用于获得目标物体的距离信息、速度信息和角度信息中的至少一个。
一种可能的实施方式中,获取单元1912,具体用于:根据第一雷达信号和第一反射信号,获得距离信息、速度信息和角度信息中的至少一个;或者,根据第二雷达信号和第二反射信号,获得距离信息、速度信息和角度信息中的至少一个;或者,根据第一雷达信号、第一反射信号、第二雷达信号和第二反射信号,获得距离信息、速度信息和角度信息中的至少一个。
一种可能的实施方式中,第一雷达信号和第二雷达信号在第一时间单元内发射;第一雷达信号和第二雷达信号的持续时间相同,且第一时间单元的长度等于持续时间。
一种可能的实施方式中,第一频段和第二频段在频域上不完全重叠。
一种可能的实施方式中,第一雷达信号和第二雷达信号中的至少一个为线性调频连续波,其中,线性调频连续波为频率随时间线性增加或减小的电磁波。
一种可能的实施方式中,第一雷达信号和第二雷达信号在单位时间内的频率变化量互为相反数。
一种可能的实施方式中,第一雷达信号和第二雷达信号的频率在单位时间内随时间增加而增加,或者,第一雷达信号和第二雷达信号的频率在单位单元内随时间增加而减少。
一种可能的实施方式中,第一雷达信号和第二雷达信号在单位时间内的频率变化量相同。
图20示出了上述实施例中所涉及的雷达信号处理装置的又一种可能的结构示意图。雷达信号处理装置20包括:处理模块2022、通信模块2023。可选的,雷达信号处理装置20还可以包括存储模块2021。上述各模块用于支持雷达信号处理装置执行图10中的相关方法。
一种可能的方式,处理模块2022用于对雷达信号处理装置20的动作进行控制管理或者执行相应的处理功能,例如执行获取单元1912的功能。通信模块2023用于支持雷达信号处理装置20与其他设备通信的功能,例如执行接收单元1911和发射单元1913的功能。存储模块2021用于存储雷达信号处理装置的程序代码和/或数据。
其中,处理模块2022可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块2023可以是网络接口或通信接口等。存储模块2021可以是存储器。
一种可能的方式,处理模块2022可以为图21中的处理器2132,通信模块2023可以为图21中的RF电路2133,存储模块2021可以为图21中的存储器2131。其中,一个或多个程序被存储在存储器中,一个或多个程序包括指令,指令当被雷达信号处理装置执行时使雷达信号处理装置执行图10中的相关方法。
本申请实施例还提供一种雷达信号处理装置,包括:处理器和存储器,所述存储器用于存储程序,所述处理器调用存储器存储的程序,以使雷达信号处理装置执行图10中的相关方法。
本申请实施例还提供一种存储一个或多个程序的计算机存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,使雷达信号处理装置执行图10中的相关方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在雷达信号处理装置上运行时,使得雷达信号处理装置执行图10中的相关方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持雷达信号处理装置执行图10中的相关方法。例如,在第一频段发射第一雷达信号;在第二频段发射第二雷达信号;接收第一反射信号和第二反射信号,其中,第一反射信号为第一雷达信号被目标物体反射后的电磁波,第二反射信号为第二雷达信号被目标物体反射 后的电磁波;获得目标物体的距离信息、速度信息和角度信息中的至少一个。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的雷达信号处理装置、计算机存储介质、计算机程序产品或者芯片系统均用于执行上文所述的雷达信号处理方法,因此,其所能达到的有益效果可参考上文所提供的实施方式中的有益效果,此处不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是 包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种雷达信号处理方法,应用于第一装置中,其特征在于,包括:
    在第一频段发射第一雷达信号;
    在第二频段发射第二雷达信号;
    接收第一反射信号和第二反射信号,其中,所述第一反射信号为所述第一雷达信号被目标物体反射后的电磁波,所述第二反射信号为所述第二雷达信号被所述目标物体反射后的电磁波;
    获得所述目标物体的距离信息、速度信息和角度信息中的至少一个。
  2. 根据权利要求1所述的方法,其特征在于,所述获得所述目标物体的距离信息、速度信息和角度信息中的至少一个,包括:
    根据所述第一雷达信号和所述第一反射信号,获得所述距离信息、速度信息和角度信息中的至少一个;或者,
    根据所述第二雷达信号和所述第二反射信号,获得所述距离信息、速度信息和角度信息中的至少一个;或者,
    根据所述第一雷达信号、所述第一反射信号、所述第二雷达信号和所述第二反射信号,获得所述距离信息、速度信息和角度信息中的至少一个。
  3. 根据权利要求1或2所述的方法,其特征在于:
    所述第一雷达信号和所述第二雷达信号在第一时间单元内发射;
    所述第一雷达信号和所述第二雷达信号的持续时间相同,且所述第一时间单元的长度等于所述持续时间。
  4. 根据权利要求1-3任一项所述的方法,其特征在于:
    所述第一频段和第二频段在频域上不完全重叠。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一雷达信号和所述第二雷达信号中的至少一个为线性调频连续波,其中,所述线性调频连续波为频率随时间线性增加或减小的电磁波。
  6. 根据权利要求5所述的方法,其特征在于,所述第一雷达信号和所述第二雷达信号在单位时间内的频率变化量互为相反数。
  7. 根据权利要求5所述的方法,其特征在于,所述第一雷达信号和所述第二雷达信号的频率在单位时间内随时间增加而增加,或者,所述第一雷达信号和所述第二雷达信号的频率在单位单元内随时间增加而减少。
  8. 根据权利要求7所述的方法,其特征在于,所述第一雷达信号和所述第二雷达信号在单位时间内的频率变化量相同。
  9. 一种雷达信号处理装置,其特征在于,包括:
    发射单元,用于在第一频段发射第一雷达信号;
    所述发射单元,还用于在第二频段发射第二雷达信号;
    接收单元,用于接收第一反射信号和第二反射信号,其中,所述第一反射信号为所述第一雷达信号被目标物体反射后的电磁波,所述第二反射信号为所述第二雷达信号被所述目标物体反射后的电磁波;
    获取单元,用于获得所述目标物体的距离信息、速度信息和角度信息中的至少一 个。
  10. 根据权利要求9所述的装置,其特征在于,所述获取单元,具体用于:
    根据所述第一雷达信号和所述第一反射信号,获得所述距离信息、速度信息和角度信息中的至少一个;或者,
    根据所述第二雷达信号和所述第二反射信号,获得所述距离信息、速度信息和角度信息中的至少一个;或者,
    根据所述第一雷达信号、所述第一反射信号、所述第二雷达信号和所述第二反射信号,获得所述距离信息、速度信息和角度信息中的至少一个。
  11. 根据权利要求9或10所述的装置,其特征在于:
    所述第一雷达信号和所述第二雷达信号在第一时间单元内发射;
    所述第一雷达信号和所述第二雷达信号的持续时间相同,且所述第一时间单元的长度等于所述持续时间。
  12. 根据权利要求9-11任一项所述的装置,其特征在于:
    所述第一频段和第二频段在频域上不完全重叠。
  13. 根据权利要求9-12任一项所述的装置,其特征在于,所述第一雷达信号和所述第二雷达信号中的至少一个为线性调频连续波,其中,所述线性调频连续波为频率随时间线性增加或减小的电磁波。
  14. 根据权利要求13所述的装置,其特征在于,所述第一雷达信号和所述第二雷达信号在单位时间内的频率变化量互为相反数。
  15. 根据权利要求13所述的装置,其特征在于,所述第一雷达信号和所述第二雷达信号的频率在单位时间内随时间增加而增加,或者,所述第一雷达信号和所述第二雷达信号的频率在单位单元内随时间增加而减少。
  16. 根据权利要求15所述的装置,其特征在于,所述第一雷达信号和所述第二雷达信号在单位时间内的频率变化量相同。
  17. 一种雷达信号处理装置,其特征在于,应用于如权利要求1-8任一项所述的雷达信号处理方法。
  18. 一种存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-8任一项所述的雷达信号处理方法。
PCT/CN2019/113249 2018-10-26 2019-10-25 雷达信号处理方法和装置 WO2020083369A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19876754.3A EP3842833A4 (en) 2018-10-26 2019-10-25 RADAR SIGNAL PROCESSING METHOD AND DEVICE
US17/238,276 US11982731B2 (en) 2018-10-26 2021-04-23 Radar signal processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811256435.7 2018-10-26
CN201811256435.7A CN111103580B (zh) 2018-10-26 2018-10-26 雷达信号处理方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/238,276 Continuation US11982731B2 (en) 2018-10-26 2021-04-23 Radar signal processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2020083369A1 true WO2020083369A1 (zh) 2020-04-30

Family

ID=70331955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113249 WO2020083369A1 (zh) 2018-10-26 2019-10-25 雷达信号处理方法和装置

Country Status (4)

Country Link
US (1) US11982731B2 (zh)
EP (1) EP3842833A4 (zh)
CN (1) CN111103580B (zh)
WO (1) WO2020083369A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6713946B2 (ja) * 2017-03-31 2020-06-24 株式会社Soken 車載レーダ装置
CN112534299B (zh) * 2020-08-05 2022-03-29 华为技术有限公司 一种基于雷达信号的发射方法和装置
CN111983593B (zh) * 2020-08-21 2024-05-10 无锡市雷华科技有限公司 一种高精度双基地线性调频连续波雷达同步系统
CN112654879B (zh) * 2020-12-11 2022-04-15 华为技术有限公司 基于车载毫米波雷达的防干扰方法、装置、系统及车辆
EP4261570A4 (en) * 2020-12-28 2024-02-14 Huawei Tech Co Ltd DETECTION METHOD, DETECTION DEVICE, DETECTION SYSTEM AND RADAR
CN113687358A (zh) * 2021-08-25 2021-11-23 深圳市万集科技有限公司 目标物体的识别方法、装置、电子设备及存储介质
CN113901948A (zh) * 2021-11-04 2022-01-07 海信集团控股股份有限公司 学习姿态识别方法及设备
CN114325589A (zh) * 2021-12-25 2022-04-12 北京神星科技有限公司 一种随机参数的fmcw雷达装置和信号生成与处理方法
CN115327522B (zh) * 2022-08-19 2023-06-02 山东高速工程检测有限公司 一种基于毫米波雷达的桥梁监测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150007A (zh) * 2008-09-11 2011-08-10 尼康计量公众有限公司 用于反啁啾调频连续波相干激光雷达的紧凑型光纤结构
CN102169180A (zh) * 2010-12-22 2011-08-31 中国科学院上海微系统与信息技术研究所 双波束三天线微波交通信息检测雷达和方法
WO2012038662A1 (fr) * 2010-09-22 2012-03-29 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Mesure telemetrique utilisant un dispositif de type lidar a detection heterodyne
CN103728593A (zh) * 2014-01-13 2014-04-16 武汉大学 一种实现地波超视距雷达同时多频发射/接收的方法
CN104459683A (zh) * 2014-12-12 2015-03-25 重庆大学 基于微波雷达的多目标位移高精度测量方法与系统
CN108027272A (zh) * 2015-06-15 2018-05-11 恩德莱斯和豪瑟尔两合公司 测试基于雷达的填充水平测量装置的功能性的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083238A (ja) * 1999-09-16 2001-03-30 Mitsubishi Electric Corp レーダ装置及び距離計測方法
JP6036257B2 (ja) * 2012-12-17 2016-11-30 株式会社デンソー Fmcwレーダ装置
CN103630888B (zh) * 2013-02-27 2017-03-22 中国科学院电子学研究所 基于对称三角lfmcw雷达的高精度实时微波测速测距装置
CN104345308A (zh) * 2013-07-24 2015-02-11 均利科技股份有限公司 车辆侦测器和量测车辆距离以及车辆速度的方法
JP6548376B2 (ja) * 2014-10-06 2019-07-24 日本電産株式会社 レーダシステム、レーダ信号処理装置、車両走行制御装置および方法、ならびにコンピュータプログラム
TW201734404A (zh) * 2016-03-30 2017-10-01 啟碁科技股份有限公司 角度估測方法及雷達系統
US10451723B2 (en) * 2016-12-20 2019-10-22 National Chung-Shan Institute Of Science & Technology Signal processing apparatus of a continuous-wave (CW) radar sensing system
CN107688178A (zh) * 2017-08-25 2018-02-13 上海通趣科技有限公司 一种基于77GHz毫米波雷达的锯齿波测距测速方法
US10564277B2 (en) * 2018-01-30 2020-02-18 Oculii Corp. Systems and methods for interpolated virtual aperature radar tracking
GB201803239D0 (en) * 2018-02-28 2018-04-11 Secr Defence A radio or sonic wave detector, transmitter, reciver and method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150007A (zh) * 2008-09-11 2011-08-10 尼康计量公众有限公司 用于反啁啾调频连续波相干激光雷达的紧凑型光纤结构
WO2012038662A1 (fr) * 2010-09-22 2012-03-29 ONERA (Office National d'Etudes et de Recherches Aérospatiales) Mesure telemetrique utilisant un dispositif de type lidar a detection heterodyne
CN102169180A (zh) * 2010-12-22 2011-08-31 中国科学院上海微系统与信息技术研究所 双波束三天线微波交通信息检测雷达和方法
CN103728593A (zh) * 2014-01-13 2014-04-16 武汉大学 一种实现地波超视距雷达同时多频发射/接收的方法
CN104459683A (zh) * 2014-12-12 2015-03-25 重庆大学 基于微波雷达的多目标位移高精度测量方法与系统
CN108027272A (zh) * 2015-06-15 2018-05-11 恩德莱斯和豪瑟尔两合公司 测试基于雷达的填充水平测量装置的功能性的方法

Also Published As

Publication number Publication date
US20210239824A1 (en) 2021-08-05
CN111103580A (zh) 2020-05-05
EP3842833A4 (en) 2021-10-20
CN111103580B (zh) 2023-06-27
US11982731B2 (en) 2024-05-14
EP3842833A1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2020083369A1 (zh) 雷达信号处理方法和装置
JP7244188B2 (ja) 検出方法、検出装置及びシステム
WO2020156133A1 (zh) 一种目标物探测方法及对应的探测装置
WO2020156084A1 (zh) 无线电信号发送方法和装置
WO2021032000A1 (zh) 一种信号发射方法及装置
WO2020177647A1 (zh) 一种利用无线电信号进行目标物探测的方法及相关装置
CN112433214A (zh) 一种雷达信号发送方法及装置
JP2022093367A (ja) 情報測定方法および情報測定装置
US20220137179A1 (en) Detection method and signal sending method and apparatus
CN112740060B (zh) 信号处理方法、装置及存储介质
US20180284258A1 (en) Method and device for processing radar signals
CN112014800B (zh) 一种雷达信号发送方法及设备
WO2020173496A1 (zh) 一种雷达测量方法及装置
CN112153739A (zh) 一种通信方法及装置
CN112630767A (zh) 一种信息上报、信息接收的方法及装置
WO2023212935A1 (zh) 一种信号发送方法、接收方法及对应装置
WO2024066996A1 (zh) 一种雷达信息传输方法、装置和系统
CN112505702A (zh) 一种雷达障碍物探测方法、装置及存储介质
CN113050041A (zh) 一种频带的状态判断方法以及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019876754

Country of ref document: EP

Effective date: 20210322

NENP Non-entry into the national phase

Ref country code: DE