WO2020082919A1 - 线缆微束管及微束管线缆 - Google Patents

线缆微束管及微束管线缆 Download PDF

Info

Publication number
WO2020082919A1
WO2020082919A1 PCT/CN2019/104907 CN2019104907W WO2020082919A1 WO 2020082919 A1 WO2020082919 A1 WO 2020082919A1 CN 2019104907 W CN2019104907 W CN 2019104907W WO 2020082919 A1 WO2020082919 A1 WO 2020082919A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
weight
parts
micro
cable
Prior art date
Application number
PCT/CN2019/104907
Other languages
English (en)
French (fr)
Inventor
孙丽华
王瑞
冯敏
吴杰
聂镇
朱聪威
张文美
张瑜
王婷婷
钱奕超
Original Assignee
江苏亨通光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通光电股份有限公司 filed Critical 江苏亨通光电股份有限公司
Priority to EP19875628.0A priority Critical patent/EP3705525A4/en
Publication of WO2020082919A1 publication Critical patent/WO2020082919A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/19Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/49Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4459Ducts; Conduits; Hollow tubes for air blown fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables

Definitions

  • the invention belongs to the technical field of cables, and particularly relates to a cable micro-beam tube, and also relates to a cable using the micro-beam tube.
  • the traditional overhead optical cable chooses a layer twisted structure.
  • the bushing uses PBT material. It is suitable for trunk lines, power towers and other fields. It has the advantages of large core number, large span, large tension, and stable product performance. However, it cannot be applied to remote areas such as towns and villages. The terrain is more complicated and there are hidden safety hazards in the long span. Therefore, it is necessary to build a shorter distance tower. A small optical cable with small tension, short span and capable of being laid overhead is required between households.
  • the current miniaturized overhead optical cables use PBT sleeves, which have high strength and high hardness.
  • TPEE or TPU micro-beam tubes are flexible and easy to peel, and can achieve the purpose of rapid peeling and quick connection.
  • the strength of the TPEE or TPU micro-beam tube is small, which is not conducive to the service life of the optical cable in a special environment.
  • TPEE micro-beam tubes are prone to casting during the extrusion process, which is likely to cause micro-tube tube bulging, rough appearance or even cracking. The reason is mainly due to the difference in melt speed. The agent precipitates and accumulates in the die opening, and in severe cases, causes the pipe wall to rupture.
  • the technical problem to be solved by the present invention is to provide a cable micro-beam tube, which overcomes the current problem that the cable sleeve cannot balance strength and flexibility, and can achieve the purpose of rapid stripping and quick connection, and also has a certain strength. It is suitable for use in environments with high cable strength requirements.
  • the present invention provides a cable micro-beam tube, including a tube body, the tube body is composed of a first tube section and a second tube section, wherein the first tube section and the second tube section are along the Integral forming of seamless butt joint in the circumferential direction of the pipe body;
  • the material formulation of the first pipe section includes the following components: 30-50 parts by weight of polyester block copolymer, 1-18 parts by weight of macromolecular additives, and 2-8 parts by weight of dioctyl phthalate And 1 to 5 parts by weight of hydroquinone;
  • the macromolecular additives include a mixture of two of ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, and epoxy compound;
  • the material formulation of the second pipe section includes the following components: 40 to 65 parts by weight of polybutylene terephthalate, 3 to 8 parts by weight of butyl benzyl phthalate and 1 to 5 parts by weight of p-benzene Diamine or hydroquinone.
  • the macromolecular additive is a mixture of ethylene-vinyl acetate copolymer and ethylene-methyl acrylate copolymer, wherein the ethylene-vinyl acetate copolymer and ethylene-methyl acrylate are copolymerized
  • the molar ratio of the substance is 1: 2.
  • the macromolecular additive is a mixture of ethylene-vinyl acetate copolymer and epoxy compound, wherein the molar ratio of ethylene-vinyl acetate copolymer and epoxy compound is 1: 2 .
  • the macromolecular additive is further a mixture of ethylene-methyl acrylate copolymer and epoxy compound, wherein the molar ratio of ethylene-methyl acrylate copolymer and epoxy compound is 1 :1.
  • it further comprises a hard segment zone in which the polyester block copolymer is polymerized by polyester polyol and polyisocyanate through polycondensation; polymerized by hexanediol or isopentanediol and polyisocyanate Into the soft segment of the polyester block copolymer.
  • the further step of forming the micro-beam tube is as follows:
  • Step 1 Take the ingredients of the first pipe section: take 30-50 parts by weight of polyester block copolymer, 1-18 parts by weight of macromolecular additives, 2-8 parts by weight of dioctyl phthalate and 1-5 Parts by weight of hydroquinone; the ingredients of the second pipe section: 40 to 65 parts by weight of polybutylene terephthalate, 3 to 8 parts by weight of butyl benzyl phthalate and 1 to 5 parts by weight of terephthalic acid Amine or hydroquinone;
  • Step 2 Extrusion molding: the ingredients of the first pipe section are put into the first extruder, and the ingredients of the second pipe section are put into the second extruder, and both the first extruder and the second extruder output
  • the drawing ratio of the drawing tube die is 7-9
  • the discharge of the first extruder and the second extruder forms a conical fluid at the die opening of the drawing tube die.
  • the tube body with the hollow structure is output by stretching and cooling, wherein the first tube section and the second tube section are seamlessly connected along the circumferential direction of the tube body.
  • the process of forming the micro-beam tube further includes: after forming the tube body, applying an oil paste with a viscosity of 4000 to 6000 mPa.s to the inner wall of the tube body.
  • the present invention also provides a micro-beam tube cable, including a cable core, the cable core includes an optical fiber unit and the above structure of the micro-beam tube, the optical fiber unit is tightly wrapped in the micro-beam Inside the tube.
  • the optical fiber unit has multiple optical fibers, and fiber paste is filled between the optical fibers in the micro-beam tube.
  • it further includes that it further includes a water blocking layer and a sheath layer, the water blocking layer is coated on the outside of the cable core, and the sheath layer is coated on the outside of the water blocking layer;
  • the water layer is a dry water blocking layer, and the material of the dry water blocking layer is yarn or non-woven fabric;
  • the sheath layer is a polyethylene sheath layer or a low-smoke halogen-free sheath layer.
  • the cable micro-beam tube of the present invention overcomes the current problem that the cable sleeve cannot balance strength and flexibility, and can achieve the purpose of rapid stripping and rapid connection, and also has a certain strength, suitable for Used in environments where the strength of the cable is required.
  • the micro-beam tube has an integrally formed first pipe section and second pipe section, the first pipe section and the second pipe section are seamlessly connected along the circumferential direction of the pipe body, and the first pipe section with specific ingredients is formed with good flexibility and easy to open Stripping, especially the polyester block copolymer has the inherent advantages of good elasticity and softness.
  • the prepared first pipe section has a bending diameter of at least 15mm.
  • the microbeam tube can be quickly peeled from the position of the first pipe section to achieve the purpose of rapid connection ;
  • the second pipe section of specific ingredients has good strength and wear resistance after molding, especially polybutylene terephthalate has the inherent advantage of high strength, and will not be damaged when the microbeam tube is peeled off
  • the overall strength of the micro-beam tube is used to overcome the current problem that the cable sleeve cannot balance strength and flexibility.
  • adding a specific proportion of macromolecular additives to the ingredients of the first pipe section can effectively increase the flexibility and processability of the polyester block copolymer, reduce surface tension and processing heat, and improve the matrix (polyester embedded Segment copolymer) and additives, to avoid the precipitation and accumulation of additives at the die, and to solve the problem of poor tube wall caused by the precipitation and accumulation of additives at the die.
  • FIG. 1 is a cross-sectional view of a cable micro-beam tube in a preferred embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a micro-beam tube cable in a preferred embodiment of the present invention.
  • 6-fiber, 8-water blocking layer, 10-sheath layer 6-fiber, 8-water blocking layer, 10-sheath layer.
  • this embodiment discloses a cable micro-beam tube, including a tube body, the tube body is composed of a first tube section 21 and a second tube section 22, wherein the first tube section 21 and the second tube section 22 An integrally formed seamless joint along the circumferential direction of the tube body.
  • Step 1 Take the ingredients of the first pipe section and the second pipe section respectively;
  • Step 2 Extrusion molding: the ingredients of the first pipe section are put into the first extruder, and the ingredients of the second pipe section are put into the second extruder, and the output of the first extruder and the second extruder pass through Into the drawn tube die, the draw ratio of the drawn tube die is 7-9.
  • the discharge of the first extruder and the second extruder forms a conical fluid at the die opening of the drawn tube die.
  • the tube body of the hollow structure is extended and cooled, wherein the first tube section and the second tube section are seamlessly connected along the circumferential direction of the tube body.
  • Step 3 After forming the tube body, apply an oil paste with a viscosity of 4000 to 6000 mPa.s to the inner wall of the tube body.
  • the mixture of ethylene-vinyl acetate copolymer and ethylene-methyl acrylate copolymer accounts for 1 part by weight, and the ethylene-vinyl acetate copolymer and ethylene-methyl acrylate copolymerize
  • the molar ratio of the substance is 1: 2.
  • the hard segment region of the polyester block copolymer is polymerized by polyester polyol and polyisocyanate through polycondensation reaction; polymerized by hexanediol or isopentyl glycol and polyisocyanate The soft segment region of the above polyester block copolymer.
  • the weight ratio of the mixture of the ethylene-vinyl acetate copolymer and the epoxy compound is 1, and the molar ratio of the ethylene-vinyl acetate copolymer and the epoxy compound is 1: 2 .
  • Example 4 to Example 6 the hard segment of the above polyester block copolymer is polymerized by polyester polyol and polyisocyanate through polycondensation reaction; polymerized by hexanediol or isopentanediol and polyisocyanate The soft segment region of the above polyester block copolymer.
  • Example 7 the material formulation components of the first pipe section and the second pipe section are shown in Table 3 below:
  • Example 7 to Example 9 the proportion by weight of the mixture of the ethylene-methyl acrylate copolymer and the epoxy compound is 1, and the molar ratio of the ethylene-methyl acrylate copolymer and the epoxy compound is 1 :1.
  • Example 7 to Example 9 the hard segment of the above polyester block copolymer is polymerized from polyester polyol and polyisocyanate by polycondensation reaction; polymerized from hexanediol or isopentyl glycol and polyisocyanate The soft segment region of the above polyester block copolymer.
  • this embodiment discloses a micro-beam tube cable, which includes a cable core, a water blocking layer 8 coated on the outside of the cable core, and a sheath layer 10 coated on the outside of the water blocking layer 8.
  • the above-mentioned cable core includes an optical fiber unit and the micro-beam tube 2 in any one of the first to ninth embodiments.
  • the optical fiber unit is tightly sheathed in the micro-beam tube 2.
  • the optical fiber unit has a plurality of optical fibers 6.
  • the optical fiber 6 in the micro-beam tube 2 is filled with fiber paste.
  • the water blocking layer 8 is a dry type water blocking layer, and the material of the dry type water blocking layer is yarn or non-woven fabric; the sheath layer 10 is a polyethylene sheath layer or a low-smoke halogen-free sheath layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

本发明公开了一种线缆微束管,包括管体,其特征在于:所述管体由第一管段和第二管段组成,其中,所述第一管段和第二管段沿所述管体的圆周方向无缝对接的一体成型;第一管段的材料配方中,包括以下组份:30~50重量份聚酯型嵌段共聚物,1~18重量份大分子助剂,2~8重量份邻苯二甲酸二辛酯和1~5重量份对苯二酚;所述第二管段的材料配方中,包括以下组份:40~65重量份聚对苯二甲酸丁二醇酯,3~8重量份邻苯二甲酸丁苄酯和1~5重量份对苯二胺或者对苯二酚。本发明的线缆微束管,克服目前线缆套管不能兼顾强度和柔性的矛盾问题,能够实现快速开剥、快速接续目的的同时,同样具有一定的强度,适合在线缆的强度要求高的环境中使用。

Description

线缆微束管及微束管线缆 技术领域
本发明属于线缆技术领域,具体涉及一种线缆微束管,还涉及一种使用该微束管的线缆。
背景技术
随着光缆发展趋势的变化,光缆发展渐渐趋近于小型化、简易化,接入架空光缆已经成为重要的一支。传统的架空光缆选择层绞式结构,套管使用PBT材料,适用于干线、电力杆塔等领域,具有大芯数、大跨距、大张力等优势,产品性能稳定。但是无法应用于乡镇、农村等偏远地区,地形较复杂,远跨距存在安全隐患,需要建设距离较短的杆塔。户户通之间需要小张力、短跨距、能够架空敷设的小型光缆。目前的小型化架空光缆使用PBT套管,PBT套管强度大,硬度大,与此同时,开剥难度大,无法实现快速开剥,且弯曲性能较差,弯曲半径大,在接头盒处盘圈较难。为解决技术问题,业界尝试采用TPEE或TPU等热塑性弹性体材料制成的微束管,TPEE或TPU微束管的柔性大、易开剥,能够实现快速开剥、快速接续的目的。但,TPEE或TPU微束管的强度小,不利于特殊环境下光缆的使用寿命。另一方面,目前,TPEE微束管在挤塑过程中,容易产生流延的现象,容易造成微束管鼓包、外表粗糙甚至破裂等情况,究其原因,主要是由于熔体速差,助剂在模口析出、累积,严重时造成管壁破裂。
发明内容
本发明要解决的技术问题是提供一种线缆微束管,克服目前线缆套管不能兼顾强度和柔性的矛盾问题,能够实现快速开剥、快速接续目的的同时,同样 具有一定的强度,适合在线缆的强度要求高的环境中使用。
为了解决上述技术问题,本发明提供了一种线缆微束管,包括管体,所述管体由第一管段和第二管段组成,其中,所述第一管段和第二管段沿所述管体的圆周方向无缝对接的一体成型;
所述第一管段的材料配方中,包括以下组份:30~50重量份聚酯型嵌段共聚物,1~18重量份大分子助剂,2~8重量份邻苯二甲酸二辛酯和1~5重量份对苯二酚;所述大分子助剂包括乙烯-醋酸乙烯共聚物、乙烯-丙烯酸甲酯共聚物、环氧化合物中两种的混合物;
所述第二管段的材料配方中,包括以下组份:40~65重量份聚对苯二甲酸丁二醇酯,3~8重量份邻苯二甲酸丁苄酯和1~5重量份对苯二胺或者对苯二酚。
本发明一个较佳实施例中,进一步包括所述大分子助剂为乙烯-醋酸乙烯共聚物、乙烯-丙烯酸甲酯共聚物的混合物,其中,乙烯-醋酸乙烯共聚物和乙烯-丙烯酸甲酯共聚物的摩尔比为1:2。
本发明一个较佳实施例中,进一步包括所述大分子助剂为乙烯-醋酸乙烯共聚物和环氧化合物的混合物,其中,乙烯-醋酸乙烯共聚物和环氧化合物的摩尔比为1:2。
本发明一个较佳实施例中,进一步包括所述大分子助剂为乙烯-丙烯酸甲酯共聚物和环氧化合物的混合物,其中,乙烯-丙烯酸甲酯共聚物、环氧化合物的摩尔比为1:1。
本发明一个较佳实施例中,进一步包括由聚酯多元醇和多聚异氰酸酯通过缩聚反应聚合成所述聚酯型嵌段共聚物的硬段区;由己二醇或异戊二醇和多聚异氰酸酯聚合成所述聚酯型嵌段共聚物的软段区。
本发明一个较佳实施例中,进一步包括成型所述微束管的步骤如下:
步骤一,取第一管段的配料:取30~50重量份聚酯型嵌段共聚物、1~18重 量份大分子助剂、2~8重量份邻苯二甲酸二辛酯和1~5重量份对苯二酚;取第二管段的配料:40~65重量份聚对苯二甲酸丁二醇酯,3~8重量份邻苯二甲酸丁苄酯和1~5重量份对苯二胺或者对苯二酚;
步骤二,挤出成型:第一管段的配料投入第一挤出机中,第二管段的配料投入第二挤出机中,所述第一挤出机和第二挤出机的出料均通过进入拉管式模具中,所述拉管式模具的拉伸比为7~9,第一挤出机和第二挤出机的出料在拉管式模具的模口形成锥形流体,通过拉伸、冷却输出中空结构的管体,其中第一管段和第二管段沿所述管体的圆周方向无缝对接。
本发明一个较佳实施例中,进一步包括成型所述微束管的过程还包括,所述管体成型后向管体内壁涂覆粘度为4000~6000mPa.s的油膏。
为了解决上述技术问题,本发明还提供了一种微束管线缆,包括缆芯,所述缆芯包括光纤单元和以上结构的微束管,所述光纤单元被紧套在所述微束管内。
本发明一个较佳实施例中,进一步包括所述光纤单元具有多根光纤,所述微束管内各光纤之间填充有纤膏。
本发明一个较佳实施例中,进一步包括其还包括阻水层和护套层,所述阻水层包覆在缆芯外侧,所述护套层包覆在阻水层外侧;所述阻水层为干式阻水层,所述干式阻水层的材料为纱线或无纺布;所述护套层为聚乙烯护套层或低烟无卤护套层。
本发明的有益效果:本发明的线缆微束管,克服目前线缆套管不能兼顾强度和柔性的矛盾问题,能够实现快速开剥、快速接续目的的同时,同样具有一定的强度,适合在线缆的强度要求高的环境中使用。
本发明的线缆微束管具有以下技术优势:
其一、微束管具有一体成型的第一管段和第二管段,第一管段和第二管段沿管体圆周方向无缝对接,特定配料的第一管段成型后具有很好的柔性,易于 开剥,尤其是聚酯型嵌段共聚物具有弹性好、柔软的先天优势,制备的第一管段弯曲直径最小可达15mm,从第一管段位置能够快速开剥微束管,实现快速接续的目的;特定配料的第二管段成型后具有很好的强度和耐磨性,尤其是聚对苯二甲酸丁二醇酯具有强度大的先天优势,在微束管被开剥的情况下不会破坏微束管整体的强度,以此来克服目前线缆套管不能兼顾强度和柔性的矛盾问题。
其二、第一管段配料中加入特定配比的大分子助剂,能够有效增加聚酯型嵌段共聚物的柔韧性和加工性,减小表面张力和加工热量,提高基质(聚酯型嵌段共聚物)和助剂的相容性,避免助剂在模口处产生析出、堆积,解决微束管因为助剂在模口析出、堆积造成的管壁不良问题。
附图说明
图1是本发明优选实施例中线缆微束管的剖面图;
图2是本发明优选实施例中微束管线缆的剖面图。
图中标号说明:2-微束管,21-第一管段,22-第二管段;
6-光纤,8-阻水层,10-护套层。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1所示,本实施例公开了一种线缆微束管,包括管体,上述管体由第一管段21和第二管段22组成,其中,上述第一管段21和第二管段22沿上述管体的圆周方向无缝对接的一体成型。
成型上述微束管的步骤如下:
步骤一,分别取第一管段和第二管段的配料;
步骤二,挤出成型:第一管段的配料投入第一挤出机中,第二管段的配料投入第二挤出机中,上述第一挤出机和第二挤出机的出料均通过进入拉管式模具中,上述拉管式模具的拉伸比为7~9,第一挤出机和第二挤出机的出料在拉管式模具的模口形成锥形流体,通过拉伸、冷却输出中空结构的管体,其中第一管段和第二管段沿上述管体的圆周方向无缝对接。
步骤三,上述管体成型后向管体内壁涂覆粘度为4000~6000mPa.s的油膏。
实施例一~实施例三
实施例一~实施例三中,第一管段和第二管段的材料配方成份如下表1所示:
表1 第一管段和第二管段的材料配方
Figure PCTCN2019104907-appb-000001
其中,实施例一~实施例三中,乙烯-醋酸乙烯共聚物和乙烯-丙烯酸甲酯共聚物两者混合物占比重量份为1,且,乙烯-醋酸乙烯共聚物和乙烯-丙烯酸甲酯共聚物的摩尔比为1:2。
其中,实施例一~实施例三中,由聚酯多元醇和多聚异氰酸酯通过缩聚反应聚合成上述聚酯型嵌段共聚物的硬段区;由己二醇或异戊二醇和多聚异氰酸酯聚合成上述聚酯型嵌段共聚物的软段区。
实施例四~实施例六
实施例四~实施例六中,第一管段和第二管段的材料配方成份如下表2所示:
表2 第一管段和第二管段的材料配方
Figure PCTCN2019104907-appb-000002
其中,实施例四~实施例六中,乙烯-醋酸乙烯共聚物和环氧化合物两者混合物占比重量份为1,且,乙烯-醋酸乙烯共聚物和环氧化合物的摩尔比为1:2。
其中,实施例四~实施例六中,由聚酯多元醇和多聚异氰酸酯通过缩聚反应聚合成上述聚酯型嵌段共聚物的硬段区;由己二醇或异戊二醇和多聚异氰酸酯聚合成上述聚酯型嵌段共聚物的软段区。
实施例七~实施例九
实施例七~实施例九中,第一管段和第二管段的材料配方成份如下表3所示:
表3 第一管段和第二管段的材料配方
Figure PCTCN2019104907-appb-000003
其中,实施例七~实施例九中,乙烯-丙烯酸甲酯共聚物、环氧化合物两者混合物占比重量份为1,且,乙烯-丙烯酸甲酯共聚物、环氧化合物的摩尔比为1:1。
其中,实施例七~实施例九中,由聚酯多元醇和多聚异氰酸酯通过缩聚反应聚合成上述聚酯型嵌段共聚物的硬段区;由己二醇或异戊二醇和多聚异氰酸酯聚合成上述聚酯型嵌段共聚物的软段区。
实施例十
如图2所示,本实施例公开了一种微束管线缆,包括缆芯、包覆在缆芯外侧的阻水层8和包覆在阻水层8外侧的护套层10。上述缆芯包括光纤单元和以上实施例一~实施例九任一实施例中的微束管2,上述光纤单元被紧套在上述 微束管2内,上述光纤单元具有多根光纤6,上述微束管2内各光纤6之间填充有纤膏。上述阻水层8为干式阻水层,上述干式阻水层的材料为纱线或无纺布;上述护套层10为聚乙烯护套层或低烟无卤护套层。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种线缆微束管,包括管体,其特征在于:所述管体由第一管段和第二管段组成,其中,所述第一管段和第二管段沿所述管体的圆周方向无缝对接的一体成型;
    所述第一管段的材料配方中,包括以下组份:30~50重量份聚酯型嵌段共聚物,1~18重量份大分子助剂,2~8重量份邻苯二甲酸二辛酯和1~5重量份对苯二酚;所述大分子助剂包括乙烯-醋酸乙烯共聚物、乙烯-丙烯酸甲酯共聚物、环氧化合物中两种的混合物;
    所述第二管段的材料配方中,包括以下组份:40~65重量份聚对苯二甲酸丁二醇酯,3~8重量份邻苯二甲酸丁苄酯和1~5重量份对苯二胺或者对苯二酚。
  2. 如权利要求1所述的线缆微束管,其特征在于:所述大分子助剂为乙烯-醋酸乙烯共聚物、乙烯-丙烯酸甲酯共聚物的混合物,其中,乙烯-醋酸乙烯共聚物和乙烯-丙烯酸甲酯共聚物的摩尔比为1:2。
  3. 如权利要求1所述的线缆微束管,其特征在于:所述大分子助剂为乙烯-醋酸乙烯共聚物和环氧化合物的混合物,其中,乙烯-醋酸乙烯共聚物和环氧化合物的摩尔比为1:2。
  4. 如权利要求1所述的线缆微束管,其特征在于:所述大分子助剂为乙烯-丙烯酸甲酯共聚物和环氧化合物的混合物,其中,乙烯-丙烯酸甲酯共聚物、环氧化合物的摩尔比为1:1。
  5. 如权利要求2-4任一项所述的线缆微束管,其特征在于:由聚酯多元醇和多聚异氰酸酯通过缩聚反应聚合成所述聚酯型嵌段共聚物的硬段区;由己二醇或异戊二醇和多聚异氰酸酯聚合成所述聚酯型嵌段共聚物的软段区。
  6. 如权利要求1所述的线缆微束管,其特征在于:成型所述微束管的步骤 如下:
    步骤一,取第一管段的配料:取30~50重量份聚酯型嵌段共聚物、1~18重量份大分子助剂、2~8重量份邻苯二甲酸二辛酯和1~5重量份对苯二酚;取第二管段的配料:40~65重量份聚对苯二甲酸丁二醇酯,3~8重量份邻苯二甲酸丁苄酯和1~5重量份对苯二胺或者对苯二酚;
    步骤二,挤出成型:第一管段的配料投入第一挤出机中,第二管段的配料投入第二挤出机中,所述第一挤出机和第二挤出机的出料均通过进入拉管式模具中,所述拉管式模具的拉伸比为7~9,第一挤出机和第二挤出机的出料在拉管式模具的模口形成锥形流体,通过拉伸、冷却输出中空结构的管体,其中第一管段和第二管段沿所述管体的圆周方向无缝对接。
  7. 如权利要求6所述的线缆微束管,其特征在于:成型所述微束管的过程还包括,所述管体成型后向管体内壁涂覆粘度为4000~6000mPa.s的油膏。
  8. 一种微束管线缆,其特征在于:包括缆芯,所述缆芯包括光纤单元和如权利要求1-4、6-7任一项所述的微束管,所述光纤单元被紧套在所述微束管内。
  9. 如权利要求8所述的微束管线缆,其特征在于:所述光纤单元具有多根光纤,所述微束管内各光纤之间填充有纤膏。
  10. 如权利要求8所述的微束管线缆,其特征在于:其还包括阻水层和护套层,所述阻水层包覆在缆芯外侧,所述护套层包覆在阻水层外侧;所述阻水层为干式阻水层,所述干式阻水层的材料为纱线或无纺布;所述护套层为聚乙烯护套层或低烟无卤护套层。
PCT/CN2019/104907 2018-10-22 2019-09-09 线缆微束管及微束管线缆 WO2020082919A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19875628.0A EP3705525A4 (en) 2018-10-22 2019-09-09 MICROBASK TUBE FOR CABLES AND CABLE INCLUDING A MICROBACK TUBE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811231561.7A CN109385052A (zh) 2018-10-22 2018-10-22 线缆微束管及微束管线缆
CN201811231561.7 2018-10-22

Publications (1)

Publication Number Publication Date
WO2020082919A1 true WO2020082919A1 (zh) 2020-04-30

Family

ID=65427633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104907 WO2020082919A1 (zh) 2018-10-22 2019-09-09 线缆微束管及微束管线缆

Country Status (3)

Country Link
EP (1) EP3705525A4 (zh)
CN (1) CN109385052A (zh)
WO (1) WO2020082919A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109385052A (zh) * 2018-10-22 2019-02-26 江苏亨通光电股份有限公司 线缆微束管及微束管线缆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090096126A1 (en) * 2006-04-18 2009-04-16 Christophe Baverel Method and Device for Manufacturing an Assembly of Two Ringed Sheaths That Can Be Detached From One Another to Make a Single Ringed Sheath
CN203909357U (zh) * 2014-05-06 2014-10-29 江苏南方通信科技有限公司 新型全介质通信光缆
CN105044870A (zh) * 2015-09-17 2015-11-11 南京华信藤仓光通信有限公司 微束圆形缆及其制造方法
CN105278066A (zh) * 2015-11-17 2016-01-27 江苏亨通光电股份有限公司 用于极微型气吹光缆的双层共挤方法及极微型气吹光缆
JP2016040563A (ja) * 2014-08-12 2016-03-24 住友電装株式会社 光ファイバケーブル及びワイヤーハーネス
CN107329223A (zh) * 2017-09-04 2017-11-07 江苏亨通光电股份有限公司 全干式光缆及其系统
CN109385052A (zh) * 2018-10-22 2019-02-26 江苏亨通光电股份有限公司 线缆微束管及微束管线缆

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19745921A1 (de) * 1997-10-17 1999-04-22 Basf Ag Verwendung von hochmolekularen Polyesterformmassen
AU768890B2 (en) * 1999-12-20 2004-01-08 Prysmian Cavi E Sistemi Energia S.R.L. Electric cable resistant to water penetration
FR2809499B1 (fr) * 2000-05-29 2003-10-03 Cit Alcatel Peau de protection pour fibres optiques
JP2005314516A (ja) * 2004-04-28 2005-11-10 Shin Etsu Polymer Co Ltd ノンハロゲン難燃性樹脂組成物
DE102005005216A1 (de) * 2005-02-03 2006-08-10 Neutrik Aktiengesellschaft Knickschutzeinrichtung
CN201853540U (zh) * 2010-08-24 2011-06-01 浙江万马电缆股份有限公司 多芯电缆平行挤出模具
CN207867083U (zh) * 2017-09-04 2018-09-14 江苏亨通光电股份有限公司 全干式光缆及其系统
CN108623895A (zh) * 2018-05-25 2018-10-09 安徽尼古拉电子科技有限公司 一种耐低温的线缆护套材料及其制备方法
CN108646369A (zh) * 2018-07-27 2018-10-12 江苏亨通光电股份有限公司 一种易开剥型层绞式高密光纤束气吹微缆
CN108681014B (zh) * 2018-08-01 2023-06-27 江苏亨通光电股份有限公司 一种抗侧压拉远光缆
CN208818882U (zh) * 2018-10-22 2019-05-03 江苏亨通光电股份有限公司 线缆套管及易于开剥的线缆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090096126A1 (en) * 2006-04-18 2009-04-16 Christophe Baverel Method and Device for Manufacturing an Assembly of Two Ringed Sheaths That Can Be Detached From One Another to Make a Single Ringed Sheath
CN203909357U (zh) * 2014-05-06 2014-10-29 江苏南方通信科技有限公司 新型全介质通信光缆
JP2016040563A (ja) * 2014-08-12 2016-03-24 住友電装株式会社 光ファイバケーブル及びワイヤーハーネス
CN105044870A (zh) * 2015-09-17 2015-11-11 南京华信藤仓光通信有限公司 微束圆形缆及其制造方法
CN105278066A (zh) * 2015-11-17 2016-01-27 江苏亨通光电股份有限公司 用于极微型气吹光缆的双层共挤方法及极微型气吹光缆
CN107329223A (zh) * 2017-09-04 2017-11-07 江苏亨通光电股份有限公司 全干式光缆及其系统
CN109385052A (zh) * 2018-10-22 2019-02-26 江苏亨通光电股份有限公司 线缆微束管及微束管线缆

Also Published As

Publication number Publication date
EP3705525A1 (en) 2020-09-09
EP3705525A4 (en) 2021-09-22
CN109385052A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2021036111A1 (zh) 全干式微束光缆
WO2023159992A1 (zh) 一种透明光缆
WO2021036110A1 (zh) 易剥离干式光纤微管和全干式微束光缆
WO2020082919A1 (zh) 线缆微束管及微束管线缆
CN107642648B (zh) 一种高性能的超深水非粘接管道接头
CN208818882U (zh) 线缆套管及易于开剥的线缆
CN104795781A (zh) 低摩擦改性聚丙烯/玻璃钢复合电力管及其制备方法
CN209545110U (zh) 一种pvc复合电缆保护管
WO2021036112A1 (zh) 易剥离柔性光纤微管
KR100288444B1 (ko) 비금속자기지지형광케이블
CN104020539B (zh) 一种自承式8字型光缆
CN102621647B (zh) 一种异型线缆
CN207517454U (zh) 一种高强度绝缘硅橡胶纤维套管
CN105040590B (zh) 2000MPa耐久型公铁两用斜拉桥平行钢丝斜拉索
KR20190037592A (ko) 가공송전선을 포함하는 가공송전시스템 및 이의 시공방법
CN207743648U (zh) 一种高韧性mpvct电缆管
CN218577148U (zh) 一种玻璃纤维增强塑料电缆保护管
CN219832322U (zh) 一种耐磨的玻璃纤维套管
CN205001673U (zh) Pp骨架增强pe螺旋波纹管
CN219435629U (zh) 一种无卤非阻燃超薄热缩管
CN211266437U (zh) 一种碳纤维复合芯导线直线接续金具
CN216813229U (zh) 超柔轻型钢丝缠绕液压软管
CN203965682U (zh) 内置光缆微型管道
CN114864193B (zh) 特种电缆的制备方法
CN109373088A (zh) 一种柔性抗沉降自调节钢塑转换

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019875628

Country of ref document: EP

Effective date: 20200604

NENP Non-entry into the national phase

Ref country code: DE