WO2020082753A1 - 红外镜头、相机模组及电子装置 - Google Patents

红外镜头、相机模组及电子装置 Download PDF

Info

Publication number
WO2020082753A1
WO2020082753A1 PCT/CN2019/090825 CN2019090825W WO2020082753A1 WO 2020082753 A1 WO2020082753 A1 WO 2020082753A1 CN 2019090825 W CN2019090825 W CN 2019090825W WO 2020082753 A1 WO2020082753 A1 WO 2020082753A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
infrared
infrared lens
focal length
camera module
Prior art date
Application number
PCT/CN2019/090825
Other languages
English (en)
French (fr)
Inventor
周祥禾
李宗政
陈冠宏
肖德塘
林君翰
詹明山
Original Assignee
南昌欧菲生物识别技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811238399.1A external-priority patent/CN111090167A/zh
Priority claimed from CN201821729390.6U external-priority patent/CN208907941U/zh
Application filed by 南昌欧菲生物识别技术有限公司 filed Critical 南昌欧菲生物识别技术有限公司
Publication of WO2020082753A1 publication Critical patent/WO2020082753A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation

Definitions

  • This application relates to optical imaging technology, in particular to an infrared lens, camera module and electronic device.
  • infrared lenses generally set infrared filters to filter out the effect of visible light on imaging, and only obtain infrared light for imaging.
  • the brightness of infrared light sources is generally weak, resulting in poor imaging quality.
  • the embodiments of the present application provide an infrared lens, a camera module, and an electronic device.
  • the infrared lens includes a first lens, a second lens, a third lens, and a fourth lens in order from the object side to the image side.
  • Each of the fourth lenses has a positive refractive power, and the infrared lens satisfies the following conditional formula: abbe (vd) ⁇ 35; wherein, abbe (vd) is the largest Abbe number from the first lens to the fourth lens .
  • the infrared lens of the embodiment of the present application has a reasonable lens configuration and satisfies the conditional abbe (vd) ⁇ 35, which not only has a larger aperture, can expand the amount of incoming light, and can also reduce the sensitivity of the infrared lens, thereby making the infrared lens Good image quality.
  • the infrared lens further satisfies the following conditional expression: 0.3 ⁇ TTL / f ⁇ 1.7; wherein, TTL is the distance from the object side of the first lens to the imaging plane on the optical axis, and f is the The focal length of the infrared lens.
  • the infrared lens When the infrared lens satisfies the conditional expression 0.3 ⁇ TTL / f ⁇ 1.7, the infrared lens has a shorter TTL, thereby shortening the length of the infrared lens.
  • the infrared lens satisfies the following conditional formula: 0 ⁇ f3 / f ⁇ 3; where f3 is the focal length of the third lens, and f is the focal length of the infrared lens.
  • the third lens can provide the infrared lens with a suitable positive refractive power, which is beneficial to improve aberrations and enhance the imaging effect.
  • the infrared lens satisfies the following conditional formula: f4 / f> 0; where f4 is the focal length of the fourth lens, and f is the focal length of the infrared lens.
  • the fourth lens can provide a suitable positive refractive power for the infrared lens, which is beneficial to improve aberrations and enhance the imaging effect.
  • the infrared lens satisfies the following conditional formula: 1.1 ⁇ FNO ⁇ 1.5; where FNO is the aperture number of the infrared lens.
  • the infrared lens When the infrared lens satisfies the conditional expression 1.1 ⁇ FNO ⁇ 1.5, it has a larger aperture.
  • the larger aperture is helpful to increase the amount of incoming light, thereby improving the imaging effect of the infrared lens.
  • the wide-angle lens further includes a diaphragm
  • the infrared lens further includes a diaphragm disposed between the first lens and the subject; or the diaphragm is disposed at Any one of the first lens to the fourth lens; or the diaphragm is disposed between any two adjacent lenses of the first lens to the fourth lens.
  • the wide-angle lens can better control the amount of incoming light and improve the imaging effect through a reasonable aperture position setting.
  • the first lens, the second lens, the third lens, and the fourth lens are all aspherical lenses, and are made of plastic materials.
  • the wide-angle lens can achieve ultra-thin through reasonable lens profile and lens material configuration.
  • the wide-angle lens further includes an infrared filter, and the infrared filter is disposed between the third lens and the imaging surface.
  • the infrared filter can filter out the influence of the visible light in the ambient light on the imaging, thereby improving the imaging quality.
  • the camera module of the embodiment of the present application includes the infrared lens and the photosensitive element of any of the above embodiments.
  • the infrared lens includes a first lens, a second lens, a third lens, and a fourth lens in order from the object side to the image side, the first lens, the second lens, the third lens, and the fourth lens
  • the lenses all have positive refractive power, and the infrared lens satisfies the following conditional formula: abbe (vd) ⁇ 35; where abbe (vd) is the largest Abbe number of the first lens to the fourth lens.
  • the photosensitive element is provided on the image side of the infrared lens.
  • the camera module of the embodiment of the present application has a reasonable lens configuration and satisfies the conditional abbe (vd) ⁇ 35, which not only has a large aperture, can expand the amount of light entering, but also reduces the sensitivity of the infrared lens, thereby making the infrared lens Better imaging quality.
  • the electronic device includes a housing and the camera module described in the above embodiment.
  • the camera module is installed on the housing.
  • the camera module includes an infrared lens and a photosensitive element;
  • the infrared lens includes a first lens, a second lens, a third lens, and a fourth lens in order from the object side to the image side, the first lens, the second lens
  • the lens, the third lens, and the fourth lens all have positive refractive power, and the infrared lens satisfies the following conditional formula: abbe (vd) ⁇ 35; wherein, abbe (vd) is the first lens to the The largest Abbe number in the fourth lens; the photosensitive element is provided on the image side of the infrared lens.
  • the electronic device has a reasonable lens configuration and satisfies the conditional abbe (vd) ⁇ 35, which not only has a large aperture, can expand the amount of incoming light, but also reduces the sensitivity of the infrared lens, thereby making the infrared lens Good image quality.
  • the casing can protect the camera module.
  • FIG. 1 is a schematic structural diagram of an infrared lens according to a first embodiment of the present application
  • 2 to 4 are a longitudinal aberration diagram (mm), field curvature diagram (mm) and distortion diagram (%) of the infrared lens in the first embodiment;
  • FIG. 5 is a schematic structural diagram of an infrared lens according to a second embodiment of the present application.
  • 6 to 8 are a longitudinal aberration diagram (mm), field curvature diagram (mm) and distortion diagram (%) of the infrared lens in the second embodiment;
  • FIG. 9 is a schematic structural diagram of a camera module according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • connection should be understood in a broad sense, for example, it can be fixed or detachable Connected, or integrally connected; it can be mechanical, electrical, or can communicate with each other; it can be directly connected, or it can be indirectly connected through an intermediary, it can be the connection between two elements or the interaction of two elements relationship.
  • the infrared lens 10 of the embodiment of the present application includes a first lens L1 with positive refractive power, a second lens L2 with positive refractive power, and a positive refractive power in order from the object side to the image side
  • the third lens L3 and the fourth lens L4 with positive refractive power includes a first lens L1 with positive refractive power, a second lens L2 with positive refractive power, and a positive refractive power in order from the object side to the image side.
  • the first lens L1 has an object side surface S1 and an image side surface S2.
  • the second lens L2 has an object side surface S3 and an image side surface S4.
  • the third lens L3 has an object side surface S5 and an image side surface S6.
  • the fourth lens L4 has an object side surface S7 and an image side surface S8.
  • the infrared lens 10 satisfies the following conditional formula: abbe (vd) ⁇ 35; where abbe (vd) is the largest Abbe number of the first lens L1 to the fourth lens L4.
  • abbe (vd) is the largest Abbe number of the first lens L1 to the fourth lens L4.
  • the Abbe number of the first lens L1 is 20.0
  • the Abbe number of the second lens L2 is 20.0
  • the Abbe number of the third lens L3 20.0
  • the Abbe number of the fourth lens L1 20.0
  • abbe (vd) 20.0
  • abbe (vd) 20.0
  • abbe (vd) 20.0
  • abbe (vd) can be any value less than 35, for example, the value can be 18, 20, 25, 28, 34, and so on.
  • the infrared lens 10 of the embodiment of the present application has a reasonable lens configuration and satisfies the conditional abbe (vd) ⁇ 35, which not only has a larger aperture, can expand the amount of incoming light, but also reduces the sensitivity of the infrared lens 10, thereby making the infrared lens 10 has better imaging quality.
  • the infrared lens 10 further satisfies the following conditional expression: 0.3 ⁇ TTL / f ⁇ 1.7; where, TTL is the distance from the object side S1 of the first lens L1 to the imaging plane S11 on the optical axis, and f is the infrared lens A focal length of 10. That is to say, TTL / f can be any value between the interval [0.3, 1.7], for example, the value is 0.3, 0.985, 1.245, 1.488, 1.578, 1.689, 1.7 and so on.
  • the infrared lens 10 When the infrared lens 10 satisfies the conditional expression 0.3 ⁇ TTL / f ⁇ 1.7, the infrared lens 10 has a shorter TTL, thereby shortening the length of the infrared lens 10.
  • the infrared lens 10 satisfies the following conditional formula: 0 ⁇ f3 / f ⁇ 3; where f3 is the focal length of the third lens L3 and f is the focal length of the infrared lens 10. That is to say, f3 / f can be any value in the interval (0, 3), for example, the value is 0.955, 1.345, 1.637, 2.206, 3, and so on.
  • the third lens L3 can provide the infrared lens 10 with a suitable positive refractive power, which is beneficial to improve aberrations and enhance the imaging effect.
  • the infrared lens 10 satisfies the following conditional formula: f4 / f> 0; where f4 is the focal length of the fourth lens L4 and f is the focal length of the infrared lens 10. That is to say, f4 / f can be any value greater than 0, for example, the value is 2.564, 6.349, 25.666, 38.586, 69.989 and so on.
  • the fourth lens L4 can provide the infrared lens 10 with a suitable positive refractive power, which is beneficial to improve aberrations and enhance the imaging effect.
  • the infrared lens 10 further includes a filter L5.
  • the filter L5 is provided between the fourth lens L4 and the imaging surface S11.
  • the filter L5 is an infrared filter L5, and the infrared filter L5 is used to filter out visible light so that only infrared light enters the photosensitive element 20 (shown in FIG. 9).
  • the infrared lens 10 is used for imaging, the light emitted or reflected by the subject enters the infrared lens 10 from the object side direction and passes through the first lens L1, the second lens L2, the third lens L3, the fourth lens L4 and The infrared filter L5 finally converges on the imaging surface S11.
  • the infrared filter L5 is disposed between the fourth lens L4 and the imaging surface S11, and can filter out the influence of visible light on imaging, thereby improving the imaging quality of infrared light.
  • the infrared lens 10 further includes a stop STO.
  • the diaphragm STO may be an aperture diaphragm or a field diaphragm.
  • the embodiment of the present application will be described by taking an example in which the diaphragm STO is an aperture diaphragm.
  • the diaphragm STO may be provided between the subject and the first lens L1, or on the surface of any one lens, or between any two lenses, or between the fourth lens L4 and the infrared filter Between L5.
  • the stop STO is provided on the object side S1 of the first lens L1; in the second embodiment, the stop STO is provided on the image side S2 of the first lens L1.
  • the infrared lens 10 can better control the amount of light entering through reasonable setting of the position of the diaphragm STO, thereby improving the imaging effect.
  • the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are plastic lenses or glass lenses.
  • the cost of the plastic lens is lower, which is beneficial to reduce the cost of the entire infrared lens 10; and the glass lens is less likely to cause thermal expansion and contraction due to changes in the ambient temperature, making the imaging quality of the infrared lens 10 relatively stable.
  • At least one surface of the first lens L1 to the fourth lens L4 in the infrared lens 10 is aspherical.
  • the infrared lens 10 can effectively reduce the total length of the infrared lens 10 by adjusting the curvature radius and aspherical coefficient of each lens surface, and can effectively correct aberrations and improve imaging quality.
  • the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all aspheric mirrors, and are made of plastic materials to achieve the design of the ultra-thin infrared lens 10.
  • the object side and the image side of the first lens L1 to the fourth lens L4 are both aspherical, and the first lens L1 to the fourth lens L4 are made of plastic.
  • the shape of the aspheric surface is determined by the following formula: Where Z is the longitudinal distance from any point on the aspheric surface to the vertex of the surface, r is the distance from any point on the aspheric surface to the optical axis, c is the vertex curvature (reciprocal of the radius of curvature), k is the conic constant, A, B, C, D, E , F, G are aspheric coefficients.
  • the infrared lens 10 includes an aperture STO, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and an infrared filter L5 in this order.
  • the stop STO is provided on the object side S1 of the first lens L1.
  • the first lens L1 has positive refractive power and is made of plastic.
  • the object side S1 is convex, and the image side S2 is concave, and both are aspherical.
  • the second lens L2 has a positive refractive power and is made of plastic.
  • the object side S3 is convex, the image side S4 is concave at the optical axis, and convex at the circumference, and both are aspherical.
  • the third lens L3 has positive refractive power and is made of plastic.
  • the object side S5 is concave at the optical axis and convex at the circumference.
  • the image side S6 is convex at the optical axis and concave at the circumference. Aspherical.
  • the fourth lens L4 has a positive refractive power and is made of plastic.
  • the object side S7 is convex at the optical axis and concave at the circumference.
  • the image side S8 is concave at the optical axis and convex at the circumference. Aspherical.
  • the infrared filter L5 is made of glass, which is disposed between the fourth lens L4 and the imaging surface S11 and does not affect the focal length of the infrared lens 10.
  • the photosensitive element 20 (shown in FIG. 9) is 1/6 inch (inch), and the diagonal distance of the effective image sensing area is 3 mm.
  • the infrared lens 10 also meets the conditions of the following table:
  • the infrared lens 10 includes a first lens L1, a diaphragm STO, a second lens L2, a third lens L3, a fourth lens L4, and an infrared filter L5 in this order.
  • the stop STO is provided on the image side S2 of the first lens L1.
  • the first lens L1 has positive refractive power and is made of plastic.
  • the object side S1 is convex, and the image side S2 is concave, and both are aspherical.
  • the second lens L2 has a positive refractive power and is made of plastic.
  • the object side S3 is convex, the image side S4 is concave at the optical axis, and convex at the circumference, and both are aspherical.
  • the third lens L3 has positive refractive power and is made of plastic.
  • the object side S5 is concave at the optical axis and convex at the circumference.
  • the image side S6 is convex at the optical axis and concave at the circumference. Aspherical.
  • the fourth lens L4 has a positive refractive power and is made of plastic.
  • the object side S7 is convex at the optical axis and concave at the circumference.
  • the image side S8 is concave at the optical axis and convex at the circumference. Aspherical.
  • the infrared filter L5 is made of glass, which is disposed between the fourth lens L4 and the imaging surface S11 and does not affect the focal length of the infrared lens 10.
  • the photosensitive element 20 (shown in FIG. 9) is 1/6 inch (inch), and the diagonal distance of the effective image sensing area is 3 mm.
  • the infrared lens 10 meets the conditions of the following table:
  • the camera module 100 of the embodiment of the present application includes the infrared lens 10 and the photosensitive element 20 of any of the above embodiments.
  • the photosensitive element 20 is provided on the image side of the infrared lens 10.
  • the photosensitive element 20 may use a complementary metal oxide semiconductor (CMOS) complementary photosensitive element or a charge-coupled device (CCD) charge-coupled device (CCD) photosensitive element.
  • CMOS complementary metal oxide semiconductor
  • CCD charge-coupled device
  • CCD charge-coupled device
  • the camera module 100 of the embodiment of the present application has a reasonable lens configuration and satisfies the conditional abbe (vd) ⁇ 35, which not only has a larger aperture, can expand the amount of light entering, and can also reduce the sensitivity of the infrared lens 10, thereby making The lens 10 has better imaging quality.
  • the electronic device 1000 of the embodiment of the present application includes a housing 200 and the camera module 100 of the above embodiment.
  • the camera module 100 is mounted on the housing 200.
  • the electronic device 1000 includes but is not limited to a smart phone, an access control system, a surveillance camera, a mobile phone, a personal digital assistant (Personal Digital Assistant (PDA), a game console, a personal computer (PC), a camera, Information terminal equipment such as smart watches and tablet computers, or household electrical appliances with camera functions, etc.
  • a smart phone an access control system
  • a surveillance camera a mobile phone
  • PDA Personal Digital Assistant
  • PC personal computer
  • Camera Information terminal equipment such as smart watches and tablet computers, or household electrical appliances with camera functions, etc.
  • the electronic device 1000 has a reasonable lens configuration and satisfies the conditional abbe (vd) ⁇ 35, which not only has a larger aperture, can expand the amount of incoming light, and can also reduce the sensitivity of the infrared lens 10, thereby making the infrared lens 10 has better imaging quality.
  • installing the camera module 100 on the housing 200 can protect the camera module 100.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may include at least one feature either explicitly or implicitly.
  • the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise specifically limited.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种红外镜头(10)、相机模组(100)及电子装置(1000)。红外镜头(10)包括均具有正屈折力的第一透镜(L1)、第二透镜(L2)、第三透镜(L3)和第四透镜(L4)。红外镜头(10)满足以下条件式:abbe(vd)<35;其中,abbe(vd)为第一透镜(L1)至第四透镜(L4)中最大的阿贝数。

Description

红外镜头、相机模组及电子装置
优先权信息
本申请请求2018年10月23日向中国国家知识产权局提交的专利申请号为201811238399.1的专利申请、及专利申请号为201821729390.6的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及光学成像技术,特别涉及一种红外镜头、相机模组及电子装置。
背景技术
现有的红外镜头一般通过设置红外滤光片滤除可见光对成像的影响,仅通过获取红外光以成像,然而,由于红外光源的亮度一般较为微弱,导致成像质量较差。
发明内容
有鉴于此,本申请实施方式提供一种红外镜头、相机模组及电子装置。
本申请实施方式的红外镜头从物侧至像侧依次包括第一透镜、第二透镜、第三透镜和第四透镜,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜均具有正屈折力,所述红外镜头满足以下条件式:abbe(vd)<35;其中,abbe(vd)为所述第一透镜至所述第四透镜中最大的阿贝数。
本申请实施方式的红外镜头通过合理的透镜配置且满足条件式abbe(vd)<35,不仅具有较大的光圈,可扩大进光量,还可降低红外镜头的敏感度,从而使得红外镜头具有较好的成像质量。
在某些实施方式中,所述红外镜头还满足以下条件式:0.3≤TTL/f≤1.7;其中,TTL为所述第一透镜的物侧面到成像面于光轴的距离,f为所述红外镜头的焦距。
红外镜头满足条件式0.3≤TTL/f≤1.7时,红外镜头具有较短的TTL,从而缩短了红外镜头的长度。
在某些实施方式之中,所述红外镜头满足以下条件式:0<f3/f≤3;其中,f3为所述第三透镜的焦距,f为所述红外镜头的焦距。
红外镜头满足条件式0<f3/f≤3时,第三透镜可以为红外镜头提供合适的正屈折力,有利于改善像差,提升成像效果。
在某些实施方式之中,所述红外镜头满足以下条件式:f4/f>0;其中,f4为所述第 四透镜的焦距,f为所述红外镜头的焦距。
红外镜头满足条件式f4/f>0时,第四透镜可以为红外镜头提供合适的正屈折力,有利于改善像差,提升成像效果。
在某些实施方式之中,所述红外镜头满足以下条件式:1.1<FNO<1.5;其中,FNO为所述红外镜头的光圈数。
红外镜头满足条件式1.1<FNO<1.5时,具有较大的光圈,较大的光圈有利于增加进光量,从而提升红外镜头的成像效果。
在某些实施方式中,所述广角镜头还包括光阑,所述红外镜头还包括光阑,所述光阑设置在所述第一透镜和被摄物体之间;或所述光阑设置在所述第一透镜至所述第四透镜中任意一个上;或所述光阑设置在所述第一透镜至所述第四透镜中任意两个相邻的透镜之间。
广角镜头通过合理的光阑位置设置,可以更好地控制进光量,提升成像效果。
在某些实施方式中,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜均为非球面镜,且采用塑料材质。
广角镜头通过合理的透镜面型及透镜材质配置,可实现超薄化。
在某些实施方式中,所述广角镜头还包括红外滤光片,所述红外滤光片设置在所述第三透镜与成像面之间。
红外滤光片可滤除环境光中的可见光对成像的影响,从而提升成像质量。
本申请实施方式的相机模组包括上述任一实施方式的红外镜头和感光元件。所述红外镜头从物侧至像侧依次包括第一透镜、第二透镜、第三透镜和第四透镜,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜均具有正屈折力,所述红外镜头满足以下条件式:abbe(vd)<35;其中,abbe(vd)为所述第一透镜至所述第四透镜中最大的阿贝数。所述感光元件设置在所述红外镜头的像侧。
本申请实施方式的相机模组通过合理的透镜配置且满足条件式abbe(vd)<35,不仅具有较大的光圈,可扩大进光量,还可降低红外镜头的敏感度,从而使得红外镜头具有较好的成像质量。
本申请实施方式的电子装置包括壳体和上述实施方式所述的相机模组。所述相机模组安装在所述壳体上。所述相机模组包括红外镜头和感光元件;所述红外镜头从物侧至像侧依次包括第一透镜、第二透镜、第三透镜和第四透镜,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜均具有正屈折力,所述红外镜头满足以下条件式:abbe(vd)<35;其中,abbe(vd)为所述第一透镜至所述第四透镜中最大的阿贝数;所述感光元件设置在所述红外镜头的像侧。
本申请实施方式的电子装置通过合理的透镜配置且满足条件式abbe(vd)<35,不仅具有较大的光圈,可扩大进光量,还可降低红外镜头的敏感度,从而使得红外镜头具有较好的成像质量。且壳体可对相机模组起到保护作用。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请第一实施例的红外镜头的结构示意图;
图2至图4分别是第一实施例中红外镜头的纵向像差图(mm)、场曲图(mm)和畸变图(%);
图5是本申请第二实施例的红外镜头的结构示意图;
图6至图8分别是第二实施例中红外镜头的纵向像差图(mm)、场曲图(mm)和畸变图(%);
图9是本申请实施方式的相机模组的结构示意图;和
图10是本申请实施方式的电子装置的结构示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请一并参阅图1和图5,本申请实施方式的红外镜头10从物侧至像侧依次包括具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有正屈折力的第三透镜L3和具有正屈折力的第四透镜L4。
第一透镜L1具有物侧面S1及像侧面S2。第二透镜L2具有物侧面S3及像侧面S4。第三透镜L3具有物侧面S5及像侧面S6。第四透镜L4具有物侧面S7及像侧面S8。
红外镜头10满足以下条件式:abbe(vd)<35;其中,abbe(vd)为第一透镜L1至第四透镜L4中最大的阿贝数。例如,在第一实施例中,第一透镜L1的阿贝数为20.0,第二透镜L2的阿贝数为20.0,第三透镜L3的阿贝数为20.0,第四透镜L1的阿贝数为20.0,故abbe(vd)=20.0;在第二实施例中,第一透镜L1的阿贝数为20.0,第二透镜L2的阿贝数为20.0,第三透镜L3的阿贝数为20.0,第四透镜L1的阿贝数为20.0,故abbe(vd)=20.0。也就是说,abbe(vd)可以为小于35的任意数值,例如,该值可以为18、20、25、28、34等等。
本申请实施方式的红外镜头10通过合理的透镜配置且满足条件式abbe(vd)<35,不仅具有较大的光圈,可扩大进光量,还可降低红外镜头10的敏感度,从而使得红外镜头10具有较好的成像质量。
在某些实施方式中,红外镜头10还满足以下条件式:0.3≤TTL/f≤1.7;其中,TTL为第一透镜L1的物侧面S1到成像面S11于光轴的距离,f为红外镜头10的焦距。也即是说,TTL/f可以为区间[0.3,1.7]之间的任意数值,例如,该值为0.3、0.985、1.245、1.488、1.578、1.689、1.7等等。
红外镜头10满足条件式0.3≤TTL/f≤1.7时,红外镜头10具有较短的TTL,从而缩短了红外镜头10的长度。
在某些实施方式中,红外镜头10满足以下条件式:0<f3/f≤3;其中,f3为第三透镜L3的焦距,f为红外镜头10的焦距。也即是说,f3/f可以为区间(0,3]内的任意数值,例如,该值为0.955、1.345、1.637、2.206、3等等。
红外镜头10满足条件式0<f3/f≤3时,第三透镜L3可以为红外镜头10提供合适的正屈折力,有利于改善像差,提升成像效果。
在某些实施方式中,红外镜头10满足以下条件式:f4/f>0;其中,f4为第四透镜L4的焦距,f为红外镜头10的焦距。也即是说,f4/f可以为大于0的任意数值,例如,该值为2.564、6.349、25.666、38.586、69.989等等。
红外镜头10满足条件式f4/f>0时,第四透镜L4可以为红外镜头10提供合适的正屈折力,有利于改善像差,提升成像效果。
在某些实施方式中,红外镜头10还包括滤光片L5。滤光片L5设置在第四透镜L4和成像面S11之间。在本申请的实施方式中,滤光片L5为红外滤光片L5,红外滤光片L5用于滤除可见光以仅使得红外光进入感光元件20(图9示)。当红外镜头10用于成像时,被摄物体发出或者反射的光线从物侧方向进入红外镜头10,并依次穿过第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及红外滤光片L5,最终汇聚到成像面S11上。红外滤光片L5设置在第四透镜L4和成像面S11之间,可滤除可见光对成像的影响,从而提升对红外光的成像质量。
在某些实施方式中,红外镜头10还包括光阑STO。光阑STO可以是孔径光阑或视场光阑。本申请实施方式以光阑STO是孔径光阑为例进行说明。光阑STO可以设置在被摄物体至第一透镜L1之间,或设置在任意一枚透镜的表面上,或设置在任意两枚透镜之间,或设置在第四透镜L4与红外滤光片L5之间。例如,本申请第一实施例中,光阑STO设置在第一透镜L1的物侧面S1上;第二实施例中,光阑STO设置在第一透镜L1的像侧面S2上。红外镜头10通过合理的光阑STO位置设置,可以更好地控制进光量,从而提升成像效果。
在某些实施方式中,第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4为塑料透镜或玻璃透镜。塑料透镜的成本较低,有利于降低整个红外镜头10的成本;而玻璃透镜不易因环境温度改变引起热胀冷缩现象,使得红外镜头10的成像质量较为稳定。
在某些实施方式中,红外镜头10中第一透镜L1至第四透镜L4的至少一个表面为非球面。红外镜头10可以通过调节各透镜表面的曲率半径和非球面系数,有效减小红 外镜头10的总长度,并可以有效地校正像差,提高成像质量。
在某些实施方式中,第一透镜L1、第二透镜L2、第三透镜L3和第四透镜L4均为非球面镜,且采用塑料材质,以达到超薄型的红外镜头10的设计。例如,第一实施例和第二实施例中,第一透镜L1至第四透镜L4的物侧面和像侧面均为非球面,且第一透镜L1至第四透镜L4均采用塑料材质。
非球面的面型由以下公式决定:
Figure PCTCN2019090825-appb-000001
Figure PCTCN2019090825-appb-000002
其中,Z是非球面上任一点与表面顶点的纵向距离,r是非球面上任一点到光轴的距离,c是顶点曲率(曲率半径的倒数),k是圆锥常数,A、B、C、D、E、F、G是非球面系数。
第一实施例
请参阅图1至图4,从物侧至像侧,红外镜头10依次包括光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及红外滤光片L5。
光阑STO设置在第一透镜L1的物侧面S1上。
第一透镜L1具有正屈折力,且材质为塑料,其物侧面S1为凸面,像侧面S2为凹面,并均为非球面。第二透镜L2具有正屈折力,且材质为塑料,其物侧面S3为凸面,像侧面S4为于光轴处为凹面,于圆周处为凸面,并均为非球面。第三透镜L3具有正屈折力,且材质为塑料,其物侧面S5于光轴处为凹面,于圆周处为凸面,像侧面S6于光轴处为凸面,于圆周处为凹面,并均为非球面。第四透镜L4具有正屈折力,且材质为塑料,其物侧面S7于光轴处为凸面,于圆周处为凹面,像侧面S8于光轴处为凹面,于圆周处为凸面,并均为非球面。
红外滤光片L5为玻璃材质,其设置在第四透镜L4及成像面S11之间且不影响红外镜头10的焦距。
感光元件20(图9所示)为1/6英寸(吋),有效影像感测区的对角距离为3mm。红外镜头10的焦距为f=1.890mm,红外镜头10的光圈数为FNO=1.15,红外镜头10的视场角为FOV=76.8度。红外镜头10的光学总长(即第一透镜L1的物侧面S1至成像面S11于光轴的距离)TTL=2.813mm。红外镜头10满足以下条件:abbe(vd)=20.0;TTL/f=1.488mm;f3/f=2.206;f4/f=6.349。红外镜头10还满足下面表格的条件:
表1
Figure PCTCN2019090825-appb-000003
Figure PCTCN2019090825-appb-000004
表2
Figure PCTCN2019090825-appb-000005
第二实施例
请参阅图5至图8,从物侧至像侧,红外镜头10依次包括第一透镜L1、光阑STO、第二透镜L2、第三透镜L3、第四透镜L4及红外滤光片L5。
光阑STO设置在第一透镜L1的像侧面S2上。
第一透镜L1具有正屈折力,且材质为塑料,其物侧面S1为凸面,像侧面S2为凹面,并均为非球面。第二透镜L2具有正屈折力,且材质为塑料,其物侧面S3为凸面,像侧面S4为于光轴处为凹面,于圆周处为凸面,并均为非球面。第三透镜L3具有正屈折力,且材质为塑料,其物侧面S5于光轴处为凹面,于圆周处为凸面,像侧面S6于光轴处为凸面,于圆周处为凹面,并均为非球面。第四透镜L4具有正屈折力,且材质为塑料,其物侧面S7于光轴处为凸面,于圆周处为凹面,像侧面S8于光轴处为凹 面,于圆周处为凸面,并均为非球面。
红外滤光片L5为玻璃材质,其设置在第四透镜L4及成像面S11之间且不影响红外镜头10的焦距。
感光元件20(图9所示)为1/6英寸(吋),有效影像感测区的对角距离为3mm。
红外镜头10满足下面表格的条件:
表3
Figure PCTCN2019090825-appb-000006
表4
Figure PCTCN2019090825-appb-000007
根据表3和表4可得出以下数据:
f(mm) 1.875 abbe(vd) 20.0
FNO 1.3 TTL/f 1.578
FOV(度) 76.4 f3/f 1.637
TTL(mm) 2.959 f4/f 69.989
请参阅图9,本申请实施方式的相机模组100包括上述任一实施方式的红外镜头10和感光元件20。感光元件20设置在红外镜头10的像侧。
感光元件20可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)感光元件或者电荷耦合元件(CCD,Charge-coupled Device)感光元件。
本申请实施方式的相机模组100通过合理的透镜配置且满足条件式abbe(vd)<35,不仅具有较大的光圈,可扩大进光量,还可降低红外镜头10的敏感度,从而使得红外镜头10具有较好的成像质量。
请一并参阅图9和图10,本申请实施方式的电子装置1000包括壳体200和上述实施方式的相机模组100。相机模组100安装在壳体200上。
本申请实施方式的电子装置1000包括但不限于为智能电话、门禁系统、监控相机、移动电话、个人数字助理(Personal Digital Assistant,PDA)、游戏机、个人计算机(personal computer,PC)、相机、智能手表、平板电脑等信息终端设备或具有拍照功能的家电产品等。
本申请实施方式的电子装置1000通过合理的透镜配置且满足条件式abbe(vd)<35,不仅具有较大的光圈,可扩大进光量,还可降低红外镜头10的敏感度,从而使得红外镜头10具有较好的成像质量。另外,将相机模组100安装在壳体200上,可以对相机模组100起到保护作用。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可 以对上述实施方式进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (24)

  1. 一种红外镜头,其特征在于,所述红外镜头从物侧至像侧依次包括第一透镜、第二透镜、第三透镜和第四透镜,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜均具有正屈折力,所述红外镜头满足以下条件式:
    abbe(vd)<35;
    其中,abbe(vd)为所述第一透镜至所述第四透镜中最大的阿贝数。
  2. 根据权利要求1所述的红外镜头,其特征在于,所述红外镜头还满足以下条件式:
    0.3≤TTL/f≤1.7;
    其中,TTL为所述第一透镜的物侧面到成像面于光轴的距离,f为所述红外镜头的焦距。
  3. 根据权利要求1所述的红外镜头,其特征在于,所述红外镜头还满足以下条件式:
    0<f3/f≤3;
    其中,f3为所述第三透镜的焦距,f为所述红外镜头的焦距。
  4. 根据权利要求1所述的红外镜头,其特征在于,所述红外镜头还满足以下条件式:
    f4/f>0;
    其中,f4为所述第四透镜的焦距,f为所述红外镜头的焦距。
  5. 根据权利要求1所述的红外镜头,其特征在于,所述红外镜头还满足以下条件式:
    1.1<FNO<1.5;
    其中,FNO为所述红外镜头的光圈数。
  6. 根据权利要求1所述的红外镜头,其特征在于,所述红外镜头还包括光阑,所述光阑设置在所述第一透镜和被摄物体之间;或
    所述光阑设置在所述第一透镜至所述第四透镜中任意一个上;或
    所述光阑设置在所述第一透镜至所述第四透镜中任意两个相邻的透镜之间。
  7. 根据权利要求1所述的红外镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜均为非球面镜,且采用塑料材质。
  8. 根据权利要求1所述的红外镜头,其特征在于,所述红外镜头还包括红外滤光片,所述红外滤光片设置在所述第四透镜和成像面之间。
  9. 一种相机模组,其特征在于,所述相机模组包括:
    红外镜头,所述红外镜头从物侧至像侧依次包括第一透镜、第二透镜、第三透镜和第四透镜,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜均具有正屈折力,所述红外镜头满足以下条件式:abbe(vd)<35;其中,abbe(vd)为所述第一透镜至所述第四透镜中最大的阿贝数;及
    感光元件,所述感光元件设置在所述红外镜头的像侧。
  10. 根据权利要求9所述的相机模组,其特征在于,所述红外镜头还满足以下条件式:
    0.3≤TTL/f≤1.7;
    其中,TTL为所述第一透镜的物侧面到成像面于光轴的距离,f为所述红外镜头的焦距。
  11. 根据权利要求9所述的相机模组,其特征在于,所述红外镜头还满足以下条件式:
    0<f3/f≤3;
    其中,f3为所述第三透镜的焦距,f为所述红外镜头的焦距。
  12. 根据权利要求9所述的相机模组,其特征在于,所述红外镜头还满足以下条件式:
    f4/f>0;
    其中,f4为所述第四透镜的焦距,f为所述红外镜头的焦距。
  13. 根据权利要求9所述的相机模组,其特征在于,所述红外镜头还满足以下条件 式:
    1.1<FNO<1.5;
    其中,FNO为所述红外镜头的光圈数。
  14. 根据权利要求9所述的相机模组,其特征在于,所述红外镜头还包括光阑,所述光阑设置在所述第一透镜和被摄物体之间;或
    所述光阑设置在所述第一透镜至所述第四透镜中任意一个上;或
    所述光阑设置在所述第一透镜至所述第四透镜中任意两个相邻的透镜之间。
  15. 根据权利要求9所述的相机模组,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜均为非球面镜,且采用塑料材质。
  16. 根据权利要求9所述的相机模组,其特征在于,所述红外镜头还包括红外滤光片,所述红外滤光片设置在所述第四透镜和成像面之间。
  17. 一种电子装置,其特征在于,所述电子装置包括:
    壳体;和
    相机模组,所述相机模组安装在所述壳体上;所述相机模组包括红外镜头和感光元件;所述红外镜头从物侧至像侧依次包括第一透镜、第二透镜、第三透镜和第四透镜,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜均具有正屈折力,所述红外镜头满足以下条件式:abbe(vd)<35;其中,abbe(vd)为所述第一透镜至所述第四透镜中最大的阿贝数;所述感光元件设置在所述红外镜头的像侧。
  18. 根据权利要求17所述的电子装置,其特征在于,所述红外镜头还满足以下条件式:
    0.3≤TTL/f≤1.7;
    其中,TTL为所述第一透镜的物侧面到成像面于光轴的距离,f为所述红外镜头的焦距。
  19. 根据权利要求17所述的电子装置,其特征在于,所述红外镜头还满足以下条件式:
    0<f3/f≤3;
    其中,f3为所述第三透镜的焦距,f为所述红外镜头的焦距。
  20. 根据权利要求17所述的电子装置,其特征在于,所述红外镜头还满足以下条件式:
    f4/f>0;
    其中,f4为所述第四透镜的焦距,f为所述红外镜头的焦距。
  21. 根据权利要求17所述的电子装置,其特征在于,所述红外镜头还满足以下条件式:
    1.1<FNO<1.5;
    其中,FNO为所述红外镜头的光圈数。
  22. 根据权利要求17所述的电子装置,其特征在于,所述红外镜头还包括光阑,所述光阑设置在所述第一透镜和被摄物体之间;或
    所述光阑设置在所述第一透镜至所述第四透镜中任意一个上;或
    所述光阑设置在所述第一透镜至所述第四透镜中任意两个相邻的透镜之间。
  23. 根据权利要求17所述的电子装置,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜均为非球面镜,且采用塑料材质。
  24. 根据权利要求17所述的电子装置,其特征在于,所述红外镜头还包括红外滤光片,所述红外滤光片设置在所述第四透镜和成像面之间。
PCT/CN2019/090825 2018-10-23 2019-06-12 红外镜头、相机模组及电子装置 WO2020082753A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811238399.1A CN111090167A (zh) 2018-10-23 2018-10-23 红外镜头、相机模组及电子装置
CN201821729390.6 2018-10-23
CN201821729390.6U CN208907941U (zh) 2018-10-23 2018-10-23 红外镜头、相机模组及电子装置
CN201811238399.1 2018-10-23

Publications (1)

Publication Number Publication Date
WO2020082753A1 true WO2020082753A1 (zh) 2020-04-30

Family

ID=70330389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090825 WO2020082753A1 (zh) 2018-10-23 2019-06-12 红外镜头、相机模组及电子装置

Country Status (1)

Country Link
WO (1) WO2020082753A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772943A (zh) * 2015-12-29 2017-05-31 广州市全像光学科技有限公司 摄像光学镜头组
US20180024334A1 (en) * 2016-07-20 2018-01-25 Fujifilm Corporation Imaging lens and imaging apparatus
CN207557564U (zh) * 2017-12-05 2018-06-29 深圳奥比中光科技有限公司 广角红外接收透镜系统及光学模组
TWI634360B (zh) * 2017-09-29 2018-09-01 大立光電股份有限公司 電子裝置
CN208907941U (zh) * 2018-10-23 2019-05-28 南昌欧菲生物识别技术有限公司 红外镜头、相机模组及电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772943A (zh) * 2015-12-29 2017-05-31 广州市全像光学科技有限公司 摄像光学镜头组
US20180024334A1 (en) * 2016-07-20 2018-01-25 Fujifilm Corporation Imaging lens and imaging apparatus
TWI634360B (zh) * 2017-09-29 2018-09-01 大立光電股份有限公司 電子裝置
CN207557564U (zh) * 2017-12-05 2018-06-29 深圳奥比中光科技有限公司 广角红外接收透镜系统及光学模组
CN208907941U (zh) * 2018-10-23 2019-05-28 南昌欧菲生物识别技术有限公司 红外镜头、相机模组及电子装置

Similar Documents

Publication Publication Date Title
WO2018010246A1 (zh) 摄像镜头
WO2020119278A1 (zh) 广角镜头及成像设备
WO2020078014A1 (zh) 广角镜头、相机模组及电子装置
CN111045188B (zh) 光学透镜组、取像模组和电子装置
TWI617830B (zh) 成像鏡頭
CN111221098B (zh) 长焦镜头、相机模组和电子装置
WO2020073983A1 (zh) 光学摄像镜头组、取像模组及电子装置
WO2020078451A1 (zh) 光学摄像镜头、取像模组和电子装置
WO2022062609A1 (zh) 镜头组、相机模组及电子装置
KR20200026726A (ko) 촬상 광학 시스템 및 전자 장치
TW201930950A (zh) 鏡頭及其製造方法
CN110873948A (zh) 取像镜头、取像模组和电子装置
CN111221096B (zh) 超广角镜头、相机模组和电子装置
WO2022061676A1 (zh) 光学镜头、取像模组及电子装置
WO2020082753A1 (zh) 红外镜头、相机模组及电子装置
CN111147704B (zh) 红外镜头、成像模组及电子装置
WO2022126533A1 (zh) 光学镜头、摄像头模组、电子装置和车辆
TWI793570B (zh) 光學成像系統、取像模組及電子裝置
CN110927939A (zh) 光学成像系统、取像模组和电子装置
WO2022160121A1 (zh) 光学成像镜头、取像装置及电子设备
WO2022160119A1 (zh) 光学系统、摄像模组及电子设备
WO2022109820A1 (zh) 光学系统、摄像模组及电子设备
WO2022120678A1 (zh) 光学系统、取像模组及电子设备
CN111090167A (zh) 红外镜头、相机模组及电子装置
WO2022082734A1 (zh) 光学镜头、摄像头模组及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875784

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19875784

Country of ref document: EP

Kind code of ref document: A1