WO2020082683A1 - 基于我国机动车登记制度的车辆存活曲线模型优化方法 - Google Patents

基于我国机动车登记制度的车辆存活曲线模型优化方法 Download PDF

Info

Publication number
WO2020082683A1
WO2020082683A1 PCT/CN2019/079166 CN2019079166W WO2020082683A1 WO 2020082683 A1 WO2020082683 A1 WO 2020082683A1 CN 2019079166 W CN2019079166 W CN 2019079166W WO 2020082683 A1 WO2020082683 A1 WO 2020082683A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
survival
model
survival curve
vehicles
Prior art date
Application number
PCT/CN2019/079166
Other languages
English (en)
French (fr)
Inventor
刘永红
林晓芳
林颖
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2020082683A1 publication Critical patent/WO2020082683A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to model optimization technology, in particular to a vehicle survival curve model optimization method based on China's motor vehicle registration system.
  • the law of vehicle survival is an important basis for vehicle safety and emission performance assessment, and the formulation of scrap policies. Mastering the current law of vehicle survival is the basic work of macro-vehicle pollution control.
  • the survival curve model expressed by the Weibull probability distribution is usually used to describe the vehicle survival law.
  • the vehicle survival curve refers to the survival probability change curve of the vehicle with the vehicle age, which can intuitively reflect the vehicle survival law.
  • the key input parameters of the model include: the growth of new cars of various models at various ages / years, and the scrapped amount of various models at various ages / years.
  • the current research is limited to incomplete and inconsistent historical data. Indirect methods such as substitution and backstepping are used to calibrate the two key input parameters of the model, and the error is relatively large.
  • Chen et al. Constructed a survival curve deduction method based on a small amount of observation data.
  • vehicle survival curve As an important basic research to predict the technical level of the fleet in the future scene of the research area, which can be used to support vehicle replacement or scrap decision, emission reduction effect evaluation and energy policy implementation effect evaluation.
  • Various energy consumption or environmental impact calculation and evaluation models have been constructed.
  • Chen et al. Constructed the survival characteristic curves of vehicles of different fuel types from the national scrap policy decision and the choice of residents ’personal vehicle replacement selection based on the fleet situation in Dupeki County, Illinois; Alam et al. Applied the survival curve to Ireland from 2015 to 2035.
  • the technical level distribution of the fleet and the sales forecast of each model are combined with the emission measurement model, which is used to simulate and evaluate the effectiveness of various greenhouse gas emission reduction policies.
  • the present invention aims to provide a vehicle survival curve model optimization method based on China's motor vehicle registration system, to more accurately reflect the vehicle survival status, and provide a basic reference for macro-vehicle pollution control.
  • the present invention is based on the business registration information of China's motor vehicle registration system, by tracing the bicycle from the initial registration to the current state, and counting the survival status of each vehicle model at different vehicle ages.
  • This method makes full use of the data characteristics of the vehicle business registration information database to record the entire life cycle of the bicycle, and avoids errors such as the difference in the statistical methods of multi-source data, the substitution or the difference between the estimated data and the real situation.
  • the present invention adopts the following technical solutions:
  • a vehicle survival curve model optimization method based on China's motor vehicle registration system is characterized in that the method includes
  • the Weibull probability distribution is used to construct a vehicle survival curve model, and the distribution is expressed as follows:
  • b j is the undetermined coefficient of the equation, which indicates the steepness of failure (b j >1);
  • T j is the undetermined coefficient of the equation, which represents the service life of the vehicle model j;
  • k is the year
  • n i, j (k + i) 1-s i, j (k + i) (3)
  • n i, j (k + i) refers to the number of vehicles of type j that are still in normal use in k + i years;
  • scrap amount refers to the number of vehicles scrapped by vehicles of type j in k + i year;
  • the motor vehicle business registration information includes:
  • Time of first registration used to calculate vehicle age and count the total number of newly registered vehicles
  • Vehicle type used to judge the vehicle type.
  • the calibration method for the growth of new vehicles n 0, j (k) is: taking the first registration time and the vehicle type as the judgment conditions, and counting the age of each vehicle model (that is, k ⁇ year of first registration ⁇ k + i) The number of vehicles registered for the first time.
  • the method of calibrating the scrap volume s i, j (k + i) is: taking the time of first registration, the vehicle status and the type of vehicle as the judgment conditions, and counting the ages of various models (ie k ⁇ year of first registration ⁇ k + i ) In the current state, the number of cancelled vehicles.
  • this method uses the characteristics of China's motor vehicle registration system to record the full life cycle of the bicycle, and establishes a direct calibration method for the characteristic parameters of the curve model of new vehicle growth and scrap, which is optimized for use in China. Vehicle survival curve model of national conditions.
  • the advantage of the present invention is that it fully utilizes the data characteristics of the whole vehicle life cycle recording of bicycles in China's motor vehicle registration system business data to achieve accurate acquisition of vehicle survival law characteristic parameters, and the existing indirect calibration Compared with the method, the present invention has higher reliability. Since the time span of the business data involved in the invention includes the stages before and after the implementation of the pollution prevention and control of motor vehicles in China, this optimization model can reflect the impact of vehicle control measures on the vehicle survival curve.
  • FIG. 1 is a comparison chart of the survival curve fitting results of various vehicle models in Guangdong province using the vehicle survival curve model optimization method based on the motor vehicle registration system provided by this embodiment and the prior art.
  • the vehicle survival curve refers to the survival probability change curve of the vehicle with the age of the vehicle
  • the survival probability refers to the proportion of new vehicles entering the market each year that are eliminated due to various reasons and survive.
  • the Weibull probability distribution is used to construct a vehicle survival curve model, and the distribution is expressed as follows:
  • b j is the undetermined coefficient of the equation, which indicates the steepness of failure (b j >1);
  • T j is the undetermined coefficient of the equation, which represents the service life of the vehicle model j;
  • k is the year.
  • n i, j (k + i) 1-s i, j (k + i) (3)
  • n i, j (k + i) refers to the number of vehicles of type j vehicles that are still in normal use (that is, surviving) in k + i years;
  • s i, j (k + i) refers to the number of vehicles scrapped by vehicles of type j in k + i year.
  • the determination of the curve model requires first to obtain the new car growth amount n 0, j (k) of each model at each age / year, and the scrap amount s i, j (k + i) of each model at each age / year Two key input parameters.
  • the business registration information of the Guangdong Motor Vehicle Registration System is used as the data source.
  • the data comes from the Ministry of Public Security of Guangdong Province.
  • the business registration information includes but is not limited to the following information:
  • Time of first registration used to calculate vehicle age and count the total number of newly registered vehicles
  • Vehicle status used to judge the survival of the vehicle.
  • the vehicle status is in accordance with the provisions of the GA24.4-2005 Motor Vehicle Registration Information Code Part 17: Motor Vehicle Status Code of the Ministry of Public Security, which includes two states of normal (A) and cancellation (E), which are used to judge the survival of the vehicle ;
  • Vehicle type used to judge the vehicle type.
  • K1 large passenger cars
  • K2 medium passenger cars
  • K3 small passenger cars
  • minibuses K4 4 types.
  • Table 1 the specific definition of the model is shown in Table 1.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于我国机动车登记制度的车辆存活曲线模型优化方法,该方法包括:在威布尔分布存活曲线模型基础上,利用我国机动车登记制度对单车进行全生命周期记录的特点,建立曲线模型的特征参数新车增长量n 0,j(k)、报废量s i,j(k+i)的直接标定方法,从而优化适用于我国国情的车辆存活曲线模型。该方法充分利用了我国机动车登记制度业务数据对单车进行全生命周期记录的数据特点,实现对车辆存活规律特征参数的准确获取,与已有的间接标定方法相比,具有更高的可靠性。

Description

基于我国机动车登记制度的车辆存活曲线模型优化方法 技术领域
本发明涉及模型优化技术,具体涉及一种基于我国机动车登记制度的车辆存活曲线模型优化方法。
背景技术
车辆存活规律是车辆安全和排放性能评估、报废政策制定的重要基础,掌握当前车辆存活规律,是宏观机动车污染管控的基础工作。
通常以威布尔概率分布表示的存活曲线模型来描述车辆存活规律,车辆存活曲线是指车辆随车龄的存活概率变化曲线,可直观反映车辆存活规律。该模型的关键输入参数包括:各车型在各车龄/年份的新车增长量、各车型在各车龄/年份的报废量。当前研究受限于不完整、不统一的历史数据,对模型的两个关键输入参数的标定采用了替代、反推等间接方法,误差较大;另一方面,由于国内相关研究的数据多统计于2010年之前,而我国近二十年来在机动车污染防治过程中采取了一系列措施,加快对老旧、高排放车辆的淘汰,改变了我国车辆的存活规律特征,使存活曲线模型的输入参数发生改变。当前因我国交通运输体系的管理制度不断完善,形成了成熟的机动车业务信息登记制度和丰富的历史数据,为我国车辆存活规律研究中的关键输入参数标定提供了优化方法的数据基础。因此,当下对我国车辆存活规律的研究具有实际意义。
机动车存活曲线的确定需要多年的数据积累。西方发达国家汽车工业起步较早,在二战之后就经历了汽车报废量迅速提高的阶段,进行了较多汽车存活规律方面的研究。存活曲线的早期研究主要集中在对研究区域车辆生存和淘汰规律特征,以存活曲线的获取方法、拟合方法和特征分析为主要关注点。1995年,Zachariadis等使用威布尔分布模拟了机动车的存活率。De通过对四种存活率分布拟合效果的对比,指出威布尔分布拟合效果优于指数模型拟合效果,其中,以符合伽马异构分布的威布尔分布拟合效果最优。Chen等以威布尔分布为前提,构建了基于少量观测数据的存活曲线推演方法。目前,许多研究将车辆存活曲线作为重要基础研究,对研究区域未来场景的车队技术水平进行预测,从而用于支撑车辆置换或报废决策、减排效果评估和能源政策实施效果评估,在此基础上构建了多种能源消耗或环境影响计算评估模型。Chen等从国家报废政策决策及居民个人车辆置换选择为研究目的,以伊利诺伊斯州杜培基县的车队情况构建了不同燃料类型车辆的存活特征曲线;Alam等将存活曲线应用于对爱尔兰2015~2035年车队技术水平分布和各车型销量的预测,并与排放测算模型相结合,从而用于模拟评估多种温室气体减排政策的成效。
我国在车辆存活规律的数据积累和研究进展仍处于起步阶段,由于基础数据缺失,无法对车辆进行全生命周期监测,对存活曲线模型的关键输入参数获取采用了不同间接方法,如反推法、替代法等。例如,杨方等以北京市1995年为例,由统计调查的车龄分布,结合统计年鉴的保有量、北京市车管所的北京市1997~2002年车辆报废数反推各年份的新增车辆数(反推法),得到北京市大客车、小客车的存活曲线;中国汽车技术研究中心由中国汽车工业协会2001~2010年的货车以及各细分车型的销量作为新车量(替代法),来自中国 公安部的2001~2010年货车及各细分车型的保有量、2010年货车及各细分车型的车龄分布情况反推各车龄报废量(反推法),从而构建存活曲线。这些研究反映了我国1990~2010年部分车型或部分城市的本地车辆存活规律,对于车龄分布估算、安全性能与环境影响评估起到一定研究支撑作用。但由于其数据来源不统一、不完善,不同数据来源对于车型的分类方法的差异、替代或推算数据与真实情况的差异等,将影响模型结果的可靠性。此外,我国在2009年开始颁布以《汽车以旧换新实施方法》为代表的一系列激励措施,改变了车辆的存活特征,而国内关于存活曲线研究的数据绝大多数统计于2010年之前,缺少在大气污染防止政策大力推行后的研究结论。
发明内容
针对现有技术的不足,本发明旨在提供一种基于我国机动车登记制度的车辆存活曲线模型优化方法,以较准确地反映车辆存活的情况,为宏观机动车污染管控提供基础参考。
过去由于基础数据不足,不同研究采用了多种替代或推算方法,例如以《中国汽车工业年鉴》公布的销售数据替代各车型在各车龄/年份的新车增长量n 0,j(k),以我国现行的报废政策推算各车型在各车龄/年份的报废量s i,j(k+i)等。由于涉及不同数据来源,各数据源对于车型的分类方法的差异、替代或推算数据与真实情况的差异等,将影响车辆存活规律统计结果的可靠性。
因此,本发明以我国机动车登记制度的业务登记信息为基础,通过追溯单车从初次登记至当前的状态,统计各车型在不同车龄的存活情况。该方法充分利用机动车业务登记信息数据库对单车进行全生命周期记录的数据特点,避免了由多源数据统计方法差异、替代或推算数据与真实情况的差异等误差。
具体地,为实现上述目的,本发明采用如下技术方案:
一种基于我国机动车登记制度的车辆存活曲线模型优化方法,其特征在于,所述方法包括
获取机动车业务登记信息,以获得新车增长量n 0,j(k)和报废量s i,j(k+i);
采用威布尔概率分布来构建车辆存活曲线模型,该分布表达如下:
Figure PCTCN2019079166-appb-000001
其中,
Figure PCTCN2019079166-appb-000002
表示车型j在车龄i的存活概率;
b j为方程待定系数,表示失效陡度(b j>1);
T j为方程待定系数,表示车型j的服务寿命;
k为年份;
又,存活概率
Figure PCTCN2019079166-appb-000003
满足以下方程:
Figure PCTCN2019079166-appb-000004
n i,j(k+i)=1-s i,j(k+i)   (3)
其中,n 0,j(k)新车增长量,指k年j车型新车数(车龄i=0);
n i,j(k+i)指j车型车辆在k+i年仍正常使用的车辆数;
s i,j(k+i)报废量,指j车型车辆在k+i年报废的车辆数;
故,公式(1)换算为:
Figure PCTCN2019079166-appb-000005
通过以上i组新车增长量n 0,j(k)、报废量s i,j(k+i),依据公式(4)进行拟合,以最小二乘法迭代,确定在误差平方和最小时的分车型曲线方程的待定系数b j、T j,建立存活曲线的数学模型。
所述机动车业务登记信息包括:
(1)首次注册登记时间:用于推算车龄及统计新注册车辆总数;
(2)车辆状态:用于判断车辆存活情况;
(3)车辆类型:用于判断车辆类型。
新车增长量n 0,j(k)的标定方法为:以首次注册登记时间、车辆类型两个属性为判定条件,统计各车型在各车龄(即k≤首次登记注册年份<k+i)的首次注册登记车辆数。
报废量s i,j(k+i)的标定方法为:以首次注册登记时间、车辆状态及车辆类型为判定条件,统计各种车型各车龄(即k≤首次登记注册年份<k+i)在当前的状态为注销的车辆数。
本发明的有益效果在于:
本方法在威布尔分布存活曲线模型基础上,利用我国机动车登记制度对单车进行全生命周期记录的特点,建立曲线模型的特征参数新车增长量、报废量的直接标定方法,从而优化适用于我国国情的车辆存活曲线模型。
与现有技术相比,本发明的优点在于充分利用了我国机动车登记制度业务数据对单车进行全生命周期记录的数据特点,实现对车辆存活规律特征参数的准确获取,与已有的间接标定方法相比,本发明具有更高的可靠性;由于发明所涉及的业务数据时间跨度包含我国机动车污染防治工作的实施前后阶段,因此本优化模型可反映车辆管控措施对车辆存活曲线的影响。
附图说明
图1为采用本实施例提供的基于我国机动车登记制度的车辆存活曲线模型优化方法与现有技术对广东省各车型存活曲线拟合结果对比图。
具体实施方式
本发明中,车辆存活曲线是指车辆随车龄的存活概率变化曲线,存活概率是指每年进入市场的新车排除因各种原因被自然淘汰而存活下来的比例。
下面,结合附图以及具体实施方式,对本发明做进一步描述:
本例以广东省为例,以2014年为基准年,基于机动车业务登记信息数据库拟合广东省分车型车辆存活曲线,对一种基于我国机动车登记制度的车辆存活曲线模型优化方法进行详细说明。包括:
采用威布尔概率分布来构建车辆存活曲线模型,该分布表达如下:
Figure PCTCN2019079166-appb-000006
其中,
Figure PCTCN2019079166-appb-000007
表示车型j在车龄i的存活概率;
b j为方程待定系数,表示失效陡度(b j>1);
T j为方程待定系数,表示车型j的服务寿命;
k为年份。
又,存活概率
Figure PCTCN2019079166-appb-000008
满足以下方程:
Figure PCTCN2019079166-appb-000009
n i,j(k+i)=1-s i,j(k+i)   (3)
其中,n 0,j(k)指k年j车型新车数(车龄i=0);
n i,j(k+i)指j车型车辆在k+i年仍正常使用(即存活)的车辆数;
s i,j(k+i)指j车型车辆在k+i年报废的车辆数。
故,公式(1)可换算为:
Figure PCTCN2019079166-appb-000010
因此,曲线模型的确定,需首先获得各车型在各车龄/年份的新车增长量n 0,j(k)、各车型在各车龄/年份的报废量s i,j(k+i)两个关键输入参数。
本例中以广东省机动车登记制度的业务登记信息作为数据来源,该数据来自广东省公安部,该业务登记信息包含但不限于下列信息:
(1)首次注册登记时间:用于推算车龄及统计新注册车辆总数;
(2)车辆状态:用于判断车辆存活情况。其中,车辆状况依照公安部《GA24.4-2005机动车登记信息代码第17部分:机动车状态代码》规定,包含正常(A)、注销(E)两种状态,用于判断车辆的存活情况;
(3)车辆类型:用于判断车辆类型。其中,车型分类依照公安部《GA24.4-2005机动车登记信息代码第4部分:车辆类型代码》规定,选取大型客车(K1)、中型客车(K2)、小型客车(K3)、微型客车(K4)4类。其中,车型的具体定义见表1。
表1
Figure PCTCN2019079166-appb-000011
Figure PCTCN2019079166-appb-000012
根据机动车业务登记信数据库,选取2014年为基准年,分别统计以下指标:
(1)以首次注册登记时间、车辆类型两个属性为判定条件,统计2014年之前各年份下4种车型(即k≤首次登记注册年份<k+i)的首次注册登记车辆数n 0,j(k);
(2)以首次注册登记时间、车辆状态及车辆类型为判定条件,统计2014年之前各年份下4种车型(即k≤首次登记注册年份<k+i)在当前的状态为注销的车辆数s i,j(k+i)。
通过以上i组新车增长量n 0,j(k)、报废量s i,j(k+i),依据公式(4)进行拟合,以最小二乘法迭代,确定在误差平方和最小时的分车型曲线方程的待定系数b j、T j,,建立存活曲线的数学模型。
本例总共获取6560129辆客车在数据观测期间的所有业务办理数据。按照公安部车辆分类规则,对广东省各车型存活曲线拟合结果,以及与部分文献的对比如表2、图1。其中,各车型拟合曲线的最小误差平方和s在0.71×10 -3~7.66×10 -3之间,具有良好的拟合效果。由K3的拟合曲线可以看出,以间接方法标定存活曲线模型输入参数的结果,与基于全生命周期的业务记录数据所统计得到的真实结果具有一定偏差,本发明所提出的一种基于我国机动车登记制度的车辆存活曲线模型优化方法,其优化结果与真实结果更为接近。
表2广东省车辆存活曲线拟合结果
Figure PCTCN2019079166-appb-000013
Figure PCTCN2019079166-appb-000014
1) a来源于文献[64](刘森,朱向雷,徐国强.基于威布尔分布的轿车存活概率模型研究[J].产业与科技论坛,2012,11(18):122-124.);
2) b来源于文献[16](杨方,于雷,宋国华,等.基于存活概率的动态车龄分布模型[J].中国安全科学学报,2005,15(6):24-27.);
3) c来源于文献[65](郝瀚,王贺武,欧阳明高,等.我国汽车存活规律研究[J].中国科学:技术科学,2011(3):301-305.),报废时间从2006年6月到2010年4月共2765条解体车辆的记录。
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (4)

  1. 一种基于我国机动车登记制度的车辆存活曲线模型优化方法,其特征在于,所述方法包括
    获取机动车业务登记信息,以获得新车增长量n 0,j(k)和报废量s i,j(k+i);
    采用威布尔概率分布来构建车辆存活曲线模型,该分布表达如下:
    Figure PCTCN2019079166-appb-100001
    其中,
    Figure PCTCN2019079166-appb-100002
    表示车型j在车龄i的存活概率;
    b j为方程待定系数,表示失效陡度(b j>1);
    T j为方程待定系数,表示车型j的服务寿命;
    k为年份;
    又,存活概率
    Figure PCTCN2019079166-appb-100003
    满足以下方程:
    Figure PCTCN2019079166-appb-100004
    n i,j(k+i)=1-s i,j(k+i)              (3)
    其中,n 0,j(k)新车增长量,指k年j车型新车数(车龄i=0);
    n i,j(k+i)指j车型车辆在k+i年仍正常使用的车辆数;
    s i,j(k+i)报废量,指j车型车辆在k+i年报废的车辆数;
    故,公式(1)换算为:
    Figure PCTCN2019079166-appb-100005
    通过以上i组新车增长量n 0,j(k)、报废量s i,j(k+i),依据公式(4)进行拟合,以最小二乘法迭代,确定在误差平方和最小时的分车型曲线方程的待定系数b j、T j,建立存活曲线的数学模型。
  2. 如权利要求1所述的基于我国机动车登记制度的车辆存活曲线模型优化方法,其特征在于,所述机动车业务登记信息包括:
    (1)首次注册登记时间:用于推算车龄及统计新注册车辆总数;
    (2)车辆状态:用于判断车辆存活情况;
    (3)车辆类型:用于判断车辆类型。
  3. 如权利要求2所述的基于我国机动车登记制度的车辆存活曲线模型优化方法,其特征在于,新车增长量n 0,j(k)的标定方法为:以首次注册登记时间、车辆类型两个属性为判定条件,统计各车型在各车龄的首次注册登记车辆数。
  4. 如权利要求2或3所述的基于我国机动车登记制度的车辆存活曲线模型优化方法,其特征在于,报废量s i,j(k+i)的标定方法为:以首次注册登记时间、车辆状态及车辆类型为判定条件,统计各种车型各车龄在当前的状态为注销的车辆数。
PCT/CN2019/079166 2018-10-22 2019-03-22 基于我国机动车登记制度的车辆存活曲线模型优化方法 WO2020082683A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811232101.6 2018-10-22
CN201811232101.6A CN109345136A (zh) 2018-10-22 2018-10-22 基于我国机动车登记制度的车辆存活曲线模型优化方法

Publications (1)

Publication Number Publication Date
WO2020082683A1 true WO2020082683A1 (zh) 2020-04-30

Family

ID=65311485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079166 WO2020082683A1 (zh) 2018-10-22 2019-03-22 基于我国机动车登记制度的车辆存活曲线模型优化方法

Country Status (2)

Country Link
CN (1) CN109345136A (zh)
WO (1) WO2020082683A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109345136A (zh) * 2018-10-22 2019-02-15 中山大学 基于我国机动车登记制度的车辆存活曲线模型优化方法
CN111143771B (zh) * 2019-12-12 2021-12-07 中山大学 机动车保有量计算方法、系统、装置及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108053075A (zh) * 2017-12-27 2018-05-18 北京中交兴路车联网科技有限公司 一种报废车辆预测方法及系统
CN108154275A (zh) * 2017-12-29 2018-06-12 广东数鼎科技有限公司 基于大数据的汽车残值预测模型及预测方法
CN109345136A (zh) * 2018-10-22 2019-02-15 中山大学 基于我国机动车登记制度的车辆存活曲线模型优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108053075A (zh) * 2017-12-27 2018-05-18 北京中交兴路车联网科技有限公司 一种报废车辆预测方法及系统
CN108154275A (zh) * 2017-12-29 2018-06-12 广东数鼎科技有限公司 基于大数据的汽车残值预测模型及预测方法
CN109345136A (zh) * 2018-10-22 2019-02-15 中山大学 基于我国机动车登记制度的车辆存活曲线模型优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU XIANGLEI ET AL.: "Study on survival law of freight car", SPECIAL PURPOSE VEHICLE, no. 12, 31 December 2012 (2012-12-31), pages 83 - 84 *

Also Published As

Publication number Publication date
CN109345136A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2020244288A1 (zh) 一种基于gps轨迹数据的大货车驾驶行为评估方法及装置
CN107153914B (zh) 一种汽车运行风险的评价系统及方法
CN104199436B (zh) 一种汽车节能减排和维修的自动诊断系统
CN110376003B (zh) 基于bim的智能列车整车服役寿命预测方法及其系统
WO2020082683A1 (zh) 基于我国机动车登记制度的车辆存活曲线模型优化方法
Smith et al. The impact on human health of car-related air pollution in the UK, 1995–2005
CN111222259A (zh) 一种地铁车辆转向架多部件预防性维修决策优化模型
CN110727904A (zh) 一种车辆排放清单的构建方法
CN116720852B (zh) 一种基于人工智能的新能源汽车维修数据分析管理系统
CN105539383A (zh) 一种汽车健康体检系统及其体检方法
CN116245367A (zh) 基于层次模糊神经网络的危货车运输风险评估方法及系统
WO2018214788A1 (zh) 一种大数据保持汽车尾气排放合格的方法和系统
CN112232553B (zh) 一种基于贝叶斯网络的高铁列车晚点影响因素诊断方法
CN117035422A (zh) 一种货车线路运输风险预测的方法
CN110119891B (zh) 一种适于大数据的交通安全影响因素辨识方法
CN112394040A (zh) 一种机动车排污监管系统及方法
CN114419894B (zh) 一种路内停车泊位设置与使用监测的方法与系统
CN116579125A (zh) 一种轴承剩余寿命预测方法、装置、设备及可读存储介质
CN116128277A (zh) 一种固定污染源分类分级的动态预警方法及系统
CN114118463B (zh) 汽车售后市场服务管理系统
CN112434950B (zh) 一种取消省界收费站货车计费调整风险评估的方法及用途
CN112071073B (zh) 一种噪声地图系统的道路噪声自动修正方法
CN108805458A (zh) 一种企业技术竞争力评估方法及装置
Pink et al. Comparison of vehicle-broadcasted fuel consumption rates against precise fuel measurements for medium-and heavy-duty vehicles and engines
Xiaorui et al. Analysis on the Trends and Characteristics of Vehicle Recalls in the United States

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19875570

Country of ref document: EP

Kind code of ref document: A1