WO2020080420A1 - 鉛蓄電池 - Google Patents

鉛蓄電池 Download PDF

Info

Publication number
WO2020080420A1
WO2020080420A1 PCT/JP2019/040716 JP2019040716W WO2020080420A1 WO 2020080420 A1 WO2020080420 A1 WO 2020080420A1 JP 2019040716 W JP2019040716 W JP 2019040716W WO 2020080420 A1 WO2020080420 A1 WO 2020080420A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
bone
lead
electrode plate
positive electrode
Prior art date
Application number
PCT/JP2019/040716
Other languages
English (en)
French (fr)
Inventor
理紗 上松
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2020553245A priority Critical patent/JP7347439B2/ja
Publication of WO2020080420A1 publication Critical patent/WO2020080420A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/16Suspending or supporting electrodes or groups of electrodes in the case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/82Multi-step processes for manufacturing carriers for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead storage battery.
  • Lead-acid batteries are used for various purposes such as in-vehicle use and industrial use.
  • the lead storage battery includes an electrode group in which positive electrode plates and negative electrode plates are alternately stacked with separators interposed therebetween.
  • the electrode plate is composed of a current collector and an electrode material held by the current collector.
  • Patent Document 1 discloses a lead grid plate obtained by press-punching a rolled plate of a lead alloy, in which the thickness of the internal vertical and horizontal bars is smaller than the thickness of the outer frame and the outer frame has a thickness of 0.
  • a lead grid plate for a lead storage battery is proposed, which is characterized by having a thickness of 8 to 1.5 mm and a thickness of the inner crosspiece of 0.6 to 0.8 mm.
  • an internal frame of a lead grid plate obtained by press punching a rolled plate of a lead alloy having a thickness of 1.2 to 1.5 mm is deformed in the thickness direction so that the internal vertical and horizontal bars are
  • a lead grid plate for a lead storage battery is proposed, which has a thickness set within a range of 0.6 to 0.8 mm.
  • the unit lead grid plate since the thickness of the inner frame is thinner than the thickness of the outer frame, and the holding surface for the active material is recessed stepwise with respect to the outer frame, the unit lead grid plate The holding amount of the active material per unit can be significantly increased compared to a lead grid plate of uniform thickness, and the holding power of the active material can be greatly improved without roughening the surface of the lead grid plate. Has become.
  • the active material holding power is improved without roughening the surface of the lead grid plate, and the active material holding amount is further increased. Is said to be able to be increased.
  • One aspect of the present invention is a lead-acid battery including a positive electrode plate, a negative electrode plate, and an electrolytic solution, wherein the positive electrode plate and the negative electrode plate are a current collector and an electrode held by the current collector, respectively.
  • An upper element continuous with the ear, a lower element facing the upper element, and an upper element having an ear provided on the skeleton and an inner bone inside the skeleton.
  • a longitudinal bone extending in a first direction from the upper element to the lower element and a pair of side elements connecting the lower element and the first element to the other side element.
  • a striped pattern of metallic fibrous tissue is seen, and the outer peripheral region of the cross section has the fibrous tissue of the cross section.
  • the ratio of the length of the contour corresponding to the second portion is less than 50%, the ratio t b / t a thickness t b of the inner bone relative to the thickness t a of the ear 60% 97%
  • the following relates to a lead storage battery.
  • the relationship between the 5-hour rate discharge capacity is a graph showing the difference in the second part rate.
  • the longitudinal elongation of the positive electrode current collector in the overcharged state is a graph showing the relationship between the period until 7% in the initial ratio.
  • 5 is a graph showing a ratio of a 5-hour rate discharge capacity in the case of applying pressure to a 5-hour rate discharge capacity in the case of not applying pressure to an electrode group of a lead storage battery according to an embodiment of the present invention.
  • the positive electrode material of the lead storage battery according to an embodiment of the present invention is a graph showing the ratio of 5-hour rate discharge capacity when Sb 2 O 3 is added for 5 hour rate discharge capacity when Sb 2 O 3 was not added.
  • a lead-acid battery includes a positive electrode plate, a negative electrode plate, and an electrolytic solution.
  • the positive electrode plate and the negative electrode plate each include a current collector and an electrode material held by the current collector.
  • the current collector has a frame bone, an ear provided on the frame bone, and an internal bone inside the frame bone.
  • the internal bone may be mesh-like.
  • the frame bone comprises an upper element continuous with the ear, a lower element facing the upper element, and a pair of side elements connecting the upper element and the lower element.
  • the internal bone comprises a longitudinal bone extending in a first direction from the upper element toward the lower element, and a transverse bone extending in a second direction from one side element toward the other side element.
  • the first direction is a direction parallel to the side element
  • the second direction is a direction parallel to the upper element and the lower element.
  • the current collector is also referred to as a grid body.
  • the skeleton of the current collector or the lattice is not limited to the lattice or the mesh.
  • a striped pattern of metallic fibrous tissue can be seen in a cross section perpendicular to the first direction of the longitudinal bone, that is, a cross section parallel to the upper element and parallel to the thickness direction (hereinafter also referred to as cross section C).
  • the outer peripheral region of the cross section C is composed of a first portion in which the fibrous tissue (direction of stripes) extends along the contour of the cross section C (hereinafter, also referred to as the contour C), and a second portion other than the first portion. ing.
  • the ratio of the contour (hereinafter, also referred to as the second contour portion) corresponding to the second portion to the entire length of the contour C (hereinafter, also referred to as the second portion ratio) is controlled to be less than 50%, and ratio t b / t a thickness t b of the inner bone with respect to the thickness t a of the ears is controlled to 97% or more and 60% or less.
  • the second partial ratio is less than 50%, the elongation of the current collector due to corrosion is significantly suppressed. If t b / t a a to 97% or more and 60% or less, the surface of the current collector is a state susceptible to corrosion.
  • t b / t a is less than 65%, preferably 95% or less, 70% or more, more preferably 90% or less, 75% or more, even more preferably from 85% or less.
  • the thickness t a of the ear is the average value of the length in ear thickness direction.
  • t a may For example, in the case of 1.0mm ⁇ 1.5mm.
  • the average value of the lengths in the thickness direction of the ears may be the average value of the thicknesses at any three points 2 mm or more inside from the peripheral edge of the ears.
  • the thickness t b of the inner bone is the average value of the length of the lattice or the electrode plate in the thickness direction of the inner bone.
  • the average value of the length of the internal bone in the thickness direction may be the average value of the thickness of the central portion of the internal bone to be measured in the bone width direction.
  • the internal bone to be measured is a vertical bone.
  • the measurement positions are positions 1 ⁇ 3 and 2 ⁇ 3 from the upper end of the dimension of the current collector in the first direction excluding the ears and feet. When those positions correspond to the intersections of the vertical bones and the horizontal bones, the measurement positions are slightly moved. Specifically, the average value of 60% or more of the measurement position of the vertical bone 1/3 from the upper end and 60% or more of the measurement position of the vertical bone 2/3 from the upper end may be calculated.
  • the t b may be, for example, 0.65 mm to 0.98 mm.
  • t b 0.65 mm or more
  • the effect of suppressing corrosion becomes large
  • t b 0.98 mm or less
  • the holding power of the electrode material by the current collector is increased, and the falling of the electrode material is easily suppressed.
  • the proportion of the second contour portion in the contour C tends to increase. Even when the ratio of the second contour portion is large as described above, it is not difficult to reduce the second partial ratio to less than 50%, and further to 40% or less by pressing or the like.
  • the current collector is processed by applying pressure by a press machine or the like.
  • t b / t a in the case of less than 60%, not appropriate elongation of the current collector after overcharge increases.
  • the lead-acid battery manufacturing method includes a step of preparing a current collector and a step of obtaining a positive electrode plate or a negative electrode plate including the prepared current collector.
  • the step of preparing the current collector the step of preparing the rolled plate and the punching process for the rolled plate form an intermediate grid body having a plurality of intermediate bones formed in a grid shape.
  • the process includes a step and a step of forming at least a part of the internal bone by performing press working on the intermediate lattice in the thickness direction of the intermediate lattice.
  • the press working is such that, in at least a part of the plurality of intermediate bones, at least one end portion in the bone width direction is thinner than the central portion in the bone width direction intersecting the extending direction of the intermediate bones, and the ear thickness ratio t b / t a thickness t b of the central portion with respect to t a is comprises deforming to be equal to or less than 97% 60%.
  • the longitudinal bone may extend parallel to the side element or may extend obliquely to the side element.
  • the vertical bone may have a linear shape, a curved shape, or may have some bending. That is, the vertical bones may extend so that the vector in the first direction is larger than the vector in the second direction.
  • the transverse bone may extend parallel to the upper element or the lower element, or may extend obliquely to the upper element or the lower element. Further, the horizontal bone may have a linear shape, a curved shape, or a slight bend. That is, the transverse bone may extend so that the vector in the second direction is larger than the vector in the first direction.
  • the frame bone may have a rectangular shape.
  • the outline of section C means the line corresponding to the outer surface of the longitudinal bone.
  • the outer peripheral region of the cross section C is a peripheral region along the contour of the cross section C and has a depth of at least 55 ⁇ m or more, preferably 100 ⁇ m or more from the line corresponding to the outer surface.
  • Stripe pattern may not be observed in the second part, and stripe pattern extending in the depth direction of the outer peripheral region may be observed. That is, a cross section perpendicular to the fiber length of the fibrous tissue is likely to be exposed on the outer surface of the second portion. When the second partial ratio is made smaller, it becomes difficult to expose the cross section perpendicular to the fiber length of the fibrous tissue on the outer surface of the outer peripheral region of the cross section C.
  • the cross section of the fibrous structure perpendicular to the fiber length has many grain boundaries. Therefore, in the second portion, the corrosion of the longitudinal bone is likely to proceed deeply into a wedge shape. When deep corrosion progresses, the elongation of the current collector tends to increase. On the other hand, in the first part, the corrosion of the longitudinal bone is shallow and is likely to proceed. The elongation of the current collector due to shallow corrosion is small. That is, even if the amount of corrosion is the same, as the second partial ratio is smaller, corrosion is less likely to proceed to a deep region of the current collector, extension of the current collector is suppressed, and dropout of the electrode material is suppressed. By setting the second partial ratio to 40% or less, the elongation of the current collector is more significantly suppressed.
  • cross section G the cross section perpendicular to the second direction of the transverse bone, that is, the cross section parallel to the side elements and parallel to the thickness direction (hereinafter, also referred to as cross section G)
  • the striped pattern of the metal fibrous tissue is almost observed.
  • a cross section perpendicular to the fiber length of the fibrous tissue is generally seen.
  • the outer peripheral area of the cross section G generally the entire circumference corresponds to the second portion of the cross section C. That is, the outer peripheral region of the cross section G is composed of a fibrous structure extending substantially in the second direction all around. Therefore, in the outer peripheral region of the cross section G, the elongation of the current collector is suppressed even if the amount of corrosion is the same.
  • the degree of progress of corrosion tends to be uniform in the entire internal bone. It is considered that such uniform corrosion suppresses uneven distribution of corroded portions and suppresses the current collector from extending in one direction.
  • the first partial rate and the second partial rate can be intentionally controlled.
  • the first partial rate can be arbitrarily controlled by the press speed, the press pressure, the die shape, and the like. That is, deforming the longitudinal bone by press working is not a sufficient condition for increasing the first portion ratio, but it is necessary to control the press working condition appropriately.
  • the first portion ratio increases, the extension of the current collector is suppressed and the electrode material is prevented from falling off.
  • the inside of the skeleton of the current collector is divided into an upper region on the upper element side of the skeleton, a lower region on the lower element side of the skeleton, and a middle region between the upper region and the lower region. Cut as described.
  • four rows of the cross section C perpendicular to the first direction are formed in the plurality of vertical bones. That is, one row having a cross section C is formed in each of the upper region and the lower region, and two rows having a cross section C are formed in the middle region.
  • the division line is entirely formed so that the cross section C is formed in the vertical bone portion between the intersections as much as possible.
  • the current collector may be partially moved to divide it into three parts. When dividing the inside of the frame bone of the current collector into three, the dimensions of the ears or feet are not taken into consideration.
  • the portion in which the fringes of the fibrous tissue form an angle of less than 45 ° with the contour of the cross section C is the first portion.
  • a tangent line S1 of the point P is drawn, and a perpendicular line L of the tangent line S1 is drawn so as to pass through the point P.
  • a tangent line S2 of a stripe existing at a depth of 55 ⁇ m from the point P on the perpendicular L and intersecting the perpendicular L is drawn at the intersection.
  • the angle ⁇ between the tangent line S2 and the tangent line S1 is less than 45 °
  • the point P constitutes the first contour portion corresponding to the first portion.
  • the length of the first contour portion is specified, and the ratio of the first contour portion to the entire length of the contour C is obtained as the first partial ratio.
  • the angle ⁇ is 45 ° or more, the point P constitutes the second portion. Even when it is not possible to determine whether or not the point P constitutes the first contour portion because the fibrous tissue cannot be observed, the point P constitutes the second portion.
  • the first partial rate is obtained in all the selected cross-sections C, and the average value is calculated.
  • the average should be calculated excluding the cross section, and the cutting position of the vertical bone may be shifted so that the node deviates.
  • the current collector before being filled with the electrode material may be used.
  • the fully charged lead storage battery is disassembled, the electrode plate is taken out, washed with water to remove the electrolytic solution, and dried.
  • the electrode material is removed from the electrode plate, and the electrode material adhering to the surface of the current collector is removed with mannite.
  • the prepared current collector may be embedded in a thermosetting resin so as to cover the entire current collector and the resin may be cured, and then the current collector may be cut together with the cured resin.
  • the state of the metallographic structure in the cross section C may be observed by photographing the cross section of the current collector by etching and then using a microscope.
  • a fully charged state of a lead storage battery means, in the case of a liquid type battery, a current (A) 0.2 times the numerical value (Ah) described as the rated capacity in a water tank at 25 ° C ⁇ 2 ° C. After constant-current charging until reaching 2.5 V / cell, the constant-current charging was further performed for 2 hours at a current (A) 0.2 times the numerical value (Ah) described as the rated capacity. .
  • the fully charged state means that the current (A) is 0.2 times the numerical value (Ah) described as the rated capacity in the air chamber at 25 ° C ⁇ 2 ° C.
  • the thickness of the first portion may be 55 ⁇ m or more. Further, even if the outer peripheral region looks like the first part at first glance, if the thickness of the region where the striped pattern of the fibrous tissue is observed is less than 55 ⁇ m, it is regarded as the second part, not the first part.
  • the first portion having a thickness of 55 ⁇ m or more has a sufficient action of suppressing the intrusion of corrosion into the inside. In this case, the intrusion of corrosion into the inner bone is likely to be highly uniform. Therefore, the elongation of the current collector is remarkably suppressed, and the detachment of the electrode material is remarkably suppressed.
  • the thickness of the first portion is preferably 100 ⁇ m or more from the viewpoint of further improving the suppression of intrusion of corrosion resistance corrosion of the longitudinal bone.
  • a fully charged lead acid battery is a fully charged lead acid battery already formed. As long as the lead storage battery is fully charged, it may be charged immediately after the formation or after a lapse of time from the formation. For example, the lead storage battery in use (preferably in the initial stage of use) may be fully charged after formation.
  • the battery at the beginning of use is a battery that has not deteriorated in a long time since the start of use.
  • the thickness of the first portion in cross section C may be measured as follows. First, a tangent line S1 is drawn at an arbitrary point P1 on the first contour portion, and a perpendicular line L of the tangent line S1 is drawn so as to pass through the point P1. Next, at a point Px that moves on the perpendicular L from the point P1 to a depth of X ⁇ m, a tangent line S2 of a stripe that intersects the perpendicular L is continuously drawn. At this time, when the angle between the tangent line S1 and the tangent line S2 is continuously 45 ° or less, it can be said that the thickness of the first portion immediately below the point P1 is X ⁇ m or more.
  • the width of the inner bone may be, for example, 0.7 mm to 3 mm.
  • the width of the inner bone is a width perpendicular to the length direction of the inner bone in the surface direction of the current collector or the electrode plate. If the width of the internal bone is 0.7 mm or more, the effect of suppressing corrosion becomes large, and it becomes easy to avoid disconnection of the internal bone even during overcharge. Further, when the width of the inner bone is 3 mm or less, the filling property of the electrode material into the current collector is enhanced, and the productivity of the electrode plate is improved. ..
  • the second partial rate is preferably 40% or less, more preferably 30% or less, and further preferably 17.5% or less. Even if the second partial ratio becomes smaller than less than 50%, it is not possible to completely suppress the corrosion of the longitudinal bone. However, if the corrosion is made uniform, it is considered that uneven distribution of the corroded portion is suppressed and the unidirectional expansion of the current collector is suppressed.
  • the shape of the cross section C is not particularly limited, but is preferably an octagon.
  • the interior angle of the apex does not become too small, and the effect of suppressing corrosion near the apex is enhanced.
  • a vertical bone having an octagonal cross section C for example, a vertical bone having a rectangular cross section C may be deformed.
  • the method of deforming the longitudinal bone is not particularly limited, but for example, the inner bone may be pressed. At that time, the internal bone pressing conditions may be appropriately selected so that the second partial ratio is less than 50%, preferably 40% or less.
  • the octagon does not have to be a strict octagon in a mathematical sense, and the vertices may be slightly rounded or each side may be slightly curved.
  • the total length LW of the internal method of the transverse bone and the total length WLH of the internal method of the longitudinal bone are WLH / WLW ⁇ 0. .8 may be satisfied, and WLH / WLW ⁇ 1.3 may be satisfied.
  • the corrosion of the current collector tends to enter the inside, it is possible to suppress the elongation of the current collector by controlling the second partial ratio to be less than 50%, or even 40% or less. It becomes more prominent.
  • the inner length of each inner bone means the length in the inner grid of the grid, that is, the length of the side of the rectangular space that defines the grid (running length).
  • the direction of the length WLW corresponds to the stretching direction (MD direction) of the stretched sheet.
  • the current collector according to the present invention may be applied to either the positive electrode plate or the negative electrode plate. That is, the electrode plate according to the present invention may be a positive electrode plate or a negative electrode plate. However, from the viewpoint of suppressing elongation of the current collector due to corrosion, the current collector according to the present invention is particularly suitable as a current collector for the positive electrode plate.
  • the current collector according to the present invention may be a punched current collector, and may be formed of, for example, a lead or lead alloy stretched sheet.
  • positive electrode plates and negative electrode plates are alternately stacked via a separator to form an electrode group, and the electrode group is preferably pressed in the stacking direction.
  • the electrode group is pressed in the stacking direction, specifically, in the case where the battery is disassembled and the electrode group is taken out, in the thickness direction of the central portion of the cell chamber accommodating the electrode group of the battery case.
  • L1 minimum distance between facing inner wall surfaces
  • L2 is equal to L1 or L2 is longer than L1 (L2 ⁇ L1).
  • the pressure may be applied from the inner wall surface of the battery case, or may be applied from the outside by a press machine or the like. Thereby, the binding property between the current collector and the electrode material can be improved.
  • the extraction load of the electrode group may be 1.6 times or more the self-weight of the electrode group, more preferably 2.0 times or more, and preferably 2.3 times or more. More preferable.
  • the pulling-out load is a force that acts in the direction of pulling out the electrode group from the battery case when pulling out the electrode group of the lead storage battery from the battery case. Specifically, it is considered that the binding property between the current collector and the electrode material becomes good when the ratio of the load to the own weight of the electrode group exceeds a predetermined value.
  • the current collector having a large area of the exposed portion of the layered structure tends to have low binding property with the electrode material.
  • the binding state (compressed state) of the electrode group can be further increased by setting the pull-out load of the electrode group including the positive electrode plate and the negative electrode plate to be at least 1.6 times the self-weight of the electrode group. This makes it possible to improve the binding property between the current collector and the electrode material.
  • the electrode group for measuring the pull-out load and the electrode group for measuring its own weight each include a positive electrode plate, a negative electrode plate, a separator and a strap.
  • the electrolyte solution is contained, and specifically, for example, the battery case is turned over and left for 5 minutes or more to remove the liquid.
  • the lead storage battery according to one aspect of the present invention preferably contains Sb (antimony) in the positive electrode material.
  • Sb antimony
  • the adhesion between the positive electrode current collector and the positive electrode electrode material can be improved, and a conductive path can be secured between the positive electrode electrode material and the current collector.
  • the electrode group is pressed in the stacking direction, more conductive paths are secured, and the effect of improving conductivity by Sb is remarkably exhibited.
  • the accumulation of lead sulfate is easily suppressed and the softening of the positive electrode material is suppressed. Therefore, the fall of the positive electrode material is easily suppressed.
  • the Sb content in the positive electrode material is the Sb content as the Sb element in the positive electrode material after chemical conversion. It is possible that Sb is present as a compound (for example, an oxide or a sulfuric acid compound), and in that case also, the Sb content is calculated by considering only the mass of Sb in the compound.
  • the antimony content in the positive electrode material is preferably 0.01% by mass or more and 0.3% by mass or less. By controlling the Sb content within this range, gas generation can be suppressed and liquid reduction can be minimized.
  • the Sb content in the positive electrode material is determined by decomposing the fully charged lead storage battery that has already been formed, washing the electrode plate taken out with water, drying and then collecting the electrode material, dissolving the crushed sample in concentrated nitric acid, and (Inductively Coupled Plasma) Obtained by performing emission analysis.
  • FIG. 1A and 1B are plan views showing appearances of current collectors 100A and 100B according to one embodiment and another embodiment of the present invention, respectively.
  • Each of the current collectors 100A and 100B has a frame bone 110 and a mesh-shaped internal bone 120 inside the frame bone 110.
  • the frame bone 110 includes an upper element 111 that is continuous with the ear 130, a lower element 112 that faces the upper element 111, and a pair of side elements 113 and 114 that connect the upper element 111 and the lower element 112.
  • the broken line indicates the boundary that divides the inner bone into three parts, the upper region, the middle region, and the lower region.
  • the transverse bone extends obliquely with respect to the upper element or the lower element.
  • LH represents the inner length of each longitudinal bone per lattice
  • LW represents the inner length of each transverse bone per lattice.
  • the current collectors 100A and 100B are, for example, punched grids of a drawn sheet of lead or lead alloy, and the drawing direction is the direction indicated by the arrow MD in FIG.
  • a cross section C of the vertical bone 120A is a cross section taken along the line IIa-IIa in FIG. 1
  • a cross section G of the horizontal bone 120B is a cross section taken along the IIb-IIb line.
  • the metal structure of the stretched sheet easily forms a layered or fibrous structure extending in the stretching direction. Therefore, the cross section C has a striped pattern.
  • a pattern may be formed by cutting a layered or fibrous structure.
  • FIG. 2A is an example of a photograph of a cross section C of the vertical bone 120A, and the cross section has an octagonal shape, and a striped pattern of a metal structure can be seen.
  • FIG. 2B is a conceptual diagram of an example of an octagonal cross section C imitating FIG. 2A.
  • FIG. 3 is an example of a photograph of a cross section G of the transverse bone 120B, and a pattern of a cross section perpendicular to the fiber length of the metal fibrous structure can be seen in the cross section.
  • most of the right and left sides of the octagonal cross section C is the second portion 220, and the other outer peripheral region is the first portion 210.
  • the fringes of fibrous tissue form an angle ⁇ 1 of less than 45 ° with the contour of section C (line S1).
  • the fringe (tangent S2) has an angle ⁇ 2 that exceeds 45 ° with the contour (line S1) of the cross section C.
  • the outermost layer of the second portion 220 has a region in which a striped pattern of fibrous tissue having a thickness of less than about 55 ⁇ m is observed, but such a thin portion constitutes the first portion 210. do not do.
  • FIG. 4 is a conceptual view of a cross section C showing the progress of internal bone corrosion.
  • the portion where the shallow corrosion layer is formed is the first portion where the fibrous structure extends along the contour of the cross section C, and even if the corrosion progresses, the corrosion layer is difficult to form deep.
  • peeling tends to occur near the interface between the current collector and the electrode material. Therefore, it is considered that the stress that the current collector is about to deform is easily relieved.
  • the portion where the wedge-shaped deep corrosion layer is formed is the second portion. When the deep corrosion layer is formed, the current collector is likely to be unevenly deformed, the current collector is elongated, and the electrode material is likely to drop off.
  • An electrode plate for a lead storage battery according to the present invention includes the above current collector and an electrode material held by the current collector.
  • the electrode material is a portion other than the current collector, but when a mat mainly composed of nonwoven fabric is attached to the electrode plate, the mat is not included in the electrode material.
  • the thickness of the electrode plate includes the mat. This is because the mat is used integrally with the electrode plate.
  • the thickness of the mat is included in the thickness of the separator.
  • the current collector is suitable for application to the positive electrode plate, but may be applied to the negative electrode plate.
  • the density of the electrode material may be, for example, 3.6 g / cm 3 or more. Further, from the viewpoint of ensuring a sufficient initial capacity, the electrode material density is preferably 4.8 g / cm 3 or less. However, if the first partial ratio is less than 60%, and the electrode material density becomes higher than 4.4 g / cm 3 , the electrode plate is likely to be cracked. Therefore, for example, when charging / discharging is repeated at a 5-hour rate current, deterioration may progress or charge acceptability after overcharging may deteriorate.
  • the first partial ratio is 60% or more, even if the electrode material density is as high as 4.4 g / cm 3 or more, cracks are less likely to occur in the electrode plate, deterioration in repeated discharge and charge acceptance after overcharge. Sexual deterioration is suppressed.
  • the density of the positive electrode material means the value of the bulk density of the already formed positive electrode material in a fully charged state, and is measured as follows.
  • the battery that has just been formed or has just been used is fully charged, disassembled, and the obtained positive electrode plate is washed with water and dried to remove the electrolytic solution in the positive electrode plate.
  • the washing with water is carried out by pressing a pH test paper against the surface of the washed electrode plate until it is confirmed that the color of the test paper does not change. However, the time for washing with water is within 2 hours. Is dried for about 6 hours at 60 ° C. ⁇ 5 ° C.
  • the adhesive member is removed from the electrode plate by peeling.
  • the positive electrode material is separated from the positive plate to obtain an unground measurement sample.
  • the mercury was filled at a pressure of 0.5 psia or more and 0.55 psia or less ( ⁇ 3.45 kPa or more and 3.79 kPa or less) to measure the bulk volume of the positive electrode material,
  • the bulk density of the positive electrode material is obtained by dividing the mass of the measurement sample by the bulk volume.
  • the volume obtained by subtracting the volume of mercury injected from the volume of the measurement container is the bulk volume.
  • the density of the positive electrode material can be measured using an automatic porosimeter (Autopore IV9505) manufactured by Shimadzu Corporation.
  • the electrode material When the charge / discharge cycle is repeated at a current of 5 hours, the electrode material repeatedly expands and contracts, so that the interface between the current collector and the electrode material is easily physically separated. Assuming that the amount of electrode material is constant, the volume of the electrode material decreases as the density of the electrode material increases, and the amount of overpaste decreases.
  • the overpaste is an electrode material portion that covers the outermost surface of the current collector in the thickness direction. In general, when the amount of overpaste is small, the electrode plate is more likely to be deteriorated, and the decrease in discharge capacity due to repeated cycles is considered to increase.
  • the maximum thickness T of the electrode material and the thickness t of the current collector satisfy T ⁇ t ⁇ 1 mm.
  • (Tt) / 2 corresponds to the thickness of the overpaste. Since the current collector has excellent corrosion resistance and is unlikely to expand due to corrosion, the current collector is covered with a thick electrode material from the viewpoint of suppressing corrosion (or suppressing contact with the electrolytic solution). No need. Therefore, for example, even in a situation where the current collector is exposed from the electrode material and the current collector is in direct contact with the electrolytic solution, deterioration of the current collector due to corrosion is unlikely to proceed. Therefore, even an electrode plate satisfying Tt ⁇ 1 mm can be used for a long period of time, and Tt ⁇ 0 mm may be satisfied.
  • the negative electrode plate of the lead storage battery is composed of a negative electrode current collector and a negative electrode material.
  • the negative electrode collector for a large lead acid battery may be formed by casting lead (Pb) or a lead alloy.
  • Pb-Ca-based alloy As the lead or lead alloy used for the current collector, Pb-Ca-based alloy, Pb-Ca-Sn-based alloy, and lead having a purity of three-nine or higher are preferably used. These lead or lead alloy may further contain Ba, Ag, Al, Bi, As, Se, Cu and the like as additional elements.
  • the negative electrode current collector may have a plurality of lead alloy layers having different compositions.
  • the negative electrode material contains, as an essential component, a negative electrode active material (lead or lead sulfate) that develops a capacity by a redox reaction, and may contain additives such as an organic shrinkage inhibitor, a carbonaceous material, and barium sulfate.
  • a negative electrode active material lead or lead sulfate
  • the negative electrode active material in the charged state is spongy lead, but the unformed negative electrode plate is usually produced by using lead powder.
  • At least one selected from the group consisting of lignins and / or synthetic organic stabilizers may be used as the organic stabilizer.
  • lignins include lignin and lignin derivatives.
  • the lignin derivative include lignin sulfonic acid or salts thereof (alkali metal salts such as sodium salts).
  • the synthetic organic anti-shrink agent is an organic polymer containing elemental sulfur, and generally contains a plurality of aromatic rings in the molecule and also contains elemental sulfur as a sulfur-containing group.
  • the sulfur-containing groups a stable form of a sulfonic acid group or a sulfonyl group is preferable.
  • the sulfonic acid group may be present in an acid form or in a salt form such as Na salt.
  • a condensate of a compound having a sulfur-containing group and an aromatic ring with an aldehyde compound is preferable.
  • the aromatic ring include a benzene ring and a naphthalene ring.
  • the plurality of aromatic rings may be linked by a direct bond or a linking group (for example, an alkylene group, a sulfone group, etc.). Examples of such a structure include biphenyl, bisphenylalkane, and bisphenylsulfone.
  • Examples of the compound having an aromatic ring include compounds having the above aromatic ring and a hydroxy group and / or an amino group.
  • the hydroxy group or amino group may be directly bonded to the aromatic ring, or may be bonded as an alkyl chain having a hydroxy group or amino group.
  • the compound having an aromatic ring is preferably a bisphenol compound, a hydroxybiphenyl compound, a hydroxynaphthalene compound, a phenol compound or the like.
  • the compound having an aromatic ring may further have a substituent.
  • the organic anti-shrink agent may contain one kind of the residue of these compounds, or may contain plural kinds thereof.
  • bisphenol compound bisphenol A, bisphenol S, bisphenol F and the like are preferable.
  • the sulfur-containing group may be directly bonded to the aromatic ring contained in the compound, for example, may be bonded to the aromatic ring as an alkyl chain having a sulfur-containing group.
  • a condensation product of an aldehyde compound with a compound having an aromatic ring as described above and a monocyclic aromatic compound (aminobenzenesulfonic acid, alkylaminobenzenesulfonic acid, phenolsulfonic acid or a substituted product thereof) is used.
  • a monocyclic aromatic compound aminobenzenesulfonic acid, alkylaminobenzenesulfonic acid, phenolsulfonic acid or a substituted product thereof.
  • the content of the organic anti-shrink agent contained in the negative electrode material is, for example, preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and further preferably 0.05% by mass or more. On the other hand, 1.0 mass% or less is preferable, 0.8 mass% or less is more preferable, and 0.5 mass% or less is further preferable. These lower limit values and upper limit values can be arbitrarily combined.
  • the content of the organic anti-shrink agent contained in the negative electrode material is the content in the negative electrode material collected by the method described below from the already-formed fully charged lead storage battery.
  • carbon black As the carbonaceous material contained in the negative electrode material, carbon black, graphite, hard carbon, soft carbon or the like can be used.
  • carbon black include acetylene black, furnace black and lamp black.
  • Furness black includes Ketjen black (trade name).
  • the graphite may be any carbon material having a graphite type crystal structure, and may be either artificial graphite or natural graphite.
  • the content of the carbonaceous material in the negative electrode material is, for example, preferably 0.05% by mass or more, and more preferably 0.2% by mass or more. On the other hand, 4.0 mass% or less is preferable, 3 mass% or less is more preferable, and 2 mass% or less is further preferable. These lower limit values and upper limit values can be arbitrarily combined.
  • the content of barium sulfate in the negative electrode material is, for example, preferably 0.5% by mass or more, more preferably 1% by mass or more, and further preferably 1.3% by mass or more. On the other hand, 3.0 mass% or less is preferable, 2.5 mass% or less is more preferable, and 2 mass% or less is further preferable. These lower limit values and upper limit values can be arbitrarily combined.
  • the lead-acid battery after chemical formation should be fully charged and then disassembled to obtain the negative electrode plate to be analyzed.
  • the obtained negative electrode plate is washed with water and dried to remove the electrolytic solution in the negative electrode plate.
  • the washing with water is carried out by pressing a pH test paper against the surface of the washed negative electrode plate until it is confirmed that the color of the test paper does not change.
  • the time for washing with water is within 2 hours. Is dried in a reduced pressure environment for about 6 hours at 60 ° C. ⁇ 5 ° C. After drying, when the negative electrode plate includes a sticking member, the sticking member is removed from the negative electrode plate by peeling.
  • the negative electrode An unground sample S is obtained by separating the negative electrode material from the plate.
  • the UV-Visible absorption spectrum of the filtrate to be analyzed The content of the organic shrinkproofing agent in the negative electrode material is quantified using the spectral intensity and the calibration curve prepared in advance. Unable to rigorously specify the structural formula of the organic shrinkage agent to be analyzed, if the calibration curve of the same organic shrinkage agent cannot be used, UV-visible absorption spectrum similar to the organic shrinkage agent to be analyzed, infrared spectrum, A calibration curve is prepared using an organic shrinking agent that is available, showing an NMR spectrum and the like.
  • the dispersion liquid is subjected to suction filtration using a membrane filter whose mass has been measured in advance, and the membrane filter is dried together with the filtered sample in a drier at 110 ° C ⁇ 5 ° C.
  • the sample filtered out is a mixed sample of carbonaceous material and barium sulfate.
  • the mass (A) of the mixed sample is measured by subtracting the mass of the membrane filter from the total mass of the dried mixed sample and the membrane filter.
  • the dried mixed sample is put into a crucible together with a membrane filter, and is burnt at a temperature of 700 ° C. or higher.
  • the remaining residue is barium oxide.
  • the mass of barium oxide is converted into the mass of barium sulfate to obtain the mass (B) of barium sulfate.
  • the mass B is subtracted from the mass A to calculate the mass of the carbonaceous material.
  • the negative electrode plate can be formed by filling a negative electrode current collector with a negative electrode paste, aging and drying to prepare an unformed negative electrode plate, and then forming the unformed negative electrode plate.
  • the negative electrode paste is prepared by adding water and sulfuric acid to lead powder and various additives and kneading. In the aging step, it is preferable to age the unformed negative electrode plate at a temperature higher than room temperature and a high humidity.
  • the formation can be performed by charging the electrode group while immersing the electrode group including the unformed negative electrode plate in the electrolytic solution containing sulfuric acid in the battery case of the lead storage battery. However, the formation may be performed before the lead-acid battery or the electrode group is assembled. By formation, spongy lead is produced.
  • the positive electrode plate of the lead storage battery includes a positive electrode current collector and a positive electrode material.
  • the positive electrode current collector may be formed in the same manner as the negative electrode current collector, and the positive electrode current collector for a large lead storage battery may be formed by casting lead or lead alloy.
  • the lead or lead alloy used for the positive electrode current collector is preferably a Pb-Ca-based alloy or a Pb-Ca-Sn-based alloy from the viewpoints of corrosion resistance and mechanical strength, and pure lead (99.9% or higher) having a purity of three nines or more. ) May be used.
  • the positive electrode current collector may have lead alloy layers having different compositions, and may have a plurality of alloy layers.
  • the positive electrode material contains a positive electrode active material (lead dioxide or lead sulfate) that develops capacity by a redox reaction.
  • the positive electrode material may contain an additive, if necessary.
  • the unformed positive electrode plate is obtained by filling a positive electrode current collector with a positive electrode paste, aging and drying. After that, an unformed positive electrode plate is formed.
  • the positive electrode paste is prepared by kneading lead powder, additives, water, sulfuric acid and the like.
  • the electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled if necessary.
  • the specific gravity of the electrolytic solution at 20 ° C. in the already-formed fully charged lead-acid battery is, for example, 1.20 to 1.35, and preferably 1.25 to 1.32.
  • a separator is usually arranged between the negative electrode plate and the positive electrode plate.
  • a nonwoven fabric, a microporous membrane, or the like is used for the separator.
  • a non-woven fabric is a mat in which fibers are entwined without being woven, and the fibers are the main components. For example, 60% by mass or more of the nonwoven fabric is formed of fibers.
  • the non-woven fabric may include components other than fibers, such as acid-resistant inorganic powder and a polymer as a binder.
  • the microporous membrane is a porous sheet mainly composed of components other than fiber components.
  • a composition containing a pore-forming agent (polymer powder, oil, etc.) is extruded into a sheet, and then the pore-forming agent is removed. It is obtained by forming pores.
  • the microporous membrane preferably has a polymer component as a main component.
  • polymer component polyolefins such as polyethylene and polypropylene are preferable.
  • FIG. 5 shows a perspective view of the external appearance of a lead storage battery according to an embodiment of the present invention.
  • the lead storage battery 1 includes a battery case 12 that contains an electrode group 11 and an electrolytic solution (not shown).
  • the inside of the battery case 12 is partitioned into a plurality of cell chambers 14 by partition walls 13.
  • One electrode group 11 is housed in each cell chamber 14.
  • the opening of the battery case 12 is closed by a lid 15 having a negative electrode terminal 16 and a positive electrode terminal 17.
  • the lid 15 is provided with a liquid port stopper 18 for each cell chamber. When replenishing water, the liquid port plug 18 is removed to replenish the replenishing water.
  • the liquid port plug 18 may have a function of discharging the gas generated in the cell chamber 14 to the outside of the battery.
  • the electrode group 11 is configured by stacking a plurality of negative electrode plates 2 and positive electrode plates 3 with a separator 4 in between.
  • the bag-shaped separator 4 that accommodates the negative electrode plate 2 is shown, but the form of the separator is not particularly limited.
  • the negative electrode shelf 6 that connects the ears 2 a of the plurality of negative electrode plates 2 in parallel is connected to the through-connecting body 8, and the ears 3 a of the plurality of positive electrode plates 3 are connected.
  • a positive pole shelf 5 connected in parallel is connected to a positive pole 7.
  • the positive pole 7 is connected to a positive terminal 17 outside the lid 15.
  • the negative pole 9 is connected to the negative shelf 6 and the through-connector 8 is connected to the positive shelf 5.
  • the negative pole 9 is connected to a negative terminal 16 outside the lid 15.
  • Each through connection body 8 passes through a through hole provided in the partition wall 13 and connects the electrode groups 11 of the adjacent cell chambers 14 in series.
  • FIG. 5 shows an example of a liquid type battery (vent type battery), but the lead storage battery may be a control valve type battery (VRLA type).
  • VRLA type control valve type battery
  • test battery Five-hour rate discharge capacity test Using a test battery, it is carried out in a water tank at 25 ° C ⁇ 2 ° C according to the following procedure. Discharge to 1.75V / cell with constant current (current (A) 0.2 times the value described as 5 hour rate rated capacity (Ah)), then constant current (5 hour rate rated capacity (Ah) The battery is charged to a discharge amount of 135% with a current (A) 0.2 times the stated value. The same cycle is repeated 5 times to obtain the 5 hour rate discharge capacity of the 5th cycle.
  • the numerical value described as the rated capacity is a numerical value whose unit is Ah.
  • the unit of the current set based on the numerical value described as the rated capacity is A.
  • (B) Single plate overcharge test A test battery is used. Overcharge test with a current (A) that is 0.2 times the value obtained by dividing the value described as the 5 hour rate rated capacity (Ah) by the number of positive electrode plates per cell in a 75 ° C ⁇ 2 ° C water tank. The operation for 5 days and then the rest for 2 days (1 week) is repeated for 5 weeks.
  • the numerical value described as the rated capacity is the value whose unit is Ah.
  • the unit of electric current is A.
  • the period until the vertical elongation of the positive electrode current collector in the single plate overcharge test reaches 7% in terms of the initial ratio is obtained. If the period is 3.5 weeks or less, it is determined that there is a high possibility of an elongation short circuit.
  • the longitudinal elongation is obtained by measuring the dimension of the portion of the frame bone of the positive electrode current collector that is most swollen in the first direction (height direction) and comparing it with the initial dimension.
  • Electrode group compression test After fully forming the battery or fully dismantling it after use, the electrode group is pulled out from the battery case by a load measuring device (spring type hand balance manufactured by Sanko Seikosho Co., Ltd.), At this time, the pull-out load is measured. It should be noted that, at the time of measuring the pull-out load, it is assumed that the electrolytic solution is contained, and specifically, for example, the battery is turned over and left for 5 minutes or more to remove the liquid before measurement.
  • a lead storage battery comprising a positive electrode plate, a negative electrode plate, and an electrolytic solution, wherein the positive electrode plate and the negative electrode plate are a current collector and an electrode material held by the current collector, respectively.
  • the current collector has a frame bone, an ear provided on the frame bone, and an internal bone inside the frame bone, and the frame bone is an upper portion continuous with the ear.
  • a first portion that extends and a second portion other than the first portion, and a ratio of the length of the contour corresponding to the second portion to the entire length of the contour of the cross section is less than 50%, the ratio t b / t a thickness t b of the inner bone relative to the thickness t a of the ear is below 97% 60%, lead-acid batteries.
  • the ratio of the length of the contour corresponding to the second portion to the total length of the contour of the cross section is 40% or less.
  • the ratio of the length of the contour corresponding to the second portion to the total length of the contour of the cross section is 30% or less.
  • the positive electrode plate and the negative electrode plate are alternately laminated with a separator interposed therebetween to form an electrode group, and the electrode group is applied in a laminating direction. Pressurized, lead acid battery.
  • a lead storage battery according to any one of (1) to (3) above, wherein the extraction load of the electrode group including the positive electrode plate and the negative electrode plate is 1.6 times or more the self-weight of the electrode group.
  • at least one end portion in the bone width direction is thinner than a central portion in the bone width direction that intersects with the extending direction of the intermediate bones, and the ear thickness t a split thickness t b of the central portion with respect to t b / t a is comprises deforming to be equal to or less than 97% 60%
  • the method of lead-acid batteries is provided.
  • the specifications of the current collector A1 are as follows. Internal bone thickness: 0.95 mm Frame bone height H: 115 mm Width of frame bone W: 137 mm Second part ratio of section C: 40% (first part ratio: 60%) Ratio of internal bone thickness to ear thickness (t b / t a ): 80%
  • Negative Electrode Plate Lead powder, water, dilute sulfuric acid, barium sulfate, carbon black, and 0.2 mass% of lignin as an organic shrink proofing agent are mixed to prepare a negative electrode paste.
  • the grid body A1 is filled with a negative electrode paste and aged and dried to obtain an unformed negative electrode plate.
  • test battery a sulfuric acid aqueous solution is used as the electrolytic solution.
  • the specific gravity of the electrolytic solution used in the test battery X at 20 ° C. is 1.28.
  • the specific gravity of the electrolytic solution at 20 ° C. is adjusted to 1.28 in each fully charged test battery after formation.
  • test battery X is assembled using the positive electrode current collector carrying the positive electrode material.
  • the test battery is a 2V cell.
  • the test battery X is composed of one positive electrode current collector and two negative electrode plates sandwiching it.
  • the negative electrode plate is housed in the bag-shaped separator.
  • test battery Y is assembled using a positive electrode plate in which a positive electrode material is carried on a positive electrode current collector.
  • An unformed negative electrode plate is housed in a bag-shaped separator, and an electrode group is formed by 6 unformed positive electrode plates and 7 unformed negative electrode plates.
  • the electrode group is housed in a polypropylene battery case together with the electrolytic solution and subjected to chemical formation in the battery case to prepare a test battery Y (12 V, 5 hour rate rated capacity 30 Ah).
  • test battery Y1 is produced using the positive electrode plate and the negative electrode plate.
  • test batteries are produced in the same manner as above except that the t b / t a ratio and the second partial ratio of the cross section C are changed as shown in Table 1. In the case t b / t a ratio of 100%, the processing of the current collector by pressure is not applied.
  • Table 1 shows the results of the 5-hour rate discharge capacity test for the batteries Y1 to Y8 and YR1 to YR16.
  • Figure 6 shows a t b / t a, the relationship between the 5-hour rate discharge capacity. From FIG. 6, as the ratio t b / t a thickness t b of the inner bone with respect to the thickness t a of the ear is small, it can be seen that the 5-hour rate discharge capacity increases. It is considered that this is because the binding property between the current collector and the electrode material is improved. The smaller the second partial rate is, the more remarkable the increase of the discharge capacity for 5 hours is.
  • Table 2 shows the results of the single-plate overcharge test of the batteries X4, X5, XR4, and XR13, which were manufactured using the same positive electrode current collectors as the batteries Y4, Y5, YR4, and YR13.
  • the overcharge period in the single-plate overcharge test is the period until the longitudinal elongation of the positive electrode current collector reaches 7% in terms of the initial ratio.
  • FIG. 7 shows the relationship between t b / t a and the overcharge period in the single plate overcharge test. From FIG. 7, if the ratio of the thickness of the inner bone to the thickness of the ear of the current collector is 60% or more, the period until the longitudinal elongation of the positive electrode current collector becomes 7% in the initial ratio is 3.5. You can see that it exceeds the week.
  • Fig. 8 shows a bar graph of the ratio of the 5-hour rate discharge capacity when the electrode group is not compressed to the 5-hour rate discharge capacity when the electrode group is pressed. From FIG. 8, when the ratio of the outer circumference of the second portion is 17% and the ratio of the thickness of the inner bone to the thickness of the ear of the current collector is 80%, between the current collector and the positive electrode material due to compression, It can be seen that the effect of improving the binding property becomes remarkable.
  • the battery P12Y4 is used in the same manner as the battery Y4 except that the electrode group is pressed in the stacking direction so that the extraction load is 1.2 times, 1.6 times, 2 times, and 2.3 times the self-weight of the electrode group.
  • P16Y4, P20Y4, and P23Y4 and the influence of the difference in the withdrawal load on the 5-hour rate discharge capacity is examined.
  • the results are shown in Table 4.
  • the ratio of the 5 hour rate discharge capacity in Table 4 is 1.2 times, 1.6 times, and 5 times the rate of discharge capacity with respect to the 5 hour rate discharge capacity when the drawing load is 1.1 times the electrode group own weight (battery Y4). It is the ratio of the 5-hour rate discharge capacity in the case of 2 times and 2.3 times.
  • the extraction load is 1.1 times the weight of the electrode group.
  • Fig. 9 shows a bar graph of the ratio of the 5-hour rate discharge capacity depending on the extraction load of the electrode group. From FIG. 9, it can be seen that the discharge capacity of the 5-hour rate is remarkably improved by making the extraction load of the electrode group 1.6 times or more the self-weight of the electrode group.
  • SYR13 and SYR14 are produced, and the influence of the presence or absence of Sb 2 O 3 addition to the positive electrode material on the 5-hour discharge capacity is examined.
  • the results are shown in Table 5.
  • the ratio of 5-hour rate discharge capacity in Table 5 is the ratio of 5-hour rate discharge capacity when Sb 2 O 3 is added for 5 hour rate discharge capacity when the positive electrode material Sb 2 O 3 was not added.
  • Figure 10 shows the ratio of 5-hour rate discharge capacity when Sb 2 O 3 is added for 5 hour rate discharge capacity when the positive electrode material Sb 2 O 3 was not added as a bar graph. From FIG. 10, when the ratio of the outer circumference of the second portion is 17% and the ratio of the thickness of the inner bone to the thickness of the ear of the current collector is 80%, the current collector and the positive electrode obtained by adding Sb 2 O 3 It can be seen that the effect of improving the binding property between the electrode materials becomes remarkable.
  • the lead storage battery current collector according to the present invention is applicable to control valve type and liquid type lead storage batteries, and is used as a starting power source for automobiles, motorcycles, etc., and industrial power storage devices for electric vehicles (forklifts, etc.), etc. It can be suitably used as a power source of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

集電体は、枠骨と、枠骨に設けられた耳と、枠骨の内側の内骨とを有し、枠骨は、耳と連続する上部要素と、上部要素と対向する下部要素と、上部要素と下部要素とを連結する一対の側部要素とを具備する。内骨は、上部要素から下部要素に向かう第1方向に延びる縦骨と、一方の側部要素から他方の側部要素に向かう第2方向に延びる横骨とを具備する。縦骨の上部要素に平行、かつ厚さ方向に平行な断面において、金属組織の縞模様が見られ、断面の外周領域は、縞の方向が集電体の外表面に沿う第1部分と、外周と交わる第2部分とで構成され、外周の全長に占める第2部分の外周の割合は、50%未満であり、集電体が圧力により加工され、耳の厚さtに対する内骨の厚さtの割合t/tが60%以上97%以下である、鉛蓄電池。

Description

鉛蓄電池
 本発明は、鉛蓄電池に関する。
 鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、正極板と負極板とがセパレータを介して交互に積層された電極群を具備する。電極板は、集電体と、集電体に保持された電極材料とで構成されている。
 特許文献1は、鉛合金の圧延板をプレス打ち抜きしてなる鉛格子板において、内部の縦および横の桟の厚さを外枠の厚さよりも薄くし、かつ外枠の厚さが0.8~1.5mm、内部の桟の厚さが0.6~0.8mmの範囲にあることを特徴とする鉛蓄電池用鉛格子板を提案している。また、厚さ1.2~1.5mmの鉛合金の圧延板をプレス打ち抜きして得られる鉛格子板の内部枠に対して、厚さ方向に変形を加えて内部の縦及び横の桟の厚さを0.6~0.8mmの範囲に設定したことを特徴とする鉛蓄電池用鉛格子板を提案している。
 上記鉛格子板においては、外枠の厚さに対して内枠の厚さを薄くして活物質の保持面を外枠に対して段状に凹設した形状であるため、単位鉛格子板当たりの活物質の保持量は均一厚さの鉛格子板に比べて著しく増大せしめることができ、しかも鉛格子板表面の粗面加工を行わずとも活物質の保持力も大巾に向上し得るものとなっている。
特開昭51-60936号公報
 内部の縦および横の桟の厚さを外枠の厚さよりも薄くする場合、鉛格子板表面の粗面加工を行わなくても活物質の保持力を向上させるとともに、更に活物質の保持量を増大させることができるとされている。
 しかしながら、活物質の保持力を向上させたとしても、集電体の腐食を抑制しない限り、集電体の伸びを抑制することは困難であり、電極材料の脱落が生じ得る。電極材料の脱落が生じた場合には、必然的に電池容量の低下が起こる。
 本発明の一側面は、正極板と、負極板と、電解液と、を具備する鉛蓄電池であって、正極板および負極板が、それぞれ、集電体と、集電体に保持された電極材料とを備え、枠骨に設けられた耳と、枠骨の内側の内骨とを有し、枠骨が、耳と連続する上部要素と、上部要素と対向する下部要素と、上部要素と下部要素とを連結する一対の側部要素とを具備し、内骨が、上部要素から下部要素に向かう第1方向に延びる縦骨と、一方の側部要素から他方の側部要素に向かう第2方向に延びる横骨とを具備し、縦骨の第1方向に垂直な断面において、金属の繊維状組織の縞模様が見られ、前記断面の外周領域は、前記繊維状組織が前記断面の輪郭に沿って延びる第1部分と、前記第1部分以外の第2部分とで構成され、前記断面の輪郭の全長に占める前記第2部分に対応する輪郭の長さの割合は、50%未満であり、前記耳の厚さtに対する前記内骨の厚さtの割合t/tが60%以上97%以下である、鉛蓄電池に関する。
 本発明によれば、鉛蓄電池の5時間率放電容量試験における電池容量を高めることができる。
本発明の一実施形態に係る鉛蓄電池用集電体の外観を示す平面図である。 本発明の別の実施形態に係る鉛蓄電池用集電体の外観を示す平面図である。 縦骨の第1方向に垂直な断面写真である。 断面Cの概念図である。 繊維状組織の断面が見られる内骨の断面写真である。 内骨の腐食の進行状態を示す断面概念図である。 本発明の一実施形態に係る鉛蓄電池の外観を示す斜視図である。 本発明の一実施形態に係る鉛蓄電池のt/tと、5時間率放電容量との関係について、第2部分率による違いを示すグラフである。 本発明の一実施形態に係る鉛蓄電池のt/tと、過充電状態における正極集電体の縦伸びが初期比で7%となるまでの期間との関係を示すグラフである。 本発明の一実施形態に係る鉛蓄電池の電極群に圧迫をかけない場合の5時間率放電容量に対する圧迫をかける場合の5時間率放電容量の比率を示すグラフである。 本発明の一実施形態に係る鉛蓄電池の電極群の引き抜き荷重と、5時間率放電容量の比率との関係を示すグラフである。 本発明の一実施形態に係る鉛蓄電池の正極電極材料にSb添加しない場合の5時間率放電容量に対するSb添加する場合の5時間率放電容量の比率を示すグラフである。
 本発明の一態様に係る鉛蓄電池は、正極板と、負極板と、電解液とを具備する。正極板および負極板は、それぞれ、集電体と、集電体に保持された電極材料とを備える。集電体は、枠骨と、枠骨に設けられた耳と、枠骨の内側の内骨とを有する。内骨は網目状であってもよい。枠骨は、耳と連続する上部要素と、上部要素と対向する下部要素と、上部要素と下部要素とを連結する一対の側部要素とを具備する。内骨は、上部要素から下部要素に向かう第1方向に延びる縦骨と、一方の側部要素から他方の側部要素に向かう第2方向に延びる横骨とを具備する。第1方向とは、側部要素に平行な方向であり、第2方向とは、上部要素および下部要素に平行な方向である。なお、集電体は、格子体とも称する。ただし、集電体もしくは格子体の骨格は、格子状もしくは網目状に限定されるものではない。
 縦骨の第1方向に垂直な断面、すなわち上部要素に平行かつ厚さ方向に平行な断面(以下、断面Cとも称する。)には、金属の繊維状組織の縞模様が見られる。断面Cの外周領域は、繊維状組織(縞の方向)が断面Cの輪郭(以下、輪郭Cとも称する。)に沿って延びる第1部分と、第1部分以外の第2部分とで構成されている。
 ここで、輪郭Cの全長に占める第2部分に対応する輪郭(以下、第2輪郭部とも称する。)の割合(以下、第2部分率とも称する。)は50%未満に制御され、かつ、耳の厚さtに対する内骨の厚さtの割合t/tが60%以上97%以下に制御される。第2部分率を50%未満にすると、集電体の腐食による伸びが顕著に抑制される。t/tを60%以上97%以下にすると、集電体の表面が腐食しやすい状態となる。これらの効果が相乗的に奏されることで、良好な5時間率放電容量試験における電池容量を向上させることができる。t/tは、65%以上、95%以下が好ましく、70%以上、90%以下がより好ましく、75%以上、85%以下がよりさらに好ましい。
 耳の厚さtとは、耳の厚み方向における長さの平均値である。tは、例えば1.0mm~1.5mmであればよい。耳の厚み方向における長さの平均値は、耳の周縁から2mm以上内側の任意の3点における厚さの平均値であればよい。
 内骨の厚さtとは、格子体もしくは電極板の内骨の厚み方向における長さの平均値である。内骨の厚み方向における長さの平均値は、測定対象の内骨の骨幅方向における中央部の厚さの平均値であればよい。測定対象の内骨は縦骨である。測定位置は、耳および足を除く集電体の第1方向における寸法の上端から1/3の位置と2/3の位置である。それらの位置が縦骨と横骨との交差部に該当する場合、測定位置を少し移動させる。具体的には、上端から1/3の縦骨の測定位置の6割以上および上端から2/3の縦骨の測定位置の6割以上の測定値の平均値を算出すればよい。
 tは、例えば0.65mm~0.98mmであればよい。tが0.65mm以上であれば、腐食を抑制する効果が大きくなり、0.98mm以下であれば、集電体による電極材料の保持力が高まり、電極材料の脱落を抑制しやすくなる。なお、tが1.5mm以上の比較的厚い打ち抜き集電体の場合、一般的には、輪郭Cに占める第2輪郭部の割合が大きくなる傾向がある。このように第2輪郭部の割合が大きい場合でも、プレス加工等により、第2部分率を50%未満、更には40%以下にまで低減させることは困難ではない。
 本発明の一態様に係る鉛蓄電池では、好ましくは、集電体が、例えば、プレス機等による圧力を付与することにより加工される。t/tは、60%未満の場合、過充電後の集電体の伸び量が大きくなり適切でない。
 すなわち、上記鉛蓄電池の製造方法は、集電体を準備する工程と、準備された集電体を含む正極板または負極板を得る工程とを有する。ここで、集電体を準備する工程は、圧延板を準備する工程と、圧延板に対して打ち抜き加工を行うことにより、格子状に形成された複数の中間骨を有する中間格子体を形成する工程と、中間格子体に対して中間格子体の厚さ方向からプレス加工を行って内骨の少なくとも一部を形成する工程とを含む。更に、プレス加工は、複数の中間骨の少なくとも一部において、中間骨の延びる方向と交差する骨幅方向における中央部よりも骨幅方向における少なくとも一方の端部が薄くなり、かつ耳の厚さtに対する中央部の厚さtの割合t/tが60%以上97%以下となるように変形させることを含む。
 以下、集電体の各要素について更に説明する。
 縦骨は、側部要素と平行に延びていてもよく、側部要素に対して斜め方向に延びていてもよい。また、縦骨は、直線状でもよく、曲線状でもよく、多少の折れ曲がりを有してもよい。すなわち、縦骨は、第1方向に向かうベクトルが第2方向に向かうベクトルよりも大きくなるように延びていればよい。
 横骨は、上部要素または下部要素と平行に延びていてもよく、上部要素または下部要素に対して斜め方向に延びていてもよい。また、横骨は、直線状でもよく、曲線状でもよく、多少の折れ曲がりを有してもよい。すなわち、横骨は、第2方向に向かうベクトルが第1方向に向かうベクトルよりも大きくなるように延びていればよい。枠骨は矩形状であってもよい。
 断面Cの輪郭とは、縦骨の外表面に対応する線を意味する。断面Cの外周領域とは、断面Cの輪郭に沿う周縁領域であり、外表面に対応する線から少なくとも55μm以上の深さを有し、好ましくは100μm以上の深さを有する周縁領域である。
 第2部分においては縞模様が観測されなくてもよく、外周領域の深さ方向に延びる縞模様が観測されてもよい。すなわち、第2部分の外表面には、繊維状組織の繊維長に垂直な断面が露出しやすい。第2部分率をより小さくする場合、断面Cの外周領域の外表面に、繊維状組織の繊維長に垂直な断面が露出しにくくなる。
 繊維状組織の繊維長に垂直な断面は、多くの粒界を有する。よって、第2部分では、縦骨の腐食が深くまで楔状に進行しやすい。深い腐食が進行すると、集電体の伸びが大きくなる傾向がある。一方、第1部分では、縦骨の腐食が浅く進行しやすい。浅い腐食による集電体の伸びは小さい。すなわち、同じ腐食量でも、第2部分率が小さいほど、集電体の深い領域まで腐食が進行しにくくなり、集電体の伸びが抑制され、電極材料の脱落が抑制される。第2部分率を40%以下とすることで、集電体の伸びはより顕著に抑制される。
 一方、横骨の第2方向に垂直な断面、すなわち側部要素に平行かつ厚さ方向に平行な断面(以下、断面Gとも称する。)には、金属の繊維状組織の縞模様がほとんど見られず、一般的には繊維状組織の繊維長に垂直な断面が見られる。断面Gの外周領域は、通常、ほぼ全周が断面Cにおける第2部分に相当する。つまり断面Gの外周領域はほぼ全周が第2方向に延びる繊維状組織で構成されている。よって、断面Gの外周領域では、腐食量が同じでも集電体の伸びは抑制される。
 第2部分率が50%未満(好ましくは40%以下)になると、腐食の進行の程度は、内骨の全体で均一となる傾向がある。このような腐食の均一化により、腐食部分の偏在が抑制され、集電体の一方向への伸びが抑制されるものと考えられる。
 ここで、第1部分率および第2部分率は、意図的に制御可能である。元々、第2部分率が大きい縦骨であっても、第2部分をつぶすように縦骨を変形させることも可能である。例えばプレス加工で縦骨を変形させる場合、プレスのスピード、プレス圧力、金型形状などにより、第1部分率を任意に制御可能である。すなわち、プレス加工で縦骨を変形させることが、第1部分率を大きくするための十分条件ではなく、プレス加工の条件を適宜制御することが必要である。第1部分率が大きくなると、集電体の伸びが抑制され、電極材料の脱落が抑制される。
 第1部分において、繊維状組織(縞の方向)が断面Cの外周領域の輪郭に沿って延びているとは、以下の状態をいうものとする。まず、集電体の枠骨の内側を、枠骨の上部要素側の上部領域と、枠骨の下部要素側の下部領域と、上部領域と下部領域との間の中部領域とに三等分されるように切断する。その際、複数の縦骨において、第1方向に垂直(上部要素に平行かつ厚さ方向に平行)な断面Cの列が4つ形成される。すなわち、上部領域および下部領域にそれぞれ1つの断面Cの列が形成され、中部領域には2つの断面Cの列が形成される。三等分の分割ラインが縦骨と横骨との交差部(ノード)に該当する場合には、できるだけ交差部間の縦骨部分に断面Cが形成されるように、分割ラインを全体的にまたは部分的に少し移動させて集電体を三分割してもよい。なお、集電体の枠骨の内側を三分割する際、耳もしくは足の寸法は考慮しない。
 次に、4つの列のうち、任意の2つの列から観察対象の断面Cを複数(2つの列に含まれる断面Cの6割以上)選択する。選択された断面Cの外周領域のうち、繊維状組織の縞が断面Cの輪郭と45°未満の角度を有する部分は第1部分である。具体的には、各断面Cの輪郭C上の任意の点Pにおいて、点Pの接線S1を描き、更に接線S1の垂線Lを、点Pを通るように描く。次に、垂線L上の点Pから55μmの深さに存在し、かつ垂線Lと交差する縞の接線S2を当該交差点で描く。接線S2と接線S1との角度θが45°未満である場合、点Pは、第1部分に対応する第1輪郭部を構成している。このような観察を輪郭Cで適宜行い、第1輪郭部の長さを特定し、輪郭Cの全長に占める第1輪郭部の割合を第1部分率として求める。角度θが45°以上である場合、点Pは第2部分を構成する。繊維状組織が観測できないなどの理由で、点Pが第1輪郭部を構成するか否かを判別できないときも当該点Pは第2部分を構成する。全ての選択された断面Cにおいて第1部分率を求め、平均値を計算する。
 切断された箇所が縦骨と横骨との交差部(ノード)である場合には、当該断面を除いて平均を出せばよく、縦骨の切断位置をノードが外れるようにずらしてもよい。
 断面Cを形成する際には、電極材料を充填する前の集電体を用いてもよい。もしくは、満充電状態の鉛蓄電池を解体して電極板を取り出し、水洗して電解液を除去し、乾燥する。次いで、電極板から電極材料を除去し、マンニットで集電体の表面に付着している電極材料を除去する。準備した集電体の全体が覆われるように熱硬化性樹脂に埋め込んで樹脂を硬化させた後、硬化樹脂とともに集電体を切断すればよい。断面Cにおける金属組織の状態は、集電体の断面をエッチング処理してからマイクロスコープで撮影し、観測すればよい。
 本明細書中、鉛蓄電池の満充電状態とは、液式の電池の場合、25℃±2℃の水槽中で、定格容量として記載の数値(Ah)の0.2倍の電流(A)で2.5V/セルに達するまで定電流充電を行った後、さらに定格容量として記載の数値(Ah)の0.2倍の電流(A)で2時間、定電流充電を行った状態である。また、制御弁式の電池の場合、満充電状態とは、25℃±2℃の気槽中で、定格容量として記載の数値(Ah)の0.2倍の電流(A)で、2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流が定格容量として記載の数値(Ah)の0.005倍になった時点で充電を終了した状態である。
 なお、定格容量として記載の数値は、単位をAhとした数値である。定格容量として記載の数値を元に設定される電流の単位はAとする。
 第1部分の厚みは、55μm以上であればよい。また、一見すると第1部分に見える外周領域であっても、繊維状組織の縞模様が観測される領域の厚みが55μm未満の場合には、第1部分ではなく、第2部分と見なす。厚さ55μm以上の第1部分は、腐食の内側への入り込みを抑制する十分な作用を有する。この場合、腐食の内側への入り込みが内骨の全体で高度に均一化されやすい。よって、集電体の伸びが顕著に抑制され、電極材料の脱落も顕著に抑制される。縦骨の耐食性腐食の内側への入り込みの抑制を更に向上させる観点から、第1部分の厚みは、100μm以上が好ましい。
 なお、満充電状態の鉛蓄電池は、既化成の鉛蓄電池を満充電したものをいう。鉛蓄電池の満充電は、化成後であれば、化成直後でもよく、化成から時間が経過した後に行ってもよい。例えば、化成後で、使用中(好ましくは使用初期)の鉛蓄電池を満充電してもよい。 使用初期の電池とは、使用開始後、それほど時間が経過しておらず、ほとんど劣化していない電池をいう。
 断面Cにおける第1部分の厚みは、以下のように測定すればよい。まず、第1輪郭部上の任意の点P1において接線S1を描き、接線S1の垂線Lを、点P1を通るように描く。次に、垂線L上を点P1からXμmの深さまで移動する点Pxにおいて、垂線Lと交差する縞の接線S2を連続的に描く。このとき、接線S1と接線S2との角度が連続的に45°以下である場合には、点P1の直下の第1部分の厚みは、Xμm以上であるといえる。
 内骨の幅は、例えば0.7mm~3mmであればよい。内骨の幅とは、集電体もしくは電極板の面方向における内骨の長さ方向に垂直な幅である。内骨の幅が0.7mm以上であれば、腐食を抑制する効果が大きくなり、過充電時においても、内骨の断線を回避しやすくなる。また、内骨の幅が3mm以下であれば、集電体への電極材料の充填性が高まり、電極板の生産性が向上する。 
 腐食を十分に抑制するためには、第2部分率は40%以下が好ましく、30%以下がより好ましく、17.5%以下がよりさらに好ましい。なお、第2部分率が50%未満よりさらに小さくなった場合でも、縦骨の腐食を完全に抑制できるものではない。ただし、腐食を均一化すれば、腐食部分の偏在が抑制され、集電体の一方向への伸びが抑制されるものと考えられる。
 断面Cの形状は、特に限定されないが、八角形であることが好ましい。断面Cが八角形であると、頂点の内角が小さくなり過ぎず、頂点付近の腐食を抑制する効果が高められる。断面Cが八角形の縦骨を形成するには、例えば、断面Cが矩形である縦骨を変形させればよい。縦骨を変形させる方法は、特に限定されないが、例えば、内骨をプレス加工すればよい。その際、第2部分率が50%未満、好ましくは40%以下となるように内骨のプレス条件を適宜選択すればよい。なお、断面Cの形状を八角形とすることで、輪郭Cの全長に占める第1輪郭部の長さの割合を大きくすることが容易となる。ここで、八角形は、数学的な意味における厳密な八角形でなくてもよく、頂点が多少丸みを帯びていたり、各辺が多少屈曲していたりしてもよい。
 集電体が、鉛または鉛合金の延伸シートの打ち抜き格子体である場合、横骨の内法の合計長さLWと、縦骨の内法の合計長さWLHとは、WLH/WLW≧0.8を満たしてもよく、WLH/WLW≧1.3を満たしてもよい。この場合、集電体の腐食の内側への入り込みが進行しやすい傾向があるため、第2部分率を50%未満、更には40%以下に制御することによる、集電体の伸びの抑制がより顕著になる。ここで、各内骨の内法長さとは、格子の升目の内法における長さ、すなわち、升目を画定する矩形の空間の辺の長さ(桟長)を意味する。なお、通常、長さWLWの方向(横骨の伸びる方向)は、延伸シートの延伸方向(MD方向)に相当する。
 本発明に係る集電体は、正極板および負極板のどちらに適用してもよい。すなわち、本発明に係る電極板は、正極板でも負極板でもあり得る。ただし、集電体の腐食による伸びの抑制の観点から、本発明に係る集電体は、特に正極板の集電体として適している。
 本発明に係る集電体は、打ち抜き集電体であればよく、例えば、鉛または鉛合金の延伸シートから形成すればよい。
 本発明の一態様に係る鉛蓄電池においては、正極板と負極板とがセパレータを介して交互に積層されて電極群を構成しており、電極群が積層方向に加圧されていることが好ましい。電極群が積層方向に加圧されているとは、具体的には、電池を解体して電極群を取り出した場合には、電槽の電極群を収容するセル室の中央部の厚み方向の長さL1(対向する内壁面間の最小距離)と、電極群の中央部の厚み方向の長さL2において、L2がL1に等しい状態またはL2がL1よりも長い状態(L2≧L1)をいう。また、電極群が電槽内にある場合には、圧力の付加により、L2=L1となるように、電極群が厚み方向に圧縮されている状態をいう。圧力は、電槽の内壁面から付加されてもよく、プレス機等により外部から付加してもよい。これにより、集電体と電極材料との間の結着性を向上させることができる。
 本発明の一態様に係る鉛蓄電池は、電極群の引き抜き荷重が、該電極群の自重の1.6倍以上であってもよく、2.0倍以上がより好ましく、2.3倍以上が更に好ましい。引き抜き荷重とは、鉛蓄電池の電極群を電槽から引き抜くときに、電極群を電槽から引き抜く方向に働く力のことである。具体的には、電極群の自重に対する当該荷重の割合が所定の値を超えるときに、集電体と電極材料との間の結着性が良好になると考えられる。層状組織の露出部分の面積が大きい集電体は、電極材料との結着性が低くなる傾向がある。正極板と負極板を含む電極群の引き抜き荷重を、電極群の自重の少なくとも1.6倍以上にすることにより、電極群の緊縛状態(圧迫状態)をさらに高めることができると考えられる。これにより、集電体と電極材料との間の結着性を向上させることが可能となる。
 引き抜き荷重を測定するときの電極群および自重を測定する電極群は、いずれも正極板、負極板、セパレータおよびストラップを含む。なお、引き抜き荷重測定時は、電解液を含んだ状態を想定し、具体的には、例えば電槽を裏返し、5分間以上置いて抜液する。
 本発明の一態様に係る鉛蓄電池は、正極電極材料にSb(アンチモン)を含有することが好ましい。Sbにより、正極集電体と正極電極材料との密着性を高め、正極電極材料と集電体との間に導電性パスを確保することができる。電極群が積層方向に加圧される場合、導電性パスがより多く確保され、Sbによる導電性の向上効果が顕著に発揮される。正極電極材料と集電体との間の導電パスがより多く確保されることで、硫酸鉛の蓄積が抑制されやすくなるとともに、正極電極材料の軟化が抑制される。よって、正極電極材料の脱落も抑制されやすくなる。
 正極電極材料におけるSbの含有量とは、化成後の正極電極材料に占める、Sb元素としてのSb含有量である。Sbが化合物(例えば、酸化物または硫酸化合物)で存在していることも考えられるが、その場合も、化合物中のSbの質量のみを考慮して、Sb含有量を算出する。正極電極材料におけるアンチモン含有量は、0.01質量%以上、0.3質量%以下が好ましい。Sb含有量をこの範囲に制御することで、ガス発生が抑制され、減液を最小限にすることができる。
 正極電極材料中のSb含有量は、化成済みの満充電状態の鉛蓄電池を分解し、取り出した極板を水洗、乾燥後に電極材料を採取し、粉砕した試料を濃硝酸中に溶解させ、ICP(Inductively Coupled Plasma)発光分析を行うことにより求められる。
 以下、図面を参照しながら、本発明の実施形態について説明する。
 図1Aおよび図1Bは、それぞれ本発明の一実施形態および別の実施形態に係る集電体100Aおよび100Bの外観を示す平面図である。集電体100Aおよび100Bは、いずれも枠骨110と、枠骨110の内側の網目状の内骨120とを有する。枠骨110は、耳130と連続する上部要素111と、上部要素111と対向する下部要素112と、上部要素111と下部要素112とを連結する一対の側部要素113、114とを具備する。破線は、内骨を、上部領域、中部領域、下部領域に三等分する境界を示している。図1Aの集電体100Aは、下部要素112と連続する下部突起(足部とも称する。)132を有する。図1Bの集電体100Bでは、横骨が上部要素または下部要素に対して斜め方向に延びている。LHは縦骨の格子当たりの内法長さを示し、LWは横骨の格子当たりの内法長さを示す。
 集電体100Aおよび100Bは、例えば、鉛または鉛合金の延伸シートの打ち抜き格子体であり、延伸方向は、図1中の矢印MDで示される方向である。縦骨120Aの断面Cは、図1中のIIa-IIa線における断面であり、横骨120Bの断面Gは、IIb-IIb線における断面である。延伸シートの金属組織は、延伸方向に延びた層状もしくは繊維状の組織を形成しやすい。よって、断面Cには縞模様が生じる。一方、断面Gには、層状もしくは繊維状の組織の裁断による模様が生じ得る。
 図2Aは、縦骨120Aの断面Cの写真の一例であり、当該断面は八角形の形状を有し、かつ金属組織の縞模様が見られる。図2Bは、図2Aを模した八角形の断面Cの一例の概念図である。一方、図3は、横骨120Bの断面Gの写真の一例であり、当該断面には金属の繊維状組織の繊維長に垂直な断面による模様が見られる。図2Bにおいて、八角形の断面Cの左右両側の大部分が、第2部分220であり、それ以外の外周領域は第1部分210である。第1部分210では、繊維状組織の縞(接線S2)が断面Cの輪郭(線S1)と45°未満の角度θ1を有する。一方、第2部分220では、繊維状組織の縞が確認できないか、もしくは縞(接線S2)が断面Cの輪郭(線S1)と45°を超える角度θ2を有する。なお、図2Aには、第2部分220の最表層には厚み約55μm未満の繊維状組織の縞模様が観測される領域が存在するが、このような薄い部分は、第1部分210を構成しない。
 図4は、内骨の腐食の進行状態を示す断面Cの概念図である。浅い腐食層が形成されている部分は、繊維状組織が断面Cの輪郭に沿って延びる第1部分であり、腐食が進行しても腐食層が深くまで形成されにくい。一方、集電体と電極材料との界面付近で剥離が生じやすくなる傾向がある。よって、集電体が変形しようとする応力が緩和されやすいと考えられる。一方、くさび状の深い腐食層が形成されている部分は第2部分である。深い腐食層が形成されると、集電体の不均一な変形が生じやすく、集電体が伸び、電極材料の脱落が生じやすくなる。
 次に、鉛蓄電池の電極板について説明する。本発明に係る鉛蓄電池用電極板は、上記集電体と、集電体に保持された電極材料とを備える。電極材料とは、集電体以外の部分であるが、電極板に不織布を主体とするマットが貼り付けられている場合、マットは電極材料に含まれない。ただし、電極板の厚みは、マットを含む厚みとする。マットは電極板と一体として使用されるためである。ただし、セパレータにマットが貼り付けられている場合は、マットの厚みはセパレータの厚みに含まれる。上記集電体は、正極板に適用するのに適しているが、負極板に適用してもよい。
 電極材料の密度は、例えば3.6g/cm以上であればよい。また、十分な初期容量を確保する観点からは、電極材料密度は4.8g/cm以下が好ましい。ただし、第1部分率が60%未満では、電極材料密度が4.4g/cm以上に高くなると、電極板に亀裂が生じやすくなる。よって、例えば5時間率電流で充放電を繰り返す場合に劣化が進行したり、過充電後の充電受入性が低下したりすることがある。一方、第1部分率が60%以上では、電極材料密度が4.4g/cm以上に高くても、電極板に亀裂が生じにくく、放電を繰り返す場合の劣化や、過充電後の充電受入性の低下が抑制される。
 正極電極材料の密度は、既化成の満充電状態の正極電極材料のかさ密度の値を意味し、以下のようにして測定する。化成後もしくは使用後間もない電池を満充電してから解体し、入手した正極板に水洗と乾燥とを施すことにより、正極板中の電解液を除く。(水洗は、水洗した極板表面にpH試験紙を押し当て、試験紙の色が変化しないことが確認されるまで行う。ただし、水洗を行う時間は、2時間以内とする。水洗した正極板は、60℃±5℃で6時間程度乾燥する。乾燥後に、極板に貼付部材が含まれる場合には、剥離により極板から貼付部材が除去される。)
 次いで正極板から正極電極材料を分離して、未粉砕の測定試料を入手する。測定容器に試料を投入し、真空排気した後、0.5psia以上0.55psia以下(≒3.45kPa以上3.79kPa以下)の圧力で水銀を満たして、正極電極材料のかさ容積を測定し、測定試料の質量をかさ容積で除すことにより、正極電極材料のかさ密度を求める。なお、測定容器の容積から、水銀の注入容積を差し引いた容積をかさ容積とする。
 正極電極材料の密度は、(株)島津製作所製の自動ポロシメータ(オートポアIV9505)を用いて測定され得る。
 5時間率電流で充放電サイクルを繰り返すと、電極材料の膨張と収縮とが繰り返されるため、集電体と電極材料との界面が物理的に剥離しやすくなる。電極材料量が一定であると仮定すると、電極材料密度を高くするほどその体積が減り、オーバーペースト量は減少する。オーバーペーストとは、集電体の厚さ方向における最外面を覆う電極材料部分をいう。一般にオーバーペースト量が少ない場合、電極板はより劣化しやすくなり、サイクルの繰り返しによる放電容量の低下が大きくなると考えられる。このように、充放電サイクルの繰り返しにより集電体と電極材料との界面が物理的に剥離しやすい場合ほど、第2部分率を50%未満にするとともに、t/tを60%以上97%以下に制御することによる効果が顕著になると考えられる。電極群を積層方向に加圧することによる効果およびSbによる導電性パスの確保も顕著になる。
 次に、電極材料の最大厚みTと、集電体の厚みtとは、T-t≦1mmを満たすことが好ましい。(T-t)/2はオーバーペーストの厚さに相当する。上記集電体は、耐腐食性に優れ、腐食による集電体の伸びも生じにくいため、腐食を抑制する(もしくは電解液との接触を抑制する)観点から厚い電極材料で集電体を覆う必要がない。よって、例えば、電極材料から集電体が露出し、集電体が電解液と直接的に接触する間際のような状況でも、腐食による集電体の劣化が進行しにくい。よって、T-t≦1mmを満たすような電極板であっても、長期間の使用に供することができ、T-t<0mmであってもよい。
(負極板)
 鉛蓄電池の負極板は、負極集電体と、負極電極材料とで構成されている。大型の鉛蓄電池用の負極集電体は、鉛(Pb)または鉛合金の鋳造により形成される場合もある。
 集電体に用いる鉛もしくは鉛合金としては、Pb-Ca系合金、Pb-Ca-Sn系合金、スリーナイン以上の純度の鉛などが好ましく用いられる。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなど含んでもよい。負極集電体は、組成の異なる複数の鉛合金層を有してもよい。
 負極電極材料は、酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)を必須成分として含み、有機防縮剤、炭素質材料、硫酸バリウムなどの添加剤を含み得る。充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、鉛粉を用いて作製される。
 有機防縮剤には、リグニン類および/または合成有機防縮剤からなる群より選択される少なくとも一種を用いてもよい。リグニン類としては、リグニン、リグニン誘導体などが挙げられる。リグニン誘導体としては、リグニンスルホン酸またはその塩(ナトリウム塩などのアルカリ金属塩など)などが挙げられる。合成有機防縮剤は、硫黄元素を含む有機高分子であり、一般に、分子内に複数の芳香環を含むとともに、硫黄含有基として硫黄元素を含んでいる。硫黄含有基の中では、安定形態であるスルホン酸基もしくはスルホニル基が好ましい。スルホン酸基は、酸型で存在してもよく、Na塩のように塩型で存在してもよい。
 有機防縮剤の具体例としては、硫黄含有基を有するとともに芳香環を有する化合物のアルデヒド化合物(アルデヒドまたはその縮合物、例えば、ホルムアルデヒドなど)による縮合物が好ましい。芳香環としては、ベンゼン環、ナフタレン環などが挙げられる。芳香環を有する化合物が複数の芳香環を有する場合には、複数の芳香環は直接結合や連結基(例えば、アルキレン基、スルホン基など)などで連結していてもよい。このような構造としては、例えば、ビフェニル、ビスフェニルアルカン、ビスフェニルスルホンなどが挙げられる。芳香環を有する化合物としては、例えば、上記の芳香環と、ヒドロキシ基および/またはアミノ基とを有する化合物が挙げられる。ヒドロキシ基やアミノ基は、芳香環に直接結合していてもよく、ヒドロキシ基やアミノ基を有するアルキル鎖として結合していてもよい。芳香環を有する化合物としては、ビスフェノール化合物、ヒドロキシビフェニル化合物、ヒドロキシナフタレン化合物、フェノール化合物などが好ましい。芳香環を有する化合物は、さらに置換基を有していてもよい。有機防縮剤は、これらの化合物の残基を一種含んでもよく、複数種含んでもよい。ビスフェノール化合物としては、ビスフェノールA、ビスフェノールS、ビスフェノールFなどが好ましい。
 硫黄含有基は、化合物に含まれる芳香環に直接結合していてもよく、例えば、硫黄含有基を有するアルキル鎖として芳香環に結合していてもよい。
 また、例えば、上記の芳香環を有する化合物と、単環式の芳香族化合物(アミノベンゼンスルホン酸、アルキルアミノベンゼンスルホン酸、フェノールスルホン酸またはその置換体など)との、アルデヒド化合物による縮合物を、有機防縮剤として用いてもよい。
 負極電極材料中に含まれる有機防縮剤の含有量は、例えば0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましい。一方、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.5質量%以下が更に好ましい。これらの下限値と上限値とは任意に組み合わせることができる。ここで、負極電極材料中に含まれる有機防縮剤の含有量とは、既化成の満充電状態の鉛蓄電池から、後述の方法で採取した負極電極材料における含有量である。
 負極電極材料中に含まれる炭素質材料としては、カーボンブラック、黒鉛、ハードカーボン、ソフトカーボンなどを用いることができる。カーボンブラックとしては、アセチレンブラック、ファーネスブラック、ランプブラックなどが例示される。ファーネスブラックには、ケッチェンブラック(商品名)も含まれる。黒鉛は、黒鉛型の結晶構造を含む炭素材料であればよく、人造黒鉛および天然黒鉛のいずれであってもよい。
 負極電極材料中の炭素質材料の含有量は、例えば0.05質量%以上が好ましく、0.2質量%以上が更に好ましい。一方、4.0質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下が更に好ましい。これらの下限値と上限値とは任意に組み合わせることができる。
 負極電極材料中の硫酸バリウムの含有量は、例えば0.5質量%以上が好ましく、1質量%以上がより好ましく、1.3質量%以上が更に好ましい。一方、3.0質量%以下が好ましく、2.5質量%以下がより好ましく、2質量%以下が更に好ましい。これらの下限値と上限値とは任意に組み合わせることができる。
 以下、負極電極材料に含まれる有機防縮剤、炭素質材料および硫酸バリウムの定量方法について記載する。定量分析に先立ち、化成後の鉛蓄電池を満充電してから解体して分析対象の負極板を入手する。入手した負極板に水洗と乾燥とを施して負極板中の電解液を除く。(水洗は、水洗した負極板表面にpH試験紙を押し当て、試験紙の色が変化しないことが確認されるまで行う。ただし、水洗を行う時間は、2時間以内とする。水洗した負極板は、減圧環境下、60℃±5℃で6時間程度乾燥する。乾燥後に、負極板に貼付部材が含まれる場合には、剥離により負極板から貼付部材が除去される。)次に、負極板から負極電極材料を分離して未粉砕の試料Sを入手する。
[有機防縮剤]
 未粉砕の試料Sを粉砕し、粉砕された試料Sを1mol/LのNaOH水溶液に浸漬し、有機防縮剤を抽出する。抽出された有機防縮剤を含むNaOH水溶液から不溶成分を濾過で除く。得られた濾液(以下、分析対象濾液とも称する。)を脱塩した後、濃縮し、乾燥すれば、有機防縮剤の粉末(以下、分析対象粉末とも称する。)が得られる。脱塩は、濾液を透析チューブに入れて蒸留水中に浸して行えばよい。
 分析対象粉末の赤外分光スペクトル、分析対象粉末を蒸留水等に溶解して得られる溶液の紫外可視吸収スペクトル、分析対象粉末を重水等の溶媒に溶解して得られる溶液のNMRスペクトル、物質を構成している個々の化合物の情報を得ることができる熱分解GC-MSなどから情報を得ることで、有機防縮剤を特定する。
 上記分析対象濾液の紫外可視吸収スペクトルを測定する。スペクトル強度と予め作成した検量線とを用いて、負極電極材料中の有機防縮剤の含有量を定量する。分析対象の有機防縮剤の構造式の厳密な特定ができず、同一の有機防縮剤の検量線を使用できない場合は、分析対象の有機防縮剤と類似の紫外可視吸収スペクトル、赤外分光スペクトル、NMRスペクトルなどを示す、入手可能な有機防縮剤を使用して検量線を作成する。
[炭素質材料と硫酸バリウム]
 未粉砕の試料Sを粉砕し、粉砕された試料S10gに対し、20質量%濃度の硝酸を50ml加え、約20分加熱し、鉛成分を硝酸鉛として溶解させる。次に、硝酸鉛を含む溶液を濾過して、炭素質材料、硫酸バリウム等の固形分を濾別する。
 得られた固形分を水中に分散させて分散液とした後、篩いを用いて分散液から炭素質材料および硫酸バリウム以外の成分(例えば補強材)を除去する。次に、分散液に対し、予め質量を測定したメンブレンフィルターを用いて吸引ろ過を施し、濾別された試料とともにメンブレンフィルターを110℃±5℃の乾燥器で乾燥する。濾別された試料は、炭素質材料と硫酸バリウムとの混合試料である。乾燥後の混合試料とメンブレンフィルターとの合計質量からメンブレンフィルターの質量を差し引いて、混合試料の質量(A)を測定する。その後、乾燥後の混合試料をメンブレンフィルターとともに坩堝に入れ、700℃以上で灼熱灰化させる。残った残渣は酸化バリウムである。酸化バリウムの質量を硫酸バリウムの質量に変換して硫酸バリウムの質量(B)を求める。質量Aから質量Bを差し引いて炭素質材料の質量を算出する。
 負極板は、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。負極ペーストは、鉛粉と各種添加剤に、水と硫酸を加えて混練することで作製する。熟成工程では、室温より高温かつ高湿度で、未化成の負極板を熟成させることが好ましい。
 化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む電極群を浸漬させた状態で、電極群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または電極群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。
(正極板)
 鉛蓄電池の正極板は、正極集電体と、正極電極材料とを具備する。正極集電体は、負極集電体と同様に形成すればよく、大型の鉛蓄電池用の正極集電体は、鉛または鉛合金の鋳造により形成される場合がある。
 正極集電体に用いる鉛もしくは鉛合金としては、耐食性および機械的強度の点で、Pb-Ca系合金またはPb-Ca-Sn系合金が好ましく、スリーナイン以上の純度の純鉛(99.9%)を用いてもよい。正極集電体は、組成の異なる鉛合金層を有してもよく、合金層は複数でもよい。
 正極電極材料は、酸化還元反応により容量を発現する正極活物質(二酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、必要に応じて、添加剤を含んでもよい。
 未化成の正極板は、正極集電体に正極ペーストを充填し、熟成、乾燥することにより得られる。その後、未化成の正極板を化成する。正極ペーストは、鉛粉、添加剤、水、硫酸などを練合することで調製される。
(電解液)
 電解液は、硫酸を含む水溶液であり、必要に応じてゲル化させてもよい。既化成で満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば1.20~1.35であり、1.25~1.32であることが好ましい。 
(セパレータ)
 負極板と正極板との間には、通常、セパレータが配置される。セパレータには、不織布、微多孔膜などが用いられる。不織布は、繊維を織らずに絡み合わせたマットであり、繊維を主体とする。例えば、不織布の60質量%以上が繊維で形成されている。繊維としては、ガラス繊維、ポリマー繊維、パルプ繊維などを用いることができる。不織布は、繊維以外の成分、例えば耐酸性の無機粉体、結着剤としてのポリマーなどを含んでもよい。微多孔膜は、繊維成分以外を主体とする多孔性のシートであり、例えば、造孔剤(ポリマー粉末、オイルなど)を含む組成物をシート状に押し出し成形した後、造孔剤を除去して細孔を形成することにより得られる。微多孔膜は、ポリマー成分を主体とするものが好ましい。ポリマー成分としては、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。
 図5に、本発明の一実施形態に係る鉛蓄電池の外観の斜視図を示す。鉛蓄電池1は、電極群11と電解液(図示せず)とを収容する電槽12を具備する。電槽12内は、隔壁13により、複数のセル室14に仕切られている。各セル室14には、電極群11が1つずつ収納されている。電槽12の開口部は、負極端子16および正極端子17を具備する蓋15で閉じられる。蓋15には、セル室毎に液口栓18が設けられている。補水の際には、液口栓18を外して補水液が補給される。液口栓18は、セル室14内で発生したガスを電池外に排出する機能を有してもよい。
 電極群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2を収容する袋状のセパレータ4を示すが、セパレータの形態は特に限定されない。電槽12の一方の端部に位置するセル室14では、複数の負極板2の耳2aを並列接続する負極棚部6が貫通接続体8に接続され、複数の正極板3の耳3aを並列接続する正極棚部5が正極柱7に接続されている。正極柱7は蓋15の外部の正極端子17に接続されている。電槽12の他方の端部に位置するセル室14では、負極棚部6に負極柱9が接続され、正極棚部5に貫通接続体8が接続される。負極柱9は蓋15の外部の負極端子16と接続されている。各々の貫通接続体8は、隔壁13に設けられた貫通孔を通過して、隣接するセル室14の電極群11同士を直列に接続している。
 図5には、液式電池(ベント型電池)の例を示したが、鉛蓄電池は、制御弁式電池(VRLA型)でもよい。
 次に、鉛蓄電池の性能評価について説明する。
[試験電池の評価]
(a)5時間率放電容量試験
 試験電池を用い、25℃±2℃水槽内で、以下の要領で実施する。定電流(5時間率定格容量(Ah)として記載の数値の0.2倍の電流(A))で1.75V/セルまで放電し、その後、定電流(5時間率定格容量(Ah)として記載の数値の0.2倍の電流(A))で放電量の135%まで充電する。同様のサイクルを5回繰り返し、5サイクル目の5時間率放電容量を求める。
なお、定格容量として記載の数値は、単位をAhとした数値である。定格容量として記載の数値を元に設定される電流の単位はAとする。
(b)単板過充電試験
 試験電池を用いる。75℃±2℃水槽内で定電流(5時間率定格容量(Ah)として記載の数値をセル当たりの正極板の枚数で除した値の0.2倍の電流(A)による過充電試験を5日間行い、その後、2日間休止させる操作(1週間)を5週間繰り返す。なお、定格容量として記載の数値は、単位をAhとした数値である。定格容量として記載の数値を元に設定される電流の単位はAとする。
 例えば、正極板6枚と負極板7枚とで構成された5時間率定格容量30Ah、12Vの電池の場合、単板セル(正極板1枚、負極板2枚)の定格容量は、30÷6=5Ahと計算され、単板過充電試験における電流値は、5×0.2=1Aとなる。単板過充電試験における正極集電体の縦伸びが初期比で7%となるまでの期間を求める。その期間が3.5週以下となった場合、伸び短絡の可能性が高いと判断する。縦伸びは、正極集電体の枠骨の第1方向(高さ方向)へ最も膨らんでいる部分の寸法を測定し、初期寸法と比較して求める。
(c)電極群圧迫試験
 化成後もしくは使用後間もない電池を満充電してから解体した後、電極群を荷重測定器(三光精衡所社製ばね式手秤)により電槽から引き抜き、このときの引き抜き荷重を測定する。なお、引き抜き荷重測定時は、電解液を含んだ状態を想定し、具体的には、例えば電槽を裏返し、5分間以上置いて抜液してから測定する。
 本発明に係る鉛蓄電池を以下にまとめて記載する。
(1)正極板と、負極板と、電解液と、を具備する鉛蓄電池であって、前記正極板および前記負極板は、それぞれ、集電体と、前記集電体に保持された電極材料と、を備え、前記集電体は、枠骨と、前記枠骨に設けられた耳と、前記枠骨の内側の内骨と、を有し、前記枠骨は、前記耳と連続する上部要素と、前記上部要素と対向する下部要素と、前記上部要素と前記下部要素とを連結する一対の側部要素と、を具備し、前記内骨は、前記上部要素から前記下部要素に向かう第1方向に延びる縦骨と、一方の前記側部要素から他方の前記側部要素に向かう第2方向に延びる横骨と、を具備し、前記縦骨の前記第1方向に垂直な断面において、金属の繊維状組織の縞模様が見られ、前記断面の外周領域は、前記繊維状組織が前記断面の輪郭に沿って延びる第1部分と、前記第1部分以外の第2部分と、で構成され、前記断面の輪郭の全長に占める前記第2部分に対応する輪郭の長さの割合は、50%未満であり、前記耳の厚さtに対する前記内骨の厚さtの割合t/tが60%以上97%以下である、鉛蓄電池。
(2)上記(1)において、前記断面の輪郭の全長に占める前記第2部分に対応する輪郭の長さの割合は、40%以下である、鉛蓄電池。
(3)上記(1)において、前記断面の輪郭の全長に占める前記第2部分に対応する輪郭の長さの割合は、30%以下である、鉛蓄電池。
(4)上記(1)~(3)のいずれかにおいて、前記正極板と前記負極板とがセパレータを介して交互に積層されて電極群を構成しており、前記電極群が積層方向に加圧されている、鉛蓄電池。
(5)上記(1)~(3)のいずれかにおいて、前記正極板と前記負極板を含む電極群の引き抜き荷重が、該電極群の自重の1.6倍以上である、鉛蓄電池。
(6)上記(1)~(3)のいずれかにおいて、前記正極板と前記負極板を含む電極群の引き抜き荷重が、該電極群の自重の2.0倍以上である、鉛蓄電池。
(7)上記(1)~(3)のいずれかにおいて、前記正極板と前記負極板を含む電極群の引き抜き荷重が、該電極群の自重の2.3倍以上である、鉛蓄電池。
(8)上記(1)~(7)のいずれかにおいて、前記集電体または正極電極材料はSbを含有する、鉛蓄電池。
(9)上記(1)~(8)のいずれかの鉛蓄電池を製造する方法であって、前記集電体を準備する工程と、前記集電体を含む正極板または前記負極板を得る工程と、を有し、前記集電体を準備する工程が、圧延板を準備する工程と、前記圧延板に対して打ち抜き加工を行うことにより、格子状に形成された複数の中間骨を有する中間格子体を形成する工程と、前記中間格子体に対して前記中間格子体の厚さ方向からプレス加工を行って前記内骨の少なくとも一部を形成する工程と、を含み、前記プレス加工は、前記複数の中間骨の少なくとも一部において、前記中間骨の延びる方向と交差する骨幅方向における中央部よりも前記骨幅方向における少なくとも一方の端部が薄くなり、かつ前記耳の厚さtに対する前記中央部の厚さtの割合t/tが60%以上97%以下となるように変形させることを含む、鉛蓄電池の製造方法。
 以下、本発明の実施形態について実施例および比較例に基づいて更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(1)集電体の作製
 Pb-Ca-Sn系合金の圧延シートを打ち抜き、内骨にプレス加工を施して、断面Cの第2部分率が40%、かつ、耳の厚さtに対する内骨の厚さtの割合t/tが80%である集電体A1を得る。
 集電体A1の緒元は下記のとおりである。
 内骨の厚み:0.95mm
 枠骨の高さH:115mm
 枠骨の幅W:137mm
 断面Cの第2部分率:40%(第1部分率:60%)
 耳の厚さに対する内骨の厚さの割合(t/t):80%
(2)正極板の作製
 鉛粉を含む正極ペーストを調製し、集電体に正極ペーストを充填し、熟成乾燥し、未化成の正極板を作製した。正極電極材料の化成後の密度は3.6g/cm3となるように調整する。
(3)負極板の作製
 鉛粉、水、希硫酸、硫酸バリウム、カーボンブラック、および有機防縮剤としてリグニンを0.2質量%混合して、負極ペーストを調製する。格子体A1に負極ペーストを充填し、熟成乾燥し、未化成の負極板を得る。
(4)試験電池の作製
 以下の各試験電池において、電解液には硫酸水溶液を用いる。試験電池Xで用いる電解液の20℃における比重は1.28とする。試験電池Yでは、化成後、満充電状態の各試験電池において、電解液の20℃における比重を1.28に調整する。
(a)試験電池Xの作製
 正極電極材料を担持した正極集電体を用いて試験電池Xを組み立てる。試験電池は、2Vセルである。試験電池Xは、正極集電体1枚とこれを挟持する負極板2枚で構成する。負極板は袋状セパレータに収容する。
(b)試験電池Yの作製
 正極電極材料を正極集電体に担持させた正極板を用いて試験電池Yを組み立てる。未化成の負極板を袋状セパレータに収容し、未化成の正極板6枚と未化成の負極板7枚とで電極群を形成する。電極群をポリプロピレン製の電槽に電解液とともに収容して、電槽内で化成を施し、試験電池Y(12V、5時間率定格容量30Ah)を作製する。
<5時間率放電容量試験>
 上記正極板と、負極板とを用い、試験電池Y1を作製する。
 t/t比と断面Cの第2部分率を表1に示すように変更すること以外、上記と同様に各種試験電池を作製する。なお、t/t比が100%の場合、圧力による集電体の加工は施さない。
 電池Y1~Y8、YR1~YR16について、5時間率放電容量試験の結果を表1に示す。なお、5時間率放電容量の比率は、集電体の加工なし(t/t=100%)の電池の5時間率放電容量を100としたときの比率で示す。
Figure JPOXMLDOC01-appb-T000001
 図6に、t/tと、5時間率放電容量との関係を示す。図6より、耳の厚さtに対する内骨の厚さtの割合t/tが小さいほど、5時間率放電容量が増大することがわかる。これは、集電体と電極材料との間の結着性が改善されていることに起因すると考えられる。第2部分率が小さいほど5時間率放電容量の増大が顕著である。
<単板過充電試験>
 電池Y4、Y5、YR4およびYR13と同様の正極集電体を用いて作製される電池X4、X5、XR4およびXR13の単板過充電試験の結果を表2に示す。なお、単板過充電試験における過充電期間は、正極集電体の縦伸びが初期比で7%に到達するまでの期間を示す。
Figure JPOXMLDOC01-appb-T000002
 図7に、t/tと、単板過充電試験における過充電期間との関係を示す。図7より、集電体の耳の厚さに対する内骨の厚さの割合が60%以上であれば、正極集電体の縦伸びが初期比で7%となるまでの期間が3.5週を超えることがわかる。
<電極群圧迫試験>
 電極群を積層方向に加圧すること以外、電池Y4、YR3、YR13およびYR14と同様に電池PY4、PYR3、PYR13およびPYR14を作製し、電極群に対する圧迫の有無が5時間率放電容量に与える影響を調べる。結果を表3に示す。表3の5時間率放電容量の比率は、電極群に圧迫をかけない場合の5時間率放電容量に対する圧迫をかける場合の5時間率放電容量の比率である。なお、電極群の引き抜き荷重は、電極群自重の2.3倍である。
Figure JPOXMLDOC01-appb-T000003
 図8に、電極群に圧迫をかけない場合の5時間率放電容量に対する圧迫をかける場合の5時間率放電容量の比率を棒グラフで示す。図8より、第2部分の外周の割合が17%、かつ、集電体の耳の厚さに対する内骨の厚さの割合が80%の場合、圧迫による集電体と正極電極材料間との結着性の向上効果が顕著になることがわかる。
 次に、引き抜き荷重が電極群自重の1.2倍、1.6倍、2倍および2.3倍になるように電極群を積層方向に加圧すること以外、電池Y4と同様に、電池P12Y4、P16Y4、P20Y4およびP23Y4を作製し、引き抜き荷重の相違が5時間率放電容量に与える影響を調べる。結果を表4に示す。表4の5時間率放電容量の比率は、引き抜き荷重が電極群自重の1.1倍(電池Y4)の場合の5時間率放電容量に対する、引き抜き荷重が1.2倍、1.6倍、2倍および2.3倍の場合の5時間率放電容量の比率である。なお、電極群に対する圧迫がない場合、引き抜き荷重は電極群自重の1.1倍である。
Figure JPOXMLDOC01-appb-T000004
 図9に、電極群の引き抜き荷重による5時間率放電容量の比率を棒グラフで示す。図9より、電極群の引き抜き荷重を該電極群の自重の1.6倍以上にすることで、5時間率放電容量が顕著に向上することがわかる。
<アンチモンの影響>
 次に、化成後の正極電極材料に占める、Sb元素としてのSb含有量が0.15質量%となるように添加する以外、電池Y4、YR3、YR13、YR14と同様に、電池SY4、SYR3、SYR13およびSYR14を作製し、正極電極材料に対するSb添加の有無が5時間率放電容量に与える影響を調べる。結果を表5に示す。表5の5時間率放電容量の比率は、正極電極材料にSb添加しない場合の5時間率放電容量に対するSb添加する場合の5時間率放電容量の比率である。
Figure JPOXMLDOC01-appb-T000005
 図10に、正極電極材料にSb添加しない場合の5時間率放電容量に対するSb添加する場合の5時間率放電容量の比率を棒グラフで示す。図10より、第2部分の外周の割合が17%、かつ、集電体の耳の厚さに対する内骨の厚さの割合が80%の場合、Sb添加による集電体と正極電極材料間との結着性の向上効果が顕著になることがわかる。
 本発明に係る鉛蓄電池用集電体は、制御弁式および液式の鉛蓄電池に適用可能であり、自動車、バイクなどの始動用電源や、電動車両(フォークリフトなど)などの産業用蓄電装置などの電源として好適に利用できる。
 1:鉛蓄電池、2:負極板、3:正極板、4:セパレータ、5:正極棚部、6:負極棚部、7:正極柱、8:貫通接続体、9:負極柱、11:電極群、12:電槽、13:隔壁、14:セル室、15:蓋、16:負極端子、17:正極端子、18:液口栓、100:集電体、110:枠骨、111:上部要素、112:下部要素、113,114 側部要素、120:内骨、120A:縦骨、120B:横骨、130:耳、132:下部突起、210:第1部分、220:第2部分

Claims (9)

  1.  正極板と、負極板と、電解液と、を具備する鉛蓄電池であって、
     前記正極板および前記負極板は、それぞれ、集電体と、前記集電体に保持された電極材料と、を備え、
     前記集電体は、枠骨と、前記枠骨に設けられた耳と、前記枠骨の内側の内骨と、を有し、
     前記枠骨は、前記耳と連続する上部要素と、前記上部要素と対向する下部要素と、前記上部要素と前記下部要素とを連結する一対の側部要素と、を具備し、
     前記内骨は、前記上部要素から前記下部要素に向かう第1方向に延びる縦骨と、一方の前記側部要素から他方の前記側部要素に向かう第2方向に延びる横骨と、を具備し、
     前記縦骨の前記第1方向に垂直な断面において、金属の繊維状組織の縞模様が見られ、
     前記断面の外周領域は、前記繊維状組織が前記断面の輪郭に沿って延びる第1部分と、前記第1部分以外の第2部分と、で構成され、
     前記断面の輪郭の全長に占める前記第2部分に対応する輪郭の長さの割合は、50%未満であり、
     前記耳の厚さtに対する前記内骨の厚さtの割合t/tが60%以上97%以下である、鉛蓄電池。
  2.  前記断面の輪郭の全長に占める前記第2部分に対応する輪郭の長さの割合は、40%以下である、請求項1に記載の鉛蓄電池。
  3.  前記断面の輪郭の全長に占める前記第2部分に対応する輪郭の長さの割合は、30%以下である、請求項1に記載の鉛蓄電池。
  4.  前記正極板と前記負極板とがセパレータを介して交互に積層されて電極群を構成しており、
     前記電極群が積層方向に加圧されている、請求項1~3のいずれか1項に記載の鉛蓄電池。
  5.  前記電極群の引き抜き荷重が、前記電極群の自重の1.6倍以上である、請求項1~4のいずれか1項に記載の鉛蓄電池。
  6.  前記正極板と前記負極板を含む電極群の引き抜き荷重が、該電極群の自重の2.0倍以上である、請求項1~4のいずれか1項に記載の鉛蓄電池。
  7.  前記正極板と前記負極板を含む電極群の引き抜き荷重が、該電極群の自重の2.3倍以上である、請求項1~4のいずれか1項に記載の鉛蓄電池。
  8.  前記正極電極材料はSbを含有する、請求項1~7のいずれか1項に記載の鉛蓄電池。
  9.  請求項1~8のいずれか1項に記載の鉛蓄電池を製造する方法であって、
     集電体を準備する工程と、
     前記集電体を含む前記正極板または前記負極板を得る工程と、を有し、
     前記集電体を準備する工程が、
     圧延板を準備する工程と、
     前記圧延板に対して打ち抜き加工を行うことにより、格子状に形成された複数の中間骨を有する中間格子体を形成する工程と、
     前記中間格子体に対して前記中間格子体の厚さ方向からプレス加工を行って前記内骨の少なくとも一部を形成する工程と、を含み、
     前記プレス加工は、前記複数の中間骨の少なくとも一部において、前記中間骨の延びる方向と交差する骨幅方向における中央部よりも前記骨幅方向における少なくとも一方の端部が薄くなり、かつ前記耳の厚さtに対する前記中央部の厚さtの割合t/tが60%以上97%以下となるように変形させることを含む、鉛蓄電池の製造方法。
PCT/JP2019/040716 2018-10-16 2019-10-16 鉛蓄電池 WO2020080420A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553245A JP7347439B2 (ja) 2018-10-16 2019-10-16 鉛蓄電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-194799 2018-10-16
JP2018194799 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020080420A1 true WO2020080420A1 (ja) 2020-04-23

Family

ID=70283833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040716 WO2020080420A1 (ja) 2018-10-16 2019-10-16 鉛蓄電池

Country Status (2)

Country Link
JP (1) JP7347439B2 (ja)
WO (1) WO2020080420A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113634A1 (ja) * 2020-11-27 2022-06-02 株式会社Gsユアサ 鉛蓄電池
WO2022113628A1 (ja) * 2020-11-27 2022-06-02 株式会社Gsユアサ 鉛蓄電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334940A (ja) * 1997-05-28 1998-12-18 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池およびその製造方法
JP2001043863A (ja) * 1999-08-02 2001-02-16 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池
WO2012132477A1 (ja) * 2011-03-31 2012-10-04 パナソニック株式会社 鉛蓄電池及び電動車両
JP2014127434A (ja) * 2012-12-27 2014-07-07 Gs Yuasa Corp 負極格子及び鉛蓄電池
WO2015056417A1 (ja) * 2013-10-15 2015-04-23 株式会社Gsユアサ 制御弁式鉛蓄電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334940A (ja) * 1997-05-28 1998-12-18 Matsushita Electric Ind Co Ltd 密閉形鉛蓄電池およびその製造方法
JP2001043863A (ja) * 1999-08-02 2001-02-16 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池
WO2012132477A1 (ja) * 2011-03-31 2012-10-04 パナソニック株式会社 鉛蓄電池及び電動車両
JP2014127434A (ja) * 2012-12-27 2014-07-07 Gs Yuasa Corp 負極格子及び鉛蓄電池
WO2015056417A1 (ja) * 2013-10-15 2015-04-23 株式会社Gsユアサ 制御弁式鉛蓄電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113634A1 (ja) * 2020-11-27 2022-06-02 株式会社Gsユアサ 鉛蓄電池
WO2022113628A1 (ja) * 2020-11-27 2022-06-02 株式会社Gsユアサ 鉛蓄電池

Also Published As

Publication number Publication date
JP7347439B2 (ja) 2023-09-20
JPWO2020080420A1 (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
JP7347438B2 (ja) 鉛蓄電池
WO2020080422A1 (ja) 鉛蓄電池、および、鉛蓄電池の製造方法
JP2022009931A (ja) 鉛蓄電池
WO2020080420A1 (ja) 鉛蓄電池
JP7355005B2 (ja) 鉛蓄電池
WO2019087682A1 (ja) 鉛蓄電池
JPWO2019021690A1 (ja) 鉛蓄電池
WO2020080418A1 (ja) 鉛蓄電池およびその製造方法
JP7318660B2 (ja) 鉛蓄電池
JP7099448B2 (ja) 鉛蓄電池
WO2020080424A1 (ja) 鉛蓄電池用集電体およびその製造方法
WO2021210244A1 (ja) 鉛蓄電池用集電体、鉛蓄電池用正極板、および鉛蓄電池
JP7264175B2 (ja) 鉛蓄電池
JP2021103630A (ja) 蓄電池用集電体および電極板
JPWO2019021691A1 (ja) 鉛蓄電池
WO2024005041A1 (ja) 鉛蓄電池
JP2024005293A (ja) 鉛蓄電池
JP2023094127A (ja) 鉛蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873231

Country of ref document: EP

Kind code of ref document: A1