WO2020080401A1 - 鋼板およびその製造方法 - Google Patents

鋼板およびその製造方法 Download PDF

Info

Publication number
WO2020080401A1
WO2020080401A1 PCT/JP2019/040662 JP2019040662W WO2020080401A1 WO 2020080401 A1 WO2020080401 A1 WO 2020080401A1 JP 2019040662 W JP2019040662 W JP 2019040662W WO 2020080401 A1 WO2020080401 A1 WO 2020080401A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
residual
steel sheet
aspect ratio
area ratio
Prior art date
Application number
PCT/JP2019/040662
Other languages
English (en)
French (fr)
Inventor
義彦 小野
潤也 戸畑
浩幸 秋元
洋一郎 松井
金子 真次郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2021004347A priority Critical patent/MX2021004347A/es
Priority to US17/285,375 priority patent/US20220010397A1/en
Priority to EP19874690.1A priority patent/EP3845674A4/en
Priority to CN201980068744.8A priority patent/CN112912520B/zh
Priority to JP2020505520A priority patent/JP6787526B2/ja
Priority to KR1020217011105A priority patent/KR102514897B1/ko
Publication of WO2020080401A1 publication Critical patent/WO2020080401A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a steel sheet and a manufacturing method thereof, which can be preferably applied to press forming used in a press forming process in automobiles, home appliances and the like.
  • TRIP steel in which residual ⁇ is dispersed in the microstructure of the steel sheet has been developed as a technology for improving the ductility of the steel sheet.
  • Patent Document 1 discloses that a steel containing C: 0.10 to 0.45%, S: 0.5 to 1.8% and Mn: 0.5 to 3.0% is annealed at 350 to 500 ° C. It is disclosed that a steel sheet having a high ductility of TS ⁇ El ⁇ 2500 kgf / mm 2 ⁇ % can be obtained at a TS (tensile strength) of 80 kgf / mm 2 or more by holding for 1 to 30 minutes to generate residual ⁇ . There is.
  • Patent Document 2 discloses that steel containing C: 0.10 to 0.25%, Si: 1.0 to 2.0%, and Mn: 1.5 to 3.0% is annealed at 10 ° C./s or more after annealing. By cooling to 450-300 °C for 180-600 seconds and controlling the space factor of retained austenite to 5% or more, bainitic ferrite to 60% or more, and polygonal ferrite to 20% or less, ductility : El and stretch flange formability: It is disclosed that a steel sheet excellent in ⁇ can be obtained.
  • Patent Document 3 a steel sheet having a specific component composition is annealed, cooled to a temperature range of 150 to 350 ° C., and then reheated to about 400 ° C. and held, thereby removing ferrite, tempered martensite, and retained austenite. It is disclosed that a structure containing it can be obtained, and high ductility and high stretch flange formability can be imparted to the steel sheet. This is a so-called Q & P in which the temperature is once cooled in the cooling process to a temperature range between the martensite transformation start temperature (Ms point) and the martensite transformation completion temperature (Mf point) and then reheated and held to stabilize the residual ⁇ .
  • Ms point martensite transformation start temperature
  • Mf point martensite transformation completion temperature
  • Patent Document 4 discloses a method in which the above Q & P processing is improved. That is, steel having a specific component composition is annealed at a temperature of Ae3-10 ° C. or more in order to reduce the amount of polygonal ferrite to 5% or less, and then cooled at a relatively high temperature of Ms-10 ° C. to Ms-100 ° C. Is stopped to generate upper bainite when reheated to around 400 ° C. to obtain high ductility and high stretch flange formability.
  • Patent Document 5 discloses a method of obtaining a steel sheet excellent in ductility and low temperature toughness by utilizing bainite produced at low temperature and bainite produced at high temperature. That is, after annealing a steel containing C: 0.10 to 0.5%, it is cooled to 150 to 400 ° C. at a cooling rate of 10 ° C./s or more, and kept in that temperature range for 10 to 200 seconds to obtain a low temperature range. Of bainite is produced, reheated to a temperature range of more than 400 ° C. and 540 ° C. or less and held for 50 seconds or longer to form bainite in a high temperature region, and to obtain a steel sheet excellent in ductility and low temperature toughness.
  • Patent Document 1 has a problem in that although the El is excellent, the stretch flange formability is extremely low.
  • bainitic ferrite is mainly used as a microstructure, and ferrite is suppressed to a small amount, so the stretch flange formability is excellent, but the ductility is not necessarily high. Therefore, further improvement in ductility has been required in consideration of application to difficult-to-mold parts.
  • Patent Document 3 achieves relatively high ductility and high stretch flange formability compared to conventional TRIP steel and steel utilizing bainitic ferrite.
  • breakage was observed in molding with difficult-to-mold parts such as center pillars, and further improvement in ductility was required.
  • This uniform deformation amount is a U.V. that represents the amount of elongation until necking begins to occur, among the El that is an index of ductility. It is represented by El. El needs to be increased further.
  • the amount of polygonal ferrite produced is reduced to reduce massive martensite, and sufficient ductility cannot be ensured.
  • the cooling stop temperature is set relatively high in order to improve El, and a large amount of untransformed ⁇ remains at the time of cooling stop, so that massive martensite is likely to remain.
  • the conventional technology has not been able to obtain a steel sheet that has sufficiently high ductility and high stretch flange formability.
  • the present invention has been made to solve such a problem, and provides a steel sheet having extremely high ductility and excellent stretch flange formability even when it has a tensile strength of 780 to 1450 MPa class, and a manufacturing method thereof. It is what
  • steel sheet here also includes galvanized steel sheet whose surface is galvanized.
  • the inventors of the present invention have earnestly studied means for providing extremely high ductility and excellent stretch flange formability, and have reached the following conclusions.
  • (1) a cause of insufficient stretch flange formability in TRIP steel subjected to austempering, and (2) a cause of insufficient ductility in steel using Q & P were examined.
  • the cause of (1) is considered as follows. Once the alms were TRIP steels austempering, carbon during austempering around 400 ° C. is diffused into untransformed austenite bainite, the amount of carbon in austenite in the free energy is equal T 0 the composition of the bcc phase and the fcc phase approaches The bainite transformation slows down. Due to this stagnation of transformation, hard martensite in which carbon is concentrated only up to around T 0 composition and a lumpy structure composed of residual ⁇ remain.
  • the cause of (2) is considered as follows. In the steel using Q & P, the bulk structure can be reduced by sufficiently lowering the cooling stop temperature, but the precipitation of carbides in martensite and the stabilization of carbon hinder the supply of carbon to the austenite phase, and ⁇ is not sufficiently stabilized.
  • Tsq cooling stop temperature
  • the temperature range from 315 ° C. to the cooling stop temperature is gradually cooled at less than 20 ° C./s and the second holding is performed, so that the martensite transformation and the lower bainite transformation simultaneously progress with carbon.
  • a film-like residual ⁇ LB needle-like in cross-sectional structure that causes distribution and contributes to improvement of ductility is generated.
  • the higher strength 1320 MPa class can be applied, but even when the 1320 MPa class (1320 MPa or more in the TS range) is applied (TS ⁇ U.El-7000) ⁇ ⁇ ⁇ 180,000 is important to control.
  • TS ⁇ U.El-7000 the 1320 MPa class (1320 MPa or more in the TS range
  • ⁇ ⁇ ⁇ 180,000 is important to control.
  • El is 9% or more in the TS: 780 to 1180 MPa class (780 to 1319 MPa in the TS range), more preferably 10% or more, and 8% or more in the TS: 1320 MPa class (1320 MPa or more in the TS range), and more preferably 9% or more, ⁇ is 30% or more in TS: 780 to 1180 MPa class (780 to 1319 MPa in the TS range), more preferably 40% or more, 20% or more in TS: 1320 MPa class (1320 MPa or more in the TS range), More preferably, by securing at least 30%, the molding stability is significantly improved.
  • the present invention was made based on the above findings, and specifically provides the following. [1] C: 0.06 to 0.25%, Si: 0.6 to 2.5%, Mn: 2.3 to 3.5%, P: 0.02% or less, S: 0.01% or less, sol.
  • S ⁇ Fine is 1 to 10%, and is equivalent to a circle.
  • the steel sheet according to [5], wherein the C concentration is 0.6 to 1.3% and the C concentration of the adjacent region is 0.07% or less is residual ⁇ UB particles.
  • the component composition further contains, in mass%, one or two selected from Ti: 0.002 to 0.1% and B: 0.0002 to 0.01% [1. ]
  • the composition of the components is such that, in mass%, Cu: 0.005 to 1%, Ni: 0.01 to 1%, Cr: 0.01 to 1.0%, Mo: 0.01 to 0.
  • the steel sheet according to any one of [1] to [8], which contains one or more selected types.
  • the composition of the components is, in mass%, Ca: 0.0002 to 0.0040%, Ce: 0.0002 to 0.0040%, La: 0.0002 to 0.0040%, Mg: 0. 0.002 to 0.0030%, Sb: 0.002 to 0.1%, Sn: 0.002 to 0.1%, and one or more selected from [1] to [9]
  • the steel plate according to any one of 1.
  • the cooling stop temperature in the range of 315 ° C. to 255 to 310 ° C .: the temperature range from Tsq to 350 ° C.
  • FIG. 1 is a diagram showing an example of an SEM image.
  • FIG. 2 is a diagram for explaining the aspect ratio, particle width, and particle length.
  • FIG. 3 is a diagram showing an example of a graph showing the relationship between the C concentration and the analysis length.
  • the steel sheet of the present invention has a specific composition and a specific steel structure. Therefore, the steel sheet of the present invention will be described in the order of composition and steel structure.
  • the steel sheet of the present invention contains the following components.
  • “%”, which is a unit of the content of components, means “mass%”.
  • C 0.06 to 0.25%
  • C is a viewpoint that the area ratio of the tempered martensite is secured and a predetermined strength is secured, a volume ratio of the residual ⁇ is secured and the ductility is improved, and it is concentrated in the residual ⁇ to stabilize the residual ⁇ . It is contained from the viewpoint of improving the ductility. If the C content is less than 0.06%, the strength of the steel sheet and the ductility of the steel sheet cannot be sufficiently secured, so the lower limit is made 0.06%. It is preferably 0.09% or more, and more preferably 0.11% or more.
  • the upper limit of the C content is 0.25%.
  • the C content is preferably 0.22% or less.
  • the C content is more preferably 0.20% or less.
  • Si 0.6-2.5% Si is contained from the viewpoint of strengthening ferrite to increase strength, suppressing the formation of carbides in martensite and bainite, and improving the stability of residual ⁇ to improve ductility.
  • the Si content is set to 0.6% or more.
  • the Si content is preferably 0.8% or more. It is more preferably 1.1% or more.
  • the Si content exceeds 2.5%, the rolling load becomes extremely high, which makes it difficult to manufacture a thin plate. Further, the chemical conversion processability and the toughness of the welded portion are deteriorated. Therefore, the Si content is 2.5% or less.
  • the Si content is preferably less than 2.0% from the viewpoint of chemical conversion treatability and securing the toughness of the material and the welded portion. From the viewpoint of ensuring the toughness of the welded portion, the Si content is preferably 1.8% or less, more preferably 1.5% or less.
  • Mn 2.3-3.5%
  • Mn is the same as Si, from the viewpoint of securing tempering martensite and / or bainite having a predetermined area ratio to secure the strength, from the viewpoint of stabilizing the residual ⁇ by improving the Ms point of the residual ⁇ and improving the ductility. It is an important element from the viewpoint of suppressing the formation of carbide in bainite to improve the ductility, and from the viewpoint of increasing the volume ratio of residual ⁇ to improve the ductility. In order to obtain these effects, the Mn content is set to 2.3% or more.
  • the Mn content is preferably 2.5% or more. It is preferably 2.6% or more, more preferably 2.7% or more.
  • the Mn content is set to 3.5% or less. From the viewpoint of promoting the bainite transformation and ensuring high ductility, the Mn content is preferably 3.2% or less. It is more preferably 3.1% or less.
  • P 0.02% or less
  • P is an element that strengthens steel, but if its content is large, spot weldability deteriorates. Therefore, P is 0.02% or less. From the viewpoint of improving spot weldability, P is preferably 0.01% or less. Although P may not be contained, the P content is preferably 0.001% or more from the viewpoint of manufacturing cost.
  • S 0.01% or less S has an effect of improving scale peelability in hot rolling and an effect of suppressing nitriding during annealing, but has a great adverse effect on spot weldability, bendability, and hole expandability. It is an element that has. In order to reduce these adverse effects, at least S is 0.01% or less.
  • S since the contents of C, Si and Mn are very high, the spot weldability is likely to deteriorate, and S is preferably 0.0020% or less from the viewpoint of improving the spot weldability, and further 0.0010%. More preferably, it is less than%.
  • S may not be contained, the S content is preferably 0.0001% or more from the viewpoint of manufacturing cost. It is more preferably 0.0005% or more.
  • sol. Al less than 0.50% Al is contained for deoxidation or for the purpose of stabilizing residual ⁇ as a substitute for Si. sol.
  • the lower limit of Al is not specified, but 0.01% or more is desirable for stable deoxidation.
  • Al is less than 0.50%.
  • sol. Al is more preferably less than 0.20%, and even more preferably 0.10% or less.
  • N Less than 0.015% N is an element that forms nitrides such as BN, AlN, and TiN in steel, and is an element that reduces the hot ductility of steel and the surface quality. In addition, in the steel containing B, there is an adverse effect that the effect of B disappears through the formation of BN. When the N content is 0.015% or more, the surface quality is significantly deteriorated. Therefore, the N content is less than 0.015%. It is preferably 0.010% or less. Although N may not be contained, the N content is preferably 0.0001% or more from the viewpoint of manufacturing cost. More preferably, it is 0.001% or more.
  • the component composition of the steel sheet of the present invention can appropriately contain the following optional elements in addition to the above components.
  • Ti 0.002 to 0.1%
  • Ti has the effect of fixing N in the steel as TiN and producing an effect of improving hot ductility and an effect of improving hardenability of B.
  • the precipitation of TiC has the effect of refining the structure.
  • the Ti content is preferably 0.002% or more. From the viewpoint of sufficiently fixing N, the Ti content is more preferably 0.008% or more. It is more preferably 0.010% or more.
  • the Ti content is preferably 0.1% or less. It is more preferably 0.05% or less. Ti is more preferably 0.03% or less in order to secure high ductility.
  • B 0.0002 to 0.01%
  • B is an element that improves the hardenability of steel, and has an advantage that it is easy to form tempered martensite and / or bainite having a predetermined area ratio. Further, the residual solid solution B improves the delayed fracture resistance.
  • the B content is preferably 0.0002% or more. Further, the B content is more preferably 0.0005% or more. More preferably, it is 0.0010% or more.
  • the B content is preferably 0.01% or less. It is more preferably 0.0050% or less. More preferably, it is 0.0030% or less.
  • Cu 0.005-1%
  • Cu improves the corrosion resistance in the usage environment of the automobile.
  • the corrosion product of Cu coats the surface of the steel sheet and has the effect of suppressing hydrogen intrusion into the steel sheet.
  • Cu is an element that is mixed when scrap is used as a raw material, and by allowing the mixing of Cu, the recycled material can be used as a raw material and the manufacturing cost can be reduced. From such a viewpoint, it is preferable to contain Cu in an amount of 0.005% or more, and it is more preferable to contain Cu in an amount of 0.05% or more from the viewpoint of improving delayed fracture resistance. More preferably, it is 0.10% or more. However, if the Cu content is too high, surface defects will occur, so the Cu content is preferably 1% or less. It is more preferably 0.4% or less, still more preferably 0.2% or less.
  • Ni 0.01-1% Like Cu, Ni is also an element that has the effect of improving corrosion resistance. In addition, Ni has an action of suppressing the occurrence of surface defects that are likely to occur when Cu is contained. Therefore, it is desirable to contain Ni in an amount of 0.01% or more. It is more preferably 0.04% or more, still more preferably 0.06% or more. However, if the Ni content is too high, the scale generation in the heating furnace becomes non-uniform, which rather causes the generation of surface defects. In addition, the cost also increases. Therefore, the Ni content is 1% or less. It is more preferably 0.4% or less, still more preferably 0.2% or less.
  • Cr 0.01-1.0% Cr can be contained because of the effect of improving the hardenability of steel and the effect of suppressing the formation of carbides in martensite and upper / lower bainite.
  • the Cr content is preferably 0.01% or more. It is more preferably 0.03% or more, still more preferably 0.06% or more.
  • the Cr content is 1.0% or less. It is more preferably 0.8% or less, still more preferably 0.4% or less.
  • Mo 0.01-0.5% Mo can be contained from the effect of improving the hardenability of steel and the effect of suppressing the formation of martensite and carbides in upper / lower bainite.
  • the Mo content is preferably 0.01% or more. It is more preferably 0.03% or more, still more preferably 0.06% or more.
  • Mo significantly deteriorates the chemical conversion treatment property of the cold rolled steel sheet, its content is preferably 0.5% or less. From the viewpoint of improving chemical conversion treatability, Mo is more preferably 0.15% or less.
  • V 0.003 to 0.5%
  • V is contained from the effect of improving the hardenability of steel, the effect of suppressing the formation of carbides in martensite and upper / lower bainite, the effect of refining the structure, and the effect of precipitating carbides and improving the delayed fracture resistance. Can be done.
  • the V content is preferably 0.003% or more. It is more preferably 0.005% or more, still more preferably 0.010% or more.
  • the V content is preferably 0.5% or less. It is more preferably 0.3% or less, still more preferably 0.1% or less.
  • Nb 0.002-0.1%
  • Nb can be contained from the effect of refining and strengthening the steel structure, the effect of promoting bainite transformation through grain refinement, the effect of improving bendability, and the effect of improving delayed fracture resistance.
  • the Nb content is preferably 0.002% or more. It is more preferably 0.004% or more, still more preferably 0.010% or more.
  • the Nb content is preferably 0.1% or less. It is more preferably 0.05% or less, still more preferably 0.03% or less.
  • Zr 0.005-0.2%
  • Zr can be contained from the effect of improving the hardenability of steel, the effect of suppressing the formation of carbides in bainite, the effect of refining the structure, and the effect of precipitating carbides and improving the delayed fracture resistance.
  • the Zr content is preferably 0.005% or more. It is more preferably 0.008% or more, still more preferably 0.010% or more.
  • the Zr content is preferably 0.2% or less. It is more preferably 0.15% or less, still more preferably 0.08% or less.
  • W 0.005-0.2% W can be contained from the effect of improving the hardenability of steel, the effect of suppressing the formation of carbide in bainite, the effect of refining the structure, and the effect of precipitating carbide and improving the delayed fracture resistance.
  • the W content is preferably 0.005% or more. It is more preferably 0.008% or more, still more preferably 0.010% or more.
  • the W content is preferably 0.2% or less. It is more preferably 0.15% or less, still more preferably 0.08% or less.
  • Ca 0.0002 to 0.0040% Ca fixes S as CaS and contributes to improvement of bendability and delayed fracture resistance. Therefore, the Ca content is preferably 0.0002% or more. It is more preferably 0.0005% or more, still more preferably 0.0010% or more. However, if a large amount of Ca is added, the surface quality and bendability are deteriorated, so the Ca content is preferably 0.0040% or less. It is more preferably 0.0035% or less, still more preferably 0.0020% or less.
  • Ce 0.0002 to 0.0040%
  • the Ce content is preferably 0.0002% or more. It is more preferably 0.0004% or more, still more preferably 0.0006% or more. However, if a large amount of Ce is added, the surface quality and bendability deteriorate, so the Ce content is preferably 0.0040% or less. It is more preferably 0.0035% or less, still more preferably 0.0020% or less.
  • La 0.0002 to 0.0040% Like Ca, La also fixes S and contributes to improvement in bendability and delayed fracture resistance. Therefore, the La content is preferably 0.0002% or more. It is more preferably 0.0004% or more, still more preferably 0.0006% or more. However, if a large amount of La is added, the surface quality and bendability deteriorate, so the La content is preferably 0.0040% or less. It is more preferably 0.0035% or less, still more preferably 0.0020% or less.
  • Mg 0.0002 to 0.0030% Mg fixes O as MgO and contributes to the improvement of delayed fracture resistance. Therefore, the Mg content is preferably 0.0002% or more. It is more preferably 0.0004% or more, still more preferably 0.0006% or more. However, if a large amount of Mg is added, the surface quality and bendability deteriorate, so the Mg content is preferably 0.0030% or less. It is more preferably 0.0025% or less, still more preferably 0.0010% or less.
  • Sb 0.002-0.1% Sb suppresses the oxidation and nitridation of the surface layer of the steel sheet and suppresses the reduction of the content of C and B in the surface layer thereof. Further, by suppressing the above-mentioned reduction of the contents of C and B, it is possible to suppress the generation of ferrite in the surface layer of the steel sheet, increase the strength, and improve the delayed fracture resistance. From such a viewpoint, the Sb content is preferably 0.002% or more. It is more preferably 0.004% or more, still more preferably 0.006% or more.
  • the Sb content is preferably 0.1% or less. It is more preferably 0.04% or less, still more preferably 0.03% or less.
  • Sn 0.002-0.1% Sn suppresses oxidation and nitridation of the surface layer of the steel sheet, and suppresses the reduction of the content of C and B in the surface layer due to the oxidation and nitridation. Further, by suppressing the above-mentioned reduction of the contents of C and B, it is possible to suppress the generation of ferrite in the surface layer of the steel sheet, increase the strength, and improve the delayed fracture resistance. From such a viewpoint, the Sn content is preferably 0.002% or more. It is more preferably 0.004% or more, still more preferably 0.006% or more. However, if the Sn content exceeds 0.1%, the castability deteriorates.
  • the Sn content is preferably 0.1% or less. It is more preferably 0.04% or less, still more preferably 0.03% or less.
  • the steel sheet according to the present embodiment contains the above component composition, and the balance other than the above component composition contains Fe (iron) and inevitable impurities.
  • the balance is preferably Fe and inevitable impurities.
  • Ferrite 5% or less In order to secure a high ⁇ , ferrite has an area ratio of 5% or less. It is more preferably 4% or less, still more preferably 2% or less.
  • ferrite refers to polygonal ferrite.
  • Microstructure consisting of one or more of upper bainite, fresh martensite, tempered martensite, lower bainite, residual ⁇ : 95 to 100%
  • the total area ratio of the upper bainite, the fresh martensite, the tempered martensite, the lower bainite, and the residual ⁇ of the balance other than polygonal ferrite is 95 to 100% in order to secure the predetermined strength, ductility, and stretch flange formability.
  • the lower limit is more preferably 96% or more, further preferably 98% or more.
  • the area ratios of upper bainite, fresh martensite, tempered martensite, lower bainite, and residual ⁇ were observed by SEM photographs. It is considered that the content of each tissue is often in the following range.
  • the upper bainite has an area ratio of 1 to 30%.
  • the area ratio of fresh martensite is 0 to 20%.
  • the tempered martensite has an area ratio of 3 to 40%.
  • the lower bainite has an area ratio of 5 to 70%.
  • Residual ⁇ 5-20%
  • the residual ⁇ is 5% or more in terms of volume ratio with respect to the entire steel structure. It is more preferably at least 7%, still more preferably at least 9%.
  • This residual ⁇ amount includes both the residual ⁇ formed adjacent to the upper bainite and the residual ⁇ formed adjacent to martensite or the lower bainite. If the amount of residual ⁇ is excessively increased, the strength, the stretch flange formability, and the delayed fracture resistance deteriorate. Therefore, the volume ratio of the residual ⁇ is set to 20% or less. It is more preferably 15% or less, and the “volume ratio” can be regarded as the “area ratio”.
  • the form of residual ⁇ UB is preferably such that the particle width is 0.25 to 0.60 ⁇ m, the particle length is 1.5 to 15 ⁇ m, and the aspect ratio is 4 to 25.
  • S ⁇ UB is set to 7.0% or less. It is more preferably 5.0% or less, still more preferably 4.0% or less.
  • the above area ratio means the area ratio in the entire steel structure.
  • the area ratio of residual ⁇ UB can be distinguished from other metal phases (bcc system) by obtaining phase map data using EBSD and measuring the structure of the fcc structure.
  • the area ratio of ferrite or upper bainite adjacent residual gamma UB: S UB and S ratio GanmaUB is S UB / S ⁇ UB ⁇ 3.5
  • Ductility improvement effect of the residual gamma UB can be improved by controlling the area ratio of ferrite or upper bainite generates adjacent the residual gamma UB.
  • S UB / S ⁇ UB in order to ensure a high ductility, it is desirable to 3.5 or more. From the viewpoint of improving ductility, the more preferable range of S UB / S ⁇ UB is 4.0 or more.
  • the upper limit is not particularly specified, but in the case of this heat history, it is preferably 15 or less.
  • N ⁇ LB Distribution number of residual ⁇ LBs having a particle width of 0.08 to 0.24 ⁇ m, a particle length of 0.6 to 15 ⁇ m, and an aspect ratio of 4 to 40: N ⁇ LB is 10 to 120 per 100 ⁇ m 2.
  • a second intermediate holding for slowing the cooling rate in the temperature range from 315 ° C. to 255 to 310 ° C. of the cooling stop temperature: Tsq is provided, so that the martensite and the lower bainite are formed adjacent to each other. It is possible to obtain a film-like residual ⁇ LB (sometimes referred to as residual ⁇ LB particles).
  • the film-like residual ⁇ LB particles are particles having a particle width of 0.08 to 0.24 ⁇ m, a particle length of 0.6 to 15 ⁇ m, and an aspect ratio of 4 to 40. These particles mainly consist of residual ⁇ , but also partially contain carbides and martensite.
  • the film-like residual ⁇ LB particles were identified by the morphology in the SEM photograph.
  • N ⁇ LB exceeds 120 per 100 ⁇ m 2 , it is hardened too much and ductility decreases, so N ⁇ LB is set to 120 or less per 100 ⁇ m 2 . From the viewpoint of improving ductility, N ⁇ LB is preferably 100 or less per 100 ⁇ m 2 , and more preferably 80 or less.
  • particles with a particle width of 0.25 ⁇ m or more are plate-shaped. Further, it is assumed that the particles having a particle width of 0.24 ⁇ m or less are in a film form.
  • S ⁇ Fine is 1 to 10%
  • Fine fresh martensite having a circle-equivalent particle diameter of 0.5 ⁇ m or more and less than 1.3 ⁇ m and an aspect ratio of 3 or less and residual ⁇ particles have a small effect of decreasing ⁇ , and particularly , El, which has a greater effect on press formability than U. The effect of increasing El is large.
  • the total area ratio of fresh martensite having a circle-equivalent particle diameter of 0.5 ⁇ m or more and less than 1.3 ⁇ m and an aspect ratio of 3 or less and residual ⁇ particles S ⁇ Fine is 1% or more. From the viewpoint of improving ductility, S ⁇ Fine is preferably 2% or more, and more preferably 3% or more. If S ⁇ Fine increases too much, it causes ⁇ to decrease, so these area ratios are made 10% or less. From the viewpoint of improving ⁇ , the total area ratio of these is more preferably 8% or less.
  • the total area of fresh martensite having a circle equivalent particle diameter of 1.5 ⁇ m or more and 20 ⁇ m or less and an aspect ratio of 3 or less and / or residual ⁇ particles having a circle equivalent particle diameter of 1.5 ⁇ m or more and 20 ⁇ m or less and an aspect ratio of 3 or less Ratio: S ⁇ Block is 5% or less
  • a method of reducing Mn to 2% or less and promoting bainite transformation has been used.
  • the lumpy structure which adversely affects the stretch flange formability has a circle equivalent particle diameter of 1.5 ⁇ m or more and 20 ⁇ m or less and an aspect ratio of 3 or less of fresh martensite and a circle equivalent particle diameter of 1.5 ⁇ m or more and 20 ⁇ m or less.
  • the ratio of residual ⁇ particles is 3 or less, and by reducing the total area ratio: S ⁇ Block to 5% or less, excellent stretch-flangeability molding can be secured.
  • S ⁇ Block is more preferably less than 3% in order to ensure excellent stretch-flange formability.
  • S ⁇ Block may be 0%. Any of fresh martensite having a circle-equivalent particle diameter of 1.5 ⁇ m or more and 20 ⁇ m or less and an aspect ratio of 3 or less, and residual ⁇ -particles having a circle-equivalent particle diameter of 1.5 ⁇ m or more and 20 ⁇ m or less and an aspect ratio of 3 or less When only one is included, the area ratio of the included ones is taken as the total area ratio.
  • the total area ratio of the regions in which the C concentration is 0.6 to 1.3% and the C concentration in the adjacent region is 0.07% or less: S C concentration is 0.1 to 5%
  • the ductility can be improved by adjusting the area ratio of the region where the C concentration is higher than the surroundings. Specifically, the total area ratio of the regions in which the C concentration is 0.6 to 1.3% and the C concentration in the adjacent region is 0.07% or less: S C concentration is 0.1 to 5% By doing so, ductility is enhanced.
  • the adjacent region means a region adjacent to a region having a C concentration of 0.6 to 1.3% and a C concentration of 0.07% or less.
  • the region having a C concentration of 0.6 to 1.3% and the C concentration of the adjacent region being 0.07% or less is the residual ⁇ , and the residual ⁇ UB particles ( It may be referred to as residual ⁇ UB .) Is more preferable. Further, it is preferable that a part or all of the adjacent region contains upper bainite. Therefore, a case where the C concentration is 0.6 to 1.3%, the region where the C concentration in the adjacent region is 0.07% or less is the residual ⁇ UB , and the adjacent region is the upper bainite will be described below.
  • the S C concentration when the above region is the residual ⁇ UB and the adjacent region is the upper bainite is referred to as S ⁇ UB * .
  • the residual ⁇ UB formed adjacent to the upper bainite tends to have a very low C content on at least one side of the particle. That is, the desorption of C into austenite easily progresses from bainite (bainitic ferrite) generated at a high temperature of 405 to 505 ° C., and C is efficiently concentrated in plate-like residual ⁇ UB . As a result, the C content of the plate-shaped residual ⁇ UB becomes 0.6 to 1.3%, which contributes to the improvement of ductility. Further, the amount of C in the upper bainite region around it decreases to 0.07% or less.
  • the area S ⁇ UB * of the residual ⁇ having such a C distribution state in an area ratio of 0.1 to 5%. Since ductility is significantly increased by the S ⁇ UB * 0.2% or more, S ⁇ UB * further preferably set to 0.2% or more.
  • the upper limit is more preferably 4% or less, further preferably 3% or less.
  • the area ratio of ferrite is measured by cutting out a plate thickness cross section parallel to the rolling direction, mirror-polishing it, then corroding it with 3% Nital, and observing 10 fields of view with a SEM at 5000 times at 1/4 thickness position. went.
  • the ferrite was a polygonal ferrite that is relatively equiaxed with almost no carbide inside. In SEM, it is the region that looks the most black. If it is difficult to identify whether the structure on both sides of the plate-like residual ⁇ UB is upper bainite or ferrite, the area of polygonal ferrite with aspect ratio ⁇ 2.0 is regarded as ferrite and the area with aspect ratio> 2.0.
  • the aspect ratio as shown in FIG. 2, the major axis length a at which the particle length is the longest is determined, and the particle length when traversing the particle the longest in the direction perpendicular thereto is defined as the minor axis length b. And a / b is the aspect ratio.
  • the size of each particle is measured by dividing at a position of a broken line shown in FIG.
  • the area ratio of the structure consisting of one or more of upper bainite, fresh martensite, tempered martensite, lower bainite, and residual ⁇ was measured by the same method as for ferrite.
  • the area ratio is the area ratio of the region other than the above ferrite.
  • the area ratio of carbides is very small, it was included in the above area ratio.
  • the volume ratio of residual ⁇ was obtained by X-ray diffraction after chemical polishing of the 1/4 thickness position from the surface layer.
  • a Co-K ⁇ radiation source was used for the incident X-ray, and the area of the residual austenite was calculated from the intensity ratio of the (200), (211), (220) planes of ferrite and the (200), (220), (311) planes of austenite. The rate was calculated.
  • the volume ratio of the residual ⁇ obtained by X-ray diffraction is equal to the area ratio of the residual ⁇ in the steel structure.
  • the shape and area ratio of the plate-shaped residual ⁇ UB generated adjacent to the upper bainite are calculated by electropolishing the plate thickness cross section parallel to the rolling direction of the steel plate at the plate thickness 1/4 depth position, and using EBSD Map data was obtained and measured for tissues with fcc structure.
  • the measurement area was 30 ⁇ m ⁇ 30 ⁇ m, and measurement was performed on 10 fields of view separated from each other by 50 ⁇ m or more.
  • the particle length (major axis length), particle width (minor axis length), and aspect ratio were determined by employing the above-described particle size and aspect ratio measuring methods.
  • Particle width is 0.25 to 0.60 ⁇ m
  • particle length is 1.0 to 15 ⁇ m
  • aspect ratio is 3.1 to 25
  • particle width is 0.25 to 0.60 ⁇ m
  • particle length is 1.5 to
  • S ⁇ UB The area ratio of ⁇ grains having a size of 15 ⁇ m and an aspect ratio of 4 to 25 was determined as S ⁇ UB . Further, the same visual field was etched with 3% nital, and the total area ratio of ferrite or bainite existing adjacent to one side or both sides of the plate-like residual ⁇ UB : SUB was obtained.
  • the distribution number of residual ⁇ LBs having a particle width of 0.08 to 0.24 ⁇ m, a particle length of 0.6 to 15 ⁇ m, and an aspect ratio of 4 to 40, and a circle-equivalent particle diameter of 1.5 ⁇ m to 20 ⁇ m.
  • the volume ratio of residual ⁇ is the volume ratio of the entire steel sheet
  • S ⁇ UB , S ⁇ Fine , and S ⁇ Block are the area ratios of the entire microstructure region
  • N ⁇ LB is the upper bainite, fresh martensite, tempered martensite, lower bainite, and residual ⁇ . Represents the density of the number of distributions in the area (excluding ferrite).
  • circle-equivalent particle diameter (circle-equivalent particle diameter)
  • individual particles were observed with an SEM, the area ratio was calculated, and the circle-equivalent diameter was calculated to be the circle-equivalent particle diameter.
  • the measurement of the C concentration (mass%) of the region where the C concentration is 0.6 to 1.3% and the C concentration of the adjacent region is 0.07% or less and the C concentration of the adjacent region (mass%) are Using a JEOL field emission electron analyzer (FE-EPMA) JXA-8500F manufactured by JEOL at a plate thickness 1/4 position parallel to the rolling direction, an acceleration voltage of 6 kV and an irradiation current of 7 ⁇ 10 ⁇ 8 A The beam diameter was set to the minimum, and line analysis was performed. The analysis length was 6 ⁇ m, and profile data of C was randomly collected at 20 points 10 ⁇ m or more apart in order to obtain average information of the microstructure.
  • FE-EPMA JEOL field emission electron analyzer
  • the background was subtracted so that the average value of C obtained in each line analysis was equal to the carbon content of the base metal. That is, if the average value of the measured carbon content is greater than the carbon content of the base metal, the increase is considered to be contamination, and the value obtained by uniformly subtracting the increase from the analysis value at each position is the true value at each position.
  • the C content of The total area ratio S C concentration of the region having C concentration of 0.07% or less adjacent to each other and C: 0.6 to 1.3% is such that the C amount at the skirt portion of the C peak is 0.
  • the area ratio of C: 0.6 to 1.3% in the line analysis result was defined as the area ratio, assuming that the distribution state of the above areas was random for areas of 0.7% or less.
  • FIG. 3 An example of a graph showing the relationship between the C concentration obtained by the above measurement and the analysis length is shown in FIG.
  • the region where the C concentration is 0.6 to 1.3% and the C concentration of the adjacent region is 0.07% or less is S C enrichment-1 .
  • the graph as shown in FIG. 3 is derived at 30 points to obtain the total area ratio S C enrichment of S C enrichment ⁇ 1 .
  • the morphology of the structure (plate-like residual ⁇ , film-like residual ⁇ ) to which “*” is added in FIG. 3 is judged using the SEM photograph.
  • the amount of C enrichment of the plate-like residual ⁇ UB can be measured by the above-mentioned analytical method, in the characteristic evaluation, when the amount of C enrichment is 0.6 to 1.3%, The metal phase having the C concentration amount may be evaluated as a plate-like residual ⁇ UB .
  • FIG. 1 An example of the SEM photograph is shown in Fig. 1.
  • the steel sheet used for the observation in FIG. 1 was 0.18% C-1.5% Si-2.8% Mn steel, which was annealed at 830 ° C. to form a ⁇ single phase and then cooled to 650 ° C. at 20 ° C./s. Further, it is further cooled to 505 ° C. at 20 ° C./s, cooled from 505 ° C. to 450 ° C. at 20 ° C./s, held isothermally at 450 ° C. for 30 sec, cooled to 315 ° C. at 10 ° C./s, and then 315 ° C. To 260 ° C. at 6 ° C./s, further heated from 260 ° C. to 350 ° C.
  • Upper bainite, fresh martensite, tempered martensite, lower bainite, and residual ⁇ are separated and evaluated by SEM photographs.
  • the upper bainite (a) contains almost no carbides, almost no streaky strain (lath interface) can be seen inside, and has a black minor axis width of 0.4 ⁇ m or more, which is almost the same as ferrite.
  • the tempered martensite (c) is a region containing 2.0 to 20 fine carbides per 1 ⁇ m 2 having an aspect ratio of 4 or less and a circle equivalent diameter of 0.03 to 0.3 ⁇ m in the structure.
  • the lower bainite (d) has a film width of 0.08 to 0.24 ⁇ m, a particle length of 0.6 ⁇ m to 15 ⁇ m, and an aspect ratio of 4 to 40 in the form of a film-like residual ⁇ (e) per 1 ⁇ m 2. It is a region containing 0.1 to 4 fine carbides having an aspect ratio of 4 or less and a circle equivalent diameter of 0.03 to 0.3 ⁇ m per 1 ⁇ m 2 .
  • the tensile strength of the steel sheet of the present invention is preferably 780 MPa or more. More preferably, it is 980 MPa or more.
  • the upper limit of the tensile strength is preferably 1450 MPa or less, more preferably 1400 MPa or less, from the viewpoint of compatibility with other properties.
  • the hole expansion ratio ⁇ is 30% or more, preferably 40% or more in the TS: 780 to 1319 MPa class, and 20% or more, and preferably 30% or more in the TS: 1320 MPa or more. Is much improved.
  • the upper limit of ⁇ is preferably 90% or less, and more preferably 80% or less at any strength level.
  • Hot rolling Steel slabs are hot-rolled by heating the slab after rolling, directly rolling the slab after continuous casting without heating, or rolling the slab after continuous casting by heat treatment for a short time.
  • the hot rolling may be carried out according to a conventional method, for example, the slab heating temperature is 1100 to 1300 ° C., the soaking temperature is 20 to 300 min, the finish rolling temperature is Ar 3 transformation point to Ar 3 transformation point + 200 ° C.
  • the taking temperature may be 400 to 720 ° C.
  • the winding temperature is preferably 430 to 530 ° C. from the viewpoint of suppressing the plate thickness variation and stably ensuring high strength.
  • the rolling rate may be 30 to 85%. From the viewpoint of stably securing high strength and reducing anisotropy, the rolling rate is preferably 45 to 85%.
  • the rolling load is high, it is possible to perform softening annealing treatment at 450 to 730 ° C. in CAL (continuous annealing line) and BAF (box annealing furnace).
  • Annealing A steel slab having a predetermined composition is hot-rolled and cold-rolled, and then annealed under the following prescribed conditions.
  • the annealing equipment is not particularly limited, but from the viewpoint of ensuring the productivity and the desired heating rate and cooling rate, it is preferable to perform it on a continuous annealing line (CAL) or a continuous hot dip galvanizing line (CGL).
  • CAL continuous annealing line
  • CGL continuous hot dip galvanizing line
  • Annealing temperature 810 to 900 ° C
  • the annealing temperature is set to 810 to 900 ° C. in order to secure tempered martensite and / or bainite having a predetermined area ratio and residual ⁇ having a predetermined volume ratio.
  • the annealing temperature is adjusted so that the ⁇ single-phase region is annealed so that the amount of polygonal ferrite is 5% or less. It is preferably 815 ° C or higher, and preferably 880 ° C or lower.
  • the temperature range of 810 to 650 ° C. is cooled at an average cooling rate of 1 to 2000 ° C./s. If the average cooling rate is slower than 1 ° C./s, a large amount of ferrite is generated, resulting in a decrease in strength and a decrease in ⁇ . It is more preferably 3 ° C./s or more.
  • the average cooling rate becomes too fast the plate shape deteriorates, so it is set to 2000 ° C./s or less. It is preferably 100 ° C / s or less, more preferably less than 30 ° C / s.
  • the plate shape can be made to a good level (the plate warpage described in Examples described later is 15 mm or less). Furthermore, by setting the average cooling rate to 14 ° C./s or less, the plate shape can be set to a better level (the plate warpage described in Examples described later is 10 mm or less), which is more preferable.
  • Average cooling rate in the temperature range of 650 to 505 ° C 8.0 to 2000 ° C / s
  • cooling is performed at 8.0 ° C./s or more. If the average cooling rate is slower than 8.0 ° C./s, a large amount of ferrite will be generated, resulting in a decrease in strength and a decrease in ⁇ . More preferably, it is 10.0 ° C./s or more.
  • the average cooling rate becomes too fast, the plate shape deteriorates, so it is set to 2000 ° C./s or less. It is preferably 100 ° C / s or less, more preferably less than 30 ° C / s.
  • Holding time in the temperature range of 505 to 405 ° C: 14 to 200 sec By maintaining this temperature range for a predetermined time, it is possible to generate upper bainite that hardly causes carbide precipitation, and adjacent to it, it is possible to generate plate-like residual ⁇ UB having a high C enrichment amount. I can.
  • the ratio S UB / S ⁇ UB of the area ratios of both tissues can be controlled within a predetermined range by holding in this temperature range. From these viewpoints, the temperature is maintained at 505 to 405 ° C. for 14 seconds or more. From the viewpoint of generating plate-like residual ⁇ UB and improving the ductility, the holding time in this temperature range is more preferably 17 sec or more.
  • the holding time in the temperature range of 505 to 405 ° C. is set to 14 to 200 sec.
  • the holding time in the temperature range of 505 to 405 ° C. is preferably 100 sec or less. It is more preferably 50 seconds or less. Note that holding in this temperature range corresponds to reducing the average cooling rate in this temperature range to 7.1 ° C./s or less.
  • the temperature range for holding is preferably 420 ° C. or higher, more preferably 440 ° C. or higher. Further, it is preferably 490 ° C or lower, more preferably 480 ° C or lower.
  • Average cooling rate in the temperature range of 405 to 315 ° C 8.0 to 100 ° C / s After holding at 405 to 505 ° C., it is necessary to quickly cool to 315 ° C. so that carbon is not concentrated to ⁇ too much. When staying at a temperature higher than 315 ° C., carbon is concentrated into massive untransformed ⁇ , bainite transformation is suppressed in the subsequent cooling step and tempering step, and the amount of massive martensite or residual ⁇ increases. As a result, ⁇ decreases. From the viewpoint of improving ⁇ , the average cooling rate in the temperature range of 405 to 315 ° C. is 8.0 ° C./s or more.
  • the cooling rate in this temperature range is more preferably 10 ° C / s or higher, and even more preferably 15 ° C / s or higher. If the cooling rate in this temperature range is too high, the plate shape deteriorates, so the cooling rate in this temperature range is 100 ° C./s or less. It is preferably 50 ° C./s or less. More preferably, it is less than 20 ° C / s.
  • Average cooling rate from 315 ° C. to cooling stop temperature Tsq 0.2 ° C./s or more and less than 20 ° C./s
  • cooling stop temperature in the range of 315 ° C. to 255 to 310 ° C . gently cooling the temperature range from Tsq
  • the second holding is performed.
  • carbon can be concentrated in adjacent ⁇ at the same time as martensite and lower bainite are formed, and a film-like residual ⁇ LB formed adjacent to martensite and lower bainite is generated. This improves ductility.
  • the average cooling rate in this temperature range is 0.2 ° C./s or more and less than 20 ° C./s.
  • the average cooling rate in this temperature range is preferably less than 15 ° C./s, more preferably less than 10 ° C./s. preferable. It is particularly preferable to set it to 7 ° C./s or less.
  • the greatest effect of reducing the cooling rate is in the range of 315 ° C to 301 ° C, and it is particularly important to set this temperature range to the above cooling rate range.
  • Cooling stop temperature Tsq 255 to 310 ° C
  • Tsq needs to be in the range of 255 to 310 ° C. If the cooling stop temperature is less than 255 ° C, fine martensite and fine residual ⁇ are reduced, and if the holding time is less than 255 ° C, carbide precipitation occurs in martensite and lower bainite, resulting in residual ⁇ . Carbon distribution is suppressed. Therefore, the cooling stop temperature is set to 255 ° C. or higher.
  • the cooling stop temperature is set to 310 ° C. or lower. More preferably, it is 300 ° C. or lower.
  • Average heating rate in the temperature range from the cooling stop temperature Tsq to 350 ° C .: 2 ° C./s or more By further heating the temperature range from the cooling stop temperature to 350 ° C. in a short time, carbide precipitation is suppressed and high ductility is secured. You can Further, when the martensite or the lower bainite produced by cooling is reheated to 350 ° C. or higher by the nucleus, the upper bainite is produced. If the average heating rate up to 350 ° C. is slow, these effects cannot be obtained. As a result, the amount of residual ⁇ decreases and ductility decreases. Therefore, the average heating rate in the temperature range from the cooling stop temperature to 350 ° C is 2 ° C / s or more.
  • the average heating rate is preferably 5 ° C./s or more, and more preferably 10 ° C./s or more from the viewpoint of suppressing the precipitation of carbides and the viewpoint of forming upper bainite during reheating.
  • the upper limit of the average heating rate is not particularly limited, but is preferably 50 ° C / s or less, more preferably 30 ° C / s or less.
  • Hold time at 350-590 ° C: 20-3000sec From the viewpoint of stabilizing C by distributing C to the plate-like residual ⁇ UB produced by intermediate holding and martensite or the film-like residual ⁇ produced adjacent to the lower bainite, it is distributed in bulk as untransformed ⁇ . From the viewpoint of improving the ⁇ by subdividing the region by bainite transformation, it is held at a temperature range of 350 to 590 ° C. for 20 to 3000 seconds.
  • the holding temperature is preferably 370 to 500 ° C. from the viewpoints of promoting carbon distribution, improving ductility, and reducing lump structure to improve ⁇ .
  • the holding time at 350 to 590 ° C. to 60 to 3000 sec, the total area ratio of the regions where the C concentration is 0.6 to 1.3% and the C concentration of the adjacent region is 0.07% or less.
  • the SC concentration becomes 0.1 to 5%, and the ductility is further improved. It is more preferably 1500 sec or less, and further preferably 1200 sec or less.
  • holding in the temperature range of 350 ° C to 590 ° C may also serve as hot dip galvanizing treatment.
  • a galvanizing bath having an Al content of 0.10% or more and 0.22% or less it is preferable to use a galvanizing bath having an Al content of 0.10% or more and 0.22% or less.
  • an alloying treatment of zinc plating can be performed after the hot dip galvanizing treatment.
  • the galvanizing alloying treatment is performed, it is preferably performed in a temperature range of 470 ° C. or higher and 590 ° C. or lower.
  • cooling is performed to a temperature of 350 to 50 ° C. or less at an average cooling rate of 0.1 ° C./s or more to adjust surface roughness and plate shape.
  • the steel sheet can be subjected to skin pass rolling from the viewpoint of stabilizing press formability such as flattening of steel sheet and increasing YS.
  • the skin pass extension ratio is preferably 0.1 to 0.5%.
  • the plate shape can be flattened by a leveler.
  • the average cooling rate up to the temperature of 350 to 50 ° C. or lower is more preferably 5 ° C./s or higher, and preferably 100 ° C./s or lower.
  • low temperature heat treatment at 100 to 300 ° C for 30 seconds to 10 days after the above heat treatment or after skin pass rolling.
  • Low temperature heat treatment can reduce hydrogen to less than 0.1 ppm.
  • electroplating After the electroplating, it is preferable to perform the above-mentioned low temperature heat treatment from the viewpoint of reducing hydrogen in the steel.
  • (TS ⁇ U.El-7000) ⁇ ⁇ ⁇ 2600000 which is important as an index of formability of a part having a complicated shape in which overhang forming and stretch flange forming coexist, is satisfied with TS: 780 to 1319 MPa class. It is possible to satisfy (TS ⁇ U.El-7000) ⁇ ⁇ ⁇ 180,000 in the TS: 1320 MPa class. Further, excellent uniform elongation (ductility) of 9% or more in TS: 780 to 1319 MPa class, 8% or more in TS: 1320 MPa class or more, 30% or more in TS: 780 to 1319 MPa class, and 20 in TS: 1320 MPa class or more. It is also possible to provide a hole expandability ( ⁇ ) of at least%.
  • a cold-rolled steel sheet having a thickness of 1.2 mm and having the composition shown in Table 1 was treated under the annealing conditions shown in Table 2-1 to produce the steel sheet of the present invention and the steel sheet of Comparative Example.
  • the steel sheets were further subjected to hot dip galvanizing treatment to obtain hot dip galvanized steel sheets (GI).
  • GI hot dip galvanized steel sheets
  • the steel sheet was immersed in a galvanizing bath at 440 ° C. or more and 500 ° C. or less for hot dip galvanizing treatment, and then the amount of coating adhered was adjusted by gas wiping or the like.
  • the hot dip galvanizing used a galvanizing bath having an Al content of 0.10% or more and 0.22% or less.
  • some of the hot-dip galvanized steel sheets were subjected to galvanizing alloying treatment after the hot-dip galvanizing treatment to obtain alloyed hot-dip galvanized steel sheets (GA).
  • the galvanizing alloying treatment was performed in a temperature range of 470 ° C. or higher and 550 ° C. or lower.
  • some steel plates (cold rolled steel plates) were electroplated to obtain electrogalvanized steel plates (EG).
  • the steel structure was measured by the above method. The measurement results are shown in Table 2-2.
  • the area ratio of the plate-like residual ⁇ UB generated adjacent to the upper bainite is such that the particle width is 0.25 to 0.60 ⁇ m, the particle length is 1.5 to 15 ⁇ m, and the aspect ratio is 4 to 25.
  • the area ratio of the ⁇ -grains was determined as S ⁇ UB .
  • the stretch flange formability was evaluated by a hole expanding test in accordance with the Japan Iron and Steel Federation Standard JFST1001. That is, after punching a 100 mm ⁇ 100 mm square sample with a punching tool having a punch diameter of 10 mm and a die diameter of 10.3 mm (clearance 13%), a conical punch having an apex angle of 60 ° is used to form a punched hole. The holes were expanded until the burrs that occurred were on the outside and cracks that penetrated the plate thickness occurred.
  • d 0 initial hole diameter (mm)
  • d hole diameter at the time of crack occurrence (mm)
  • hole expansion rate ⁇ (%) ⁇ (d ⁇ d 0 ) / d 0 ⁇ ⁇ 100 .
  • the circle-equivalent particle diameter is 0.5 ⁇ m or more and less than 1.3 ⁇ m
  • the aspect ratio is 3 or less.
  • Fresh martensite and / or circle equivalent particle diameter is 0.5 ⁇ m or more and less than 1.3 ⁇ m, and the total area ratio of residual ⁇ particles having an aspect ratio of 3 or less: S ⁇ Fine , the circle equivalent particle diameter is 1.5 ⁇ m or more and 20 ⁇ m or less, A fresh martensite having an aspect ratio of 3 or less and / or a circle-equivalent particle diameter of 1.5 ⁇ m or more and 20 ⁇ m or less and a total area ratio of residual ⁇ particles having an aspect ratio of 3 or less: S ⁇ Block is included in a predetermined amount.
  • the plate warpage measured by the following method was a good level of 11 to 15 mm. Further, in the invention examples in which the average cooling rate was 5 ° C./s or more and 14 ° C./s or less, the plate warpage measured by the following method was 10 mm or less, which was a more favorable level.
  • the above-mentioned warpage for evaluating the plate shape was obtained by cutting a 1500 mm-long cut sample from the annealed steel plate, and placing the sample on a horizontal flat plate to measure the warp height of four sides. It was evaluated by a method of measuring the maximum value (unit: mm) of the height. In addition, when the cut sample is cut in the longitudinal direction, the clearance of the blade of the shearing machine is 4% (the upper limit of the control range is 10%).
  • a cold rolled steel sheet having a thickness of 1.2 mm and having the composition shown in Table 1 was processed under the annealing conditions shown in Table 3-1 to produce the steel sheet of the present invention and the steel sheet of the comparative example.
  • the steel structure of the obtained steel sheet was measured and the mechanical properties were evaluated in the same manner as above, and the results are shown in Table 3-2.
  • the area ratio of the plate-like residual ⁇ UB formed adjacent to the upper bainite has a particle width of 0.25 to 0.60 ⁇ m, a particle length of 1.0 to 15 ⁇ m, and an aspect ratio of 3.1 to 25.
  • the area ratio of ⁇ -grains satisfying the above condition was determined as S ⁇ UB .
  • the present invention has extremely high ductility and excellent stretch flange formability, and can be preferably applied to press forming used in automobiles, home appliances, etc. through the press forming process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

鋼板およびその製造方法を提供する。本発明は、特定の成分組成と、鋼組織は、面積率でフェライト:5%以下、上部ベイナイト、フレッシュマルテンサイト、焼戻しマルテンサイト、下部ベイナイト、残留γの1種もしくは2種以上からなる組織:95~100%、体積率で残留γ:5~20%を含み、粒子幅が0.25~0.60μm、粒子長さが1.0~15μm、アスペクト比が3.1~25である残留γUBの面積率:SγUBが0.2~7.0%であり、粒子幅が0.08~0.24μm、粒子長さが0.6~15μm、アスペクト比が4~40である残留γLBの分布個数:NγLBが100μmあたり10~120個であり、円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下の残留γ粒子の合計面積率:SγFineが1~10%であり、円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下の残留γ粒子の合計面積率:SγBlockが5%以下(0%を含む)である鋼板とする。

Description

鋼板およびその製造方法
 本発明は、自動車、家電等においてプレス成形工程を経て使用されるプレス成形用に好ましく適用できる、鋼板およびその製造方法に関する。
 近年、自動車車体軽量化ニーズの更なる高まりから、自動車の骨格部品やシート部品への980~1180MPa級高強度鋼板の適用が進みつつある。しかしながら、980~1180MPa級の高強度鋼板を自動車部品に適用した場合、延性の低下や伸びフランジ成形性の低下に起因してプレス割れが生じやすくなる。このため、これらの高強度鋼板には、従来と比べ成形性に優れていることが望まれる。
 このような背景から、鋼板の延性を向上させる技術として、鋼板のミクロ組織中に残留γを分散させたTRIP鋼が開発されている。
 例えば、特許文献1には、C:0.10~0.45%、S:0.5~1.8%、Mn:0.5~3.0%を含む鋼を焼鈍後に350~500℃で1~30min保持して残留γを生成させることでTS(引張強度):80kgf/mm以上でTS×El≧2500kgf/mm・%の高い延性を有する鋼板が得られることが開示されている。
 特許文献2には、C:0.10~0.25%、Si:1.0~2.0%、Mn:1.5~3.0%を含有する鋼を焼鈍後に10℃/s以上で450~300℃まで冷却し、180~600秒保持し、占積率で残留オーステナイトを5%以上、ベイニティックフェライトを60%以上、ポリゴナルフェライトを20%以下に制御することで、延性:Elと伸びフランジ成形性:λに優れた鋼板が得られることが開示されている。
 特許文献3には、特定の成分組成を有する鋼板を焼鈍後150~350℃の温度域まで冷却し、その後400℃付近に再加熱して保持することで、フェライト、焼戻しマルテンサイト、残留オーステナイトを含む組織が得られ、高い延性および高い伸びフランジ成形性を鋼板に付与できることが開示されている。これは冷却過程で一度マルテンサイト変態開始温度(Ms点)~マルテンサイト変態完了温度(Mf点)の間の温度域まで冷却し、その後再加熱保持して残留γを安定化させる、所謂、Q&P;Quenching&Partitioning(焼入れとマルテンサイトからオーステナイトへの炭素の分配)という原理を利用したものである。近年、この原理の利用で高い延性と高い伸びフランジ成形性を有する高強度鋼の開発が進んでいる。
 特許文献4には、上記のQ&P処理を改良した手法が開示されている。すなわち、特定の成分組成を有する鋼を、ポリゴナルフェライトを5%以下とするためにAe3-10℃以上の温度で焼鈍し、その後、Ms-10℃~Ms-100℃の比較的高温で冷却を停止することで、400℃付近に再加熱した際に上部ベイナイトを生成させて高い延性と高い伸びフランジ成形性を得ようとするものである。
 さらに特許文献5には、低温で生成するベイナイトと高温で生成するベイナイトを活用し、延性と低温靱性に優れた鋼板を得る手法が開示されている。すなわち、C:0.10~0.5%を含有する鋼を焼鈍後、10℃/s以上の冷却速度で150~400℃まで冷却し、その温度域で10~200sec保持することで低温域のベイナイトを生成させ、400℃超540℃以下の温度域に再加熱して50sec以上保持することで高温域のベイナイトを生成させ延性と低温靱性に優れた鋼板を得ようとするものである。
特公平6-35619号公報 特許第4411221号公報 特許第5463685号公報 特許第3881559号公報 特許第3854506号公報
 しかしながら、特許文献1に記載の従来のTRIP鋼は、Elは優れているものの、伸びフランジ成形性が非常に低いという問題を有していた。
 特許文献2に記載の技術では、ミクロ組織として主にベイニティックフェライトを活用しており、フェライトを少なく抑えているので、伸びフランジ成形性には優れているものの延性は必ずしも高くない。このため、難成形部品への適応を考えると、さらなる延性の改善が求められていた。
 特許文献3に記載の技術では、従来のTRIP鋼やベイニティックフェライトを活用した鋼と比べると、比較的高い延性と高い伸びフランジ成形性を実現している。しかし、センターピラー等の難成形部品での成形においては破断が認められ、さらなる延性の向上が必要とされていた。本技術を適用した鋼板では、破断のしにくさを示す一様変形量が必ずしも十分でないことが明らかになった。この一様変形量は、延性の指標となるElの中でもネッキングが生じ始めるまでの伸び量を表すU.Elで表され、U.Elをさらに増加させる必要がある。
 特許文献4に記載の技術では、塊状のマルテンサイトを低減するためにポリゴナルフェライトの生成量を低減しており、十分な延性が確保できない。また、Elを向上させるために冷却停止温度を比較的高く設定しており、冷却停止時に未変態γが多く残存するので、塊状のマルテンサイトが残存しやすい。
 特許文献5に記載の技術では、延性を向上させるために、低温域変態ベイナイトと高温域変態ベイナイトを活用するが、低温で変態するベイナイトは延性向上に対する寄与が小さく、高温で生成するベイナイトを利用する場合は塊状組織が残存しやすい。このため、高い延性と高い伸びフランジ成形性を同時に付与するのは難しい。
 このように、従来技術では、十分高い延性と高い伸びフランジ成形性を確保した鋼板は得られていなかった。
 本発明は、このような問題を解決するためになされたもので、780~1450MPa級の引張強度を有する場合でも、極めて高い延性と優れた伸びフランジ成形性を有する鋼板およびその製造方法を提供しようとするものである。
 なお、ここでいう鋼板とは、表面に亜鉛めっき処理を施した亜鉛めっき鋼板も含むものとする。
 本発明者らは、極めて高い延性と優れた伸びフランジ成形性を具備させる手段について鋭意検討を行い以下の結論を得た。
 まず、従来、(1)オーステンパ処理を施したTRIP鋼で伸びフランジ成形性が不十分だった原因、(2)Q&Pを利用した鋼で延性が不十分だった原因を検討した。(1)の原因は、次の通りと考えられる。オーステンパを施したTRIP鋼では、400℃付近のオーステンパ時に炭素がベイナイトから未変態オーステナイトに拡散し、bcc相とfcc相の自由エネルギーが等しくなるT組成にオーステナイト中の炭素量が近づいた時点でベイナイト変態が停滞する。この変態の停滞により、T組成付近までしか炭素が濃化しない硬質なマルテンサイトや残留γで構成される塊状組織が残存する。(2)の原因は次の通りと考えられる。Q&Pを利用した鋼では、冷却停止温度を十分低下させることで塊状組織は低減できるものの、マルテンサイト中での炭化物の析出や炭素の安定化により、オーステナイト相への炭素の供給が阻害され、残留γの安定化が十分に行われない。
 Q&Pプロセスの最終テンパー過程で上部ベイナイトを多く生成させようとする場合も同様に(1)の現象が生じることが不可避である。つまり、従来提案された熱処理方法では、上部ベイナイト変態に隣接して生成する安定な残留γの利用と、塊状組織の低減を両立するのは難しい。このため、従来技術では、ある一定の延性と伸びフランジ特性の範囲からの脱却が難しい。
 これに対して、上部ベイナイトに隣接して生じる安定な残留γの利用と、塊状組織の低減を両立し、上記の技術による特性範囲を超える特性を付与しうる熱処理技術を新たに見出した。それは以下の骨子による。
 (i)焼鈍後、冷却する過程で、炭化物析出をほとんど伴わない上部ベイナイトの変態ノーズの450℃付近(405~505℃)で14sec以上200sec以下保持し、高温域で生じるベイナイトを生成させる。この高温域での中間保持により、最終組織において延性向上に貢献するプレート状(断面組織では棒状)の残留γUBと、プレート状の残留γUBへの炭素の供給に不可欠なひずみの少ないベイナイトをプレート状の残留γUBに隣接して生成させる。
 (ii)残部の未変態γ領域において、塊状組織形成の原因となるT組成までの炭素の濃化が生じる前に2次冷却を開始し、315℃まで8.0℃/s以上の冷却速度で速やかに冷却する。
 (iii)引き続き、315℃から310~255℃の範囲の冷却停止温度(Tsq)まで冷却して残部の未変態γ領域をマルテンサイト変態もしくは下部ベイナイト変態により分断し、塊状組織を低減する。
 (iv)この冷却過程で、315℃から冷却停止温度までの温度域を20℃/s未満で徐冷却して第2の保持を行うことで、マルテンサイト変態や下部ベイナイト変態の進行と同時に炭素分配を生じさせて延性向上に寄与するフィルム状の残留γLB(断面組織では針状)を生成させる。
 (v)また、冷却停止温度を255℃以上とすることで、延性の向上に寄与する円相当直径が0.5μm以上1.3μm未満の微細なマルテンサイトもしくは残留γを分散させる。
 (vi)その後400℃付近に再加熱・保持し、マルテンサイトを焼戻しマルテンサイトにするのと同時に、冷却途中の保持で上部ベイナイトに隣接して生成させたプレート状の残留γUB、2次冷却中に生成したマルテンサイトや下部ベイナイトに隣接して残存するフィルム状の残留γLBに炭素を分配させ、プレート状およびフィルム状の2種類の残留γを安定化させる。
 (vii)張り出し成形と伸びフランジ成形が一つの部品内でともに存在するような複合成形の場合、プレスのビード張力を増加させると鋼板の流入が抑制されて張り出し成形部分で割れが生じやすくなり、ビード張力を弱めると鋼板の流入量が多くなってフランジ部での割れが生じやすくなる。これら両者の割れを回避するためには、延性の指標の一様伸び(U.El)と伸びフランジ成形性の指標のλを、780~1180MPa級(TSの範囲で780~1319MPa)では(TS×U.El-7000)×λ≧260000で表される範囲に制御することが重要である。より部品を限定し、部品形状の最適化を行うことでより高強度な1320MPa級を適用することも可能になるが、1320MPa級(TSの範囲で1320MPa以上)を適用する場合においても(TS×U.El-7000)×λ≧180000で表される範囲に制御することが重要である。また、U.Elは、TS:780~1180MPa級(TSの範囲で780~1319MPa)では9%以上、より好ましくは10%以上、TS:1320MPa級(TSの範囲で1320MPa以上)では8%以上、より好ましくは9%以上、λはTS:780~1180MPa級(TSの範囲で780~1319MPa)では30%以上、より好ましくは40%以上、TS:1320MPa級(TSの範囲で1320MPa以上)では20%以上、より好ましくは30%以上、確保することで成形の安定性は格段に向上する。
 このように上部ベイナイト変態をマルテンサイト変態の前に活用し、残部の塊状組織の残存量をQ&P処理により制御するという2段冷却処理を行うことで、今まで困難であった安定な残留γの利用と塊状組織の低減の両立が可能になる。その結果、極めて高い延性と優れた伸びフランジ成形性を両立した鋼板を得ることが出来る。さらに、本発明によれば、高強度化することも可能である。
 本発明は、以上の知見に基づきなされたもので、具体的には以下のものを提供する。
[1] 質量%で、C:0.06~0.25%、Si:0.6~2.5%、Mn:2.3~3.5%、P:0.02%以下、S:0.01%以下、sol.Al:0.50%未満、N:0.015%未満を含有し、残部が鉄および不可避的不純物からなる成分組成と、鋼組織は、面積率でフェライト:5%以下、上部ベイナイト、フレッシュマルテンサイト、焼戻しマルテンサイト、下部ベイナイト、残留γの1種もしくは2種以上からなる組織:95~100%、体積率で残留γ:5~20%を含み、粒子幅が0.25~0.60μm、粒子長さが1.0~15μm、アスペクト比が3.1~25である残留γUBの面積率:SγUBが0.2~7.0%であり、粒子幅が0.08~0.24μm、粒子長さが0.6~15μm、アスペクト比が4~40である残留γLBの分布個数:NγLBが100μmあたり10~120個であり、円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下の残留γ粒子の合計面積率:SγFineが1~10%であり、円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下の残留γ粒子の合計面積率:SγBlockが5%以下(0%を含む)である鋼板。
[2] 質量%で、C:0.06~0.25%、Si:0.6~2.5%、Mn:2.3~3.5%、P:0.02%以下、S:0.01%以下、sol.Al:0.50%未満、N:0.015%未満を含有し、残部が鉄および不可避的不純物からなる成分組成と、鋼組織は、面積率でフェライト:5%以下、上部ベイナイト、フレッシュマルテンサイト、焼戻しマルテンサイト、下部ベイナイト、残留γの1種もしくは2種以上からなる組織:95~100%、体積率で残留γ:5~20%を含み、粒子幅が0.25~0.60μm、粒子長さが1.5~15μm、アスペクト比が4~25である残留γUBの面積率:SγUBが0.2~7.0%であり、粒子幅が0.08~0.24μm、粒子長さが0.6~15μm、アスペクト比が4~40である残留γLBの分布個数:NγLBが100μmあたり10~120個であり、円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下の残留γ粒子の合計面積率:SγFineが1~10%であり、円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下の残留γ粒子の合計面積率:SγBlockが5%以下(0%を含む)である鋼板。
[3] 前記残留γUBに隣接するフェライトもしくは上部ベイナイトの面積率:SUBとSγUBの比がSUB/SγUB≧3.5を満たす[1]または[2]に記載の鋼板。
[4] 前記組織において、C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である領域の合計面積率:SC濃化が0.1~5%である[1]~[3]のいずれかに記載の鋼板。
[5] C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である前記領域は、残留γである[4]に記載の鋼板。
[6] C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である前記領域は、残留γUB粒子である[5]に記載の鋼板。
[7] 前記隣接領域が上部ベイナイトを含む[3]~[6]のいずれかに記載の鋼板。
[8] 前記成分組成が、さらに、質量%で、Ti:0.002~0.1%、B:0.0002~0.01%のうちから選んだ1種または2種を含有する[1]~[7]のいずれかに記載の鋼板。
[9] 前記成分組成が、さらに、質量%で、Cu:0.005~1%、Ni:0.01~1%、Cr:0.01~1.0%、Mo:0.01~0.5%、V:0.003~0.5%、Nb:0.002~0.1%、Zr:0.005~0.2%およびW:0.005~0.2%のうちから選んだ1種または2種以上を含有する[1]~[8]のいずれかに記載の鋼板。
[10] 前記成分組成が、さらに、質量%で、Ca:0.0002~0.0040%、Ce:0.0002~0.0040%、La:0.0002~0.0040%、Mg:0.0002~0.0030%、Sb:0.002~0.1%およびSn:0.002~0.1%のうちから選んだ1種または2種以上を含有する[1]~[9]のいずれかに記載の鋼板。
[11] 引張強度が780MPa以上1450MPa以下である[1]~[10]のいずれかに記載の鋼板。
[12] 表面に亜鉛めっき層を有する[1]~[11]のいずれかに記載の鋼板。
[13] [1]、[2]、[8]、[9]および[10]のいずれかに記載の成分組成を有する鋼スラブを、熱間圧延および冷間圧延した後、冷延鋼板を、810~900℃の焼鈍温度で焼鈍し、次いで810~650℃の温度範囲を平均冷却速度:1~2000℃/sで冷却し、さらに650~505℃の温度範囲を平均冷却速度:8.0~2000℃/sで冷却した後、505~405℃の温度範囲で14~200sec保持し、さらに405~315℃までの温度範囲を平均冷却速度:8.0~100℃/sで冷却した後、315℃から255~310℃の範囲の冷却停止温度:Tsqまでの温度範囲を平均冷却速度:0.2℃/s以上20℃/s未満で冷却した後、Tsqから350℃までの温度範囲を平均加熱速度:2℃/s以上で加熱し、350~590℃で20~3000sec保持した後、350~50℃以下の温度まで0.1℃/s以上の冷却速度で冷却する鋼板の製造方法。
 本発明によれば、極めて高い延性と優れた伸びフランジ成形性を両立した鋼板を得ることが出来る。さらに、本発明によれば、高強度化することも可能である。
図1は、SEM画像の一例を示す図である。 図2は、アスペクト比、粒子幅、粒子長さを説明するための図である。 図3は、C濃度と分析長さとの関係を表すグラフの一例を示す図である。
 以下、本発明を具体的に説明する。なお、本発明は以下の実施形態に限定されない。
 本発明の鋼板は、特定の成分組成と特定の鋼組織とを有する。そこで、成分組成、鋼組織の順で本発明の鋼板を説明する。
 本発明の鋼板は下記の成分を含む。下記の説明において、成分の含有量の単位である「%」は「質量%」を意味する。
 C:0.06~0.25%
 Cは、焼き戻しマルテンサイトの面積率を確保して所定の強度を確保する観点、残留γの体積率を確保して延性を向上させる観点、残留γ中に濃化して残留γを安定化させて延性を向上させる観点から含有する。Cの含有量が0.06%未満では鋼板の強度、鋼板の延性が十分に確保できないので、その下限は0.06%とする。好ましくは0.09%以上、より好ましくは0.11%以上である。その含有量が0.25%を超えると冷却途中の中間保持における上部ベイナイト変態が遅延して所定量の上部ベイナイト変態に隣接して生成するプレート状の残留γUBを形成することが難しくなる。その結果、延性が低下する。また、塊状のマルテンサイトもしくは塊状の残留γが増加して、伸びフランジ成形性が劣化する。さらに、鋼板のスポット溶接性、曲げ性、穴広げ性といった諸特性が著しく劣化する。このため、C含有量の上限は0.25%とする。延性やスポット溶接性向上の観点からはC含有量は0.22%以下とすることが望ましい。延性およびスポット溶接性をさらに改善する観点からはC含有量は0.20%以下にすることがさらに望ましい。
 Si:0.6~2.5%
 Siは、フェライトを強化して強度を上昇させる観点、マルテンサイトやベイナイト中の炭化物生成を抑制し、残留γの安定性を向上させて延性を向上させる観点から含有する。炭化物の生成を抑制して延性を向上させる観点から、Si含有量は0.6%以上にする。延性向上の観点から、Si含有量は0.8%以上が好ましい。より好ましくは1.1%以上である。Siの含有量が2.5%を超えると圧延荷重が極端に高くなり、薄板の製造が困難になる。また、化成処理性や溶接部の靭性が劣化する。このため、Siの含有量は2.5%以下とする。化成処理性や素材および溶接部の靭性確保の観点からはSiの含有量は2.0%未満とするのが好ましい。溶接部の靭性確保の観点からはSiの含有量は1.8%以下、さらには1.5%以下とするのが好ましい。
 Mn:2.3~3.5%
 Mnは、所定の面積率の焼き戻しマルテンサイトおよび/またはベイナイトを確保して強度を確保する観点、残留γのMs点の低下により残留γを安定化させ延性を改善する観点、Siと同様にベイナイト中の炭化物の生成を抑制して延性を向上させる観点、残留γの体積率を増加させて延性を向上させる観点から重要な元素である。これらの効果を得るために、Mnの含有量は2.3%以上とする。従来の熱処理方法の中で、最終工程でベイナイト変態を活用する手法では、Mnを2.3%以上含有すると、硬質なマルテンサイトや残留γからなる塊状組織が多量に残存して伸びフランジ成形性が低下していた。しかし、本発明では、後述する熱処理方法の採用により得られる組織を有するので、Mnを多量に含有しても塊状組織を低減することが可能であり、Mn含有による残留γの安定化作用や体積率増加作用を享受することが出来る。残留γを安定化させて延性を向上させる観点からは、Mn含有量は2.5%以上が好ましい。好ましくは2.6%以上、より好ましくは2.7%以上である。Mnの含有量が3.5%を超えるとベイナイト変態が著しく遅延するので高い延性を確保する事が困難になる。また、Mnの含有量が3.5%を超えると、塊状の粗大γや塊状の粗大マルテンサイトの生成を抑制することは難しくなり、伸びフランジ成形性も劣化する。したがって、Mn含有量は3.5%以下とする。ベイナイト変態を促進して高い延性を確保する観点からMn含有量は3.2%以下とすることが好ましい。より好ましくは3.1%以下である。
 P:0.02%以下
 Pは鋼を強化する元素であるが、その含有量が多いとスポット溶接性を劣化させる。したがって、Pは0.02%以下とする。スポット溶接性を改善する観点からはPは0.01%以下とすることが好ましい。なお、Pを含まなくてもよいが、P含有量は製造コストの観点から0.001%以上が好ましい。
 S:0.01%以下
 Sは熱間圧延でのスケール剥離性を改善する効果、焼鈍時の窒化を抑制する効果があるが、スポット溶接性、曲げ性、穴広げ性に対して大きな悪影響を有する元素である。これらの悪影響を低減するために少なくともSは0.01%以下とする。本発明ではC、Si、Mnの含有量が非常に高いのでスポット溶接性が悪化しやすく、スポット溶接性を改善する観点からはSは0.0020%以下とすることが好ましく、さらに0.0010%未満とすることがより好ましい。なお、Sを含まなくてもよいが、S含有量は製造コストの観点から0.0001%以上が好ましい。より好ましくは0.0005%以上である。
 sol.Al:0.50%未満
 Alは脱酸のため、あるいはSiの代替として残留γを安定化する目的で含有する。sol.Alの下限は特に規定しないが、安定して脱酸を行うためには0.01%以上とすることが望ましい。一方、sol.Alが0.50%以上となると、素材の強度が極端に低下し、化成処理性にも悪影響を及ぼすので、sol.Alは0.50%未満とする。高い強度を得るためにsol.Alは0.20%未満とすることがさらに好ましく、0.10%以下とすることがより一層好ましい。
 N:0.015%未満
 Nは鋼中でBN、AlN、TiN等の窒化物を形成する元素であり、鋼の熱間延性を低下させ、表面品質を低下させる元素である。また、Bを含有する鋼では、BNの形成を通じてBの効果を消失させる弊害がある。N含有量が0.015%以上になると表面品質が著しく劣化する。したがって、Nの含有量は0.015%未満とする。好ましくは0.010%以下である。なお、Nを含まなくてもよいが、N含有量は製造コストの点から0.0001%以上が好ましい。より好ましくは0.001%以上である。
 本発明の鋼板の成分組成は、上記成分に加えて、以下の任意元素を適宜含有することができる。
 Ti:0.002~0.1%
 Tiは鋼中のNをTiNとして固定し、熱間延性を向上させる効果やBの焼入れ性向上効果を生じさせる作用がある。また、TiCの析出により組織を微細化する効果がある。これらの効果を得るためにTi含有量を0.002%以上にすることが望ましい。Nを十分固定する観点からはTi含有量は0.008%以上がさらに好ましい。より好ましくは0.010%以上である。一方、Ti含有量が0.1%を超えると圧延負荷の増大、析出強化量の増加による延性の低下を招くので、Ti含有量は0.1%以下にすることが望ましい。より好ましくは0.05%以下である。高い延性を確保するためにTiは0.03%以下とすることがさらに好ましい。
 B:0.0002~0.01%
 Bは、鋼の焼入れ性を向上させる元素であり、所定の面積率の焼き戻しマルテンサイトおよび/またはベイナイトを生成させやすい利点を有する。また、固溶Bの残存により耐遅れ破壊特性は向上する。このようなBの効果を得るには、B含有量を0.0002%以上にすることが好ましい。また、B含有量は0.0005%以上がより好ましい。さらに好ましくは0.0010%以上である。一方、B含有量が0.01%を超えると、その効果が飽和するだけでなく、熱間延性の著しい低下をもたらし表面欠陥を生じさせる。したがって、B含有量は0.01%以下が好ましい。より好ましくは0.0050%以下である。さらに好ましくは0.0030%以下である。
 Cu:0.005~1%
 Cuは、自動車の使用環境での耐食性を向上させる。また、Cuの腐食生成物が鋼板表面を被覆して鋼板への水素侵入を抑制する効果がある。Cuは、スクラップを原料として活用するときに混入する元素であり、Cuの混入を許容することでリサイクル資材を原料資材として活用でき、製造コストを低減することができる。このような観点からCuは0.005%以上含有させることが好ましく、さらに耐遅れ破壊特性向上の観点からは、Cuは0.05%以上含有させることがより望ましい。さらに好ましくは0.10%以上である。しかしながら、Cu含有量が多くなりすぎると表面欠陥の発生を招来するので、Cu含有量は1%以下とすることが望ましい。より好ましくは0.4%以下、さらに好ましくは0.2%以下である。
 Ni:0.01~1%
 Niも、Cuと同様、耐食性を向上する作用のある元素である。また、Niは、Cuを含有させる場合に生じやすい、表面欠陥の発生を抑制する作用がある。このため、Niは0.01%以上含有させることが望ましい。より好ましくは0.04%以上、さらに好ましくは0.06%以上である。しかし、Ni含有量が多くなりすぎると、加熱炉内でのスケール生成が不均一になり、却って表面欠陥を発生させる原因になる。また、コスト増も招く。このため、Ni含有量は1%以下とする。より好ましくは0.4%以下、さらに好ましくは0.2%以下である。
 Cr:0.01~1.0%
 Crは鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果から含有することが出来る。このような効果を得るには、Cr含有量は0.01%以上が望ましい。より好ましくは0.03%以上、さらに好ましくは0.06%以上である。ただし、Crを過剰に含有すると耐孔食性が劣化するのでCr含有量は1.0%以下とする。より好ましくは0.8%以下、さらに好ましくは0.4%以下である。
 Mo:0.01~0.5%
 Moは鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果から含有することが出来る。このような効果を得るには、Mo含有量は0.01%以上が好ましい。より好ましくは0.03%以上、さらに好ましくは0.06%以上である。ただし、Moは冷延鋼板の化成処理性を著しく劣化させるので、その含有量は0.5%以下とすることが好ましい。化成処理性向上の観点からはMoは0.15%以下とすることがさらに好ましい。
 V:0.003~0.5%
 Vは鋼の焼入れ性を向上させる効果、マルテンサイトや上部/下部ベイナイト中の炭化物生成を抑制する効果、組織を微細化する効果、炭化物を析出させ耐遅れ破壊特性を改善する効果から含有することが出来る。その効果を得るためにはV含有量は0.003%以上が望ましい。より好ましくは0.005%以上、さらに好ましくは0.010%以上である。ただし、Vを多量に含有すると鋳造性が著しく劣化するのでV含有量は0.5%以下が望ましい。より好ましくは0.3%以下、さらに好ましくは0.1%以下である。
 Nb:0.002~0.1%
 Nbは鋼組織を微細化し高強度化する効果、細粒化を通じてベイナイト変態を促進する効果、曲げ性を改善する効果、耐遅れ破壊特性を向上させる効果から含有することが出来る。その効果を得るためにはNb含有量は0.002%以上が望ましい。より好ましくは0.004%以上、さらに好ましくは0.010%以上である。ただし、Nbを多量に含有すると析出強化が強くなりすぎ延性が低下する。また、圧延荷重の増大、鋳造性の劣化を招く。このため、Nb含有量は0.1%以下が望ましい。より好ましくは0.05%以下、さらに好ましくは0.03%以下である。
 Zr:0.005~0.2%
 Zrは鋼の焼入れ性の向上効果、ベイナイト中の炭化物生成を抑制する効果、組織を微細化する効果、炭化物を析出させ耐遅れ破壊特性を改善する効果から含有することができる。そのような効果を得るためにはZr含有量は0.005%以上が望ましい。より好ましくは0.008%以上、さらに好ましくは0.010%以上である。ただし、Zrを多量に含有すると、熱間圧延前のスラブ加熱時に未固溶で残存するZrNやZrSといった粗大な析出物が増加し、耐遅れ破壊特性が劣化する。このため、Zr含有量は0.2%以下が望ましい。より好ましくは0.15%以下、さらに好ましくは0.08%以下である。
 W:0.005~0.2%
 Wは鋼の焼入れ性の向上効果、ベイナイト中の炭化物生成を抑制する効果、組織を微細化する効果、炭化物を析出させ耐遅れ破壊特性を改善する効果から含有することができる。そのような効果を得るためにはW含有量は0.005%以上が望ましい。より好ましくは0.008%以上、さらに好ましくは0.010%以上である。ただし、Wを多量に含有させると、熱間圧延前のスラブ加熱時に未固溶で残存するWNやWSといった粗大な析出物が増加し、耐遅れ破壊特性が劣化する。このため、W含有量は0.2%以下が望ましい。より好ましくは0.15%以下、さらに好ましくは0.08%以下である。
 Ca:0.0002~0.0040%
 Caは、SをCaSとして固定し、曲げ性の改善や耐遅れ破壊特性の改善に寄与する。このため、Ca含有量は0.0002%以上とすることが好ましい。より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。ただし、Caは多量に添加すると表面品質や曲げ性を劣化させるので、Ca含有量は0.0040%以下とすることが望ましい。より好ましくは0.0035%以下、さらに好ましくは0.0020%以下である。
 Ce:0.0002~0.0040%
 Ceも、Caと同様、Sを固定し、曲げ性の改善や耐遅れ破壊特性の改善に寄与する。このため、Ce含有量は0.0002%以上とすることが好ましい。より好ましくは0.0004%以上、さらに好ましくは0.0006%以上である。ただし、Ceを多量に添加すると表面品質や曲げ性が劣化するので、Ce含有量は0.0040%以下とすることが望ましい。より好ましくは0.0035%以下、さらに好ましくは0.0020%以下である。
 La:0.0002~0.0040%
 Laも、Caと同様、Sを固定し、曲げ性の改善や耐遅れ破壊特性の改善に寄与する。このため、La含有量は0.0002%以上とすることが好ましい。より好ましくは0.0004%以上、さらに好ましくは0.0006%以上である。ただし、Laを多量に添加すると表面品質や曲げ性が劣化するので、La含有量は0.0040%以下とすることが望ましい。より好ましくは0.0035%以下、さらに好ましくは0.0020%以下である。
 Mg:0.0002~0.0030%
 MgはMgOとしてOを固定し、耐遅れ破壊特性の改善に寄与する。このため、Mg含有量は0.0002%以上とすることが好ましい。より好ましくは0.0004%以上、さらに好ましくは0.0006%以上である。ただし、Mgを多量に添加すると表面品質や曲げ性が劣化するので、Mg含有量は0.0030%以下とすることが望ましい。より好ましくは0.0025%以下、さらに好ましくは0.0010%以下である。
 Sb:0.002~0.1%
 Sbは、鋼板表層部の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。また、CやBの含有量の上記低減が抑制されることで、鋼板表層部のフェライト生成を抑制し、高強度化するとともに、耐遅れ破壊特性が改善する。このような観点から、Sb含有量は0.002%以上が望ましい。より好ましくは0.004%以上、さらに好ましくは0.006%以上である。ただし、Sb含有量が0.1%を超えると、鋳造性が劣化し、また、旧γ粒界に偏析して、せん断端面の耐遅れ破壊特性は劣化する。このため、Sb含有量は0.1%以下が望ましい。より好ましくは0.04%以下、さらに好ましくは0.03%以下である。
 Sn:0.002~0.1%
 Snは、鋼板表層部の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。また、CやBの含有量の上記低減が抑制されることで、鋼板表層部のフェライト生成を抑制し、高強度化するとともに、耐遅れ破壊特性が改善する。このような観点から、Sn含有量は0.002%以上が望ましい。より好ましくは0.004%以上、さらに好ましくは0.006%以上である。ただし、Sn含有量が0.1%を超えると、鋳造性が劣化する。また、旧γ粒界にSnが偏析して、せん断端面の耐遅れ破壊特性が劣化する。このため、Sn含有量は0.1%以下が望ましい。より好ましくは0.04%以下、さらに好ましくは0.03%以下である。
 上記任意成分を下限値未満で含む場合、下限値未満で含まれる任意元素は本発明の効果を害さない。本実施形態に係る鋼板は、上記成分組成を含有し、上記成分組成以外の残部は、Fe(鉄)および不可避的不純物を含む。上記残部は、Feおよび不可避的不純物であることが好ましい。
 次に、本発明の鋼板の鋼組織について、説明する。
 フェライト:5%以下
 高いλを確保するために、フェライトは面積率で5%以下とする。より好ましくは4%以下、さらに好ましくは2%以下である。ここで、フェライトはポリゴナルなフェライトを指す。
 上部ベイナイト、フレッシュマルテンサイト、焼戻しマルテンサイト、下部ベイナイト、残留γの1種もしくは2種以上からなる組織:95~100%
 所定の強度、延性、伸びフランジ成形性を確保するために、ポリゴナルフェライト以外である残部の、上部ベイナイト、フレッシュマルテンサイト、焼戻しマルテンサイト、下部ベイナイト、残留γの合計面積率は95~100%とする。下限についてより好ましくは96%以上、さらに好ましくは98%以上である。上部ベイナイト、フレッシュマルテンサイト、焼戻しマルテンサイト、下部ベイナイト、残留γの面積率をSEM写真で観察した。各組織の含有量は次の範囲にあることが多いと考えられる。上部ベイナイトは面積率で1~30%である。フレッシュマルテンサイトは面積率で0~20%である。焼戻しマルテンサイトは面積率で3~40%である。下部ベイナイトは面積率で5~70%である。
 残留γ:5~20%
 高い延性を確保するために、鋼組織全体に対して残留γは体積率で5%以上とする。より好ましくは7%以上、さらに好ましくは9%以上である。この残留γ量には、上部ベイナイトに隣接して生成する残留γとマルテンサイトや下部ベイナイトに隣接して生成する残留γの両者を含む。残留γの量が増加しすぎると強度低下、伸びフランジ成形性の低下、耐遅れ破壊特性の劣化を招く。したがって、残留γの体積率は20%以下とする。より好ましくは15%以下であり、また、「体積率」は「面積率」とみなすことができる。
 粒子幅が0.25~0.60μm、粒子長さが1.0~15μm、アスペクト比が3.1~25である残留γUBの面積率:SγUBが0.2~7.0%
 後述する製造方法において、冷却過程の505~405℃の中間温度域で保持することで、炭化物をほとんど含まない上部ベイナイト(ベイニティックフェライト)に隣接して生成するプレート状の残留γUBを得ることができる。粒子幅が0.25~0.60μm、粒子長さが1.0~15μm、アスペクト比が3.1~25である残留γUBを生成させることで、その生成量が微量であっても延性が向上する。とりわけ、Elよりもプレス成形性への影響度の大きいU.Elを増加させる作用が大きい。その効果は、残留γUBの面積率:SγUBが0.2%以上確保されることで得られる。したがってSγUBは0.2%以上とする。SγUBを0.3%以上とすることで、延性は著しく上昇するので、SγUBは0.3%以上とすることがさらに望ましい。より好ましくは0.4%以上である。より高い延性を確保するため、残留γUBの形態は、粒子幅が0.25~0.60μm、粒子長さが1.5~15μm、アスペクト比が4~25であることが好ましい。ここで注意すべき点は、粒子幅、粒子長さ、アスペクト比が同一の鋼組織であってもC濃化量が少ない場合は、フレッシュマルテンサイトとなり、延性の向上に対する寄与が著しく小さいばかりか伸びフランジ成形性を著しく劣化させる。この組織は所謂MAと称される組織の一つであり、本規定の組織は、Cが顕著に濃化した安定なγでありこのMAとは異なり区別しなければならない。このため、後述するように本組織はEBSDでfcc構造であることを確認したもののみを対象とする。また、このプレート状の残留γUBが多くなりすぎると、炭素の消費量が多くなりすぎ、大幅な強度低下が生じる。また、伸びフランジ成形性の低下や耐遅れ破壊特性の劣化を招く。したがって、SγUBは7.0%以下とする。より好ましくは5.0%以下、さらに好ましくは4.0%以下である。
なお、上記面積率は、鋼組織全体における面積率を意味する。なお、残留γUBの面積率は、EBSDを用いてフェーズマップデータを得、fcc構造の組織を対象に測定し、他の金属相(bcc系)から区別しうる。
 残留γUBに隣接するフェライトもしくは上部ベイナイトの面積率:SUBとSγUBの比がSUB/SγUB≧3.5
 残留γUBの延性向上効果は、残留γUBに隣接して生成するフェライトもしくは上部ベイナイトとの面積比率を制御することで向上できる。高い延性を確保するためにSUB/SγUBは3.5以上とすることが望ましい。延性向上の観点から、より好ましいSUB/SγUBの範囲は4.0以上である。上限は特に規定しないが、本熱履歴の場合、15以下が好ましい。
 粒子幅が0.08~0.24μm、粒子長さが0.6~15μm、アスペクト比が4~40である残留γLBの分布個数:NγLBが100μmあたり10~120個
 後述する製造方法において、冷却過程の315℃から255~310℃の範囲の冷却停止温度:Tsqまでの温度範囲で冷却速度を遅くする第2の中間保持を設けることで、マルテンサイトと下部ベイナイトに隣接して生成するフィルム状の残留γLB(残留γLB粒子と称する場合もある。)を得ることができる。このフィルム状の残留γLB粒子は、粒子幅が0.08~0.24μm、粒子長さが0.6~15μm、アスペクト比が4~40の粒子である。この粒子は主に残留γからなるが、一部に炭化物やマルテンサイトも含む。ここではSEM写真における形態でフィルム状の残留γLB粒子を識別した。延性向上の観点から残留γLB粒子の分布個数:NγLBは100μmあたり10個以上とする。延性向上の観点からNγLBは100μmあたり20個以上であることが好ましく、30個以上であることがさらに好ましい。NγLBは100μmあたり120個超えとなると硬質化しすぎて延性が低下するので、NγLBは100μmあたり120個以下とする。延性向上の観点からは、NγLBは100μmあたり100個以下であることが好ましく、80個以下であることがさらに好ましい。
 上記の通り、粒子幅が0.25μm以上のものがプレート状である。また、粒子幅が0.24μm以下のものがフィルム状であるとする。
 円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下の残留γ粒子の合計面積率:SγFineが1~10%
 円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下の微細なフレッシュマルテンサイトや残留γ粒子(残留γと称する場合もある。)は、λを低下させる作用が小さく、とりわけ、Elよりもプレス成形性への影響度の大きいU.Elを増加させる作用が大きい。したがって、円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下のフレッシュマルテンサイトと残留γ粒子の合計面積率:SγFineは1%以上とする。延性向上の観点からSγFineは2%以上とすることが好ましく、3%以上とすることがさらに好ましい。SγFineが増加しすぎると、λを低下させる要因になるので、これらの面積率は10%以下とする。λ向上の観点からこれらの合計面積率は8%以下とすることがより好ましい。
 円相当粒子直径が1.5μm以上20μm以下でありアスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が1.5μm以上20μm以下でありアスペクト比が3以下の残留γ粒子の合計面積率:SγBlockが5%以下
 従来、最終テンパー工程でベイナイト変態を多く生じさせようとする場合、塊状のマルテンサイトもしくは塊状の残留γが多く残存する。そこで、従来、これを防ぐために、Mnを2%以下に低減してベイナイト変態を促進する手法が用いられていた。しかしながら、Mn含有量を低減すると残留γの安定化効果や体積率増加効果が失われることによって延性が損なわれていた。これに対して、Mnを多く含む鋼板に適切な冷却処理を施す本発明ではベイナイト変態の利用と塊状組織の低減の両者が可能である。この伸びフランジ成形性に悪影響を及ぼす塊状組織は、円相当粒子直径が1.5μm以上20μm以下でありアスペクト比が3以下のフレッシュマルテンサイトおよび円相当粒子直径が1.5μm以上20μm以下でありアスペクト比が3以下の残留γ粒子であり、その合計面積率:SγBlockを5%以下に低減することで優れた伸びフランジ性成形を確保できる。優れた伸びフランジ性成形を確保するためにSγBlockは3%未満とすることが一層好ましい。また、SγBlockは0%でもよい。なお、円相当粒子直径が1.5μm以上20μm以下でありアスペクト比が3以下のフレッシュマルテンサイト、円相当粒子直径が1.5μm以上20μm以下でありアスペクト比が3以下の残留γ粒子のいずれか一方のみ含む場合には、その含まれるものの面積率を合計面積率とする。
 C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である領域の合計面積率:SC濃化が0.1~5%
 周囲よりもC濃度が高い領域の面積率を調整することで、延性を向上させることができる。具体的には、C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である領域の合計面積率:SC濃化を0.1~5%とすることで延性が高められる。なお、隣接領域とは、C濃度が0.6~1.3%であり、C濃度が0.07%以下である領域と隣合う領域を意味する。
 延性向上の観点からは、C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である領域は、残留γであることが好ましく、残留γUB粒子(残留γUBと称する場合もある。)であることがより好ましい。また、隣接領域の一部または全部は上部ベイナイトを含むことが好ましい。そこで、C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である領域が残留γUBであり、隣接領域が上部ベイナイトの場合について以下説明する。なお、上記領域が残留γUBであり、隣接領域が上部ベイナイトの場合のSC濃化をSγUB*と表記する。
 上部ベイナイトに隣接して生成する残留γUBでは、その粒子の少なくとも片側のC量が非常に低いという傾向を有する。つまり、405~505℃の高温で生じたベイナイト(ベイニティックフェライト)からはCのオーステナイトへの離脱が容易に進行し、Cがプレート状の残留γUBに効率的に濃化する。その結果、プレート状の残留γUBのC量は0.6~1.3%となり、延性の向上に寄与する。また、その周囲の上部ベイナイトの領域ではC量は0.07%以下に低下する。延性をさらに向上させるには、このようなCの分布状態を有する残留γの領域SγUB*を面積率で0.1~5%確保することが好ましい。SγUB*を0.2%以上とすることで延性は著しく増加するので、SγUB*は0.2%以上とすることがさらに望ましい。上限については、より好ましくは4%以下、さらに好ましくは3%以下である。
 次に鋼組織の測定方法について説明する。
 フェライトの面積率の測定は、圧延方向と平行な板厚断面を切り出し、鏡面研磨した後、3%ナイタールにて腐食し、1/4厚み位置でSEMで5000倍にて10視野観察する方法で行った。フェライトは内部に殆ど炭化物を伴わず、比較的等軸なポリゴナルフェライトを対象とした。SEMでは最も黒色に見える領域である。プレート状の残留γUBの両側の組織が上部ベイナイトなのかフェライトなのか識別が難しい場合は、アスペクト比≦2.0のポリゴナルな形態のフェライトの領域をフェライトとし、アスペクト比>2.0の領域を上部ベイナイト(ベイニティックフェライト)に分類し面積率を算出した。ここで、アスペクト比は、図2に示すように、粒子長さが最も長くなる長軸長さaを求め、それに垂直な方向でもっとも粒子を長く横切るときの粒子長さを短軸長さbとし、a/bをアスペクト比とした。また、複数の粒子が互いに接している場合は、個々の粒子が接している領域でおよそ均等に分割されるように図2に示す破線の位置で分割し、個々の粒子のサイズを測定する。
 上部ベイナイト、フレッシュマルテンサイト、焼戻しマルテンサイト、下部ベイナイト、残留γの1種もしくは2種以上からなる組織の面積率は、フェライトと同様の手法で測定した。当該面積率は上記のフェライト以外の領域の面積率である。ここで、炭化物の面積率は非常に少ないので、上記の面積率に含めた。
 残留γの体積率は、表層から1/4厚み位置を化学研磨し、X線回折にて求めた。入射X線にはCo-Kα線源を用い、フェライトの(200)、(211)、(220)面とオーステナイトの(200)、(220)、(311)面の強度比から残留オーステナイトの面積率を計算した。ここで、残留γはランダムに分布しているので、X線回折で求めた残留γの体積率は、鋼組織における残留γの面積率と等しくなる。
 上部ベイナイトに隣接して生成するプレート状の残留γUBの形状と面積率は、板厚1/4深さ位置の鋼板の圧延方向に平行な板厚断面を電解研磨し、EBSDを用いてフェーズマップデータを得、fcc構造の組織を対象に測定した。測定領域は30μm×30μmとして互いに50μm以上離れた10視野について測定した。上述した粒子サイズ、アスペクト比の測定方法を採用して粒子長さ(長軸長さ)、粒子幅(短軸長さ)、アスペクト比を求めた。粒子幅が0.25~0.60μm、粒子長さが1.0~15μm、アスペクト比が3.1~25、または粒子幅が0.25~0.60μm、粒子長さが1.5~15μm、アスペクト比が4~25に合致するγ粒について、その面積率をSγUBとして求めた。また、同視野について3%ナイタールでエッチングを行い、プレート状の残留γUBの片側もしくは両側に隣接して存在するフェライトもしくはベイナイトの合計面積率:SUBを求めた。
 粒子幅が0.08~0.24μm、粒子長さが0.6~15μm、アスペクト比が4~40である残留γLBの分布個数、円相当粒子直径が1.5μm以上20μm以下でありアスペクト比が3以下のフレッシュマルテンサイト、円相当粒子直径が1.5μm以上20μm以下でありアスペクト比が3以下の残留γ粒子の面積率、円相当粒子直径が0.5μm以上1.3μm未満でありアスペクト比が3以下のフレッシュマルテンサイト、円相当粒子直径が0.5μm以上1.3μm未満でありアスペクト比が3以下の残留γ粒子の形態(長さ、アスペクト比)、面積率、も同様にSEM写真から求めた。
 なお、残留γの体積率は鋼板全体に対する体積率、SγUB、SγFine、SγBlockはミクロ組織全領域に対する面積率、NγLBは上部ベイナイト、フレッシュマルテンサイト、焼戻しマルテンサイト、下部ベイナイト、残留γからなる領域(フェライト以外)における分布個数の密度を表す。
 また、円相当粒子径(円相当粒子直径)は、SEMで個々の粒子を観察し、その面積率を求め、円相当直径を算出し、円相当粒子径とした。
 C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である領域のC濃度(質量%)およびその隣接領域のC濃度(質量%)の測定は、圧延方向に並行な板厚断面の板厚1/4位置において日本電子製電界放出型電子線マイクロアナライザ(FE-EPMA)JXA-8500Fを用いて、加速電圧6kV、照射電流7×10-8A、ビーム径を最小として線分析にて実施した。分析長さは6μmとしてミクロ組織の平均的情報を得るためランダムに10μm以上離れた20箇所についてCのプロファイルデータを採取した。ただし、コンタミネーションの影響を排除するために、各ライン分析で得られたCの平均値が母材の炭素量に等しくなる様、バックグラウンド分を差し引いた。つまり、測定された炭素量の平均値が母材の炭素量より多い場合、その増加分はコンタミネーションと考え、各位置での分析値からその増加分を一律差し引いた値を各位置での真のC量とした。C濃度が0.07%以下の領域を隣接して有し、C:0.6~1.3%の領域の合計面積率SC濃化は、Cピークの裾野部分のC量が0.07%以下となっている領域について、上記領域の分布状態がランダムであることを仮定して、線分析結果におけるC:0.6~1.3%の領域の比率をその面積率とした。なお、上記測定で得られるC濃度と分析長さとの関係を表すグラフの一例を図3に示した。図3においてC濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である領域は、SC濃化-1である。図3に示すようなグラフを30箇所で導出して、SC濃化-1の合計面積率SC濃化を得る。ここでは、図3中の「※」を付与した組織(プレート状の残留γ、フィルム状の残留γ)の形態については、SEM写真を用いて判断する。
 なお、前記のプレート状の残留γUBのC濃化量は、前記した分析手法で計測可能なため、特性評価にあたっては、C濃化量が0.6~1.3%である場合は、そのC濃化量を有する金属相はプレート状の残留γUBと評価してよい。
 また、SEM写真の一例を図1に示した。
 図1の観察に用いた鋼板は、0.18%C-1.5%Si-2.8%Mn鋼をγ単相となる830℃で焼鈍後、20℃/sで650℃まで冷却し、さらに20℃/sで505℃まで冷却し、20℃/sで505℃から450℃まで冷却した後450℃で30sec等温保持した後、10℃/sで315℃まで冷却し、その後315℃から260℃まで6℃/sで冷却し、さらに260℃から350℃まで15℃/sで加熱し、400℃で1080sec保持し、その後10℃/sで室温まで冷却して得た。圧延方向の垂直断面の1/4厚さ位置を研磨後3%ナイタールで腐食してSEMにより観察した。
 上部ベイナイト、フレッシュマルテンサイト、焼戻しマルテンサイト、下部ベイナイト、残留γをSEM写真で分離評価する。上部ベイナイト(a)は炭化物をほとんど含まず、内部に筋状のひずみ(ラス界面)が殆ど見えずフェライトとほぼ同じ黒色の短軸幅が0.4μm以上の組織である。上部ベイナイトもしくはフェライトに隣接して粒子幅が0.25~0.60μm、粒子長さが1.0~15μm、アスペクト比が3.1~25であるプレート状の残留γ(b)が存在する。焼戻しマルテンサイト(c)は組織内部にアスペクト比が4以下で円相当直径で0.03~0.3μmの微細な炭化物を1μmあたり2.0~20個含む領域である。下部ベイナイト(d)は組織の内部に粒子幅が0.08~0.24μm、粒子長さが0.6μm以上15μm、アスペクト比が4~40のフィルム状の残留γ(e)を1μmあたり0.1~4個含むかアスペクト比が4以下で円相当直径で0.03~0.3μmの微細な炭化物を1μmあたり0.2~1.9個含む領域である。焼き戻しマルテンサイトや下部ベイナイト内部には内部に筋状のひずみ(ラス界面)が認められ、フェライトや上部ベイナイトと比べると若干灰色を呈した色となる。ベイナイト変態もしくはマルテンサイト変態が十分に進行しなかった領域では円相当粒子直径が1.5μm以上20μm以下でありアスペクト比が3以下のフレッシュマルテンサイトまたは残留γ粒子が残存する。また、円相当粒子直径が0.5μm以上1.3μm未満でありアスペクト比が3以下のフレッシュマルテンサイトまたは残留γ粒子(f)が残存する。炭化物が殆ど生成しておらず、アスペクト比が2.0以下の黒色領域がポリゴナルフェライト(g)である。
 本発明の鋼板は、引張強度が780MPa以上であることが好ましい。より好ましくは980MPa以上である。引張強度の上限については、他の特性との両立の観点から1450MPa以下が好ましく、より好ましくは1400MPa以下である。
 本発明の鋼板では、穴広げ率λはTS:780~1319MPa級では30%以上、好ましくは40%以上、TS:1320MPa以上では20%以上、好ましくは30%以上確保することで成形の安定性は格段に向上する。λの上限は、他の特性との両立の観点から、いずれの強度レベルにおいても90%以下が好ましく、より好ましくは80%以下である。
 次に、本発明の鋼板の製造方法について説明する。
 熱間圧延
 鋼スラブを熱間圧延するには、スラブを加熱後圧延する方法、連続鋳造後のスラブを加熱することなく直接圧延する方法、連続鋳造後のスラブに短時間加熱処理を施して圧延する方法などがある。熱間圧延は、常法にしたがって実施すればよく、例えば、スラブ加熱温度は1100~1300℃、均熱温度は20~300min、仕上圧延温度はAr変態点~Ar変態点+200℃、巻取温度は400~720℃とすればよい。巻取温度は、板厚変動を抑制し高い強度を安定して確保する観点からは、430~530℃とするのが好ましい。
 冷間圧延
 冷間圧延では、圧延率を30~85%とすればよい。高い強度を安定して確保し、異方性を小さくする観点からは、圧延率は45~85%にすることが好ましい。なお、圧延荷重が高い場合は、450~730℃でCAL(連続焼鈍ライン)、BAF(箱焼鈍炉)にて軟質化の焼鈍処理をすることが可能である。
 焼鈍
 所定の成分組成を有する鋼スラブを、熱間圧延および冷間圧延した後、以下に規定の条件で焼鈍を施す。焼鈍設備は特に限定されないが、生産性、および所望の加熱速度および冷却速度を確保する観点から、連続焼鈍ライン(CAL)または連続溶融亜鉛めっきライン(CGL)で実施することが好ましい。
 焼鈍温度:810~900℃
 所定の面積率の焼き戻しマルテンサイトおよび/またはベイナイト、所定の体積率の残留γを確保するために、焼鈍温度は810~900℃とする。ポリゴナルなフェライトを5%以下とするために、焼鈍温度はγ単相域焼鈍となるように調整する。好ましくは815℃以上であり、好ましくは880℃以下である。
 810~650℃の温度範囲の平均冷却速度:1~2000℃/s
 焼鈍後、810~650℃の温度範囲を平均冷却速度:1~2000℃/sで冷却する。平均冷却速度が1℃/sより遅いと、フェライトが多量に生成し、強度低下、λの低下を招く。より好ましくは3℃/s以上である。一方、平均冷却速度が速くなりすぎると、板形状が悪化するので、2000℃/s以下とする。好ましくは100℃/s以下、さらに好ましくは30℃/s未満である。また、29℃/s以下とすることで、板形状を良好なレベル(後述する実施例に記載の板反りを15mm以下)とすることができるため好ましい。さらには、上記平均冷却速度を14℃/s以下とすることで板形状をより良好なレベル(後述する実施例に記載の板反りを10mm以下)とすることができるためより好ましい。
 650~505℃の温度範囲の平均冷却速度:8.0~2000℃/s
 650~505℃の温度範囲は8.0℃/s以上で冷却する。平均冷却速度が8.0℃/sより遅いと、フェライトが多量に生成し、強度低下、λの低下を招く。より好ましくは10.0℃/s以上である。一方、平均冷却速度が速くなりすぎると、板形状が悪化するので、2000℃/s以下とする。好ましくは100℃/s以下、さらに好ましくは30℃/s未満である。
 505~405℃の温度範囲での保持時間:14~200sec
 この温度域で所定時間保持することで、炭化物析出をほとんど生じない上部ベイナイトを生成させることが可能であり、それに隣接してCの濃化量の高いプレート状の残留γUBを生成させることが出来る。また、この温度域での保持により両組織の面積率の比SUB/SγUBを所定範囲に制御することができる。これらの観点から505~405℃の温度範囲で14sec以上保持する。プレート状の残留γUBを生成させ、延性を向上させる観点からは、この温度域での保持時間は、17sec以上とすることがさらに好ましい。一方、保持時間が200secを超えて保持してもプレート状の残留γUBの生成は停滞し、200secを超えて保持すると、塊状の未変態γへの炭素濃化が進行し、塊状組織の残存量の増加を招く。したがって、505~405℃の温度範囲での保持時間は14~200secとする。伸びフランジ成形性を向上させる観点からは、505~405℃の温度範囲での保持時間は100sec以下とすることが好ましい。より好ましくは50sec以下である。なお、この温度域での保持は、この温度範囲での平均冷却速度を7.1℃/s以下に低減することに対応する。延性向上の観点からは、保持する温度域は、420℃以上が好ましく、440℃以上がさらに好ましい。また、490℃以下が好ましく、480℃以下がさらに好ましい。
 405~315℃までの温度範囲の平均冷却速度:8.0~100℃/s
 405~505℃で保持した後、炭素のγへの濃化が進行しすぎないように速やかに315℃まで冷却する必要がある。315℃より高い温度で滞留すると、炭素が塊状の未変態γへ濃化して、引き続く冷却工程や焼き戻し工程でのベイナイト変態が抑制され、塊状のマルテンサイトもしくは残留γの量が増大する。その結果、λが低下する。λを向上させる観点から405~315℃までの温度範囲の平均冷却速度は8.0℃/s以上とする。より好ましくは10℃/s以上、さらに好ましくは15℃/s以上である。この温度範囲の冷却速度が大きくなりすぎると、板形状が劣化するので、この温度範囲の冷却速度は100℃/s以下とする。好ましくは50℃/s以下である。より好ましくは20℃/s未満である。
 315℃から冷却停止温度Tsqまでの平均冷却速度:0.2℃/s以上20℃/s未満
 さらに、315℃から255~310℃の範囲の冷却停止温度:Tsqまでの温度範囲を緩やかに冷却して第2の保持を行う。これにより、マルテンサイトや下部ベイナイトの生成と同時に炭素を隣接したγに濃化させることが出来、マルテンサイトや下部ベイナイトに隣接して生成するフィルム状の残留γLBを生成させる。これにより延性が向上する。延性向上の観点からは、この温度範囲の平均冷却速度は0.2℃/s以上20℃/s未満とする。より好ましくは1℃以上である。フィルム状の残留γLBの生成量を高くして延性を向上させる観点からは、この温度範囲の平均冷却速度は15℃/s未満とすることが望ましく、10℃/s未満とすることがさらに好ましい。7℃/s以下とすることが特に好ましい。
 405~315℃の温度範囲の冷却速度が遅い程、未変態γへの炭素の濃化が進行するので、315~Tsqの温度範囲でのベイナイト変態が遅延してフィルム状の残留γLBを生成させるのに要する時間は長くなる。したがって、405~315℃の温度範囲の冷却速度をCR3、315℃から冷却停止温度Tsqまでの平均冷却速度をCR4としたとき、CR3>CR4とすることが好ましい。
 なお、冷却速度を低下させる効果の最も大きいのは315℃~301℃の範囲であり、この温度範囲を上記の冷却速度の範囲とすることが特に重要である。
 冷却停止温度Tsq:255~310℃
 円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下の微細なフレッシュマルテンサイトまたは微細な残留γを分散させて高い延性を確保するため、残留γ量を確保するためには、冷却停止温度:Tsqは255~310℃の範囲とする必要がある。冷却停止温度が255℃未満になると微細なマルテンサイトや微細な残留γが減少するのに加え、わずかな保持時間でも255℃未満ではマルテンサイトや下部ベイナイト内部での炭化物析出が生じて残留γへの炭素の分配が抑制される。したがって、冷却停止温度は255℃以上とする。より好ましくは260℃超である。冷却停止温度が310℃を超えると塊状組織が多量に残存してλが低下する。このため、冷却停止温度は310℃以下とする。より好ましくは300℃以下である。
 冷却停止温度Tsqから350℃までの温度範囲の平均加熱速度:2℃/s以上
 さらに冷却停止温度から350℃までの温度範囲を短時間で加熱することで炭化物析出を抑えて高い延性を確保することが出来る。また、冷却して生成したマルテンサイトもしくは下部ベイナイトを核に350℃以上に再加熱した際に上部ベイナイトが生成する。350℃までの平均加熱速度が遅いと、これらの効果が得られなくなる。その結果、残留γ量が減少して延性が低下する。このため、冷却停止温度から350℃までの温度範囲の平均加熱速度は2℃/s以上とする。炭化物析出を抑制する観点、再加熱時に上部ベイナイトを生成させる観点からは、平均加熱速度は5℃/s以上とすることが望ましく、10℃/s以上とすることがさらに好ましい。上記平均加熱速度の上限は特に限定されないが50℃/s以下が好ましく、より好ましくは30℃/s以下である。
 350~590℃の保持時間:20~3000sec
 中間保持により生成したプレート状の残留γUBやマルテンサイトや下部ベイナイトに隣接して生成したフィルム状残留γにCを分配させてこれらを安定化させる観点、未変態γとして塊状に分布している領域をベイナイト変態により細分化し、λを向上させる観点から、350~590℃の温度域で20~3000sec保持する。炭素分配を促進して延性を向上させ、塊状組織を低減してλを向上させる観点から保持温度は370~500℃とするのが好ましい。
 また、350~590℃の保持時間を60~3000secにすることで、C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である領域の合計面積率SC濃化が0.1~5%となり、延性がさらに改善される。より好ましくは1500sec以下、さらに好ましくは1200sec以下である。
 ベイナイト変態による未変態γの細分化効果を活用し、λを向上させる観点からは、350~590℃で180sec以上保持することが望ましい。この保持により、C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である領域の合計面積率SC濃化が0.2~5%となり、延性がさらに改善される。
 なお、350℃~590℃の温度範囲での保持は、溶融亜鉛めっき処理を兼ねても良い。溶融亜鉛めっき処理を施す場合は、440℃以上500℃以下の亜鉛めっき浴中に鋼板を浸漬し、溶融亜鉛めっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整することが好ましい。溶融亜鉛めっきはAl量が0.10%以上0.22%以下である亜鉛めっき浴を用いることが好ましい。また、溶融亜鉛めっき処理後に亜鉛めっきの合金化処理を施すことができる。亜鉛めっきの合金化処理を施す場合は、470℃以上590℃以下の温度域で実施することが好ましい。
 その後、過剰な焼戻しによる軟化や炭化物析出による延性低下を防止する観点から350~50℃以下の温度まで0.1℃/s以上の平均冷却速度で冷却を行い、表面粗度の調整、板形状の平坦化などプレス成形性を安定化させる観点やYSを上昇させる観点から鋼板にスキンパス圧延を施すことができる。スキンパス伸長率は0.1~0.5%とするのが好ましい。また、板形状はレベラーで平坦化することも可能である。上記の350~50℃以下の温度までの平均冷却速度は、より好ましくは5℃/s以上であり、好ましくは100℃/s以下である。
 伸びフランジ成形性を改善する観点から上記の熱処理後、あるいはスキンパス圧延後に100~300℃で30sec~10日の低温熱処理を施すことも可能である。この処理により最終冷却時あるいはスキンパス圧延時に生成したマルテンサイトの焼き戻しや焼鈍時に鋼板に侵入した水素の鋼板からの離脱が生じる。低温熱処理で水素は0.1ppm未満に低減することが可能である。また、電気めっきを施すことも可能である。電気めっきを施した後は鋼中の水素を低減する観点から上記の低温熱処理を施すことが好ましい。
 本発明例によると、張り出し成形と伸びフランジ成形が混在する複雑な形状の部品の成形性の指標として重要な(TS×U.El-7000)×λ≧260000をTS:780~1319MPa級で満たすことが可能であり、(TS×U.El-7000)×λ≧180000をTS:1320MPa級で満たすことが可能である。また、TS:780~1319MPa級では9%以上、TS:1320MPa級以上では8%以上の優れた一様伸び(延性)、TS:780~1319MPa級では30%以上、TS:1320MPa級以上では20%以上の穴広げ性(λ)を具備させることも可能である。
 表1に示す成分組成を有する板厚1.2mmの冷延鋼板を、表2-1に示す焼鈍条件で処理し、本発明の鋼板と比較例の鋼板とを製造した。
 なお、一部の鋼板(冷延鋼板)は、さらに溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板(GI)とした。ここでは、440℃以上500℃以下の亜鉛めっき浴中に鋼板を浸漬して溶融亜鉛めっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整した。溶融亜鉛めっきはAl量が0.10%以上0.22%以下である亜鉛めっき浴を用いた。さらに一部の溶融亜鉛めっき鋼板には、上記溶融亜鉛めっき処理後に亜鉛めっきの合金化処理を施し、合金化溶融亜鉛めっき鋼板(GA)とした。ここでは、470℃以上550℃以下の温度域で亜鉛めっきの合金化処理を施した。
また、一部の鋼板(冷延鋼板)は、電気めっきを施し、電気亜鉛めっき鋼板(EG)とした。
 鋼組織の測定は、上記の方法で行った。測定結果を表2-2に示した。なお、上部ベイナイトに隣接して生成するプレート状の残留γUBの面積率は、粒子幅が0.25~0.60μm、粒子長さが1.5~15μm、アスペクト比が4~25に合致するγ粒について、その面積率をSγUBとして求めた。
 得られた鋼板よりJIS5号引張試験片を採取し、引張試験(JIS Z2241に準拠)を実施した。TSとU.Elを表2-2に示した。
 また、伸びフランジ成形性は日本鉄鋼連盟規格JFST1001の規定に準拠した穴広げ試験により評価した。すなわち、100mm×100mm角サイズのサンプルにポンチ径10mm、ダイス径10.3mm(クリアランス13%)の打ち抜き工具を用いて打ち抜き後、頂角60度の円錐ポンチを用いて、打ち抜き穴形成の際に発生したバリが外側になるようにして、板厚を貫通する割れが発生するまで穴広げを行った。この際のd:初期穴径(mm)、d:割れ発生時の穴径(mm)として、穴広げ率λ(%)={(d-d)/d}×100として求めた。
 No.1、7、8、9、10、15、16、20、21、24、27、29、30、32、33の本発明例は、TS:780~1319MPa級では9%以上の優れた一様伸び(延性)、(TS×U.El-7000)×λ≧260000MPa%、30%以上の穴広げ性(λ)を満たし、TS:1320MPa級以上では、8%以上の優れた一様伸び(延性)、(TS×U.El-7000)×λ≧180000MPa%、20%以上の優れた穴広げ性(λ)を満たすのに対して、比較例はいずれかが劣っている。
 これらの例では、プレート状の残留γUBの体積率:SγUB、フィルム状の残留γLBの分布個数:NγLB、円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下の残留γ粒子の合計面積率:SγFine、円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下の残留γ粒子の合計面積率:SγBlockを所定量含む。
 また、810~650℃の温度範囲の平均冷却速度が15℃/s以上29℃/s以下の発明例において、下記の方法で測定した板反りが11~15mmと良好なレベルであった。また、上記平均冷却速度が5℃/s以上14℃/s以下の発明例においては、下記の方法で測定した板反りが、10mm以下とさらに良好なレベルであった。なお、板形状を評価するための、上記板反りは、焼鈍後の鋼板より、1500mm長さのカットサンプルを採取し、水平の平盤にて、上記サンプルを置いた時の4辺の反り高さの最大値(単位mm)を測定する方法で評価した。なお、カットサンプルの長手方向の切断をする際のせん断機の刃のクリアランスは4%(管理範囲の上限は10%)で行っている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示す成分組成を有する板厚1.2mmの冷延鋼板を、表3-1に示す焼鈍条件で処理し、本発明の鋼板と比較例の鋼板とを製造した。得られた鋼板の鋼組織の測定と機械的特性の評価を上記と同様の方法で行い、結果を表3-2に示した。なお、上部ベイナイトに隣接して生成するプレート状の残留γUBの面積率は、粒子幅が0.25~0.60μm、粒子長さが1.0~15μm、アスペクト比が3.1~25に合致するγ粒について、その面積率をSγUBとして求めた。
 No.1、2、3、7の本発明例は、TS:780~1319MPa級では9%以上の優れた一様伸び(延性)、(TS×U.El-7000)×λ≧260000MPa%、30%以上の穴広げ性(λ)を満たし、TS:1320MPa級以上では、8%以上の優れた一様伸び(延性)、(TS×U.El-7000)×λ≧180000MPa%、20%以上の優れた穴広げ性(λ)を満たすのに対して、比較例はいずれかが劣っている。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明は、極めて高い延性と優れた伸びフランジ成形性を有し、自動車、家電等においてプレス成形工程を経て使用されるプレス成形用に好ましく適用できる。

Claims (13)

  1.  質量%で、
    C:0.06~0.25%、
    Si:0.6~2.5%、
    Mn:2.3~3.5%、
    P:0.02%以下、
    S:0.01%以下、
    sol.Al:0.50%未満、
    N:0.015%未満を含有し、残部が鉄および不可避的不純物からなる成分組成と、
     鋼組織は、面積率でフェライト:5%以下、上部ベイナイト、フレッシュマルテンサイト、焼戻しマルテンサイト、下部ベイナイト、残留γの1種もしくは2種以上からなる組織:95~100%、体積率で残留γ:5~20%を含み、
    粒子幅が0.25~0.60μm、粒子長さが1.0~15μm、アスペクト比が3.1~25である残留γUBの面積率:SγUBが0.2~7.0%であり、
    粒子幅が0.08~0.24μm、粒子長さが0.6~15μm、アスペクト比が4~40である残留γLBの分布個数:NγLBが100μmあたり10~120個であり、
    円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下の残留γ粒子の合計面積率:SγFineが1~10%であり、
    円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下の残留γ粒子の合計面積率:SγBlockが5%以下(0%を含む)である鋼板。
  2.  質量%で、
    C:0.06~0.25%、
    Si:0.6~2.5%、
    Mn:2.3~3.5%、
    P:0.02%以下、
    S:0.01%以下、
    sol.Al:0.50%未満、
    N:0.015%未満を含有し、残部が鉄および不可避的不純物からなる成分組成と、
     鋼組織は、面積率でフェライト:5%以下、上部ベイナイト、フレッシュマルテンサイト、焼戻しマルテンサイト、下部ベイナイト、残留γの1種もしくは2種以上からなる組織:95~100%、体積率で残留γ:5~20%を含み、
    粒子幅が0.25~0.60μm、粒子長さが1.5~15μm、アスペクト比が4~25である残留γUBの面積率:SγUBが0.2~7.0%であり、
    粒子幅が0.08~0.24μm、粒子長さが0.6~15μm、アスペクト比が4~40である残留γLBの分布個数:NγLBが100μmあたり10~120個であり、
    円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が0.5μm以上1.3μm未満、アスペクト比が3以下の残留γ粒子の合計面積率:SγFineが1~10%であり、
    円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下のフレッシュマルテンサイトおよび/または円相当粒子直径が1.5μm以上20μm以下、アスペクト比が3以下の残留γ粒子の合計面積率:SγBlockが5%以下(0%を含む)である鋼板。
  3.  前記残留γUBに隣接するフェライトもしくは上部ベイナイトの面積率:SUBとSγUBの比がSUB/SγUB≧3.5を満たす請求項1または2に記載の鋼板。
  4.  前記組織において、C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である領域の合計面積率:SC濃化が0.1~5%である請求項1~3のいずれかに記載の鋼板。
  5.  C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である前記領域は、残留γである請求項4に記載の鋼板。
  6.  C濃度が0.6~1.3%であり、隣接領域のC濃度が0.07%以下である前記領域は、残留γUB粒子である請求項5に記載の鋼板。
  7.  前記隣接領域が上部ベイナイトを含む請求項3~6のいずれかに記載の鋼板。
  8.  前記成分組成が、さらに、質量%で、
    Ti:0.002~0.1%、
    B:0.0002~0.01%
    のうちから選んだ1種または2種を含有する請求項1~7のいずれかに記載の鋼板。
  9.  前記成分組成が、さらに、質量%で、
    Cu:0.005~1%、
    Ni:0.01~1%、
    Cr:0.01~1.0%、
    Mo:0.01~0.5%、
    V:0.003~0.5%、
    Nb:0.002~0.1%、
    Zr:0.005~0.2%および
    W:0.005~0.2%
    のうちから選んだ1種または2種以上を含有する請求項1~8のいずれかに記載の鋼板。
  10.  前記成分組成が、さらに、質量%で、
    Ca:0.0002~0.0040%、
    Ce:0.0002~0.0040%、
    La:0.0002~0.0040%、
    Mg:0.0002~0.0030%、
    Sb:0.002~0.1%および
    Sn:0.002~0.1%
    のうちから選んだ1種または2種以上を含有する請求項1~9のいずれかに記載の鋼板。
  11.  引張強度が780MPa以上1450MPa以下である請求項1~10のいずれかに記載の鋼板。
  12.  表面に亜鉛めっき層を有する請求項1~11のいずれかに記載の鋼板。
  13.  請求項1、2、8、9、および10のいずれかに記載の成分組成を有する鋼スラブを、熱間圧延および冷間圧延した後、冷延鋼板を、810~900℃の焼鈍温度で焼鈍し、
    次いで810~650℃の温度範囲を平均冷却速度:1~2000℃/sで冷却し、さらに650~505℃の温度範囲を平均冷却速度:8.0~2000℃/sで冷却した後、
    505~405℃の温度範囲で14~200sec保持し、
    さらに405~315℃までの温度範囲を平均冷却速度:8.0~100℃/sで冷却した後、
    315℃から255~310℃の範囲の冷却停止温度:Tsqまでの温度範囲を平均冷却速度:0.2℃/s以上20℃/s未満で冷却した後、
    Tsqから350℃までの温度範囲を平均加熱速度:2℃/s以上で加熱し、
    350~590℃で20~3000sec保持した後、
    350~50℃以下の温度まで0.1℃/s以上の冷却速度で冷却する鋼板の製造方法。
PCT/JP2019/040662 2018-10-17 2019-10-16 鋼板およびその製造方法 WO2020080401A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2021004347A MX2021004347A (es) 2018-10-17 2019-10-16 Lamina de acero y metodo para la produccion de la misma.
US17/285,375 US20220010397A1 (en) 2018-10-17 2019-10-16 Steel sheet and method for producing the same
EP19874690.1A EP3845674A4 (en) 2018-10-17 2019-10-16 SHEET STEEL AND ITS MANUFACTURING PROCESS
CN201980068744.8A CN112912520B (zh) 2018-10-17 2019-10-16 钢板及其制造方法
JP2020505520A JP6787526B2 (ja) 2018-10-17 2019-10-16 鋼板およびその製造方法
KR1020217011105A KR102514897B1 (ko) 2018-10-17 2019-10-16 강판 및 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018196149 2018-10-17
JP2018-196149 2018-10-17
JP2019-165000 2019-09-11
JP2019165000 2019-09-11

Publications (1)

Publication Number Publication Date
WO2020080401A1 true WO2020080401A1 (ja) 2020-04-23

Family

ID=70283795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040662 WO2020080401A1 (ja) 2018-10-17 2019-10-16 鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US20220010397A1 (ja)
EP (1) EP3845674A4 (ja)
JP (1) JP6787526B2 (ja)
KR (1) KR102514897B1 (ja)
CN (1) CN112912520B (ja)
MX (1) MX2021004347A (ja)
WO (1) WO2020080401A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7146127B1 (ja) 2022-03-31 2022-10-03 株式会社神戸製鋼所 高強度鋼板の製造方法
EP4151762A4 (en) * 2020-05-11 2023-10-04 JFE Steel Corporation STEEL SHEET, ELEMENT, AND THEIR MANUFACTURING METHOD

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635619B2 (ja) 1986-02-05 1994-05-11 新日本製鐵株式会社 延性の良い高強度鋼板の製造方法
JP4411221B2 (ja) 2004-01-28 2010-02-10 株式会社神戸製鋼所 伸び及び伸びフランジ性に優れた低降伏比高強度冷延鋼板およびめっき鋼板並びにその製造方法
WO2010029983A1 (ja) * 2008-09-10 2010-03-18 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2013072101A (ja) * 2011-09-27 2013-04-22 Jfe Steel Corp 高強度鋼板およびその製造方法
JP5463685B2 (ja) 2009-02-25 2014-04-09 Jfeスチール株式会社 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
WO2017208759A1 (ja) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 高強度鋼板およびその製造方法
WO2018190416A1 (ja) * 2017-04-14 2018-10-18 Jfeスチール株式会社 鋼板およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635619A (ja) 1992-07-15 1994-02-10 Nippon Telegr & Teleph Corp <Ntt> 情報多重読取り装置
JP3854506B2 (ja) 2001-12-27 2006-12-06 新日本製鐵株式会社 溶接性、穴拡げ性および延性に優れた高強度鋼板およびその製造方法
JP3881559B2 (ja) 2002-02-08 2007-02-14 新日本製鐵株式会社 溶接後の成形性に優れ、溶接熱影響部の軟化しにくい引張強さが780MPa以上の高強度熱延鋼板、高強度冷延鋼板および高強度表面処理鋼板
MX2012008690A (es) * 2010-01-29 2012-08-23 Nippon Steel Corp Placa de acero y proceso para producir la placa de acero.
JP5333298B2 (ja) * 2010-03-09 2013-11-06 Jfeスチール株式会社 高強度鋼板の製造方法
US10435762B2 (en) * 2014-03-31 2019-10-08 Jfe Steel Corporation High-yield-ratio high-strength cold-rolled steel sheet and method of producing the same
US10570475B2 (en) * 2014-08-07 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10689724B2 (en) * 2015-07-31 2020-06-23 Nippon Steel Corporation Steel sheet with strain induced transformation type composite structure and method of manufacturing same
WO2017038070A1 (ja) * 2015-09-04 2017-03-09 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
JP6762868B2 (ja) * 2016-03-31 2020-09-30 株式会社神戸製鋼所 高強度鋼板およびその製造方法
JP6875916B2 (ja) * 2016-05-30 2021-05-26 株式会社神戸製鋼所 高強度鋼板およびその製造方法
CN109642281B (zh) * 2016-08-31 2021-02-23 杰富意钢铁株式会社 高强度冷轧薄钢板及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635619B2 (ja) 1986-02-05 1994-05-11 新日本製鐵株式会社 延性の良い高強度鋼板の製造方法
JP4411221B2 (ja) 2004-01-28 2010-02-10 株式会社神戸製鋼所 伸び及び伸びフランジ性に優れた低降伏比高強度冷延鋼板およびめっき鋼板並びにその製造方法
WO2010029983A1 (ja) * 2008-09-10 2010-03-18 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5463685B2 (ja) 2009-02-25 2014-04-09 Jfeスチール株式会社 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法
JP2013072101A (ja) * 2011-09-27 2013-04-22 Jfe Steel Corp 高強度鋼板およびその製造方法
WO2017208759A1 (ja) * 2016-05-30 2017-12-07 株式会社神戸製鋼所 高強度鋼板およびその製造方法
WO2018190416A1 (ja) * 2017-04-14 2018-10-18 Jfeスチール株式会社 鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3845674A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151762A4 (en) * 2020-05-11 2023-10-04 JFE Steel Corporation STEEL SHEET, ELEMENT, AND THEIR MANUFACTURING METHOD
JP7146127B1 (ja) 2022-03-31 2022-10-03 株式会社神戸製鋼所 高強度鋼板の製造方法
JP2023150701A (ja) * 2022-03-31 2023-10-16 株式会社神戸製鋼所 高強度鋼板の製造方法

Also Published As

Publication number Publication date
JPWO2020080401A1 (ja) 2021-02-15
CN112912520A (zh) 2021-06-04
EP3845674A1 (en) 2021-07-07
CN112912520B (zh) 2022-10-25
MX2021004347A (es) 2021-05-28
KR20210059747A (ko) 2021-05-25
US20220010397A1 (en) 2022-01-13
KR102514897B1 (ko) 2023-03-30
EP3845674A4 (en) 2021-07-21
JP6787526B2 (ja) 2020-11-18

Similar Documents

Publication Publication Date Title
JP6439903B1 (ja) 鋼板およびその製造方法
KR102002737B1 (ko) 고강도 강판용 소재, 고강도 강판용 열연재, 고강도 강판용 열연 소둔재, 고강도 강판, 고강도 용융 도금 강판 및 고강도 전기 도금 강판과, 이들의 제조 방법
JP6354916B2 (ja) 鋼板及びめっき鋼板
WO2018026015A1 (ja) 鋼板及びめっき鋼板
WO2020080402A1 (ja) 鋼板およびその製造方法
JP6777262B2 (ja) 鋼板およびその製造方法
JP5862591B2 (ja) 高強度鋼板およびその製造方法
WO2020080401A1 (ja) 鋼板およびその製造方法
JP7294545B1 (ja) 鋼板、部材およびそれらの製造方法
JP7294544B1 (ja) 鋼板、部材およびそれらの製造方法
JP6828855B1 (ja) 鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020505520

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19874690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019874690

Country of ref document: EP

Effective date: 20210331

ENP Entry into the national phase

Ref document number: 20217011105

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2101002142

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE