WO2020078380A1 - 压铸铜合金及其制备方法以及压铸铜合金复合塑料产品 - Google Patents

压铸铜合金及其制备方法以及压铸铜合金复合塑料产品 Download PDF

Info

Publication number
WO2020078380A1
WO2020078380A1 PCT/CN2019/111464 CN2019111464W WO2020078380A1 WO 2020078380 A1 WO2020078380 A1 WO 2020078380A1 CN 2019111464 W CN2019111464 W CN 2019111464W WO 2020078380 A1 WO2020078380 A1 WO 2020078380A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
weight
die
cast
containing material
Prior art date
Application number
PCT/CN2019/111464
Other languages
English (en)
French (fr)
Inventor
郭强
王梦得
安维
陈思齐
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2020078380A1 publication Critical patent/WO2020078380A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent

Definitions

  • the present disclosure relates to the field of die-casting copper alloys, in particular to a die-casting copper alloy, a preparation method thereof, and a die-casting copper alloy composite plastic product.
  • Copper alloy is a metal with good thermal conductivity, electrical conductivity, diamagnetism and good ductility. It is widely used in electrical, aerospace, household appliances, transportation and other fields. As the market's demand for copper alloy parts such as precision, complexity, wear resistance and other special properties increases, the market also pays more and more attention to its strength, formability and machinability.
  • CN103555990A discloses an alloy material used in the aerospace field.
  • the components include nickel, tin, aluminum, manganese, iron and copper.
  • the composition of each component of the alloy material is: nickel 6-10%, tin 6-9 %, Aluminum 3-6%, manganese 0.1-0.5%, iron 0.02-0.1%, copper 74.4-84.88%.
  • the copper-nickel alloy material is completely fused with the aluminum-tin alloy to replace the beryllium element of the beryllium copper alloy and completely replace the beryllium bronze to meet the environmental health standards.
  • CN1517446A discloses a copper-based alloy comprising: at least one of 8-45 wt% zinc and 0.2-12.0 wt% tin, 20-1000 ppm carbon and the balance of copper and inevitable impurities. This alloy improves the hot workability of a copper-based alloy containing Zn and / or Sn by containing a small amount of carbon, and provides a copper-based alloy with excellent hot-press workability.
  • CN106460098A discloses a Cu-Al-Mn series alloy material, the Cu-Al-Mn series alloy material having the following composition: containing 3.0% by mass to 10.0% by mass of Al, 5.0% by mass to 20.0% by mass of Mn, and A total of 0.000 mass% to 10.000 mass% is selected from Ni, Co, Fe, Ti, V, Cr, Si, Nb, Mo, W, Sn, Mg, P, Be, Sb, Cd, As, Zr, Zn, One or two or more of the group consisting of B, C, Ag, and mixed rare earth, where the contents of Ni and Fe are 0.000 mass%-3.000 mass%, and the content of Co is 0.000 mass%-2.000 mass%, The content of Ti is 0.000 mass%-2.000 mass%, the content of V, Nb, Mo, Zr is 0.000 mass%-1.000 mass%, the content of Cr is 0.000 mass%-2.000 mass%, the content of Si is 0.000 mass% -2.000 mass%, W content is 0.000 mass%-
  • the Cu-Al-Mn alloy material is characterized in that the alloy material is an alloy material having a long shape in the processing direction as the rolling direction or the wire drawing direction, and the crystal grains in the processing direction of the alloy material
  • the length ax relative to the width or diameter R of the alloy material is R / 2 or less
  • the crystal grain length bx in the direction perpendicular to the machining direction is R / 4 or less crystal grain X, the presence of the crystal grain X
  • the amount is 15% or less of the entire alloy material, and the crystal grain length a in the machining direction and the crystal grain length b in the direction perpendicular to the machining direction satisfy the relationship of a ⁇ b, and the crystalline (111)
  • the angle between the surface normal and the machining direction is 15 ° or more of crystal grains Y ′, and the amount of the crystal grains Y ′ is 85% or more of the entire alloy material.
  • This alloy material is controlled by controlling the crystal grain size of the Cu-Al-Mn alloy
  • EP0119501A1 discloses the use of a precipitation hardenable copper / nickel / manganese alloy, which contains 15-25% by weight of nickel, 15-25% by weight of manganese, up to 5% by weight of cobalt, 0.05-0.5% by weight of beryllium.
  • the amount is copper, including deoxidation and processing additives, fine grain structure, the maximum particle size is 0.015mm, precipitation hardening treatment in the temperature range of 300-500 °C, to increase strength, as a material for the production of eyeglass parts.
  • a first aspect of the present disclosure provides a die-casting copper alloy, based on the total weight of the die-casting copper alloy, the die-casting copper alloy includes: 20-30 wt% Mn, 10-20 wt% Ni, 3.1-10 wt% Al, 0.01 to 5% by weight of Fe, 0.001 to 0.1% by weight of Be, 0.1 to 10% by weight of Sn, 24.7 to 66.789% by weight of Cu, and impurities of 0.2% by weight or less.
  • the die-cast copper alloy includes: 23-30% by weight of Mn, 10-20% by weight of Ni, 4-8% by weight of Al, 0.2-3 Fe by weight, 0.001 to 0.1% by weight of Be, 1.1 to 4% by weight of Sn, 34.7 to 61.699% by weight of Cu, and impurities of 0.2% by weight or less.
  • the weight ratio of Mn to Ni is (1.6-2): 1; for example, 1.6: 1, 1.7: 1, 1.8: 1, 1.9: 1, 2: 1, Ni
  • the weight ratio with Al is (2.6 ⁇ 3.8): 1, such as 2.6: 1, 2.7: 1, 2.8: 1, 2.9: 1, 3.0: 1, 3.1: 1, 3.2: 1, 3.3: 1, 3.4: 1 , 3.5: 1, 3.6: 1, 3.7: 1, 3.8: 1.
  • the copper alloy has a tensile strength of 700 MPa or more and a total elongation at break of 3% or more.
  • the copper alloy has Fe-Ni nanocrystals and Fe-Sn-Cu-Ni nanocrystals.
  • the copper alloy further contains 0 to 0.5% by weight of Se.
  • a second aspect of the present disclosure provides a method of preparing the die-cast copper alloy of the present disclosure, including:
  • the conditions of the vacuum melting include: a vacuum degree of 5 Pa or less, argon gas protection, and a melting temperature of 1100 to 1150 ° C.
  • selenium-containing material is also added during the vacuum melting process.
  • the process of die-casting molding is to inject the molten metal into a mold under pressure, and then cool to form;
  • the conditions of the die-casting molding include: the die-casting temperature is 950 ° C ⁇ 1050 °C; injection speed is 0.8 ⁇ 2.5m / s; mold temperature is 150 °C ⁇ 300 °C; holding time is 3 ⁇ 5s.
  • a third aspect of the present disclosure provides a die-cast copper alloy composite plastic product, including the die-cast copper alloy of the present disclosure or the die-cast copper alloy obtained by the method of the present disclosure and a plastic layer formed on the surface of the die-cast copper alloy.
  • the bonding strength (PMH) between the die-cast copper alloy and the plastic layer is 30 MPa or more.
  • the present disclosure provides a copper alloy that can be used for die casting.
  • the copper alloy containing the above-defined components can have good die-casting formability, good strength and toughness, good discoloration resistance and high gloss effect. It can be used for die-casting molding to prepare die-cast copper alloy parts, and In the copper alloy composite plastic prepared by the copper alloy, the bonding force between the plastic and the copper alloy is strong.
  • FIG. 1 is a metallographic diagram of the die-cast copper alloy obtained in Example 1.
  • FIG. 1 is a metallographic diagram of the die-cast copper alloy obtained in Example 1.
  • a first aspect of the present disclosure provides a die-cast copper alloy based on the total weight of the die-cast copper alloy, the die-cast copper alloy comprising: 20-30% by weight Mn, 10-20% by weight Ni, 3.1-10% by weight Al, 0.01 to 5% by weight of Fe, 0.001 to 0.1% by weight of Be, 0.1 to 10% by weight of Sn, 24.7 to 66.789% by weight of Cu, and impurities of 0.2% by weight or less.
  • the content of Mn is 20% by weight, 21% by weight, 22% by weight, 23% by weight, 24% by weight, 25% by weight, 26% by weight, 27% by weight, 28% by weight, 29% by weight, 30% by weight
  • the content of Ni is 10 wt%, 11 wt%, 12 wt%, 13 wt%, 14 wt%, 15 wt%, 16 wt%, 17 wt%, 18 wt%, 19 wt%, 20 wt%, Al
  • the content is 3.1% by weight, 3.2% by weight, and 3.3% by weight. . .
  • the present disclosure provides a copper alloy having the above composition, which can be used for die-casting molding to prepare copper alloy parts.
  • the components can provide good die-casting processability when the components are within the above limits, and the obtained copper alloy parts can meet the requirements of IT products for accuracy and apparent quality, and can have good mechanical properties.
  • the copper alloy includes: 23-30 wt% Mn, 10-20 wt% Ni, 4-8 wt% Al, 0.2-3 wt% Fe, 0.001-0.1 wt% Be, 1.1 to 4% by weight of Sn, 34.7 to 61.699% by weight of Cu and 0.2% by weight or less of impurities.
  • the Sn element in the above content range is added to the composition of the copper alloy, which can reduce the melting point of the alloy and can also greatly improve the fluidity and plasticity of the copper alloy.
  • the die casting shrinkage of the copper alloy can be improved, and the die casting molding good rate of the copper alloy material can be improved.
  • the resulting die-cast copper alloy has good resistance to discoloration, which can be reflected in better resistance to salt spray discoloration, and the present disclosure has the above composition (containing the above content After the grinding and polishing of the die-cast copper alloy of Sn), the NSS test in GB / T10125-2012 is carried out, and the die-cast copper alloy can still have a good highlight effect.
  • adding the Fe element in the above content range to the copper alloy can play a role in refining the crystal grains of the copper alloy material, thereby significantly improving the mechanical properties of the copper alloy.
  • nanocrystals may be present in the copper alloy.
  • the nanocrystals play a certain role in improving the toughness and strength of the copper alloy material, and the total elongation at break is increased by about 50%.
  • the presence of nanocrystals in the copper alloy can give the copper alloy a good highlight effect, and can also help to improve the resistance to discoloration of the copper alloy.
  • the copper alloy has Fe-Ni nanocrystals and Fe-Sn-Cu-Ni nanocrystals.
  • the inventor of the present disclosure adjusted the contents of Mn, Ni, Al, Fe, Be, Sn, and Cu reasonably, so that the solid solubility of Fe in the copper alloy decreased, and then precipitated, and the precipitated Fe can be combined with the high melting point component of the copper alloy Ni combines to form high-strength Fe-Ni nanocrystals; at the same time, Sn is solid-dissolved into the copper alloy and combines with Cu-Ni-Fe alloy to form Fe-Sn-Cu-Ni nanocrystals.
  • the average particle diameter of the Fe-N nanocrystals and Fe-Sn-Cu-Ni nanocrystals is 100-500 nm, for example, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm;
  • the average particle size of the Fe-Ni nanocrystals is 100-200 nm, such as 100 nm, 110 nm, 120 nm, 130 nm, 140 nm, 150 nm, 160 nm, 170 nm, 180 nm, 190 nm, and 200 nm, which can be observed by metallography , And determine the existence and size of the above nanocrystals.
  • the above effect is best obtained when the content of Fe element in the copper alloy is 0.2 to 3% by weight.
  • the plasticity improvement of the copper alloy is small; when the Fe element content exceeds 3% by weight, as the Fe element content increases, the copper alloy becomes brittle and the moldability deteriorates; when Fe When the element content exceeds 5% by weight, the moldability of the copper alloy drops sharply.
  • adding the Mn element in the above content range to the copper alloy can form a Cu-Mn-Al alloy phase with high strength, which can greatly increase the strength and hardness of the copper alloy, and also improve the surface color.
  • adding the Ni element in the above content range to the copper alloy can greatly improve the corrosion resistance of the copper alloy and improve the surface color.
  • the addition of Al element in the above content range to the copper alloy can interact with the Cu phase to improve the surface color of the copper alloy.
  • the addition of trace Be elements in the above-mentioned content range to the copper alloy can greatly improve the fluidity of the copper alloy, can also improve the purity of die castings, effectively refine the grains, and at the same time Improve the elastic modulus, shrinkage and corrosion resistance of the copper alloy.
  • the die-cast copper alloy may also contain unavoidable impurities due to raw materials, but the content is 0.2% by weight or less.
  • the inevitable impurities are S, C, Zr and Pb elements, of which S and C elements will make the copper alloy of this application brittle; Zr elements will form hard spots, which will affect the highlight effect of the material; Pb elements will affect the molding of the material Performance, making the material brittle.
  • the copper alloy may further contain 0 to 0.5% by weight of Se, for example, 0.1% by weight, 0.2% by weight, 0.3% by weight, 0.4% by weight, and 0.5% by weight.
  • Se element in the above content range is added to the copper alloy, the compactness of the copper alloy can be improved and the porosity can be reduced.
  • the copper alloy contains 0.1 to 0.5% by weight of Se.
  • the weight ratio of Mn to Ni is (1.6 to 2): 1, such as 1.6: 1, 1.7: 1, 1.8: 1, 1.9: 1, 2: 1, Ni
  • the weight ratio with Al is (2.6 ⁇ 3.8): 1, such as 2.6: 1, 2.7: 1, 2.8: 1, 2.9: 1, 3.0: 1, 3.1: 1, 3.2: 1, 3.3: 1, 3.4: 1 , 3.5: 1, 3.6: 1, 3.7: 1, 3.8: 1.
  • the prepared copper alloy may have high strength and toughness. If the weight ratio relationship is not within the above range, the copper alloy is soft or brittle.
  • the copper alloy has improved high strength and toughness, better highlight effect and discoloration resistance, and has good corrosion resistance, and can be applied to die casting molding manufacturing.
  • the product obtained by die-casting can be used for compounding with plastic, which can obtain a good plastic-metal bonding strength (PMH), and the bonding strength can reach more than 30MPa.
  • the copper alloy has a tensile strength of 700 MPa or more and a total elongation at break of 3% or more. While the existing as-cast copper alloys have not undergone special treatment (such as extrusion deformation, heat treatment, etc.), the maximum tensile strength reaches only 500MPa. According to a specific embodiment of the present disclosure, the tensile strength of the copper alloy is 705-850 MPa, and the total elongation at break is 3.5-5%.
  • a second aspect of the present disclosure provides a method for preparing the die-cast copper alloy provided by the present disclosure, including:
  • the manganese-containing material, nickel-containing material, aluminum-containing material, iron-containing material, beryllium-containing material, tin-containing material and copper-containing material may be capable of providing various elements required for preparing the die-cast copper alloy of the present disclosure
  • the material may be an alloy or pure material containing the above elements, and is commercially available.
  • the manganese-containing material may be a commercially available manganese ingot with a manganese content of about 99.5% by weight
  • the nickel-containing material may be a commercially available nickel ingot with a nickel content of about 99.95% by weight
  • the aluminum-containing material The material may be a commercially available aluminum ingot with an aluminum content of about 99.99% by weight
  • the iron-containing material may be an aluminum-iron alloy with a content of about 99.9% by weight
  • the beryllium-containing material may be an aluminum-beryllium alloy with a content of about 99.97% by weight
  • the tin-containing material may be a commercially available tin ingot having a tin content of about 99.99% by weight
  • the copper-containing material may be a copper ingot having a content of 99.9% by weight.
  • selenium-containing material may also be added during the vacuum melting process.
  • the selenium-containing material may be a selenium ingot containing 99.9% by weight.
  • the above raw materials are compounded according to the weight percentage required to prepare the composition of the die-cast copper alloy, and the amount of each raw material may satisfy the obtained composition of the die-cast copper alloy provided by the present disclosure.
  • step (1) may be performed in a vacuum melting furnace.
  • the process of completing step (1) may include: placing manganese-containing materials, nickel-containing materials, aluminum-containing materials, iron-containing materials, beryllium-containing materials, tin-containing materials, copper-containing materials, and selenium-containing materials into the vacuum
  • the vacuum smelting furnace is evacuated to below 5Pa and is protected by argon gas; then the vacuum smelting furnace is first preheated to reach about 150 ⁇ 200 °C, such as 150 °C, 160 °C , 170 °C, 180 °C, 190 °C, 200 °C, and then the vacuum melting furnace is heated to a melting temperature of 1100 ⁇ 1150 °C, such as 1100 °C, 1110 °C, 1120 °C, 1130 °C, 1140 °C, 1150 °C, and After 15 to 30 minutes of melting time, for example, 15 minutes, 20 minutes, 25 minutes
  • step (2) can achieve the die-cast copper alloy by processing through die-casting, for example, the metal melt can be injected into the mold under pressure, and then cooled to form.
  • the metal melt may be cast into a copper alloy ingot first, and then the copper alloy ingot is melted and then the die casting is performed.
  • the conditions of the die-casting molding include: the die-casting temperature is 950 ° C to 1050 ° C, such as 950 ° C, 960 ° C, and 970 ° C. . . 1040 °C, 1050 °C; injection speed is 0.8 ⁇ 2.5m / s, for example 0.8m / s, 0.9m / s.
  • mold temperature is 150 °C ⁇ 300 °C, for example 150 °C, 160 °C. . . 290 °C, 300 °C ,; holding time is 3 ⁇ 5s, such as 3s, 4s, 5s.
  • step (2) of the present disclosure can help to form dendrites during crushing and casting to form a dispersed granular structure, so that the grains in the die-cast product are refined.
  • the temperature of the mold is low, and the temperature of the molten metal injected into the mold drops sharply, and a dense layer with a thickness of about 0.1-0.3 mm can be formed on the surface of the obtained die-cast copper alloy.
  • the faster cooling rate also plays a certain role in promoting the refinement of grains, reducing the defects of die-cast products.
  • the processing method of step (2) can help to obtain high-quality copper alloy products.
  • a third aspect of the present disclosure provides a die-cast copper alloy composite plastic product, including the die-cast copper alloy of the present disclosure or the die-cast copper alloy obtained by the method of the present disclosure, and a plastic layer formed on the surface of the die-cast copper alloy.
  • the bonding strength (PMH) between the die-cast copper alloy and the plastic layer is above 30 MPa.
  • the product can be made by injection molding process.
  • the specific method may include that: the manufactured die-cast aluminum alloy is successively subjected to a CNC water outlet and an antenna groove, and then placed in an injection mold for conventional injection molding to obtain an aluminum-plastic product.
  • the plastic of the plastic layer may not be particularly limited, and it may be a modified or unmodified polyolefin resin, ABS engineering resin or PC resin, and various resins that can be used in computers, communication electronic products, or consumer electronic products.
  • the raw materials used are all commercially available products, which are commercially available.
  • the obtained die-cast copper alloy was photographed by OLYMPUS-DSX510 to observe the formation of crystal phase and grain size.
  • the copper alloy ingot is re-melted and then die-casting molded: the die-casting temperature is 950 ° C, the injection speed is 2m / s, the mold temperature is 200 ° C, and the holding time is 3s to make a die-casting copper alloy.
  • the die-cast copper alloy is cut along the cross section, and the cross section is coarsely ground, finely ground, and mechanically polished with water sandpaper.
  • the polishing agent is 1 ⁇ m diamond polishing paste, which is eroded with 5% sodium hydroxide, and then metallographic observation can be observed Nanocrystals are formed, and the average particle diameter of the nanocrystals is about 100-200 nm. It is determined that Fe-Ni nanocrystals and Fe-Sn-Cu-Ni nanocrystals can be present, as shown in FIG. 1.
  • the copper alloy ingot is re-melted and then die-casted: the die-casting temperature is 1050 ° C, the injection speed is 0.8m / s, the mold temperature is 230 ° C, and the holding time is 4s.
  • Example 1 The metallographic observation was carried out as in Example 1, and the results were the same as in Example 1.
  • the copper alloy ingot is re-melted and then die-casted: the die-casting temperature is 1000 ° C, the injection speed is 2.5m / s, the mold temperature is 220 ° C, and the holding time is 5s.
  • Example 1 The metallographic observation was carried out as in Example 1, and the results were the same as in Example 1.
  • Example 1 The metallographic observation was carried out as in Example 1, and the results were the same as in Example 1.
  • the copper alloy was die cast according to the method of Example 1.
  • Hardness test adopt GB / T4340.4-2009 metal material Vickers hardness test. Part 4: hardness value table, the surface of the polished sample is tested for Vickers hardness, the test force is 10kg, and the average of 5 measurement points is taken.
  • Tensile strength test adopt GB / T 228.1-2010 metal material tensile test part 1: room temperature test method to test yield and elastic strain.
  • the high tensile strength value obtained can indicate that the product has good strength, and the large total elongation at break indicates that the product has good toughness.
  • Copper alloy fluidity test the spiral sample is formed by die casting (metallic fluid spiral mold mosquito coil mold), and the length is recorded according to the scale of the tail end of the sample.
  • Bonding strength test of copper alloy and plastic copper alloy test specimens with thickness, width and length of 3mm ⁇ 12mm ⁇ 40mm are subjected to T treatment and reaming, and the copper alloy specimens subjected to T treatment are placed in an injection mold for injection. After the injection molding, the copper-plastic composite sample is subjected to pull-out force test and the test data is recorded.
  • Corrosion test According to the NSS test in the national standard GB / T 10125-2012 artificial atmosphere corrosion test, the corrosion rate of the copper alloy is determined by mass loss.
  • Denseness test the actual density of the copper alloy is measured according to the Archimedes method, and the theoretical density of the copper alloy is calculated according to the composition of the theoretical material; the density is the ratio of actual density / theoretical density.
  • the moldability judgment is made according to the process window width range in which the copper alloy can be formed (the process window width refers to the range of the casting temperature, injection speed range, and mold temperature range where the copper alloy can be molded):
  • the difference between the casting temperature range is ⁇ 120 °C
  • the difference between the injection speed range is ⁇ 1.3m / s
  • the difference between the mold temperature range is ⁇ 120 °C
  • the copper alloy moldability is excellent
  • the difference between the casting temperature range is 100-119 ° C
  • the difference between the injection speed range is 1.1-1.29m / s
  • the difference between the mold temperature range is 100-119 ° C, the copper moldability is excellent
  • the difference between the casting temperature range is 80-99 ° C
  • the difference between the injection speed range is 0.9-1.09m / s
  • the difference between the mold temperature range is 80-99 ° C
  • the copper alloy moldability is good
  • the formability of the copper alloy is general;
  • the difference between the casting temperature range is 40-59 °C, the difference between the injection speed range is 0.5-0.69m / s, and the difference between the mold temperature range is 40-59 °C, the copper alloy moldability is poor;
  • the difference in the casting temperature range is ⁇ 40 ° C
  • the difference in the injection speed range is ⁇ 0.5m / s
  • the difference in the mold temperature range is ⁇ 40 ° C
  • the combination of hardness and tensile strength in Table 2 can reflect the yield strength of the die-cast copper alloy. With high hardness and high tensile strength, the yield strength of the die-cast copper alloy is also relatively high, and the ability to resist trace plastic deformation is high. Under the same force, the die-cast copper alloy of the present disclosure is less likely to deform.
  • the die-cast copper alloy was polished and polished under the same conditions, and then the polished product was scored. According to the order from high-brightness effect to no-brightness effect, the highlight effect of the polished product is evaluated. The score with high brightness effect (with mirror effect) is scored 5 points, and the score with no brightness effect (without mirror effect) is scored as 0 points. The high-gloss effect of stainless steel and ADC12 aluminum alloy after polishing is compared. The results are shown in Table 3.
  • the die-cast copper alloy was polished and polished under the same conditions, and then the polished product (apparent effect is 11 grades) was subjected to the NSS test in the GB / T 10125-2012 artificial atmosphere corrosion test to compare the salt spray discoloration resistance time of the polished product
  • the salt spray test conditions are as follows:
  • a copper alloy having a composition defined in the present disclosure can be obtained, which can be processed by die-casting molding to obtain die-cast copper Nanocrystals can be present in the metallographic structure of the alloy.
  • the resulting die-cast copper alloy product can have good strength and toughness, good highlight effect and anti-discoloration performance; it can also have good fluidity and formability.
  • the copper alloy provided by the embodiments of the present disclosure can also be compounded with plastics. In the prepared composite plastics, the bonding strength (PMH) between the plastics and the copper alloy is high.
  • the product containing Se as in Example 8 can improve the compactness.
  • the product of Example 11 does not contain Se, and the product of Example 12 contains Se at an inappropriate content, and the product has poor compactness.
  • the product of Example 8 can have less air bubbles after polishing, and the good rate of finished products is higher.
  • the alloy components of the products in Comparative Examples 1-5 are not completely within the scope of the present disclosure, and the resulting copper alloy does not provide good toughness, poor adhesion strength to plastics, and poor corrosion resistance and fluidity.
  • Comparative Examples 2 and 3 Although the tensile strength is high, the total elongation at break is very low and the moldability is poor, and the highlight effect is poor. In Comparative Examples 4 and 5, although the tensile strength and the total elongation at break were acceptable, the moldability and PMH were both poor.
  • the copper alloys of Comparative Examples 1-5 cannot obtain the technical effects provided by the copper alloys provided by the embodiments of the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Conductive Materials (AREA)

Abstract

一种压铸铜合金及其制备方法以及压铸铜合金复合塑料产品,基于该铜合金总重量,该压铸铜合金包含:20~30重量%的Mn、10~20重量%的Ni、3.1~10重量%的Al、0.01~5重量%的Fe、0.001~0.1重量%的Be、0.1~10重量%的Sn、24.7~66.789重量%的Cu和0.2重量%以下的杂质。

Description

压铸铜合金及其制备方法以及压铸铜合金复合塑料产品
优先权信息
本公开请求于2018年10月16日向中国国家知识产权局提交的、专利申请号为201811203520.7、申请名称为“压铸铜合金及其制备方法和应用以及压铸铜合金复合塑料产品”的中国专利申请的优先权,并且其全部内容通过引用结合在本公开中。
技术领域
本公开涉及压铸铜合金领域,具体涉及一种压铸铜合金及其制备方法以及压铸铜合金复合塑料产品。
背景技术
铜合金是一种具有良好导热、导电、抗磁以及良好延展性的金属,在电气、航天、家电、交通等领域有着广泛的应用。随着市场对铜合金零件精度、复杂程度、耐磨性等其他特殊性能需求的提高,市场对其强度、成型性及可加工性也越来越重视。
现存在的铜合金大多浇铸而成,所获得产品精度相对较低,表观质量较差,限制了铜合金在装饰件材料方面的应用。此外通常铜合金的力学性能较低、质软,应用范围受到了严重的限制。
CN103555990A公开了一种航空航天领域用合金材料,组分包含镍、锡、铝、锰、铁以及铜,其中合金材料各组分组成按重量百分比分别为:镍6-10%,锡6-9%,铝3-6%,锰0.1-0.5%,铁0.02-0.1%,铜74.4-84.88%。利用铜-镍合金材料与铝-锡合金完全融合,用于代替铍铜合金的铍元素,完全取代铍青铜,以达到符合环保健康标准。
CN1517446A公开了一种铜基合金,包含:8-45重量%锌和0.2-12.0重量%锡中的至少一种、20-1000ppm的碳和余量的铜以及不可避免的杂质。该合金通过包含少量碳改善含Zn和/或Sn的铜基合金的热加工性能,提供具有优异热压力加工性能的铜基合金。
CN106460098A公开一种Cu-Al-Mn系合金材料,所述Cu-Al-Mn系合金材料具有下述组成:含有3.0质量%-10.0质量%的Al、5.0质量%-20.0质量%的Mn、以及合计为0.000质量%-10.000质量%的选自由Ni、Co、Fe、Ti、V、Cr、Si、Nb、Mo、W、Sn、Mg、P、Be、Sb、Cd、As、Zr、Zn、B、C、Ag和混合稀土组成的组中的1种或2种以上,此处,Ni和Fe的含量分别为0.000质量%-3.000质量%,Co的含量为0.000质量%-2.000质量%,Ti的含量为0.000质量%-2.000质量%,V、Nb、Mo、Zr的含量分别为0.000质量%-1.000质量%,Cr的含量为0.000质量%-2.000质量%,Si的含量为0.000质量%-2.000质量%,W 的含量为0.000质量%-1.000质量%,Sn的含量为0.000质量%-1.000质量%,Mg的含量为0.000质量%-0.500质量%,P的含量为0.000质量%-0.500质量%,Be、Sb、Cd、As的含量分别为0.000质量%-1.000质量%,Zn的含量为0.000质量%-5.000质量%,B、C的含量分别为0.000质量%-0.500质量%,Ag的含量为0.000质量%-2.000质量%,混合稀土的含量为0.000质量%-5.000质量%,剩余部分由Cu和不可避免的杂质构成,所述Cu-Al-Mn系合金材料的特征在于,所述合金材料是在作为轧制方向或拉丝方向的加工方向具有长条形状的合金材料,关于所述合金材料的所述加工方向的晶粒长度ax相对于所述合金材料的宽度或直径R为R/2以下、且与所述加工方向垂直的方向的晶粒长度bx为R/4以下的晶粒X,所述晶粒X的存在量为所述合金材料整体的15%以下,关于所述加工方向的晶粒长度a和与所述加工方向垂直的方向的晶粒长度b满足a≥b的关系、且该结晶的(111)面的法线与所述加工方向所成的角的角度为15°以上的晶粒Y’,所述晶粒Y’的存在量为所述合金材料整体的85%以上。该合金材料通过在控制Cu-Al-Mn系合金材料的晶体取向的情况下对结晶粒径进行控制,对未生长至特定尺寸以上的小晶粒的存在量(存在比例)进行控制,实现降低重复变形后残余的应变量。
EP0119501A1公开了一种使用可沉淀硬化的铜/镍/锰合金,其含有15-25%重量的镍、15-25%重量的锰、至多5%重量的钴、0.05-0.5%重量铍,余量为铜,包括脱氧和加工添加剂,细晶粒结构,最大粒径为0.015mm,在300-500℃的温度范围内进行沉淀硬化处理,以增加强度,作为生产眼镜零件的材料。
可以看出,现有技术并未关注铜合金如何进行压铸成型以改善已有铜合金加工成型方式存在的产品精度相对较低、表观质量较差、力学性能较低、质软等限制铜合金应用范围的缺陷。
公开内容
本公开第一方面提供一种压铸铜合金,基于所述压铸铜合金总重量,所述压铸铜合金包含:20~30重量%的Mn、10~20重量%的Ni、3.1~10重量%的Al、0.01~5重量%的Fe、0.001~0.1重量%的Be、0.1~10重量%的Sn、24.7~66.789重量%的Cu和0.2重量%以下的杂质。
根据本公开的实施例,基于所述压铸铜合金总重量,所述压铸铜合金包含:23~30重量%的Mn、10~20重量%的Ni、4~8重量%的Al、0.2~3重量%的Fe、0.001~0.1重量%的Be、1.1~4重量%的Sn、34.7~61.699重量%的Cu以及0.2重量%以下的杂质。
根据本公开的实施例,所述铜合金中,Mn与Ni的重量比为(1.6~2):1;例如1.6:1、1.7:1、1.8:1、1.9:1、2:1,Ni与Al的重量比为(2.6~3.8):1,例如2.6:1、2.7:1、2.8:1、 2.9:1、3.0:1、3.1:1、3.2:1、3.3:1、3.4:1、3.5:1、3.6:1、3.7:1、3.8:1。
根据本公开的实施例,所述铜合金的抗拉强度为700MPa以上,断裂总延伸率为3%以上。
根据本公开的实施例,所述铜合金具有Fe-Ni的纳米晶和Fe-Sn-Cu-Ni的纳米晶。
根据本公开的实施例,所述铜合金还含有0~0.5重量%的Se。
本公开第二方面提供一种制备本公开的压铸铜合金的方法,包括:
(1)将含锰料、含镍料、含铝料、含铁料、含铍料、含锡料和含铜料进行真空熔炼,得到金属熔液;
(2)将所述金属熔液进行压铸成型,得到压铸铜合金。
根据本公开的实施例,步骤(1)中,所述真空熔炼的条件包括:真空度为5Pa以下,氩气保护,熔炼温度为1100~1150℃。
根据本公开的实施例,所述真空熔炼的过程中还加入含硒料。
根据本公开的实施例,步骤(2)中,所述压铸成型的过程为将所述金属熔液加压注入模具中,然后冷却成型;所述压铸成型的条件包括:压铸温度为950℃~1050℃;压射速度为0.8~2.5m/s;模具温度为150℃~300℃;保温时间为3~5s。
本公开第三方面提供一种压铸铜合金复合塑料产品,包括本公开的压铸铜合金或采用本公开的方法得到的压铸铜合金以及形成在所述压铸铜合金表面上的塑料层。
根据本公开的实施例,该产品中,所述压铸铜合金与塑料层之间的粘结强度(PMH)为30MPa以上。
通过上述技术方案,本公开提供可以用于压铸成型的铜合金。含有上述限定含量的组分的铜合金,可以具有良好的压铸成形性、良好的强度和韧性、良好的抗变色性能和高光效果,可以用于压铸成型加工制备压铸铜合金制件,并且,由该铜合金制备的铜合金复合塑料中,塑料与铜合金之间的结合力强。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为实施例1得到的压铸铜合金的金相图。
公开详细描述
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本公开第一方面提供一种压铸铜合金,基于该压铸铜合金总重量,该压铸铜合金包含:20~30重量%的Mn、10~20重量%的Ni、3.1~10重量%的Al、0.01~5重量%的Fe、0.001~0.1重量%的Be、0.1~10重量%的Sn、24.7~66.789重量%的Cu和0.2重量%以下的杂质。例如,Mn的含量为20重量%、21重量%、22重量%、23重量%、24重量%、25重量%、26重量%、27重量%、28重量%、29重量%、30重量%,Ni的含量为10重量%、11重量%、12重量%、13重量%、14重量%、15重量%、16重量%、17重量%、18重量%、19重量%、20重量%,Al的含量为3.1重量%、3.2重量%、3.3重量%。。。9.8重量%、9.9重量%、10重量%,Fe的含量为0.01重量%、0.02重量%、0.03重量%、0.04重量%。。。4.98重量%、4.99重量%、5重量%,Be的含量为0.001重量%、0.002重量%。。。0.098重量%、0.099重量%、0.1重量%,Sn的含量为0.1重量%、0.2重量%、0.3重量%。。。9.8重量%、9.9重量%、10重量%,Cu的含量为24.7重量%、24.8重量%、24.9重量%。。。66.7重量%、66.789重量%。
本公开提供具有以上组成的铜合金,可以用于压铸成型加工制备铜合金制件。其中各组分在上述限量范围内时可以提供良好的压铸成型加工性,并且得到的铜合金制件可以满足IT产品对精度、表观质量的要求,同时可以具有良好的力学性能。
根据本公开的实施例,所述铜合金包含:23~30重量%的Mn、10~20重量%的Ni、4~8重量%的Al、0.2~3重量%的Fe、0.001~0.1重量%的Be、1.1~4重量%的Sn、34.7~61.699重量%的Cu和0.2重量%以下的杂质。
本公开中,所述铜合金的组成中加入上述含量范围内的Sn元素,可以降低合金熔点,还可以较大程度上提升所述铜合金的流动性及塑性。另外,可以改善所述铜合金的压铸收缩率,提高所述铜合金材料的压铸成型良好率。当Sn元素含量过少时,上述效果不明显;当Sn元素含量过多时,所述铜合金的抗变色能力随着Sn元素含量的增加而急剧下降,且所述铜合金的收缩率改善效果也逐渐消失。进一步地,含有上述含量范围内的Sn元素时,得到的压铸铜合金具有良好的抗变色能力,可以体现在更好的耐盐雾变色性能上,并且将本公开的具有上述组成(含有上述含量的Sn)的压铸铜合金打磨和抛光后,进行GB/T10125-2012中的NSS试验,压铸铜合金仍可以具有好的高光效果。
本公开中,所述铜合金中加入上述含量范围的Fe元素,可以起到细化所述铜合金材料的晶粒的作用,从而显著提高所述铜合金的力学性能。如图1显示的金相图,所述铜合金中可以存在纳米晶。所述纳米晶对所述铜合金材料的韧性、强度起到了一定的改善作用, 断裂总延伸率约提高50%。同时所述铜合金中存在纳米晶可以给予所述铜合金好的高光效果,还可以有利于提高所述铜合金的抗变色能力。
根据本公开的实施例,所述铜合金具有Fe-Ni的纳米晶和Fe-Sn-Cu-Ni的纳米晶。本公开的发明人经过合理地调控Mn、Ni、Al、Fe、Be、Sn和Cu的含量,使得铜合金中Fe的固溶度下降,进而析出,析出的Fe可以与铜合金中高熔点组分Ni结合形成高强度Fe-Ni纳米晶;同时Sn固溶到铜合金中,与Cu-Ni-Fe合金相结合形成Fe-Sn-Cu-Ni纳米晶。根据本公开的一个实施例,所述Fe-N纳米晶和Fe-Sn-Cu-Ni纳米晶的平均粒径为100~500nm,例如为100nm、200nm、300nm、400nm、500nm;根据本公开的一个具体实施例,所述Fe-Ni纳米晶的平均粒径为100-200nm,例如为100nm、110nm、120nm、130nm、140nm、150nm、160nm、170nm、180nm、190nm、200nm,可以通过金相观察,并测定上述纳米晶的存在及尺寸。当所述铜合金中Fe元素的含量在0.2~3重量%时获得上述效果最佳。当Fe元素含量较低时,所述铜合金的塑性提升较小;当Fe元素含量超过3重量%时,随着Fe元素含量的提高,所述铜合金变脆,成型性能变差;当Fe元素含量超过5重量%时,所述铜合金的成型性能急剧下降。
本公开中,所述铜合金中加入上述含量范围的Mn元素,可以形成具有高强度的Cu-Mn-Al合金相,可以极大地提升所述铜合金的强度和硬度,同时也改善表面色泽。
本公开中,所述铜合金中加入上述含量范围的Ni元素,可以极大地提升所述铜合金的耐腐蚀能力,改善表面色泽。
本公开中,所述铜合金中加入上述含量范围的Al元素,可以与Cu相作用改善铜合金的表面色泽。
本公开中,所述铜合金中加入上述含量范围的微量Be元素,可以对所述铜合金的流动性有很大的改善,还可以提高压铸件的纯度,有效细化晶粒,同时还可以提高所述铜合金的弹性模量、收缩率及耐腐蚀性。
本公开中,所述压铸铜合金中还可以含有原料带来的不可避免的杂质,但含量在0.2重量%以下。例如,不可避免杂质为S、C、Zr和Pb元素,其中S和C元素会使本申请的铜合金变脆;Zr元素会形成硬质点,影响材料的高光效果;Pb元素影响材料的成型性能,使材料变脆。
根据公开的实施例,所述铜合金还可以含有0~0.5重量%的Se,例如0.1重量%、0.2重量%、0.3重量%、0.4重量%、0.5重量%。所述铜合金中加入上述含量范围的Se元素时,可以改善所述铜合金的致密性,减少气孔率。根据本公开的一个具体实施例,所述铜合金含有0.1~0.5重量%的Se。
根据本公开的实施例,所述铜合金中,Mn与Ni的重量比为(1.6~2):1,例如1.6:1、 1.7:1、1.8:1、1.9:1、2:1,Ni与Al的重量比为(2.6~3.8):1,例如2.6:1、2.7:1、2.8:1、2.9:1、3.0:1、3.1:1、3.2:1、3.3:1、3.4:1、3.5:1、3.6:1、3.7:1、3.8:1。按照此比例关系,制得的所述铜合金可以具有高强度高韧性,如果重量比关系不在上述范围内,则铜合金的性质软或性质脆。
根据本公开,所述铜合金具有改善的高强度高韧性、较好的高光效果和抗变色性能,还有耐腐蚀性好,并能适用于压铸成型制造。另外具有上述组成的铜合金,压铸得到的产品可以用于与塑料复合,能够获得很好的塑料与金属间的粘结强度(PMH),可以粘结强度达到30MPa以上。
根据本公开的实施例,所述铜合金的抗拉强度为700MPa以上,断裂总延伸率为3%以上。而现有的铸态铜合金在未经过特殊处理(如挤压变形、热处理等)时,抗拉强度最高仅达到500MPa。根据本公开的一个具体实施例,所述铜合金的抗拉强度为705~850MPa,断裂总延伸率为3.5~5%。
本公开第二方面提供一种制备本公开提供的所述压铸铜合金的方法,包括:
(1)将含锰料、含镍料、含铝料、含铁料、含铍料、含锡料和含铜料进行真空熔炼,得到金属熔液;
(2)将所述金属熔液进行压铸成型,得到压铸铜合金。
本公开中,所述含锰料、含镍料、含铝料、含铁料、含铍料、含锡料和含铜料可以是能够提供制备本公开的压铸铜合金所需各种元素的物料,可以是含上述元素的合金或纯物料,可以商购获得。根据本公开的一个实施例,所述含锰料可以是锰含量约99.5重量%的商购锰锭,所述含镍料可以是镍含量约99.95重量%的商购镍锭,所述含铝料可以是铝含量约99.99重量%的商购铝锭,所述含铁料可以是含量约为99.9重量%的铝铁合金,所述含铍料可以是含量约为99.97重量%的铝铍合金,所述含锡料可以是锡含量约99.99重量%的商购锡锭,所述含铜料可以是含量99.9重量%的铜锭。
根据本公开,所述真空熔炼的过程中还可以加入含硒料。所述含硒料可以是含有99.9重量%的硒锭。
本公开中,将上述各原料按照制备所述压铸铜合金的组成而需要的重量百分比进行配料,各原料的用量满足得到的本公开提供的上述压铸铜合金的组成即可。
根据本公开,步骤(1)可以在真空熔炼炉中进行。完成步骤(1)的过程可以包括:将含锰料、含镍料、含铝料、含铁料、含铍料、含锡料和含铜料,还可以有含硒料放入所述真空熔炼炉中,然后将所述真空熔炼炉进行抽真空到5Pa以下,并通入氩气保护;再将所述真空熔炼炉先进行预热,达到约150~200℃,例如150℃、160℃、170℃、180℃、190℃、200℃,然后将所述真空熔炼炉升温至熔炼温度为1100~1150℃,例如1100℃、1110℃、1120℃、 1130℃、1140℃、1150℃,且经15~30min的熔炼时间,例如15min、20min、25min、30min,将上述各原料完全熔融得到所述金属熔液。
根据本公开,步骤(2)可以实现通过压铸成型进行加工得到所述压铸铜合金,例如可以是将所述金属熔液加压注入模具中,然后冷却成型。步骤(2)还可以将所述金属熔液先进行浇铸为铜合金锭,再将铜合金锭熔融后进行所述压铸成型。根据本公开的实施例,所述压铸成型的条件包括:压铸温度为950℃~1050℃,例如950℃、960℃、970℃。。。1040℃、1050℃;压射速度为0.8~2.5m/s,例如0.8m/s、0.9m/s。。。2.4m/s、2.5m/s;模具温度为150℃~300℃,例如150℃、160℃。。。290℃、300℃、;保温时间为3~5s,例如3s、4s、5s。
采用本公开步骤(2)的压铸成型,可以有助于破碎铸造中形成枝晶,以形成分散的颗粒状组织,使得压铸产品中的晶粒得到细化。此外,所述压铸成型过程中,模具温度较低,压射进模具内的金属熔液温度骤降,在得到的压铸铜合金的表面可以形成厚度约为0.1~0.3mm的致密层。同时,较快的冷却速度也对细化晶粒起到了一定的促进作用,减少了压铸产品的缺陷问题。采取步骤(2)的加工方法可以有助于得到高质量的铜合金产品。
本公开第三方面提供一种压铸铜合金复合塑料产品,包括本公开的压铸铜合金或采用本公开的方法得到的压铸铜合金,以及形成在所述压铸铜合金表面上的塑料层。
根据本公开的一个实施例,该产品中,所述压铸铜合金与塑料层之间的粘结强度(PMH)为30MPa以上。
该产品可以通过注塑工艺制得。具体方法可以包括:将制得的压铸铝合金依次进行CNC去水口、开天线槽后,放入注塑模具中进行常规注塑,获得铝塑产品。所述塑料层的塑料可以不特别限定,为改性或未改性的聚烯烃树脂、ABS工程树脂或PC树脂,以及可以用于计算机、通信电子产品或消费类电子产品中的各种树脂。
以下将通过实施例对本公开进行详细描述。
以下实施例和对比例中,使用的原料均为市售品,可以商购获得。
得到的压铸铜合金通过OLYMPUS-DSX510拍照观察形成晶相和晶粒的粒径。
实施例1
按照表1所示的铜合金组成,配制含有各种元素的合金原料。
将锰锭、镍锭、铝锭、铝铁合金、铝铍合金、锡锭和铜锭加入真空熔炼炉中,抽真空至5Pa以下,充入氩气进行预加热至150℃,然后将真空熔炼炉升温至1120℃,将上述原料完全熔化为金属熔液;
将金属熔液进行浇铸为铜合金锭;
将铜合金锭再熔融后进行压铸成型:压铸温度为950℃,压射速度为2m/s,模具温度为200℃,保温时间为3s,制成压铸铜合金。
将压铸铜合金沿截面切开,用水砂纸对截面进行粗磨,细磨,机械抛光,抛光剂选择1μm的金刚石抛光膏,用5%氢氧化钠进行侵蚀,然后进行金相观察,可以观察到形成纳米晶,纳米晶的平均粒径约为100~200nm。经测定可以存在Fe-Ni的纳米晶和Fe-Sn-Cu-Ni的纳米晶,如图1所示。
实施例2
按照表1所示的铜合金组成,配制含有各种元素的合金原料。
将锰锭、镍锭、铝锭、铝铁合金、铝铍合金、锡锭和铜锭加入真空熔炼炉中,抽真空至5Pa,充入氩气进行预加热至180℃,然后将真空熔炼炉升温至1150℃,将上述原料完全熔化为金属熔液;
将金属熔液进行浇铸为铜合金锭;
将铜合金锭再熔融后进行压铸成型:压铸温度为1050℃,压射速度为0.8m/s,模具温度为230℃,保温时间为4s,制成压铸铜合金。
如实施例1进行金相观察,结果同实施例1。
实施例3
按照表1所示的铜合金组成,配制含有各种元素的合金原料。
将锰锭、镍锭、铝锭、铝铁合金、铝铍合金、锡锭和铜锭加入真空熔炼炉中,抽真空至5Pa以下,充入氩气进行预加热至160℃,然后将真空熔炼炉升温至1100℃,将上述原料完全熔化为金属熔液;
将金属熔液进行浇铸为铜合金锭;
将铜合金锭再熔融后进行压铸成型:压铸温度为1000℃,压射速度为2.5m/s,模具温度为220℃,保温时间为5s,制成压铸铜合金。
如实施例1进行金相观察,结果同实施例1。
实施例4-17
按照表1所示的铜合金组成,配制含有各种元素的合金原料,并按照实施例1的方法制备得到压铸铜合金。
如实施例1进行金相观察,结果同实施例1。
对比例1-5
按照表1所示的铜合金组成,配制含有各种元素的合金原料。
按照实施例1的方法压铸铜合金。
如实施例1进行金相观察。
表1
Figure PCTCN2019111464-appb-000001
测试例
1)对实施例1-17、对比例1-5制得的压铸铜合金进行以下性能测定,结果见表2。
硬度测试:采用GB/T 4340.4-2009金属材料维氏硬度试验第4部分:硬度值表,抛光 后的试样表面进行维氏硬度测试,试验力为10kg,测量点数5个取平均值。
拉伸强度测试:采用GB/T 228.1-2010金属材料拉伸试验第1部分:室温试验方法,测试屈服、弹性应变。得到的抗拉强度数值高可以表明产品的强度好,断裂总延伸率大说明产品的韧性好。
铜合金流动性测试:采用压铸方式(金属流动性螺旋模具蚊香模具)成型螺旋状样件,依据样件尾端刻度进行长度记录。
铜合金与塑料粘结强度测试:将厚宽长尺寸为3mm×12mm×40mm的铜合金测试样件,进行T处理扩孔,将进行T处理后的铜合金样件放入注塑模具注塑。将注塑后铜塑复合样件进行拉拔力测试,记录测试数据。
腐蚀性测试:根据国标GB/T 10125-2012人造气氛腐蚀试验中的NSS试验,通过质量损失测定铜合金的腐蚀速率。
致密性测试:根据阿基米德法测量出铜合金的实际密度,根据理论材料的成分计算出铜合金的理论密度;致密性为实际密度/理论密度的比值。
成型性测试:在模具相同条件下,根据铜合金能够成型的工艺窗口宽度范围进行成型性判断(工艺窗口宽度是指铜合金可成型的浇铸温度的范围、压射速度范围、模具温度范围):
浇铸温度范围的差值≥120℃,压射速度范围的差值≥1.3m/s,模具温度范围的差值≥120℃时,记铜合金成型性为极好;
浇铸温度范围的差值为100-119℃,压射速度范围的差值为1.1-1.29m/s,模具温度范围的差值100-119℃时,记铜合金成型性为优异;
浇铸温度范围的差值为80-99℃,压射速度范围的差值为0.9-1.09m/s,模具温度范围的差值80-99℃时,记铜合金成型性为良好;
浇铸温度范围的差值为60-79℃,压射速度范围的差值为0.7-0.89m/s,模具温度范围的差值60-79℃时,记铜合金成型性为一般;
浇铸温度范围的差值为40-59℃,压射速度范围的差值为0.5-0.69m/s,模具温度范围的差值40-59℃时,记铜合金成型性为较差;
浇铸温度范围的差值<40℃,压射速度范围的差值为<0.5m/s,模具温度范围的差值<40℃时,记铜合金成型性为极差。
表2
Figure PCTCN2019111464-appb-000002
Figure PCTCN2019111464-appb-000003
表2中的硬度和抗拉强度相结合,可以反映压铸铜合金的屈服强度。具有高硬度和高抗拉强度时,压铸铜合金的屈服强度也比较高,抵抗微量塑性变形的能力高。在相同力的作用下,本公开所述压铸铜合金更不易变形。
2)对实施例1、2、4和对比例1-3进行高光效果测试:
将压铸铜合金进行同样条件下的打磨和抛光,然后对抛光产品进行评分。按照从高亮度效果到无亮度效果依次打分,评定抛光产品的高光效果。将具有高亮度效果(有镜面效果)的记为5分,将具有无亮度效果(无镜面效果)的记为0分。以不锈钢和ADC12铝合金抛光后的高光效果作对比,结果见表3。
表3
Figure PCTCN2019111464-appb-000004
Figure PCTCN2019111464-appb-000005
3)对实施例1-3和对比例1-3进行抗变色效果测试:
将压铸铜合金进行同样条件下的打磨和抛光,然后对抛光产品(表观效果为11级)进行GB/T 10125-2012人造气氛腐蚀试验中的NSS试验,比较抛光产品的耐盐雾变色时间,盐雾试验条件如下:
沉降盐液浓度:(50±5)g/L;试验箱温度:(35±2)℃;盐雾沉降率:(1.5±0.5)mL/h;收集溶液的pH值:6.5-7.2;参比试样质量损失:(70±20)g/m2;试样放置角度:(20±5)°。结果见表4。
表4
Figure PCTCN2019111464-appb-000006
通过上述实施例、对比例和表1-4的数据与结果可以看出,采用本公开提供的技术方案,可以获得具有本公开限定组成的铜合金,能够进行压铸成型的加工,得到的压铸铜合金的金相结构中可以存在纳米晶。由此得到的压铸铜合金产品可以拥有良好的强度和韧性,良好的高光效果和抗变色性能;还可以具有良好的流动性和成型性。此外,本公开实施例提供的铜合金还可以与塑料复合,制得的复合塑料中,塑料与铜合金之间的粘结强度(PMH)高。
此外,含有Se如实施例8的产品可以提高致密性。实施例11的产品没含有Se、实施例12的产品含有Se的含量不合适,产品的致密性要差。实施例8的产品经抛光处理后可以气泡少,成品良好率更高。
对比例1-5中产品的合金组分不完全在本公开的范围内,得到的铜合金不能提供良好的韧性,与塑料的粘结强度也差,耐腐蚀性和流动性也差些。
对比例2和3,虽然抗拉强度高,但是断裂总延伸率很低且成型性差,高光效果差。对比例4和5,虽然抗拉强度和断裂总延伸率还可以,但是成型性和PMH都差。对比例1-5的铜合金不能获得本公开实施例提供的铜合金所具有的技术效果。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能 的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种压铸铜合金,其中,基于所述压铸铜合金的总质量,所述压铸铜合金包含:
    20~30重量%的Mn;
    10~20重量%的Ni;
    3.1~10重量%的Al;
    0.01~5重量%的Fe;
    0.001~0.1重量%的Be;
    0.1~10重量%的Sn;
    24.7~66.789重量%的Cu;以及
    0.2重量%以下的杂质。
  2. 根据权利要求1所述的铜合金,其中,所述铜合金包含:
    23~30重量%的Mn;
    10~20重量%的Ni;
    4~8重量%的Al;
    0.2~3重量%的Fe;
    0.001~0.1重量%的Be;
    1.1~4重量%的Sn;
    34.7~61.699重量%的Cu;以及
    0.2重量%以下的杂质。
  3. 根据权利要求1或2所述的铜合金,其中,所述铜合金中,Mn与Ni的重量比为(1.6~2):1;Ni与Al的重量比为(2.6~3.8):1。
  4. 根据权利要求1-3中任一项所述的铜合金,其中,所述铜合金的抗拉强度为700MPa以上,断裂总延伸率为3%以上。
  5. 根据权利要求1-4中任一项所述的铜合金,其中,所述铜合金具有Fe-Ni的纳米晶和Fe-Sn-Cu-Ni的纳米晶。
  6. 根据权利要求1-5中任一项所述的铜合金,其中,所述铜合金还含有0~0.5重量% 的Se。
  7. 一种制备权利要求1-6中任一项所述的压铸铜合金的方法,其中,包括:
    (1)将含锰料、含镍料、含铝料、含铁料、含铍料、含锡料和含铜料进行真空熔炼,得到金属熔液;
    (2)将所述金属熔液进行压铸成型,得到压铸铜合金。
  8. 根据权利要求7所述的方法,其中,在步骤(1)中,所述真空熔炼的条件包括:真空度为5Pa以下,氩气保护,熔炼温度为1100~1150℃。
  9. 根据权利要求7或8所述的方法,其中,在步骤(1)中,所述真空熔炼的过程中还加入含硒料。
  10. 根据权利要求7-9中任一项所述的方法,其中,步骤(2)中,所述压铸成型的过程为将所述金属熔液加压注入模具中,然后冷却成型;
    其中,所述压铸成型的条件包括:压铸温度为950℃~1050℃;压射速度为0.8~2.5m/s;模具温度为150℃~300℃;保温时间为3~5s。
  11. 一种压铸铜合金复合塑料产品,其中,所述压铸铜合金复合塑料产品包括权利要求1-6中任一项所述的压铸铜合金或采用权利要求7-10中任一项所述的方法得到的压铸铜合金以及形成在所述压铸铜合金表面上的塑料层;
  12. 根据权利要求11所述的产品,其中,所述压铸铜合金与所述塑料层之间的粘结强度为30MPa以上。
PCT/CN2019/111464 2018-10-16 2019-10-16 压铸铜合金及其制备方法以及压铸铜合金复合塑料产品 WO2020078380A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811203520.7A CN111057901B (zh) 2018-10-16 2018-10-16 压铸铜合金及其制备方法和应用以及压铸铜合金复合塑料产品
CN201811203520.7 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020078380A1 true WO2020078380A1 (zh) 2020-04-23

Family

ID=70283358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111464 WO2020078380A1 (zh) 2018-10-16 2019-10-16 压铸铜合金及其制备方法以及压铸铜合金复合塑料产品

Country Status (2)

Country Link
CN (1) CN111057901B (zh)
WO (1) WO2020078380A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3712837A (en) * 1971-11-05 1973-01-23 Olin Corp Process for obtaining copper alloys
JPH0372044A (ja) * 1989-08-14 1991-03-27 Nippon Mining Co Ltd 深絞り用銅合金
CN2372125Y (zh) * 1999-05-18 2000-04-05 王云青 一种金属复合装饰板
CN104862524A (zh) * 2014-07-31 2015-08-26 比亚迪股份有限公司 一种高强度合金及其制备方法
CN105525134A (zh) * 2015-02-05 2016-04-27 比亚迪股份有限公司 一种高强度合金及其制备方法
CN108118183A (zh) * 2017-12-13 2018-06-05 浙江灿根智能科技有限公司 具有高硬度的耐磨铸造铜合金及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824135A (en) * 1973-06-14 1974-07-16 Olin Corp Copper base alloys
JPH0768597B2 (ja) * 1986-02-28 1995-07-26 株式会社東芝 非磁性バネ材及びその製造方法
CN100584975C (zh) * 2006-11-23 2010-01-27 北京有色金属研究总院 一种铜基合金及其制备方法
CN101708643B (zh) * 2009-10-29 2013-04-24 陕西秦航机电有限责任公司 一种酚醛塑料粉在成型过程中与金属嵌件的粘接工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3712837A (en) * 1971-11-05 1973-01-23 Olin Corp Process for obtaining copper alloys
JPH0372044A (ja) * 1989-08-14 1991-03-27 Nippon Mining Co Ltd 深絞り用銅合金
CN2372125Y (zh) * 1999-05-18 2000-04-05 王云青 一种金属复合装饰板
CN104862524A (zh) * 2014-07-31 2015-08-26 比亚迪股份有限公司 一种高强度合金及其制备方法
CN105525134A (zh) * 2015-02-05 2016-04-27 比亚迪股份有限公司 一种高强度合金及其制备方法
CN108118183A (zh) * 2017-12-13 2018-06-05 浙江灿根智能科技有限公司 具有高硬度的耐磨铸造铜合金及制备方法

Also Published As

Publication number Publication date
CN111057901B (zh) 2021-09-03
CN111057901A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
CN105525134B (zh) 一种高强度合金及其制备方法
CN101113498B (zh) 高强高导的低钙硼铬锆铜合金及其制造方法
KR101606525B1 (ko) 내식성이 개선된 다이캐스팅용 알루미늄 합금
WO2016015488A1 (zh) 铝合金及其制备方法和应用
KR20200023073A (ko) 다이캐스팅용 알루미늄 합금 및 그 제조방법, 다이캐스팅 방법
EP3954798B1 (en) Die-cast aluminum alloy, preparation method therefor, and structural member for communication product
JP5305323B2 (ja) ダイカスト用Zn合金およびダイカスト用Zn合金を用いたダイカスト部材の製造方法
CN104862524A (zh) 一种高强度合金及其制备方法
CN109295351A (zh) 一种压铸铝合金及其制备方法和应用
CN114457263A (zh) 一种高强高韧高导热压铸铝合金及其制造方法
CN102994835A (zh) 一种耐热镁合金
CN112981190A (zh) 用于模铸的铝合金和使用该用于模铸的铝合金制造铸造铝合金的方法
CN111057902B (zh) 压铸铜合金及其制备方法和应用以及压铸铜合金复合塑料产品
WO2020078380A1 (zh) 压铸铜合金及其制备方法以及压铸铜合金复合塑料产品
JPH04247839A (ja) 銅ベースの合金及びその製造方法
CN106244848A (zh) 微合金化有色金属铜基玻璃模具材料及其制造方法
CN109957683A (zh) 一种高强度压铸铝合金及其制备方法和应用
KR102217940B1 (ko) 고방열특성을 갖는 다이캐스팅용 알루미늄 합금 및 이의 제조방법
CN109023159B (zh) 铜基非晶合金及其制备方法和手机
CN110093541B (zh) 压铸铝合金及其制备方法和应用以及压铸铝合金复合塑料产品
CN115679152B (zh) 一种铸造性能优良的饰用黄铜合金及其制备方法
CN110527881A (zh) 一种快速凝固高性能高锌含量Al-Zn-Mg-Cu-Zr合金及其制备方法
CN112680642B (zh) 一种改性的镁锂合金铸锭及其制备方法和应用
CN110004321B (zh) 一种铜基微晶合金及其制备方法和一种电子产品
CN115710658B (zh) 一种具有高导热性的空调器用铝合金及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872870

Country of ref document: EP

Kind code of ref document: A1