WO2020078375A1 - 玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 - Google Patents

玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 Download PDF

Info

Publication number
WO2020078375A1
WO2020078375A1 PCT/CN2019/111443 CN2019111443W WO2020078375A1 WO 2020078375 A1 WO2020078375 A1 WO 2020078375A1 CN 2019111443 W CN2019111443 W CN 2019111443W WO 2020078375 A1 WO2020078375 A1 WO 2020078375A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
composition
mol
mgo
sro
Prior art date
Application number
PCT/CN2019/111443
Other languages
English (en)
French (fr)
Inventor
张广涛
王俊峰
韩文梅
李刚
李志勇
闫冬成
王丽红
Original Assignee
东旭科技集团有限公司
东旭集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东旭科技集团有限公司, 东旭集团有限公司 filed Critical 东旭科技集团有限公司
Publication of WO2020078375A1 publication Critical patent/WO2020078375A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium

Definitions

  • the invention relates to the field of glass manufacturing, in particular to a composition for glass, aluminosilicate glass and a preparation method and application thereof.
  • AMLCD active matrix liquid crystal display
  • OLED organic light emitting diode
  • LTPS TFT- LCD active matrix liquid crystal display
  • Mainstream silicon-based TFTs can be divided into amorphous silicon (a-Si) TFTs, polycrystalline silicon (p-Si) TFTs and single crystal silicon (SCS) TFTs, of which amorphous silicon (a-Si) TFTs are now mainstream TFT-LCDs Applied technology, amorphous silicon (a-Si) TFT technology, the processing temperature in the production process can be completed at a temperature of 300-450 °C. LTPS polycrystalline silicon (p-Si) TFTs need to be processed multiple times at higher temperatures during the manufacturing process.
  • the substrate must not be deformed during multiple high-temperature processes, which puts higher requirements on the substrate glass performance, and the preferred strain
  • the point is higher than 650 ° C, more preferably higher than 670 ° C, 700 ° C, and 720 ° C, so that the substrate has as little thermal shrinkage as possible in the panel manufacturing process.
  • the expansion coefficient of the glass substrate needs to be close to that of silicon to minimize stress and damage, so the preferred linear thermal expansion coefficient of the substrate glass is between 28-41 ⁇ 10 -7 / °C.
  • the glass used as a display substrate should have a low melting temperature, high temperature surface tension, high temperature volume resistivity, and liquidus temperature.
  • a transparent conductive film, an insulating film, a semiconductor (polycrystalline silicon, amorphous silicon, etc.) film and a metal film need to be formed on the glass surface of the underlying substrate by sputtering, chemical vapor deposition (CVD), etc.
  • the photo-etching technology forms various circuits and patterns.
  • the glass contains alkali metal oxides (Na 2 O, K 2 O, Li 2 O), the alkali metal ions diffuse into the deposited semiconductor material during the heat treatment process and damage
  • alkali metal oxides Na 2 O, K 2 O, Li 2 O
  • the main component is alkaline earth aluminosilicate glass.
  • the annealing point and strain point of most silicate glass increase as the content of glass former increases and the content of modifier decreases. But at the same time, it will cause difficulties in high temperature melting and clarification, resulting in increased corrosion of refractory materials, increasing energy consumption and production costs. Therefore, through the improvement of the components, the low-temperature viscosity is increased while ensuring that the high-temperature viscosity will not be greatly increased, and even reduced is the best breakthrough to improve thermal stability.
  • the alkali-free glass for display has a high viscosity, so it usually needs to be heated to above 1600 ° C during melting.
  • the commonly used flame melting technology has been insufficient in the quality of alkali-free glass and process control, and auxiliary electric melting or full electric melting technology must be adopted to achieve efficient melting of glass.
  • the alkali-free glass for display is an electrical insulator at room temperature with a resistivity of 10 19 -10 22 ⁇ ⁇ cm.
  • the alkali-free glass liquid used in the following display has a resistivity of 100-300 ⁇ ⁇ cm, which is a good conductor of electricity and can be used as a Joule effect heating element.
  • the resistivity of high alkali metal silicate glass in the molten state which is usually less than 10 ⁇ ⁇ cm
  • the alkali-free glass for display still has a problem that the resistivity is too large, which is not conducive to improving thermal efficiency.
  • Electric fluxing or full electric melting technology uses the self-heating characteristics of molten glass liquid at high temperature to convert electrical energy into thermal energy, so that the glass heats itself from the inside to increase its internal temperature, reduce the temperature difference between the upper and lower layers of the glass liquid, and improve For the clarification effect, its thermal efficiency is much higher than the heat absorbed by flame radiation heating, thereby saving energy, greatly improving the glass melting rate, and improving the quality of the glass liquid.
  • the resistivity of alkali-free glass liquid at high temperature is the key to affect the Joule heating effect of glass.
  • the high temperature resistivity is too small, it may weaken the Joule heating effect, and its own calorific value can not meet the needs of melting, and it will also cause the deterioration of high temperature viscosity performance; too high high temperature resistivity will affect the conductivity of the glass liquid, making it heated when energized The current flows to the refractory material and causes high temperature erosion of the refractory material. Therefore, the resistivity of molten glass liquid at high temperature must be controlled within a reasonable range to achieve the purpose of improving the melting efficiency and improving the quality of the glass liquid.
  • the substrate glass During the processing of the glass substrate, the substrate glass is placed horizontally. Under the effect of its own weight, the glass sags to a certain extent. The degree of sag is proportional to the glass density and inversely proportional to the glass's elastic modulus. With the development of substrate manufacturing in the direction of large size and thinning, the sag of the glass plate in manufacturing must be paid attention to. Therefore, the composition should be designed so that the substrate glass has the lowest possible density and the highest possible elastic modulus.
  • ultraviolet light is used as energy to separate the display unit from the substrate glass in contact with it.
  • the glass substrate In order to reduce the cost of separation and increase the probability of success, it is necessary for the glass substrate to have a high and stable transmittance in the ultraviolet region. For example, for a glass substrate with a thickness of 0.5 mm, the transmittance at a wavelength of 308 nm is required to be higher than 50 %, And the transmission rate between different glass substrates in the batch is extremely poor within 1%.
  • the purpose of the present invention is to overcome the problems of the existing aluminosilicate glass that it is difficult to melt the display substrate glass and the low transmittance at 308 nm, to provide a glass composition, aluminosilicate glass and preparation thereof Method and application, the aluminosilicate glass has high thermal stability, high ultraviolet transmittance and high mechanical stability.
  • the first aspect of the present invention provides a composition for glass, based on the total molar amount of the composition for glass, based on the oxide, the composition for glass contains 62-69 mol% of SiO 2 , 11-15mol% Al 2 O 3 , 0-3mol% B 2 O 3 , 7-11mol% MgO, 2-8mol% CaO, 3-8mol% SrO, 0-2mol% BaO, 0.01 -2 mol% ZnO, 0.02-0.65 mol% RE 2 O 3 and less than 0.05 mol% R 2 O, where RE is a rare earth element and R is an alkali metal.
  • the glass composition contains 65-68 mol% of SiO 2 , 11.5-14.5 mol% of Al 2 O 3 , 0-1.5 mol based on oxides % B 2 O 3 , 7.5-9mol% MgO, 3-6mol% CaO, 4.5-6mol% SrO, 0.1-0.9mol% BaO, 0.05-1.9mol% ZnO, 0.1-0.46mol% RE 2 O 3 and less than 0.05 mol% of R 2 O.
  • the glass composition is characterized in the form of Fe 2 O 3 based on the total molar amount of the glass composition, and the glass composition contains Fe 2 O 3 of 150 ppm or less.
  • the glass composition contains 0.01-0.6mol% halogen;
  • halogen is F and Cl.
  • the content of each component in the glass composition satisfies 0 ⁇ Z ⁇ 1, where Z is calculated by the following formula:
  • SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, and ZnO each represent the mole percentage of the component in the glass composition.
  • the content of each component in the glass composition satisfies 0.1 ⁇ Y ⁇ 0.67, where the Y value is calculated by the following formula:
  • Y -10.31 + (16.04 ⁇ SiO 2 + 6 ⁇ Al 2 O 3 + 3.29 ⁇ B 2 O 3 -5.47 ⁇ MgO-5.43 ⁇ CaO + 3.77 ⁇ SrO + 26.65 ⁇ BaO-7.82 ⁇ ZnO-102.7 ⁇ RE 2 O 3 ); wherein, SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZnO, RE 2 O 3 each represent the mole percentage of the component in the glass composition.
  • R -10.31 + (16.04 ⁇ SiO 2 + 6 ⁇ Al 2 O 3 + 3.29 ⁇ B 2 O 3 -5.47 ⁇ MgO-5.43 ⁇ CaO + 3.77 ⁇ SrO + 26.65 ⁇ BaO-7.82 ⁇ ZnO-102.7 ⁇ RE 2 O 3 -39.6 ⁇ (F + Cl));
  • SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZnO, RE 2 O 3 , F, Cl each represent the component accounted for Molar percentage in the composition for glass.
  • MO represents the glass composition except for SiO 2 , Al 2 O 3 , B 2 The sum of the mole percentages of all components except O 3 .
  • the RE is yttrium and lanthanide
  • the R is Li, Na and K.
  • the RE is one or more of Y, La, Nd and Lu.
  • the composition for glass further contains a clarifying agent, and the content of the clarifying agent is ⁇ 0.5 mol% based on the total moles of each component
  • the present invention provides a method for preparing an aluminosilicate glass, which method includes sequentially performing a melting treatment, a forming treatment, an annealing treatment, and a mechanical processing treatment on the glass composition of the present invention.
  • the method further includes adding fluoride and / or chloride to the glass composition.
  • the amount of the fluoride added is 0.02-0.7wt%.
  • the added amount of the chloride is 0.02-0.7wt%.
  • the present invention provides aluminosilicate glass prepared by the above method.
  • the resistivity of the glass melt at 1600 ° C of the aluminosilicate glass is ⁇ 100 ⁇ ⁇ cm.
  • the viscosity of the glass melt is ⁇ 300 poise at 1600 ° C.
  • the liquidus viscosity of the glass melt ⁇ L ⁇ 20000 poise.
  • the viscosity of the glass melt is corresponding to the temperature T 200 ⁇ 1630 ° C at 200 poises.
  • the corresponding temperature T 35000 ⁇ 1240 ° C at a viscosity of 35000 poises Preferably, the corresponding temperature T 35000 ⁇ 1240 ° C at a viscosity of 35000 poises.
  • the corresponding annealing point at a viscosity of 10 13 poise is ⁇ 770 ° C.
  • the temperature corresponding to the viscosity 10 4.5 poise is ⁇ 1250 ° C; the liquidus temperature T L ⁇ 1250 ° C; the difference between the temperature corresponding to the viscosity 10 4.5 poise and the liquidus temperature T L is ⁇ -20 ° C.
  • the elemental sulfur content in the form of elemental sulfur S in the aluminosilicate glass is ⁇ 500 ppm.
  • the hydroxyl content in the aluminosilicate glass is ⁇ 0.3 / mm.
  • the density of the aluminosilicate glass is less than 2.7g / cm 3 ; the coefficient of thermal expansion in the range of 50-350 ° C is less than 40 ⁇ 10 -7 / ° C; Young's modulus ⁇ 83GPa; specific modulus ⁇ 32GPa / (g ⁇ cm -3 ).
  • the transmittance at a wavelength of 308 nm is ⁇ 73%; the transmittance at a wavelength of 550 nm is ⁇ 92%.
  • the heat shrinkage at 600 ° C / 30min is ⁇ 20ppm.
  • the present invention provides the use of the glass composition or aluminosilicate glass according to the present invention in the preparation of display devices and / or solar cells.
  • the aluminosilicate glass of the present invention has high thermal stability, high ultraviolet transmittance and excellent mechanical stability, and can be used for preparing display devices and / or solar cells, and is particularly suitable for preparing substrate glass substrate materials for flat panel display products and / Or glass film material for screen surface protection, carrier glass material for flexible display products and / or surface encapsulation glass material and / or glass film material for screen surface protection, substrate glass substrate material for flexible solar cells, safety glass , Bulletproof glass, smart car glass, smart traffic display screens, smart shop windows and smart card tickets, as well as other application fields that require high thermal stability, high ultraviolet transmittance and mechanical stability glass materials.
  • the present invention provides a composition for glass, based on the total molar amount of the composition for glass, based on oxide, the composition for glass contains 62-69 mol% of SiO 2 and 11-15 mol % Al 2 O 3 , 0-3mol% B 2 O 3 , 7-11mol% MgO, 2-8mol% CaO, 3-8mol% SrO, 0-2mol% BaO, 0.01-2mol% ZnO, 0.02-0.65 mol% RE 2 O 3 and less than 0.05 mol% R 2 O, where RE is a rare earth element and R is an alkali metal.
  • the glass composition contains 65-68 mol% of SiO 2 and 11.5-14.5 mol% of Al 2 O in terms of oxides. 3 , 0-1.5mol% B 2 O 3 , 7.5-9mol% MgO, 3-6mol% CaO, 4.5-6mol% SrO, 0.1-0.9mol% BaO, 0.05-1.9mol% ZnO, 0.1-0.46 mol% RE 2 O 3 and less than 0.05 mol% R 2 O.
  • SiO 2 is a glass-forming body, if the content is too low, it is not conducive to the enhancement of thermal stability, the expansion coefficient is too high, and the glass is easily devitrified; increasing the content of SiO 2 helps the glass Lightweight, the coefficient of thermal expansion is reduced, the strain point is increased, and the chemical resistance is increased, but the high temperature viscosity is increased, which is not conducive to melting, and it is difficult for ordinary kilns to meet their melting needs.
  • the content of the SiO 2 is 62-69 mol%, preferably 65-68 mol%, specifically, for example, 62 mol% , 62.2mol%, 62.95mol%, 63.8mol%, 64.6mol%, 64.9mol%, 65mol%, 65.4mol%, 65.7mol%, 66mol%, 66.8mol%, 66.9mol%, 67.08mol%, 67.9mol% , 67.95 mol%, 68 mol%, 68.5 mol%, 68.9 mol%, 69 mol%, and any two of these values constitute any value in the range.
  • Al 2 O 3 is used to increase the strength of the glass structure. If the content is less than 11 mol%, the glass is easily devitrified and is easily eroded by external moisture and chemical reagents. A high content of A1 2 O 3 contributes to the increase of glass strain point and flexural strength, but too high glass is prone to crystallization.
  • the Al 2 O 3 content is 11-15 mol%, preferably 11.5-14.5 mol%, specifically, for example, 11mol%, 11.5mol%, 11.6mol%, 11.9mol%, 12mol%, 12.2mol%, 12.6mol%, 12.69mol%, 13.1mol%, 13.2mol%, 13.4mol%, 13.5mol%, 13.8mol% , 14.4 mol%, 14.5 mol%, 14.7 mol%, 14.9 mol%, 15 mol%, and any value in the range formed by any two of these values.
  • B 2 O 3 can form glass alone and is a very good flux.
  • B 2 O 3 is difficult to form [BO 4 ] under high temperature melting conditions, which can reduce high temperature viscosity and low temperature.
  • B has the tendency to seize free oxygen to form [BO 4 ], which makes the structure tend to be tight, improve the low-temperature viscosity of the glass, and prevent the occurrence of crystallization.
  • too much B 2 O 3 will greatly reduce the glass strain point. Therefore, considering the total molar amount of the glass composition as a basis, the content of the B 2 O 3 is 0-3 mol%, preferably 0-1.5 mol%, more preferably 0, based on the oxide.
  • it can be 0, 0.1 mol%, 0.36 mol%, 0.71 mol%, 0.9 mol%, 1.3 mol%, 1.5 mol%, 1.7 mol%, 1.8 mol%, 2 mol%, 2.1 mol%, 2.37 mol% , 2.8mol%, 3mol%, and any mass percentage between any two adjacent mass percentages.
  • MgO has the characteristics of greatly increasing the Young's modulus and specific modulus of the glass, lowering the viscosity at high temperature, and making the glass easy to melt.
  • the introduction of the ion Mg 2+ outside the network with a larger electric field strength is likely to cause local accumulation in the structure, which increases the short-range order range.
  • the content of the MgO is 7-11 mol%, preferably 7.5-9 mol%, specifically, for example, 7 mol%, based on the total molar amount of the glass composition.
  • CaO is used to promote the melting of glass and adjust the glass moldability. If the content of calcium oxide is less than 2 mol%, it is not easy to reduce the viscosity of the glass. If the content is too large, the glass will be prone to devitrification, the coefficient of thermal expansion will also be greatly increased, and the brittleness will increase, which is unfavorable for the subsequent process. Therefore, considering the total molar amount of the glass composition as a reference, the content of CaO is 2-8 mol%, preferably 3-6 mol%, specifically, for example, 2 mol%, based on the oxide.
  • SrO can be used as a flux and a component to prevent the crystal from devitrification. If the content is too much, the glass density will be too high, resulting in a decrease in the specific modulus of the product.
  • Sr 2+ is a divalent metal ion with a large ionic radius and a high coordination number. It is often filled in the gaps of the tetrahedral network skeleton in alkali-free glass, which has the characteristics of improving chemical stability and mechanical stability. However, too much content will increase the density and increase the incidence of cracks, devitrification and phase separation.
  • the content of SrO is 3-8 mol%, preferably 4.5-6 mol%, specifically, for example, 3 mol%, based on the oxide.
  • BaO serves as a flux and a component for preventing crystallization of the glass. If the content is too large, the high-temperature volume resistivity of the glass will increase, the density will be too high, and the specific modulus of the product will decrease. Therefore, considering the total molar amount of the glass composition as a basis, the content of the BaO is 0-2 mol%, preferably 0.1-0.9 mol%, specifically, for example, 0.
  • the divalent metal oxide can be divided into two categories according to its position in the periodic table of the elements and its effect on properties: one is the alkaline earth metal oxide located in the main group, and its ion R 2+ has 8 external electronic structures; the second type is located in the subgroup of the periodic table (such as ZnO, CdO, etc.), and its ion R 2+ has 18 external electronic structures.
  • one is the alkaline earth metal oxide located in the main group, and its ion R 2+ has 8 external electronic structures
  • the second type is located in the subgroup of the periodic table (such as ZnO, CdO, etc.)
  • its ion R 2+ has 18 external electronic structures.
  • the structural state of both in glass and the properties of the glass The impact is different.
  • ZnO can reduce the high-temperature viscosity of the glass (such as 1500 °C), which is conducive to eliminating bubbles; at the same time, it can improve the strength and hardness, increase the chemical resistance of the glass below the softening point, and reduce the coefficient of thermal expansion of the glass.
  • adding an appropriate amount of ZnO helps to suppress crystallization and can reduce the crystallization temperature.
  • ZnO is introduced into the glass as a network outer body in non-alkali glass or low-alkali glass, and generally exists in the form of [ZnO 4 ] at high temperature, which is more loose than the structure of [ZnO 6 ] glass, and that of ZnO-free
  • the glass containing ZnO has a lower viscosity and a faster atomic movement speed, and cannot form crystal nuclei. It is necessary to further reduce the temperature to facilitate the formation of crystal nuclei, thus reducing the upper limit of crystallization of glass temperature. Too much ZnO content will greatly reduce the strain point of the glass.
  • the content of the ZnO is 0.01-2 mol%, preferably 0.05-1.9 mol%, specifically, for example, 0.01 mol, based on the oxide %, 0.02mol%, 0.05mol%, 0.1mol%, 0.13mol%, 0.4mol%, 0.5mol%, 0.79mol%, 0.9mol%, 0.99mol%, 1mol%, 1.43mol%, 1.49mol%, 1.2 mol%, 1.27 mol%, 1.43 mol%, 1.48 mol%, 1.5 mol%, 1.6 mol%, 1.9 mol%, 2 mol%, and any value in the range formed by any two of these values.
  • the rare earth oxide RE 2 O 3 has a unique ability to improve certain properties of the glass, such as the flexural strength, elastic modulus, strain point and other properties of the glass. After being added, it will increase sharply, which will reduce the brittleness of the glass and increase the fracture toughness greatly, and it can reduce the high-temperature viscosity and high-temperature volume resistivity of the glass. convenient. After the network outer body such as alkaline earth metal and ZnO is introduced into the glass composition, the excess oxygen atoms break the bridge oxygen bonds in the glass structure to generate non-bridge oxygen. The presence of these non-bridge oxygen significantly reduces the bending strength of the glass. The addition of RE 2 O 3 causes the internal structure of the glass to change.
  • the generated Si-O-RE chemical bond reconnects the island-like network elements in the glass, which can improve the network structure of the glass, which can greatly increase the bending strength of the glass. , Elastic modulus, strain point, chemical stability, and high temperature volume resistivity.
  • RE 2 O 3 when RE 2 O 3 is further increased, due to the decrease in the amount of unbridged oxygen available for adjustment, excess RE 2 O 3 has little effect on the above properties of the glass. Therefore, from the comprehensive consideration of other properties such as absorption spectrum, based on the total molar amount of the glass composition, based on the oxide, the content of the RE 2 O 3 is 0.02-0.65 mol%, preferably 0.1-0.46 mol %,
  • the RE is yttrium and lanthanide.
  • the RE is Lu or at least one of Lu and Y, La, and Nd, and the content of Lu is ⁇ 0.05 mol%.
  • RE 2 O 3 may be, for example, 0.02mol%, 0.05mol%, 0.1mol%, 0.12mol%, 0.19mol%, 0.20mol%, 0.23mol%, 0.24mol%, 0.3mol%, 0.39mol%, Any value within the range of 0.4 mol%, 0.46 mol%, 0.59 mol%, 0.65 mol%, and any two of these values.
  • fluoride such as calcium fluoride
  • it can be used as a high-temperature co-solvent to effectively reduce the glass melt viscosity, high-temperature surface tension and high-temperature volume resistivity. It has a certain clarification when used in combination with sulfate Effect; on the other hand, the addition of fluorine can improve the transmittance of the glass at 308nm without deliberately reducing the iron oxide content, improve the transmittance of the iron-containing glass at 308nm in the ultraviolet region, but too much content is easy to cause The glass separates or precipitates, causing opacification or crystallization.
  • fluoride such as calcium fluoride
  • the Fe 2 O 3 content is preferably ⁇ 100ppm, more preferably 80 ppm, more preferably ⁇ 50ppm.
  • the content of the halogen is 0.01-0.6mol%, wherein the halogen is F and Cl, preferably 0.1-0.55mol%.
  • it may be 0.01 mol%, 0.02 mol%, 0.06 mol%, 0.09 mol%, 0.1 mol%, 0.15 mol%, 0.21 mol%, 0.3 mol%, 0.36 mol%, 0.44 mol%, 0.42 mol%, 0.48 mol%, 0.52 mol%, 0.55 mol%, 0.6 mol%, and any value in the range formed by any two of these values.
  • the alkali metal oxide R 2 O ⁇ 0.05 mol%, where R 2 O is the sum of the contents of Li 2 O, Na 2 O, and K 2 O .
  • a certain amount of sulfates such as inorganic sulfates such as calcium sulfate and strontium sulfate, may be added as components for eliminating gaseous inclusions.
  • sulfates such as inorganic sulfates such as calcium sulfate and strontium sulfate
  • the residual sulfur element content in the form of elemental sulfur S in the glass be ⁇ 500 ppm, and further preferably ⁇ 100 ppm.
  • the content of each component in the glass composition satisfies 0 ⁇ Z ⁇ 1, preferably 0.5-0.9, further preferably 0.55-0.85, more preferably 0.6-0.8, wherein, Z is calculated by the following formula:
  • Z -10.31 + (16.04 ⁇ SiO 2 + 6 ⁇ Al 2 O 3 + 3.29 ⁇ B 2 O 3 -5.47 ⁇ MgO-5.43 ⁇ CaO + 3.77 ⁇ SrO + 26.65 ⁇ BaO-7.82 ⁇ ZnO); where, SiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, and ZnO each represent the mole percentage of this component in the glass composition.
  • the content of each component in the glass composition satisfies 0.1 ⁇ Y ⁇ 0.67, preferably 0.33-0.37, where the Y value is calculated by the following formula:
  • Y -10.31 + (16.04 ⁇ SiO 2 + 6 ⁇ Al 2 O 3 + 3.29 ⁇ B 2 O 3 -5.47 ⁇ MgO-5.43 ⁇ CaO + 3.77 ⁇ SrO + 26.65 ⁇ BaO-7.82 ⁇ ZnO-102.7 ⁇ RE 2 O 3 ); wherein, SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZnO, RE 2 O 3 each represent the mole percentage of the component in the glass composition.
  • R -10.31 + (16.04 ⁇ SiO 2 + 6 ⁇ Al 2 O 3 + 3.29 ⁇ B 2 O 3 -5.47 ⁇ MgO-5.43 ⁇ CaO + 3.77 ⁇ SrO + 26.65 ⁇ BaO-7.82 ⁇ ZnO-102.7 ⁇ RE 2 O 3 -39.6 ⁇ (F + Cl));
  • SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZnO, RE 2 O 3 , F, Cl each represent the component accounted for Molar percentage in the composition for glass.
  • MO SiO 2 and Al in the glass composition.
  • the glass composition of the present invention further contains a clarifying agent, and the content of the clarifying agent is less than or equal to 0.5 mol% based on the total moles of each component, and the chemical clarifying agent is preferably At least one of strontium sulfate, calcium sulfate, strontium nitrate, and stannous oxide.
  • the present invention provides a method for preparing an aluminosilicate glass, which method includes sequentially performing a melting treatment, a forming treatment, an annealing treatment, and a mechanical processing treatment on the glass composition of the present invention.
  • the method further includes adding fluoride and / or chloride to the glass composition; further preferably, based on the total weight of the mixture, the fluorine
  • the added amount of the compound is 0.02-0.7wt%; more preferably, the added amount of the chloride is 0.02-0.7wt% based on the total weight of the mixture.
  • a mixture of calcium fluoride and strontium chloride is selected, and the content of the mixture of calcium fluoride and strontium chloride is 0.05-1 wt% based on the total weight of the mixture.
  • the weight ratio of calcium fluoride and strontium chloride is 1: 1-5.
  • fluoride such as calcium fluoride is a high-temperature flux, which has the effect of reducing the viscosity of the glass melt, high-temperature surface tension and high-temperature volume resistivity. It has a certain clarifying effect when used in combination with sulfate; on the other hand, fluorine can improve the iron content
  • chloride such as strontium chloride as a high-temperature flux, has the effect of reducing the high-temperature surface tension and high-temperature volume resistivity of the glass melt.
  • the mixture is melted at a high temperature through a continuous melting pool kiln; further preferably, the mixture is melted at a high temperature using electric heating and / or gas heating; further preferably, electrically heated
  • the energy supply ratio accounts for more than 60% of the total energy ratio of the molten glass; the electric heating refers to heating the mixture and the glass liquid directly through multiple pairs of electrodes to promote the completion of the silicate reaction, glass formation, clarification and homogenization and other processes
  • the electrode may be a tin oxide electrode, a molybdenum oxide electrode, and / or a platinum electrode.
  • the conditions of the melt treatment include: the temperature is lower than 1700 ° C and the time is longer than 1h.
  • the specific melting temperature and melting time can determine the specific melting temperature and melting time according to the actual situation, which is well known to those skilled in the art and will not be repeated here.
  • the conditions of the annealing treatment include: the temperature is higher than 780 ° C and the time is longer than 0.1h.
  • the specific annealing temperature and annealing time can determine the specific annealing temperature and annealing time according to the actual situation, which is well known to those skilled in the art and will not be repeated here.
  • the machining process is not particularly limited, and may be various machining processes common in the art.
  • the product obtained by the annealing process may be cut, ground, or polished.
  • the method further includes: performing a secondary melting and thinning treatment on the product obtained by the mechanical processing treatment.
  • the conditions of the mechanical processing process or the secondary melt-drawing process are controlled to prepare glass with a thickness of less than 0.1 mm.
  • the present invention provides aluminosilicate glass prepared by the above method.
  • the resistivity of the glass melt at 1600 ° C is ⁇ 100 ⁇ ⁇ cm, preferably ⁇ 90 ⁇ ⁇ cm, and more preferably ⁇ 80 ⁇ ⁇ cm.
  • the viscosity of the glass melt at 1600 ° C is ⁇ 300 poise, preferably ⁇ 250 poise, and more preferably ⁇ 230 poise.
  • the liquidus viscosity of the glass melt ⁇ L ⁇ 20000 poise, preferably ⁇ L ⁇ 60000 poise.
  • the aluminosilicate glass of the present invention has a temperature corresponding to T 200 ⁇ 1630 ° C at a viscosity of 200 poises, preferably T 200 ⁇ 1620 ° C.
  • the aluminosilicate glass of the present invention has a temperature T 35000 ⁇ 1240 ° C, preferably ⁇ 1230 ° C at a viscosity of 35000 poises.
  • the aluminosilicate glass of the present invention has an annealing point at a viscosity of 10 13 poise ⁇ 770 ° C, preferably ⁇ 780 ° C, and more preferably ⁇ 790 ° C.
  • the aluminosilicate glass of the present invention has a viscosity corresponding to a temperature of 10 4.5 Poise ⁇ 1250 °C, preferably ⁇ 1240 °C, further preferably ⁇ 1230 °C; liquidus temperature T L ⁇ 1250 °C, preferably T L ⁇ 1240 °C, further Preferably T L ⁇ 1200 ° C; the difference between the temperature corresponding to the viscosity of 10 4.5 Poise and the liquidus temperature T L is ⁇ -20 ° C, preferably the difference is ⁇ 0 ° C.
  • a certain amount of sulfates such as inorganic sulfates such as calcium sulfate and strontium sulfate, can be added as components for eliminating gaseous inclusions.
  • sulfates such as inorganic sulfates such as calcium sulfate and strontium sulfate
  • the residual sulfur element content in the form of elemental sulfur S in the glass is ⁇ 500 ppm, preferably ⁇ 100 ppm.
  • the content of hydroxyl groups in the aluminosilicate glass of the present invention is ⁇ 0.3 / mm, preferably ⁇ 0.26 / mm.
  • the density of the aluminosilicate glass of the present invention is ⁇ 2.7 g / cm 3 , preferably ⁇ 2.65 g / cm 3 ;
  • the coefficient of thermal expansion in the range of 50-350 ° C is ⁇ 40 ⁇ 10 -7 / ° C, preferably ⁇ 39 ⁇ 10 -7 / ° C;
  • Young's modulus ⁇ 83 GPa preferably ⁇ 83.5 GPa; specific modulus ⁇ 32 GPa / (g ⁇ cm -3 ), preferably ⁇ 33 GPa / (g ⁇ cm -3 ).
  • the aluminosilicate glass of the present invention has a transmittance at a wavelength of 308 nm ⁇ 73%, preferably ⁇ 74%; and a transmittance at a wavelength of 550 nm is preferably ⁇ 92%.
  • the aluminosilicate glass of the present invention has a thermal shrinkage under 600 ° C / 30min of ⁇ 20 ppm, preferably ⁇ 16 ppm.
  • the application of the glass composition or aluminosilicate glass according to the present invention in the preparation of display devices and / or solar cells is provided.
  • the aluminosilicate glass of the invention has the advantages of high thermal stability, high ultraviolet transmittance and high mechanical stability. It can be used to prepare display devices and / or solar cells, and is particularly suitable for preparing substrate glass substrate materials for flat panel display products and / or glass film materials for screen surface protection, carrier glass materials for flexible display products and / or surface encapsulating glass Materials and / or glass film materials for screen surface protection, glass substrate materials for flexible solar cells, safety glass, bulletproof glass, smart car glass, smart traffic displays, smart windows and smart card tickets, and other applications that require high thermal stability The application field of glass materials with high transparency, high ultraviolet transmittance and mechanical stability.
  • the glass density was measured with reference to ASTM C-693 in g / cm 3 .
  • the viscosity corresponding to 1600 ° C is ⁇ 1600 in units of P; the viscosity is the temperature T X corresponding to X-poise in units of ° C.
  • the temperature of the liquidus of the glass, T L is measured in degrees Celsius using the ladder furnace method.
  • UV-visible spectrophotometer was used to determine the glass transmittance.
  • the thickness of the glass sample was 0.5mm, and the transmittance at 308nm and 550nm was taken as the unit.
  • thermoelectric iCAP 6300MFC type inductively coupled plasma emission spectrometer ICP
  • the iron content characterized in the form of Fe 2 O 3
  • the content of fluorine and chlorine in the glass in mol% or ppm
  • the glass is heated from 25 ° C (measured the initial length, marked as L 0 ) to 600 ° C at a heating rate of 5 ° C / min. Keep the temperature at °C for 30min, and then reduce the temperature to 25 °C at a cooling rate of 5 °C / min. The glass length shrinks by a certain amount. Measure the length again and mark it as L t , then the thermal shrinkage rate Y t is expressed as:
  • the following method is used to determine the content of hydroxyl OH in glass: use the SPECTRUM TWO Fourier infrared spectrometer of PE company to test the transmittance in the wave number range of 400-4000cm -1 , and use the following formula to calculate the glass hydroxyl content ⁇ -OH, the unit is / mm:
  • T 1 transmittance (%) at the reference wavelength 3846cm -1 (2600nm);
  • T 2 minimum transmittance (%) in the vicinity of the hydroxyl absorption wavelength of 3600 cm -1 (2800 nm).
  • the difference is that the mixture composition (corresponding to the glass composition) and the performance measurement results of the obtained product are shown in Table 2.
  • the difference is that the mixture composition (corresponding to the glass composition) and the obtained product performance measurement results are shown in Table 3-4.
  • the method of the present invention is suitable for obtaining high ultraviolet transmittance, high strain point (high heat resistance), and high temperature volume resistivity.
  • the problem has obvious effect.
  • the aluminosilicate glass obtained by the composition, limited ratio, limited Z / Y / R numerical range and manufacturing method provided by the present invention has higher heat resistance stability and lower high temperature volume Resistivity, high UV-Vis spectral transmittance, high Young's modulus, low melting temperature and liquidus temperature, low surface tension, suitable for large-scale industrial manufacturing, suitable for partial Or all the energy sources are made by electrically heating the molten glass liquid, which is suitable for the application in the preparation of display devices and / or solar cells.
  • substrate glass substrate materials for flat panel display products and / or glass film materials for screen surface protection carrier glass materials for flexible display products and / or surface encapsulating glass materials and / or glass film layers for screen surface protection Materials
  • flexible solar cell substrate glass substrate materials safety glass, bulletproof glass, smart car glass, smart traffic display screens, smart shop windows and smart card tickets and other applications that require high thermal stability, high UV transmittance and mechanical stability Application areas of glass materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用。以氧化物计,该玻璃用组合物含有62-69mol%的SiO 2、11-15mol%的Al 2O 3、0-3mol%的B 2O 3、7-11mol%的MgO、2-8mol%的CaO、3-8mol%的SrO、0-2mol%的BaO、0.01-2mol%的ZnO、0.02-0.65mol%的RE 2O 3和小于0.05mol%的R 2O,其中RE为稀土元素,R为碱金属。

Description

玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 技术领域
本发明涉及玻璃制造领域,具体涉及玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用。
背景技术
随着光电行业的快速发展,对各种显示器件的需求正在不断增长,比如有源矩阵液晶显示(AMLCD)、有机发光二极管(OLED)以及应用低温多晶硅技术的有源矩阵液晶显示(LTPS TFT-LCD)器件,这些显示器件都基于使用薄膜半导体材料生产薄膜晶体管(TFT)技术。主流的硅基TFT可分为非晶硅(a-Si)TFT、多晶硅(p-Si)TFT和单晶硅(SCS)TFT,其中非晶硅(a-Si)TFT为现在主流TFT-LCD应用的技术,非晶硅(a-Si)TFT技术,在生产制程中的处理温度可以在300-450℃温度下完成。LTPS多晶硅(p-Si)TFT在制程过程中需要在较高温度下多次处理,基板必须在多次高温处理过程中不能发生变形,这就对基板玻璃性能提出更高的要求,优选的应变点高于650℃,更优选的是高于670℃、700℃、720℃,以使基板在面板制程中具有尽量小的热收缩。同时玻璃基板的膨胀系数需要与硅的膨胀系数相近,尽可能减小应力和破坏,因此基板玻璃优选的线性热膨胀系数在28-41×10 -7/℃之间。为了便于生产,作为显示器基板用的玻璃应该具有较低的熔化温度、高温表面张力、高温体积电阻率和液相线温度。
用于平面显示的玻璃基板,需要通过溅射、化学气相沉积(CVD)等技术在底层基板玻璃表面形成透明导电膜、绝缘膜、半导体(多晶硅、无定形硅等)膜及金属膜,然后通过光蚀刻(Photo-etching)技术形成各种电路和图形,如果玻璃含有碱金属氧化物(Na 2O,K 2O,Li 2O),在热处理过程中碱金属离子扩散进入沉积半导体材料,损害半导体膜特性,因此,玻璃应不含碱金属氧化物,首选的是以SiO 2、Al 2O 3、B 2O 3、碱土金属氧化物RO(RO=Mg、Ca、Sr、BaO)等为主成分的碱土铝硅酸盐玻璃。
大多数硅酸盐玻璃的退火点、应变点随着玻璃形成体含量的增加和改性剂含量的减少而增高。但同时会造成高温熔化和澄清困难,造成耐火材 料侵蚀加剧,增加能耗和生产成本。因此,通过组分改良,使得低温粘度增大的同时还要保证高温粘度不会出现大的提升,甚至降低才是提高热稳定性的最佳突破口。
显示用的无碱玻璃因粘度大,在熔化时通常需要加热到1600℃以上。常用的火焰熔制技术在无碱玻璃品质及工艺控制方面已显现不足,必须采取辅助电熔化或全电熔化技术才能实现玻璃的高效熔化。显示用的无碱玻璃在室温下是电的绝缘体,电阻率为10 19-10 22Ω·cm,当显示用的无碱玻璃被加热时其导电性能随温度升高而明显增强,通常熔融状态下显示用的无碱玻璃液电阻率为100-300Ω·cm,成为电的良导体,可用作焦耳效应发热体。但是相对于高碱金属硅酸盐玻璃在熔融状态下通常小于10Ω·cm的电阻率来说,显示用的无碱玻璃仍然存在电阻率偏大从而不利于提高热效率的问题。电助熔或全电熔技术利用高温状态下熔融玻璃液的自身导电发热特性将电能转化为热能的形式,使玻璃从内部自身发热来提高其内部的温度,降低玻璃液上、下层温差,提高澄清效果,其热效率要比火焰辐射加热吸收的热量高得多,从而节省能量,大幅提高玻璃熔化率,改善玻璃液品质。高温状态下无碱玻璃液的电阻率大小是影响玻璃焦耳热效应的关键。高温电阻率过小,可能会削弱焦耳热效应,自身发热量无法满足熔化的需要,还会带来高温粘度性能的劣化;高温电阻率过高,则会影响玻璃液的导电性,使通电加热时的电流流向耐火材料而造成耐火材料的高温侵蚀。因此,高温下熔融玻璃液的电阻率必须控制在合理的范围内才能达到提高熔化效率,改善玻璃液品质的目的。
在玻璃基板的加工过程中,基板玻璃是水平放置的,玻璃在自重作用下,有一定程度的下垂,下垂的程度与玻璃的密度成正比、与玻璃的弹性模量成反比。随着基板制造向着大尺寸、薄型化方向的发展,制造中玻璃板的下垂必须引起重视。因此应设计组成,使基板玻璃具有尽可能低的密度和尽可能高的弹性模量。
在一些平面显示制造过程中,需要使用紫外线作为能量将显示单元与其接触的衬底玻璃进行分离。为了降低分离的成本、提高成功几率,需要玻璃基板在紫外区有较高且稳定的穿透率,例如,对于厚度为0.5mm的玻璃基板,要求在波长为308nm下的穿透率高于50%,且批次内不同玻璃基板之间穿透率极差在1%之内。但是由于不可避免的因素,玻璃基板制造过 程中总是会过多过少的引入SO 3、Fe 3O 4等在紫外区有较强吸收的组分,因此在玻璃基板制造过程中严格控制各类杂质组分的含量,有利于制造308nm高穿透率的玻璃基板。
发明内容
本发明的目的是为了克服现有的铝硅酸盐玻璃存在显示基板玻璃熔融难度大及在308nm处穿透率偏低的问题,提供一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用,该铝硅酸盐玻璃的热稳定性高、紫外透过率高和机械稳定性高。
为了实现上述目的,本发明第一方面提供了一种玻璃用组合物,以该玻璃用组合物的总摩尔量为基准,以氧化物计,该玻璃用组合物含有62-69mol%的SiO 2、11-15mol%的Al 2O 3、0-3mol%的B 2O 3、7-11mol%的MgO、2-8mol%的CaO、3-8mol%的SrO、0-2mol%的BaO、0.01-2mol%的ZnO、0.02-0.65mol%的RE 2O 3和小于0.05mol%的R 2O,其中RE为稀土元素,R为碱金属。
优选地,以该玻璃用组合物的总摩尔量为基准,以氧化物计,该玻璃用组合物含有65-68mol%的SiO 2、11.5-14.5mol%的Al 2O 3、0-1.5mol%的B 2O 3、7.5-9mol%的MgO、3-6mol%的CaO、4.5-6mol%的SrO、0.1-0.9mol%的BaO、0.05-1.9mol%的ZnO、0.1-0.46mol%的RE 2O 3和小于0.05mol%的R 2O。
优选地,以该玻璃用组合物的总摩尔量为基准,以Fe 2O 3形式表征,该玻璃用组合物含有小于等于150ppm的Fe 2O 3
优选地,以该玻璃用组合物的总摩尔量为基准,以单质卤素形式表征,该玻璃用组合物含有0.01-0.6mol%的卤素;
其中,所述卤素为F和Cl。
优选地,以摩尔百分比计,所述玻璃用组合物中各组分的含量满足0<Z≤1,其中,Z由下式计算得出:
Z=-10.31+(16.04×SiO 2+6×Al 2O 3+3.29×B 2O 3-5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO);
其中,SiO 2、Al 2O 3、MgO、CaO、SrO、BaO、ZnO各自代表该组分占所述玻璃用组合物中的摩尔百分比。
优选地,以摩尔百分比计,所述玻璃用组合物中各组分的含量满足0.1 <Y≤0.67,其中,Y值由下式计算得出:
Y=-10.31+(16.04×SiO 2+6×Al 2O 3+3.29×B 2O 3-5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE 2O 3);其中,SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、BaO、ZnO、RE 2O 3各自代表该组分占所述玻璃用组合物中的摩尔百分比。
优选地,以摩尔百分比计,所述玻璃用组合物中各组分的含量满足R=0.05-0.48,其中,R值由下式计算得出:
R=-10.31+(16.04×SiO 2+6×Al 2O 3+3.29×B 2O 3-5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE 2O 3-39.6×(F+Cl));其中,SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、BaO、ZnO、RE 2O 3、F、Cl各自代表该组分占所述玻璃用组合物中的摩尔百分比。
优选地,以摩尔百分比计,(MgO+ZnO+SrO)/(MgO+CaO+SrO+BaO+ZnO)≥0.5。
优选地,(MgO+SrO)/(1-MO)≥0.6,其中,以该玻璃用组合物的总摩尔量为基准,MO代表玻璃用组合物中除了SiO 2、Al 2O 3、B 2O 3之外所有组分摩尔百分比的总和。
优选地,所述RE为钇和镧系元素,所述R为Li、Na和K。
优选地,所述RE为Y、La、Nd和Lu中的一种或多种。
优选地,所述玻璃用组合物还含有澄清剂,以各组分的总摩尔数为基准,所述澄清剂的含量≤0.5mol%
第二方面,本发明提供了一种制备铝硅酸盐玻璃的方法,该方法包括将本发明所述的玻璃用组合物依次进行熔融处理、成型处理、退火处理和机械加工处理。
优选地,所述方法还包括在所述玻璃用组合物中添加氟化物和/或氯化物。
优选地,以所述混合料的总重为基准,所述氟化物的添加量为0.02-0.7wt%。
优选地,以所述混合料的总重为基准,所述氯化物的添加量为0.02-0.7wt%。
第三方面,本发明提供了上述方法制备得到的铝硅酸盐玻璃。
优选地,所述铝硅酸盐玻璃在1600℃时玻璃熔体的电阻率≤100Ω·cm。
优选地,1600℃时玻璃熔体的粘度≤300泊。
优选地,玻璃熔体的液相线粘度η L≥20000泊。
优选地,玻璃熔体的粘度为200泊时对应的温度T 200≤1630℃。
优选地,粘度为35000泊时对应的温度T 35000≤1240℃。
优选地,粘度为10 13泊时对应的退火点≥770℃。
优选地,粘度10 4.5泊时对应的温度≤1250℃;液相线温度T L≤1250℃;粘度10 4.5泊时对应的温度与液相线温度T L的差值≥-20℃。
优选地,所述铝硅酸盐玻璃中以单质硫S形式表征的硫元素含量≤500ppm。
优选地,所述铝硅酸盐玻璃中羟基含量≤0.3/mm。
优选地,所述铝硅酸盐玻璃的密度<2.7g/cm 3;50-350℃范围内的热膨胀系数<40×10 -7/℃;杨氏模量≥83GPa;比模数≥32GPa/(g×cm -3)。
优选地,波长为308nm处的透过率≥73%;波长为550nm处的透过率≥92%。
优选地,在600℃/30min条件下的热收缩<20ppm。
第四方面,本发明提供了本发明所述的玻璃用组合物或铝硅酸盐玻璃在制备显示器件和/或太阳能电池中的应用。
本发明的铝硅酸盐玻璃,热稳定性高、紫外透过率高和机械稳定性优异,可用于制备显示器件和/或太阳能电池,尤其适用于制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的载板玻璃材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗和智能卡票以及用于其他需要高热稳定性、高紫外透过率和机械稳定性玻璃材料的应用领域。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
第一方面,本发明提供了一种玻璃用组合物,以该玻璃用组合物的总摩尔量为基准,以氧化物计,该玻璃用组合物含有62-69mol%的SiO 2、11-15mol%的Al 2O 3、0-3mol%的B 2O 3、7-11mol%的MgO、2-8mol%的CaO、 3-8mol%的SrO、0-2mol%的BaO、0.01-2mol%的ZnO、0.02-0.65mol%的RE 2O 3和小于0.05mol%的R 2O,其中RE为稀土元素,R为碱金属。
在本发明的优选实施方式中,以该玻璃用组合物的总摩尔量为基准,以氧化物计,该玻璃用组合物含有65-68mol%的SiO 2、11.5-14.5mol%的Al 2O 3、0-1.5mol%的B 2O 3、7.5-9mol%的MgO、3-6mol%的CaO、4.5-6mol%的SrO、0.1-0.9mol%的BaO、0.05-1.9mol%的ZnO、0.1-0.46mol%的RE 2O 3和小于0.05mol%的R 2O。
在本发明的玻璃用组合物中,SiO 2是玻璃形成体,若含量过低,不利于热稳定性的增强,会使膨胀系数过高,玻璃容易失透;提高SiO 2含量有助于玻璃轻量化,热膨胀系数减小,应变点增高,耐化学性增高,但高温粘度升高,这样又不利于熔解,一般的窑炉难以满足其熔解需求。因此,综合考虑,以该玻璃用组合物的总摩尔量为基准,以氧化物计,所述SiO 2的含量为62-69mol%,优选为65-68mol%,具体地,例如可以为62mol%、62.2mol%、62.95mol%、63.8mol%、64.6mol%、64.9mol%、65mol%、65.4mol%、65.7mol%、66mol%、66.8mol%、66.9mol%、67.08mol%、67.9mol%、67.95mol%、68mol%、68.5mol%、68.9mol%、69mol%以及这些数值中的任意两个数值所构成的范围中的任意数值。
在本发明的玻璃用组合物中,Al 2O 3用于提高玻璃结构的强度,若含量低于11mol%,玻璃容易失透,也容易受到外界水气及化学试剂的侵蚀。高含量的A1 2O 3有助于玻璃应变点、抗弯强度的增高,但过高玻璃容易出现析晶现象。因此,综合考虑,以该玻璃用组合物的总摩尔量为基准,以氧化物计,所述Al 2O 3的含量为11-15mol%,优选为11.5-14.5mol%,具体地,例如可以为11mol%、11.5mol%、11.6mol%、11.9mol%、12mol%、12.2mol%、12.6mol%、12.69mol%、13.1mol%、13.2mol%、13.4mol%、13.5mol%、13.8mol%、14.4mol%、14.5mol%、14.7mol%、14.9mol%、15mol%以及这些数值中的任意两个所构成的范围中的任意数值。
在本发明的玻璃用组合物中,B 2O 3能单独生成玻璃,是一种很好的助熔剂,高温熔化条件下B 2O 3难于形成[BO 4],可降低高温粘度,低温时B有夺取游离氧形成[BO 4]的趋势,使结构趋于紧密,提高玻璃的低温粘度,防止析晶现象的发生。但是过多的B 2O 3会使玻璃应变点大幅降低。因此,综合考虑,以该玻璃用组合物的总摩尔量为基准,以氧化物计,所述B 2O 3 的含量为0-3mol%,优选为0-1.5mol%,更优选为0,具体地,例如可以为0、0.1mol%、0.36mol%、0.71mol%、0.9mol%、1.3mol%、1.5mol%、1.7mol%、1.8mol%、2mol%、2.1mol%、2.37mol%、2.8mol%、3mol%以及任意两个相邻质量百分含量之间的任意质量百分含量。
在本发明的玻璃用组合物中,MgO具有大幅提升玻璃杨氏模量和比模数,降低高温粘度,使玻璃易于熔化的特点。当玻璃中碱土金属含量较少时,引入电场强度较大的网络外离子Mg 2+,容易在结构中产生局部积聚作用,使短程有序范围增加。在这种情况下引入较多的中间体氧化物Al 2O 3,以[AlO 4]状态存在时,由于这些多面体带有负电,吸引了部分网络外阳离子,使玻璃的积聚程度、析晶能力下降;当碱土金属含量较多、网络断裂比较严重的情况下,引入MgO,可使断裂的硅氧四面体重新连接而使玻璃析晶能力下降。因此在添加MgO时要注意与其他组分的配合比例。相对于其他碱土金属氧化物,MgO的存在会带来较低的膨胀系数和密度,较高的耐化学性能、应变点和弹性模量。如果MgO大于11mol%,玻璃耐化性会变差,同时玻璃容易失透。因此,综合考虑,以该玻璃用组合物的总摩尔量为基准,以氧化物计,所述MgO的含量为7-11mol%,优选为7.5-9mol%,具体地,例如可以为7mol%、7.1mol%、7.5mol%、7.6mol%、7.8mol%、7.9mol%、8mol%、8.1mol%、8.2mol%、8.5mol%、8.9mol%、9mol%、9.1mol%、9.8mol%、10.2mol%、10.4mol%、11mol%以及这些数值中的任意两个数值所构成的范围中的任意数值。
在本发明的玻璃用组合物中,CaO用以促进玻璃的熔解和调整玻璃成型性。如果氧化钙含量少于2mol%,不易降低玻璃的粘度,含量过多,玻璃则会容易出现析晶,热膨胀系数也会大幅变大,脆性增大,对后续制程不利。因此,综合考虑,以该玻璃用组合物的总摩尔量为基准,以氧化物计,所述CaO的含量为2-8mol%,优选为3-6mol%,具体地,例如可以为2mol%、2.7mol%、3mol%、3.3mol%、3.9mol%、4mol%、4.1mol%、4.4mol%、4.65mol%、4.9mol%、5mol%、5.7mol%、6mol%、6.6mol%、7mol%、7.4mol%、7.95mol%、8mol%以及这些数值中的任意两个数值所构成的范围中的任意数值。
在本发明的玻璃用组合物中,SrO可作为助熔剂和防止玻璃出现析晶的成分,如果含量过多,玻璃密度会太高,导致产品的比模量下降。Sr 2+为离 子半径较大的二价金属离子,有较高的配位数,在无碱玻璃中往往填充于四面体网络骨架的间隙中,具有提高化学稳定性和机械稳定性的特点,但是其含量过多会使密度增加,裂纹、失透、分相的发生率提高。因此,综合考虑,以该玻璃用组合物的总摩尔量为基准,以氧化物计,所述SrO的含量为3-8mol%,优选为4.5-6mol%,具体地,例如可以为3mol%、3.6mol%、4.04mol%、4.2mol%、4.5mol%、4.6mol%、4.7mol%、4.85mol%、4.9mol%、5mol%、5.2mol%、5.3mol%、5.6mol%、5.85mol%、6mol%、6.1mol%、6.9mol%、7.63mol%、8mol%以及这些数值中的任意两个数值所构成的范围中的任意数值。
在本发明的玻璃用组合物中,BaO作为助熔剂和防止玻璃出现析晶的成分,如果含量过多,玻璃高温体积电阻率会升高,密度过高,产品的比模量下降。因此,综合考虑,以该玻璃用组合物的总摩尔量为基准,以氧化物计,所述BaO的含量为0-2mol%,优选为0.1-0.9mol%,具体地,例如可以为0、0.08mol%、0.1mol%、0.11mol%、0.2mol%、0.27mol%、0.36mol%、0.4mol%、0.5mol%、0.85mol%、0.9mol%、1.02mol%、1.33mol%、1.7mol%、2mol%以及这些数值中的任意两个数值所构成的范围中的任意数值。
在本发明的玻璃用组合物中,二价金属氧化物根据它在元素周期表中地位与对性质影响不同,可以分为两类:一类是位于主族的碱土金属氧化物,其离子R 2+具有8个外电子结构;第二类位于周期表副族(如ZnO、CdO等),其离子R 2+具有18个外层电子结构,在玻璃中两者的结构状态与对玻璃性质影响是不同的。ZnO可以降低玻璃高温粘度(如1500℃),有利于消除气泡;同时在软化点以下有提升强度、硬度、增加玻璃的耐化学性,降低玻璃热膨胀系数的作用。在无碱玻璃或低碱玻璃体系中,添加适量ZnO有助于抑制析晶,可以降低析晶温度。在理论上,ZnO在无碱玻璃或低碱玻璃中,作为网络外体引入玻璃后,高温下一般以[ZnO 4]的形式存在,较[ZnO 6]玻璃结构更加疏松,与不含ZnO的玻璃处于相同的高温状态下比较,含ZnO的玻璃粘度更小,原子运动速度更大,无法形成晶核,需要进一步降低温度,才有利于晶核的形成,因而,降低了玻璃的析晶上限温度。ZnO含量过多则会使玻璃的应变点大幅度降低。因此,综合考虑,以该玻璃用组合物的总摩尔量为基准,以氧化物计,所述ZnO的含量为0.01-2mol%,优选为0.05-1.9mol%,具体地,例如可以为0.01mol%、0.02mol%、0.05mol%、 0.1mol%、0.13mol%、0.4mol%、0.5mol%、0.79mol%、0.9mol%、0.99mol%、1mol%、1.43mol%、1.49mol%、1.2mol%、1.27mol%、1.43mol%、1.48mol%、1.5mol%、1.6mol%、1.9mol%、2mol%以及这些数值中的任意两个所构成的范围中的任意数值。
在本发明的玻璃用组合物中,稀土氧化物RE 2O 3在提高玻璃的某些性能方面具有独特的能力,例如玻璃的抗弯强度、弹性模量、应变点等性能随稀土氧化物的加入而大幅上升,促使玻璃脆性降低,断裂韧性大幅增加,并且能够降低玻璃的高温粘度和高温体积电阻率,为玻璃大型工业制造,特别是电熔和/或电助熔方式熔融玻璃带来巨大便利。碱土金属、ZnO等网络外体引入玻璃组成后,过剩的氧原子使得玻璃结构中的桥氧键断裂生成非桥氧,这些非桥氧的存在显著降低了玻璃的抗弯强度。RE 2O 3的加入促使玻璃的内部结构发生变化,所生成的Si-O-RE化学键将玻璃中孤立岛状网络单元重新连接,可以改善玻璃的网络结构,从而可以大幅提高玻璃的抗弯强度、弹性模量、应变点、化学稳定性以及降低高温体积电阻率等性能。但是进一步增加RE 2O 3时,由于可供调整的非桥氧数量减少,过量的RE 2O 3对玻璃的上述性能影响不大。因此,从吸收光谱等其他性能综合考虑,以该玻璃用组合物的总摩尔量为基准,以氧化物计,所述RE 2O 3的含量为0.02-0.65mol%,优选为0.1-0.46mol%,所述RE为钇和镧系元素。在本发明的具体实施方式中,优选地,所述RE为Lu或Lu与Y、La和Nd中的至少一种,且Lu的含量≥0.05mol%。具体地,RE 2O 3例如可以为0.02mol%、0.05mol%、0.1mol%、0.12mol%、0.19mol%、0.20mol%、0.23mol%、0.24mol%、0.3mol%、0.39mol%、0.4mol%、0.46mol%、0.59mol%、0.65mol%以及这些数值中的任意两个所构成的范围中的任意数值。
在本发明的玻璃用组合物中,不可避免的通过原材料固有杂质、生产过程接触等途径引入的少量铁氧化物会导致玻璃在紫外光谱区(例如,308nm波长处)的透过率下降,从而对柔性OLED面板制程中的激光剥离技术(LLO)产生不良影响,因此,降低各类原材料中铁氧化物的引入有利于提高紫外透过率,但过分降低又会导致原材料成本大幅上升,而当在玻璃制造过程中引入一定量的氟化物(例如氟化钙)后,其作为高温助溶剂,能够有效降低玻璃熔体粘度、高温表面张力和高温体积电阻率,与硫酸盐组合使用具有一定的澄清效果;另一方面,氟的加入可以在不刻意降 低铁氧化物含量的条件下提高玻璃在308nm处的透过率改善含铁玻璃在紫外区308nm处的透过率,但含量过多容易导致玻璃分相或析出,造成乳浊或析晶。因此,综合考虑,以该玻璃用组合物的总摩尔量为基准,以Fe 2O 3形式表征,所述Fe 2O 3的含量≤150ppm,优选为≤100ppm,进一步优选为≤80ppm,更优选为≤50ppm。以该玻璃用组合物的总摩尔量为基准,以单质卤素形式表征,所述卤素的含量为0.01-0.6mol%,其中,所述卤素为F和Cl,优选为0.1-0.55mol%。具体地,例如可以为0.01mol%、0.02mol%、0.06mol%、0.09mol%、0.1mol%、0.15mol%、0.21mol%、0.3mol%、0.36mol%、0.44mol%、0.42mol%、0.48mol%、0.52mol%、0.55mol%、0.6mol%以及这些数值中的任意两个所构成的范围中的任意数值。
在本发明的玻璃用组合物中,不可避免的通过原材料固有杂质等途径会引入少量的碱金属氧化物,这对高温面板制程有不良影响,故应严格控制含碱量。以该玻璃用组合物的总摩尔量为基准,以氧化物计,碱金属氧化物R 2O<0.05mol%,其中,R 2O为Li 2O、Na 2O、K 2O含量的总和。
在本发明的具体实施方式中,可以添加一定量的硫酸盐,例如硫酸钙、硫酸锶等无机硫酸盐作为消除气态夹杂物的组分。但从紫外区光谱吸收等角度综合考虑,为了得到紫外区高透过率,优选玻璃中以单质硫S形式表征的残留硫元素含量≤500ppm,进一步优选≤100ppm。
优选情况下,以摩尔百分比计,所述玻璃用组合物中各组分的含量满足0<Z≤1,优选为0.5-0.9,进一步优选为0.55-0.85,更优选为0.6-0.8,其中,Z由下式计算得出:
Z=-10.31+(16.04×SiO 2+6×Al 2O 3+3.29×B 2O 3-5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO);其中,SiO 2、Al 2O 3、MgO、CaO、SrO、BaO、ZnO各自代表该组分占所述玻璃用组合物中的摩尔百分比。
优选情况下,以摩尔百分比计,所述玻璃用组合物中各组分的含量满足0.1<Y≤0.67,优选为0.33-0.37,其中,Y值由下式计算得出:
Y=-10.31+(16.04×SiO 2+6×Al 2O 3+3.29×B 2O 3-5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE 2O 3);其中,SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、BaO、ZnO、RE 2O 3各自代表该组分占所述玻璃用组合物中的摩尔百分比。
优选情况下,以摩尔百分比计,所述玻璃用组合物中各组分的含量满 足R=0.05-0.48,优选为0.23-0.48,其中,R值由下式计算得出:
R=-10.31+(16.04×SiO 2+6×Al 2O 3+3.29×B 2O 3-5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE 2O 3-39.6×(F+Cl));其中,SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、BaO、ZnO、RE 2O 3、F、Cl各自代表该组分占所述玻璃用组合物中的摩尔百分比。
优选情况下,以摩尔百分比计,(MgO+ZnO+SrO)/(MgO+CaO+SrO+BaO+ZnO)≥0.5。
优选情况下,以摩尔百分比计,(MgO+SrO)/(1-MO)≥0.6,其中,以该玻璃用组合物的总摩尔量为基准,MO代表玻璃用组合物中除了SiO 2、Al 2O 3、B 2O 3之外所有组分摩尔百分比的总和。
在本发明的玻璃用组合物中,所述玻璃用组合物还含有澄清剂,以各组分的总摩尔数为基准,所述澄清剂的含量≤0.5mol%,所述化学澄清剂优选为硫酸锶、硫酸钙、硝酸锶、氧化亚锡中的至少一种。
第二方面,本发明提供了一种制备铝硅酸盐玻璃的方法,该方法包括将本发明所述的玻璃用组合物依次进行熔融处理、成型处理、退火处理和机械加工处理。
本发明的方法中,优选情况下,所述方法还包括在所述玻璃用组合物中添加氟化物和/或氯化物;进一步优选地,以所述混合料的总重为基准,所述氟化物的添加量为0.02-0.7wt%;更进一步优选地,以所述混合料的总重为基准,所述氯化物的添加量为0.02-0.7wt%。在本发明的具体实施方式中选用氟化钙和氯化锶的混合物,以所述混合料的总重为基准,所述氟化钙和氯化锶的混合物的含量为0.05-1wt%,其中氟化钙和氯化锶的重量比为1:1-5。其中氟化物例如氟化钙为高温助熔剂,有降低玻璃熔体粘度、高温表面张力和高温体积电阻率的作用,与硫酸盐组合使用具有一定的澄清效果;另一方面,氟可以改善含铁玻璃的透过率;氯化物,例如氯化锶为高温助熔剂,有降低玻璃熔体高温表面张力和高温体积电阻率的作用,与硫酸盐组合使用具有一定的澄清效果;另一方面,氯化物可以和玻璃中的羟基OH基团发生反应,降低玻璃羟基含量,增强玻璃网络结构,从而达到提升玻璃热稳定性的效果。然而,过多含量的氟化物和/或氯化物容易在玻璃中分相或析出,造成乳浊或析晶。
本发明的方法中,优选情况下,所述混合料通过连续熔融池窑进行高 温熔解;进一步优选地,使用电加热和/或燃气加热方式对混合料进行高温熔解;更进一步优选地,电加热提供能量比例占熔融玻璃全部能量比例的60%以上;所述电加热是指通过多组成对的电极直接向混合料和玻璃液加热,促使完成硅酸盐反应、玻璃形成、澄清均化等过程,所述电极可以为氧化锡电极、氧化钼电极和/或铂金电极等。
本发明的方法中,对于玻璃用组合物的具体限定请参见前述相应内容描述,在此不再赘述。
本发明的方法中,优选情况下,熔融处理的条件包括:温度低于1700℃,时间大于1h。本领域技术人员可以根据实际情况确定具体的熔融温度和熔融时间,此为本领域技术人员所熟知,在此不再赘述。
本发明的方法中,优选情况下,退火处理的条件包括:温度高于780℃,时间大于0.1h。本领域技术人员可以根据实际情况确定具体的退火温度和退火时间,此为本领域技术人员所熟知,在此不再赘述。
本发明的方法中,对于机械加工处理没有特别的限定,可以为本领域常见的各种机械加工方式,例如可以为将退火处理得到的产物进行切割、研磨、抛光等。
优选地,该方法还包括:对机械加工处理得到的产物进行二次熔融拉薄处理。
优选地,控制所述机械加工处理或者二次熔融拉薄处理的条件以制备厚度小于0.1mm的玻璃。
第三方面,本发明提供了上述方法制备得到的铝硅酸盐玻璃。
本发明的铝硅酸盐玻璃,1600℃时玻璃熔体的电阻率≤100Ω·cm,优选为≤90Ω·cm,进一步优选为≤80Ω·cm。
本发明的铝硅酸盐玻璃,1600℃时玻璃熔体的粘度≤300泊,优选≤250泊,进一步优选≤230泊。
本发明的铝硅酸盐玻璃,玻璃熔体的液相线粘度η L≥20000泊,优选η L≥60000泊。
本发明的铝硅酸盐玻璃,粘度为200泊时对应的温度T 200≤1630℃,优选T 200≤1620℃。
本发明的铝硅酸盐玻璃,粘度为35000泊时对应的温度T 35000≤1240℃,优选≤1230℃。
本发明的铝硅酸盐玻璃,粘度为10 13泊时对应的退火点≥770℃,优选≥780℃,进一步优选≥790℃。
本发明的铝硅酸盐玻璃,粘度10 4.5泊时对应的温度≤1250℃,优选≤1240℃,进一步优选≤1230℃;液相线温度T L≤1250℃,优选T L≤1240℃,进一步优选T L≤1200℃;粘度10 4.5泊时对应的温度与液相线温度T L的差值≥-20℃,优选差值≥0℃。
在本发明的具体实施方式中可以添加一定量的硫酸盐,例如硫酸钙、硫酸锶等无机硫酸盐作为消除气态夹杂物的组分。但从紫外区光谱吸收等角度综合考虑,为了得到紫外区高透过率,优选玻璃中以单质硫S形式表征的残留硫元素含量≤500ppm,优选≤100ppm。
本发明的铝硅酸盐玻璃中羟基含量≤0.3/mm,优选≤0.26/mm。
优选情况下,本发明的铝硅酸盐玻璃的密度<2.7g/cm 3,优选<2.65g/cm 3;50-350℃范围内的热膨胀系数<40×10 -7/℃,优选<39×10 -7/℃;杨氏模量≥83GPa,优选≥83.5GPa;比模数≥32GPa/(g×cm -3),优选≥33GPa/(g×cm -3)。
本发明的铝硅酸盐玻璃,在波长为308nm处的透过率≥73%,优选≥74%;在波长为550nm处的透过率优选≥92%。
本发明的铝硅酸盐玻璃,在600℃/30min条件下的热收缩<20ppm,优选<16ppm。
第四方面,提供了本发明所述的玻璃用组合物或铝硅酸盐玻璃在制备显示器件和/或太阳能电池中的应用。
本发明的铝硅酸盐玻璃,具有热稳定性高、紫外透过率高和机械稳定性高等优点。可用于制备显示器件和/或太阳能电池,尤其适用于制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的载板玻璃材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗和智能卡票以及用于其他需要高热稳定性、高紫外透过率和机械稳定性玻璃材料的应用领域。
实施例
以下将通过实施例对本发明进行详细描述。以下实施例中,如无特别说明,所用的各材料均可通过商购获得,如无特别说明,所用的方法为本 领域的常规方法。
参照ASTM C-693测定玻璃密度,单位为g/cm 3
参照ASTM E-228使用卧式膨胀仪测定50-350℃范围内的玻璃热膨胀系数,单位为10 -7/℃。
参照ASTM C-623测定玻璃杨氏模量,单位为GPa。
参照ASTM C-965使用旋转高温粘度计测定玻璃高温粘温曲线,其中,1600℃对应的粘度即为η 1600,单位为P;粘度为X泊对应的温度T X,单位为℃。
参照ASTM C-829使用梯温炉法测定玻璃液相线温度T L,单位为℃。
参照ASTM C-336使用退火点应变点测试仪测定玻璃退火点T a和应变点T st,单位为℃。
使用岛津UV-2600型紫外可见分光光度计紫外-可见分光光度计测定玻璃透过率,玻璃样品厚度为0.5mm,分别取308nm、550nm处透过率,单位为%。
使用热电iCAP 6300MFC型电感耦合等离子体发射光谱仪(ICP)测试玻璃中的铁含量(以Fe 2O 3形式表征)和氟、氯含量,单位为mol%或ppm;
使用CS-9900型红外碳硫分析仪测试玻璃中的硫含量,以S形式表征,单位为ppm;
参照专利申请CN201710796764.X中公开的玻璃熔体高温电阻率的测试方法测定玻璃1600℃时熔体的电阻率,单位为Ω·cm;
采用如下热处理的方法(差值计算法)测定经过热处理后的热收缩率:将玻璃从25℃(测定初始长度,标记为L 0)以5℃/min的升温速率升温至600℃并在600℃保温30min,然后以5℃/min的降温速率降温至25℃,玻璃长度发生一定量的收缩,再次测量其长度,标记为L t,则热收缩率Y t表示为:
Figure PCTCN2019111443-appb-000001
采用如下方法测定玻璃中羟基OH含量:使用PE公司SPECTRUM TWO型傅里叶红外光谱仪测试波数范围400-4000cm -1区间的透过率,采用下式计算得到玻璃羟基含量β-OH,单位为/mm:
β-OH=(1/D)*log 10(T 1/T 2)
其中:
D:玻璃厚度(mm);
T 1:在参照波长3846cm -1(2600nm)的透过率(%);
T 2:在羟基吸收波长3600cm -1(2800nm)附近的最小透过率(%)。
实施例1-8
按照表1所示称量各组分,混匀,将混合料倒入高锆砖坩埚(ZrO 2>85wt%)中,然后在1630℃电阻炉中加热24小时,并使用铂铑合金(80wt%Pt+20wt%Rh)搅拌器匀速缓慢搅拌。将熔制好的玻璃液浇注入不锈钢模具内,成形为规定的块状玻璃制品,然后将玻璃制品在退火炉中退火2小时,关闭电源随炉冷却到25℃。将玻璃制品进行切割、研磨、抛光,然后用去离子水清洗干净并烘干,制得厚度为0.5mm的玻璃成品。分别对各玻璃成品的各种性能进行测定,结果见表1。
实施例9-15
按照实施例1的方法,不同的是,混合料成分(对应玻璃组成)和得到的产品的性能测定结果见表2。
对比例1-11
按照实施例1的方法,不同的是,混合料成分(对应玻璃组成)和得到的产品的性能测定结果见表3-4。
将表1-2中的实施例与表3-4中的对比例数据比较可知,本发明方法对于获得高紫外透过率、高应变点(高耐热性)、高温体积电阻率较低的问题有明显效果,通过本发明提供的组成、限定配比、限定的Z/Y/R数值范围及制造方法得到的铝硅酸盐玻璃具有较高的耐热稳定性、具有较低的高温体积电阻率、具有较高的紫外可见光谱透过率、具有较高的杨氏模量、具有较低的熔化温度和液相线温度,具有较低的表面张力,适合大型工业化制造,适合以部分或全部能量来源为电加热的方式制得熔融玻璃液,适合在制备显示器件和/或太阳能电池中的应用。尤其适用于制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的载板玻璃材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗和智能卡票以及用于其他需要高热稳定性、高紫外透过率和机械稳定性玻璃材料的应用领域。
表1
Figure PCTCN2019111443-appb-000002
表2
Figure PCTCN2019111443-appb-000003
表3
Figure PCTCN2019111443-appb-000004
表4
Figure PCTCN2019111443-appb-000005
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (15)

  1. 一种玻璃用组合物,其特征在于,以该玻璃用组合物的总摩尔量为基准,以氧化物计,该玻璃用组合物含有62-69mol%的SiO 2、11-15mol%的Al 2O 3、0-3mol%的B 2O 3、7-11mol%的MgO、2-8mol%的CaO、3-8mol%的SrO、0-2mol%的BaO、0.01-2mol%的ZnO、0.02-0.65mol%的RE 2O 3和小于0.05mol%的R 2O,其中RE为稀土元素,R为碱金属。
  2. 根据权利要求1所述的玻璃用组合物,其特征在于,以该玻璃用组合物的总摩尔量为基准,以氧化物计,该玻璃用组合物含有65-68mol%的SiO 2、11.5-14.5mol%的Al 2O 3、0-1.5mol%的B 2O 3、7.5-9mol%的MgO、3-6mol%的CaO、4.5-6mol%的SrO、0.1-0.9mol%的BaO、0.05-1.9mol%的ZnO、0.1-0.46mol%的RE 2O 3和小于0.05mol%的R 2O。
  3. 根据权利要求1或2所述的玻璃用组合物,其特征在于,以该玻璃用组合物的总摩尔量为基准,以Fe 2O 3形式表征,该玻璃用组合物含有小于等于150ppm的Fe 2O 3
  4. 根据权利要求1-3中任意一项所述的玻璃用组合物,其特征在于,以该玻璃用组合物的总摩尔量为基准,以单质卤素形式表征,该玻璃用组合物含有0.01-0.6mol%的卤素;
    其中,所述卤素为F和Cl。
  5. 根据权利要求1-4中任意一项所述的玻璃用组合物,其特征在于,以摩尔百分比计,所述玻璃用组合物中各组分的含量满足0<Z≤1,其中,Z由下式计算得出:
    Z=-10.31+(16.04×SiO 2+6×Al 2O 3+3.29×B 2O 3-5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO);其中,SiO 2、Al 2O 3、MgO、CaO、SrO、BaO、ZnO各自代表该组分占所述玻璃用组合物中的摩尔百分比。
  6. 根据权利要求1-4中任意一项所述的玻璃用组合物,其特征在于,以摩尔百分比计,所述玻璃用组合物中各组分的含量满足0.1<Y≤0.67, 其中,Y值由下式计算得出:
    Y=-10.31+(16.04×SiO 2+6×Al 2O 3+3.29×B 2O 3-5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE 2O 3);其中,SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、BaO、ZnO、RE 2O 3各自代表该组分占所述玻璃用组合物中的摩尔百分比。
  7. 根据权利要求1-4中任意一项所述的玻璃用组合物,其特征在于,以摩尔百分比计,所述玻璃用组合物中各组分的含量满足R=0.05-0.48,其中,R值由下式计算得出:
    R=-10.31+(16.04×SiO 2+6×Al 2O 3+3.29×B 2O 3-5.47×MgO-5.43×CaO+3.77×SrO+26.65×BaO-7.82×ZnO-102.7×RE 2O 3-39.6×(F+Cl));其中,SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、BaO、ZnO、RE 2O 3、F、Cl各自代表该组分占所述玻璃用组合物中的摩尔百分比。
  8. 根据权利要求1-4中任意一项所述的玻璃用组合物,其特征在于,以摩尔百分比计,(MgO+ZnO+SrO)/(MgO+CaO+SrO+BaO+ZnO)≥0.5;
    优选地,(MgO+SrO)/(1-MO)≥0.6;其中,以该玻璃用组合物的总摩尔量为基准,MO代表玻璃用组合物中除了SiO 2、Al 2O 3、B 2O 3之外所有组分摩尔百分比的总和。
  9. 根据权利要求1-8中任意一项所述的玻璃用组合物,其特征在于,所述RE为钇和镧系元素,所述R为Li、Na和K;
    所述RE为Y、La、Nd和Lu中的一种或多种。
  10. 一种制备铝硅酸盐玻璃的方法,其特征在于,该方法包括:
    该方法包括将权利要求1-9中任意一项所述的玻璃用组合物依次进行熔融处理、成型处理、退火处理和机械加工处理。
  11. 根据权利要求10所述的制备铝硅酸盐玻璃的方法,其特征在于,所述方法还包括在所述玻璃用组合物中添加氟化物和/或氯化物;
    优选地,以所述混合料的总重为基准,所述氟化物的添加量为0.02-0.7wt%;
    优选地,以所述混合料的总重为基准,所述氯化物的添加量为0.02-0.7wt%。
  12. 权利要求10或11所述的方法制备得到的铝硅酸盐玻璃。
  13. 根据权利要求12所述的铝硅酸盐玻璃,其特征在于,所述铝硅酸盐玻璃在1600℃时玻璃熔体的电阻率≤100Ω·cm;
    优选地,1600℃时玻璃熔体的粘度≤300泊;
    优选地,玻璃熔体的液相线粘度η L≥20000泊;
    优选地,玻璃熔体的粘度为200泊时对应的温度T 200≤1630℃;
    优选地,粘度为35000泊时对应的温度T 35000≤1240℃;
    优选地,粘度为10 13泊时对应的退火点≥770℃;
    优选地,粘度10 4.5泊时对应的温度≤1250℃;液相线温度T L≤1250℃;粘度10 4.5泊时对应的温度与液相线温度T L的差值≥-20℃;
    优选地,所述铝硅酸盐玻璃中以单质硫S形式表征的硫元素含量≤500ppm;
    优选地,所述铝硅酸盐玻璃中羟基含量≤0.3/mm。
  14. 根据权利要求12或13所述的铝硅酸盐玻璃,其特征在于,所述铝硅酸盐玻璃的密度<2.7g/cm 3;50-350℃范围内的热膨胀系数<40×10 -7/℃;杨氏模量≥83GPa;比模数≥32GPa/(g×cm -3);
    优选地,波长为308nm处的透过率≥73%;波长为550nm处的透过率≥92%;
    优选地,在600℃/30min条件下的热收缩<20ppm。
  15. 权利要求1-9中任意一项所述的玻璃用组合物或权利要求12-14中任意一项所述的铝硅酸盐玻璃在制备显示器件和/或太阳能电池中的应用。
PCT/CN2019/111443 2018-10-16 2019-10-16 玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 WO2020078375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811203506.7 2018-10-16
CN201811203506.7A CN109320070A (zh) 2018-10-16 2018-10-16 玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020078375A1 true WO2020078375A1 (zh) 2020-04-23

Family

ID=65262230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111443 WO2020078375A1 (zh) 2018-10-16 2019-10-16 玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN109320070A (zh)
TW (1) TWI738086B (zh)
WO (1) WO2020078375A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582539A (zh) * 2021-08-30 2021-11-02 郑州大学 一种铝硅酸盐玻璃和应用
US11773006B1 (en) 2022-11-10 2023-10-03 Corning Incorporated Glasses for high performance displays

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320070A (zh) * 2018-10-16 2019-02-12 东旭科技集团有限公司 玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
CN114772928A (zh) * 2022-04-13 2022-07-22 青岛融合装备科技有限公司 无碱铝硅酸盐基板玻璃及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074551A (ja) * 2014-10-03 2016-05-12 旭硝子株式会社 無アルカリガラスの製造方法
JP2016113363A (ja) * 2014-12-16 2016-06-23 日本電気硝子株式会社 珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料
CN107129142A (zh) * 2017-04-18 2017-09-05 东旭科技集团有限公司 无碱玻璃基板及其制备方法
CN107188406A (zh) * 2016-03-15 2017-09-22 旭硝子株式会社 无碱玻璃基板和无碱玻璃基板的制造方法
WO2018025883A1 (ja) * 2016-08-05 2018-02-08 旭硝子株式会社 ガラス基板、半導体装置および表示装置
WO2018084100A1 (ja) * 2016-11-02 2018-05-11 旭硝子株式会社 無アルカリガラスおよびその製造方法
CN109320070A (zh) * 2018-10-16 2019-02-12 东旭科技集团有限公司 玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489411B2 (ja) * 2014-03-19 2019-03-27 日本電気硝子株式会社 紫外線透過ガラス
CN105859128B (zh) * 2016-04-06 2018-11-27 芜湖东旭光电装备技术有限公司 一种玻璃用组合物、低表面张力无碱玻璃及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074551A (ja) * 2014-10-03 2016-05-12 旭硝子株式会社 無アルカリガラスの製造方法
JP2016113363A (ja) * 2014-12-16 2016-06-23 日本電気硝子株式会社 珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料
CN107188406A (zh) * 2016-03-15 2017-09-22 旭硝子株式会社 无碱玻璃基板和无碱玻璃基板的制造方法
WO2018025883A1 (ja) * 2016-08-05 2018-02-08 旭硝子株式会社 ガラス基板、半導体装置および表示装置
WO2018084100A1 (ja) * 2016-11-02 2018-05-11 旭硝子株式会社 無アルカリガラスおよびその製造方法
CN107129142A (zh) * 2017-04-18 2017-09-05 东旭科技集团有限公司 无碱玻璃基板及其制备方法
CN109320070A (zh) * 2018-10-16 2019-02-12 东旭科技集团有限公司 玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582539A (zh) * 2021-08-30 2021-11-02 郑州大学 一种铝硅酸盐玻璃和应用
US11773006B1 (en) 2022-11-10 2023-10-03 Corning Incorporated Glasses for high performance displays

Also Published As

Publication number Publication date
TWI738086B (zh) 2021-09-01
TW202017881A (zh) 2020-05-16
CN109320070A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
TWI738086B (zh) 玻璃用組合物、鋁矽酸鹽玻璃及其製備方法和應用
TWI712572B (zh) 鋁矽酸鹽玻璃組合物、鋁矽酸鹽玻璃及其製備方法和應用
TWI712570B (zh) 無鹼鋁矽酸鹽玻璃及其製備方法和應用
KR102282396B1 (ko) 유리용 조성물, 알칼리 토류 알루미늄 규산염 유리 및 그 제조 방법과 적용
TW201305083A (zh) 平面顯示器用玻璃基板及其製造方法
TW202235393A (zh) 玻璃
CN109843817B (zh) 玻璃
CN111018345A (zh) 一种oled面板用铝硅酸盐玻璃用组合物、及铝硅酸盐玻璃及其制备方法
JPWO2019177070A1 (ja) ガラス
CN110330226B (zh) 无碱铝硼硅酸盐玻璃及其制备方法和应用
CN109020195B (zh) 铝硅酸盐玻璃及其制备方法和应用
CN114772928A (zh) 无碱铝硅酸盐基板玻璃及其制备方法和应用
WO2014208521A1 (ja) 無アルカリガラス
TW202330418A (zh) 玻璃
WO2014208523A1 (ja) 無アルカリガラス
CN117923790A (zh) 一种不含硼低热收缩率基板玻璃
CN117550799A (zh) 一种玻璃用组合物、无碱铝硅酸盐玻璃及其制备方法和应用
WO2014208524A1 (ja) 無アルカリガラス
CN117326800A (zh) 一种玻璃用组合物、无碱玻璃及其制备方法和应用
TW202229191A (zh) 玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.08.21)

122 Ep: pct application non-entry in european phase

Ref document number: 19873105

Country of ref document: EP

Kind code of ref document: A1