WO2020078109A1 - 识别电网薄弱断面的方法、装置及存储介质 - Google Patents

识别电网薄弱断面的方法、装置及存储介质 Download PDF

Info

Publication number
WO2020078109A1
WO2020078109A1 PCT/CN2019/103006 CN2019103006W WO2020078109A1 WO 2020078109 A1 WO2020078109 A1 WO 2020078109A1 CN 2019103006 W CN2019103006 W CN 2019103006W WO 2020078109 A1 WO2020078109 A1 WO 2020078109A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission section
branch
multiple faults
stability limit
active power
Prior art date
Application number
PCT/CN2019/103006
Other languages
English (en)
French (fr)
Inventor
吕颖
侯金秀
王轶禹
田芳
冯长有
于之虹
姚伟锋
谢昶
史东宇
鲁广明
戴红阳
康建东
解梅
高波
Original Assignee
中国电力科学研究院有限公司
国家电网有限公司
国网山东省电力公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司, 国家电网有限公司, 国网山东省电力公司电力科学研究院 filed Critical 中国电力科学研究院有限公司
Publication of WO2020078109A1 publication Critical patent/WO2020078109A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Definitions

  • the present disclosure relates to a power system, for example, to a method, device, and storage medium for identifying a weak cross section of a power grid.
  • this application provides a method for identifying a weak cross section of a power grid, including:
  • the type of the multiple faults is determined according to at least one of the DC line and the AC line in which multiple fault lines occur in the power grid, wherein the multiple fault types include multiple DC faults, multiple AC faults, or AC / DC hybrid malfunction;
  • the static stability limit influence factor and the thermal stability limit influence factor determine that the transmission section is in the Stability limit after multiple faults
  • the active power sum of the transmission section after the multiple faults and the stability limit after the multiple faults calculate the load rate of the transmission section after the multiple faults, and make the load rate greater than the first
  • a transmission section with a set value is used as the weak section of the power grid after the multiple faults.
  • this application provides a device for identifying a weak cross section of a power grid, including:
  • the fault classification unit is configured to determine the type of the multiple faults according to at least one of the DC line and the AC line in which multiple faults occur in the power grid, wherein the multiple fault types include multiple DC faults and multiple faults AC fault or AC / DC mixed fault;
  • a factor unit configured to determine the transient stability limit influence factor, static stability limit influence factor and thermal stability limit influence factor of the multiple faults on the transmission section;
  • a stability limit unit configured to determine the power transmission based on the stability limit of the transmission section before the multiple faults and the determined transient stability limit influence factor, the static stability limit influence factor and the thermal stability limit influence factor The stability limit of the cross section after the multiple faults;
  • the power unit is configured to calculate the active power sum of the transmission section after the multiple faults according to the type of the multiple faults;
  • the section recognition unit is configured to calculate the load rate of the transmission section after multiple failures based on the active power sum of the transmission section after the multiple failures and the stability limit after the multiple failures
  • the transmission section with the load ratio greater than the first set value is used as the weak section of the power grid after the multiple faults.
  • the present application provides an apparatus for identifying a weak cross section of a power grid, including a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being used by the processor
  • the method for identifying the weak cross section of the power grid as described in the first aspect is implemented during execution.
  • the present application provides a storage medium that stores an information processing program, and when the information processing program is executed by a processor, a method for identifying a weak power grid section as described in the first aspect described above is implemented.
  • FIG. 1 is a flowchart of a method for identifying a weak cross section of a power grid according to an embodiment of the present application
  • FIG. 2 is a flowchart of a method for identifying a weak cross section of a power grid according to another embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an apparatus for identifying a weak cross section of a power grid according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of an apparatus for identifying a weak cross section of a power grid according to another embodiment of the present application.
  • FIG. 1 is a flowchart of a method for identifying a weak cross section of a power grid according to an embodiment of the present application. As shown in FIG. 1, the method for identifying a weak section of a power grid according to this embodiment includes the following steps.
  • Step 101 Determine the type of the multiple faults according to at least one of the DC line and the AC line in which multiple faults occur in the power grid, where the multiple fault types include multiple DC faults, multiple AC faults, or Mixed AC and DC faults.
  • Step 102 Determine the transient stability limit influence factor, static stability limit influence factor and thermal stability limit influence factor of the multiple faults on the transmission section.
  • Step 103 Determine the power transmission cross-section according to the stability limit of the power transmission cross-section before the multiple faults and the determined transient stability limit influence factor, the static stability limit influence factor and the thermal stability limit influence factor The stability limit after the multiple failures.
  • Step 104 Calculate the active power sum of the transmission section after the multiple faults according to the type of the multiple faults.
  • Step 105 Based on the active power sum of the transmission section after the multiple faults and the stability limit after the multiple faults, calculate the load rate of the transmission section after the multiple faults, and convert the load The transmission section with a rate greater than the first set value is used as the weak section of the grid after the multiple faults.
  • a method for identifying weak cross sections of a power grid is provided.
  • multiple faults are divided into multiple DC faults, multiple AC faults, and AC / DC hybrid faults from the perspective of impact on the power grid.
  • the quantitative indicators of the impact of multiple fault topology changes on the stability limit of the power transmission section of the power grid, namely the transient stability limit influence factor, static stability limit influence factor and thermal stability limit influence factor, by determining the active power sum of the grid transmission section after multiple faults, As well as the stability limit of the transmission section of the grid after multiple faults, calculate the load rate of the transmission section and identify the weak section of the grid.
  • the method for identifying the weak section of the power grid described in this application includes:
  • FIG. 2 is a flowchart of a method for identifying a weak cross section of a power grid according to another embodiment of the present application. As shown in FIG. 2, the method for identifying a weak cross section of a power grid according to this embodiment includes the following steps.
  • Step 201 Determine the type of the multiple faults according to at least one of the DC line and the AC line where the multiple faults occur in the power grid, where the multiple fault types include multiple DC faults, multiple AC faults, or Mixed AC and DC faults.
  • Step 202 According to the results of the transient stability time-domain simulation, determine the set of dangerous unit pairs composed of unit pairs whose power angle difference is greater than the second set value in the transmission section, and calculate the equivalent of each dangerous unit pair before the multiple faults The rate of change between the value impedance and the equivalent impedance after the multiple faults, and the influence factor of the transient stability limit of the power transmission section determined by the multiple faults is determined according to the rate of change.
  • Step 203 Determine the rate of change between the equivalent impedance between the first-end equivalent unit and the end-equivalent unit of the transmission section before the multiple faults and the equivalent impedance after the multiple faults Factors affecting the static stability limit of the transmission section by the multiple faults.
  • Step 204 according to the branching distribution factor of the transmission section and the original active power of each normal branch before the fault branch is broken, determine the normal branch of each normal branch after the fault branch is broken Active power, and determine the change rate based on the rate of change between the original active power of each normal branch before the fault branch is broken and the active power of each normal branch after the fault branch is broken Factors influencing the thermal stability limit of the transmission section by the multiple faults, wherein the sum of the active power of each normal branch in the transmission section after the fault branch is broken is when an AC line fault occurs in the power grid AC active power of the transmission section.
  • Step 205 Determine the transmission section according to the stability limit of the transmission section before the multiple faults and the determined transient stability limit influence factor, the static stability limit influence factor and the thermal stability limit influence factor The stability limit after the multiple failures.
  • Step 206 Determine the DC active power of the power transmission section according to the generator power and load power of the power transmission section after the DC fault and the unbalanced power generated by the sending end and the receiving end.
  • Step 207 Calculate at least one of the DC active power generated by the DC line fault and the AC active power generated by the AC line fault according to the type of multiple faults in the power grid.
  • each transmission line After multiple faults, the power flow change of each transmission line is actually a superposition of multiple fault factors. Therefore, when multiple DC faults occur, it is the superposition of the active power change of each line in each transmission section after each DC fault during multiple DC faults; when multiple AC faults occur, it is multiple AC faults At each transmission section, each line superimposes the active power change after each branch AC fault; when an AC / DC mixed fault occurs, it is the line active power change after the DC fault occurs on the transmission cross section and the line after the AC fault occurs Superposition of active power changes.
  • Step 208 Based on the active power of the transmission section after the multiple faults and the stability limit after the multiple faults, calculate the load rate of the transmission section after the multiple faults, and set the load rate to be greater than The transmission section of the first set value is used as the weak section of the power grid after the multiple faults.
  • a set of dangerous unit pairs composed of unit pairs whose power angle difference is greater than the second set value in the transmission section is determined, and each dangerous unit pair is calculated in the multiple
  • the rate of change between the equivalent impedance before the fault and the equivalent impedance after the multiple faults, and determining the factor influencing the transient stability limit of the transmission section by the multiple faults according to the rate of change includes:
  • the transient stability limit influence factor Is calculated as:
  • I the equivalent impedance between the unit pair (u 1 , u 2 ) before multiple faults i
  • the transient process of a multi-machine system is generally expressed as the power angle of the sender unit relative to the receiver unit. Therefore, when evaluating the impact of multiple fault topology changes on the transient stability limit of the transmission section, the sender and receiver units can be simplified For two coherent clusters. The equipment outage caused by multiple faults will change the equivalent impedance between the sending end group and the receiving end group, thus changing the transient stability limit of the transmission section. According to the results of time-domain simulation of transient stability, for a set of dangerous unit pairs composed of unit pairs with large power angle differences, the more the equivalent impedance between the unit pairs increases, the more the transient stability limit decreases.
  • the equivalent impedance between the first-end equivalent unit and the end-equivalent unit of the transmission section before the multiple faults and the equivalent impedance after the multiple faults includes:
  • the two multi-machine systems connected to the transmission section are equivalent to two coherent equivalent unit groups through the multi-port Thevenin equivalent method, wherein, from the head end of the transmission section m, find a composition consisting of the transmission section m The first bus node where all the first-end nodes of the line are connected, and as the first-end equivalent unit, from the end of the transmission section m, find a second bus node that is connected to the end nodes of the transmission section m that constitute the line , And as the terminal equivalent unit;
  • the static stability limit P of the transmission section m is determined according to the equivalent impedance X m between the first-end equivalent unit and the end equivalent unit of the transmission section m, where the calculation formula of the static stability limit P is:
  • the static stability limit influence factor Is calculated as:
  • the static stability of the power system can be measured by the system equivalent impedance.
  • the two-machine system can accurately estimate the static stable electrode limit through the equivalent impedance.
  • the actual power grid is a complex multi-machine system.
  • the two complex multi-machine systems connected to the transmission section cannot be simply reduced to two-machine systems, the two complex multi-machine systems can be converted by the multi-port
  • Thevenin equivalent method Equivalent is two basic coherent equivalent generator groups, so that the static stability limit of the transmission section can be estimated by the equivalent admittance between computer groups.
  • each of the branches after the faulty branch is broken is determined
  • the active power of the normal branch, and according to the change between the original active power of each normal branch before the fault branch is broken and the active power of each normal branch after the fault branch is broken Rate to determine the factors influencing the thermal stability limit of the transmission section by the multiple faults, including:
  • D jk is the branch k breaking distribution factor
  • X jk is the branch j
  • x j is the impedance of the branch j
  • D j-kl is the branch k, l breaking distribution factor
  • X jk is the mutual impedance between the pair of branch j, k port
  • x j is the impedance of branch j
  • X jl is the branch j
  • X kk is the mutual impedance between branch k port pairs
  • X kl is the branch k
  • x k is the impedance of branch k
  • X lk Is the mutual impedance between the port pairs of branch k and l
  • X ll is the mutual impedance between the pair of port ports of branch l and x l is the impedance of branch l
  • the thermal stability limit influence factor Is calculated as:
  • I the active power of the branch j of the transmission section m before the multiple faults i
  • It is the active power of the branch j composed of the transmission section m after multiple faults i.
  • the topology change of multiple faults in the power grid will cause the change of the power flow on the transmission line forming the line, which will affect the thermal stability limit of the transmission section. Therefore, in this embodiment, the thermal stability limit of the transmission section before multiple faults and the heat The rate of change between the stability limits is very necessary.
  • the determination is based on the stability limit of the transmission section before the multiple faults and the determined transient stability limit influence factor, the static stability limit influence factor, and the thermal stability limit influence factor,
  • the stability limit of the transmission section after the multiple faults, and the calculation formula of the stability limit of the transmission section after the multiple faults is:
  • Is the stability limit of transmission section m before multiple faults i Is the stability limit of the transmission section m after the multiple faults i, Is the influence factor of the multiple faults i on the limit of the transmission section m.
  • the transient stability limit influence factor, the static stability limit influence factor and the thermal stability limit influence factor are substituted into Then, the minimum value calculated according to the calculation formula of the stability limit of the transmission section after the multiple faults is determined as the stability limit of the transmission section m after the multiple faults i.
  • the determining the DC active power of the transmission section according to the generator power and load power of the transmission section after the DC fault and the unbalanced power generated by the sending end and the receiving end includes: :
  • P Gi is the active power of the generator
  • Is the original power of the generator
  • K Gi is the unit adjustment power of the generator expressed in unit value
  • f d is the frequency deviation
  • P Li is the load active power, It is the load active power at the rated frequency, K Pi is the frequency adjustment factor of the active load;
  • the sending and receiving power grids produce unbalanced power ⁇ P DC , the active power of each generator P Gi and the original active power The amount of change between, and the active power of each load P Li and the load active power at rated frequency The relationship between the variation amounts satisfies the following power relationship calculation formula:
  • the load rate of the transmission section after the multiple faults is calculated based on the active power sum of the transmission section after the multiple faults and the stability limit after the multiple faults, and Taking the transmission section with the load ratio greater than the first set value as the weak section of the power grid after the multiple faults includes:
  • the transmission section m Comparing the load ratio ⁇ of the transmission section m with the first set value, under the condition that the load ratio ⁇ is greater than the first set value, the transmission section m is the weak section of the power grid.
  • a method for identifying weak cross sections of a power grid is provided.
  • multiple faults are divided into multiple DC faults, multiple AC faults, and AC / DC hybrid faults from the perspective of impact on the power grid.
  • the quantitative indicators of the impact of multiple fault topology changes on the stability limit of the power transmission section of the power grid, namely the transient stability limit influence factor, static stability limit influence factor and thermal stability limit influence factor, by determining the active power sum of the grid transmission section after multiple faults, As well as the stability limit of the transmission section of the grid after multiple faults, calculate the load rate of the transmission section and identify the weak section of the grid.
  • the method for identifying the weak section of the power grid described in this application includes:
  • the device 300 for identifying a weak section of a power grid in this embodiment includes a fault classification unit 301, a factor unit 302, a stability limit unit 303, a power unit 304, and a section identification unit 305.
  • the fault classification unit 301 is configured to determine the type of the multiple faults according to at least one of a DC line and an AC line in which multiple faults occur in the power grid, wherein the multiple fault types include multiple DC faults and multiple faults. Back to AC fault or AC and DC mixed fault.
  • the factor unit 302 is configured to determine the transient stability limit influence factor, the static stability limit influence factor and the thermal stability limit influence factor of the multiple faults on the transmission section.
  • the stability limit unit 303 is configured to determine according to the stability limit of the transmission section before the multiple faults and the determined transient stability limit influence factor, the static stability limit influence factor and the thermal stability limit influence factor The stability limit of the transmission section after the multiple faults.
  • the power unit 304 is configured to calculate the active power sum of the transmission section after the multiple faults according to the type of the multiple faults.
  • the section identification unit 305 is configured to calculate the load rate of the transmission section after the multiple faults based on the active power sum of the transmission section after the multiple faults and the stability limit after the multiple faults, and The transmission section with the load ratio greater than the first set value is taken as the weak section of the power grid after the multiple faults.
  • the device for identifying weak cross-section of the power grid divides multiple faults into multiple DC faults, multiple AC faults and mixed AC and DC faults from the perspective of impact on the power grid, and proposes
  • the quantitative indicators of the impact of multiple fault topology changes on the stability limit of the power transmission section of the power grid, namely the transient stability limit influence factor, static stability limit influence factor and thermal stability limit influence factor, by determining the active power sum of the grid transmission section after multiple faults, As well as the stability limit of the transmission section of the grid after multiple faults, calculate the load rate of the transmission section and identify the weak section of the grid.
  • the device for identifying the weak section of the power grid described in this application includes:
  • the apparatus 400 for identifying a weak section of a power grid according to another embodiment of the present application includes a fault classification unit 401, a first factor unit 402, a second factor unit 403, a third factor unit 404, a stability limit unit 405, a DC The power unit 406, the section power unit 407, and the section recognition unit 408.
  • the fault classification unit 401 is configured to determine the type of the multiple faults according to at least one of the DC line and the AC line in which multiple faults occur in the power grid, wherein the multiple fault types include multiple DC faults and multiple faults AC fault or AC / DC mixed fault;
  • the first factor unit 402 is configured to determine the set of dangerous unit pairs composed of unit pairs whose power angle difference is greater than the second set value in the transmission section according to the results of transient stability time-domain simulation, and calculate each dangerous unit pair in the The rate of change between the equivalent impedance before the multiple faults and the equivalent impedance after the multiple faults, and determining the factor influencing the transient stability limit of the transmission section by the multiple faults according to the rate of change;
  • the second factor unit 403 is set according to the equivalent impedance between the first-end equivalent unit and the end-equivalent unit of the transmission section before the multiple faults, and the equivalent impedance after the multiple faults Rate of change to determine the factor influencing the static stability limit of the transmission section by the multiple faults;
  • the third factor unit 404 is configured to determine each after the fault branch is broken according to the branching distribution factor of the transmission section and the original active power of each normal branch before the fault branch is broken.
  • the active power of each normal branch, and according to the original active power of each normal branch before the fault branch is broken and the active power of each normal branch after the fault branch is broken The rate of change determines the thermal stability limit influence factor of the multiple faults on the transmission section, wherein the sum of the active power of each normal branch in the transmission section after the fault branch is broken is the power grid
  • the stability limit unit 405 is configured to determine according to the stability limit of the power transmission section before the multiple faults and the determined transient stability limit influence factor, the static stability limit influence factor and the thermal stability limit influence factor The stability limit of the power transmission section after the multiple faults;
  • the DC power unit 406 is configured to determine the DC active power of the power transmission section according to the generator power and load power of the power transmission section after the DC fault and the unbalanced power generated by the sending end and the receiving end;
  • the cross section power unit 407 is configured to calculate at least one of the DC active power generated by the DC line fault and the AC active power generated by the AC line fault according to the multiple fault types of the power grid ;
  • the section identification unit 408 is configured to calculate the load rate of the transmission section after the multiple faults based on the active power of the transmission section after the multiple faults and the stability limit after the multiple faults, and to The transmission section with the load ratio greater than the first set value is used as the weak section of the power grid after the multiple faults.
  • the order of the steps of determining the transient stability limit influence factor, static stability limit factor, and thermal stability limit factor is not fixed. After determining the type of the multiple faults, the transient stability limit affects The calculation of the factor, the static stability limit factor and the thermal stability limit factor may be performed simultaneously, or in any order.
  • the first factor unit 402 determines the set of dangerous unit pairs composed of unit pairs whose power angle difference is greater than the second set value in the transmission section according to the results of transient stability time domain simulation, and calculates each dangerous unit The rate of change between the equivalent impedance before the multiple faults and the equivalent impedance after the multiple faults, and determining the effect of the multiple faults on the transient stability limit of the transmission section according to the rate of change Factors, including:
  • the transient stability limit influence factor Is calculated as:
  • I the equivalent impedance between the unit pair (u 1 , u 2 ) before multiple faults i
  • the second factor unit 403 is based on the equivalent impedance between the first-end equivalent unit and the end-equivalent unit of the transmission section before the multiple faults, and the equivalent impedance after the multiple faults.
  • the rate of change between the impedance values to determine the factors influencing the static stability limit of the transmission section by the multiple faults includes:
  • the two multi-machine systems connected to the transmission section are equivalent to two coherent equivalent unit groups through the multi-port Thevenin equivalent method, wherein, from the head end of the transmission section m, find a composition consisting of the transmission section m The first bus node where all the first-end nodes of the line are connected, and as the first-end equivalent unit, from the end of the transmission section m, find a second bus node that is connected to the end nodes of the transmission section m that constitute the line , And as the terminal equivalent unit;
  • the static stability limit P of the transmission section m is determined according to the equivalent impedance X m between the first-end equivalent unit and the end equivalent unit of the transmission section m, where the calculation formula of the static stability limit P is:
  • the static stability limit influence factor Is calculated as:
  • the third factor unit 404 determines the faulty branch according to the branching distribution factor of the transmission section and the original active power of each normal branch before the faulty branch is broken
  • the active power of each normal branch after breaking, and according to the original active power of each normal branch before breaking of the fault branch and the active power of each normal branch after breaking of the fault branch includes:
  • D jk is the branch k breaking distribution factor
  • X jk is the branch j
  • x j is the impedance of the branch j
  • D j-kl is the branch k, l breaking distribution factor
  • X jk is the mutual impedance between the pair of branch j, k port
  • x j is the impedance of branch j
  • X jl is the branch j
  • X kk is the mutual impedance between branch k port pairs
  • X kl is the branch k
  • x k is the impedance of branch k
  • X lk Is the mutual impedance between the port pairs of branch k and l
  • X ll is the mutual impedance between the pair of port ports of branch l and x l is the impedance of branch l
  • the thermal stability limit influence factor Is calculated as:
  • I the active power of the branch j of the transmission section m before the multiple faults i
  • It is the active power of the branch j composed of the transmission section m after multiple faults i.
  • the stability limit unit 405 is based on the stability limit of the transmission section before the multiple faults and the determined transient stability limit influence factor, the static stability limit influence factor and the thermal stability limit
  • the influence factor determines the stability limit of the transmission section after the multiple faults.
  • the formula for calculating the stability limit of the transmission section after the multiple faults is:
  • Is the stability limit of transmission section m before multiple faults i Is the stability limit of the transmission section m after the multiple faults i, Is the influence factor of the multiple faults i on the limit of the transmission section m.
  • the transient stability limit influence factor, the static stability limit influence factor and the thermal stability limit influence factor are substituted into Then, the minimum value calculated according to the calculation formula of the stability limit of the transmission section after the multiple faults is determined as the stability limit of the transmission section m after the multiple faults i.
  • the DC power unit 406 determines the DC of the power transmission cross-section based on the generator power and load power of the power transmission cross-section after the DC fault and the unbalanced power generated by the transmitting and receiving ends Active power, including:
  • the system status is analyzed using the increased power flow taking into account the frequency change.
  • the formula for calculating the active power of the generator is:
  • P Gi is the active power of the generator
  • Is the original power of the generator
  • K Gi is the unit adjustment power of the generator set expressed in unit value
  • f d is the frequency deviation
  • P Li is the load active power, It is the load active power at the rated frequency, K Pi is the frequency adjustment factor of the active load;
  • the sending and receiving power grids produce unbalanced power ⁇ P DC , the active power of each generator P Gi and the original active power The amount of change between, and the active power of each load P Li and the load active power at rated frequency The relationship between the variation amounts satisfies the following power relationship calculation formula:
  • the section recognition unit 408 includes a load ratio determination unit 481 and a weak section determination unit 482.
  • the load factor determination unit 481 is set to the active power and And the stability limit after the multiple faults Calculate the load rate of the transmission section m after the multiple faults, wherein the calculation formula of the load rate ⁇ is:
  • the weak section determination unit 482 is configured to compare the load rate ⁇ of the power transmission section m with the size of the first set value. Under the condition that the load ratio ⁇ is greater than the first set value, the power section m is Weak cross section of the power grid.
  • the first set value is 0.95, that is, when the load factor of the transmission section m is greater than 0.95, the transmission section m is the weak section of the power grid.
  • the device for identifying weak cross-section of the power grid divides multiple faults into multiple DC faults, multiple AC faults and mixed AC and DC faults from the perspective of impact on the power grid, and proposes
  • the quantitative indicators of the impact of multiple fault topology changes on the stability limit of the power transmission section of the power grid, namely the transient stability limit influence factor, static stability limit influence factor and thermal stability limit influence factor, by determining the active power sum of the grid transmission section after multiple faults, As well as the stability limit of the transmission section of the grid after multiple faults, calculate the load rate of the transmission section and identify the weak section of the grid.
  • the device for identifying the weak section of the power grid described in this application includes:
  • An embodiment of the present application further provides a device for identifying a weak cross section of a power grid, including a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program is used by the processor.
  • a device for identifying a weak cross section of a power grid including a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program is used by the processor. The method for identifying the weak cross section of the power grid described above is implemented during execution.
  • An embodiment of the present application further provides a storage medium on which an information processing program is stored, and when the information processing program is executed by a processor, the above method for identifying a weak cross section of a power grid is realized.
  • storage medium includes both volatile and non-volatile implemented in any method or technology for storing information such as computer-readable instructions, data structures, program modules, or other data , Removable and non-removable media.
  • Storage media include but are not limited to Random Access Memory (RAM), Read-Only Memory (ROM), Erasable Programmable Read-Only Memory (Electrically Programmable Read Only Memory (EEPROM), Flash Memory Or other memory technologies, compact disc read-only memory (Compact Disc Read-Only Memory, CD-ROM), digital versatile disc (Digital Video Disc, DVD) or other optical disc storage, magnetic box, magnetic tape, magnetic disk storage or other magnetic storage devices Or any other medium that can be used to store desired information and can be accessed by a computer.
  • the communication medium generally contains computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本文公布一种识别电网薄弱断面的方法和装置,识别电网薄弱断面的方法包括确定多重故障的类型,确定所述多重故障对输电断面的暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子,确定所述输电断面在多重故障后的稳定极限,计算所述输电断面在所述多重故障后的有功功率和,以及计算输电断面负载率并识别电网薄弱断面。

Description

识别电网薄弱断面的方法、装置及存储介质
本申请要求在2018年10月17日提交中国专利局、申请号为201811209299.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及电力系统,例如涉及一种识别电网薄弱断面的方法、装置及存储介质。
背景技术
随着特高压交直流互联电网规模不断扩大,大电网运行方式和动态行为日趋复杂。一方面,由于特高压电网的快速发展,已经投运和正在运行的特高压直流电网中,单回直流额定输送容量已达到800万千瓦,后期将提升至1000到1200万千瓦,使得特高压直流故障闭锁对电网冲击巨大。另一方面,由于输电线路密集通道和交叉跨越大幅增加,220千瓦(kV)及以上的交叉跨越点较多,单一走廊的最大输电容量达到2680万千瓦,使得在极端天气、自然灾害、保护不正确动作等情形下易发生多重故障,存在引发较大电网事故的风险,严重危害电网安全。现有的实时调度技术体系缺少针对大电网多重故障的在线分析和决策技术,调度运行人员无法准确掌握电网发生多重故障的风险及安全稳定隐患,缺乏处置依据、策略和措施等相关指导。因此需要依赖运行和分析经验确定输电断面薄弱环节,并且需要研究和考虑多重故障的风险分析及处置决策技术,从而提高应对多重故障的风险防控能力。
发明内容
第一方面,本申请提供了一种识别电网薄弱断面的方法,包括:
根据电网中发生多重故障的线路是直流线路和交流线路中的至少一种,确定所述多重故障的类型,其中,所述多重故障的类型包括多回直流故障、多回交流故障或者交直流混合故障;
确定所述多重故障对输电断面的暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子;
根据所述输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限;
根据所述多重故障的类型,计算所述输电断面在所述多重故障后的有功功率和;
根据所述输电断面在所述多重故障后的有功功率和,以及在所述多重故障后的稳定极限,计算所述输电断面在所述多重故障后的负载率,并将所述负载率大于第一设定值的输电断面作为所述多重故障后的电网薄弱断面。
第二方面,本申请提供一种识别电网薄弱断面的装置,包括:
故障分类单元,设置为根据电网中发生多重故障的线路是直流线路和交流线路中的至少一种,确定所述多重故障的类型,其中,所述多重故障的类型包括多回直流故障、多回交流故障或者交直流混合故障;
因子单元,设置为确定所述多重故障对输电断面的暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子;
稳定极限单元,设置为根据输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限;
功率单元,设置为根据所述多重故障的类型,计算所述输电断面在所述多重故障后的有功功率和;
断面识别单元,设置为根据所述输电断面在所述多重故障后的有功功率和,以及在所述多重故障后的稳定极限,计算所述输电断面在多重故障后的负载率,并将所述负载率大于第一设定值的输电断面作为所述多重故障后的电网薄弱断面。
第三方面,本申请提供一种识别电网薄弱断面的装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上述第一方面中的识别电网薄弱断面的方法。
第四方面,本申请提供一种存储介质,存储有信息处理程序,所述信息处理程序被处理器执行时实现如上述第一方面中的识别电网薄弱断面的方法。
附图说明
图1为根据本申请一实施例的识别电网薄弱断面的方法的流程图;
图2为根据本申请另一实施例的识别电网薄弱断面的方法的流程图;
图3为根据本申请一实施例的识别电网薄弱断面的装置的结构示意图;
图4为根据本申请另一实施例的识别电网薄弱断面的装置的结构示意图。
具体实施方式
现在参考附图介绍本申请的示例性实施例,图1为根据本申请一实施例的识别电网薄弱断面的方法的流程图。如图1所示,本实施例所述的识别电网薄弱断面的方法包括如下步骤。
步骤101,根据电网中发生多重故障的线路是直流线路和交流线路中的至少一种,确定所述多重故障的类型,其中,所述多重故障的类型包括多回直流故障、多回交流故障或者交直流混合故障。
步骤102,确定所述多重故障对输电断面的暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子。
步骤103,根据所述输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限。
步骤104,根据所述多重故障的类型,计算所述输电断面在所述多重故障后的有功功率和。
步骤105,根据所述输电断面在所述多重故障后的有功功率和,以及在所述多重故障后的稳定极限,计算所述输电断面在所述多重故障后的负载率,并将所述负载率大于第一设定值的输电断面作为所述多重故障后的电网薄弱断面。
本申请技术方案提供的一种识别电网薄弱断面的方法,根据多重故障发生的机理,从对电网影响的角度把多重故障分为多回直流故障、多回交流故障和交直流混合故障,并提出多重故障拓扑变化对电网输电断面稳定极限的影响的 量化指标,即暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子,通过确定多重故障后的电网输电断面的有功功率和,以及多重故障后的电网输电断面的稳定极限,计算输电断面负载率以及识别电网的薄弱断面。本申请所述的识别电网薄弱断面的方法与现有技术相比,其有益效果包括:
(1)将多重故障分为多重交流线路故障、多重直流线路故障和交直流线路混合故障三种类型,能够量化评估每种类型多重故障对输电断面暂态稳定极限、静态稳定极限和热稳定极限的影响,使调度运行人员掌握预想的多重故障对电网安全稳定的影响程度。
(2)提出了多重故障后输电断面稳定极限和负载率的快速评估方法,能够快速识别多重故障后的电网薄弱输电断面,使调度运行人员掌握大电网预想多重故障后的薄弱环节。
(3)通过识别出预想多重故障后电网薄弱输电断面,可以为调度人员制定应对多重故障的调度处置预案提供参考,对电网的保护与控制具有重要意义。
图2为根据本申请另一实施例的识别电网薄弱断面的方法的流程图。如图2所示,本实施例所述的识别电网薄弱断面的方法包括如下步骤。
步骤201,根据电网中发生多重故障的线路是直流线路和交流线路中的至少一种,确定所述多重故障的类型,其中,所述多重故障的类型包括多回直流故障、多回交流故障或者交直流混合故障。
步骤202,根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第二设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值阻抗和在所述多重故障后的等值阻抗之间的变化率,并根据所述变化率确定所述多重故障对所述输电断面的暂态稳定极限影响因子。
步骤203,根据所述输电断面的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,与在所述多重故障后的等值阻抗之间的变化率,确定所述多重故障对所述输电断面的静态稳定极限影响因子。
步骤204,根据所述输电断面的支路开断分布因子和在故障支路开断前的每个正常支路的原始有功功率,确定在所述故障支路开断后的每个正常支路的有功功率,并根据在所述故障支路开断前的每个正常支路的原始有功功率和在所 述故障支路开断后的每个正常支路的有功功率之间的变化率,确定所述多重故障对所述输电断面的热稳定极限影响因子,其中,所述输电断面中在所述故障支路开断后的每个正常支路的有功功率之和为所述电网发生交流线路故障时所述输电断面的交流有功功率。
步骤205,根据所述输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限。
步骤206,根据所述电网在直流故障后所述输电断面的发电机功率和负荷功率,以及送端和受端产生的不平衡功率,确定所述输电断面的直流有功功率。
步骤207,根据所述电网的多重故障的类型,计算所述输电断面因直流线路故障而产生的直流有功功率和因交流线路故障而产生的交流有功功率的有功功率中至少一种。
多重故障后输电断面每一个线路潮流变化实际上是多种故障因素的叠加。因此,当发生多回直流故障时,是多回直流故障时每个输电断面中每一个线路在每一回直流故障后有功功率变化的叠加;当发生多回交流故障时,是多回交流故障时每个输电断面每一个线路在每个支路交流故障后有功功率变化的叠加;当发生交直流混合故障时,是输电断面上发生直流故障后的线路有功功率变化和发生交流故障后的线路有功功率变化的叠加。
步骤208,根据所述输电断面在所述多重故障后的有功功率和在所述多重故障后的稳定极限,计算所述输电断面在所述多重故障后的负载率,并将所述负载率大于第一设定值的输电断面作为所述多重故障后的电网薄弱断面。
一实施例中,所述根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第二设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值阻抗和在所述多重故障后的等值阻抗之间的变化率,并根据所述变化率确定所述多重故障对所述输电断面的暂态稳定极限影响因子,包括:
将所述电网中的送端机组和受端机组简化为两个同调机群;
根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第二设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值 阻抗和在所述多重故障后的等值阻抗之间的变化率;
将所述变化率中的最大值作为所述多重故障对所述输电断面的暂态稳定极限影响因子
Figure PCTCN2019103006-appb-000001
其中,所述暂态稳定极限影响因子
Figure PCTCN2019103006-appb-000002
的计算公式为:
Figure PCTCN2019103006-appb-000003
式中,
Figure PCTCN2019103006-appb-000004
是在多重故障i前机组对(u 1,u 2)之间的等值阻抗,
Figure PCTCN2019103006-appb-000005
是在多重故障i后机组对(u 1,u 2)之间的等值阻抗。
多机系统的暂态过程一般表现为送端机组相对于受端机组的功角摇摆,因此评估多重故障拓扑变化对输电断面暂态稳定极限的影响时,可将送端机组和受端机组简化为两个同调机群。多重故障导致的设备退运会使得送端机群、受端机群之间的等值阻抗发生变化,从而使输电断面的暂态稳定极限发生变化。根据暂态稳定时域仿真的结果,对于功角差大的机组对组成的危险机组对集合,机组对之间的等值阻抗增大越多,则其暂态稳定极限降低越多。
一实施例中,所述根据所述输电断面的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,与在所述多重故障后的等值阻抗之间的变化率,确定所述多重故障对所述输电断面的静态稳定极限影响因子,包括:
通过多端口戴维南等值的方法将所述输电断面连接的两个多机系统等效为两个同调等效机组群,其中,从输电断面m的首端,找到一个与所述输电断面m组成线路的首端节点都相连的第一母线节点,并作为首端等效机组,从所述输电断面m的末端,找到一个与所述输电断面m组成线路的末端节点都相连的第二母线节点,并作为末端等效机组;
计算所述输电断面m的首端等效机组和末端等效机组之间的等值阻抗X m
根据所述输电断面m的首端等效机组和末端等效机组之间的等值阻抗X m确定所述输电断面m的静态稳定极限P,其中,所述静态稳定极限P的计算公式为:
Figure PCTCN2019103006-appb-000006
根据所述输电断面m的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,以及在所述多重故障后的等值阻抗之间的变化率,确定所述多 重故障对所述输电断面m的静态稳定极限影响因子
Figure PCTCN2019103006-appb-000007
其中,所述静态稳定极限影响因子
Figure PCTCN2019103006-appb-000008
的计算公式为:
Figure PCTCN2019103006-appb-000009
式中,
Figure PCTCN2019103006-appb-000010
是所述电网在所述多重故障前输电断面m的静态稳定极限,
Figure PCTCN2019103006-appb-000011
是所述电网在所述多重故障后输电断面m的静态稳定极限。
电力系统静态稳定性的强弱在一定程度上可以通过系统等值阻抗来衡量。两机系统通过等值阻抗能够准确估计出静态稳定输电极限。而实际电网是一个复杂的多机系统,虽然输电断面连接的两个复杂的多机系统不能简单地简化为两机系统,但可以通过多端口戴维南等值方法将这两个复杂的多机系统等效为两个基本同调等效机组群,从而通过计算机组群之间的等值导纳来估算输电断面的静态稳定极限。
一实施例中,所述根据所述输电断面的支路开断分布因子和在故障支路开断前的每个正常支路的原始有功功率,确定在所述故障支路开断后的每个正常支路的有功功率,并根据在所述故障支路开断前的每个正常支路的原始有功功率和在所述故障支路开断后的每个正常支路的有功功率之间的变化率,确定所述多重故障对所述输电断面的热稳定极限影响因子,包括:
在单支路开断后,支路开断分布因子的计算公式为:
Figure PCTCN2019103006-appb-000012
式中,D j-k是支路k开断分布因子,X j-k是支路j,k端口对之间的互阻抗,x j是支路j的阻抗;
所述单支路开断后所述输电断面其他设备的潮流计算公式如下:
Figure PCTCN2019103006-appb-000013
式中,
Figure PCTCN2019103006-appb-000014
是支路j在支路k开断后的有功功率,
Figure PCTCN2019103006-appb-000015
是支路j的初始有功功率,P k是支路k的初始有功功率;
在双支路开断后,支路开断分布因子的计算公式如下:
Figure PCTCN2019103006-appb-000016
式中,D j-kl是支路k,l开断分布因子,X j-k是支路j,k端口对之间的互阻抗,x j是支路j的阻抗,X j-l是支路j,l端口对之间的互阻抗,X k-k是支路k端口对之间的互阻抗,X k-l是支路k,l端口对之间的互阻抗,x k是支路k的阻抗,X l-k是支路k,l端口对之间的互阻抗,X l-l是支路l端口对之间的互阻抗,x l是支路l的阻抗;
所述双支路开断后所述输电断面其他设备的潮流计算公式如下:
Figure PCTCN2019103006-appb-000017
式中,
Figure PCTCN2019103006-appb-000018
是支路j在支路k、l开断后的有功功率,P j是支路j的初始有功功率,P k是支路k的初始有功功率,P l是支路l的初始有功功率;
根据输电断面m中在故障支路开断前的每个正常支路的原始有功功率和在所述故障支路开断后的每个正常支路的有功功率之间的变化率,确定所述多重故障对所述输电断面m的热稳定极限影响因子
Figure PCTCN2019103006-appb-000019
其中,所述热稳定极限影响因子
Figure PCTCN2019103006-appb-000020
的计算公式为:
Figure PCTCN2019103006-appb-000021
式中,
Figure PCTCN2019103006-appb-000022
是所述输电断面m组成支路j在多重故障i前的有功功率,
Figure PCTCN2019103006-appb-000023
是所述输电断面m组成支路j在多重故障i后的有功功率。
电网中多重故障的拓扑变化会引起输电断面组成线路上潮流的变化,进而影响输电断面的热稳定极限,因此在本实施例中考虑输电断面在多重故障前的热稳定极限和多重故障后的热稳定极限之间的变化率是非常有必要的。
一实施例中,所述根据所述输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限,所述输电断面在所述多重故障后的稳定极限的计算公式为:
Figure PCTCN2019103006-appb-000024
式中,
Figure PCTCN2019103006-appb-000025
为输电断面m在多重故障i前的稳定极限,
Figure PCTCN2019103006-appb-000026
为所述输电断面m在所述多重故障i后的稳定极限,
Figure PCTCN2019103006-appb-000027
为所述多重故障i对所述输电断面m极限的影响因子。
其中,将所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子分别代入
Figure PCTCN2019103006-appb-000028
后,根据所述输电断面在所述多重故障后的稳定极限的计算公式计算得到的最小值确定为所述输电断面m在所述多重故障i后的稳定极限。
一实施例中,所述根据所述电网在直流故障后所述输电断面的发电机功率和负荷功率,以及送端和受端产生的不平衡功率,确定所述输电断面的直流有功功率,包括:
在所述电网发生直流线路故障的情况下,采用计及频率变化的增广潮流来分析系统状态,其中,发电机有功功率的计算公式为:
Figure PCTCN2019103006-appb-000029
式中,P Gi为发电机有功功率,
Figure PCTCN2019103006-appb-000030
为发电机原有功功率,K Gi为用标幺值表示的发电机单位调节功率,f d为频率偏差;
负荷静态频率特性模型为:
Figure PCTCN2019103006-appb-000031
式中,P Li为负荷有功功率,
Figure PCTCN2019103006-appb-000032
为额定频率下的负荷有功功率,K Pi为有功负荷的频率调节系数;
直流线路故障后,送端和受端电网产生不平衡功率ΔP DC、每一个发电机有功功率P Gi与原有功功率
Figure PCTCN2019103006-appb-000033
之间的变化量,以及每一个负荷有功功率P Li与额定频率下的负荷有功功率
Figure PCTCN2019103006-appb-000034
之间的变化量的关系满足如下功率关系计算公式:
Figure PCTCN2019103006-appb-000035
联立发电机有功功率的计算公式、负荷静态频率特性模型,以及所述功率关系计算公式,确定所述电网在直流线路故障后输电断面的每一个发电机有功功率P Gi和每一个负荷功率P Li,并确定所述输电断面每一个线路上的直流有功功 率。
一实施例中,所述根据所述输电断面在所述多重故障后的有功功率和,以及在所述多重故障后的稳定极限,计算所述输电断面在所述多重故障后的负载率,并将所述负载率大于第一设定值的输电断面作为所述多重故障后的电网薄弱断面,包括:
根据输电断面m在所述多重故障后的有功功率和
Figure PCTCN2019103006-appb-000036
以及在所述多重故障后的稳定极限
Figure PCTCN2019103006-appb-000037
计算所述输电断面m在所述多重故障后的负载率,其中,所述负载率η的计算公式为:
Figure PCTCN2019103006-appb-000038
比较所述输电断面m的负载率η和第一设定值的大小,在所述负载率η大于第一设定值的条件下,所述输电断面m即为电网的薄弱断面。
本申请技术方案提供的一种识别电网薄弱断面的方法,根据多重故障发生的机理,从对电网影响的角度把多重故障分为多回直流故障、多回交流故障和交直流混合故障,并提出多重故障拓扑变化对电网输电断面稳定极限的影响的量化指标,即暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子,通过确定多重故障后的电网输电断面的有功功率和,以及多重故障后的电网输电断面的稳定极限,计算输电断面负载率以及识别电网的薄弱断面。本申请所述的识别电网薄弱断面的方法与现有技术相比,其有益效果包括:
(1)将多重故障分为多重交流线路故障、多重直流线路故障和交直流线路混合故障三种类型,能够量化评估每种类型多重故障对输电断面暂态稳定极限、静态稳定极限和热稳定极限的影响,使调度运行人员掌握预想的多重故障对电网安全稳定的影响程度。
(2)提出了多重故障后输电断面稳定极限和负载率的快速评估方法,能够快速识别多重故障后的电网薄弱输电断面,使调度运行人员掌握大电网预想多重故障后的薄弱环节。
(3)通过识别出预想多重故障后电网薄弱输电断面,可以为调度人员制定应对多重故障的调度处置预案提供参考,对电网的保护与控制具有重要意义。
图3为根据本申请一实施例的识别电网薄弱断面的装置的结构示意图。如 图3所示,本实施例所述的识别电网薄弱断面的装置300包括故障分类单元301、因子单元302、稳定极限单元303、功率单元304和断面识别单元305。
故障分类单元301,设置为根据电网中发生多重故障的线路是直流线路和交流线路中的至少一种,确定所述多重故障的类型,其中,所述多重故障的类型包括多回直流故障、多回交流故障或者交直流混合故障。
因子单元302,设置为确定所述多重故障对输电断面的暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子。
稳定极限单元303,设置为根据所述输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限。
功率单元304,设置为根据所述多重故障的类型,计算所述输电断面在所述多重故障后的有功功率和。
断面识别单元305,设置为根据所述输电断面在所述多重故障后的有功功率和,以及在所述多重故障后的稳定极限,计算所述输电断面在所述多重故障后的负载率,并将所述负载率大于第一设定值的输电断面作为所述多重故障后的电网薄弱断面。
本申请技术方案提供的一种识别电网薄弱断面的装置,根据多重故障发生的机理,从对电网影响的角度把多重故障分为多回直流故障、多回交流故障和交直流混合故障,并提出多重故障拓扑变化对电网输电断面稳定极限的影响的量化指标,即暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子,通过确定多重故障后的电网输电断面的有功功率和,以及多重故障后的电网输电断面的稳定极限,计算输电断面负载率以及识别电网的薄弱断面。本申请所述的识别电网薄弱断面的装置与现有技术相比,其有益效果包括:
(1)将多重故障分为多重交流线路故障、多重直流线路故障和交直流线路混合故障三种类型,能够量化评估每种类型多重故障对输电断面暂态稳定极限、静态稳定极限和热稳定极限的影响,使调度运行人员掌握预想的多重故障对电网安全稳定的影响程度。
(2)提出了多重故障后输电断面稳定极限和负载率的快速评估方法,能够 快速识别多重故障后的电网薄弱输电断面,使调度运行人员掌握大电网预想多重故障后的薄弱环节。
(3)通过识别出预想多重故障后电网薄弱输电断面,可以为调度人员制定应对多重故障的调度处置预案提供参考,对电网的保护与控制具有重要意义。
图4为根据本申请另一实施例的识别电网薄弱断面的装置的结构示意图。如图4所示,本申请实施例所述的识别电网薄弱断面的装置400包括故障分类单元401、第一因子单元402、第二因子单元403、第三因子单元404、稳定极限单元405、直流功率单元406、断面功率单元407和断面识别单元408。
故障分类单元401,设置为根据电网中发生多重故障的线路是直流线路和交流线路中的至少一种,确定所述多重故障的类型,其中,所述多重故障的类型包括多回直流故障、多回交流故障或者交直流混合故障;
第一因子单元402,设置为根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第二设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值阻抗和在所述多重故障后的等值阻抗之间的变化率,并根据所述变化率确定所述多重故障对所述输电断面的暂态稳定极限影响因子;
第二因子单元403,设置为根据所述输电断面的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,与在所述多重故障后的等值阻抗之间的变化率,确定所述多重故障对所述输电断面的静态稳定极限影响因子;
第三因子单元404,设置为根据所述输电断面的支路开断分布因子和在故障支路开断前的每个正常支路的原始有功功率,确定在所述故障支路开断后的每个正常支路的有功功率,并根据在所述故障支路开断前的每个正常支路的原始有功功率和在所述故障支路开断后的每个正常支路的有功功率之间的变化率,确定所述多重故障对所述输电断面的热稳定极限影响因子,其中,所述输电断面中在所述故障支路开断后的每个正常支路的有功功率之和为所述电网发生交流线路故障时所述输电断面的交流有功功率;
稳定极限单元405,设置为根据所述输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热 稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限;
直流功率单元406,设置为根据所述电网在直流故障后所述输电断面的发电机功率和负荷功率,以及送端和受端产生的不平衡功率,确定所述输电断面的直流有功功率;
断面功率单元407,设置为根据所述电网的多重故障的类型,计算所述输电断面因直流线路故障而产生的直流有功功率和因交流线路故障而产生的交流有功功率的有功功率中至少一种;
断面识别单元408,设置为根据所述输电断面在所述多重故障后的有功功率和在所述多重故障后的稳定极限,计算所述输电断面在所述多重故障后的负载率,并将所述负载率大于第一设定值的输电断面作为所述多重故障后的电网薄弱断面。
本实施例中,确定暂态稳定极限影响因子、静态稳定极限因子和热稳定极限因子的步骤的顺序并不是固定不变的,在确定所述多重故障的类型后,所述暂态稳定极限影响因子、所述静态稳定极限因子和所述热稳定极限因子的计算可同时进行,或者按照任一顺序进行。
一实施例中,所述第一因子单元402根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第二设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值阻抗和在所述多重故障后的等值阻抗之间的变化率,并根据所述变化率确定所述多重故障对所述输电断面的暂态稳定极限影响因子,包括:
将所述电网中的送端机组和受端机组简化为两个同调机群;
根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第二设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值阻抗和在所述多重故障后的等值阻抗之间的变化率;
将所述变化率中的最大值作为所述多重故障对所述输电断面的暂态稳定极限影响因子
Figure PCTCN2019103006-appb-000039
其中,所述暂态稳定极限影响因子
Figure PCTCN2019103006-appb-000040
的计算公式为:
Figure PCTCN2019103006-appb-000041
式中,
Figure PCTCN2019103006-appb-000042
是在多重故障i前机组对(u 1,u 2)之间的等值阻抗,
Figure PCTCN2019103006-appb-000043
是在多重故障i后机组对(u 1,u 2)之间的等值阻抗。
一实施例中,所述第二因子单元403根据所述输电断面的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,与在所述多重故障后的等值阻抗之间的变化率,确定所述多重故障对所述输电断面的静态稳定极限影响因子,包括:
通过多端口戴维南等值的方法将所述输电断面连接的两个多机系统等效为两个同调等效机组群,其中,从输电断面m的首端,找到一个与所述输电断面m组成线路的首端节点都相连的第一母线节点,并作为首端等效机组,从所述输电断面m的末端,找到一个与所述输电断面m组成线路的末端节点都相连的第二母线节点,并作为末端等效机组;
计算所述输电断面m的首端等效机组和末端等效机组之间的等值阻抗X m
根据所述输电断面m的首端等效机组和末端等效机组之间的等值阻抗X m确定所述输电断面m的静态稳定极限P,其中,所述静态稳定极限P的计算公式为:
Figure PCTCN2019103006-appb-000044
根据所述输电断面m的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,以及在所述多重故障后的等值阻抗之间的变化率,确定所述多重故障对所述输电断面m的静态稳定极限影响因子
Figure PCTCN2019103006-appb-000045
其中,所述静态稳定极限影响因子
Figure PCTCN2019103006-appb-000046
的计算公式为:
Figure PCTCN2019103006-appb-000047
式中,
Figure PCTCN2019103006-appb-000048
是所述电网在所述多重故障前输电断面m的静态稳定极限,
Figure PCTCN2019103006-appb-000049
是所述电网在所述多重故障后输电断面m的静态稳定极限。
一实施例中,所述第三因子单元404根据所述输电断面的支路开断分布因子和在故障支路开断前的每个正常支路的原始有功功率,确定在所述故障支路开断后的每个正常支路的有功功率,并根据在所述故障支路开断前的每个正常支路的原始有功功率和在所述故障支路开断后的每个正常支路的有功功率之间 的变化率,确定所述多重故障对所述输电断面的热稳定极限影响因子,包括:
在单支路开断后的条件下,支路开断分布因子的计算公式为:
在单支路开断后,支路开断分布因子的计算公式为:
Figure PCTCN2019103006-appb-000050
式中,D j-k是支路k开断分布因子,X j-k是支路j,k端口对之间的互阻抗,x j是支路j的阻抗;
所述单支路开断后所述输电断面其他设备的潮流计算公式如下:
Figure PCTCN2019103006-appb-000051
式中,
Figure PCTCN2019103006-appb-000052
是支路j在支路k开断后的有功功率,
Figure PCTCN2019103006-appb-000053
是支路j的初始有功功率,P k是支路k的初始有功功率;
在双支路开断后,支路开断分布因子的计算公式如下:
Figure PCTCN2019103006-appb-000054
式中,D j-kl是支路k,l开断分布因子,X j-k是支路j,k端口对之间的互阻抗,x j是支路j的阻抗,X j-l是支路j,l端口对之间的互阻抗,X k-k是支路k端口对之间的互阻抗,X k-l是支路k,l端口对之间的互阻抗,x k是支路k的阻抗,X l-k是支路k,l端口对之间的互阻抗,X l-l是支路l端口对之间的互阻抗,x l是支路l的阻抗;
所述双支路开断后所述输电断面其他设备的潮流计算公式如下:
Figure PCTCN2019103006-appb-000055
式中,
Figure PCTCN2019103006-appb-000056
是支路j在支路k、l开断后的有功功率,P j是支路j的初始有功功率,P k是支路k的初始有功功率,P l是支路l的初始有功功率;
根据输电断面m中在故障支路开断前的每个正常支路的原始有功功率和在所述故障支路开断后的每个正常支路的有功功率之间的变化率,确定所述多重故障对所述输电断面m的热稳定极限影响因子
Figure PCTCN2019103006-appb-000057
其中,所述热稳定极限影 响因子
Figure PCTCN2019103006-appb-000058
的计算公式为:
Figure PCTCN2019103006-appb-000059
式中,
Figure PCTCN2019103006-appb-000060
是所述输电断面m组成支路j在多重故障i前的有功功率,
Figure PCTCN2019103006-appb-000061
是所述输电断面m组成支路j在多重故障i后的有功功率。
一实施例中,所述稳定极限单元405根据所述输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限,所述输电断面在所述多重故障后的稳定极限的计算公式为:
Figure PCTCN2019103006-appb-000062
式中,
Figure PCTCN2019103006-appb-000063
为输电断面m在多重故障i前的稳定极限,
Figure PCTCN2019103006-appb-000064
为所述输电断面m在所述多重故障i后的稳定极限,
Figure PCTCN2019103006-appb-000065
为所述多重故障i对所述输电断面m极限的影响因子。
其中,将所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子分别代入
Figure PCTCN2019103006-appb-000066
后,根据所述输电断面在所述多重故障后的稳定极限的计算公式计算得到的最小值确定为所述输电断面m在所述多重故障i后的稳定极限。
一实施例中,所述直流功率单元406根据所述电网在直流故障后所述输电断面的发电机功率和负荷功率,以及送端和受端产生的不平衡功率,确定所述输电断面的直流有功功率,包括:
在所述电网发生直流线路故障的条件下,采用计及频率变化的增广潮流来分析系统状态,其中,发电机有功功率的计算公式为:
Figure PCTCN2019103006-appb-000067
式中,P Gi为发电机有功功率,
Figure PCTCN2019103006-appb-000068
为发电机原有功功率,K Gi为用标幺值表示的发电机组单位调节功率,f d为频率偏差;
负荷静态频率特性模型为:
Figure PCTCN2019103006-appb-000069
式中,P Li为负荷有功功率,
Figure PCTCN2019103006-appb-000070
为额定频率下的负荷有功功率,K Pi为有功负荷的频率调节系数;
直流线路故障后,送端和受端电网产生不平衡功率ΔP DC、每一个发电机有功功率P Gi与原有功功率
Figure PCTCN2019103006-appb-000071
之间的变化量,以及每一个负荷有功功率P Li与额定频率下的负荷有功功率
Figure PCTCN2019103006-appb-000072
之间的变化量的关系满足如下功率关系计算公式:
Figure PCTCN2019103006-appb-000073
联立发电机有功功率的计算公式、负荷静态频率特性模型,以及所述功率关系计算公式,确定所述电网在直流线路故障后输电断面的每一个发电机有功功率和每一个负荷功率P Li,并确定所述输电断面m每一个线路上的直流有功功率。
一实施例中,所述断面识别单元408包括负载率确定单元481和薄弱断面确定单元482。
负载率确定单元481,设置为根据输电断面m在所述多重故障后的有功功率和
Figure PCTCN2019103006-appb-000074
以及在所述多重故障后的稳定极限
Figure PCTCN2019103006-appb-000075
计算所述输电断面m在所述多重故障后的负载率,其中,所述负载率η的计算公式为:
Figure PCTCN2019103006-appb-000076
薄弱断面确定单元482,设置为比较所述输电断面m的负载率η和第一设定值的大小,在所述负载率η大于第一设定值的条件下,所述输电断面m即为电网的薄弱断面。
在本实施例中,所述第一设定值是0.95,即当输电断面m的负载率大于0.95时,所述输电断面m即为电网的薄弱断面。
本申请技术方案提供的一种识别电网薄弱断面的装置,根据多重故障发生的机理,从对电网影响的角度把多重故障分为多回直流故障、多回交流故障和交直流混合故障,并提出多重故障拓扑变化对电网输电断面稳定极限的影响的量化指标,即暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子,通过确定多重故障后的电网输电断面的有功功率和,以及多重故障后的电网输电断面的稳定极限,计算输电断面负载率以及识别电网的薄弱断面。本申请所述的识别电网薄弱断面的装置与现有技术相比,其有益效果包括:
(1)将多重故障分为多重交流线路故障、多重直流线路故障和交直流线路混合故障三种类型,能够量化评估每种类型多重故障对输电断面暂态稳定极限、静态稳定极限和热稳定极限的影响,使调度运行人员掌握预想的多重故障对电网安全稳定的影响程度。
(2)提出了多重故障后输电断面稳定极限和负载率的快速评估方法,能够快速识别多重故障后的电网薄弱输电断面,使调度运行人员掌握大电网预想多重故障后的薄弱环节。
(3)通过识别出预想多重故障后电网薄弱输电断面,可以为调度人员制定应对多重故障的调度处置预案提供参考,对电网的保护与控制具有重要意义。
本申请实施例还提供了一种识别电网薄弱断面的装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述的识别电网薄弱断面的方法。
本申请实施例还提供了一种存储介质,所述存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现上述的识别电网薄弱断面的方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、带电可擦可编程只读存储器(Electrically Erasable Programmable read only memory,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disc  Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (22)

  1. 一种识别电网薄弱断面的方法,包括:
    根据电网中发生多重故障的线路是直流线路和交流线路中的至少一种,确定所述多重故障的类型,其中,所述多重故障的类型包括多回直流故障、多回交流故障或者交直流混合故障;
    确定所述多重故障对输电断面的暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子;
    根据所述输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限;
    根据所述多重故障的类型,计算所述输电断面在所述多重故障后的有功功率和;
    根据所述输电断面在所述多重故障后的有功功率和,以及在所述多重故障后的稳定极限,计算所述输电断面在所述多重故障后的负载率,并将所述负载率大于第一设定值的输电断面作为所述多重故障后的电网薄弱断面。
  2. 根据权利要求1所述的方法,其中,所述确定所述多重故障对所述电网中的输电断面的暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子,包括:
    根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第二设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值阻抗和在所述多重故障后的等值阻抗之间的变化率,并根据所述变化率确定所述多重故障对所述输电断面的暂态稳定极限影响因子;
    根据所述输电断面的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,与在所述多重故障后的等值阻抗之间的变化率,确定所述多重故障对所述输电断面的静态稳定极限影响因子;
    根据所述输电断面的支路开断分布因子和在故障支路开断前的每个正常支路的原始有功功率,确定在所述故障支路开断后的每个正常支路的有功功率,并根据在所述故障支路开断前的每个正常支路的原始有功功率和在所述故障支路开断后的每个正常支路的有功功率之间的变化率,确定所述多重故障对所述 输电断面的热稳定极限影响因子。
  3. 根据权利要求2所述的方法,其中,所述根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第二设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值阻抗和在所述多重故障后的等值阻抗之间的变化率,并根据所述变化率确定所述多重故障对所述输电断面的暂态稳定极限影响因子,包括:
    将所述电网中的送端机组和受端机组简化为两个同调机群;
    根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第二设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值阻抗和在所述多重故障后的等值阻抗之间的变化率;
    将所述变化率中的最大值作为所述多重故障对所述输电断面的暂态稳定极限影响因子
    Figure PCTCN2019103006-appb-100001
    其中,所述暂态稳定极限影响因子
    Figure PCTCN2019103006-appb-100002
    的计算公式为:
    Figure PCTCN2019103006-appb-100003
    式中,
    Figure PCTCN2019103006-appb-100004
    是在多重故障i前机组对(u 1,u 2)之间的等值阻抗,
    Figure PCTCN2019103006-appb-100005
    是在多重故障i后机组对(u 1,u 2)之间的等值阻抗。
  4. 根据权利要求2所述的方法,其中,所述根据所述输电断面的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,与在所述多重故障后的等值阻抗之间的变化率,确定所述多重故障对所述输电断面的静态稳定极限影响因子,包括:
    通过多端口戴维南等值的方法将所述输电断面连接的两个多机系统等效为两个同调等效机组群,其中,从输电断面m的首端,找到一个与所述输电断面m组成线路的首端节点都相连的第一母线节点,并作为首端等效机组,从所述输电断面m的末端,找到一个与所述输电断面m组成线路的末端节点都相连的第二母线节点,并作为末端等效机组;
    计算所述输电断面m的首端等效机组和末端等效机组之间的等值阻抗X m
    根据所述输电断面m的首端等效机组和末端等效机组之间的等值阻抗X m确定所述输电断面m的静态稳定极限P,其中,所述静态稳定极限P的计算公式 为:
    Figure PCTCN2019103006-appb-100006
    根据所述输电断面m的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,以及在所述多重故障后的等值阻抗之间的变化率,确定所述多重故障对所述输电断面m的静态稳定极限影响因子
    Figure PCTCN2019103006-appb-100007
    其中,所述静态稳定极限影响因子
    Figure PCTCN2019103006-appb-100008
    的计算公式为:
    Figure PCTCN2019103006-appb-100009
    式中,
    Figure PCTCN2019103006-appb-100010
    是所述电网在所述多重故障前输电断面m的静态稳定极限,
    Figure PCTCN2019103006-appb-100011
    是所述电网在所述多重故障后输电断面m的静态稳定极限。
  5. 根据权利要求2所述的方法,其中,所述根据所述输电断面的支路开断分布因子和在故障支路开断前的每个正常支路的原始有功功率,确定在所述故障支路开断后的每个正常支路的有功功率,并根据在所述故障支路开断前的每个正常支路的原始有功功率和在所述故障支路开断后的每个正常支路的有功功率之间的变化率,确定所述多重故障对所述输电断面的热稳定极限影响因子,包括:
    在单支路开断后,支路开断分布因子的计算公式为:
    Figure PCTCN2019103006-appb-100012
    式中,D j-k是支路k开断分布因子,X j-k是支路j,k端口对之间的互阻抗,x j是支路j的阻抗;
    所述单支路开断后所述输电断面其他设备的潮流计算公式如下:
    Figure PCTCN2019103006-appb-100013
    式中,
    Figure PCTCN2019103006-appb-100014
    是支路j在支路k开断后的有功功率,
    Figure PCTCN2019103006-appb-100015
    是支路j的初始有功功率,P k是支路k的初始有功功率;
    在双支路开断后,支路开断分布因子的计算公式如下:
    Figure PCTCN2019103006-appb-100016
    式中,D j-kl是支路k,l开断分布因子,X j-k是支路j,k端口对之间的互阻抗,x j是支路j的阻抗,X j-l是支路j,l端口对之间的互阻抗,X k-k是支路k端口对之间的互阻抗,X k-l是支路k,l端口对之间的互阻抗,x k是支路k的阻抗,X l-k是支路k,l端口对之间的互阻抗,X l-l是支路l端口对之间的互阻抗,x l是支路l的阻抗;
    所述双支路开断后所述输电断面其他设备的潮流计算公式如下:
    Figure PCTCN2019103006-appb-100017
    式中,
    Figure PCTCN2019103006-appb-100018
    是支路j在支路k、l开断后的有功功率,P j是支路j的初始有功功率,P k是支路k的初始有功功率,P l是支路l的初始有功功率;
    根据输电断面m中在故障支路开断前的每个正常支路的原始有功功率和在所述故障支路开断后的每个正常支路的有功功率之间的变化率,确定所述多重故障对所述输电断面m的热稳定极限影响因子
    Figure PCTCN2019103006-appb-100019
    其中,所述热稳定极限影响因子
    Figure PCTCN2019103006-appb-100020
    的计算公式为:
    Figure PCTCN2019103006-appb-100021
    式中,
    Figure PCTCN2019103006-appb-100022
    是所述输电断面m组成支路j在多重故障i前的有功功率,
    Figure PCTCN2019103006-appb-100023
    是所述输电断面m组成支路j在多重故障i后的有功功率。
  6. 根据权利要求1所述的方法,其中,所述根据所述输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限,所述输电断面在所述多重故障后的稳定极限的计算公式为:
    Figure PCTCN2019103006-appb-100024
    式中,
    Figure PCTCN2019103006-appb-100025
    为输电断面m在多重故障i前的稳定极限,
    Figure PCTCN2019103006-appb-100026
    为所述输电断面m在所述多重故障i后的稳定极限,
    Figure PCTCN2019103006-appb-100027
    为所述多重故障i对所述输电断面m极限的影响因子。
    其中,将所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子分别代入
    Figure PCTCN2019103006-appb-100028
    后,根据所述输电断面在所述多重故障后的稳 定极限的计算公式计算得到的最小值确定为所述输电断面m在所述多重故障i后的稳定极限。
  7. 根据权利要求1所述的方法,其中,所述输电断面在所述多重故障后的有功功率和包括以下之一:
    所述输电断面因直流线路故障而产生的直流有功功率和;
    所述输电断面因交流线路故障而产生的交流有功功率和;或者
    所述输电断面因直流线路故障而产生的直流有功功率和,与所述输电断面因交流线路故障而产生的交流有功功率和之和。
  8. 根据权利要求7所述的方法,其中,所述输电断面因直流线路故障而产生的直流有功功率和是根据所述电网在直流故障后所述输电断面的发电机有功功率和负荷有功功率,以及送端和受端产生的不平衡功率所确定的;
    所述输电断面因交流线路故障而产生的交流有功功率和为所述输电断面中在故障支路开断后的每个正常支路的有功功率和。
  9. 根据权利要求8所述的方法,其中,所述输电断面因直流线路故障而产生的直流有功功率和是根据所述电网在直流故障后所述输电断面的发电机有功功率和负荷有功功率,以及送端和受端产生的不平衡功率所确定的,包括:
    在所述电网发生直流线路故障的情况下,采用计及频率变化的增广潮流来分析系统状态,其中,发电机有功功率的计算公式为:
    Figure PCTCN2019103006-appb-100029
    式中,P Gi为发电机有功功率,
    Figure PCTCN2019103006-appb-100030
    为发电机原有功功率,K Gi为用标幺值表示的发电机单位调节功率,f d为频率偏差;
    负荷静态频率特性模型为:
    Figure PCTCN2019103006-appb-100031
    式中,P Li为负荷有功功率,
    Figure PCTCN2019103006-appb-100032
    为额定频率下的负荷有功功率,K Pi为有功负荷的频率调节系数;
    直流线路故障后,送端和受端电网产生不平衡功率ΔP DC、每一个发电机有功功率P Gi与原有功功率
    Figure PCTCN2019103006-appb-100033
    之间的变化量,以及每一个负荷有功功率P Li与额定频率下的负荷有功功率
    Figure PCTCN2019103006-appb-100034
    之间的变化量的关系满足如下功率关系计算公式:
    Figure PCTCN2019103006-appb-100035
    联立发电机有功功率的计算公式、负荷静态频率特性模型,以及所述功率关系计算公式,确定所述电网在直流线路故障后输电断面的每一个发电机有功功率P Gi和每一个负荷功率P Li,并确定所述输电断面每一个线路上的直流有功功率。
  10. 根据权利要求1所述的方法,其中,所述根据所述输电断面在所述多重故障后的有功功率和,以及在所述多重故障后的稳定极限,计算所述输电断面在所述多重故障后的负载率,并将所述负载率大于第一设定值的输电断面作为所述多重故障后的电网薄弱断面,包括:
    根据输电断面m在所述多重故障后的有功功率和
    Figure PCTCN2019103006-appb-100036
    以及在所述多重故障后的稳定极限
    Figure PCTCN2019103006-appb-100037
    计算所述输电断面m在所述多重故障后的负载率,其中,所述负载率η的计算公式为:
    Figure PCTCN2019103006-appb-100038
    比较所述输电断面m的负载率η和第一设定值的大小,在所述负载率η大于第一设定值的条件下,所述输电断面m即为电网的薄弱断面。
  11. 一种识别电网薄弱断面的装置,包括:
    故障分类单元,设置为根据电网中发生多重故障的线路是直流线路和交流线路中的至少一种,确定所述多重故障的类型,其中,所述多重故障的类型包括多回直流故障、多回交流故障或者交直流混合故障;
    因子单元,设置为确定所述多重故障对输电断面的暂态稳定极限影响因子、静态稳定极限影响因子和热稳定极限影响因子;
    稳定极限单元,设置为根据所述输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限;
    功率单元,设置为根据所述多重故障的类型,计算所述输电断面在所述多重故障后的有功功率和;
    断面识别单元,设置为根据所述输电断面在所述多重故障后的有功功率和,以及在所述多重故障后的稳定极限,计算所述输电断面在所述多重故障后的负 载率,并将所述负载率大于第一设定值的输电断面作为所述多重故障后的电网薄弱断面。
  12. 根据权利要求11所述的装置,所述因子单元包括:
    第一因子单元,设置为根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第一设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值阻抗和在所述多重故障后的等值阻抗之间的变化率,并根据所述变化率确定所述多重故障对所述输电断面的暂态稳定极限影响因子;
    第二因子单元,设置为根据所述输电断面的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,与在所述多重故障后的等值阻抗之间的变化率,确定所述多重故障对所述输电断面的静态稳定极限影响因子;
    第三因子单元,设置为根据所述输电断面的支路开断分布因子和在故障支路开断前的每个正常支路的原始有功功率,确定在所述故障支路开断后的每个正常支路的有功功率,并根据在所述故障支路开断前的每个正常支路的原始有功功率和在所述故障支路开断后的每个正常支路的有功功率之间的变化率,确定所述多重故障对所述输电断面的热稳定极限影响因子。
  13. 根据权利要求12所述的装置,其中,所述第一因子单元根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第二设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值阻抗和在所述多重故障后的等值阻抗之间的变化率,并根据所述变化率确定所述多重故障对所述输电断面的暂态稳定极限影响因子,包括:
    将所述电网中的送端机组和受端机组简化为两个同调机群;
    根据暂态稳定时域仿真的结果,确定输电断面中功角差大于第二设定值的机组对组成的危险机组对集合,计算每个危险机组对在所述多重故障前的等值阻抗和在所述多重故障后的等值阻抗之间的变化率;
    将所述变化率中的最大值作为所述多重故障对所述输电断面的暂态稳定极限影响因子
    Figure PCTCN2019103006-appb-100039
    其中,所述暂态稳定极限影响因子
    Figure PCTCN2019103006-appb-100040
    的计算公式为:
    Figure PCTCN2019103006-appb-100041
    式中,
    Figure PCTCN2019103006-appb-100042
    是在多重故障i前机组对(u 1,u 2)之间的等值阻抗,
    Figure PCTCN2019103006-appb-100043
    是在多重故障i后机组对(u 1,u 2)之间的等值阻抗。
  14. 根据权利要求12所述的装置,其中,所述第二因子单元根据所述输电断面的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,与在所述多重故障后的等值阻抗之间的变化率,确定所述多重故障对所述输电断面的静态稳定极限影响因子,包括:
    通过多端口戴维南等值的方法将所述输电断面连接的两个多机系统等效为两个同调等效机组群,其中,从输电断面m的首端,找到一个与所述输电断面m组成线路的首端节点都相连的第一母线节点,并作为首端等效机组,从所述输电断面m的末端,找到一个与所述输电断面m组成线路的末端节点都相连的第二母线节点,并作为末端等效机组;
    计算所述输电断面m的首端等效机组和末端等效机组之间的等值阻抗X m
    根据所述输电断面m的首端等效机组和末端等效机组之间的等值阻抗X m确定所述输电断面m的静态稳定极限P,其中,所述静态稳定极限P的计算公式为:
    Figure PCTCN2019103006-appb-100044
    根据所述输电断面m的首端等效机组和末端等效机组之间在所述多重故障前的等值阻抗,以及在所述多重故障后的等值阻抗之间的变化率,确定所述多重故障对所述输电断面m的静态稳定极限影响因子
    Figure PCTCN2019103006-appb-100045
    其中,所述静态稳定极限影响因子
    Figure PCTCN2019103006-appb-100046
    的计算公式为:
    Figure PCTCN2019103006-appb-100047
    式中,
    Figure PCTCN2019103006-appb-100048
    是所述电网在所述多重故障前输电断面m的静态稳定极限,
    Figure PCTCN2019103006-appb-100049
    是所述电网在所述多重故障后输电断面m的静态稳定极限。
  15. 根据权利要求12所述的装置,其中,所述第三因子单元根据所述输电断面的支路开断分布因子和在故障支路开断前的每个正常支路的原始有功功率,确定在所述故障支路开断后的每个正常支路的有功功率,并根据在所述故障支路开断前的每个正常支路的原始有功功率和在所述故障支路开断后的每个 正常支路的有功功率之间的变化率,确定所述多重故障对所述输电断面的热稳定极限影响因子,包括:
    在单支路开断后,支路开断分布因子的计算公式为:
    Figure PCTCN2019103006-appb-100050
    式中,D j-k是支路k开断分布因子,X j-k是支路j,k端口对之间的互阻抗,x j是支路j的阻抗;
    所述单支路开断后所述输电断面其他设备的潮流计算公式如下:
    Figure PCTCN2019103006-appb-100051
    式中,
    Figure PCTCN2019103006-appb-100052
    是支路j在支路k开断后的有功功率,
    Figure PCTCN2019103006-appb-100053
    是支路j的初始有功功率,P k是支路k的初始有功功率;
    在双支路开断后,支路开断分布因子的计算公式如下:
    Figure PCTCN2019103006-appb-100054
    式中,D j-ki是支路k,l开断分布因子,X j-k是支路j,k端口对之间的互阻抗,x j是支路j的阻抗,X j-l是支路j,l端口对之间的互阻抗,X k-k是支路k端口对之间的互阻抗,X k-l是支路k,l端口对之间的互阻抗,x k是支路k的阻抗,X l-k是支路k,l端口对之间的互阻抗,X l-l是支路l端口对之间的互阻抗,x l是支路l的阻抗;
    所述双支路开断后所述输电断面其他设备的潮流计算公式如下:
    Figure PCTCN2019103006-appb-100055
    式中,
    Figure PCTCN2019103006-appb-100056
    是支路j在支路k、l开断后的有功功率,P j是支路j的初始有功功率,P k是支路k的初始有功功率,P l是支路l的初始有功功率;
    根据输电断面m中在故障支路开断前的每个正常支路的原始有功功率和在所述故障支路开断后的每个正常支路的有功功率之间的变化率,确定所述多重故障对所述输电断面m的热稳定极限影响因子
    Figure PCTCN2019103006-appb-100057
    其中,所述热稳定极限影响因子
    Figure PCTCN2019103006-appb-100058
    的计算公式为:
    Figure PCTCN2019103006-appb-100059
    式中,
    Figure PCTCN2019103006-appb-100060
    是所述输电断面m组成支路j在多重故障i前的有功功率,
    Figure PCTCN2019103006-appb-100061
    是所述输电断面m组成支路j在多重故障i后的有功功率。
  16. 根据权利要求12所述的装置,其中,所述稳定极限单元根据所述输电断面在所述多重故障前的稳定极限以及确定的所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子,确定所述输电断面在所述多重故障后的稳定极限,所述输电断面在所述多重故障后的稳定极限的计算公式为:
    Figure PCTCN2019103006-appb-100062
    式中,
    Figure PCTCN2019103006-appb-100063
    为输电断面m在多重故障i前的稳定极限,
    Figure PCTCN2019103006-appb-100064
    为所述输电断面m在所述多重故障i后的稳定极限,
    Figure PCTCN2019103006-appb-100065
    为所述多重故障i对所述输电断面m极限的影响因子。
    其中,将所述暂态稳定极限影响因子、所述静态稳定极限影响因子和所述热稳定极限影响因子分别代入
    Figure PCTCN2019103006-appb-100066
    后,根据所述输电断面在所述多重故障后的稳定极限的计算公式计算得到的最小值确定为所述输电断面m在所述多重故障i后的稳定极限。
  17. 根据权利要求11所述的装置,其中,所述输电断面在所述多重故障后的有功功率和包括:
    所述输电断面因直流线路故障而产生的直流有功功率和;
    所述输电断面因交流线路故障而产生的交流有功功率和;或者
    所述输电断面因直流线路故障而产生的直流有功功率和,与所述输电断面因交流线路故障而产生的交流有功功率和之和。
  18. 根据权利要求17所述的装置,其中,所述输电断面因直流线路故障而产生的直流有功功率和是根据所述电网在直流故障后所述输电断面的发电机有功功率和负荷有功功率,以及送端和受端产生的不平衡功率所确定的;
    所述输电断面因交流线路故障而产生的交流有功功率和为所述输电断面中在故障支路开断后的每个正常支路的有功功率和。
  19. 根据权利要求18所述的装置,其中,所述输电断面因直流线路故障而产生的直流有功功率和是根据所述电网在直流故障后所述输电断面的发电机有功功率和负荷有功功率,以及送端和受端产生的不平衡功率所确定的,包括:
    在所述电网发生直流线路故障的情况下,采用计及频率变化的增广潮流来分析系统状态,其中,发电机有功功率的计算公式为:
    Figure PCTCN2019103006-appb-100067
    式中,P Gi为发电机有功功率,
    Figure PCTCN2019103006-appb-100068
    为发电机原有功功率,K Gi为用标幺值表示的发电机单位调节功率,f d为频率偏差;
    负荷静态频率特性模型为:
    Figure PCTCN2019103006-appb-100069
    式中,P Li为负荷有功功率,
    Figure PCTCN2019103006-appb-100070
    为额定频率下的负荷有功功率,K Pi为有功负荷的频率调节系数;
    直流线路故障后,送端和受端电网产生不平衡功率ΔP DC、每一个发电机有功功率P Gi与原有功功率
    Figure PCTCN2019103006-appb-100071
    之间的变化量,以及每一个负荷有功功率P Li与额定频率下的负荷有功功率
    Figure PCTCN2019103006-appb-100072
    之间的变化量的关系满足如下功率关系计算公式:
    Figure PCTCN2019103006-appb-100073
    联立发电机有功功率的计算公式、负荷静态频率特性模型,以及所述功率关系计算公式,确定所述电网在直流线路故障后输电断面的每一个发电机有功功率和每一个负荷功率P Li,并确定所述输电断面m每一个线路上的直流有功功率。
  20. 根据权利要求11所述的装置,其中,所述断面识别单元包括:
    负载率确定单元,设置为根据输电断面m在所述多重故障后的有功功率和
    Figure PCTCN2019103006-appb-100074
    以及在所述多重故障后的稳定极限
    Figure PCTCN2019103006-appb-100075
    计算所述输电断面m在所述多重故障后的负载率,其中,所述负载率η的计算公式为:
    Figure PCTCN2019103006-appb-100076
    薄弱断面确定单元,设置为比较所述输电断面m的负载率η和第一设定值的 大小,在所述负载率η大于第一设定值的条件下,所述输电断面m即为电网的薄弱断面。
  21. 一种识别电网薄弱断面的装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的识别电网薄弱断面的方法。
  22. 一种存储介质,存储有信息处理程序,所述信息处理程序被处理器执行时实现如权利要求1至10中任一项所述的识别电网薄弱断面的方法。
PCT/CN2019/103006 2018-10-17 2019-08-28 识别电网薄弱断面的方法、装置及存储介质 WO2020078109A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811209299.6 2018-10-17
CN201811209299.6A CN109412147B (zh) 2018-10-17 2018-10-17 一种识别预想多重故障后的电网薄弱断面的方法和系统

Publications (1)

Publication Number Publication Date
WO2020078109A1 true WO2020078109A1 (zh) 2020-04-23

Family

ID=65467304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103006 WO2020078109A1 (zh) 2018-10-17 2019-08-28 识别电网薄弱断面的方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN109412147B (zh)
WO (1) WO2020078109A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799773A (zh) * 2020-05-26 2020-10-20 中国电力科学研究院有限公司 一种用于预测电网连锁故障集的方法及系统
CN111831711A (zh) * 2020-07-27 2020-10-27 广东电网有限责任公司 基于激光坐标的输电线路同塔与线线交叉跨越统计方法
CN111900730A (zh) * 2020-07-20 2020-11-06 国电南瑞科技股份有限公司 一种输电通道热稳定限额区间在线计算方法和装置
CN112332409A (zh) * 2020-10-22 2021-02-05 云南电网有限责任公司 一种电力系统输电断面潮流调整方法及装置
CN112541100A (zh) * 2020-12-02 2021-03-23 国网安徽省电力有限公司 基于拓扑分析的电网薄弱环节自动搜索方法
CN113505458A (zh) * 2021-07-26 2021-10-15 中国电力科学研究院有限公司 连锁故障关键触发支路预测方法、系统、设备及存储介质
CN113595068A (zh) * 2021-07-20 2021-11-02 嘉峪关宏晟电热有限责任公司 一种适用于企业电网异常情况下的电网稳定控制方法
CN114172155A (zh) * 2021-12-07 2022-03-11 中国电力科学研究院有限公司 多重故障开断的潮流计算方法、系统、设备及存储介质
CN114580667A (zh) * 2022-01-20 2022-06-03 中国能源建设集团江苏省电力设计院有限公司 一种基于hits算法的电网线路脆弱性分析方法
CN115173486A (zh) * 2022-07-26 2022-10-11 广东电网有限责任公司电力调度控制中心 一种电网功率分配方法、装置、设备和存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412147B (zh) * 2018-10-17 2021-10-22 中国电力科学研究院有限公司 一种识别预想多重故障后的电网薄弱断面的方法和系统
CN109936134B (zh) * 2019-04-03 2022-08-23 国电南瑞科技股份有限公司 一种热稳定输电通道功率极限区间快速识别方法及设备
CN110137926B (zh) * 2019-04-11 2022-03-04 中国电力科学研究院有限公司 考虑多重故障的输电断面的功率极限计算方法及系统
CN110084513A (zh) * 2019-04-26 2019-08-02 中国电力科学研究院有限公司 基于分布因子的电网输电断面确定方法
CN113452012A (zh) * 2020-03-27 2021-09-28 南京南瑞继保电气有限公司 一种计及气象因素的电力系统暂态稳定计算方法
CN114928068B (zh) * 2022-05-20 2024-08-30 广东电网有限责任公司东莞供电局 一种受端电网同步调相机的布点定容方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237720A (zh) * 2011-05-16 2011-11-09 中国电力科学研究院 一种电网安全分析、预警及控制方法
CN103823998A (zh) * 2014-03-19 2014-05-28 国家电网公司 考虑网络拓扑变化对输电能力影响的薄弱断面确定方法
CN107769191A (zh) * 2016-08-18 2018-03-06 中国电力科学研究院 基于网络拓扑和潮流数据的关键输电断面自动识别方法
CN109412147A (zh) * 2018-10-17 2019-03-01 中国电力科学研究院有限公司 一种识别预想多重故障后的电网薄弱断面的方法和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640418B (zh) * 2009-09-03 2011-08-24 国网电力科学研究院 电力系统故障的暂态稳定关键输电断面识别方法
CN103279638B (zh) * 2013-04-23 2017-02-08 国家电网公司 一种基于响应的大电网全态势在线一体化量化评估方法
US10097000B2 (en) * 2014-08-11 2018-10-09 Board Of Trustees Of Michigan State University Tool employing homotopy-based approaches in finding the controlling unstable equilibrium point in the electric power grid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237720A (zh) * 2011-05-16 2011-11-09 中国电力科学研究院 一种电网安全分析、预警及控制方法
CN103823998A (zh) * 2014-03-19 2014-05-28 国家电网公司 考虑网络拓扑变化对输电能力影响的薄弱断面确定方法
CN107769191A (zh) * 2016-08-18 2018-03-06 中国电力科学研究院 基于网络拓扑和潮流数据的关键输电断面自动识别方法
CN109412147A (zh) * 2018-10-17 2019-03-01 中国电力科学研究院有限公司 一种识别预想多重故障后的电网薄弱断面的方法和系统

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799773B (zh) * 2020-05-26 2022-05-20 中国电力科学研究院有限公司 一种用于预测电网连锁故障集的方法及系统
CN111799773A (zh) * 2020-05-26 2020-10-20 中国电力科学研究院有限公司 一种用于预测电网连锁故障集的方法及系统
CN111900730A (zh) * 2020-07-20 2020-11-06 国电南瑞科技股份有限公司 一种输电通道热稳定限额区间在线计算方法和装置
CN111900730B (zh) * 2020-07-20 2021-09-28 国电南瑞科技股份有限公司 一种输电通道热稳定限额区间在线计算方法和装置
CN111831711A (zh) * 2020-07-27 2020-10-27 广东电网有限责任公司 基于激光坐标的输电线路同塔与线线交叉跨越统计方法
CN111831711B (zh) * 2020-07-27 2022-06-14 广东电网有限责任公司 基于激光坐标的输电线路同塔与线线交叉跨越统计方法
CN112332409A (zh) * 2020-10-22 2021-02-05 云南电网有限责任公司 一种电力系统输电断面潮流调整方法及装置
CN112332409B (zh) * 2020-10-22 2023-08-22 云南电网有限责任公司 一种电力系统输电断面潮流调整方法及装置
CN112541100A (zh) * 2020-12-02 2021-03-23 国网安徽省电力有限公司 基于拓扑分析的电网薄弱环节自动搜索方法
CN112541100B (zh) * 2020-12-02 2024-05-31 国网安徽省电力有限公司 基于拓扑分析的电网薄弱环节自动搜索方法
CN113595068A (zh) * 2021-07-20 2021-11-02 嘉峪关宏晟电热有限责任公司 一种适用于企业电网异常情况下的电网稳定控制方法
CN113505458A (zh) * 2021-07-26 2021-10-15 中国电力科学研究院有限公司 连锁故障关键触发支路预测方法、系统、设备及存储介质
CN114172155A (zh) * 2021-12-07 2022-03-11 中国电力科学研究院有限公司 多重故障开断的潮流计算方法、系统、设备及存储介质
CN114580667A (zh) * 2022-01-20 2022-06-03 中国能源建设集团江苏省电力设计院有限公司 一种基于hits算法的电网线路脆弱性分析方法
CN115173486A (zh) * 2022-07-26 2022-10-11 广东电网有限责任公司电力调度控制中心 一种电网功率分配方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN109412147A (zh) 2019-03-01
CN109412147B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
WO2020078109A1 (zh) 识别电网薄弱断面的方法、装置及存储介质
CN108318782B (zh) 基于网络拓扑与配变停电信息的配电网故障区域辨识方法
US9310416B2 (en) GSM/GPRS based method, system and computer programs to determine and locate high impedance faults on medium voltage distribution networks in high resistivity
Hines et al. Topological models and critical slowing down: Two approaches to power system blackout risk analysis
CN103426056A (zh) 基于风险评估的电力系统薄弱环节辨识方法
Wang et al. On bus type assignments in random topology power grid models
US11477213B2 (en) Technologies for providing secure emergency power control of high voltage direct current transmission system
CN104933515B (zh) 一种用于石油化工企业电网的管理系统
CN110826228B (zh) 一种地区电网运行品质极限评估方法
CN112202597A (zh) 一种低压台区通信网络节点重要度的评估方法
CN108596450B (zh) 电网风险预警方法和系统
CN105741016B (zh) 一种用于中期电网规划的静态可靠性概率指标获取方法
CN112887207A (zh) 用于电力ip-光通信网络的业务路由分配方法及装置
CN106952178B (zh) 一种基于量测平衡的遥测不良数据辨识与原因分辨方法
CN111313399B (zh) 一种区域用电网络拓扑关系确认方法、装置和系统
Myhre et al. Modeling interdependencies with complex network theory in a combined electrical power and ICT system
Ju et al. Real-time area angle monitoring using synchrophasors: A practical framework and utility deployment
CN113504437A (zh) 一种中性点小电阻接地配电网单相接地故障区间辨识方法
CN107453786B (zh) 一种电力通信网络模型建立方法及装置
CN109298244A (zh) 一种考虑故障阻抗的暂降域识别方法
CN113092936A (zh) 基于多源数据协同的配电网电缆故障区段辨识方法
Noce et al. Comparison of methods using only voltage measurements for detecting the origin of voltage sags in the modern distribution networks
KR20240013412A (ko) 인공지능 기반 전력설비 고장 인식 시스템 및 그 동작방법
CN110460037B (zh) 双射式电缆配电网接线方式的线-变-表拓扑异常辨识方法
Ji et al. Comprehensive vulnerability assessment and optimization method for smart grid communication transmission systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872618

Country of ref document: EP

Kind code of ref document: A1