WO2020077780A1 - 共聚焦三维测量装置及其多孔径尼普科夫圆盘 - Google Patents

共聚焦三维测量装置及其多孔径尼普科夫圆盘 Download PDF

Info

Publication number
WO2020077780A1
WO2020077780A1 PCT/CN2018/120636 CN2018120636W WO2020077780A1 WO 2020077780 A1 WO2020077780 A1 WO 2020077780A1 CN 2018120636 W CN2018120636 W CN 2018120636W WO 2020077780 A1 WO2020077780 A1 WO 2020077780A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
aperture
confocal
disc
Prior art date
Application number
PCT/CN2018/120636
Other languages
English (en)
French (fr)
Inventor
吴俊杰
李源
蔡潇雨
魏佳斯
陈欣
傅云霞
Original Assignee
上海市计量测试技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海市计量测试技术研究院 filed Critical 上海市计量测试技术研究院
Priority to DE112018007549.4T priority Critical patent/DE112018007549T5/de
Publication of WO2020077780A1 publication Critical patent/WO2020077780A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0044Scanning details, e.g. scanning stages moving apertures, e.g. Nipkow disks, rotating lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0072Optical details of the image generation details concerning resolution or correction, including general design of CSOM objectives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison

Definitions

  • the invention relates to a confocal three-dimensional measuring device and its multi-aperture Nipkov disc.
  • the traditional optical microscope's theoretical resolution can only reach the order of the wavelength of the light source, which is generally a few hundred nanometers.
  • the development of modern nanotechnology puts forward higher requirements for the resolution of measurement equipment.
  • scanning electron microscope and scanning tunneling microscope can achieve high resolution, which can reach the order of 0.01nm, their use has certain limitations, mainly It is manifested by the small measurement range, the need to measure in a vacuum environment, and the destructiveness of living cell samples.
  • the confocal microscope is widely used in biomedicine, precision measurement, material science and other fields due to its unique optical tomography ability, high lateral resolution characteristics and three-dimensional measurement ability on the surface and internal structure of living cells.
  • the imaging quality, resolution, measurement speed and automation level have been continuously improved, and the overall performance has also been comprehensively improved.
  • Confocal microscopes are currently divided into laser scanning confocal microscopes and rotary disc confocal microscopes.
  • Turntable confocal microscope can use laser or white light as the light source. It has the characteristics of multiple channels and fast scanning speed, which can solve the problem of rapid spatiotemporal imaging of living cells.
  • the core device is a Nipkov scanning disk with a pinhole array, and the pinholes of the scanning disk are evenly arranged in an Archimedes line. During the measurement, the image of the same focal plane is acquired by the rotation of the scanning disk.
  • the confocal pinhole on the turntable of the traditional turntable confocal microscope has only one size. The optimal parameters of this size are often designed according to the objective lens with the maximum magnification. It is difficult to achieve the best confocal performance when using other low magnification objectives.
  • the high-magnification objective lens has a small field of view and a limited observation range.
  • the object of the present invention is to provide a confocal three-dimensional measurement device and its multi-aperture Nipkov disc, which can improve the measurement resolution and accuracy.
  • the present invention provides a multi-aperture Nipkov disc in a confocal three-dimensional measuring device, including a circular base disc, at least one circular scanning belt is provided on the circular base disc, and the scanning surface belt A plurality of light-transmitting hole groups are distributed, and each light-transmitting hole group is spirally and symmetrically distributed around the center of the circular base plate, and the light-transmitting holes in different light-transmitting hole groups are distributed along different Archimedes spiral segments.
  • the part of the belt area other than the light-transmitting hole is opaque.
  • the round base plate is provided with a plurality of scanning surface bands, and the number of light transmission hole groups and the diameters of the light transmission holes in different scanning belts are different.
  • the circular base plate includes a base made of a light-transmitting material and a light-shielding film plated on the surface of the base.
  • the circular base plate is made of an opaque material.
  • the present invention also provides a confocal three-dimensional measuring device, including:
  • Light source module beam splitter, image acquisition module, confocal scanning module, microscope objective lens and three-dimensional motion platform;
  • the three-dimensional motion platform is used to carry the sample to be tested
  • the confocal scanning module includes the multi-aperture Nipkov disc, the first lens and the second lens described in the above technical solution or any one of the preferred technical solutions thereof.
  • the first lens is located on the beam splitter and the multi-aperture lens Between the Pkov discs, the second lens is located between the multi-aperture Nipkov disc and the microscope objective lens; the multi-aperture Nipkov disc is driven to rotate by a rotation driving mechanism;
  • the beam splitter receives the light emitted by the light source module and reflects part of the light toward the first lens.
  • the light passes through the first lens, the light-transmitting hole on the multi-aperture Nipkov disc, the second lens and the microscope objective lens in turn
  • the sample reflects the light and passes through the microscope objective lens, the second lens, the light transmission hole on the multi-aperture Nipkov disc, the first lens, the beam splitter and then enters the image acquisition Module.
  • the first lens and the second lens are coaxially arranged, and the axis of the multi-aperture Nipkov disc is inclined relative to the axis of the first lens.
  • the multi-aperture Nipkov disc is also driven by a linear drive mechanism to be able to approach or move away from the axis of the first lens.
  • the image acquisition module includes a CCD camera and a third lens, and light entering the image acquisition module from the spectroscope is condensed into the CCD camera through the third lens.
  • the light source module includes a light source and a fourth lens, and the light emitted by the light source is converted into parallel light by the fourth lens and then is directed to the beam splitter.
  • the micro objective lens is an achromatic objective lens, a semi-apochromatic objective lens or an apochromatic objective lens.
  • the present invention relates to a confocal three-dimensional measurement device and its multi-aperture Nipkov disc, which has the following beneficial effects: since at least one annular scanning belt is provided on the multi-aperture Nipkov disc The diameter of the transmission holes in different scanning belts is different, so that the scanning belt with the appropriate diameter of the transparent hole can be selected according to the magnification of the microscope objective to filter and focus the light, so that the appropriate diameter of the light transmission The hole is in a working state, so that the resolution and accuracy indexes of the measuring device reach the optimal state. It can be seen from this that the multi-aperture Nipkov disc in a confocal three-dimensional measurement device of the present invention can improve measurement resolution and accuracy.
  • the confocal three-dimensional measuring device of the present invention also has the above-mentioned beneficial effects, of course, and will not be repeated here.
  • Figure 1 shows a top view of a multi-aperture Nipkov disc.
  • Figure 2-1 shows the principle diagram of the light transmitting hole in the focusing working state.
  • Figure 2-2 shows the principle diagram of the light-transmitting hole in the defocused working state.
  • FIG. 3 shows a schematic diagram of the movement trajectory of the light transmission hole when the Nipkov disk rotates.
  • FIG. 4 shows a schematic structural view of a confocal three-dimensional measurement device.
  • FIG. 5 is a schematic structural diagram of a confocal scanning module.
  • Figure 6 shows a schematic diagram of the structure of the image acquisition module.
  • FIG. 7 is a schematic structural diagram of a light source module.
  • Figure 8-1 shows the schematic diagram of the achromatic objective lens.
  • Figure 8-2 shows a schematic diagram of a semi-apochromatic objective lens.
  • Figure 8-3 shows a schematic diagram of the achromatic objective lens.
  • the present invention provides a multi-aperture Nipkov disk in a confocal three-dimensional measurement device, including a circular base disk, at least one circular scanning belt and scanning surface belt are provided on the circular base disk There are a plurality of light-transmitting holes 111 groups distributed on the upper surface, and each light-transmitting hole 111 group is spirally and symmetrically distributed around the center of the circular base plate.
  • the light-transmitting holes 111 in different light-transmitting holes 111 groups follow different Archimedes spirals 112 segments are distributed, and the part of the scanning belt area other than the light transmitting hole 111 is opaque.
  • the multi-aperture Nipkov disc 11 is used for filtering And converge the light rays that are directed toward or returning from the microscope objective 5.
  • the diameters of the through holes in different scanning zones are different, so that it can be selected according to the magnification of the microscope objective 5
  • the scanning of the light-transmitting hole 111 with a diameter brings filtering and focusing of light, so that the light-transmitting hole 111 with a suitable diameter is in a working state, so that the resolution and accuracy indexes of the measuring device reach an optimal state. It can be seen from this that the multi-aperture Nipkov disc in a confocal three-dimensional measurement device of the present invention can improve measurement resolution and accuracy.
  • the circular base disc in order to adapt to different magnifications of the micro-objective lens 5, as shown in FIG. 1, the circular base disc is provided with multiple A scanning belt, each scanning belt includes a plurality of groups 111 of light-transmitting holes 111 which are rotationally symmetrical about the axis of the circular base plate, and the center of each light-transmitting hole 111 in the same group 111 is in the same base
  • the Archimedes curve where each Archimedes curve segment is located passes through the center of the circular base plate. As shown in FIG.
  • the number of groups of light-transmitting holes 111 and the diameter of the light-transmitting holes 111 in different scanning zones are different.
  • the distance between the diameter of each light-transmitting hole 111 and the adjacent light-transmitting hole 111 in the same scanning belt is adaptively determined according to the magnification of the microscope objective 5 to which the scanning surface belt is adapted.
  • the diameter and phase of each light-transmitting hole 111 The size of the distance between the adjacent light-transmitting holes 111 should be such that the measuring device has the best resolution and accuracy index at the magnification of the corresponding microscope objective 5.
  • the circular disc 11 includes a substrate made of a light-transmitting material and a light-shielding film 115 plated on the surface of the substrate. Quartz glass 116 can be used to make the circular substrate The substrate is processed by MEMS technology.
  • the quartz glass 116 is flattened and chemically mechanically polished, it is washed with calcium carbonate and then physically cleaned; a silicon thin film is formed on the quartz glass 116 by plasma chemical vapor deposition as the light-shielding film 115 Then, the desired pattern is formed by photoresist, photolithography, and development. The photoresist is used as a protective film, and the light-transmitting hole 111 is processed by chemical etching or dry etching.
  • the circular base plate can also be made of opaque materials, processed with opaque metal sheets or non-metallic sheets, and laser perforated or other perforated methods are used to process the transparent holes with different apertures shown in Figure 1
  • the optical hole 111 forms a scanning belt R1 and a scanning belt R2, and a mounting hole 113.
  • the selected matrix material should have high stiffness and low coefficient of thermal expansion, while also ensuring good shading performance.
  • the present invention also provides a confocal three-dimensional measuring device, including:
  • the three-dimensional motion platform 7 is used to carry the sample 6 to be tested;
  • the confocal scanning module 1 includes the multi-aperture Nipkov disc 11, the first lens 15 and the second lens 16 described in the above technical solution or any one of the preferred technical solutions.
  • the first The lens 15 is located between the beam splitter 4 and the multi-aperture Nipkov disc
  • the second lens 16 is located between the multi-aperture Nipkov disc and the microscope objective 5; the multi-aperture Nipkov disc 11 Driven by the rotary drive mechanism 12 to rotate;
  • the beam splitter 4 receives the light emitted by the light source 31 module 3 and reflects part of the light toward the first lens 15.
  • the light passes through the first lens 15, the light transmission hole 111 on the multi-aperture Nipkov disc, and the second lens 16 After illuminating with the microscope objective 5, it irradiates the sample 6 to be tested on the three-dimensional motion platform 7.
  • the sample reflects the light and passes through the microscope objective 5, the second lens 16, and the light transmission hole 111 on the multi-aperture Nipkov disc in turn 1.
  • the first lens 15 and the beam splitter 4 are then injected into the image acquisition module 2.
  • a light transmission hole 111a with a small aperture forms a scanning belt R1 on a circular substrate
  • a light transmission hole 111b with a large aperture forms a scanning belt R2, a scanning belt R1 and a scanning belt R2 on a circular substrate
  • the light transmission holes 111 are uniformly arranged in the manner of Archimedes spiral 112, and are distributed on the respective scanning belts in the form of a circumferential array. According to the available magnification parameters of the microscope objective 5, more scanning bands with a diameter of 111 of the light transmission hole can be designed to match more kinds of magnification microscope objectives 5.
  • the number of scanning zones can be 2, 3 or even More.
  • the diameter of the transparent hole 111 is generally designed to be 25 microns, 50 microns or the same order of magnitude, the interval between adjacent transparent holes 111 is based on the diameter of the transparent hole 111 and the designed confocal system parameters to the optimal size Spacing settings.
  • the circular base plate is also provided with a mounting hole 113 for connecting with the rotary drive mechanism 12, the rotary mechanism drives the circular base plate to rotate, the rotation speed accurately matches the sampling frequency of the image acquisition module 2, and the three-dimensional motion platform 7 is also needed The longitudinal driving speeds of the two are matched, so that the image acquisition module 2 can acquire a continuous and complete object image on the sample 6 to be detected.
  • the workpiece to be inspected is placed on the three-dimensional motion platform 7, please refer to FIG. 4, the light emitted by the light source 31 module 3 is reflected by the beam splitter 4 , Enter the confocal scanning module 1, and then converge through the microscope objective 5 to irradiate the surface of the sample 6 to be tested on the three-dimensional motion platform 7.
  • the light reflected from the surface of the sample 6 to be tested enters the microscope objective 5 and the confocal scanning module 1 again, as shown in FIGS. 2-1 and 2-2 and FIG.
  • the mirror 4 enters the image acquisition module 2, and the image acquisition module 2 stores the collected optical tomographic image in a computer for subsequent processing and reconstruction.
  • the three-dimensional motion platform 7 When the system is working, the three-dimensional motion platform 7 is used to drive the sample 6 to be laterally translated to locate the detected feature position, and then the three-dimensional motion platform 7 drives the sample to be detected 6 to move longitudinally, and cooperates with the confocal scanning module 1 and the image acquisition module 2 Realize tomography imaging.
  • the rotational speed of the multi-aperture Nipkov disk 11 in the confocal scanning module 1 should accurately match the sampling frequency of the CCD camera 21 in the image acquisition module 2 and also match the longitudinal driving speed of the three-dimensional motion platform 7.
  • the relevant image reconstruction algorithm can be used to restore the morphological information of the measured features on the sample surface.
  • the CCD camera 21 should have a high sensitivity and a large dynamic range, as well as a small pixel size and pixel pitch, so as to obtain a high system measurement resolution. At the same time, it should have a larger target size to obtain a larger single-field measurement range.
  • the multi-aperture Nipkov disc 11 is located at a position conjugated to the focal plane of the sample to be measured in the imaging system, and the light reflected from the sample returns to the light-transmitting hole on the multi-aperture Nipkov disc 11
  • the principle of the confocal action played by the light transmitting hole 111 is shown in Figure 2-1 and Figure 2-2.
  • the light reflected from the focal plane of the microscope objective 5 is condensed by the second lens 16 and can pass through the light transmission hole 111, as shown in FIG.
  • the CCD camera 21 can only collect the signal reflected at the focal plane of the micro-objective lens 5 after the confocal action of the multi-aperture Nipkov disk 11, effectively eliminating the interference of the non-focal plane reflected signal from the micro-objective lens 5 Therefore, the signal-to-noise ratio of the signal is improved, and the imaging quality and resolution are improved.
  • the multi-aperture Nipkov disc 11 is driven to rotate by the rotation driving mechanism 12, because the light-transmitting holes 111 on the multi-aperture Nipkov disc 11 are arranged in the manner of the Archimedes spiral 112, and Distributed in a circumferential array, when the multi-aperture Nipkov disc 11 rotates, the trajectory direction of the light-transmitting hole 111 moves as shown in FIG. 3 (the arrow direction in FIG.
  • the multi-aperture Nipkov disc 11 is used to filter light reflected from areas other than the surface of the sample 6 to be tested at the focal plane of the microscope objective 5 as shown in FIG. 4
  • the first lens 15 and the second lens 16 are coaxially arranged, and the axes of the first lens 15 and the second lens 16 extend in the vertical direction, in order to prevent the area of the upper surface of the multi-aperture Nipkov disc 11 (This area is the position between the two through holes.)
  • the light enters the image acquisition module 2 from the first lens 15 through the beam splitter 4 and interferes with the imaging effect.
  • the axis of the multi-aperture Nipkov disk 11 is opposite The axis of the first lens 15 is inclined, and the angle between the disc surface of the multi-aperture Nipkov disc 11 and the horizontal direction is about 15 degrees.
  • the multi-aperture Nipkov disc 11 is also driven by a linear drive mechanism 14 to be able to approach or move away from the axis of the first lens 15 to drive the rotating mechanism of the multi-aperture Nipkov disc 11 It is a rotating electric machine, which is installed on the fixed base 13, and the fixed base 13 is driven by the linear driving mechanism 14 and can be moved in translation.
  • the image acquisition module 2 includes a CCD camera 21 and a third lens 23.
  • the light entering the image acquisition module 2 from the beam splitter 4 passes through the third lens 23 converges into the CCD camera 21.
  • the light source 31 module 3 includes a light source 31 and a fourth lens 33. The light emitted by the light source 31 is converted into parallel light by the fourth lens 33 and then is directed to the beam splitter 4.
  • the micro-objective lens 5 is used to magnify the object image of the surface of the sample 6 to be detected in the focal plane of the micro-objective lens 5.
  • the micro-objective lens 5 may be as shown in FIG. 8-1
  • the achromatic objective lens is mainly composed of a double cemented lens 51 and a front lens 52, and its structure is shown in FIG. 8-1.
  • the semi-apochromatic objective lens and the apochromatic objective lens are mainly composed of a double cemented lens 51, a front lens 52, a triple cemented lens 53, and a lunar lens 54, whose structures are shown in Figures 8-2 and 8-3, respectively.
  • the imaging effect of apochromatic objectives is better than that of semi-apochromatic and achromatic objectives, but the manufacturing cost is also higher.
  • the objective lens should be selected according to the actual needs of the imaging system built.
  • the incident light is condensed by the lens and irradiated onto the scanning belt R1 or scanning belt R2 of the multi-aperture Nipkov disc, and then passes through the second lens 16 After collimating, the light passes through the light transmission hole 111 on the scanning belt to irradiate the surface of the sample to be measured.
  • the light reflected by the sample surface is condensed by the second lens 16 and returns to the multi-aperture Nipkov disk, which is located at the focal plane of the microscope objective 5
  • the light passes through the light transmission hole 111 on the multi-aperture Nipkov disc and finally enters the image acquisition module 2, while the light outside the focal plane of the microscopic objective lens 5 reaches the multi-aperture Nipkov disc by the shading part of the disc Obscured and unable to enter the image acquisition module 2, thereby enhancing the signal-to-noise ratio of the focal plane image.
  • the image acquisition module 2 includes a CCD camera 21, a camera data line 22 and a third lens 23.
  • the light reflected from the focal plane of the sample is condensed by the third lens 23 and irradiated to the photosensitive array of the CCD camera 21, and the CCD camera 21 transmits the collected image information to the upper computer for storage and processing via the camera data line 22.
  • the CCD camera 21 should have high sensitivity, transmission frame rate and image resolution in order to meet the requirements of high-speed and high-resolution sampling.
  • the light source 31 module 3 includes the light source 31, the power cord 32, the fourth lens 33 and the diaphragm 34.
  • the light source 31 can select white light or monochromatic light.
  • the light emitted by the light source 31 is collimated by the fourth lens 33 and then passes through the diaphragm 34 to adjust the exit aperture and filter out stray light at the edges.
  • the confocal three-dimensional measuring device and the multi-aperture Nipkov disk 11 of the present invention realize a scanning belt 111 with multiple apertures on a multi-aperture Nipkov disk 11 according to the selected
  • the magnification of the microscopic objective lens 5 enables the scanning band of the light transmission hole 111 of the corresponding size, so that the system resolution and accuracy are optimized.
  • the switching between the scanning belts can be facilitated, the switching process is simple, and the operation is convenient.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Microscoopes, Condenser (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种共聚焦三维测量装置及多孔径尼普科夫圆盘(11),由于在多孔径尼普科夫圆盘(11)上至少设有一个环形的扫描带(R1,R2),不同的扫描带(R1,R2)中的透光孔(111)的直径不同,这样,就可以根据显微物镜(5)的放大倍率而选择具有合适直径的透光孔(111)的扫描带(R1,R2)来过滤和聚焦光线,从而使得合适直径的透光孔(111)处于工作状态,使得测量装置的分辨力和精度指标达到最优状态。由此可见,共聚焦三维测量装置中的多孔径尼普科夫圆盘(11)能够提高测量分辨力和精度。

Description

共聚焦三维测量装置及其多孔径尼普科夫圆盘 技术领域
本发明涉及一种共聚焦三维测量装置及其多孔径尼普科夫圆盘。
背景技术
传统光学显微镜由于受光学衍射极限的影响,其理论分辨力只能达到光源波长量级,一般为几百纳米。现代纳米技术的发展对测量设备的分辨力提出了更高的要求,虽然扫描电镜和扫描隧道显微镜可以实现很高的分辨力,可达0.01nm量级,但其使用具有一定的局限性,主要表现为测量范围小、需在真空环境下测量以及对活细胞样品的破坏性等。共聚焦显微镜因其独特的光学层析能力、高横向分辨力特性及对活体细胞表面及内部结构的三维测量能力而被广泛应用于生物医学、精密测量、材料科学等领域。近年来,随着共聚焦显微镜在关键器件上出现的一系列创新技术,其成像质量、分辨力、测量速度及自动化水平不断提高,整体性能也得到了全方位的提升。
共聚焦显微镜目前主要分为激光扫描共聚焦显微镜和转盘式共聚焦显微镜。转盘式共聚焦显微镜可采用激光或白光作为光源,具有多通道、扫描速度快等特点,可解决活细胞的快速时空成像问题。其核心器件为一个具有针孔阵列的尼普科夫扫描盘,扫描盘的针孔以阿基米德线的方式均匀排布。测量时,通过扫描盘的转动实现同一焦面的图像采集。传统的转盘式共聚焦显微镜转盘上的共焦针孔仅有一种尺寸,该尺寸的最优参数往往根据最大倍率的物镜进行设计,在使用其他低倍率物镜时难以实现最佳的共焦性能,而高倍率物镜视场小,观察范围有限。
发明内容
鉴于以上所述现有技术的不足,本发明的目的在于提供一种共聚焦三维测量装置及其多孔径尼普科夫圆盘,能够提高测量分辨力和精度。
为实现上述目的,本发明提供一种共聚焦三维测量装置中的多孔径尼普科夫圆盘,包括圆形基盘,圆形基盘上至少设有一个环形的扫描带,扫面带上分布有多个透光孔组,各透光孔组绕圆形基盘的圆心螺旋对称地分布,不同透光孔组中的透光孔沿不同的阿基米德螺线段分布,所述扫描带区域除透光孔之外的部分不透光。
优选地,所述圆形基盘上设有多个扫面带,不同的扫描带中的透光孔组数量与透光孔直径均不同。
优选地,所述圆形基盘包括由透光材料制成的基体以及镀覆在基体表面的遮光膜。
优选地,所述圆形基盘由不透光的材料制成。
与本发明的一种共聚焦三维测量装置中的多孔径尼普科夫圆盘相应地,本发明还提供一种共聚焦三维测量装置,包括:
光源模块、分光镜、图像采集模块、共聚焦扫描模块、显微物镜和三维运动平台;
所述三维运动平台用于承载待检测样品;
所述共聚焦扫描模块包括上述技术方案或其任一优选的技术方案所述的多孔径尼普科夫圆盘、第一透镜和第二透镜,第一透镜位于所述分光镜和多孔径尼普科夫盘之间,第二透镜位于多孔径尼普科夫盘和显微物镜之间;所述多孔径尼普科夫圆盘由旋转驱动机构驱动而旋转;
所述分光镜接收光源模块发出的光线并将部分光线反射向第一透镜,光线依次经过第一透镜、多孔径尼普科夫盘上的透光孔、第二透镜和显微物镜之后照射在三维运动平台上的待检测样品上,样品将光线反射并依次经过显微物镜、第二透镜、多孔径尼普科夫盘上的透光孔、第一透镜、分光镜之后射入到图像采集模块中。
优选地,所述第一透镜和第二透镜同轴设置,所述多孔径尼普科夫圆盘的轴线相对第一透镜的轴线倾斜设置。
优选地,所述多孔径尼普科夫圆盘还由直线驱动机构驱动而能够靠近或远离第一透镜的轴线。
优选地,所述图像采集模块包括CCD相机和第三透镜,从分光镜进入到图像采集模块中的光线经过第三透镜会聚到CCD相机中。
优选地,所述光源模块包括光源和第四透镜,光源发出的光经第四透镜转换成平行光之后射向分光镜。
优选地,所述显微物镜为消色差物镜、半复消色差物镜或复消色差物镜。
如上所述,本发明涉及的一种共聚焦三维测量装置及其多孔径尼普科夫圆盘,具有以下有益效果:由于在多孔径尼普科夫圆盘上至少设有一个环形的扫描带,不同的扫描带中的透过孔的直径不同,这样,就可以根据显微物镜的放大倍率而选择具有合适直径的透光孔的扫描带来过滤和聚焦光线,从而使得合适直径的透光孔处于工作状态,使得测量装置的分辨力和精度指标达到最优状态。由此可见,本发明的一种共聚焦三维测量装置中的多孔径尼普科夫圆盘能够提高测量分辨力和精度。本发明的一种共聚焦三维测量装置当然也具有上述有益效果,此处不再赘述。
附图说明
图1显示为多孔径尼普科夫圆盘的俯视图。
图2-1显示为透光孔处于聚焦工作状态的原理图。
图2-2显示为透光孔处于离焦工作状态的原理图。
图3显示为尼普科夫盘旋转时透光孔移动轨迹的示意图。
图4显示为共聚焦三维测量装置的结构示意图。
图5显示为共聚焦扫描模块的结构示意图。
图6显示为图像采集模块的结构示意图。
图7显示为光源模块的结构示意图。
图8-1显示为消色差物镜的结构示意图。
图8-2显示为半复消色差物镜的结构示意图。
图8-3显示为复消色差物镜的结构示意图。
元件标号说明
1     共聚焦扫描模块
11    多孔径尼普科夫圆盘
111   透光孔
111a  孔径较小透光孔
111b  孔径较大透光孔
112   阿基米德螺线
113   安装孔
114   测量光斑
115   遮光膜
116   石英玻璃
12    旋转驱动机构
13    电机固定座
14    直线驱动机构
15    第一透镜
16    第二透镜
2     图像采集模块
21    CCD相机
22    相机数据线
23    第三透镜
3     光源模块
31    光源
32    电源线
33    第四透镜
34    光阑
4     分光镜
5     显微物镜
51    双胶合透镜
52    前端透镜
53    三胶合透镜
54    月形透镜
6     待检测样品
7     三维运动平台
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
如图1所示,本发明提供一种共聚焦三维测量装置中的多孔径尼普科夫圆盘,包括圆形基盘,圆形基盘上至少设有一个环形的扫描带,扫面带上分布有多个透光孔111组,各透光孔111组绕圆形基盘的圆心螺旋对称地分布,不同透光孔111组中的透光孔111沿不同的阿基米德螺线112段分布,所述扫描带区域除透光孔111之外的部分不透光。
在本发明的一种共聚焦三维测量装置中的多孔径尼普科夫圆盘中,请参考图2-1、图2-2和图4,多孔径尼普科夫圆盘11用于过滤和会聚射向显微物镜5或者从显微物镜5返回的光线。由于在多孔径尼普科夫圆盘11上至少设有一个环形的扫描带,不同的扫描带中的透过孔的直径不同,这样,就可以根据显微物镜5的放大倍率而选择具有合适直径的透光孔111的 扫描带来过滤和聚焦光线,从而使得合适直径的透光孔111处于工作状态,使得测量装置的分辨力和精度指标达到最优状态。由此可见,本发明的一种共聚焦三维测量装置中的多孔径尼普科夫圆盘能够提高测量分辨力和精度。
在本发明的一种共聚焦三维测量装置中的多孔径尼普科夫圆盘中,为了适应显微物镜5的不同放大倍率,如图1所示,所述圆形基盘上设有多个扫面带,每个扫描带中均包括多个绕圆形基盘的轴线旋转对称的透光孔111组,同一透光孔111组中的各透光孔111的圆心在同一的阿基米德曲线段上,各阿基米德曲线段所在的阿基米德曲线均通过圆形基盘的圆心。如图1所示,不同的扫描带中的透光孔111组数量与透光孔111直径均不同。同一扫描带中的各透光孔111的直径与相邻透光孔111之间的距离根据该扫面带所要适应的显微物镜5放大倍率而适应确定,各透光孔111的直径与相邻透光孔111之间的距离的大小应该使得测量装置在其所对应的显微物镜5放大倍率时具有最佳的分辨力和精度指标。
本发明的一种共聚焦三维测量装置中的多孔径尼普科夫圆盘中,扫描带区域中除了透光孔111以外的部分均不能透过光线,为了便于制造所述多孔径尼普科夫圆盘11,作为一种优选的实施方式,所述圆形基盘包括由透光材料制成的基体以及镀覆在基体表面的遮光膜115,可以采用石英玻璃116制造圆形基盘的基体,采用MEMS技术加工,石英玻璃116经平整处理和化学机械抛光后,采用碳酸钙进行清洗,然后进行物理清洁;在石英玻璃116上通过等离子体化学气相沉积形成一层硅薄膜作为遮光膜115,然后通过甩胶、光刻、显影形成所需图形,以光刻胶作为保护膜,采用化学刻蚀或干法刻蚀加工出透光孔111。圆形基盘也可以由不透光的材料制成,采用不透光的金属片或非金属薄片加工,利用激光打孔或其他打孔方式,加工出图1中所示的不同孔径的透光孔111而形成扫描带R1和扫描带R2,以及安装孔113。为确保尼普科夫盘不受外界扰动或温度变化的影响,所选的基体材料应当具有高刚度、低热膨胀系数,同时还需确保有良好的遮光性能。
与本发明的一种共聚焦三维测量装置中的多孔径尼普科夫圆盘相应地,本发明还提供一种共聚焦三维测量装置,包括:
光源31模块3、分光镜4、图像采集模块2、共聚焦扫描模块1、显微物镜5和三维运动平台7;
所述三维运动平台7用于承载待检测样品6;
如图5所示,所述共聚焦扫描模块1包括上述技术方案或其任一优选的技术方案所述的多孔径尼普科夫圆盘11、第一透镜15和第二透镜16,第一透镜15位于所述分光镜4和多孔径尼普科夫盘之间,第二透镜16位于多孔径尼普科夫盘和显微物镜5之间;所述多孔径尼普 科夫圆盘11由旋转驱动机构12驱动而旋转;
所述分光镜4接收光源31模块3发出的光线并将部分光线反射向第一透镜15,光线依次经过第一透镜15、多孔径尼普科夫盘上的透光孔111、第二透镜16和显微物镜5之后照射在三维运动平台7上的待检测样品6上,样品将光线反射并依次经过显微物镜5、第二透镜16、多孔径尼普科夫盘上的透光孔111、第一透镜15、分光镜4之后射入到图像采集模块2中。
如图1所示,孔径较小透光孔111a在圆形基盘上形成扫描带R1,孔径较大透光孔111b在圆形基盘上形成扫描带R2,扫描带R1和扫描带R2中的透光孔111以阿基米德螺线112的方式均匀排列,并以圆周阵列的形式分布在各自的扫描带上。可以根据显微物镜5的可用放大倍率参数,设计更多透光孔111直径尺寸的扫描带,以匹配更多种放大倍率的显微物镜5,扫描带的数量可以是2种、3种甚至更多。透光孔111的直径一般设计为25微米、50微米或同量级的尺寸,相邻透光孔111之间的间隔根据透光孔111直径及所设计的共焦系统参数以最优的尺寸间距设置。圆形基盘上还设有用于和旋转驱动机构12连接的安装孔113,旋转机构驱动圆形基盘旋转,旋转速度与图像采集模块2的采样频率精确匹配,同时还需与三维运动平台7的纵向驱动速度相匹配,从而使得图像采集模块2能够采集待检测样品6上连续完整的物像。
在利用本发明的一种用于共聚焦三维测量装置检测待检测工件时,将待检测工件放置在三维运动平台7上,请参考图4,光源31模块3发出的光线经分光镜4反射后,进入共聚焦扫描模块1,然后经显微物镜5汇聚后照射到位于三维运动平台7上的待检测样品6表面。待检测样品6表面反射的光再次进入显微物镜5和共聚焦扫描模块1,如图2-1和图2-2以及图4所示,经共聚焦扫描模块1的共焦作用后过滤除了从待检测样品6表面处于显微物镜5焦平面(如图1所示,测量光斑114与显微物镜5的焦平面相对应)以外区域反射回来的光线,未被滤除的光线穿过分光镜4,进入图像采集模块2,图像采集模块2将采集到的光学层析图像存储在计算机供后续处理和重构。系统工作时,利用三维运动平台7带动待检测样品6进行横向的平移以定位被测特征位置,然后三维运动平台7带动待检测样品6纵向移动,并配合共聚焦扫描模块1和图像采集模块2实现层析扫描成像。共聚焦扫描模块1中多孔径尼普科夫圆盘11的转速应与图像采集模块2中CCD相机21的采样频率精确匹配,同时还需与三维运动平台7的纵向驱动速度相匹配。在完成各纵向扫描层的图像采集后,利用相关的图像重构算法即可还原样品表面被测特征的形貌信息。CCD相机21应具有高灵敏度和较大动态范围,以及较小的像元尺寸和像元间距,以便获取较高的系统测量分辨率。同时,应具 有较大的靶面尺寸,以获取较大的单视场测量范围。
如图4所示,多孔径尼普科夫圆盘11位于成像系统中与被测样品焦平面共轭的位置,从样品反射的光返回多孔径尼普科夫圆盘11上的透光孔111时,透光孔111所起到的共焦作用原理如图2-1和图2-2所示。从显微物镜5焦平面反射的光经第二透镜16汇聚后可穿过透光孔111,如图2-1所示,然后经第一透镜15、分光镜4和第三透镜23后进入CCD相机21;从显微物镜5非焦平面反射的光经第二透镜16汇聚后被多孔径尼普科夫圆盘11上不透光的部分遮挡,无法进入CCD相机21,如图2-2所示。因此,CCD相机21经多孔径尼普科夫圆盘11的共焦作用后仅能采集到位于显微物镜5焦平面反射的信号,有效消除了来自显微物镜5非焦平面反射信号的干扰,因而提高了信号的信噪比,使成像质量和分辨力得到提升。测量时,多孔径尼普科夫圆盘11由旋转驱动机构12驱动而旋转,由于多孔径尼普科夫圆盘11上的透光孔111呈阿基米德螺线112的方式排列,并以圆周阵列方式分布,多孔径尼普科夫圆盘11旋转时,透光孔111移动的轨迹方向如图3所示(图3中箭头方向为透光孔111移动的轨迹方向),箭头指向的阴影部分恰好可以被箭头尾部的透光孔111覆盖,因此当CCD相机21以与多孔径尼普科夫圆盘11转速相匹配的频率曝光时,可以获得整个焦平面的图像。
在利用本发明的一种共聚焦三维测量装置中,多孔径尼普科夫圆盘11用于过滤除了从待检测样品6表面处于显微物镜5焦平面以外区域反射回来的光线,如图4所示,所述第一透镜15和第二透镜16同轴设置,第一透镜15和第二透镜16的轴线沿竖直方向延伸,为了防止多孔径尼普科夫圆盘11上表面的区域(该区域为两个处于透过孔之间的位置)光线从第一透镜15经过分光镜4进入到图像采集模块2而干扰成像效果,所述多孔径尼普科夫圆盘11的轴线相对第一透镜15的轴线倾斜设置,多孔径尼普科夫圆盘11的盘面与水平方向之间具有15度左右的夹角。
为了便于调整多孔径尼普科夫圆盘11上扫描带的位置,使得不同的扫描带能够对准显微物镜5而适应显微物镜5的不同放大倍率,如图4所示,作为一种优选的实施方式,所述多孔径尼普科夫圆盘11还由直线驱动机构14驱动而能够靠近或远离第一透镜15的轴线,驱动所述多孔径尼普科夫圆盘11的旋转机构为一旋转电机,安装在固定座13上,固定座13由直线驱动机构14驱动而能够平移运动。
作为一种优选的实施方式,如图4和图6所示,所述图像采集模块2包括CCD相机21和第三透镜23,从分光镜4进入到图像采集模块2中的光线经过第三透镜23会聚到CCD相机21中。如图4和图7所示,所述光源31模块3包括光源31和第四透镜33,光源31发出的光经第四透镜33转换成平行光之后射向分光镜4。
在本发明的一种共聚焦三维测量装置中,所述显微物镜5用于放大待检测样品6表面处于显微物镜5焦平面内的物像,显微物镜5可以是图8-1所示的消色差物镜、8-2所示的半复消色差物镜或图8-3所示的复消色差物镜。消色差物镜主要由双胶合透镜51和前端透镜52构成,其结构如图8-1所示。半复消色差物镜和复消色差物镜主要由双胶合透镜51、前端透镜52、三胶合透镜53和月形透镜54构成,其结构分别如图8-2和图8-3所示。复消色差物镜的成像效果要优于半复消色差物镜和消色差物镜,但其制造成本也更高。使用时,物镜应根据所搭建成像系统的实际需求选择。
在本发明的一种共聚焦三维测量装置中,如图4所示,入射光线经透镜汇聚后照射到多孔径尼普科夫盘的扫描带R1或扫描带R2上,然后经第二透镜16准直后穿过扫描带上的透光孔111照射到被测样品表面,由样品表面反射的光经第二透镜16汇聚后返回多孔径尼普科夫盘,位于显微物镜5焦平面的光线穿过多孔径尼普科夫盘上的透光孔111后最终进入图像采集模块2,而位于显微物镜5焦平面外的光线到达多孔径尼普科夫盘时被盘上的遮光部分遮挡而无法进入图像采集模块2,从而起到增强焦面图像信噪比的效果。
如图6所示,图像采集模块2包括CCD相机21、相机数据线22和第三透镜23。从样品焦平面反射的光线经第三透镜23汇聚后照射到CCD相机21的感光阵列,CCD相机21将采集到的图像信息经相机数据线22传输到上位机进行存储和处理。CCD相机21应具有较高的灵敏度、传输帧率和图像分辨率,以便满足高速、高分辨率采样的要求。如图7所示,光源31模块3包括光源31、电源线32、第四透镜33和光阑34。光源31可选择白光或单色光,光源31发出的光经第四透镜33准直后通过光阑34,以调整出射孔径及滤除边缘的杂散光。
本发明的一种共聚焦三维测量装置及其多孔径尼普科夫圆盘11,在一个多孔径尼普科夫圆盘11上实现了多种孔径的透光孔111扫描带,根据所选显微物镜5的倍率,使能相应尺寸的透光孔111扫描带,使系统分辨力和精度达到最优。通过多孔径尼普科夫圆盘11的移动,可方便进行扫描带之间的切换,切换过程简单,操作方便。
综上所述,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种共聚焦三维测量装置中的多孔径尼普科夫圆盘,其特征是,包括圆形基盘,圆形基盘上至少设有一个环形的扫描带,扫面带上分布有多个透光孔(111)组,各透光孔(111)组绕圆形基盘的圆心螺旋对称地分布,不同透光孔(111)组中的透光孔(111)沿不同的阿基米德螺线(112)段分布,所述扫描带区域除透光孔(111)之外的部分不透光。
  2. 根据权利要求1所述的用于共聚焦三维测量装置中的多孔径尼普科夫圆盘,其特征在于:所述圆形基盘上设有多个扫面带,不同的扫描带中的透光孔(111)组数量与透光孔(111)直径均不同。
  3. 根据权利要求1所述的用于共聚焦三维测量装置中的多孔径尼普科夫圆盘,其特征在于:所述圆形基盘包括由透光材料制成的基体以及镀覆在基体表面的遮光膜(115)。
  4. 根据权利要求1所述的用于共聚焦三维测量装置中的多孔径尼普科夫圆盘,其特征在于:所述圆形基盘由不透光的材料制成。
  5. 一种共聚焦三维测量装置,其特征是,包括:
    光源(31)模块(3)、分光镜(4)、图像采集模块(2)、共聚焦扫描模块(1)、显微物镜(5)和三维运动平台(7);
    所述三维运动平台(7)用于承载待检测样品(6);
    所述共聚焦扫描模块(1)包括如权利要求1至4任一项所述的多孔径尼普科夫圆盘(11)、第一透镜(15)和第二透镜(16),第一透镜(15)位于所述分光镜(4)和多孔径尼普科夫盘之间,第二透镜(16)位于多孔径尼普科夫盘和显微物镜(5)之间;所述多孔径尼普科夫圆盘(11)由旋转驱动机构(12)驱动而旋转;
    所述分光镜(4)接收光源(31)模块(3)发出的光线并将部分光线反射向第一透镜(15),光线依次经过第一透镜(15)、多孔径尼普科夫盘上的透光孔(111)、第二透镜(16)和显微物镜(5)之后照射在三维运动平台(7)上的待检测样品(6)上,样品将光线反射并依次经过显微物镜(5)、第二透镜(16)、多孔径尼普科夫盘上的透光孔(111)、第一透镜(15)、分光镜(4)之后射入到图像采集模块(2)中。
  6. 根据权利要求5所述的共聚焦三维测量装置,其特征在于:所述第一透镜(15)和第二透镜(16)同轴设置,所述多孔径尼普科夫圆盘(11)的轴线相对第一透镜(15)的轴线倾斜设置。
  7. 根据权利要求5所述的共聚焦三维测量装置,其特征在于:所述多孔径尼普科夫圆盘(11)还由直线驱动机构(14)驱动而能够靠近或远离第一透镜(15)的轴线。
  8. 根据权利要求5所述的共聚焦三维测量装置,其特征在于:所述图像采集模块(2)包括CCD相机(21)和第三透镜(23),从分光镜(4)进入到图像采集模块(2)中的光线经过第三透镜(23)会聚到CCD相机(21)中。
  9. 根据权利要求5所述的共聚焦三维测量装置,其特征在于:所述光源(31)模块(3)包括光源(31)和第四透镜(33),光源(31)发出的光经第四透镜(33)转换成平行光之后射向分光镜(4)。
  10. 根据权利要求5所述的共聚焦三维测量装置,其特征在于:所述显微物镜(5)为消色差物镜、半复消色差物镜或复消色差物镜。
PCT/CN2018/120636 2018-10-19 2018-12-12 共聚焦三维测量装置及其多孔径尼普科夫圆盘 WO2020077780A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018007549.4T DE112018007549T5 (de) 2018-10-19 2018-12-12 Konfokale dreidimensionale Messvorrichtung und zugehörige Nipkow-Scheibe mit mehreren Lochdurchmessern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811221733.2A CN109375355A (zh) 2018-10-19 2018-10-19 共聚焦三维测量装置及其多孔径尼普科夫圆盘
CN201811221733.2 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020077780A1 true WO2020077780A1 (zh) 2020-04-23

Family

ID=65400501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120636 WO2020077780A1 (zh) 2018-10-19 2018-12-12 共聚焦三维测量装置及其多孔径尼普科夫圆盘

Country Status (3)

Country Link
CN (1) CN109375355A (zh)
DE (2) DE112018007549T5 (zh)
WO (1) WO2020077780A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116744123A (zh) * 2022-12-14 2023-09-12 深圳市中图仪器股份有限公司 共焦测量系统的多孔盘
US12007680B2 (en) 2019-03-25 2024-06-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device comprising a multi-aperture imaging device for generating a depth map

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114343839B (zh) * 2021-12-30 2024-07-23 德州环球之光医疗科技股份有限公司 一种基于可调的螺旋线型激光光斑的治疗图形转换方法
CN114838673B (zh) * 2022-05-18 2024-03-19 长春长光辰英生物科学仪器有限公司 用于转盘共聚焦系统的阿基米德条纹转盘及其分区方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013379A1 (en) * 1990-02-27 1991-09-05 Prometrix Corporation Improved confocal scanning optical microscope
US5428475A (en) * 1991-10-31 1995-06-27 Yokogawa Electric Corporation Confocal optical scanner
US6426835B1 (en) * 1999-03-23 2002-07-30 Olympus Optical Co., Ltd. Confocal microscope
CN1364241A (zh) * 2000-03-06 2002-08-14 奥林巴斯光学工业株式会社 适用于分段像观察装置的图案形成部件和分段像观察装置
JP2003195176A (ja) * 2001-10-17 2003-07-09 Olympus Optical Co Ltd 共焦点顕微鏡
CN101048676A (zh) * 2004-10-27 2007-10-03 株式会社尼康 光学元件制造方法、光学元件、尼普科夫盘、共焦光学系统以及三维测量装置
JP2008233543A (ja) * 2007-03-20 2008-10-02 Hamamatsu Univ School Of Medicine 共焦点光スキャナ検出装置、光スキャナおよびそれに用いられるニポウディスク
CN101581604A (zh) * 2009-03-31 2009-11-18 哈尔滨工业大学 基于Nipkow盘的衍射多光谱成像装置及方法
CN104870930A (zh) * 2012-12-06 2015-08-26 周超 并行成像光学相干断层扫描系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013379A1 (en) * 1990-02-27 1991-09-05 Prometrix Corporation Improved confocal scanning optical microscope
US5428475A (en) * 1991-10-31 1995-06-27 Yokogawa Electric Corporation Confocal optical scanner
US6426835B1 (en) * 1999-03-23 2002-07-30 Olympus Optical Co., Ltd. Confocal microscope
CN1364241A (zh) * 2000-03-06 2002-08-14 奥林巴斯光学工业株式会社 适用于分段像观察装置的图案形成部件和分段像观察装置
JP2003195176A (ja) * 2001-10-17 2003-07-09 Olympus Optical Co Ltd 共焦点顕微鏡
CN101048676A (zh) * 2004-10-27 2007-10-03 株式会社尼康 光学元件制造方法、光学元件、尼普科夫盘、共焦光学系统以及三维测量装置
JP2008233543A (ja) * 2007-03-20 2008-10-02 Hamamatsu Univ School Of Medicine 共焦点光スキャナ検出装置、光スキャナおよびそれに用いられるニポウディスク
CN101581604A (zh) * 2009-03-31 2009-11-18 哈尔滨工业大学 基于Nipkow盘的衍射多光谱成像装置及方法
CN104870930A (zh) * 2012-12-06 2015-08-26 周超 并行成像光学相干断层扫描系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12007680B2 (en) 2019-03-25 2024-06-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device comprising a multi-aperture imaging device for generating a depth map
CN116744123A (zh) * 2022-12-14 2023-09-12 深圳市中图仪器股份有限公司 共焦测量系统的多孔盘
CN116744123B (zh) * 2022-12-14 2024-01-23 深圳市中图仪器股份有限公司 共焦测量系统的多孔盘

Also Published As

Publication number Publication date
CN109375355A (zh) 2019-02-22
DE112018007549T5 (de) 2021-01-21
DE202018006876U1 (de) 2023-12-14

Similar Documents

Publication Publication Date Title
WO2020077780A1 (zh) 共聚焦三维测量装置及其多孔径尼普科夫圆盘
EP3362836B1 (en) Confocal microscopy apparatus and related process for acquiring and processing images
JP6538041B2 (ja) 光学的伝達システムおよびそのような伝達システムを備える顕微鏡
CN101126834B (zh) 一种用于点扫描激光共焦显微镜的面内扫描方法和系统
US20100296092A1 (en) Single-polarizer focused-beam ellipsometer
JP2010539471A (ja) 厚さ測定装置
CN104062233A (zh) 精密表面缺陷散射三维显微成像装置
JP2014508969A (ja) 蛍光顕微鏡検査法における照明位相制御のためのシステムおよび方法
CN115561220A (zh) 一种光散射角分辨检测分析系统
JP2004219987A (ja) 多層観察型光学顕微鏡及び多層観察ユニット
US10697764B2 (en) Sample shape measuring apparatus for calculating a shape of a sample disposed between an illumination optical system and an observation optical system
KR100845284B1 (ko) 두개의 닙코우 디스크를 이용한 공초점 주사 현미경
CN108387562B (zh) 共聚焦显微系统中针孔轴向位置的调节方法
CN107678151B (zh) 基于干涉阵列光场的共聚焦并行显微成像仪
KR101174274B1 (ko) 간섭계와 2차원-반사광도계의 측정이 가능한 복합시편 표면특성 측정장치
CN116718603A (zh) 衍射成像缺陷检测系统及其检测方法
CN115665563B (zh) 光学测量系统及基于光学测量系统的成像方法
CN109828365B (zh) Mirau型超分辨率干涉显微物镜
WO2020218973A1 (en) Method and system for super resolution imaging
JPH08313433A (ja) 赤外顕微分光分析方法及び装置
US20230003964A1 (en) Systems and methods for motorized adjustment of objective lens correction collar
CN114838673B (zh) 用于转盘共聚焦系统的阿基米德条纹转盘及其分区方法
CN113984771B (zh) 基于矢量偏振光的深度学习暗场共焦显微测量装置与方法
JP3605010B2 (ja) 表面性状測定器
JP2012173112A (ja) ラマン分光測定装置及びラマン分光測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937517

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18937517

Country of ref document: EP

Kind code of ref document: A1