WO2020077735A1 - 一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统 - Google Patents

一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统 Download PDF

Info

Publication number
WO2020077735A1
WO2020077735A1 PCT/CN2018/116837 CN2018116837W WO2020077735A1 WO 2020077735 A1 WO2020077735 A1 WO 2020077735A1 CN 2018116837 W CN2018116837 W CN 2018116837W WO 2020077735 A1 WO2020077735 A1 WO 2020077735A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
stokes
frequency comb
module
optical frequency
Prior art date
Application number
PCT/CN2018/116837
Other languages
English (en)
French (fr)
Inventor
尉昊赟
李岩
陈琨
武韬
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2020077735A1 publication Critical patent/WO2020077735A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]

Definitions

  • the invention belongs to the technical field of coherent anti-Stokes Raman spectroscopy detection, in particular to a spectral focusing coherent anti-Stokes Raman spectroscopy detection system through dual optical frequency comb optical mutual scanning and pulse chirp regulation. .
  • Coherent anti-Stokes Raman spectroscopy detection technology uses third-order nonlinear effects to achieve higher detection sensitivity than the traditional spontaneous Raman process; at the same time, CARS technology obtains the measured object
  • the spectroscopic signal corresponding to the inherent vibrational energy level of the molecule can achieve high specific detection without introducing a label signal.
  • the above characteristics of CARS provide a brand-new means for the exploration of label-free imaging in the fields of physical chemistry and life sciences.
  • Narrow-band CARS can meet the requirements in imaging speed, but the spectral information is lacking and can only be used for single component analysis; while broadband CARS technology is still at the acquisition speed of several milliseconds per pixel. Therefore, how to increase the imaging speed of broadband CARS and realize real-time spectral image acquisition is one of the main problems in the field of coherent Raman microimaging.
  • the spectral focusing CARS technology uses pulse phase adjustment to make the different frequency components in the femtosecond pulse linearly arranged in time.
  • the two pulses overlap with a certain time delay, only one molecular vibration energy level is excited, which is equivalent to the All energy is excited by a single energy level, which has very good energy utilization efficiency, which is conducive to high-sensitivity detection.
  • the relative time-delay scanning between pulses still relies on the scanning of the mechanical displacement platform, and the detection speed is slow, which cannot effectively realize the potential of spectral focusing detection.
  • the object of the present invention is to provide a dual optical frequency comb spectrally focused coherent anti-Stokes Raman spectroscopy detection system, which is based on dual optical frequency comb optical mutual scanning, thereby eliminating the need for mechanical scanning
  • the detection spectrum is wide and the detection speed is high.
  • a dual optical frequency comb spectral focusing coherent anti-Stokes Raman spectroscopy detection system which is characterized by comprising:
  • the dual optical comb light source module 1 includes a first optical frequency comb light source 1-1 and a second optical frequency comb light source 1-2 with slight differences in repetition frequency difference, and the output light of the first optical frequency comb light source 1-1 is used for detection Pump light and probe light of the process;
  • the Stokes light generation module 5 takes the output light of the second optical frequency comb light source 1-2 as input light, uses the optical fiber nonlinear effect to realize optical frequency shift, and obtains Stokes light;
  • Micro-focusing and sample scanning module 9 receiving the combined pump light and Stokes light focusing and anti-Stokes light collection, three-dimensional scanning of the sample, to obtain coherent anti-Stokes Raman spectrum signal;
  • a coherent anti-Stokes signal detection module 11 detecting the coherent anti-Stokes Raman spectrum signal
  • Sampling trigger module 12 is used to position the pump light in the overlapping area of Stokes light to realize pulse positioning trigger spectrum collection;
  • Acquisition module 13 to acquire the original spectral data of the coherent anti-Stokes Raman spectral signal
  • the analysis processing module 14 processes the original spectral data to perform spectral restoration.
  • the output light of the first optical frequency comb light source 1-1 passes through the first half-wave plate 2-1 and the first polarization beam splitter 3-1 in turn, and the transmission part, that is, P polarized light, is linearly introduced through the first dispersion adjustment element 4-1 Chirp and use the first filter 6-1 to filter out the chirp pulses in the required frequency range, the output light of the Stokes light generating module 5 is reflected by the mirror 7-1 and the second dispersion adjustment element 4- 2 Introduce linear chirp, two-way linear chirped light pulses are combined by the dichroic mirror 8 and then coupled into the microfocus and sample scanning mode 9;
  • the output light of the second optical frequency comb light source 1-2 sequentially passes through the second half-wave plate 2-2 and the second polarizing beam splitter prism 3-2, and the transmission part, that is, P polarized light, is input through the third half-wave plate 2-3 To the first coupling mirror 5-1; adjust the Stokes through the second half-wave plate 2-2, the second polarization beam splitter prism 3-2, the third half-wave plate 2-3, and the third filter 5-4 The output power and output wave number range of the light generating module 5.
  • the sampling trigger module 12 includes a first lens 12-1, a non-linear crystal 12-2, a second lens 12-3, a fourth filter 12-4 and a photodetector 12-5 arranged in sequence, using two types of The phase-matched second harmonic generation method obtains the trigger pulse.
  • the process is as follows: the part of the output light of the first optical frequency comb light source 1-1 reflected by the first polarization beam splitter 3-1, that is, S-polarized light enters the first lens 12- 1; the part of the output light of the second optical frequency comb light source 1-2 reflected by the second polarizing beam splitter prism 3-2, namely S polarized light, is adjusted to P polarized light by the fourth half-wave plate 2-4, and then split by the first polarized light
  • the prism 3-1 transmits into the first lens 12-1, converges through the first lens 12-1 and enters the nonlinear crystal 12-2 to form a second harmonic, and then converges through the second lens 12-3 and the fourth filter After filtering by 12-4, the intensity signal is obtained by photodetector 12-5 for acquisition trigger.
  • the Stokes light generating module 5 includes a first coupling mirror 5-1, a non-linear optical fiber 5-2, a second coupling mirror 5-3 and a third filter 5-4 arranged in sequence, and the output wave number range
  • the difference between the output wavenumber range of the first optical frequency comb light source 1-1 and the wavenumber of the Raman signal of the sample to be tested, that is, the difference between the wavenumber and the position of the Raman peak wavenumber of the sample to be tested is basically the same.
  • the nonlinear optical fiber 5-2 is a photonic crystal fiber or a high refractive index nonlinear optical fiber
  • the coherent anti-Stokes Raman spectrum signal is reflected by the mirror 7-2
  • the second filter 6-2 filters the light After the lens 10 is converged, it is detected by the coherent anti-Stokes signal detection module 11, which is a high-sensitivity photodetector.
  • the first dispersion adjustment element 4-1 and the second dispersion adjustment element 4-2 make the two optical pulses have the same chirp coefficient ⁇ , and the optical pulses extend from femtoseconds to picoseconds.
  • the two channels of linearly chirped optical pulses have a repetition frequency difference ⁇ f r , so that the pulse pairs are relatively delayed
  • all the energy is focused on a Raman level Excitation detection is performed to obtain spectral point information corresponding to Raman frequency shift.
  • Different relative delays correspond to different Raman frequency shift spectral points, and the effective spectral detection interval ⁇ is determined by the delay interval ⁇ , which is related
  • the process of processing the original spectral data includes: a) envelope extraction based on low-pass filtering; b) resonance signal phase extraction and baseline correction based on the maximum expectation method and c) intensity correction to obtain and spontaneous Raman spectra Corresponding CARS Raman spectrum.
  • Raman spectrum information on the three-dimensional space of the sample is obtained through micro-focusing of the sample to be tested and the three-dimensional scanning of the sample scanning module 9 stage, so as to realize spectrum-space four-dimensional imaging.
  • the regulation of the present invention refers to intensity and polarization regulation.
  • FIG. 1 is a schematic diagram of the principle of dual optical frequency comb coherent anti-Stokes spectrum detection of the present invention.
  • FIG. 2 is a block diagram of the dual optical frequency comb coherent anti-Stokes Raman spectrum detection system of the present invention.
  • FIG. 3 is a schematic diagram of the restoration process of the detection coherent anti-Stokes spectrum of the present invention.
  • FIG. 4 is a graph showing the results of the dual optical frequency comb coherent anti-Stokes spectrum microscopic imaging of the present invention.
  • the invention uses a dual-optical frequency comb light source to provide a brand-new fast pulse time-domain relative delay scanning solution for the spectral focusing CARS spectral detection technology in a clever method.
  • Figure 1 shows in principle the implementation process of the present invention: two columns of pulses from a dual-optical-frequency comb light source, one column serves as pump light and the repetition frequency is fr , and the other column acts as Stokes light and the repetition frequency is f r + ⁇ f r . Because there is a slight difference ⁇ f r between the repetition frequencies of the two columns of pulses, the relative delay interval between the two columns of pulses Gradually stagger, as shown in Figure 1b.
  • FIG. 2 shows an embodiment of a dual-optical frequency comb coherent anti-Stokes Raman spectroscopy detection system based on the above principle, including: a dual-optical comb light source module 1 for generating two outputs with slightly different repetition frequency differences; Stokes light generation module 5 for Stokes light generation; microfocus and sample scanning module for pump light and Stokes light focusing and anti-Stokes light collection, three-dimensional scanning of samples 9; sampling trigger module 12 for positioning the pump light in the Stokes light overlapping area; and coherent anti-Stokes signal detection module 11, acquisition 13 and analysis processing module 14; in addition, it also includes optical power and optical pulse Optical components required for adjustment, etc.
  • the output light of the first optical frequency comb light source 1-1 is used as the pump light and the detection light of the detection process.
  • the output light passes through the first half-wave plate 2-1 and the first polarization beam splitting prism 3-1 in sequence, and the transmission part is P
  • the polarized light is introduced into the linear chirp through the first dispersion adjustment element 4-1
  • the output light of the Stokes light generation module 5 is introduced into the linear chirp through the second dispersion adjustment element 4-2
  • the two-way linear chirped light pulse is introduced by
  • the dichroic mirror 8 is combined, and then coupled into the microscope focusing and sample scanning mold 9.
  • the first dispersion adjustment element 4-1 and the second dispersion adjustment element 4-2 make the two optical pulses have the same chirp coefficient ⁇ , and the optical pulses are extended from femtoseconds to picoseconds.
  • the output light of the second optical frequency comb light source 1-2 sequentially passes through the second half-wave plate 2-2 and the second polarization beam splitter prism 3-2, and the part that passes completely, that is, the P polarized light is input through the third half-wave plate 2-3 To the first coupling mirror 5-1, adjust the Stokes through the second half-wave plate 2-2, the second polarization beam splitter prism 3-2, the third half-wave plate 2-3, and the third filter 5-4 The output power and output wave number range of the light generating module 5.
  • the first optical frequency comb light source 1-1 and the second optical frequency comb light source 1-2 are both ytterbium-doped fiber lasers.
  • the cavity length is controlled by piezoelectric ceramics to lock the repetition frequency of the laser to the rubidium atomic clock to achieve precise control of the repetition rate.
  • the repetition frequency of the above light source is 100MHz, and the retunable frequency range is ⁇ 50kHz.
  • the center wavelength of the light source output pulse is about 1060nm, the bandwidth is about 50nm, the pulse width is about 60fs, and the pulse energy is about 20nJ.
  • the Stokes light generation module 5 includes a first coupling mirror 5-1, a non-linear optical fiber 5-2, a second coupling mirror 5-3, and a third filter 5-4, which are sequentially arranged.
  • the difference of the output wavenumber range of an optical frequency comb light source 1-1 matches the wavenumber of the target Raman signal of the sample to be tested, that is, the difference of the wavenumber is basically consistent with the position of the Raman peak wavenumber of the sample to be tested.
  • the nonlinear optical fiber 5-2 is a photonic crystal fiber or a high-refractive-index nonlinear optical fiber.
  • the coherent anti-Stokes signal detection module 11 For detection, the coherent anti-Stokes signal detection module 11 is a high-sensitivity photoelectric detector.
  • the sampling trigger module 12 includes a first lens 12-1, a non-linear crystal 12-2, a second lens 12-3, a fourth filter 12-4 and a photodetector 12-5, which are arranged in order, using two types of phase matching
  • the second harmonic generation method of the method obtains the trigger pulse.
  • the process is as follows: the portion of the output light of the first optical frequency comb light source 1-1 reflected by the first polarization beam splitter 3-1, that is, S-polarized light enters the first lens 12-1,
  • the part of the output light of the second optical frequency comb light source 1-2 reflected by the second polarizing beam splitter prism 3-2, namely S polarized light, is adjusted to P polarized light by the fourth half-wave plate 2-4, and then passes through the first polarizing beam splitter prism 3 -1 transmits into the first lens 12-1, converges through the first lens 12-1 and enters the nonlinear crystal 12-2 to form a second harmonic, then converges through the second lens 12-3 and the fourth filter 12- 4 After filtering, the intensity signal is obtained by the photodetector 12-5 for acquisition trigger.
  • the Raman fingerprint region 800-1800 cm -1 rich in chemical information is detected.
  • the wavelength of the second optical frequency comb light source 1-2 is frequency shifted to around 1260 nm by the nonlinear optical fiber in the Stokes light generation module 5, and the corresponding output pulse width is about 80 fs.
  • the output power and center frequency of Stokes light can be controlled by changing the power and polarization direction incident on the nonlinear optical fiber, that is, through the second half-wave plate 2-2, the second polarization beam splitter prism 3-2, and the third half-wave
  • the power of sheet 2-3 is combined with polarization adjustment.
  • the center wavelength can be adjusted between 1180 nm and 1300 nm.
  • the pulses output by the first optical frequency comb light source 1-1 and the Stokes light generation module 5 are both femtosecond pulses, and the dispersion adjustment elements 4-1, 4-2 are required to introduce linear chirp to extend the femtosecond pulses into Picosecond pulse.
  • the high refractive index glass SF 57 is used to introduce the secondary phase.
  • the total secondary phase is 52000fs 2
  • the corresponding chirp coefficient ⁇ is 3.03 ⁇ 10 -6 fs -2 ; after the chirp is introduced, the two pulses Both become picosecond pulses of about 2 to 4 picoseconds.
  • different lengths of SF 57 glass can be selected to achieve the adjustment goal of different chirp coefficients.
  • the two chirp pulses from the two optical frequency comb light sources are focused on the sample to be measured by microscopy.
  • the generated anti-Stokes light is collected, filtered, and detected by the high-sensitivity photodetector 11 to obtain the CARS of the sample. signal.
  • the repetition frequency difference between the dual-comb light sources can be adjusted within the tunable range of the light source re-frequency. Taking the repetition frequency difference as 1200 Hz for example, 1200 CARS spectra can be collected per second; the relative scanning step length of the pulse during measurement is 120 fs, and the effective spectrum detection interval is about 12 cm -1 . If the repetition frequency of the optical frequency comb is changed to 1 GHz in the embodiment, it has the following characteristics:
  • the repetition frequency difference can be taken as 120kHz, and the number of CARS spectra can be obtained up to 120,000 per second, and the spectral detection speed is greatly improved. From this, it is not difficult to find that the high-repetition frequency optical frequency comb light source has very great significance for improving the performance of the present invention.
  • the light source repetition frequency is 100MHz
  • the corresponding pulse interval is about 10ns
  • the chirped pulse width is only a few picoseconds.
  • the method of generating second harmonics is used to obtain an effective trigger signal, so that the system only starts acquisition at the stage where two pulses coincide.
  • the generation process of the trigger signal is as follows: the light pulse output by the dual-comb light source module is combined with the half-wave plate 2-1, 2-2, 2-4 and PBS3-1, 3-2 to control the combination and then enter the sampling trigger module 12, after The first lens 12-1 in the module converges and enters the non-linear crystal 12-2, where the barium metaborate crystal is used. Since the polarization states of the pulses emitted from the two optical frequency combs are perpendicular to each other, and meet the second type of phase matching conditions, a second harmonic signal can be generated:
  • I ⁇ , Comb1 and I ⁇ , Comb2 are the energy focused on the BBO by the optical frequency comb 11-1 and the optical frequency comb 21-2
  • I 2 ⁇ is the signal strength of the second harmonic generated
  • is the two way The relative delay between pulses.
  • the second harmonic signal has the greatest signal strength, and its intensity change period is determined by the difference in repetition frequency of the two optical frequency combs.
  • the maximum value of the second harmonic signal represents the position of the zero delay between the two pulses.
  • the trigger signal of the CARS spectrum acquisition the spectrum signal acquisition within a set time window on both sides of the zero delay is realized, which greatly reduces the invalid data.
  • the collection volume is conducive to the real-time processing and display of the actual CARS spectral data.
  • the original spectrum data obtained by triggering high-speed acquisition is used to restore the spectrum through the data processing process.
  • the basic flow of data processing is shown in Fig. 3: 1 Envelope extraction method using low-pass filtering to remove the carrier signal of the laser repetition frequency superimposed on the original CARS signal; 2 Phase resonance extraction and baseline correction based on the maximum expectation method Reduce the impact of non-resonant background and cheap baseline; 3
  • this intensity modulation is generally stable, and the intensity correction of the detection spectrum is completed.
  • the CARS Raman spectrum corresponding to the spontaneous Raman spectrum can be obtained.
  • FIG. 4 shows the experimental results of realizing spectrum-space four-dimensional imaging in this embodiment.
  • the embodiment uses a mixed sample of retinoic acid and ⁇ -carotene as the detection object.
  • Figure 4a respectively, 1560cm -1 and 1520cm -1 as an imaging contrast retinoic acid and ⁇ - carotene
  • FIG obtain three-dimensional imaging of both molecules (wherein the retinoic acid is an off-white, gray and black for the ⁇ -Carotene); the entire imaging range is 100 ⁇ m ⁇ 100 ⁇ m ⁇ 22 ⁇ m, the pixel size is 1 ⁇ m ⁇ 1 ⁇ m ⁇ 1 ⁇ m, the measurement time of a single pixel is 0.5 ⁇ s, and the refresh rate is 1200 Hz.
  • three-dimensional broadband CARS spectral imaging means that a complete Raman spectrum can be obtained from any pixel in the three-dimensional image, as shown in Figure 4c. Therefore, the entire microscopic image contains rich spectral information and can be used to achieve A variety of qualitative and quantitative analysis of the complex system itself is not available in narrow-band CARS or SRS microscopic imaging.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,包括双光频梳光源模块(1)、斯托克斯光生成模块(5)、显微聚焦与样品扫描模块(9)、采样触发模块(12)、相干反斯托克斯信号探测模块(11)、采集模块(13)和分析处理模块(14)。其中:双光频梳光源模块(1) 包括重复频率差有微小差异的第一光频梳光源(1-1)和第二光频梳光源(1-2),第一光频梳光源(1-1)的输出光作为探测过程的泵浦光和探测光;斯托克斯光生成模块(5)利用光纤非线性效应实现光频偏移,获得斯托克斯光;采样触发模块(12)利用二次谐波生成技术获得两光频梳脉冲重合位置,实现脉冲定位触发光谱采集。该探测系统实现了无机械扫描快速宽带相干反斯托克拉曼光谱探测,显著提升了宽带相干反斯托克斯光谱技术在高动态、多组分探测分析应用的能力。

Description

一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统 技术领域
本发明属于相干反斯托克斯拉曼光谱探测技术领域,特别一种通过双光频梳光学互扫描、脉冲啁啾调控的光谱聚焦相干反斯托克斯拉曼光谱探测系统。。
背景技术
相干反斯托克斯拉曼光谱(CARS:Coherent Anti-Stokes Raman Scattering)探测技术利用三阶非线性效应,能实现比传统自发拉曼过程更高的探测灵敏度;同时,CARS技术获得被测对象分子固有的振转能级对应的光谱信号,无需引入标记信号即可实现高特异性探测。CARS的上述特征,为物理化学、生命科学等领域的无标记成像探索提供了全新的手段。随着现代生命科学在分子水平上对复杂系统的探测发展,不仅需要有足够的光谱宽度来提供充分的分子化学信息,还需要有足够快的探测速度来支撑对生化动力学过程的实时分析。窄带CARS在成像速度上可以满足要求,但是光谱信息匮乏,仅能用于单一成分分析;而宽带CARS技术还多处于几个毫秒每像素的采集速度。因此,如何提高宽带CARS的成像速度,实现实时的光谱图像采集是相干拉曼显微成像领域面临的主要问题之一。
在现有的宽带CARS实现技术中,为了保持光谱本身的分辨能力,不论是傅里叶变换CARS技术、单脉冲相干控制CARS技术、波长调谐CARS技术还是光谱聚焦CARS技术,均需要利用外在的机械位移实现脉冲相位或者频率调制。从本质上来讲,对机械移动的依赖性几乎是目前整个宽带CARS技术实现高速显微成像的瓶颈问题所在,大大限制了整个相干拉曼显微成像技术在分子水平上对复杂生物系统及其动力学过程的探测。
特别的,光谱聚焦CARS技术通过脉冲相位调控,使得飞秒脉冲中不同频率成分在时间上线性排列,实现两脉冲以一定时间延迟重合时,仅有一个分子 振动能级被激发,即相当于将所有能量都利用到单一能级的激发,具有非常优良的能量利用效率,有利于实现高灵敏度探测。但现有光谱聚焦CARS技术中,脉冲间的相对时延扫描(等效为不同拉曼峰的探测)仍依赖于机械位移平台的扫描,探测速度慢,不能有效发挥光谱聚焦探测潜力。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,基于双光频梳光学互扫描,从而无需机械扫描,其探测光谱宽,探测速度高。
为了实现上述目的,本发明采用的技术方案是:
一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,其特征在于,包括:
双光梳光源模块1,包括重复频率差有微小差异的第一光频梳光源1-1和第二光频梳光源1-2,其第一光频梳光源1-1的输出光作为探测过程的泵浦光和探测光;
斯托克斯光生成模块5,以第二光频梳光源1-2的输出光为输入光,利用光纤非线性效应实现光频偏移,获得斯托克斯光;
显微聚焦与样品扫描模块9,接收合束的泵浦光和斯托克斯光的聚焦及反斯托克斯光收集、样品三维扫描,获得相干反斯托克斯拉曼光谱信号;
相干反斯托克斯信号探测模块11,探测所述相干反斯托克斯拉曼光谱信号;
采样触发模块12,用于定位泵浦光于斯托克斯光重叠区域,实现脉冲定位触发光谱采集;
采集模块13,采集获得相干反斯托克斯拉曼光谱信号的原始光谱数据;
分析处理模块14,对所述原始光谱数据处理,进行光谱复原。
所述双光梳光源模块1的中心波长均在近红外,其第一光频梳光源1-1与第二光频梳光源1-2的重复频率f r具有微小差异,即f r1=f r2+δf r,其中f r1为 第一光频梳光源1-1的频率,f r2为第二光频梳光源1-2的频率,δf r表示两光源的重复频率差,其取值远小于重复频率f r
所述第一光频梳光源1-1的输出光依次经第一半波片2-1和第一偏振分光棱镜3-1,透射部分即P偏光经第一色散调节元件4-1引入线性啁啾并用第一滤光片6-1滤取所需频率范围的啁啾脉冲,所述斯托克斯光生成模块5的输出光经反射镜7-1反射和第二色散调节元件4-2引入线性啁啾,两路引入线性啁啾的光脉冲由双色镜8合束,然后耦合进显微聚焦与样品扫描模9;
所述第二光频梳光源1-2的输出光依次经第二半波片2-2和第二偏振分光棱镜3-2,透射部分即P偏光经第三半波片2-3后输入至第一耦合镜5-1;通过第二半波片2-2、第二偏振分光棱镜3-2、第三半波片2-3以及第三滤光片5-4调节斯托克斯光生成模块5的输出功率和输出波数范围。
所述采样触发模块12包括依次设置的第一透镜12-1、非线性晶体12-2、第二透镜12-3、第四滤光片12-4和光电探测器12-5,利用二类相位匹配的二次谐波生成方法获得触发脉冲,其过程为:第一光频梳光源1-1的输出光被第一偏振分光棱镜3-1反射的部分即S偏光进入第一透镜12-1;第二光频梳光源1-2的输出光被第二偏振分光棱镜3-2反射的部分即S偏光,经第四半波片2-4调整成P偏光,再经第一偏振分光棱镜3-1透射进入第一透镜12-1,经第一透镜12-1会聚入射到非线性晶体12-2形成二次谐波,再经第二透镜12-3会聚和第四滤光片12-4滤取后,由光电探测器12-5获得强度信号用于采集触发。
所述斯托克斯光生成模块5包括依次设置的第一耦合镜5-1、非线性光纤5-2、第二耦合镜5-3以及第三滤光片5-4,其输出波数范围与第一光频梳光源1-1的输出波数范围的差值匹配待测样品拉曼信号波数,即波数差值与待测样品拉曼峰波数位置基本一致。
所述非线性光纤5-2为光子晶体光纤或高折射率非线性光纤,所述相干反斯托克斯拉曼光谱信号经反射镜7-2反射、第二滤光片6-2滤光、透镜10 汇聚后,由相干反斯托克斯信号探测模块11探测,所述相干反斯托克斯信号探测模块11为高灵敏度光电探测器。
所述第一色散调节元件4-1和经第二色散调节元件4-2使得两路光脉冲具有相同的啁啾系数α,光脉冲由飞秒延展成皮秒。
所述两路引入线性啁啾的光脉冲存在重复频率差δf r,使脉冲对以相对延迟
Figure PCTCN2018116837-appb-000001
为间隔进行互扫描,具有无移动部件光学快速自扫描特性,且一个扫描周期的时间为T=1/δf r,在一个给定的相对延迟时刻,所有能量都聚焦到一个拉曼能级上进行激发探测,获得对应拉曼频移的光谱点信息,不同相对延迟对应不同的拉曼频移光谱点,且有效光谱探测间隔△Ω由延迟间隔△τ决定,有关系式
Figure PCTCN2018116837-appb-000002
所述对所述原始光谱数据处理的过程包括:a)基于低通滤波的包络提取;b)基于最大期望法的共振信号相位提取和基线校正以及c)强度校正,得到和自发拉曼光谱相对应的CARS拉曼光谱。
通过对装载待测样品的显微聚焦与样品扫描模块9载物台的三维扫描,获得样品三维空间上的拉曼光谱信息,实现具有光谱-空间四维成像。
本发明的调控指的是强度和偏振调控。
与现有技术相比,本发明的有益效果是:
1.通过双光频梳光源间重复频率差的灵活控制,可以便捷地实现皮秒脉冲对之间相对延迟步长的调控和快捷的光脉冲光学互扫描,避免了额外的慢速机械扫描台及其控制系统,具备实现快速动态光谱探测能力。
2.采用高重频双光梳光源、非线性器件拓谱以及色散调节元件的啁啾调节,可以同时实现CARS光谱的高分辨率和宽光谱覆盖探测。
附图说明
图1是本发明双光频梳相干反斯托克斯光谱探测原理示意图。
图2是本发明双光频梳相干反斯托克斯拉曼光谱探测系统框图。
图3是本发明探测相干反斯托克斯光谱复原流程示意图。
图4是本发明双光频梳相干反斯托克斯光谱显微成像结果示图。
具体实施方式
下面结合附图和实施例详细说明本发明的实施方式。
本发明利用双光频梳光源,以一种巧妙的方法为光谱聚焦CARS光谱探测技术提供了全新的快速脉冲时域相对延迟扫描解决方案。图1从原理上展示了本发明的实现过程:源自双光频梳光源的两列脉冲,一列作为泵浦光,重频为f r,另一列作为斯托克斯光,重频为f r+δf r。因为两列脉冲的重复频率差存在一个微小的差异δf r,两列脉冲间以相对时延间隔
Figure PCTCN2018116837-appb-000003
逐渐错开,如图1b所示。在此过程中,如果泵浦光和斯托克斯光均为变换极限的飞秒脉冲,则CARS过程将同时激发大量的拉曼能级难以直接区分;若通过色散控制,将变换极限脉冲变成啁啾脉冲且两者具有相同的啁啾系数α,则在一个给定的时刻,泵浦光和斯托克斯光聚焦到一个拉曼能级Ω上,如图1a所示。随着两列脉冲间延迟的变化,对应拉曼能级值发生变化,如图所示从Ω 1扫描到Ω 2;采集时采用与泵浦光同步采集方式,则可以得到如图1c所示的拉曼频移与时间成映射关系的宽带拉曼光谱数据。
图2给出了基于上述原理的双光频梳相干反斯托克斯拉曼光谱探测系统实施例,包括:用于产生两个重复频率差有微小差异的输出的双光梳光源模块1;用于斯托克斯光产生的斯托克斯光生成模块5;用于泵浦光和斯托克斯光聚焦及反斯托克斯光收集、样品三维扫描的显微聚焦与样品扫描模块9;用于定位泵浦光于斯托克斯光重叠区域的采样触发模块12;以及相干反斯托克斯信号探测模块11、采集13和分析处理模块14;此外还包括光功率、光脉冲调节等所需的光学部件。
具体地,双光梳光源模块1的中心波长均在近红外,且其第一光频梳光源1-1与第二光频梳光源1-2的重复频率f r具有微小差异,即f r1=f r2+δf r,其中f r1为第一光频梳光源1-1的频率,f r2为第二光频梳光源1-2的频率,δf r表 示两光源的重复频率差,其取值远小于重复频率f r
第一光频梳光源1-1的输出光作为探测过程的泵浦光和探测光,该输出光依次经第一半波片2-1和第一偏振分光棱镜3-1,透射部分即P偏光经第一色散调节元件4-1引入线性啁啾,斯托克斯光生成模块5的输出光经第二色散调节元件4-2引入线性啁啾,两路引入线性啁啾的光脉冲由双色镜8合束,然后耦合进显微聚焦与样品扫描模9。其中第一色散调节元件4-1和经第二色散调节元件4-2使得两路光脉冲具有相同的啁啾系数α,光脉冲由飞秒延展成皮秒。
第二光频梳光源1-2的输出光依次经第二半波片2-2和第二偏振分光棱镜3-2,完全通过的部分即P偏光经第三半波片2-3后输入至第一耦合镜5-1,通过第二半波片2-2、第二偏振分光棱镜3-2、第三半波片2-3以及第三滤光片5-4调节斯托克斯光生成模块5的输出功率和输出波数范围。
在本实施例中所采用的第一光频梳光源1-1和第二光频梳光源1-2均为掺镱光纤激光器。通过压电陶瓷控制腔长来将激光器的重复频率锁定到铷原子钟上,实现重频的精确控制。上述光源的重复频率均为100MHz,重频可调谐范围为±50kHz。光源输出脉冲中心波长约为1060nm,带宽约为50nm,脉冲宽度约为60fs,脉冲能量约为20nJ。
斯托克斯光生成模块5包括依次设置的第一耦合镜5-1、非线性光纤5-2、第二耦合镜5-3以及第三滤光片5-4,其输出波数范围与第一光频梳光源1-1的输出波数范围的差值匹配待测样品目标拉曼信号波数,即波数差值与待测样品拉曼峰波数位置基本一致。非线性光纤5-2为光子晶体光纤或高折射率非线性光纤,相干反斯托克斯拉曼光谱信号经滤光片6-2滤取后,由相干反斯托克斯信号探测模块11探测,相干反斯托克斯信号探测模块11为高灵敏度光电探测器。
采样触发模块12包括依次设置的第一透镜12-1、非线性晶体12-2、第二透镜12-3、第四滤光片12-4和光电探测器12-5,利用二类相位匹配的二次谐波生成方法获得触发脉冲,其过程为:第一光频梳光源1-1的输出光被 第一偏振分光棱镜3-1反射的部分即S偏光进入第一透镜12-1,第二光频梳光源1-2的输出光被第二偏振分光棱镜3-2反射的部分即S偏光,经第四半波片2-4调整成P偏光,再经第一偏振分光棱镜3-1透射进入第一透镜12-1,经第一透镜12-1会聚入射到非线性晶体12-2形成二次谐波,再经第二透镜12-3会聚和第四滤光片12-4滤取后,由光电探测器12-5获得强度信号用于采集触发。
本实施例面向富含化学信息的拉曼指纹区800-1800cm -1进行探测。实施中,通过斯托克斯光生成模块5内的非线性光纤将第二光频梳光源1-2的波长频移到1260nm附近,对应输出脉冲宽度约为80fs。斯托克斯光的输出功率和中心频率可以通过改变入射到非线性光纤的功率及偏振方向控制,即通过第二半波片2-2、第二偏振分光棱镜3-2、第三半波片2-3这一功率与偏振调整组合来实现。本实施例中,中心波长在1180nm到1300nm之间可以进行调节。
上述第一光频梳光源1-1和斯托克斯光生成模块5输出的脉冲均为飞秒脉冲,需要色散调节元件4-1,4-2引入线性啁啾,将飞秒脉冲延展成皮秒脉冲。在本实施例中,选用高折射率玻璃SF 57引入二次相位,引入总的二次相位为52000fs 2,对应啁啾系数α为3.03×10 -6fs -2;引入啁啾后,两脉冲均变成皮秒脉冲约2~4皮秒。实际应用中,可以选配不同长度的SF 57玻璃,实现不同啁啾系数的调整目标。
上述两路源自于两个光学频率梳光源的啁啾脉冲经显微聚焦到待测样品上,生成的反斯托克斯光经收集、滤波、高灵敏度光电探测器11探测获得样品的CARS信号。本实施例中,双光梳光源之间的重复频率差可以在光源重频可调谐范围内进行调节。以重复频率差取为1200Hz为例,则每秒钟可采集CARS光谱1200幅;测量时脉冲相对扫描步长为120fs,有效光谱探测间隔约为12cm -1。若实施例中光学频率梳的重频换为1GHz,有以下特征:
1、保持重复频率差与现实施例一致,则每秒钟可采集CARS光谱数不变,但测量时脉冲相对扫描步长减小为1.20fs,有效光谱探测间隔约为 0.12cm -1,分辨率大大提高。
2、保持有效光谱探间隔不变,则重复频率差可取为120kHz,每秒可获得CARS光谱数达到120000幅,光谱探测速度大大提升。由此不难发现,高重频光频梳光源对于本发明性能的提升具有非常大的意义。
在本实施例中,光源重频为100MHz,对应脉冲间隔约为10ns,而啁啾脉冲宽度仅为几皮秒,在整个10ns跨度的双光梳互扫描过程中,仅有不到10皮秒的区域是脉冲有交叠的,有效脉冲交叠时间有限。为此,本实施例中,使用二次谐波生成的方法获得有效触发信号,使得系统仅在两路脉冲重合阶段开始采集。触发信号的产生过程为:双光梳光源模块输出的光脉冲经半波片2-1,2-2,2-4和PBS3-1,3-2调控合束后入射采样触发模块12,经模块内第一透镜12-1会聚入射到非线性晶体12-2,此处使用的是偏硼酸钡晶体。由于从两台光频梳出射的脉冲偏振态是相互垂直的,满足第二类相位匹配条件,可以产生二次谐波信号:
I (τ)∝∫I ω,Comb1(t)I ω,Comb2(t+τ)dt
其中,I ω,Comb1和I ω,Comb2分别是光学频率梳11-1和光学频率梳21-2聚焦到BBO上的能量,I 是产生的二次谐波的信号强度,τ是两路脉冲之间的相对时延。当两路脉冲在时域上完全重合时,二次谐波信号具有最大的信号强度,其强度变化周期由两台光频梳的重复频率差决定。二次谐波信号的最大值代表了两路脉冲之间的零时延位置,作为CARS光谱采集的触发信号,实现零延迟两侧一个设定时间窗内的光谱信号采集,大大降低无效数据的采集量,有利于实际CARS光谱数据的数据实时处理与显示。
本实施例中,经触发高速采集获得的原始光谱数据通过数据处理过程进行光谱复原。数据处理的基本流程如图3所示:1采用低通滤波的包络提取方法,去除原始CARS信号上叠加的激光器重复频率的载波信号;2采用基于最大期望法的共振信号相位提取和基线校正减小非共振背景及基线便宜的影响;3在上述基础上,根据光谱聚焦CARS不同重合度下有效调制强度关 系这种强度调制一般是稳定的,完成对探测光谱的强度校正。经上述处理后,可以得到和自发拉曼光谱相对应的CARS拉曼光谱。
图4给出了本实施例实现光谱-空间四维成像的实验结果。实施例采用视黄酸与β-胡萝卜素的混合样品作为探测对象。在图4a中,分别以1560cm -1以及1520cm -1作为视黄酸与β-胡萝卜素的成像衬度,获得两种分子的三维成像图(其中灰白色的为视黄酸,灰黑色的为β-胡萝卜素);整个成像范围为100μm×100μm×22μm,像素点大小1μm×1μm×1μm,单像素的测量时间0.5μs,刷新率1200Hz。从三维图中可以取出任意一个截面,得到两种分子的二维分布,如图4b所示,这可以用于更加全面地分析物质的空间结构。此外,三维宽带CARS光谱成像意味着从三维图像中的任意一个像素点都可以得到一条完整的拉曼光谱,如图4c所示,因此整个显微图像蕴含着丰富的光谱信息,可以用于实现对复杂系统本身的多种定性以及定量分析,这是窄带CARS或者SRS显微成像所不具有的。
上述实施例仅用于说明本发明,其中双光梳光源的中心波长、光谱带宽,产生的斯托克斯光的中心波长、光谱带宽,啁啾脉冲宽度,以及光谱信号的探测与数据处理流程都可以根据探测需求,在本发明技术方案的基础上进行等同配置、变换和改进,均不应排除在本发明的保护范围之外。

Claims (10)

  1. 一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,其特征在于,包括:
    双光梳光源模块(1),包括重复频率差有微小差异的第一光频梳光源(1-1)和第二光频梳光源(1-2),其第一光频梳光源(1-1)的输出光作为探测过程的泵浦光和探测光;
    斯托克斯光生成模块(5),以第二光频梳光源(1-2)的输出光为输入光,利用光纤非线性效应实现光频偏移,获得斯托克斯光;
    显微聚焦与样品扫描模块(9),接收合束的泵浦光和斯托克斯光的聚焦及反斯托克斯光收集、样品三维扫描,获得相干反斯托克斯拉曼光谱信号;
    相干反斯托克斯信号探测模块(11),探测所述相干反斯托克斯拉曼光谱信号;
    采样触发模块(12),用于定位泵浦光于斯托克斯光重叠区域,实现脉冲定位触发光谱采集;
    采集模块(13),采集获得相干反斯托克斯拉曼光谱信号的原始光谱数据;
    分析处理模块(14),对所述原始光谱数据处理,进行光谱复原。
  2. 根据权利要求1所述双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,其特征在于,所述双光梳光源模块(1)的中心波长均在近红外,其第一光频梳光源(1-1)与第二光频梳光源(1-2)的重复频率f r具有微小差异,即f r1=f r2+δf r,其中f r1为第一光频梳光源(1-1)的频率,f r2为第二光频梳光源(1-2)的频率,δf r表示两光源的重复频率差,其取值远小于重复频率f r
  3. 根据权利要求1或2所述双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,其特征在于,所述第一光频梳光源(1-1)的输出光依次经第一半波片(2-1)和第一偏振分光棱镜(3-1),透射部分即P偏光经第一色散调节 元件(4-1)引入线性啁啾并用第一滤光片(6-1)滤取所需频率范围的啁啾脉冲,所述斯托克斯光生成模块(5)的输出光经反射镜(7-1)反射和第二色散调节元件(4-2)引入线性啁啾,两路引入线性啁啾的光脉冲由双色镜(8)合束,然后耦合进显微聚焦与样品扫描模块(9);
    所述第二光频梳光源(1-2)的输出光依次经第二半波片(2-2)和第二偏振分光棱镜(3-2),透射部分即P偏光经第三半波片(2-3)后输入至第一耦合镜(5-1);通过第二半波片(2-2)、第二偏振分光棱镜(3-2)、第三半波片(2-3)以及第三滤光片(5-4)实现斯托克斯光生成模块(5)输出功率和输出波数范围的调节。
  4. 根据权利要求3所述双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,其特征在于,所述采样触发模块(12)包括依次设置的第一透镜(12-1)、非线性晶体(12-2)、第二透镜(12-3)、第四滤光片(12-4)和光电探测器(12-5),利用二类相位匹配的二次谐波生成方法获得触发脉冲,其过程为:第一光频梳光源(1-1)的输出光被第一偏振分光棱镜(3-1)反射的部分即S偏光进入第一透镜(12-1),第二光频梳光源(1-2)的输出光被第二偏振分光棱镜(3-2)反射的部分即S偏光,经第四半波片(2-4)调整成P偏光,再经第一偏振分光棱镜(3-1)透射进入第一透镜(12-1),经第一透镜(12-1)会聚入射到非线性晶体(12-2)形成二次谐波,再经第二透镜(12-3)会聚和第四滤光片(12-4)滤取后,由光电探测器(12-5)获得强度信号用于采集触发。
  5. 根据权利要求3所述双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,其特征在于,所述斯托克斯光生成模块(5)包括依次设置的第一耦合镜(5-1)、非线性光纤(5-2)、第二耦合镜(5-3)以及第三滤光片(5-4),其输出波数范围与第一光频梳光源(1-1)的输出波数范围的差值匹配待测样品拉曼信号波数,即波数差值与待测样品拉曼峰波数位置基本一致。
  6. 根据权利要求5所述双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,其特征在于,所述非线性光纤(5-2)为光子晶体光纤或高折射率非线性 光纤,所述相干反斯托克斯拉曼光谱信号经反射镜(7-2)反射、第二滤光片(6-2)滤光、透镜(10)汇聚后,由相干反斯托克斯信号探测模块(11)探测,所述相干反斯托克斯信号探测模块(11)为高灵敏度光电探测器。
  7. 根据权利要求3所述双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,其特征在于,所述第一色散调节元件(4-1)和经第二色散调节元件(4-2)使得两路光脉冲具有相同的啁啾系数α,光脉冲由飞秒延展成皮秒。
  8. 根据权利要求7所述双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,其特征在于,所述两路引入线性啁啾的光脉冲存在重复频率差δf r,使脉冲对以相对延迟
    Figure PCTCN2018116837-appb-100001
    为间隔进行互扫描,具有无移动部件光学快速自扫描特性,且一个扫描周期的时间为T=1/δf r,在一个给定的相对延迟时刻,所有能量都聚焦到一个拉曼能级上进行激发探测,获得对应拉曼频移的光谱点信息,不同相对延迟对应不同的拉曼频移光谱点,且有效光谱探测间隔△Ω由延迟间隔△τ决定,有关系式
    Figure PCTCN2018116837-appb-100002
  9. 根据权利要求1所述双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,其特征在于,所述对所述原始光谱数据处理的过程包括:(a)基于低通滤波的包络提取;(b)基于最大期望法的共振信号相位提取和基线校正以及(c)强度校正,得到和自发拉曼光谱相对应的CARS拉曼光谱。
  10. 根据权利要求1所述双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统,其特征在于,通过对装载待测样品的显微聚焦与样品扫描模块(9)载物台的三维扫描,获得样品三维空间上的拉曼光谱信息,实现具有光谱-空间四维成像。
PCT/CN2018/116837 2018-10-19 2018-11-22 一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统 WO2020077735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811220573.XA CN109060767A (zh) 2018-10-19 2018-10-19 一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统
CN201811220573.X 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020077735A1 true WO2020077735A1 (zh) 2020-04-23

Family

ID=64764349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116837 WO2020077735A1 (zh) 2018-10-19 2018-11-22 一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统

Country Status (2)

Country Link
CN (1) CN109060767A (zh)
WO (1) WO2020077735A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167709A (zh) * 2021-06-30 2022-03-11 成都天奥电子股份有限公司 一种基于微腔光梳的光频原子钟的实现方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110274880A (zh) * 2019-06-25 2019-09-24 北京航空航天大学 一种高精度空间分辨的光谱探测方法和系统
CN110687092B (zh) * 2019-09-25 2021-11-09 天津大学 全光纤cars光谱检测装置和方法
CN111122535B (zh) * 2019-12-10 2023-05-05 华东师范大学 一种对分子振动模式的高光谱快速成像测量系统
CN111522018B (zh) * 2020-04-07 2022-05-10 清华大学深圳国际研究生院 双飞秒激光频率梳测距装置和方法
CN111638202B (zh) * 2020-06-04 2021-05-28 清华大学 定域快速延时扫描的双光梳相干反斯托克斯拉曼光谱探测系统
CN111693509B (zh) * 2020-06-23 2021-04-23 清华大学 差分复用的干涉增强双光梳相干拉曼光谱探测系统与方法
CN112485240B (zh) * 2020-11-17 2023-04-07 华东师范大学重庆研究院 一种非接触式空间超分辨相干拉曼光谱成像方法
JP7477933B2 (ja) 2021-04-22 2024-05-02 アトナープ株式会社 Carsスペクトルの取得方法およびシステム
CN113406838B (zh) * 2021-06-08 2022-09-16 清华大学深圳国际研究生院 实现双光频梳系统重频倍频的方法及系统
CN113533177B (zh) * 2021-07-14 2022-05-20 清华大学 一种高速操作和检测活细胞的方法
CN116338931A (zh) * 2023-05-30 2023-06-27 成都庆龙航空科技有限公司 无人机光电瞄准装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096430A2 (en) * 2008-02-27 2009-09-02 Gwangju Institute of Science and Technology Apparatus and method for obtaining images using coherent anti-stokes Raman scattering
CN103344623A (zh) * 2013-06-25 2013-10-09 上海朗研光电科技有限公司 一种提高精度的相干反斯托克斯拉曼散射光梳光谱探测方法
CN104316180A (zh) * 2014-11-02 2015-01-28 华东师范大学 基于连续稳频激光的双光学频率梳光学成像方法
CN105784674A (zh) * 2016-05-04 2016-07-20 复旦大学 基于双通道正交探测的双色受激拉曼散射成像系统
CN106200206A (zh) * 2016-08-29 2016-12-07 清华大学 基于双孤子脉冲产生的相干反斯托克斯拉曼显微成像系统
CN106990089A (zh) * 2017-04-01 2017-07-28 上海理工大学 同步降频的相干反斯托克斯拉曼散射成像系统及成像方法
CN107589613A (zh) * 2017-08-18 2018-01-16 天津大学 基于多孤子同步扫描的多点输出cars激发源装置及产生方法
CN108400519A (zh) * 2018-02-28 2018-08-14 上海理工大学 同步高分辨多波长相干反斯托克斯拉曼散射光源

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096430A2 (en) * 2008-02-27 2009-09-02 Gwangju Institute of Science and Technology Apparatus and method for obtaining images using coherent anti-stokes Raman scattering
CN103344623A (zh) * 2013-06-25 2013-10-09 上海朗研光电科技有限公司 一种提高精度的相干反斯托克斯拉曼散射光梳光谱探测方法
CN104316180A (zh) * 2014-11-02 2015-01-28 华东师范大学 基于连续稳频激光的双光学频率梳光学成像方法
CN105784674A (zh) * 2016-05-04 2016-07-20 复旦大学 基于双通道正交探测的双色受激拉曼散射成像系统
CN106200206A (zh) * 2016-08-29 2016-12-07 清华大学 基于双孤子脉冲产生的相干反斯托克斯拉曼显微成像系统
CN106990089A (zh) * 2017-04-01 2017-07-28 上海理工大学 同步降频的相干反斯托克斯拉曼散射成像系统及成像方法
CN107589613A (zh) * 2017-08-18 2018-01-16 天津大学 基于多孤子同步扫描的多点输出cars激发源装置及产生方法
CN108400519A (zh) * 2018-02-28 2018-08-14 上海理工大学 同步高分辨多波长相干反斯托克斯拉曼散射光源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167709A (zh) * 2021-06-30 2022-03-11 成都天奥电子股份有限公司 一种基于微腔光梳的光频原子钟的实现方法

Also Published As

Publication number Publication date
CN109060767A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020077735A1 (zh) 一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统
Réhault et al. Two-dimensional electronic spectroscopy with birefringent wedges
CN103344623B (zh) 一种提高精度的相干反斯托克斯拉曼散射光梳光谱探测方法
Kuramochi et al. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications
Ideguchi et al. Coherent Raman spectro-imaging with laser frequency combs
Bloem et al. Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments
US20120287428A1 (en) Nonlinear raman spectroscopic apparatus, microspectroscopic apparatus, and microspectroscopic imaging apparatus
WO2009088541A2 (en) Multidimensional spectrometer
Godin et al. Recent advances on time-stretch dispersive Fourier transform and its applications
CN104849257A (zh) 基于小型紫外扫频激光的共振拉曼光谱探测系统及方法
WO2012024347A1 (en) Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy
Allodi et al. Nonlinear terahertz coherent excitation of vibrational modes of liquids
JPWO2014125729A1 (ja) 測定装置及び測定方法
Yabushita et al. Development of a multiplex fast-scan system for ultrafast time-resolved spectroscopy
Réhault et al. Fourier transform spectroscopy in the vibrational fingerprint region with a birefringent interferometer
CN110231332B (zh) 利用超陡滤波片简化的相干反斯托克斯拉曼散射光谱装置及方法
CN108107008A (zh) 一种时域热反射谱测量系统
Preda et al. Linear and nonlinear spectroscopy by a common-path birefringent interferometer
CN111721732B (zh) 基于多光梳系统测量气体红外多维光谱的装置及工作方法
Cho et al. Dual-comb spectroscopy of molecular electronic transitions in condensed phases
CN103323401A (zh) 基于光学参量上转换的太赫兹波实时成像方法及装置
Mead et al. An echelon-based single shot optical and terahertz Kerr effect spectrometer
Timmer et al. Full visible range two-dimensional electronic spectroscopy with high time resolution
CN110596073B (zh) 一种全反射式飞秒受激拉曼光谱仪
CN204679423U (zh) 基于小型紫外扫频激光的共振拉曼光谱探测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936892

Country of ref document: EP

Kind code of ref document: A1