CN111721732B - 基于多光梳系统测量气体红外多维光谱的装置及工作方法 - Google Patents

基于多光梳系统测量气体红外多维光谱的装置及工作方法 Download PDF

Info

Publication number
CN111721732B
CN111721732B CN202010493997.4A CN202010493997A CN111721732B CN 111721732 B CN111721732 B CN 111721732B CN 202010493997 A CN202010493997 A CN 202010493997A CN 111721732 B CN111721732 B CN 111721732B
Authority
CN
China
Prior art keywords
module
frequency
optical
laser
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010493997.4A
Other languages
English (en)
Other versions
CN111721732A (zh
Inventor
谢戈辉
李文雪
刘洋
罗大平
顾澄琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202010493997.4A priority Critical patent/CN111721732B/zh
Publication of CN111721732A publication Critical patent/CN111721732A/zh
Application granted granted Critical
Publication of CN111721732B publication Critical patent/CN111721732B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0118Apparatus with remote processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于多光梳系统测量气体红外多维光谱的装置及工作方法,多光学频率梳系统包括激光器模块、时频域精密控制模块、功率调节模块、气体测量模块以及数据采集和处理模块,激光器模块产生超快锁模激光脉冲,时频域精密控制模块对激光脉冲的重复频率进行锁定,功率调节模块提高激光脉冲的输出功率,气体测量模块对待测气体进行拍频测量,经气体测量模块中的光电二极管探测获得射频信号,射频信号包括气体的相位信息,数据采集和测量模块采集射频信号进行数据处理以还原气体的多维红外光谱。本发明的优点是:该装置噪声低,分辨率高,可对光学频率梳系统的重复频率进行精确的锁定,可实现对气体分子动态变化的测量,输出包含气体分子动态信息的多维红外光谱。

Description

基于多光梳系统测量气体红外多维光谱的装置及工作方法
技术领域
本发明属于超快光学技术领域,具体涉及一种基于多光梳系统测量气体红外多维光谱的装置及工作方法。
背景技术
光学频率梳技术是本世纪具有里程碑式的成就之一,光学频率梳,在频域上表现为一系列等间隔的频率梳齿,其中每根梳齿相应于激光器输出光谱中的一个纵模,激光器的重复频率则决定了各个纵模之间的间隔,锁定后光学频率梳的每根梳齿相当于一台稳定的连续光激光器。所谓飞秒光学频率梳,是指通过锁定飞秒锁模脉冲激光的重复频率以及载波包络相位偏置频率,得到在时域上重复频率稳定的飞秒脉冲激光。光学频率梳,作为一种有别于传统测量方法的新型测量技术,实现了光学频率与微波频率的直接连接,在精密光谱学研究、基本物理常数测量、光学频率计量、光学原子钟等前沿科学领域具有重要意义。
基于光学频率梳技术产生的双光学频率梳测量技术,相较于传统傅里叶变换测量技术,具有测量速度快,无需额外的机械扫描,同时具有宽波段以及分辨率高等优势,测量时能极大缩减测量所需时间,提高光谱分辨能力,在气体测量,2D成像以及高精度测距实验中都有着重要的应用。双光学频率梳测量技术的发展促进了物理、化学、生物以及军事技术的发展。双光学频率梳测量技术将两台光学频率梳作为传统傅里叶变化技术中的参考臂和扫描臂,利用两台光学频率梳之间微小的重复频率差,实现两台光学频率梳在光学时间上的快速扫描,有效替代了传统傅里叶光谱技术中的机械扫描。同时光学扫描的速度快,精度高,且可通过调节重复频率差控制扫描精度。
然而随着光学频率梳光谱技术的发展,双光学频率梳光谱技术也遇到了技术瓶颈,在分子气体测量过程中,双光学频率梳光谱测量技术只能实现对气体分子吸收强度的测量,无法分析分子内部的快速变化。本发明中提出的三光学频率梳红外气体测量系统,克服了传统双光学频率梳技术的局限,以超快激光光谱技术为基础,使用两束相位相关的超快激光顺序激发气体分子产生四波混频信号,通过双光学频率梳测量技术,使用另一与之相位相关的光学频率梳进行拍频测量,反演光快光场与物质微观结构直接的超快动力学过程,实现微观尺度的超快时间分辨和频率分辨测量的融合。
目前传统的气体红外多维光谱技术主要利用机械扫描控制光学频率梳作用于气体分子的时间,两束光作用于气体分子的时间,利用机械延时,控制产生的四波混频信号与另一与之相干的超快激光的作用时间,从而反演出超快激光与气体分子作用的超快动力学过程。传统的红外气体多维光谱技术受限于机械延时以及三路超快脉冲之间的相位控制,其稳定性和扫描精度难以满足更高精度实验要求,且整个测量系统繁杂庞大,运行操作复杂,系统维护不易,且易受环境影响。
发明内容
本发明的目的是根据上述现有技术的不足之处,提供一种基于多光梳系统测量气体红外多维光谱的装置及工作方法,该装置利用光学频率梳技术,实现在频域上两个光学频率梳信号的拍频,同时通过锁相环技术,对多台重复频率略有差异的光学频率梳的重复频率进行精确锁定,最后通过光纤放大器放大,提高光学频率梳的功率,使其能够直接应用于对气体分子多维红外光谱的测量。
本发明目的实现由以下技术方案完成:
一种基于多光梳系统测量气体红外多维光谱的装置,其特征在于所述装置包括激光器模块、时频域精密控制模块、功率调节模块、气体测量模块、与所述气体测量模块连接的数据采集和处理模块,所述时频域精密控制模块与所述激光器模块形成环路,所述功率调节模块的输入端与所述激光器模块的输出端连接,所述气体测量模块的输入端与所述功率调节模块的输出端连接,所述数据采集和处理模块包括高速数据采集卡和计算机。
所述激光器模块包括三台或四台光学频率梳,所述光学频率梳为固体激光器或光纤激光器。
所述光学频率梳内设有增益介质和反馈元件;所述增益介质为陶瓷、波导、钛宝石、稀土离子掺杂光纤中的一种;所述反馈元件为压电陶瓷、电光调制器、声光调制器、石墨烯、可饱和吸收体中的一种。
所述时频域精密控制模块包括激光脉冲探测器、混频器、滤波放大电路以及信号发生器。
所述功率调节模块为啁啾脉冲光纤放大器或自相似光纤放大器。
所述气体测量模块包括偏振分束器、透镜、气体池、光阑、二分之一波片、光电二极管、四分之一波片。
一种涉及任一所述基于多光梳系统测量气体红外多维光谱的装置的工作方法,其特征在于所述工作方法包括以下步骤:激光器模块产生超快锁模激光脉冲,时频域精密控制模块对所述激光脉冲的重复频率进行锁定,功率调节模块提高所述激光脉冲的输出功率,气体测量模块对待测气体进行拍频获得拍频信号并经探测获得射频信号,所述射频信号包括气体的相位信息,数据采集和测量模块采集所述射频信号进行数据处理以还原气体的多维红外光谱。
在所述时频域精密控制模块中,激光脉冲探测器的输入端接收来自所述激光器模块输出的所述激光脉冲,经所述激光脉冲探测器探测后的信号与信号发生器产生的标准信号一起进入混频器形成低频误差信号,所述低频误差信号经所述滤波放大电路产生反馈控制信号,将产生的所述反馈控制信号向所述激光器模块反馈以控制所述激光器模块中的光学频率梳的腔长,使输出的所述激光脉冲的重复频率进行锁定,并控制各所述光学频率梳之间的重复频率差。
所述激光器模块包括三台光学频率梳,重复频率锁定后的其中第一台和第二台所述光学频率梳产生的所述激光脉冲经所述功率调节模块放大后在所述气体测量模块中,分别经过二分之一波片在偏振分束器中合束,合束后的所述激光脉冲经透镜聚焦至气体池,经相位匹配后产生的四波混频光信号经透镜准直,利用光阑将所述四波混频光信号滤出,经二分之一波片和偏振分束器同第三台所述光学频率梳产生的所述激光脉冲进行拍频获得拍频信号,所述拍频信号通过光电二极管探测并经所述数据采集和测量模块采集后进行傅里叶变换和相位矫正以获得气体分子的红外多维光谱。
所述激光器模块包括四台光学频率梳,重复频率锁定后的第一台、第二台、以及第三台所述光学频率梳产生的所述激光脉冲经所述功率调节模块放大后,在所述气体测量模块中分别经二分之一波片和四分之一波片后在偏振分束器中合束,合束后的所述激光脉冲经透镜聚焦至气体池,经相位匹配后产生的四波混频光信号经透镜准直,利用光阑将所述四波混频光信号滤出,经二分之一波片和偏振分束器同第四台所述光学频率梳产生的所述激光脉冲进行拍频获得拍频信号,所述拍频信号通过光电二极管探测并经所述数据采集和测量模块采集后进行傅里叶变换和相位矫正以获得气体分子的红外多维光谱。
本发明的优点是:
(1)基于红外多光学频率梳系统直接产生重复频率略有差别的两束激光脉冲,利用其中两束激光在气体中的非线性效应,产生四波混频光信号,产生的四波混频信号同第三束超短脉冲激光进行拍频,通过对获得的拍频信号进行数据处理,就能还原得出包含气体分子动态信息的红外二维光谱;
(2)结合精密时频域控制系统,精确控制多台光学频率梳的重复频率和其之间的重复频率差,从而精确控制多束光之间的时间延迟,提高系统整体的时间分辨率,无需额外的机械延时线;
(3)采用时频域精密控制的光学频率梳作为超快脉冲产生装置,系统结构简单,占用空间小,投入成本少,且方便维护系统;
(4)采用时频域精密控制的光学频率梳作为超快脉冲产生装置,实现光学时间上的扫描,突破了传统采用机械延时线控制超短脉冲作用与气体分子之间的时间延时,提高了整个系统的时间分辨率,使多光学频率梳气体探测系统更加集成化、便携化,且系统稳定性相较于传统的红外多维气体测量系统更好;
(5)基于光学频率梳系统,系统结构紧凑,光学频率梳重复频率高,重复频率差可以精确控制。
附图说明
图1为本发明的基于多光梳系统测量气体红外多维光谱的装置的结构示意图;
图2为本发明实施例1中采用光学频率梳测量气体红外多维光谱的系统结构图;
图3为本发明实施例1中采用光学频率梳测量气体红外多维光谱的系统结构图。
具体实施方式
以下结合附图通过实施例对本发明的特征及其它相关特征作进一步详细说明,以便于同行业技术人员的理解:
如图1-3,图中各标记分别为:
激光器模块1、光学频率梳101、光学频率梳102、光学频率梳103、光学频率梳104;
功率调节模块2;
时频域精密控制模块3、激光脉冲探测器301、混频器302、滤波放大电路303、信号发生器304;
气体测量模块4、第一偏振分束器401、第一透镜402、气体池403、高反镜404、光阑405、二分之一波片B406、光电二极管407、第二透镜408、第二偏振分束器409、高反镜410、二分之一波片C411、四分之一波片412、第三偏振分束器413、二分之一波片A414;
数据采集和处理模块5、数据高速采集卡501、计算机502。
实施例1:如图1和图2所示,本实施例具体涉及一种基于多光梳系统测量气体红外多维光谱的装置及工作方法,该装置包括激光器模块1、时频域精密控制模块3、功率调节模块2、气体测量模块4以及数据采集和处理模块5。激光器模块1由三台重复频率略有差别的光学频率梳101、102和103组成,产生的激光脉冲波长为1550nm。光学频率梳为设有增益介质、反馈元件的固体激光器或光纤激光器。固体激光器或光纤激光器包含非线性频率转换系统、光参量放大系统、光参量产生系统、光参量振荡系统、倍频系统、差频系统、和频系统等。增益介质为陶瓷、波导、钛宝石、稀土离子掺杂光纤中的一种。反馈元件为压电陶瓷、电光调制器、声光调制器、石墨烯以及可饱和吸收体中的一种。激光器模块1的输出端与时频域精密控制模块3的输入端连接。时频域精密控制模块3包括激光脉冲探测器301、混频器302、滤波放大电路303和信号发生器304。激光器模块1的输出端又与功率调节模块2的输入端连接,功率调节模块2为啁啾脉冲光纤放大器或自相似光纤放大器,本实施例中为啁啾脉冲光纤放大器。功率调节模块2的输出端与气体测量模块4的输入端连接,气体测量模块4包括第一偏振分束器401、第一透镜402、气体池403、高反镜404、光阑405、二分之一波片B406、光电二极管407、第二透镜408、第二偏振分束器409、高反镜410、二分之一波片C411、四分之一波片412、第三偏振分束器413、二分之一波片A414。数据采集和处理模块5包括高速数据采集卡501和计算机502。
激光器模块1输出超短激光脉冲,通过时频域精密控制模块3锁定激光脉冲的重复频率,产生的反馈信号反馈回到激光器模块1,从而形成环路。激光脉冲探测器301的输入端接收来自激光器模块1输出的高重复频率锁模激光脉冲,三台光学频率梳101、102和103的一部分光经激光脉冲探测器301探测后与信号发生器304产生的标准信号一起进入混频器302形成低频误差信号,低频误差信号经由滤波放大电路303产生反馈控制信号,产生的反馈控制信号对激光器模块1中的三台光学频率梳101、102和103进行控制,从而可以精确控制激光器的腔长,使输出的激光脉冲重复频率精确锁定到10mHz,同时精确控制三台光学频率梳101、102和103之间的重复频率差为100Hz。重复频率锁定后的两台光学频率梳101、102产生的超短脉冲激光经过隔离器后耦合输入功率放大模块2,放大后的激光脉冲输入气体测量模块4,分别经过二分之一波片A414,在第一偏振分束器401中合束,合束后的脉冲经第一透镜402聚焦至气体池403,经相位匹配后产生的四波混频光信号经第二透镜408准直,利用光阑405将四波混频光信号滤出,经二分之一波片B406与第二偏振分束器409与光学频率梳103拍频,从何获得气体分子的动态变化信息。拍频信号经光电二极管407探测获得射频信号,射频信号输出至数据采集和处理模块5的输入端,数据高速采集卡501对拍频信号进行采集,通过计算机502对采集的数据进行傅里叶变换和相位矫正,获得包含气体分子动态信息的多维红外光谱。
实施例2:如图1、3所示,本实施例中,激光器模块1包括重复频率略有差别的四台光学频率梳101、102、103和104,产生的激光脉冲波长为1550nm。光学频率梳为设有增益介质、反馈元件的固体激光器或光纤激光器。固体激光器或光纤激光器包含非线性频率转换系统、光参量放大系统、光参量产生系统、光参量振荡系统、倍频系统、差频系统、和频系统等。增益介质为陶瓷、波导、钛宝石、稀土离子掺杂光纤中的一种。反馈元件为压电陶瓷、电光调制器、声光调制器、石墨烯以及可饱和吸收体中的一种。激光器模块1的输出端与时频域精密控制模块3的输入端连接。时频域精密控制模块3包括激光脉冲探测器301、混频器302、滤波放大电路303和信号发生器304。激光器模块1的输出端又与功率调节模块2的输入端连接,功率调节模块2为啁啾脉冲光纤放大器或自相似光纤放大器,本实施例中为啁啾脉冲光纤放大器。功率调节模块2的输出端与气体测量模块4的输入端连接,气体测量模块4包括第一偏振分束器401、第一透镜402、气体池403、高反镜404、光阑405、二分之一波片B406、光电二极管407、第二透镜408、第二偏振分束器409、高反镜410、二分之一波片C411、四分之一波片412、第三偏振分束器413、二分之一波片A414。数据采集和处理模块5包括高速数据采集卡501和计算机502。
激光器模块1中的四台光学频率梳101、102、103和104输出超短激光脉冲,通过时频域精密控制模块3锁定激光脉冲的重复频率,产生的反馈信号反馈回到激光器模块1,从而形成环路。四个光学频率梳101、102、103和104的一部分光输入激光脉冲探测器301以探测重复频率信号,通过与信号发生器303中产生的标准信号在混频器302中混频,混频产生的低频误差信号经频误差信号经过滤波放大电路304后产生反馈控制信号,该信号对激光器模块1中的四台光学频率梳101、102、103和104进行控制,从而调整谐振腔的腔长,将脉冲重复频率的精确锁定到10mHz。本实施例中,四台光学频率梳101、102、103和104的重复频率差为100Hz。重复频率锁定后的三台光学频率梳101、102和103产生的超短脉冲激光经过隔离器后耦合输入功率放大模块2,放大后的激光脉冲分别经过二分之一波片C411和四分之一波片412,在第一偏振分束器401中合束,合束后的脉冲经第一透镜402聚焦至气体池403,经相位匹配后产生的四波混频光信号经第二透镜408准直,利用光阑405将四波混频光信号滤出,经二分之一波片B406与第一偏振分束器409与光学频率梳104拍频,拍频信号通过光电二极管407探测获得射频信号,射频信号经数据高速采集卡501采集,经计算机502进行傅里叶变换和相位矫正,即可获得气体分子的红外多维光谱。

Claims (4)

1.一种基于多光梳系统测量气体红外多维光谱的装置的工作方法,其特征在于装置包括激光器模块、时频域精密控制模块、功率调节模块、气体测量模块、与所述气体测量模块连接的数据采集和处理模块,所述时频域精密控制模块与所述激光器模块形成环路,所述功率调节模块的输入端与所述激光器模块的输出端连接,所述气体测量模块的输入端与所述功率调节模块的输出端连接,所述数据采集和处理模块包括高速数据采集卡和计算机;
工作方法包括以下步骤:所述激光器模块产生超快锁模激光脉冲,所述时频域精密控制模块对所述激光脉冲的重复频率进行锁定,所述功率调节模块提高所述激光脉冲的输出功率,所述气体测量模块对待测气体进行拍频获得拍频信号并经探测获得射频信号,所述射频信号包括气体的相位信息,所述数据采集和测量模块采集所述射频信号进行数据处理以还原气体的多维红外光谱;其中,所述时频域精密控制模块包括激光脉冲探测器、混频器、滤波放大电路以及信号发生器;
在所述时频域精密控制模块中,激光脉冲探测器的输入端接收来自所述激光器模块输出的所述激光脉冲,经所述激光脉冲探测器探测后的信号与信号发生器产生的标准信号一起进入混频器形成低频误差信号,所述低频误差信号经所述滤波放大电路产生反馈控制信号,将产生的所述反馈控制信号向所述激光器模块反馈以控制所述激光器模块中的光学频率梳的腔长,使输出的所述激光脉冲的重复频率进行锁定,并控制各所述光学频率梳之间的重复频率差;
所述激光器模块包括四台光学频率梳,所述光学频率梳为固体激光器或光纤激光器;重复频率锁定后的第一台、第二台、以及第三台所述光学频率梳产生的所述激光脉冲经所述功率调节模块放大后,在所述气体测量模块中分别经二分之一波片和四分之一波片后在偏振分束器中合束,合束后的所述激光脉冲经透镜聚焦至气体池,经相位匹配后产生的四波混频光信号经透镜准直,利用光阑将所述四波混频光信号滤出,经二分之一波片和偏振分束器同第四台所述光学频率梳产生的所述激光脉冲进行拍频获得拍频信号,所述拍频信号通过光电二极管探测并经所述数据采集和测量模块采集后进行傅里叶变换和相位矫正以获得气体分子的红外多维光谱。
2.根据权利要求1所述的基于多光梳系统测量气体红外多维光谱的装置的工作方法,其特征在于所述光学频率梳内设有增益介质和反馈元件;所述增益介质为陶瓷、波导、钛宝石、稀土离子掺杂光纤中的一种;所述反馈元件为压电陶瓷、电光调制器、声光调制器、石墨烯、可饱和吸收体中的一种。
3.根据权利要求1所述的基于多光梳系统测量气体红外多维光谱的装置的工作方法,其特征在于所述功率调节模块为啁啾脉冲光纤放大器或自相似光纤放大器。
4.根据权利要求1所述的基于多光梳系统测量气体红外多维光谱的装置的工作方法,其特征在于所述气体测量模块包括偏振分束器、透镜、气体池、光阑、二分之一波片、光电二极管、四分之一波片。
CN202010493997.4A 2020-06-03 2020-06-03 基于多光梳系统测量气体红外多维光谱的装置及工作方法 Active CN111721732B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010493997.4A CN111721732B (zh) 2020-06-03 2020-06-03 基于多光梳系统测量气体红外多维光谱的装置及工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010493997.4A CN111721732B (zh) 2020-06-03 2020-06-03 基于多光梳系统测量气体红外多维光谱的装置及工作方法

Publications (2)

Publication Number Publication Date
CN111721732A CN111721732A (zh) 2020-09-29
CN111721732B true CN111721732B (zh) 2023-05-12

Family

ID=72565706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010493997.4A Active CN111721732B (zh) 2020-06-03 2020-06-03 基于多光梳系统测量气体红外多维光谱的装置及工作方法

Country Status (1)

Country Link
CN (1) CN111721732B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112329913B (zh) * 2020-10-22 2024-04-09 中国科学院西安光学精密机械研究所 一种基于微腔光频梳的并行光学神经网络系统及识别方法
CN113552071A (zh) * 2021-08-26 2021-10-26 天津大学 一种光声成像系统
CN115144367A (zh) * 2022-06-15 2022-10-04 香港中文大学深圳研究院 基于外差相敏探测的波长调制色散光谱装置及探测方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10088414B2 (en) * 2014-05-07 2018-10-02 Cornell University On-chip integrated gas sensor based on photonic sensing
CN104316186B (zh) * 2014-07-07 2016-08-24 华东师范大学 一种基于光学频率梳的光谱测量方法
US11967799B2 (en) * 2014-09-05 2024-04-23 Pilot Photonics Limited Spectroscopic detection using a tunable frequency comb
WO2017117707A1 (zh) * 2016-01-05 2017-07-13 上海交通大学 基于频率合成的光频域反射方法及系统
CN106025779A (zh) * 2016-07-22 2016-10-12 华东师范大学 一种基于谐波锁模光纤激光器的天文学光学频率梳系统
US10533836B2 (en) * 2016-09-15 2020-01-14 The Regents Of The University Of Michigan Multidimensional coherent spectroscopy using frequency combs
EP3361234A1 (en) * 2017-02-14 2018-08-15 Nokia Technologies Oy A method and apparatus for spectroscopy
CN106980045A (zh) * 2017-05-12 2017-07-25 北京航空航天大学 一种高频电磁信号时频特性测量系统与方法
US10969333B2 (en) * 2017-08-02 2021-04-06 Vox Biomedical Llc Sensing cannabis and opioids in exhaled breath by infrared spectroscopy
CN110553992A (zh) * 2019-08-12 2019-12-10 中电科仪器仪表有限公司 一种红外光谱高速测量系统及方法
CN111077109B (zh) * 2020-01-16 2021-06-11 北京航空航天大学 一种基于双光梳光谱技术的温度和浓度测量系统和方法
CN111077110B (zh) * 2020-01-16 2021-06-11 北京航空航天大学 一种基于双光梳光谱的温度场和浓度场测量系统和方法

Also Published As

Publication number Publication date
CN111721732A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
CN111721732B (zh) 基于多光梳系统测量气体红外多维光谱的装置及工作方法
CN104316180B (zh) 基于连续稳频激光的双光学频率梳光学成像方法
WO2020077735A1 (zh) 一种双光频梳光谱聚焦相干反斯托克斯拉曼光谱探测系统
CN111638202B (zh) 定域快速延时扫描的双光梳相干反斯托克斯拉曼光谱探测系统
CN113281278B (zh) 一种快速超高分辨瞬态吸收光谱测量装置及测量方法
CN104316186A (zh) 一种基于光学频率梳的光谱测量方法
JP2017528925A (ja) 低キャリア位相ノイズファイバ発振器
CN102576971A (zh) 锁模激光器的光信号处理
CN110133941B (zh) 一种准连续量子压缩真空态光场产生装置
CN107918237B (zh) 双飞秒光学频率梳产生装置
CN105428987A (zh) 基于自相似放大器的高功率超短脉冲光学频率梳产生方法
CN109239726B (zh) 一种基于单台双梳飞秒激光器的非合作目标测距系统
CN106990089A (zh) 同步降频的相干反斯托克斯拉曼散射成像系统及成像方法
CN112649415B (zh) 三光束自同步高速扫频光纤激光拉曼扫描成像系统及方法
CN101599610B (zh) 不同超短脉冲激光的精密主动同步装置
US20230291169A1 (en) Frequency stablizing system and method for single-cavity multi-frequency comb
CN105470800A (zh) 基于自相似放大器的高功率超短脉冲光学频率梳装置
CN112505716B (zh) 一种高更新频率的电控双光学频率梳测距系统
JP2020520107A (ja) レーザ装置
CN215339483U (zh) 气体分子吸收信号增强系统
WO2021143580A1 (zh) 一种超短脉冲激光测量仪和测量方法
CN214893682U (zh) 一种快速超高分辨瞬态吸收光谱测量装置
Flöry et al. Rapid-scan nonlinear time-resolved spectroscopy over arbitrary delay intervals
Hu et al. High-resolution time-resolved spectroscopy based on hybrid asynchronous optical sampling
Pan et al. Dual-pulse actively Q-switched fiber laser based on EOM and sagnac loop

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant