WO2021143580A1 - 一种超短脉冲激光测量仪和测量方法 - Google Patents

一种超短脉冲激光测量仪和测量方法 Download PDF

Info

Publication number
WO2021143580A1
WO2021143580A1 PCT/CN2021/070315 CN2021070315W WO2021143580A1 WO 2021143580 A1 WO2021143580 A1 WO 2021143580A1 CN 2021070315 W CN2021070315 W CN 2021070315W WO 2021143580 A1 WO2021143580 A1 WO 2021143580A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
pulse laser
convex lens
nonlinear optical
ultrashort pulse
Prior art date
Application number
PCT/CN2021/070315
Other languages
English (en)
French (fr)
Inventor
虞华康
伦逸鹏
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021143580A1 publication Critical patent/WO2021143580A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains

Definitions

  • the invention relates to the technical field of optical measurement, in particular to an ultrashort pulse laser measuring instrument and a measuring method.
  • Ultrashort pulse laser has the characteristics of short time width and high peak power. Because the pulse width of the ultrashort pulse is extremely short, the reaction speed of ordinary electronic devices is relatively slow, and it is usually impossible to directly measure the characteristic parameters of the ultrashort pulse.
  • the traditional measurement method of ultrashort pulse laser parameters is to use the frequency-resolved optical switch method.
  • the ultrashort pulse laser to be measured is divided into two beams through a beam splitter, and the two beams are continuously changed by a precision displacement device.
  • the optical path difference of the beam pulse and respectively record the signal intensity under different optical path difference.
  • it has extremely high precision requirements for the precision displacement device, the device cost is too high, and the measurement process takes a long time.
  • the prior art has an improved ultrashort pulse laser detector. After the ultrashort pulse laser to be measured is divided into two beams through a beam splitter, they are incident on the glass-ceramic collinearly, and a nonlinear signal is generated in the glass-ceramic.
  • the CCD camera
  • ultrashort pulse lasers Since the space-time distribution of ultrashort pulse lasers also has a significant impact on the application of ultrashort pulse lasers, in some applications, we must accurately know the space-time characteristics of pulsed lasers in the process of generation, transmission and transformation, in order to reveal its physical mechanism and establish Reasonable theoretical model. More and more studies have shown that analyzing and studying the fine structure of pulsed lasers such as picosecond or femtosecond pulses is the key to many research work. Therefore, we need new technology to measure the complete information of ultrashort pulse laser.
  • one of the objectives of the present invention is to provide an ultrashort pulse laser measuring instrument, which uses a nonlinear optical waveguide as the transverse frequency doubling medium, with high efficiency in generating nonlinear signals and low signal noise. , It can collect the spectral intensity information of the transverse frequency doubling signal generated at different spatial positions of the nonlinear optical waveguide, and obtain the complete parameter information of the ultrashort pulse laser.
  • the measurement speed is high, the measurement accuracy is high, and the core component can be miniaturized.
  • the second purpose of the present invention is to provide an ultrashort pulse laser measurement method, which uses a nonlinear optical waveguide as the transverse frequency doubling medium, and collects different spatial positions of the nonlinear optical waveguide.
  • the transverse frequency doubling signal can obtain the complete parameter information of the ultrashort pulse laser, the signal noise is small, the measurement speed is fast, and the measurement accuracy is high.
  • An ultrashort pulse laser measuring instrument comprising a beam splitter, a commutation device, a coupling device and a nonlinear optical waveguide which are sequentially arranged along the optical path of the ultrashort pulse laser.
  • the beam splitter is used to divide the ultrashort pulse laser into a reflected beam and a transmitted beam
  • the commutation device is used to adjust the reflected light beam and the transmitted light beam to collinear and opposing propagation
  • the coupling device is used to couple the reflected light beam and the transmitted light beam propagating in the collinear direction to the nonlinear optical waveguide.
  • the nonlinear optical waveguide has different spatial positions.
  • a signal acquisition device is arranged on one side of the nonlinear optical waveguide, and the signal acquisition device is used to collect the transverse frequency doubled signal generated by the nonlinear optical waveguide at different spatial positions.
  • the coupling device includes a first convex lens and a second convex lens, the first convex lens and the second convex lens are arranged oppositely, the reflected light beam is coupled to the nonlinear optical waveguide through the first convex lens, and the transmitted light beam is coupled to the nonlinear optical waveguide through the second convex lens.
  • a three-dimensional adjustment frame is arranged between the first convex lens and the second convex lens, and the nonlinear optical waveguide is arranged on the three-dimensional adjustment frame.
  • the reversing device includes a first reflecting mirror and a second reflecting mirror.
  • the first reflecting mirror reflects the reflected light beam split by the beam splitter into the second reflecting mirror, and the second reflecting mirror reflects the light emitted from the first reflecting mirror into the second reflecting mirror.
  • the first convex lens is a convex lens.
  • the commutation device further includes a third mirror, a fourth mirror, and a fifth mirror.
  • the third mirror reflects the transmitted light beam split by the beam splitter into the fourth mirror, and the fourth mirror reflects the third mirror.
  • the light emitted from the mirror is reflected into the fifth reflecting mirror, and the fifth reflecting mirror reflects the light emitted from the fourth reflecting mirror into the second convex lens.
  • a one-dimensional adjustment frame is arranged between the third reflecting mirror and the second convex lens, and the fourth reflecting mirror and the fifth reflecting mirror are both arranged in the one-dimensional adjustment frame.
  • the signal acquisition device includes a third convex lens and an imaging spectrometer.
  • the third convex lens is arranged on the side of the nonlinear optical waveguide.
  • the image point of the third convex lens is located on the nonlinear optical waveguide.
  • the imaging spectrometer is arranged on the side of the third convex lens.
  • the optical waveguide is set correspondingly.
  • the signal acquisition device further includes a field lens and a filter, and the field lens and the filter are sequentially arranged between the third convex lens and the imaging spectrometer.
  • An ultrashort pulse laser measurement method including the following steps,
  • the reflected light beam and the transmitted light beam propagating in the opposite direction are coupled to the nonlinear optical waveguide through a coupling device, and a transverse frequency doubled signal is generated in different spatial positions of the nonlinear optical waveguide;
  • S4 Collect the spectral intensity information of the transverse frequency doubled signals at different spatial positions of the nonlinear optical waveguide through the signal acquisition device;
  • the implementation of S3 is that the reflected light beam is coupled to the nonlinear optical waveguide through the first convex lens, and the transmitted light beam is coupled to the nonlinear optical waveguide through the second convex lens, and the reflected light beam and the transmitted light beam are overlapped on the nonlinear optical waveguide.
  • the present invention has the following advantages:
  • the nonlinear optical waveguide generates transverse frequency doubled signals in different spatial positions
  • the signal acquisition device collects the spectral intensity information of the transverse frequency doubled signals generated from different spatial positions of the nonlinear optical waveguide, so that the reconstruction problem of the ultrashort pulse laser can be converted into a two-dimensional
  • the complete expression of the ultrashort pulse laser complex electric field can be determined, which can be obtained
  • the complete parameter information of the ultrashort pulse laser including the time domain, frequency domain and phase information of the ultrashort pulse laser, has fast measurement speed and high measurement accuracy, and can realize the miniaturization of core components.
  • Fig. 1 is a schematic diagram of a planar structure of an embodiment of the present invention.
  • 61 field lens
  • 62 filter
  • an ultrashort pulse laser measuring instrument includes a beam splitter 1, a commutation device, a coupling device, and a nonlinear optical waveguide 5 arranged in sequence along the optical path of the ultrashort pulse laser.
  • the ultra-short pulse laser is divided into a reflected beam and a transmitted beam.
  • the commutation device is used to adjust the reflected beam and the transmitted beam to collinear and opposite to propagate, and the coupling device is used to couple the collinear and oppositely propagated reflected beam and the transmitted beam to the nonlinear optical waveguide 5.
  • the non-linear optical waveguide 5 generates transverse frequency doubled signals at different spatial positions
  • a signal acquisition device is provided on one side of the nonlinear optical waveguide 5, and the signal acquisition device is used to collect the transverse frequency doubled signals generated by the nonlinear optical waveguide 5 at different spatial positions .
  • the single arrow in the figure shows the optical path of the ultrashort pulse laser, and the double arrow shows the propagation direction of the transverse frequency doubled signal.
  • the ultrashort pulse laser detector in the prior art uses glass-ceramics as the transverse frequency doubling medium. Since there are many small crystals randomly distributed in the glass-ceramics, only some of the small crystals can generate nonlinear signals. Therefore, the non-linearity of the glass-ceramics The signal generation efficiency is low, the signal strength is weak, and the signal noise is large, which affects the measurement accuracy. It collects the intensity information of the nonlinear signal through a CCD (camera), and analyzes the intensity information, and can obtain the pulse width in the pulse time domain, but cannot obtain the complete parameter information of the ultrashort pulse laser.
  • CCD camera
  • the ultrashort pulse laser measuring instrument of the present invention uses a beam splitter 1 to divide the ultrashort pulse laser to be measured into a reflected beam and a transmitted beam, and the reversing device adjusts the reflected beam and the transmitted beam, respectively, and adjusts the reflected beam and the transmitted beam to collinearly face each other.
  • the coupling device respectively couples the reflected light beam and the transmitted light beam propagating in the opposite direction to the nonlinear optical waveguide 5, and the reflected light beam and the transmitted light beam are overlapped on the nonlinear optical waveguide 5.
  • a lateral frequency doubled signal is generated on the side of the nonlinear optical waveguide 5, and the lateral frequency doubled signal is a nonlinear signal.
  • the signal acquisition device is arranged corresponding to the nonlinear optical waveguide 5, and preferably, the signal acquisition device and the nonlinear optical waveguide 5 are axially perpendicular to each other.
  • the signal acquisition device collects the transverse frequency doubling signals generated at different spatial positions of the nonlinear optical waveguide 5, and records the spectral intensity information of the transverse frequency doubling signal at different spatial positions of the nonlinear optical waveguide 5, so that the reconstruction problem of the ultrashort pulse laser can be converted into one
  • the inversion algorithm for multiple iterations of the spectral intensity information of these different spatial positions, the complete expression of the complex electric field of the ultrashort pulse laser can be determined, and the complete parameter information of the ultrashort pulse laser can be obtained. , Including the time domain, frequency domain and phase information of the ultrashort pulse laser.
  • the inversion algorithm is an existing technology.
  • the journal name that was published in May 1993 is Journal of the Optical Society of America A 10(5):1101-1111. It is described in detail, and the related literature name is Using phase retrieval to measure The intensity and phase of ultrashort pulses: frequency-resolved optical gating, so I won’t repeat them here.
  • the ultrashort pulse laser measuring instrument of the present invention uses a nonlinear optical waveguide 5 as the transverse frequency doubling medium.
  • the nonlinear optical waveguide 5 is made of nonlinear crystal.
  • the signal measured by the ultrashort pulse laser measuring instrument is an optical nonlinear signal. It is generated by the interaction of light and the nonlinear crystal, so the nonlinear signal generation efficiency of the nonlinear optical waveguide 5 is higher, the signal strength is stronger, the signal noise is smaller, and the measurement accuracy is improved.
  • the nonlinear optical waveguide 5 used in the present invention is only a few millimeters long and has a diameter of about 1 micron, which can realize the miniaturization of core components.
  • the nonlinear optical waveguide 5 can restrain the propagation of light, the reflected beam and the transmitted beam do not need to be strictly aligned with each other. It does not matter if there is a certain angular deviation, as long as they can be coupled to the nonlinear optical waveguide 5, so the non-linear optical waveguide 5 is used. As the frequency doubling medium, the linear optical waveguide 5 reduces the accuracy requirements of the commutation device and the coupling device, and has stronger operability and easier measurement.
  • the coupling device includes a first convex lens 31 and a second convex lens 32.
  • the first convex lens 31 and the second convex lens 32 are arranged oppositely.
  • the reflected light beam is coupled to the nonlinear optical waveguide 5 through the first convex lens 31, and the transmitted light beam is coupled to the non-linear optical waveguide through the second convex lens 32.
  • the first convex lens 31 and the second convex lens 32 are respectively located at both ends of the nonlinear optical waveguide 5, the first convex lens 31 and the second convex lens 32 are axially coincident with the nonlinear optical waveguide 5, the first convex lens 31 and the second convex lens 32
  • the convex surfaces are all facing the nonlinear optical waveguide 5. Since the reflected light beam is coupled to the nonlinear optical waveguide 5 through the first convex lens 31, and the transmitted light beam is coupled to the nonlinear optical waveguide 5 through the second convex lens 32, the reflected light beam and the transmitted light beam overlap in the nonlinear optical waveguide 5, so that the nonlinear optical waveguide 5 can generate horizontal frequency multiplier signals.
  • a three-dimensional adjustment frame 42 is provided between the first convex lens 31 and the second convex lens 32, and the nonlinear optical waveguide 5 is provided on the three-dimensional adjustment frame 42.
  • the nonlinear optical waveguide 5 Since the shape of the nonlinear optical waveguide 5 is small, the nonlinear optical waveguide 5 is placed on the three-dimensional adjustment frame 42 and the coupling efficiency can be improved by adjusting the three-dimensional adjustment frame 42.
  • the reversing device includes a first reflecting mirror 21 and a second reflecting mirror 22.
  • the first reflecting mirror 21 reflects the reflected light beam split by the beam splitter 1 into the second reflecting mirror 22, and the second reflecting mirror 22 reflects the first reflecting mirror 21 The emitted light is reflected into the first convex lens 31.
  • the reflected light beam can be reflected to the first convex lens 31, so that it can be coupled to the nonlinear optical waveguide 5.
  • the ultrashort pulse laser to be measured has an angle of 45 degrees with the beam splitter 1, the beam splitter 1 is parallel to the first mirror 21, the first mirror 21 is perpendicular to the second mirror 22, and the second reflection
  • the mirror 22 and the first convex lens 31 have an included angle of 45 degrees in the axial direction.
  • the reversing device also includes a third reflector 23, a fourth reflector 24 and a fifth reflector 25.
  • the third reflector 23 reflects the transmitted light beam split by the beam splitter 1 into the fourth reflector 24, and the fourth reflector 24 reflects the light emitted from the third mirror 23 into the fifth mirror 25, and the fifth mirror 25 reflects the light emitted from the fourth mirror 24 into the second convex lens 32.
  • the transmitted light beam can be reflected to the second convex lens 32, so that it can be coupled to the nonlinear optical waveguide 5.
  • the third reflector 23 is perpendicular to the beam splitter 1
  • the third reflector 23 and the fourth reflector 24 are parallel
  • the fourth reflector 24 is perpendicular to the fifth reflector 25
  • the fifth reflector 25 is perpendicular to the first reflector.
  • the biconvex lens 32 has an included angle of 45 degrees in the axial direction.
  • a one-dimensional adjusting frame 41 is provided between the third reflecting mirror 23 and the second convex lens 32, and the fourth reflecting mirror 24 and the fifth reflecting mirror 25 are both arranged on the one-dimensional adjusting frame 41.
  • the fourth reflecting mirror 24, the fifth reflecting mirror 25 and the one-dimensional adjusting frame 41 constitute an adjusting device.
  • the distance between the fourth mirror 24 and the fifth mirror 25 can be adjusted, that is, the optical path of the transmitted light beam can be adjusted, so that the reflected light beam and the transmitted light beam have the same optical path in the nonlinear optical waveguide 5 ,
  • the reflected light beam and the transmitted light beam overlap in space, and a transverse frequency doubled signal can be generated on the nonlinear optical waveguide 5.
  • the signal can realize the measurement of ultra-short pulse laser, with faster speed and lower cost.
  • the signal acquisition device includes a third convex lens 33 and an imaging spectrometer 7.
  • the third convex lens 33 is arranged on the side of the nonlinear optical waveguide 5, the image point of the third convex lens 33 is located in the nonlinear optical waveguide 5; the imaging spectrometer 7 is arranged on the third convex lens 33 One side is arranged corresponding to the nonlinear optical waveguide 5.
  • the third convex lens 33 is used to collect the transverse frequency doubled signal generated by the nonlinear optical waveguide 5.
  • the imaging spectrometer 7 records the transverse frequency doubled signal collected by the third convex lens 33.
  • the imaging spectrometer 7 can measure the intensity in the time domain and the intensity in the frequency domain at the same time, and record the spectral intensity information at different spatial positions of the nonlinear optical waveguide 5, so that the reconstruction problem of the ultrashort pulse laser can be converted into a two-dimensional phase Inversely solving the problem, by using the inversion algorithm for multiple iterations of the spectral intensity information of these different spatial positions, the complete expression of the complex electric field of the ultrashort pulse laser can be determined, and the complete parameter information of the ultrashort pulse laser can be obtained.
  • the signal acquisition device further includes a field lens 61 and a filter 62.
  • the field lens 61 and the filter 62 are sequentially arranged between the third convex lens 33 and the imaging spectrometer 7.
  • the field lens 61 improves the ability of the lateral frequency-doubled signal edge beam to enter the imaging spectrometer 7, and the filter 62 can filter the signal noise collected by the third convex lens 33, so that the imaging spectrometer 7 can record the nonlinear optical waveguide 5 in different spatial positions.
  • the spectral intensity information of the transverse frequency doubled signal is not limited to the following parameters:
  • An ultrashort pulse laser measurement method including the following steps,
  • the reflected light beam and the transmitted light beam propagating in the opposite direction are coupled to the nonlinear optical waveguide 5 through a coupling device, and a transverse frequency doubled signal is generated in different spatial positions of the nonlinear optical waveguide 5;
  • S4 Collect the spectral intensity information of the transverse frequency doubled signals at different spatial positions of the nonlinear optical waveguide 5 through the signal acquisition device;
  • the signal acquisition device measures the intensity in the time domain and the intensity in the frequency domain at the same time, and records the spectral intensity information of the transverse frequency doubling signal of the ultrashort pulse laser at different spatial positions in the nonlinear optical waveguide 5, so that the ultrashort pulse laser
  • the reconstruction problem is transformed into a two-dimensional phase inverse solution problem.
  • the complete expression of the complex electric field of the ultrashort pulse laser can be determined, and the ultrashort pulse can be obtained.
  • the complete parameter information of the laser including the time domain, frequency domain, phase and other information of the ultra-short pulse laser, has a fast measurement speed and high measurement accuracy.
  • the nonlinear optical waveguide 5 is made of a nonlinear crystal
  • the signal measured by the ultrashort pulse laser measuring instrument is an optical nonlinear signal, which is generated by the interaction of light and the nonlinear crystal. Therefore, the nonlinear optical waveguide 5 is nonlinear.
  • the signal generation efficiency is high, the signal strength is strong, the signal noise is small, and the measurement accuracy is improved.
  • the implementation of S3 is that the reflected light beam is coupled to the nonlinear optical waveguide 5 through the first convex lens 31, the transmitted light beam is coupled to the nonlinear optical waveguide 5 through the second convex lens 32, and the reflected light beam and the transmitted light beam are on the nonlinear optical waveguide 5 overlapping.
  • the coupling device includes a first convex lens 31 and a second convex lens 32 respectively arranged at both ends of the nonlinear optical waveguide 5. Since the first convex lens 31 and the second convex lens 32 have a focusing function, by separately focusing and coupling the reflected light beam and the transmitted light beam to the nonlinear optical waveguide 5, it is easier for the nonlinear optical waveguide 5 to generate a transverse frequency doubled signal.
  • the reversing device includes a first reflecting mirror 21, a second reflecting mirror 22, a third reflecting mirror 23, a fourth reflecting mirror 24, and a fifth reflecting mirror 25.
  • the first reflecting mirror 21 reflects the reflected light beam split by the beam splitter 1 into the second reflecting mirror 22, and the second reflecting mirror 22 reflects the light emitted from the first reflecting mirror 21 into the first convex lens 31.
  • the third reflecting mirror 23 reflects the transmitted light beam split by the beam splitter 1 into the fourth reflecting mirror 24, and the fourth reflecting mirror 24 reflects the light emitted from the third reflecting mirror 23 into the fifth reflecting mirror 25, and the fifth reflecting mirror 25
  • the light emitted from the fourth mirror 24 is reflected into the second convex lens 32.
  • the signal acquisition device is an imaging spectrometer 7.
  • the imaging spectrometer 7 simultaneously measures the intensity in the time domain and the intensity in the frequency domain, and records the spectral intensity information of the transverse frequency doubled signal of the ultrashort pulse laser at different spatial positions of the nonlinear optical waveguide 5.

Abstract

一种超短脉冲激光测量仪,包括沿超短脉冲激光光路依次设置的分束器(1)、换向装置、耦合装置和非线性光波导(5),分束器(1)用于将超短脉冲激光分成反射光束和透射光束,换向装置用于将反射光束和透射光束调整至共线相向传播,耦合装置用于将共线相向传播的反射光束和透射光束耦合于非线性光波导(5),非线性光波导(5)不同空间位置产生有横向倍频信号,信号采集装置用于采集非线性光波导(5)不同空间位置产生的横向倍频信号。通过对非线性光波导(5)不同空间位置产生的横向倍频信号的频谱强度信息采用反演算法多次迭代,可以确定超短脉冲激光复电场的完整表达式,能够获得超短脉冲激光完整的参数信息。提供一种超短脉冲激光测量方法。

Description

一种超短脉冲激光测量仪和测量方法 技术领域
本发明涉及光学测量技术领域,特别是涉及一种超短脉冲激光测量仪和测量方法。
背景技术
超短脉冲激光具有时间宽度短,峰值功率高等特点。由于超短脉冲的脉冲宽度极短,普通的电子类器件反应速度相对较慢,通常无法直接测量超短脉冲的特性参数。
超短脉冲激光参数传统的测量方法是采用频率分辨光学开关法,在自相关仪的基础上,将待测超短脉冲激光通过分束器分成两束后,通过精密位移装置连续不断地改变两束脉冲的光程差,并分别记录不同光程差下的信号强度。但是其对精密位移装置的精度要求极高,装置成本过高,测量过程耗时较长。
现有技术有改良的超短脉冲激光探测仪,将待测超短脉冲激光通过分束器分成两束后,共线相向入射到微晶玻璃中,在微晶玻璃中产生非线性信号,通过CCD(照相机)采集非线性信号的强度信息,并对强度信息加以分析推算出待测超短脉冲激光的脉宽信号,从而实现高精度的超短脉冲激光测量。
改良的超短脉冲激光探测仪仍然存在以下技术问题:
1.其能够获得脉冲时域上的脉宽,但无法得到超短脉冲激光完整的参数信息。
2.微晶玻璃非线性信号产生效率较低,信号噪声较大,导致测量精度仍然有待提升。
3.微晶玻璃体积较大,难以实现核心部件小型化。
由于超短脉冲激光的时空分布对超短脉冲激光的应用也有重大的影响,在一些应用中我们必须精确知道脉冲激光在产生、传输和变换过程中的时空特性, 才能揭示其物理机制,建立起合理的理论模型。越来越多的研究表明,分析研究脉冲激光如皮秒或飞秒脉冲的精细结构是许多研究工作的关键。因此我们需要新的技术测量超短脉冲激光的完整信息。
发明内容
针对现有技术中存在的技术问题,本发明的目的之一是:提供一种超短脉冲激光测量仪,采用非线性光波导为横向倍频介质,非线性信号产生效率高,信号噪声较小,能够采集非线性光波导不同空间位置产生的横向倍频信号的频谱强度信息,获得超短脉冲激光完整的参数信息,测量速度快,测量精度高,能够实现核心部件小型化。
针对现有技术中存在的技术问题,本发明的目的之二是:提供一种超短脉冲激光测量方法,采用非线性光波导为横向倍频介质,通过采集非线性光波导不同空间位置产生的横向倍频信号,能够得到超短脉冲激光完整的参数信息,信号噪声较小,测量速度快,测量精度高。
为了达到上述目的,本发明采用如下技术方案:
一种超短脉冲激光测量仪,包括沿超短脉冲激光光路依次设置的分束器、换向装置、耦合装置和非线性光波导,分束器用于将超短脉冲激光分成反射光束和透射光束,换向装置用于将反射光束和透射光束调整至共线相向传播,耦合装置用于将共线相向传播的反射光束和透射光束耦合于非线性光波导,非线性光波导不同空间位置产生有横向倍频信号,非线性光波导一侧设有信号采集装置,信号采集装置用于采集非线性光波导不同空间位置产生的横向倍频信号。
进一步,耦合装置包括第一凸透镜和第二凸透镜,第一凸透镜和第二凸透镜相对设置,反射光束经过第一凸透镜耦合于非线性光波导,透射光束经过第二凸透镜耦合于非线性光波导。
进一步,第一凸透镜和第二凸透镜之间设有三维调整架,非线性光波导设于三维调整架。
进一步,换向装置包括第一反射镜和第二反射镜,第一反射镜将分束器分出来的反射光束反射进入第二反射镜,第二反射镜将第一反射镜的出射光反射进入第一凸透镜。
进一步,换向装置还包括第三反射镜、第四反射镜和第五反射镜,第三反射镜将分束器分出来的透射光束反射进入第四反射镜,第四反射镜将第三反射镜的出射光反射进入第五反射镜,第五反射镜将第四反射镜的出射光反射进入第二凸透镜。
进一步,第三反射镜和第二凸透镜之间设有一维调整架,第四反射镜和第五反射镜均设于一维调整架。
进一步,信号采集装置包括第三凸透镜和成像光谱仪,第三凸透镜设于非线性光波导一侧,第三凸透镜的像点位于非线性光波导;成像光谱仪设于第三凸透镜一侧,与非线性光波导对应设置。
进一步,信号采集装置还包括场镜和滤波片,场镜和滤波片依次设于第三凸透镜与成像光谱仪之间。
一种超短脉冲激光测量方法,包括以下步骤,
S1,通过分束器将超短脉冲激光分成反射光束和透射光束;
S2,通过换向装置将反射光束和透射光束调整至共线相向传播;
S3,通过耦合装置将共线相向传播的反射光束和透射光束耦合于非线性光波导,在非线性光波导不同空间位置中产生横向倍频信号;
S4,通过信号采集装置采集非线性光波导不同空间位置的横向倍频信号的频谱强度信息;
S5,对采集到的不同空间位置的横向倍频信号的频谱强度信息采用反演算法计算,得到超短脉冲激光复电场的完整表达式。
进一步,S3的实现方式为,通过第一凸透镜将反射光束耦合于非线性光波导,通过第二凸透镜将透射光束耦合于非线性光波导,反射光束和透射光束在非线性光波导上重叠。
总的说来,本发明具有如下优点:
非线性光波导不同空间位置中产生横向倍频信号,信号采集装置采集非线性光波导不同空间位置产生的横向倍频信号的频谱强度信息,从而可以将超短脉冲激光的重建问题转换为一个二维的相位反解问题,通过对非线性光波导不同空间位置产生的横向倍频信号的频谱强度信息采用反演算法多次迭代,就可以确定超短脉冲激光复电场的完整表达式,能够获得超短脉冲激光完整的参数信息,包括超短脉冲激光的时域、频域和相位等信息,测量速度快,测量精度高,能够实现核心部件小型化。
附图说明
图1为本发明实施例的平面结构示意图。
附图标记说明:
1——分束器;
21——第一反射镜、22——第二反射镜、23——第三反射镜、24——第四 反射镜、25——第五反射镜;
31——第一凸透镜、32——第二凸透镜、33——第三凸透镜;
41——一维调整架、42——三维调整架;
5——非线性光波导;
61——场镜、62——滤波片;
7——成像光谱仪。
具体实施方式
下面来对本发明做进一步详细的说明。
如图1所示,一种超短脉冲激光测量仪,包括沿超短脉冲激光光路依次设置的分束器1、换向装置、耦合装置和非线性光波导5,分束器1用于将超短脉冲激光分成反射光束和透射光束,换向装置用于将反射光束和透射光束调整至共线相向传播,耦合装置用于将共线相向传播的反射光束和透射光束耦合于非线性光波导5,非线性光波导5不同空间位置产生有横向倍频信号,非线性光波导5一侧设有信号采集装置,信号采集装置用于采集非线性光波导5不同空间位置产生的横向倍频信号。
图中单箭头所示为超短脉冲激光光路,双箭头所示为横向倍频信号传播方向。
现有技术的超短脉冲激光探测仪采用微晶玻璃作为横向倍频介质,由于微晶玻璃中随机分布着许多小晶体,其中只有部分小晶体能够产生非线性信号,因此微晶玻璃的非线性信号产生效率较低,信号强度较弱,信号噪声较大,影响了测量精度。其通过CCD(照相机)采集非线性信号的强度信息,并对强度信息加以分析,能够获得脉冲时域上的脉宽,但无法得到超短脉冲激光完整的参数信息。
本发明的超短脉冲激光测量仪利用分束器1将待测超短脉冲激光分成反射光束和透射光束,换向装置分别调整反射光束和透射光束,将反射光束和透射光束调整至共线相向传播,耦合装置分别将共线相向传播的反射光束和透射光束耦合于非线性光波导5,反射光束和透射光束在非线性光波导5上重叠。此时,在非线性光波导5的侧部会产生横向倍频信号,横向倍频信号为非线性信号。信号采集装置与非线性光波导5对应设置,优选地,信号采集装置与非线性光波导5轴向相互垂直。信号采集装置采集非线性光波导5不同空间位置产生的横向倍频信号,记录非线性光波导5不同空间位置的横向倍频信号频谱强度信息,从而可以将超短脉冲激光的重建问题转换为一个二维的相位反解问题,通过对这些不同空间位置的频谱强度信息采用反演算法多次迭代,就可以确定超短脉冲激光复电场的完整表达式,能够获得超短脉冲激光完整的参数信息,包括超短脉冲激光的时域、频域和相位等信息。
反演算法是现有技术,已在1993年5月发表的期刊名称为Journal of the Optical Society of America A 10(5):1101-1111中有详细描述,相关的文献名称为Using phase retrieval to measure the intensity and phase of ultrashort pulses:frequency-resolved optical gating,在此不再赘述。
本发明的超短脉冲激光测量仪采用非线性光波导5作为横向倍频介质,非线性光波导5是由非线性晶体制备而成,超短脉冲激光测量仪测量的信号为光学非线性信号,由光与非线性晶体的相互作用产生,因此非线性光波导5的非线性信号产生效率较高,信号强度较强,信号噪声较小,提升了测量精度。本发明采用的非线性光波导5只有几毫米长,直径约为1微米,能够实现核心部件小型化。
由于非线性光波导5可以束缚光的传播,反射光束和透射光束不需要严格对准共线相向,有一定的角度偏差也没关系,只要能耦合到非线性光波导5中即可,因此采用非线性光波导5作为倍频介质,降低了换向装置和耦合装置的精度要求,可操作性更强,测量更轻松。
耦合装置包括第一凸透镜31和第二凸透镜32,第一凸透镜31和第二凸透镜32相对设置,反射光束经过第一凸透镜31耦合于非线性光波导5,透射光束经过第二凸透镜32耦合于非线性光波导5。
具体地,第一凸透镜31和第二凸透镜32分别位于非线性光波导5两端,第一凸透镜31和第二凸透镜32与非线性光波导5轴向重合,第一凸透镜31和第二凸透镜32的凸面均朝向非线性光波导5。由于反射光束经过第一凸透镜31耦合于非线性光波导5,透射光束经过第二凸透镜32耦合于非线性光波导5,反射光束和透射光束在非线性光波导5重叠,从而在非线性光波导5上能够产生横向倍频信号。
第一凸透镜31和第二凸透镜32之间设有三维调整架42,非线性光波导5设于三维调整架42。
由于非线性光波导5外形很小,将非线性光波导5放置在三维调整架42上,通过调节三维调整架42,可以提高耦合效率。
换向装置包括第一反射镜21和第二反射镜22,第一反射镜21将分束器1分出来的反射光束反射进入第二反射镜22,第二反射镜22将第一反射镜21的出射光反射进入第一凸透镜31。
通过第一反射镜21和第二反射镜22的依次反射,可以将反射光束反射到第一凸透镜31,从而能够耦合于非线性光波导5。
本实施例中,待测超短脉冲激光与分束器1具有45度夹角,分束器1与第 一反射镜21平行,第一反射镜21垂直于第二反射镜22,第二反射镜22与第一凸透镜31轴向具有45度夹角。
换向装置还包括第三反射镜23、第四反射镜24和第五反射镜25,第三反射镜23将分束器1分出来的透射光束反射进入第四反射镜24,第四反射镜24将第三反射镜23的出射光反射进入第五反射镜25,第五反射镜25将第四反射镜24的出射光反射进入第二凸透镜32。
通过第三反射镜23、第四反射镜24和第五反射镜25的依次反射,可以将透射光束反射到第二凸透镜32,从而能够耦合于非线性光波导5。
本实施例中,第三反射镜23垂直于分束器1,第三反射镜23和第四反射镜24平行,第四反射镜24垂直于第五反射镜25,第五反射镜25与第二凸透镜32轴向具有45度夹角。
第三反射镜23和第二凸透镜32之间设有一维调整架41,第四反射镜24和第五反射镜25均设于一维调整架41。
第四反射镜24、第五反射镜25和一维调整架41组成调节装置。通过调节一维调整架41,可以调节第四反射镜24和第五反射镜25之间距离,即可以调节透射光束的光程,使反射光束和透射光束在非线性光波导5中光程相等,反射光束和透射光束在空间上重叠,在非线性光波导5上能够产生横向倍频信号。只需要通过成本较低的一维调整架41手动调节一次,使反射光束和透射光束在非线性光波导5中光程相等即可,不需要连续精确电动调节,并只需记录一次横向倍频信号即可实现对超短脉冲激光的测量,速度更快,成本更低。
信号采集装置包括第三凸透镜33和成像光谱仪7,第三凸透镜33设于非线性光波导5一侧,第三凸透镜33的像点位于非线性光波导5;成像光谱仪7设于第三凸透镜33一侧,与非线性光波导5对应设置。
第三凸透镜33用于收集非线性光波导5产生的横向倍频信号。成像光谱仪7记录第三凸透镜33收集到的横向倍频信号。成像光谱仪7可以同时从时域强度和频域强度两个维度进行测量,记录非线性光波导5不同空间位置的频谱强度信息,从而可以将超短脉冲激光的重建问题转换为一个二维的相位反解问题,通过对这些不同空间位置的频谱强度信息采用反演算法多次迭代,就可以确定超短脉冲激光复电场的完整表达式,能够获得超短脉冲激光完整的参数信息。
信号采集装置还包括场镜61和滤波片62,场镜61和滤波片62依次设于第三凸透镜33与成像光谱仪7之间。
场镜61提高了横向倍频信号边缘光束入射到成像光谱仪7的能力,滤波片62能够过滤第三凸透镜33收集的信号噪音,使成像光谱仪7能够记录到非线性光波导5不同空间位置较纯净横向倍频信号的频谱强度信息。
一种超短脉冲激光测量方法,包括以下步骤,
S1,通过分束器1将超短脉冲激光分成反射光束和透射光束;
S2,通过换向装置将反射光束和透射光束调整至共线相向传播;
S3,通过耦合装置将共线相向传播的反射光束和透射光束耦合于非线性光波导5,在非线性光波导5不同空间位置中产生横向倍频信号;
S4,通过信号采集装置采集非线性光波导5不同空间位置的横向倍频信号的频谱强度信息;
S5,对采集到的不同空间位置的横向倍频信号的频谱强度信息采用反演算法计算,得到超短脉冲激光复电场的完整表达式。
信号采集装置同时从时域强度和频域强度两个维度进行测量,记录超短脉冲激光在非线性光波导5不同空间位置的横向倍频信号的频谱强度信息,从而可以将超短脉冲激光的重建问题转换为一个二维的相位反解问题,通过对这些 不同空间位置的频谱强度信息采用反演算法多次迭代,就可以确定超短脉冲激光复电场的完整表达式,能够获得超短脉冲激光完整的参数信息,包括超短脉冲激光的时域、频域、相位等信息,测量速度快,测量精度高。
由于非线性光波导5是由非线性晶体制备而成,超短脉冲激光测量仪测量的信号为光学非线性信号,由光与非线性晶体的相互作用产生,因此非线性光波导5的非线性信号产生效率较高,信号强度较强,信号噪声较小,提升了测量精度。
S3的实现方式为,通过第一凸透镜31将反射光束耦合于非线性光波导5,通过第二凸透镜32将透射光束耦合于非线性光波导5,反射光束和透射光束在非线性光波导5上重叠。
耦合装置包括分别设于非线性光波导5两端的第一凸透镜31和第二凸透镜32。由于第一凸透镜31和第二凸透镜32具有聚焦功能,通过将反射光束和透射光束分别聚焦并耦合于非线性光波导5,更容易使非线性光波导5产生横向倍频信号。
本实施例中,换向装置包括第一反射镜21、第二反射镜22、第三反射镜23、第四反射镜24和第五反射镜25。第一反射镜21将分束器1分出来的反射光束反射进入第二反射镜22,第二反射镜22将第一反射镜21的出射光反射进入第一凸透镜31。第三反射镜23将分束器1分出来的透射光束反射进入第四反射镜24,第四反射镜24将第三反射镜23的出射光反射进入第五反射镜25,第五反射镜25将第四反射镜24的出射光反射进入第二凸透镜32。
信号采集装置为成像光谱仪7,成像光谱仪7同时从时域强度和频域强度两个维度进行测量,记录超短脉冲激光在非线性光波导5不同空间位置的横向倍频信号的频谱强度信息。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种超短脉冲激光测量仪,其特征在于:包括沿超短脉冲激光光路依次设置的分束器、换向装置、耦合装置和非线性光波导,分束器用于将超短脉冲激光分成反射光束和透射光束,换向装置用于将反射光束和透射光束调整至共线相向传播,耦合装置用于将共线相向传播的反射光束和透射光束耦合于非线性光波导,非线性光波导不同空间位置产生有横向倍频信号,非线性光波导一侧设有信号采集装置,信号采集装置用于采集非线性光波导不同空间位置产生的横向倍频信号。
  2. 按照权利要求1所述的一种超短脉冲激光测量仪,其特征在于:耦合装置包括第一凸透镜和第二凸透镜,第一凸透镜和第二凸透镜相对设置,反射光束经过第一凸透镜耦合于非线性光波导,透射光束经过第二凸透镜耦合于非线性光波导。
  3. 按照权利要求2所述的一种超短脉冲激光测量仪,其特征在于:第一凸透镜和第二凸透镜之间设有三维调整架,非线性光波导设于三维调整架。
  4. 按照权利要求2所述的一种超短脉冲激光测量仪,其特征在于:换向装置包括第一反射镜和第二反射镜,第一反射镜将分束器分出来的反射光束反射进入第二反射镜,第二反射镜将第一反射镜的出射光反射进入第一凸透镜。
  5. 按照权利要求4所述的一种超短脉冲激光测量仪,其特征在于:换向装置还包括第三反射镜、第四反射镜和第五反射镜,第三反射镜将分束器分出来的透射光束反射进入第四反射镜,第四反射镜将第三反射镜的出射光反射进入第五反射镜,第五反射镜将第四反射镜的出射光反射进入第二凸透镜。
  6. 按照权利要求5所述的一种超短脉冲激光测量仪,其特征在于:第三反射镜和第二凸透镜之间设有一维调整架,第四反射镜和第五反射镜均设于一维调整架。
  7. 按照权利要求1所述的一种超短脉冲激光测量仪,其特征在于:信号采集装置包括第三凸透镜和成像光谱仪,第三凸透镜设于非线性光波导一侧,第三凸透镜的像点位于非线性光波导;成像光谱仪设于第三凸透镜一侧,与非线性光波导对应设置。
  8. 按照权利要求7所述的一种超短脉冲激光测量仪,其特征在于:信号采集装置还包括场镜和滤波片,场镜和滤波片依次设于第三凸透镜与成像光谱仪之间。
  9. 一种超短脉冲激光测量方法,其特征在于:包括以下步骤,
    S1,通过分束器将超短脉冲激光分成反射光束和透射光束;
    S2,通过换向装置将反射光束和透射光束调整至共线相向传播;
    S3,通过耦合装置将共线相向传播的反射光束和透射光束耦合于非线性光波导,在非线性光波导不同空间位置中产生横向倍频信号;
    S4,通过信号采集装置采集非线性光波导不同空间位置的横向倍频信号的频谱强度信息;
    S5,对采集到的不同空间位置的横向倍频信号的频谱强度信息采用反演算法计算,得到超短脉冲激光复电场的完整表达式。
  10. 按照权利要求9所述的一种超短脉冲激光测量方法,其特征在于:S3的实现方式为,通过第一凸透镜将反射光束耦合于非线性光波导,通过第二凸透镜将透射光束耦合于非线性光波导,反射光束和透射光束在非线性光波导上重叠。
PCT/CN2021/070315 2020-01-13 2021-01-05 一种超短脉冲激光测量仪和测量方法 WO2021143580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010032816.8A CN111189550A (zh) 2020-01-13 2020-01-13 一种超短脉冲激光测量仪和测量方法
CN202010032816.8 2020-01-13

Publications (1)

Publication Number Publication Date
WO2021143580A1 true WO2021143580A1 (zh) 2021-07-22

Family

ID=70706239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070315 WO2021143580A1 (zh) 2020-01-13 2021-01-05 一种超短脉冲激光测量仪和测量方法

Country Status (2)

Country Link
CN (1) CN111189550A (zh)
WO (1) WO2021143580A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539848B (zh) * 2020-11-09 2022-08-30 中国科学院上海光学精密机械研究所 一种超快伽马射线脉宽探测装置
CN114001835B (zh) * 2021-11-01 2024-02-13 深圳大学 一种超短脉冲的实时光谱测量系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353149A (en) * 1992-09-17 1994-10-04 Hamamatsu Photonics K.K. Apparatus for affecting time-space conversion on a light signal changing at ultra-high speed
CN2519256Y (zh) * 2002-01-29 2002-10-30 中国科学院物理研究所 双功能小型超短激光脉冲自相关测量仪
CN1858566A (zh) * 2006-06-09 2006-11-08 中国科学院上海光学精密机械研究所 超短脉冲精确实时测量装置
CN103364090A (zh) * 2013-07-22 2013-10-23 北京工业大学 测量超短脉冲激光在介质中传播相速度的装置及方法
CN108254088A (zh) * 2018-01-19 2018-07-06 中国科学院上海光学精密机械研究所 大范围皮秒激光脉冲宽度测量装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2611881Y (zh) * 2003-05-09 2004-04-14 中国科学院上海光学精密机械研究所 精密测量超短激光脉冲时间同步的装置
EP3062075B1 (en) * 2015-02-06 2024-01-10 Universitat Politècnica De Catalunya Optical system and method for ultrashort laser pulse characterization
CN208672154U (zh) * 2018-07-30 2019-03-29 河南师范大学 共线自相关超短光脉冲测量装置
CN110319941A (zh) * 2019-06-29 2019-10-11 华南理工大学 以微晶玻璃为倍频介质的基于横向倍频的超短脉冲探测器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353149A (en) * 1992-09-17 1994-10-04 Hamamatsu Photonics K.K. Apparatus for affecting time-space conversion on a light signal changing at ultra-high speed
CN2519256Y (zh) * 2002-01-29 2002-10-30 中国科学院物理研究所 双功能小型超短激光脉冲自相关测量仪
CN1858566A (zh) * 2006-06-09 2006-11-08 中国科学院上海光学精密机械研究所 超短脉冲精确实时测量装置
CN103364090A (zh) * 2013-07-22 2013-10-23 北京工业大学 测量超短脉冲激光在介质中传播相速度的装置及方法
CN108254088A (zh) * 2018-01-19 2018-07-06 中国科学院上海光学精密机械研究所 大范围皮秒激光脉冲宽度测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU HUAKANG: "Research on the Nonlinear Optical Effects and Applications of Nanowire Waveguides", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, no. 8, 1 June 2013 (2013-06-01), pages 1 - 102, XP055829438, ISSN: 1674-022X *

Also Published As

Publication number Publication date
CN111189550A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
US5585913A (en) Ultrashort pulsewidth laser ranging system employing a time gate producing an autocorrelation and method therefore
US5489984A (en) Differential ranging measurement system and method utilizing ultrashort pulses
US20060192975A1 (en) Surface shape measuring apparatus
WO2021143580A1 (zh) 一种超短脉冲激光测量仪和测量方法
CN101446687B (zh) 一种共线飞秒激光偏振泵浦探测系统
CN102661917B (zh) 一种双色飞秒激光共线抽运探测热反射系统
CN101216350B (zh) 高功率超短激光脉冲对比度测量装置及测量方法
US7230715B2 (en) Ultrafast laser pulse shape measurement method and system
CN2519256Y (zh) 双功能小型超短激光脉冲自相关测量仪
CN111721732B (zh) 基于多光梳系统测量气体红外多维光谱的装置及工作方法
CN103162845A (zh) 飞秒时域单光子空间多波长探测装置
CN114300918A (zh) 一种超稳窄线宽激光器系统和耦合调节方法
CN201166588Y (zh) 高功率超短激光脉冲对比度测量装置
CN110319941A (zh) 以微晶玻璃为倍频介质的基于横向倍频的超短脉冲探测器
CN115236026B (zh) 一种太赫兹二维光谱系统及非线性分析方法
CN107678189B (zh) 一种可快速精确调节两光学腔输出信号光干涉的装置
CN115542629A (zh) 基于非线性光学谐波的相位放大方法、系统及测试方法
CN201107265Y (zh) 一种共线飞秒激光偏振泵浦探测系统
WO2008083445A1 (en) Optical analysis system and method
CN207114035U (zh) 一种测量皮秒激光脉冲宽度的自相关测量仪
Chauhan Pulse compression and dispersion control in ultrafast optics
US10337928B2 (en) Autocorrelation measurement device
CN111290193A (zh) 一种倍频装置及全光纤自相关仪
JP3597946B2 (ja) シングルパルスオートコリレータ
CN114361925B (zh) 一种基于荧光调制采样的激光脉冲特性测量装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 21741124

Country of ref document: EP

Kind code of ref document: A1