WO2020077666A1 - 一种适用于混合流体介质的无水纤染染色机 - Google Patents

一种适用于混合流体介质的无水纤染染色机 Download PDF

Info

Publication number
WO2020077666A1
WO2020077666A1 PCT/CN2018/111894 CN2018111894W WO2020077666A1 WO 2020077666 A1 WO2020077666 A1 WO 2020077666A1 CN 2018111894 W CN2018111894 W CN 2018111894W WO 2020077666 A1 WO2020077666 A1 WO 2020077666A1
Authority
WO
WIPO (PCT)
Prior art keywords
dyeing
mixed fluid
cylinder
medium
fiber
Prior art date
Application number
PCT/CN2018/111894
Other languages
English (en)
French (fr)
Inventor
龙家杰
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US16/346,233 priority Critical patent/US10968553B2/en
Publication of WO2020077666A1 publication Critical patent/WO2020077666A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/14Containers, e.g. vats
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/20Arrangements of apparatus for treating processing-liquids, -gases or -vapours, e.g. purification, filtration, distillation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/20Arrangements of apparatus for treating processing-liquids, -gases or -vapours, e.g. purification, filtration, distillation
    • D06B23/205Arrangements of apparatus for treating processing-liquids, -gases or -vapours, e.g. purification, filtration, distillation for adding or mixing constituents of the treating material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B2700/00Treating of textile materials, e.g. bleaching, dyeing, mercerising, impregnating, washing; Fulling of fabrics
    • D06B2700/36Devices or methods for dyeing, washing or bleaching not otherwise provided for

Definitions

  • the invention relates to an anhydrous fiber dyeing and dyeing machine suitable for mixed fluid media, which belongs to the technical field of pressure vessel and textile dyeing and finishing equipment manufacturing.
  • carbon dioxide medium has lower critical temperature and critical pressure (31.1 °C and 7.38MPa), non-toxic, non-flammable, non-explosive, colorless and odorless, and excellent biocompatibility; and supercritical carbon dioxide fluid has low viscosity and high Diffusivity and high penetration can effectively shorten the processing time; after the dyeing process is completed, it is convenient for the separation, recovery and recycling of the medium, no harmful substances remain on the processed products, and the processed products do not need to be dried.
  • the technical problem to be solved by the present invention is to provide an anhydrous fiber dyeing and dyeing machine suitable for mixed fluid media, which can effectively realize the processing of mixed fluid anhydrous fiber dyeing and dyeing of various natural fibers and the like. It has the advantages of high processing efficiency of natural fibers, wide applicability, easy operation, high degree of intelligence, stable and reliable system, no consumption of large amounts of water resources, no waste water generation, and ecological and environmental protection.
  • the present invention provides an anhydrous fiber dyeing machine suitable for mixed fluid media, characterized in that it includes a fiber dyeing vat suitable for high-pressure mixed fluid anhydrous fiber dyeing;
  • Carbon dioxide medium pressurization system which is used to pressurize carbon dioxide in fiber dyeing and dyeing tanks;
  • Polar medium pressurization system which is used to pressurize the polar medium in the fiber dyeing and dyeing tank;
  • Cotton treading system which is used to tread cotton on the fiber to be dyed in the dyeing tank;
  • a circulating dyeing system which is respectively connected to the inlet and outlet of the dyeing tank for circulating a mixed fluid medium composed of polar medium and carbon dioxide medium in the circulating dyeing system and the fiber dyeing tank;
  • Carbon dioxide separation and recovery system which is used to separate and recover carbon dioxide in the mixed fluid medium discharged from the fiber dyeing and dyeing tank after dyeing;
  • Polar medium separation and recovery system which is used to separate and recover the polar medium in the mixed fluid medium discharged from the fiber dyeing and dyeing tank after dyeing;
  • Automatic cylinder unloading system used to unload the dyed fiber in the fiber dyeing and dyeing cylinder.
  • the fiber dyeing and dyeing cylinder includes an internal supporting yarn cage and a pressure cylinder body.
  • the carbon dioxide medium pressurization system includes a mass flow meter, a booster pump, and a carbon dioxide storage tank connected in series, wherein the fiber dyeing and dyeing cylinder is in communication with the mass flow meter.
  • the polar medium pressurization system includes a polar medium evaporator and a storage unit connected in series, a bidirectional gas medium booster pump and a gas medium mass flowmeter, wherein the gas medium mass flowmeter and the fiber dye The dyeing tank is connected.
  • the cotton treading system includes an external mechanical filling mechanism.
  • the mechanical filling mechanism is used to fill the fiber dyeing and dyeing cylinder with the fiber to be dyed.
  • the circulating dyeing system includes a bidirectional serial mixed fluid medium circulation pump, a heat exchanger, and a flowmeter, wherein the fiber dyeing and dyeing cylinder, bidirectional mixed fluid medium circulation pump, flowmeter, heat exchanger, The fiber dyeing and dyeing tanks are connected in turn in sequence.
  • the carbon dioxide separation and recovery system includes a heat exchanger, a pressure relief pump, a dye separation unit, a mixed fluid separation unit, and a condenser connected in series in sequence, wherein the heat exchanger is connected to the fiber dyeing and dyeing tank, and the condenser is The carbon dioxide storage tank is connected.
  • the polar medium separation and recovery system includes a pipeline connecting the mixed fluid separation unit and the polar medium evaporator and storage unit.
  • the automatic cylinder unloading system includes a suction hood with a negative pressure, a cotton conveying pipe and a cotton gripping mechanism.
  • the suction hood with a negative pressure can cooperate with the cylinder port of the pressure-bearing cylinder.
  • the suction cover is connected to the external fan through the cotton conveying pipe.
  • the supporting yarn cage is made of non-conductive heat-conducting surface material, including a cylindrical cage body and a cage column with an empty tube in the center; its cylindrical yarn cage surface and bottom, and Several hollow holes are distributed on the central empty tube; the upper end of the central empty tube is a closed end, the lower end of which is open and communicates with the fluid inlet of the special dyeing tank bottom through the interface at the bottom of the dyeing cylinder; the upper end of the yarn cage is equipped with a sealing cover.
  • the dye separation unit is mainly composed of primary or / and secondary separators and filters.
  • the polar medium evaporator and the storage unit are mainly composed of an internal heater or a heat exchanger and a storage tank.
  • the suction cover with negative pressure has an inverted funnel shape, and the size of the opening end of the funnel matches the pressure-bearing cylinder.
  • the cotton picking mechanism is mainly composed of a lifting platform and a cotton picking hand.
  • the cotton gripper is connected to the lifting platform and forms an angle with the lifting platform, and is symmetrically distributed with the center axis of the cage column or the lifting platform; each cotton gripper is equipped with a lifting platform center A number of working fingers with a proportional length from inside to outside based on the axis. The working fingers are arranged in a horizontal direction perpendicular to the central axis of the cage column or lifting table.
  • the lifting platform can be placed on the cage column of the yarn cage during work, and the cage column can be used as the axis to rotate and move up and down to drive the cotton gripper to open the compressed fiber layer. loose.
  • the pressure-bearing cylinder of the fiber dyeing and dyeing cylinder is connected to the pipeline of the polar medium pressurization system and the carbon dioxide medium pressurization system at the entrance of the bottom end, and is higher than the gauze sealing cover at the upper end and lower than the cylinder
  • the appropriate positions of the ports are respectively provided with polar medium outlets and mixed fluid medium outlets.
  • the beneficial effects of the present invention Since two sets of pressurization and separation and recovery systems of carbon dioxide medium and polar medium are provided in the system configuration of the anhydrous fiber dyeing and dyeing machine, it is effectively realized in the anhydrous fiber dyeing cylinder and its dyeing circulation system Dyeing and processing of mixed fluid medium; especially the use of polar medium in the pressurized system of polar medium to effectively modify the hydrophobic carbon dioxide medium, so that the polarity of the mixed fluid medium can be improved, and the natural fiber can be significantly achieved
  • the swelling and swelling provide necessary conditions for dye adsorption and diffusion in the fiber; at the same time, the modified mixed fluid also greatly improves the ability to dissolve polar dye molecules and helps the adsorption of dye molecules.
  • the cotton stepping system set in the system configuration of the anhydrous fiber dyeing and dyeing machine makes full use of the negative pressure formed by the reverse operation of the bidirectional gas medium booster pump in the polar medium boosting system, which greatly improves the efficiency of stepping on cotton;
  • the carbon dioxide separation and recovery system and polar medium separation and recovery system configured in the fiber dyeing machine system can achieve a high level of mixed fluid medium after dyeing. Separation and recycling improve the efficiency of medium recycling; its automatic cylinder unloading system uses intelligent cotton grippers, suction hoods with negative pressure, cotton conveying pipelines, two-way gas medium booster pumps and other synergies to improve the output of processed products Cylinder efficiency and automation.
  • the technology of the present invention can significantly improve the dyeing processing effect and production efficiency of anhydrous fiber dyeing, especially for various natural fibers that cannot be effectively dyed or have poor dyeability in hydrophobic supercritical carbon dioxide fluid, and can greatly improve their dyeing. Performance, get good dyeing processing effect. This is of great significance for solving the problem of dyeing natural fibers with anhydrous fluid.
  • this pair promotes the application and industrialization practice of supercritical fluid anhydrous dyeing technology in blended cross-woven fabrics, and solves the generation and emission of pollutants in the textile printing and dyeing industry from the source, and realizes energy conservation, consumption reduction, emission reduction and cleaning in the textile printing and dyeing industry. Production has very broad application prospects.
  • 1 is a composition system and working principle diagram of a mixed fluid medium anhydrous fiber dyeing machine provided by an embodiment of the present invention
  • FIG. 2 is a schematic view of the overall composition and longitudinal cross-sectional schematic diagram of the dyeing cylinder of the mixed fluid medium anhydrous fiber dyeing and dyeing machine provided by an embodiment of the present invention
  • FIG. 3 is a longitudinal cross-section of a mixed fluid medium anhydrous fiber dyeing and dyeing machine stepping on a cotton dyeing cylinder and a schematic diagram of its working principle
  • FIG. 5 is a schematic diagram of the main components and working principles of the unloading cylinder system of the mixed fluid medium anhydrous fiber dyeing and dyeing machine provided by an embodiment of the present invention
  • FIG. 6 is a longitudinal cross-sectional schematic diagram of the composition and structure of an intelligent cotton gripping mechanism of a mixed fluid medium anhydrous fiber dyeing and dyeing machine provided by an embodiment of the present invention.
  • an anhydrous fiber dyeing machine suitable for mixed fluid media includes a fiber dyeing cylinder 11 suitable for high-pressure mixed fluid anhydrous fiber dyeing, a carbon dioxide medium pressurization system, and a polar medium Pressure system, cotton treading system, circulating dyeing system, carbon dioxide separation and recovery system, polar medium separation and recovery system, automatic cylinder unloading system.
  • the entrance distribution of the fiber dyeing and dyeing tank 11 is connected to the carbon dioxide medium pressurization system and the polar medium pressurization system, and its outlet is connected to the carbon dioxide separation and recovery system and the polar medium separation and recovery system, and the entrance and exit of the circulating dyeing system are respectively connected to the fiber dyeing and dyeing tank
  • the entrance and exit of the connection in which the automatic unloading cylinder system can be detachably matched with the fiber dyeing and dyeing cylinder 11, when the cylinder unloading operation is required, the automatic unloading cylinder system is connected to the fiber dyeing and dyeing cylinder 11, so that the fiber dyeing and dyeing cylinder 11 The fibers in the cylinder are unloaded.
  • the fiber dyeing and dyeing cylinder 11 is mainly composed of an internal supporting yarn cage 29 and a pressure-bearing cylinder 37.
  • the carbon dioxide medium pressurization system is mainly composed of a mass flowmeter 5, a booster pump 4, and a carbon dioxide storage tank 1 connected to the fiber dyeing and dyeing cylinder 11 in sequence.
  • the polar medium boosting system is mainly composed of a polar medium evaporator and a storage unit 17, a bidirectional gas medium boosting pump 14, and a gas medium mass flowmeter 13 connected to the fiber dyeing and dyeing cylinder 11 in sequence.
  • the cotton stepping system is mainly composed of the bidirectional gas medium booster pump 14, the mass flow meter 5, the buffer unit 15 and the mechanical filling mechanism.
  • the mechanical filling mechanism is used to fill the fiber dyeing and dyeing cylinder 11 with the fiber to be dyed.
  • the circulating dyeing system is mainly composed of a fiber dyeing and dyeing cylinder 11, a bidirectional mixed fluid medium circulation pump 19, a heat exchanger 22, and a flow meter 8 connected in sequence.
  • the carbon dioxide separation and recovery system is mainly composed of a heat exchanger 22, a pressure relief pump 23, a dye separation unit 24, a mixed fluid separation unit 25, a condenser 25, and a carbon dioxide storage tank 1 connected to the fiber dyeing and dyeing cylinder 11 in sequence.
  • the polar medium separation and recovery system is mainly composed of a mixed fluid separation unit 25, a polar medium evaporator and a storage unit 17 connected in sequence.
  • the automatic cylinder unloading system is mainly composed of a suction cover 42 with a negative pressure, a cotton conveying pipe 43, a cotton gripping mechanism 41, a bidirectional gas medium booster pump 14, and a buffer unit 15.
  • the pressure of the high-pressure mixed fluid is above 30 MPa.
  • the mixed fluid is composed of two or more fluid components, one of which is supercritical carbon dioxide.
  • the mixed fluid is composed of two or more fluid components, at least one of which is a polar medium, such as water vapor or other polar medium.
  • the matching sarong 29 is made of a non-conducting heat-conducting surface material, such as Teflon.
  • the sarong 29 includes a cylindrical cage body and a cage column 30 with an empty tube in the center; its cylindrical shape The surface and bottom of the sarong 29, and several hollow holes are distributed on the central empty tube; the upper end of the central empty tube is a closed end, the lower end of which is open and communicates with the fluid inlet of the special dyeing cylinder bottom through the interface at the bottom of the dyeing cylinder; the upper end of the yarn cage 29 Comes with a sealing cap.
  • the dye separation unit 24 is mainly composed of a primary or / and secondary separator and a filter.
  • the polar medium evaporator and storage unit 17 is mainly composed of an internal heater or a heat exchanger and a storage tank.
  • the suction cover 42 with negative pressure has an inverted funnel shape, the size of the open end of the funnel matches the pressure cylinder 37, and can be well combined with the cylinder port of the pressure cylinder 37 when working; with negative pressure
  • the suction cover 42 is connected to the external fan through the cotton conveying pipe 43.
  • the cotton picking mechanism 41 is mainly composed of a lifting table 45 and a cotton picking hand 46.
  • the cotton gripper 46 is inclined downward and connected to the lifting platform 45 at a certain horizontal angle ⁇ (0-180 °), and is symmetrically distributed with the central axis of the cage column 30 or the lifting platform 45; each cotton gripper
  • the hand 46 is equipped with a number of working fingers 47 with a proportional length from inside to outside based on the central axis of the lifting table 45.
  • the working fingers 47 are arranged in a horizontal direction perpendicular to the central axis of the cage 30 or the lifting table 45.
  • the lifting table 45 can be sleeved on the cage column 30 of the yarn cage 29 during operation, and can rotate and move up and down with the cage column 30 as the axis to drive the cotton gripper 46 to grasp the compressed fiber layer. Open.
  • the pressure-bearing cylinder 37 of the fiber dyeing and dyeing cylinder 11 is connected to the pipeline of the polar medium pressurization system and the carbon dioxide medium pressurization system at the bottom entrance, and is higher at the upper end than the yarn cage sealing cover 31 and lower than the cylinder opening The appropriate positions are respectively provided with a polar medium outlet 32 and a mixed fluid medium outlet 36.
  • the mixed fluid in the fiber dyeing and dyeing tank 11 is separated and recovered to 1.01 ⁇ 105 Pa during cooperative work, so as to realize the direct opening of the dyeing tank.
  • each valve is provided as follows, wherein the shut-off valve 12 is provided at the connection between the mixed fluid inlet 36 and the polar medium pressurization system, and the shut-off valve 10 is provided at the mixed fluid inlet 36 The connection point with the carbon dioxide medium pressurization system.
  • the solenoid valve 6 is provided at the connection between the heat exchanger 7 and the carbon dioxide medium pressurization system.
  • a solenoid valve 21 is provided between the fluid circulation pump 19 and the heat exchanger 22.
  • a shut-off valve 26 is provided between the mixed fluid flow separation unit 25 and the condenser 28, and a shut-off valve 29 is provided between the condenser 28 and the carbon dioxide storage tank 1.
  • shut-off valve 20 is provided between the mixed fluid flow separation unit, the polar medium evaporator and the storage unit, a shut-off valve 2 is also provided at the bottom end of the carbon dioxide storage tank 1, and a branch is provided between the shut-off valve 26 and the condenser 28 In this branch, a cut-off valve 27 is provided, a branch is also provided between the cut-off valve 10 and the mass flowmeter 5, and a cut-off valve 9 is provided in this branch.
  • the fibers to be dyed are placed in the dyeing tank layer by layer, and then the fibers are mechanically squeezed downward.
  • the upper end of the yarn cage is installed and fixed with the yarn cage sealing cover 31 and the eye 34.
  • the quick opening structure 33 of the dyeing cylinder and the fiber dyeing cylinder sealing cover 35 are used to seal the pressure-bearing cylinder 37, and the dyeing cylinder is assembled as a whole with reference to FIG. 2.
  • the dyeing vat to be processed and its longitudinal cross-sectional schematic diagram after finishing the cotton stepping and overall assembly are shown in FIG. 4.
  • the booster pump 4, the bidirectional gas medium booster pump 14, and the shut-off valves 12, 16 are turned off.
  • the bidirectional mixed fluid medium circulation pump 19 is started, and a circulating dyeing system composed of a fiber dyeing fiber dyeing and dyeing cylinder 11, a bidirectional mixed fluid medium circulation pump 19, a heat exchanger 7, and a flow meter 8 is used to perform a mixed fluid medium containing preset dyes. Circulation to realize the water-free fiber dyeing processing of fibers.
  • the operation of the bidirectional mixed fluid medium circulation pump 19 can be stopped, and the shut-off valves 26, 29, the condenser 28, and the solenoid valve 21 can be opened in sequence, using the heat exchanger 22, the pressure relief pump 23, the dye separation unit 24, and the mixing
  • the carbon dioxide separation and recovery system composed of the fluid separation unit 25, the condenser 28, and the carbon dioxide storage tank 1 separates the carbon dioxide medium, polar medium, and residual dye in the circulating dyeing system, and recovers the residual dye and carbon dioxide medium.
  • the shut-off valve 20 can be opened, and the polar medium separation and recovery system composed of the mixed fluid separation unit 25, the polar medium evaporator and the storage unit 17 can be used to separate the mixed fluid separation unit 25. Polar media is recycled.
  • the carbon dioxide medium pressurization system or / and polar medium pressurization system can also be used to perform online floating color cleaning on the processed products and dyeing circulation system in the dyeing tank In order to meet the quality requirements such as product color fastness, and the requirements of the dyeing system itself for subsequent dyeing processing.
  • the system pressure drops to atmospheric pressure 1.01 ⁇ 105Pa
  • the pressure relief pump 23 stops working, closes the solenoid valve 21, and the dyeing tank can be used.
  • the upper quick opening structure 33 realizes the direct opening of the dyeing tank. Then, the yarn cage sealing cover 31 at the upper end of the yarn cage is opened, the automatic lifting table 45 of the intelligent cotton gripping mechanism 41 is assembled on the upper end of the cage column 30, and the working working fingers 47 of the intelligent cotton gripper 46 are in good contact with the dyed fiber 40 layer.
  • the suction cover 42 with negative pressure and the opening of the pressure-bearing cylinder 37 are well combined, and through the automatic lifting table 45 in the intelligent cotton gripping mechanism 41, the lowering movement on the cage column 30, and the The rotation movement of the central axis 44 of the cage column as the center drives the working working fingers 47 on the intelligent cotton gripper 46 to open the cotton gripper on the horizontal line 48 perpendicular to the central axis of the cage column.
  • the dry dyed fiber after the cotton is grasped and opened is automatically discharged through the cotton conveying pipe 43 under the suction action of the suction cover 42 with negative pressure.
  • the bidirectional gas medium booster pump 14 and the buffer unit 15 can be used to assist the opening of the fiber layer in the yarn cage, so as to improve the efficiency of opening and discharging the fiber layer.
  • the relevant assembly, structure and working principle are shown in Figure 5 and Figure 6.

Abstract

本发明公开了一种适用于混合流体介质的无水纤染染色机,包括染缸、二氧化碳增压系统和极性介质增压系统,踩棉系统,循环染色系统、二氧化碳回收系统、极性介质分离回收系统以及自动卸缸系统,由于本发明在无水纤染染色机系统配置中设置了二氧化碳介质、极性介质两套增压及其分离回收系统,在无水纤染染缸及其染色循环系统中有效实现了混合流体介质的染色加工,以及对疏水性的二氧化碳流体介质的有效改性,显著改善了专用染料分子在亲水性天然纤维上的染色性能和染色效果。同时,利用本发明技术中配置的踩棉系统和卸缸系统还可显著提高纤染染缸的踩棉效率,以及加工产品的出缸效率和自动化操作。

Description

一种适用于混合流体介质的无水纤染染色机 技术领域
本发明涉及一种适用于混合流体介质的无水纤染染色机,属压力容器及纺织染整设备制造技术领域。
背景技术
近年来,随着生态环保要求的逐步提高,以及各级政府对相关环保政策的严格执行,耗水量高、排污量大的传统纺织印染行业,遇到了前所未有的挑战和发展困境。因而,发展绿色生态、清洁生产技术,特别是不以水作为介质的无水染色技术,越来越受到纺织印染企业的高度关注。而超临界二氧化碳流体作为非水介质染色技术中的重要内容,因其具有独特的技术优点和产业化可行性而备受关注。其中例如:二氧化碳介质具有较低的临界温度和临界压力(31.1℃和7.38MPa),无毒、不燃、不爆、无色无味、生物相容性优良;而且超临界二氧化碳流体具有低粘度、高扩散性和高穿透性,可有效缩短工艺加工时间;在染色加工结束后,便于介质的分离回收和循环使用,在加工产品上无有害物质残留,加工后产品无需烘燥等等。这些独特的优势和加工特点,使近年来超临界流体无水染色技术得到了空前发展。目前,大部分合成纤维如聚酯等在超临界二氧化碳流体中的分散染料染色加工,可达到商业化标准及要求,并在一定范围内实现了批量生产。
然而,对于含有大量羟基、氨基等基团的各类亲水性天然纤维,在疏水性超临界二氧化碳流体介质中不能有效打开纤维大分子链段间氢键,从而不能达到对纤维的良好膨化,无法提供染料分子在纤维内相扩散的必要条件。同时,疏水性超临界二氧化碳流体介质对极性染料不能实现良好溶解,故不能真正实 现对各类天然纤维的良好染色。因此,单一超临界二氧化碳流体介质中的天然纤维染色,一直以来都是困扰其发展和应用的根本问题。
同时,从公开的文献报道和实际应用看,目前国内外相关单位现有的纺织品染色加工用超临界二氧化碳流体设备系统,都只针对单一的二氧化碳介质。其设备系统的功能较为单一,其适用纤维种类有限,自动化程度较低,操作繁琐,加工效率低,远远不能满足商业化生产对天然纤维及其混纺交织的多组分品种,及其高效率加工的需求。因而,这也显著影响并限制了超临界流体无水染色技术的产业化应用。
发明内容
本发明要解决的技术问题是提供一种适用于混合流体介质的无水纤染染色机,可有效实现对各类天然纤维等的混合流体无水纤染染色等加工。具有对天然纤维的加工效率高、适用性广、操作简便、智能化程度高、系统稳定可靠、不消耗大量水资源、无废水产生、生态环保等优点。
为了解决上述技术问题,本发明提供了一种适用于混合流体介质的无水纤染染色机,其特征在于:包括适用于高压混合流体无水纤染的纤染染缸;以及
二氧化碳介质增压系统,其用于对纤染染缸增压二氧化碳;以及
极性介质增压系统,其用于对纤染染缸增压极性介质;以及
踩棉系统,其用于对染缸中的待染纤维进行踩棉;以及
循环染色系统,其分别与所述染缸的出入口连接用于使由极性介质和二氧化碳介质构成的混合流体介质在循环染色系统和纤染染缸当中循环;以及
二氧化碳分离回收系统,其用于分离和回收染色后由纤染染缸中排出的混合流体介质中的二氧化碳;以及
极性介质分离回收系统,其用于分离和回收染色后由纤染染缸中排出的混合流体介质中的极性介质;以及
自动卸缸系统,用于卸载纤染染缸中染色后的纤维。
进一步的是:所述的纤染染缸包括内部配套纱笼及承压缸体。
进一步的是:所述的二氧化碳介质增压系统包括依次串联质量流量计、增压泵和二氧化碳储罐,其中所述纤染染缸与质量流量计连通。
进一步的是:所述的极性介质增压系统包括依次串联极性介质蒸发器及储存单元、双向气体介质增压泵和气体介质质量流量计,其中,气体介质质量流量计与所述纤染染缸连通。
进一步的是:所述的踩棉系统包括外置的机械装填机构,机械填装机构用于对纤染染缸填装待染色纤维。
进一步的是:所述的循环染色系统包括双向依次串联的混合流体介质循环泵、热交换器、流量计组成,其中所述纤染染缸、双向混合流体介质循环泵、流量计、热交换器、纤染染缸依次循环连接。
进一步的是:所述的二氧化碳分离回收系统包括依次串联的热交换器、泄压泵、染料分离单元、混合流体分离单元、冷凝器,其中热交换器与所述纤染染缸连接,冷凝器与所述二氧化碳储罐连接。
进一步的是:极性介质分离回收系统包括所述混合流体分离单元与所诉极性介质蒸发器及储存单元连接的管路。
进一步的是:所述的自动卸缸系统包括带负压的吸力罩、输棉管道和抓棉机构,所述带负压的吸力罩可与承压缸体的缸口配合,带负压的吸力罩通过输棉管道与外置风机连接。
进一步的是:所述的配套纱笼由采用外覆非导制热性表面材料制作而成的,包括呈圆柱形的笼身及中心呈空管的笼柱;其圆柱形纱笼表面及底部,及其中心空管上分布有镂空的若干小孔;中心空管上端为封闭端,其下端开口并通过染缸底部的接口与特制染缸底的流体入口连通;纱笼的上端配有密封盖。
进一步的是:所述的染料分离单元主要由一级或/及二级分离器、过滤器组成。
进一步的是:所述的极性介质蒸发器及储存单元主要由内部加热器或热交换器、储存槽构成。
进一步的是:所述的带负压的吸力罩呈倒置的漏斗形,其漏斗的开口端尺寸与承压缸体相匹配。
进一步的是:所述的抓棉机构主要由升降台和抓棉手构成。
进一步的是:所述的抓棉手与升降台连接并与所述升降台存在夹角,并以笼柱或升降台的中心轴线线成对称分布;每只抓棉手装有以升降台中心轴线为基准的由内而外成比例长度的若干工作手指,工作手指沿垂直于笼柱或升降台中心轴线的水平方向排列。
进一步的是:所述的升降台可在工作时套在纱笼的笼柱上,并以笼柱为轴心进行旋转和上下升降运动,以驱动抓棉手对压紧的纤维层进行抓棉开松。
进一步的是:所述的纤染染缸的承压缸体在底端入口处与极性介质增压系统、二氧化碳介质增压系统的管路连接,在上端高于纱笼密封盖而低于缸体口的适当位置分别设有极性介质出口和混合流体介质出口。
本发明的有益效果:由于在无水纤染染色机系统配置中设置了二氧化碳介质、极性介质两套增压及其分离回收系统,在无水纤染染缸及其染色循环系统中有效实现了混合流体介质的染色加工;特别是利用由极性介质增压系统中的极性介质,对疏水性的二氧化碳介质进行有效改性,使混合流体介质的极性得以提高,可显著实现对天然纤维的溶胀和膨化,为染料的吸附上染、纤维内的扩散提供了必要条件;同时,改性后的混合流体也大大提高了对极性染料分子的溶解能力,有助于染料分子的吸附上染;无水纤染染色机系统配置中设置的踩棉系统,充分利用了极性介质增压系统中的双向气体介质增压泵反向运行形成的负压,大大提高了踩棉效率;而纤染机系统中配置的二氧化碳分离回收系统、极性介质分离回收系统,可实现了染色后对混合流体介质的高效分离及回收,提高了介质的循环利用效率;其自动卸缸系统则利用智能抓棉手、带负压的吸力罩、输棉管道、双向气体介质增压泵等协同作用,提高了加工产品出缸的效率和自动化。
因而,本发明技术可显著提高无水纤染的染色加工效果及其生产效率,特别是对在疏水性超临界二氧化碳流体中不能有效进行染色或染色性差的各类天然纤维,可大大提高其染色性能,获得良好的染色加工效果。这对解决天然纤维的无水流体染色难题,具有重要意义。此外,这对推动超临界流体无水染色技术在混纺交织品中的应用和产业化实践,从源头上解决纺织印染行业污染物的产生和排放,实现纺织印染行业的节能降耗减排和清洁生产都具有非常广阔的应用前景。
附图说明
图1是本发明实施例提供的混合流体介质无水纤染染色机的组成系统和工作原理图;
图2是本发明实施例提供的混合流体介质无水纤染染色机染缸的整体组成及其纵向剖面示意图;
图3是本发明实施例提供的混合流体介质无水纤染染色机踩棉中染缸的纵向剖面及其工作原理示意图;
图4是本发明实施例提供的混合流体介质无水纤染染色机踩棉后染缸的装配及其纵向剖面示意图;
图5是本发明实施例提供的混合流体介质无水纤染染色机卸缸系统的主要组成及其工作原理示意图;
图6是本发明实施例提供的混合流体介质无水纤染染色机的智能抓棉机构组成及其结构的纵向剖面示意图。
图中标号说明:二氧化碳储罐1;截止阀2、10、12、16、18、20、26、27、29;电磁阀3、6、21;增压泵4;质量流量计5;热交换器7、22;流量计8;气体介质质量流量计13;纤染染缸11;双向气体介质增压泵14;缓冲单元15;极性介质蒸发器及储存单元17;双向混合流体介质循环泵19;泄压 泵23;染料分离单元24;混合流体分离单元25;冷凝器28;纱笼29;笼柱30;纱笼密封盖31;极性介质出口32;快开结构33;吊环34;纤染染缸密封盖35;混合流体介质出口36;承压缸体37;纱笼与染缸接口38;待染纤维39;染色纤维40;抓棉机构41;带负压的吸力罩42;输棉管道43;笼柱中心轴线44;自动升降台45;抓棉手46;工作手指47;垂直于笼柱中心轴线的水平线48。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1至图6所示,一种适用于混合流体介质的无水纤染染色机,包括适用于高压混合流体无水纤染的纤染染缸11、二氧化碳介质增压系统、极性介质增压系统、踩棉系统、循环染色系统、二氧化碳分离回收系统、极性介质分离回收系统、自动卸缸系统。
其中,纤染染缸11的入口分布与二氧化碳介质增压系统和极性介质增压系统连接,其出口与二氧化碳分离回收系统和极性介质分离回收系统连接,循环染色系统的出入口分别与纤染染缸的入口和出口连接,其中自动卸缸系统能与纤染染缸11可拆装进行配合,当需要进行卸缸操作时,将自动卸缸系统与纤染染缸11进行连接,从而对纤染染缸11中的纤维进行卸缸操作。
所述的纤染染缸11主要由内部配套纱笼29及承压缸体37组成。
所述的二氧化碳介质增压系统主要由依次与纤染染缸11连接的质量流量计5、增压泵4、二氧化碳储罐1组成。
所述的极性介质增压系统主要由依次与纤染染缸11连接的极性介质蒸发器及储存单元17、双向气体介质增压泵14、气体介质质量流量计13组成。
所述的踩棉系统主要由所述双向气体介质增压泵14、质量流量计5、缓冲单元15以及机械装填机构组成,机械填装机构用于对纤染染缸11填装待染色 纤维。
所述的循环染色系统主要由依次连接的纤染染缸11、双向混合流体介质循环泵19、热交换器22、流量计8组成。
所述的二氧化碳分离回收系统主要由与所述纤染染缸11依次连接的热交换器22、泄压泵23、染料分离单元24、混合流体分离单元25、冷凝器25和二氧化碳储罐1组成。
所述的极性介质分离回收系统主要由依次连接的混合流体分离单元25和极性介质蒸发器及储存单元17组成。
所述的自动卸缸系统主要由带负压的吸力罩42、输棉管道43、抓棉机构41、双向气体介质增压泵14、缓冲单元15组成。
所述的高压混合流体,其压力为30MPa以上。
所述的混合流体,由两种或以上流体成分构成,其中一种成分为超临界二氧化碳。
所述的混合流体,由两种或以上流体成分构成,其中至少有一种成分为极性介质,如水蒸汽或其他极性介质。
所述的配套纱笼29由采用外覆非导制热性表面材料制作而成的,例如特氟龙,该纱笼29包括呈圆柱形的笼身及中心呈空管的笼柱30;其圆柱形纱笼29表面及底部,及其中心空管上分布有镂空的若干小孔;中心空管上端为封闭端,其下端开口并通过染缸底部的接口与特制染缸底的流体入口连通;纱笼29的上端配有密封盖。
所述的染料分离单元24主要由一级或/及二级分离器、过滤器组成。
所述的极性介质蒸发器及储存单元17主要由内部加热器或热交换器、储存槽构成。
所述的带负压的吸力罩42呈倒置的漏斗形,其漏斗的开口端尺寸与承压缸体37相匹配,工作时可与承压缸体37的缸口良好结合;带负压的吸力罩42通过输棉管道43与外置风机连接。
所述的抓棉机构41主要由升降台45和抓棉手46构成。
所述的抓棉手46以向下倾斜并以一定水平角度θ(0-180°)与升降台45连接,并以笼柱30或升降台45的中心轴线线成对称分布;每只抓棉手46装有以升降台45中心轴线为基准的由内而外成比例长度的若干工作手指47,工作手指47沿垂直于笼柱30或升降台45中心轴线的水平方向排列。
所述的升降台45可在工作时套在纱笼29的笼柱30上,并以笼柱30为轴心进行旋转和上下升降运动,以驱动抓棉手46对压紧的纤维层进行抓棉开松。
所述的纤染染缸11的承压缸体37在底端入口处与极性介质增压系统、二氧化碳介质增压系统的管路连接,在上端高于纱笼密封盖31而低于缸体口的适当位置分别设有极性介质出口32和混合流体介质出口36。
所述的二氧化碳分离回收系统、极性介质分离回收系统,在协同工作时将纤染染缸11中的混合流体分离回收至1.01×105Pa,实现染缸的直接开盖。
如图1至图6所示,在本申请的实施例当中,各阀门设置如下,其中截止阀12设置于混合流体入口36与极性介质增压系统连接处,截止阀10设置于混合流体入口36与二氧化碳介质增压系统连接处。电磁阀6设置于热交换器7与二氧化碳介质增压系统连接处。在循环管路当中,流体循环泵19和换热器22之间设置有电磁阀21。混合流体流分离单元25与冷凝器28之间设置有截止阀26,冷凝器28与二氧化碳储罐1之间设置有截止阀29。此外,混合流体流分离单元与极性介质蒸发器及储存单元之间设置有截止阀20,二氧化碳储罐1的底端还设置有截止阀2,截止阀26与冷凝器28之间设置有支路,该支路上设置有截止阀27,截止阀10与质量流量计5之间还设置有支路,该支路上设置有截止阀9。
如图1至图6所示,本发明的一种适用于混合流体介质的无水纤染染色机工作时,首先将开启图2中承压缸体37的密封盖35,以及纱笼密封盖31,利用由双向气体介质增压泵14、质量流量计13、缓冲单元15、外置机械装填机构组成的踩棉系统,对染缸中纱笼29进行踩棉。其中,利用双向气体介质增压泵14的反向运转,从而在染缸中形成负压而产生的吸力,大大提高了对干态待染纤维层39的踩棉效率和效果。其踩棉工作原理如图3所示,将待染纤维按逐 层放置于染缸当中,而后对纤维进行向下的机械挤压。按照预定产量及工艺要求,对纤染染缸11完成踩棉后,在纱笼上端加装和固定纱笼密封盖31及吊环34。然后采用染缸的快开结构33及纤染染缸密封盖35对承压缸体37进行密封,并参照图2对染缸进行整体装配。完成踩棉和整体组装后的待加工染缸及其纵向剖面示意图如图4所示。然后关闭电磁阀21、截止阀18、19、20,开启截止阀10、12、16和电磁阀6、3;最后分别或同时开启增压泵4、双向气体介质增压泵14,根据工艺要求,利用由质量流量计5、增压泵4、二氧化碳储罐1组成的二氧化碳介质增压系统,以及由极性介质蒸发器及储存单元17、双向气体介质增压泵14、气体介质质量流量计13组成的极性介质增压系统,对纤染染缸11进行预定比例混合流体介质的增压。
混合流体介质增压结束后,关闭增压泵4、双向气体介质增压泵14,以及截止阀12、16。进而开启双向混合流体介质循环泵19,采用纤染纤染染缸11、双向混合流体介质循环泵19、热交换器7、流量计8组成的循环染色系统,对含预置染料的混合流体介质进行循环,实现对纤维的无水纤染加工。同时,也可以工艺要求,采用双向混合流体介质循环泵19的换向功能,对染缸中纤维进行正反向染色加工。
染色结束后,可停止双向混合流体介质循环泵19的运行,依次开启截止阀26、29,冷凝器28以及电磁阀21,利用由热交换器22、泄压泵23、染料分离单元24、混合流体分离单元25、冷凝器28、二氧化碳储罐1组成的二氧化碳分离回收系统,对循环染色系统中的二氧化碳介质、极性介质、残余染料进行分离,并对残余染料、二氧化碳介质进行回收。最后,在二氧化碳介质回收完成后,可开启截止阀20,采用由混合流体分离单元25、极性介质蒸发器及储存单元17组成的极性介质分离回收系统,对混合流体分离单元25中分离的极性介质进行回收。此外,根据工艺及产品要求,在染色结束和二氧化碳介质分离回收阶段,也可再次利用二氧化碳介质增压系统或/及极性介质增压系统对染缸中加工产品及染色循环系统进行在线浮色清洗,以达到产品色牢度等质量要求,以及染色系统本身对后续染色加工的要求。
当整个染色加工及其后处理结束后,特别是当染色循环系统中介质经分离回收后,其系统压力降低至大气压1.01×105Pa时,泄压泵23停止工作,关闭电磁阀21,可利用染缸上的快开结构33实现染缸的直接开盖。随后开启纱笼上端的纱笼密封盖31,将智能抓棉机构41的自动升降台45装配于笼柱30上端,并使智能抓棉手46的工作工作手指47与染色纤维40层良好接触。进而将带负压的带负压的吸力罩42与承压缸体37的开口处进行良好结合,通过智能抓棉机构41中的自动升降台45,在笼柱30上的下降运动,以及以笼柱中心轴线44为中心的旋转运动,从而驱使智能抓棉手46上的工作工作手指47在垂直于笼柱中心轴线的水平线48平面上,进行抓棉开松。经抓棉开松后的干态染色纤维,在带负压的吸力罩42的吸引作用下,通过输棉管道43进行自动出棉卸缸。同时,为加快自动卸缸系统的工作效率,可利用双向气体介质增压泵14、缓冲单元15对纱笼中纤维层进行协助开松,以提高对纤维层的开松和出棉效率。其相关装配、结构与工作原理如图5和图6所示。最后直至将纱笼29中染色纤维40全部卸完,完成一次预定工艺条件下混合流体介质的无水纤染加工。
重复上述操作,可继续实现下一轮混合流体介质的无水纤染染色等加工。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (21)

  1. 一种适用于混合流体介质的无水纤染染色机,其特征在于:一种适用于混合流体介质的无水纤染染色机,包括适用于高压混合流体无水纤染的纤染染缸、二氧化碳介质增压系统、极性介质增压系统、踩棉系统、循环染色系统、二氧化碳分离回收系统、极性介质分离回收系统、自动卸缸系统。
    其中,所述纤染染缸的入口分别与所述二氧化碳介质增压系统、所述极性介质增压系统以及所述踩棉系统连接,所述纤染染缸的出口与所述二氧化碳分离回收系统和所述极性介质分离回收系统连接,所述循环染色系统的出口和入口分别与所述纤染染缸的入口和出口连接,所述自动卸缸系统与所述纤染染缸可拆装进行配合,当需要进行卸缸操作时,将自动卸缸系统与纤染染缸进行连接,对纤染染缸中的纤维进行卸缸。
  2. 根据权利要求1所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的纤染染缸主要包括承压缸体及设置于缸体内部的纱笼。
  3. 根据权利要求1所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的二氧化碳介质增压系统主要包括串联质量流量计、增压泵和二氧化碳储罐,其中所述纤染染缸的入口与质量流量计连通。
  4. 根据权利要求3所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的极性介质增压系统包括串联极性介质蒸发器及储存单元、双向气体介质增压泵和气体介质质量流量计,其中,气体介质质量流量计与所述纤染染缸的入口连通。
  5. 根据权利要求4所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的踩棉系统主要由所述双向气体介质增压泵、所述所述质量流量计、所述缓冲单元以及外置的机械装填机构构成,所述机械填装机构用于对纤染染缸填装待染色纤维。
  6. 根据权利要求1所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的循环染色系统主要包括双向依次串联的混合流体介质循环泵、热交换器、流量计组成,其中所述纤染染缸、所述双向混合流体介质循环泵、所述流量计、所述热交换器依次循环连接。
  7. 根据权利要求4所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的二氧化碳分离回收系统主要包括串联的热交换器、泄压泵、染料分离单元、混合流体分离单元、冷凝器,其中热交换器与所述纤染染缸连接,所述冷凝器与所述二氧化碳储罐连接。
  8. 根据权利要求7所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:极性介质分离回收系统包括连接所述混合流体分离单元与所述极性介质蒸发器及储存单元的管路。
  9. 根据权利要求2所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的自动卸缸系统包括带负压的吸力罩、输棉管道和抓棉机构,所述带负压的吸力罩可与承压缸体的缸口配合,带负压的吸力罩通过输棉管道与外置风机连接。
  10. 根据权利要求1所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的高压混合流体,其压力可高于30MPa。
  11. 根据权利要求1或10所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的混合流体,由两种或以上流体成分构成,其中一种成分为超临界二氧化碳。
  12. 根据权利要求1或10所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的混合流体,由两种或以上流体成分构成,其中至少有一种成分为极性介质,如水蒸汽或其他极性介质。
  13. 根据权利要求2所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的配套纱笼由采用外覆铁氟龙或非导制热性表面材料制作而成的,主要包括呈圆柱形的笼身及中心呈空管的笼柱;其圆柱形纱笼表面及底部,及其中心空管上分布有镂空的若干小孔;中心空管上端为封闭端,其下端开口并通过染缸底部的接口与特制染缸底的流体入口连通;纱笼的上端配有密封盖。
  14. 根据权利要求7所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的染料分离单元主要包括一级或/及二级分离器、过滤器。
  15. 根据权利要求4所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的极性介质蒸发器及储存单元主要由内部加热器或热交换器、储存槽构成。
  16. 根据权利要求9所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的带负压的吸力罩呈倒置的漏斗形,其漏斗的开口端尺寸与承压缸体相匹配。
  17. 根据权利要求9所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的抓棉机构主要由升降台和抓棉手构成。
  18. 根据权利要求17所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的抓棉手向下倾斜以0-180度的水平角度与升降台连接,并以笼柱或升降台的中心轴线线成对称分布;每只抓棉手装有以升降台中心轴线为基准的由内而外的若干工作手指,工作手指沿垂直于笼柱或升降台中心轴线的水平方向排列。
  19. 根据权利要求18所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的升降台可在工作时套在纱笼的笼柱上,并以笼柱为轴心进行旋转和上下升降运动,以驱动抓棉手对压紧的纤维层进行抓棉开松。
  20. 根据权利要求2所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的纤染染缸的承压缸体在底端入口处与极性介质增压系统、二氧化碳介质增压系统的管路连接,在上端高于纱笼密封盖而低于缸体口的位置分别设有极性介质出口和混合流体介质出口。
  21. 根据权利要求所述的一种适用于混合流体介质的无水纤染染色机,其特征在于:所述的二氧化碳分离回收系统、极性介质分离回收系统,在协同工作时可将中的混合流体分离回收至1.01×105Pa,实现染缸的直接开盖。
PCT/CN2018/111894 2018-10-16 2018-10-25 一种适用于混合流体介质的无水纤染染色机 WO2020077666A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/346,233 US10968553B2 (en) 2018-10-16 2018-10-25 Waterless dyeing machine suitable for mixed fluid medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811202688.6 2018-10-16
CN201811202688.6A CN109137342B (zh) 2018-10-16 2018-10-16 一种适用于混合流体介质的无水纤染染色机

Publications (1)

Publication Number Publication Date
WO2020077666A1 true WO2020077666A1 (zh) 2020-04-23

Family

ID=64812042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111894 WO2020077666A1 (zh) 2018-10-16 2018-10-25 一种适用于混合流体介质的无水纤染染色机

Country Status (2)

Country Link
CN (1) CN109137342B (zh)
WO (1) WO2020077666A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021237512A1 (zh) * 2020-05-27 2021-12-02 南通纺织丝绸产业技术研究院 一种用于材料的多功能超临界流体处理机
CN111604009B (zh) * 2020-05-27 2022-08-12 苏州大学 一种用于材料的多功能超临界流体处理机
CN112111887B (zh) * 2020-05-27 2023-10-27 山东出彩无水纤染高科有限公司 天然纤维及其制品的一种超临界混合流体闪爆处理方法
CN111576060B (zh) * 2020-05-27 2023-11-17 山东出彩无水纤染高科有限公司 天然纤维及其制品的一种超临界co2流体闪爆处理方法
CN112267317B (zh) * 2020-11-02 2022-12-02 山东高棉智能纤染科技有限公司 一种黏胶纤维无水染色方法及系统
WO2022095053A1 (zh) * 2020-11-07 2022-05-12 山东高棉智能纤染科技有限公司 天然纤维及其制品的一种超临界混合流体闪爆处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86107147A (zh) * 1985-10-21 1987-06-03 B·F·古德里奇公司 把添加剂掺入聚合物的方法及其产品
DE3906724A1 (de) * 1989-03-03 1990-09-13 Deutsches Textilforschzentrum Faerbeverfahren
CN1310257A (zh) * 2000-02-16 2001-08-29 斯刀克布拉邦特股份有限公司 在超临界流体中对纺织材料染色的方法
CN2688735Y (zh) * 2004-04-07 2005-03-30 国营吴江丝绸印花厂 纺织品的一种超临界流体处理装置
CN104562759A (zh) * 2013-10-29 2015-04-29 李长娟 散纤维染色工艺
CN104674386A (zh) * 2015-03-06 2015-06-03 湖州吉昌丝绸有限公司 一种抓棉机的吸罩装置
CN105970526A (zh) * 2016-05-30 2016-09-28 南通纺织丝绸产业技术研究院 一种超临界流体无水染色机的增压系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570333B1 (ko) * 2004-05-24 2006-04-12 주식회사 삼일산업 산업용 초임계유체염색기
CN102817194B (zh) * 2012-09-04 2014-03-26 广东出色无水印染科技有限公司 一种采用超临界流体静态染色的方法和装置
CN106835558B (zh) * 2016-11-21 2019-08-16 大连工业大学 一种超临界二氧化碳流体无水煮漂染一体化设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86107147A (zh) * 1985-10-21 1987-06-03 B·F·古德里奇公司 把添加剂掺入聚合物的方法及其产品
DE3906724A1 (de) * 1989-03-03 1990-09-13 Deutsches Textilforschzentrum Faerbeverfahren
CN1310257A (zh) * 2000-02-16 2001-08-29 斯刀克布拉邦特股份有限公司 在超临界流体中对纺织材料染色的方法
CN2688735Y (zh) * 2004-04-07 2005-03-30 国营吴江丝绸印花厂 纺织品的一种超临界流体处理装置
CN104562759A (zh) * 2013-10-29 2015-04-29 李长娟 散纤维染色工艺
CN104674386A (zh) * 2015-03-06 2015-06-03 湖州吉昌丝绸有限公司 一种抓棉机的吸罩装置
CN105970526A (zh) * 2016-05-30 2016-09-28 南通纺织丝绸产业技术研究院 一种超临界流体无水染色机的增压系统

Also Published As

Publication number Publication date
CN109137342B (zh) 2020-05-01
CN109137342A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020077666A1 (zh) 一种适用于混合流体介质的无水纤染染色机
CN205640193U (zh) 一种高空换油系统
WO2018098885A1 (zh) 一种筒纱无水染色设备、染色方法及产品
WO2020077665A1 (zh) 一种混合流体介质的无水纤染方法
CN106835559A (zh) 一种亚麻粗纱超临界co2生物酶漂白装置及其漂白方法
US10968553B2 (en) Waterless dyeing machine suitable for mixed fluid medium
WO2017201768A1 (zh) 一种超临界流体无水染整的一种移动式染杯
CN209564629U (zh) 糊树脂制备过程中蒸汽冷凝水的回收系统
CN202030983U (zh) 一种蒸汽瓦楞纸生产线
WO2017201767A1 (zh) 一种超临界流体无水染整的打样染杯
CN201186204Y (zh) 一种反渗透膜清洗测试机
CN205360792U (zh) 一种自清洁并联过滤系统
CN110153166B (zh) 一种蒸汽加热加压土壤修复系统及其修复方法
WO2022120863A1 (zh) 一种纺织印染用余热回收装置
CN104165731A (zh) 集热器流道卧式自动试压机
CN102357496A (zh) 一种槽罐密闭正压清洗装置
CN107377466A (zh) 一种建筑型材加工用清洗烘干装置
CN207556941U (zh) 一种氨基酸检测样品前处理装置
CN202224415U (zh) 一种槽罐密闭正压清洗装置
CN208166896U (zh) 一种再生橡胶用脱硫真空抽集装置
CN208287570U (zh) 一种污泥脱水处理装置
CN207850110U (zh) 一种蒸汽冷凝水回收装置
CN105821602B (zh) 平幅染色机
CN207384862U (zh) 基于在线清洗的强制循环蒸发设备
TW201741523A (zh) 一種移動式的超臨界流體無水染整試驗杯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937275

Country of ref document: EP

Kind code of ref document: A1