WO2017201768A1 - 一种超临界流体无水染整的一种移动式染杯 - Google Patents

一种超临界流体无水染整的一种移动式染杯 Download PDF

Info

Publication number
WO2017201768A1
WO2017201768A1 PCT/CN2016/084896 CN2016084896W WO2017201768A1 WO 2017201768 A1 WO2017201768 A1 WO 2017201768A1 CN 2016084896 W CN2016084896 W CN 2016084896W WO 2017201768 A1 WO2017201768 A1 WO 2017201768A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
dyeing
high pressure
way joint
cup
Prior art date
Application number
PCT/CN2016/084896
Other languages
English (en)
French (fr)
Inventor
龙家杰
郭建中
Original Assignee
南通纺织丝绸产业技术研究院
苏州大学
泗阳众联纺织科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通纺织丝绸产业技术研究院, 苏州大学, 泗阳众联纺织科技有限公司 filed Critical 南通纺织丝绸产业技术研究院
Priority to US15/556,681 priority Critical patent/US10294599B2/en
Publication of WO2017201768A1 publication Critical patent/WO2017201768A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/10Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/10Devices for dyeing samples
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B19/00Treatment of textile materials by liquids, gases or vapours, not provided for in groups D06B1/00 - D06B17/00
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/14Containers, e.g. vats
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/20Arrangements of apparatus for treating processing-liquids, -gases or -vapours, e.g. purification, filtration or distillation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B9/00Solvent-treatment of textile materials
    • D06B9/02Solvent-treatment of textile materials solvent-dyeing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B9/00Solvent-treatment of textile materials
    • D06B9/06Solvent-treatment of textile materials with recovery of the solvent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B23/00Component parts, details, or accessories of apparatus or machines, specially adapted for the treating of textile materials, not restricted to a particular kind of apparatus, provided for in groups D06B1/00 - D06B21/00
    • D06B23/20Arrangements of apparatus for treating processing-liquids, -gases or -vapours, e.g. purification, filtration or distillation
    • D06B23/205Arrangements of apparatus for treating processing-liquids, -gases or -vapours, e.g. purification, filtration or distillation for adding or mixing constituents of the treating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/62Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear

Definitions

  • the invention relates to the technical field of pressure vessel and textile dyeing and finishing equipment manufacturing, in particular to a mobile dyeing cup for supercritical fluid undyeding.
  • supercritical CO 2 fluid medium can replace the traditional water bath, dyeing and finishing textiles, and can completely eliminate the high energy consumption and serious environmental pollution caused by traditional water bath processing from the source. Therefore, the development of a waterless equipment system represented by supercritical CO 2 fluid has very important practical and strategic significance for the sustainable development of the textile printing and dyeing industry and ecological environment protection.
  • the small sample In the printing and dyeing processing of textiles, the small sample is the premise of obtaining the basic formula of production and processing, and plays a decisive role, especially in the color processing and production of textiles. Therefore, the development of an efficient, reliable and applicable sample proofing equipment system is of great significance for the promotion and application of supercritical fluid waterless dyeing and finishing technology.
  • the existing supercritical fluid dyeing and proofing devices usually have a fixed proofing processing unit in a system, and are equipped with a corresponding supercharging device or system.
  • a set of separation and recovery system is arranged downstream of the proofing unit to separate and recover the dyeing medium at the end of the process.
  • the biggest disadvantage of this type of processing system is that only one sample can be dyed and finished at a time.
  • the proofing unit must be cleaned after each proofing to perform the next proofing test. Especially for the dye proofing experiment, especially when it is necessary to carry out color change proofing, the thorough cleaning of the system is very important.
  • an object of the present invention is to provide a mobile dyeing cup with high proofing efficiency, simple operation, reliability, high cleaning efficiency, economical utility, and wide application range of supercritical fluid waterless dyeing.
  • the invention relates to a mobile dyeing cup for supercritical fluid undyeding, comprising a high pressure dyeing cup cylinder, a high pressure dye cup sealing cover, a first high pressure pipeline, a second high pressure pipeline, a first high pressure shutoff valve and a second high pressure shut-off valve characterized by:
  • the high-pressure dye cup sealing cover is movably disposed at an upper end cup of the high-pressure dye cup cylinder, and one end of the first high-pressure pipe is connected to an upper end of the high-pressure dye cup sealing cover and is dyed with the high-pressure
  • the cup body is in communication, the other end of the first high pressure pipe is connected to an external air source or a tank charging system, and the first high pressure cut valve is installed on the first high pressure pipe;
  • the bottom of the high-pressure dyeing cup cylinder has a circular arc shape, and the lowest portion of the bottom arc of the high-pressure dyeing cup cylinder is provided with a medium outlet, and one end of the second high-pressure pipeline is connected at the medium outlet.
  • the other end of the second high pressure pipeline is connected to the external separation recovery system, and the second high pressure shutoff valve is installed on the second high pressure pipeline;
  • a porous baffle is fixed in the high pressure dyeing cup cylinder, and the porous baffle is located on a chord of a circular arc at the bottom of the high pressure dyeing cup cylinder;
  • a wireless pressure-temperature integrated sensor and a safety valve are further included, the wireless pressure-temperature integrated sensor being mounted on the first high-pressure pipe or the second high-pressure pipe, the safety valve being installed in the first high-pressure pipe or the second On the high pressure pipeline.
  • the wireless pressure temperature integrated sensor and the safety valve are both mounted on the second high pressure pipeline, and the second high pressure pipeline is installed with a four-way joint, and the four-way joint is located at the medium outlet and the Between the second high pressure shut-off valves, the wireless pressure temperature integrated sensor and the safety valve are respectively installed at two opposite interfaces of the four-way joint.
  • the wireless pressure temperature integrated sensor and the safety valve are both mounted on the first high pressure pipeline, and the first high pressure pipeline is mounted with a four-way joint, and the four-way joint is located at the high pressure Between the dye cup sealing cover and the first high pressure cut-off valve, the wireless pressure temperature integrated sensor and the safety valve are respectively installed at two opposite interfaces of the four-way joint.
  • the wireless pressure temperature integrated sensor is mounted on the first high pressure pipeline
  • the safety valve is mounted on the second high pressure pipeline
  • the first high pressure pipeline is mounted with a first three-way joint
  • the first three-way joint is located between the high-pressure dye cup sealing cover and the first high-pressure shut-off valve
  • the wireless pressure temperature integrated sensor is installed at an intermediate interface of the first three-way joint
  • a second three-way joint is disposed on the second high pressure pipe
  • the second three-way joint is located between the medium outlet and the second high pressure shutoff valve
  • the safety valve is installed in the middle of the second three-way joint At the interface.
  • the wireless pressure temperature integrated sensor is mounted on the second high pressure pipeline
  • the safety valve is mounted on the first high pressure pipeline
  • the first high pressure pipeline is mounted with a first three-way joint
  • the first three-way joint is located between the high-pressure dye cup sealing cover and the first high-pressure shut-off valve
  • the safety valve is installed at an intermediate interface of the first three-way joint
  • the second high-pressure pipe a second three-way joint is disposed thereon
  • the second three-way joint is located between the medium outlet and the second high-pressure shut-off valve
  • the wireless pressure temperature integrated sensor is installed in the middle of the second three-way joint At the interface.
  • porous baffle is made of fluorine-plated stainless steel or PTFE material, and the porous baffle has a pore diameter of 0.01-2 cm.
  • the inner surface of the high pressure dyeing cup cylinder is coated with polytetrafluoroethylene.
  • the present invention has at least the following advantages: the present invention can not only connect the high-pressure dyeing cup with the supercritical fluid pressurized tank charging and separation recovery system, and realize the separation and recovery of the medium after the filling and processing of the processing medium; It can also be separated and disconnected from the above system, so that the conventional supercritical fluid fixed dye proofing unit becomes a movable dyeing cup, and the plurality of dyeing and finishing units (dye cups) can be separately or simultaneously subjected to the medium tank. Charge, then concentrate on the purpose of simultaneous temperature proofing processing.
  • the processing efficiency of the high-pressure supercritical fluid waterless dyeing and finishing proofing, and the utilization rate of the medium pressurized tank filling and separation and recovery system are greatly improved, and the demand for proofing of the commercial production of textile waterless dyeing and finishing is adapted.
  • the wireless pressure and temperature integrated sensor set on the dyeing cup can transmit the medium pressure and temperature in the dyeing cup to the external receiving system in real time, realizing the record and real-time monitoring of the medium pressure and temperature in the dyeing cup.
  • the safety valve set on the dyeing cup can effectively ensure the safe use of the dye cup under high pressure conditions.
  • the present invention sets the medium outlet of the high-pressure dyeing cup at the lowest point of the arc of the bottom of the cup, and the inner surface of the dyeing cup is entirely made of polytetrafluoroethylene.
  • the coating treatment of the ene can effectively reduce the residual angle of the dyeing material in the cup and the adhesion on the inner wall of the cup, thereby greatly improving the cleaning efficiency.
  • the porous baffle plate is arranged on the circular arc string on the bottom of the cup, which effectively prevents the clogging of the medium outlet of the dye cup when the textile product in the cup is filled and outputted, so that the processing medium and its residual dyed material can pass smoothly. And discharged through the media outlet.
  • the existing fixed supercritical fluid dyeing and finishing device or its supporting system has the advantages of low utilization rate, difficulty in cleaning, and inability to meet the requirements of commercial production for proofing. Therefore, the technology of the invention can significantly improve the proofing efficiency of the supercritical fluid without dyeing and finishing, and has the advantages of high utilization rate of the equipment system, simple and reliable operation, convenient cleaning, economical and practical, and wide application range. It has a very broad market prospect and practical significance for thoroughly solving the generation and emission of pollutants in the textile printing and dyeing industry and realizing the environmentally friendly green and clean production of the textile printing and dyeing industry.
  • FIG. 1 is a schematic structural view of a mobile dyeing cup of a supercritical fluid without dyeing and finishing according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural view of a mobile dyeing cup of a supercritical fluid without dyeing and finishing according to a second embodiment of the present invention
  • FIG. 3 is a schematic structural view of a mobile dyeing cup of a supercritical fluid without dyeing and finishing according to a third embodiment of the present invention
  • FIG. 4 is a schematic structural view of a mobile dyeing cup of a supercritical fluid without dyeing and finishing according to a fourth embodiment of the present invention.
  • 1 - first high pressure cut-off valve 1 - first high pressure cut-off valve; 2 - wireless pressure and temperature integrated sensor; 3- safety valve; 4 - high pressure dye cup sealing cover; 5 - second high pressure shut-off valve; 6 - high pressure dye cup cylinder; 7- Porous baffle; 8-first high pressure pipe; 9-second high pressure pipe; 10-media outlet; 12-four-way joint; 13-first three-way joint; 14-second three-way joint.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a mobile dyeing cup for supercritical fluid undyeding comprises a high pressure dyeing cup cylinder 6, a high pressure dye cup sealing cover 4, a first high pressure pipe 8, and a second high pressure pipe 9, a first high pressure shutoff valve 1 and a second high pressure shutoff valve 5, wherein the high pressure dye cup sealing cover is movably disposed at an upper end cup mouth of the high pressure dyeing cup cylinder, and one end of the first high pressure pipe is connected at the The upper end of the high-pressure dye cup sealing cover is connected to the high-pressure dye cup cylinder, and the other end of the first high-pressure pipe is connected to an external air source or a tank charging system, and the first high-pressure shut-off valve is installed in the first On a high pressure pipe;
  • the first high pressure shut-off valve allows the filling of the medium tank of the dyeing cup and the separation of the gas source or the tank filling system.
  • the movable high-pressure dye cup sealing cover achieves a high-pressure seal of the medium in the cup.
  • the bottom of the high-pressure dyeing cup cylinder has a circular arc shape, and the lowest portion of the bottom arc of the high-pressure dyeing cup cylinder is provided with a medium outlet 10, and one end of the second high-pressure pipeline is connected at the medium outlet.
  • the other end of the second high pressure pipeline is connected to an external separation recovery system, and the second high pressure shutoff valve is installed on the second high pressure pipeline;
  • the second high pressure shut-off valve allows decompression output of the medium in the dyeing cup and separation from the separation and recovery system.
  • a porous baffle 7 is fixed in the high-pressure dyeing cup cylinder, and the porous baffle is located on a chord of a circular arc at the bottom of the high-pressure dyeing cup cylinder;
  • the porous baffle can effectively prevent the clogging of the textile product in the cup to the outlet of the bottom of the dyeing cup, and the processing medium can pass smoothly, and then discharged through the medium outlet.
  • the utility model further comprises a wireless pressure and temperature integrated sensor 2 and a safety valve 3, wherein the wireless pressure temperature integrated sensor and the safety valve are both mounted on the second high pressure pipeline, and the fourth high pressure pipeline is provided with a four-way joint 12,
  • the four-way joint is located between the medium outlet and the second high-pressure shut-off valve, and the wireless pressure temperature integrated sensor and the safety valve are respectively installed at two opposite interfaces of the four-way joint.
  • the wireless pressure-temperature integrated sensor enables remote transmission of the medium air pressure in the dyeing cup, and the safety valve enables emergency relief when the pressure inside the cup exceeds the safe pressure.
  • the porous baffle is made of fluorine-plated stainless steel or PTFE material, and the pore diameter on the porous baffle is 0.01-2 cm.
  • the inner surface of the high pressure dyeing cup cylinder is coated with polytetrafluoroethylene.
  • the installation position of the wireless pressure-temperature integrated sensor and the safety valve is not limited to that described in the first embodiment, and can be installed at other positions.
  • the following embodiments show other installation positions of the wireless pressure-temperature integrated sensor and the safety valve. .
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the wireless pressure temperature integrated sensor and the safety valve are both mounted on the first high pressure pipe, and the first high pressure pipe is mounted with a four-way joint 12, and the four-way joint is located at the Between the high pressure dye cup sealing cover and the first high pressure cut-off valve, the wireless pressure temperature integrated sensor and the safety valve are respectively installed at two opposite interfaces of the four-way joint.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the wireless pressure temperature integrated sensor is mounted on the first high pressure pipeline, the safety valve is installed on the second high pressure pipeline, and the first high pressure pipeline is installed with the first three a through joint 13, the first three-way joint is located between the high-pressure dye cup sealing cover and the first high-pressure shut-off valve, and the wireless pressure temperature integrated sensor is installed at an intermediate interface of the first three-way joint a second three-way joint 14 is disposed on the second high-pressure pipe, the second three-way joint is located between the medium outlet and the second high-pressure shut-off valve, and the safety valve is installed in the second The intermediate interface of the tee joint.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the wireless pressure temperature integrated sensor is mounted on the second high pressure pipeline, the safety valve is installed on the first high pressure pipeline, and the first high pressure pipeline is installed with the first three a through joint 13 between the high pressure dye cup sealing cover and the first high pressure shutoff valve, the safety valve being installed at an intermediate interface of the first three-way joint, a second three-way joint 14 is disposed on the second high-pressure pipe, the second three-way joint is located between the medium outlet and the second high-pressure shut-off valve, and the wireless pressure temperature integrated sensor is installed in the second The intermediate interface of the tee joint.
  • the second high-pressure shut-off valve 5 When the mobile dyeing cup of the supercritical fluid without dyeing and finishing is provided, the second high-pressure shut-off valve 5 is first closed, and the quantitative textile product and the quantitative dyeing material to be proofed are placed in the high-pressure dyeing cup. Within body 6. The high-pressure dye cup cylinder is sealed with a high-pressure dye cup sealing cover 4, and other components are assembled and assembled accordingly. Then, the first high-pressure pipeline connected to the first high-pressure shut-off valve 1 is connected to the processing medium gas source or the medium tank charging system, and the first high-pressure shut-off valve 1 is opened to perform quantitative medium tank charging on the dyeing cup system. Upon completion, the first high pressure shut-off valve 1 is closed and the dye cup system is separated from the tank filling system. Repeat the above operation to charge the series of dye cups that need to be proofed. Then, the prepared dye cups to be warmed up are concentrated in a heating system or other heating bath, and concentrated proofing processing is performed according to a predetermined heating program and proof
  • the dyeing cups may be respectively connected to the special separation and recovery system through the second high-pressure pipeline at the lower end of the second high-pressure shut-off valve 5, and the processing medium and the residual dyeing materials in the cup may be separated and recovered.
  • the dyeing cup system is also connected to the processing medium gas source or medium tank charging system through the first high pressure pipeline connected by the first high pressure shut-off valve 1.
  • Use a clean fluid medium to clean the floating or other residual dye on the sample in the dye cup and the remaining dye in the cup.
  • the cleaned medium passes through the porous baffle 7 and the medium outlet 10 provided at the bottom of the high-pressure dyeing cup cylinder 6, and is separated and recovered by the above separation and recovery system.
  • the first high-pressure shut-off valve 1 provided on each dye cup is first closed, and then the medium in each dye cup is fully recovered and depressurized by the gas pump configured by the separation and recovery system.
  • the gas pump of the separation recovery system stops the pump.
  • the special processing medium gas source or medium tank charging system connected to the dyeing cup, and the separation and recovery system are separately separated and separated, and the high-pressure dye cup sealing cover 4 is opened, and the proofing sample is taken out to complete the sample proofing without water dyeing. Repeat the above operation to continue the sample proofing of the next round of supercritical fluid waterless finishing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Coloring (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

本发明公开了一种超临界流体无水染整的一种移动式染杯,可实现将传统的超临界流体固定染色打样单元变为一种可移动式的染杯,将多个染色单元(染杯)分别或同时进行介质罐充,然后集中同时进行升温打样加工的,将介质出口(10)设置在杯底圆弧最低处,并将染杯内表面整体采用聚四氟乙烯进行涂覆处理,有效减少染化料在杯内的死角残留和在杯内壁的黏附,提高了清洗效率。杯底圆弧弦上的多孔挡板(7),有效防止了杯内纺织制品在介质罐充和输出时,对染杯底部介质出口(10)的堵塞,而使加工介质及其残余染化料可顺利通过并经介质出口(10)排出。克服了现有固定式超临界流体染整打样装置或其配套系统利用率低、清洗困难、不能满足商业化生产对打样需求等缺点。

Description

一种超临界流体无水染整的一种移动式染杯
本申请要求了申请日为2016年5月30日,申请号为201610363185.1,发明名称为“一种超临界流体无水染整的一种移动式染杯”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及压力容器及纺织染整设备制造技术领域,尤其涉及一种超临界流体无水染整的一种移动式染杯。
背景技术
采用超临界CO2等流体介质可以代替传统水浴,对纺织品进行染整加工,能从源头上彻底消除传统水浴加工所带来能耗高、环境污染严重等困扰。故研发以超临界CO2流体为代表的无水装备系统,对纺织印染行业的可持续化发展,以及生态环境保护等都具有非常重要的现实和战略意义。
在纺织品的印染加工生产中,打小样是获得生产加工基础配方的前提,并具有举足轻重的作用,尤其在纺织品的颜色加工生产中。因此,开发出高效、可靠、适用的小样打样设备系统,对超临界流体无水染整技术的推广应用和产业化都具有非常重要的意义。
目前从公开的文献报道和实际应用看,现有的超临界流体染整打样装置,通常都是在一套系统中设置一个固定的打样加工单元,并配有一个对应的增压装置或系统,并在打样单元下游配置一套分离回收系统,以便工艺结束时对染色介质实现分离回收。然而,这类加工系统的最大缺点就是一般一次只能对一个样品进行染整打样加工。而且每次打样结束后还须对打样单元进行清洗,才能进行下一次打样试验。尤其是对染色打样实验,又特别是需要进行换色打样时,系统的彻底清洗显得非常重要。但现有的多数该类装置系统或其打样加工单元,其清洗过程繁琐,且不易洗净。同时,这类现有的染整打样系统配置的增压和分离回收系统,其闲置率高,不能得到有效充分利用。故目前这些现有打样系统的效率非常低,远远不能满足商业化生产对打样的需求。因而,这也显著地影响并限制了超临界流体无水染整技术的推广应用和产业化。
有鉴于上述的缺陷,本设计人,积极加以研究创新,以期创设一种超临界流体无水染整的一种移动式染杯,使其更具有产业上的利用价值。
发明内容
为解决上述技术问题,本发明的目的是提供一种打样效率高、操作简便、可靠、清洗效率高、经济实用、应用范围广的超临界流体无水染整的一种移动式染杯。
本发明提出的一种超临界流体无水染整的一种移动式染杯,包括高压染杯筒体、高压染杯密封盖、第一高压管道、第二高压管道、第一高压截止阀和第二高压截止阀,其特征在于:
所述高压染杯密封盖可移动盖设在所述高压染杯筒体的上端杯口处,所述第一高压管道的一端连接在所述高压染杯密封盖的上端并与所述高压染杯筒体连通,所述第一高压管道的另一端供外部气源或罐充系统连接,所述第一高压截止阀安装在所述第一高压管道上;
所述高压染杯筒体的底部呈圆弧形,所述高压染杯筒体底部圆弧形的最低处设有介质出口,所述第二高压管道的一端连接在所述介质出口处,所述第二高压管道的另一端供外部分离回收系统连接,所述第二高压截止阀安装在所述第二高压管道上;
所述高压染杯筒体中固设有多孔挡板,所述多孔挡板位于所述高压染杯筒体底部圆弧的弦上;
还包括无线压力温度一体化传感器和安全阀,所述无线压力温度一体化传感器安装在所述第一高压管道或第二高压管道上,所述安全阀安装在所述第一高压管道或第二高压管道上。
进一步的,所述无线压力温度一体化传感器和安全阀均安装在所述第二高压管道上,所述第二高压管道上安装有四通接头,所述四通接头位于所述介质出口与所述第二高压截止阀之间,所述无线压力温度一体化传感器和安全阀分别安装在所述四通接头两个相对的接口处。
进一步的,所述无线压力温度一体化传感器和安全阀均安装在所述第一高压管道上,所述第一高压管道上安装有四通接头,所述四通接头位于所述高压 染杯密封盖与所述第一高压截止阀之间,所述无线压力温度一体化传感器和安全阀分别安装在所述四通接头两个相对的接口处。
进一步的,所述无线压力温度一体化传感器安装在所述第一高压管道上,所述安全阀安装在所述第二高压管道上,所述第一高压管道上安装有第一三通接头,所述第一三通接头位于所述高压染杯密封盖与所述第一高压截止阀之间,所述无线压力温度一体化传感器安装在所述第一三通接头的中间接口处,所述第二高压管道上安装有第二三通接头,所述第二三通接头位于所介质出口与所述第二高压截止阀之间,所述安全阀安装在所述第二三通接头的中间接口处。
进一步的,所述无线压力温度一体化传感器安装在所述第二高压管道上,所述安全阀安装在所述第一高压管道上,所述第一高压管道上安装有第一三通接头,所述第一三通接头位于所述高压染杯密封盖与所述第一高压截止阀之间,所述安全阀安装在所述第一三通接头的中间接口处,所述第二高压管道上安装有第二三通接头,所述第二三通接头位于所介质出口与所述第二高压截止阀之间,所述无线压力温度一体化传感器安装在所述第二三通接头的中间接口处。
进一步的,所述多孔挡板由镀氟的不锈钢或四氟材料制成,所述多孔挡板上的孔径为0.01-2cm。
进一步的,所述高压染杯筒体的内表面上涂覆有聚四氟乙烯。
借由上述方案,本发明至少具有以下优点:本发明既可将高压染杯与超临界流体增压罐充和分离回收系统进行连接,实现加工介质的罐充和结束后介质的分离回收;同时也可与上述系统进行分离断开,从而将传统的超临界流体固定染色打样单元变为了一种可移动式的染杯,实现了将多个染整单元(染杯)分别或同时进行介质罐充,然后集中同时进行升温打样加工的目的。从而大大提高了高压超临界流体无水染整打样的加工效率,以及介质增压罐充和分离回收系统的利用率,适应了纺织品无水染整商业化生产对打样的需求。同时,染杯上设置的无线压力温度一体化传感器可将染杯中介质压力、温度实时传输到外置接受系统,实现对染杯中介质压力、温度的纪录和实时监控。染杯上设置的安全阀可有效保证高压条件下染杯的使用安全。更为重要的是,本发明将高压染杯的介质出口设置在杯底圆弧最低处,并将染杯内表面整体采用聚四氟乙 烯进行涂覆处理,可有效减少染化料在杯内的死角残留和在杯内壁的黏附,大大提高了清洗效率。设置在杯底圆弧弦上的多孔挡板,有效防止了杯内纺织制品在介质罐充和输出时,对染杯底部介质出口的堵塞,而使加工介质及其残余染化料可顺利通过并经介质出口排出。从而克服了现有固定式超临界流体染整打样装置或其配套系统利用率低、清洗困难、不能满足商业化生产对打样需求等缺点。因而,本发明技术可显著提高超临界流体无水染整的打样效率,并具有设备系统利用率高、操作简便、可靠、清洗便捷、经济实用、应用范围广等优点。对彻底解决纺织印染行业污染物的产生和排放,实现纺织印染行业的环保绿色化清洁生产,具有非常广阔的市场前景和实际意义。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明实施例一中超临界流体无水染整的一种移动式染杯的结构示意图;
图2为本发明实施例二中超临界流体无水染整的一种移动式染杯的结构示意图;
图3为本发明实施例三中超临界流体无水染整的一种移动式染杯的结构示意图;
图4为本发明实施例四中超临界流体无水染整的一种移动式染杯的结构示意图;
其中:1-第一高压截止阀;2-无线压力温度一体化传感器;3-安全阀;4-高压染杯密封盖;5-第二高压截止阀;6-高压染杯筒体;7-多孔挡板;8-第一高压管道;9-第二高压管道;10-介质出口;12-四通接头;13-第一三通接头;14-第二三通接头。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以 下实施例用于说明本发明,但不用来限制本发明的范围。
实施例一:
如图1所示,一种超临界流体无水染整的一种移动式染杯,包括高压染杯筒体6、高压染杯密封盖4、第一高压管道8、第二高压管道9、第一高压截止阀1和第二高压截止阀5,所述高压染杯密封盖可移动盖设在所述高压染杯筒体的上端杯口处,所述第一高压管道的一端连接在所述高压染杯密封盖的上端并与所述高压染杯筒体连通,所述第一高压管道的另一端供外部气源或罐充系统连接,所述第一高压截止阀安装在所述第一高压管道上;
第一高压截止阀可实现对染杯的介质罐充,以及与气源或罐充系统的分离断开。可移动的高压染杯密封盖实现对杯内介质的高压密封。
所述高压染杯筒体的底部呈圆弧形,所述高压染杯筒体底部圆弧形的最低处设有介质出口10,所述第二高压管道的一端连接在所述介质出口处,所述第二高压管道的另一端供外部分离回收系统连接,所述第二高压截止阀安装在所述第二高压管道上;
第二高压截止阀可实现对染杯内的介质进行解压输出,以及与分离回收系统的分离断开。
所述高压染杯筒体中固设有多孔挡板7,所述多孔挡板位于所述高压染杯筒体底部圆弧的弦上;
多孔挡板可有效防止杯内纺织制品对染杯底部介质出口的堵塞,并使加工介质顺利通过,再经介质出口排出。
还包括无线压力温度一体化传感器2和安全阀3,所述无线压力温度一体化传感器和安全阀均安装在所述第二高压管道上,所述第二高压管道上安装有四通接头12,所述四通接头位于所述介质出口与所述第二高压截止阀之间,所述无线压力温度一体化传感器和安全阀分别安装在所述四通接头两个相对的接口处。
无线压力温度一体化传感器可实现对染杯内介质气压的远程传输,安全阀则可实现当杯内压力超过安全压力时进行紧急泄压。
所述多孔挡板由镀氟的不锈钢或四氟材料制成,所述多孔挡板上的孔径为 0.01-2cm。
所述高压染杯筒体的内表面上涂覆有聚四氟乙烯。
当然无线压力温度一体化传感器和安全阀的安装位置并不局限于实施例一中所述,还可安装在其它位置,以下实施例给出了无线压力温度一体化传感器和安全阀的其它安装位置。
实施例二:
如图2所示,所述无线压力温度一体化传感器和安全阀均安装在所述第一高压管道上,所述第一高压管道上安装有四通接头12,所述四通接头位于所述高压染杯密封盖与所述第一高压截止阀之间,所述无线压力温度一体化传感器和安全阀分别安装在所述四通接头两个相对的接口处。
实施例三:
如图3所示,所述无线压力温度一体化传感器安装在所述第一高压管道上,所述安全阀安装在所述第二高压管道上,所述第一高压管道上安装有第一三通接头13,所述第一三通接头位于所述高压染杯密封盖与所述第一高压截止阀之间,所述无线压力温度一体化传感器安装在所述第一三通接头的中间接口处,所述第二高压管道上安装有第二三通接头14,所述第二三通接头位于所介质出口与所述第二高压截止阀之间,所述安全阀安装在所述第二三通接头的中间接口处。
实施例四:
如图4所示,所述无线压力温度一体化传感器安装在所述第二高压管道上,所述安全阀安装在所述第一高压管道上,所述第一高压管道上安装有第一三通接头13,所述第一三通接头位于所述高压染杯密封盖与所述第一高压截止阀之间,所述安全阀安装在所述第一三通接头的中间接口处,所述第二高压管道上安装有第二三通接头14,所述第二三通接头位于所介质出口与所述第二高压截止阀之间,所述无线压力温度一体化传感器安装在所述第二三通接头的中间接口处。
本发明提供的超临界流体无水染整的一种移动式染杯工作时,首先关闭第二高压截止阀5,将待打样处理的定量纺织制品和定量染化料,置于高压染杯筒 体6内。用高压染杯密封盖4密封高压染杯筒体,并对其他部件进行相应连接组装。然后将与第一高压截止阀1连接的第一高压管道与加工介质气源或介质罐充系统连通,并开启第一高压截止阀1对染杯系统进行定量介质罐充。完成后关闭第一高压截止阀1,并将染杯系统与罐充系统进行分离。重复上述操作,将需打样处理的系列染杯进行介质罐充。然后将准备好的待升温打样的染杯集中置于加热系统或其他升温浴中,并按照预定升温程序和打样条件进行集中打样处理。
打样结束后,可分别或同时将各染杯通过第二高压截止阀5下端的第二高压管道与专用分离回收系统连通,对杯内加工介质和残留染化料进行分离回收。同时,根据实际需求,如染色打样,又特别是深浓色打样,染杯系统也通过第一高压截止阀1连接的第一高压管道与加工介质气源或介质罐充系统连通。利用干净流体介质对染杯内打样品上的浮色或其他残留染化料,以及杯内残留的染化料进行清洗。清洗的介质通过高压染杯筒体6底部设置的多孔挡板7和介质出口10,再经上述分离回收系统进行分离、回收处理。
分离回收或/和清洗结束后,首先须使各染杯上设置的第一高压截止阀1处于关闭状态,然后利用分离回收系统配置的气体泵对各染杯内介质进行充分回收和降压。当无线压力温度一体化传感器2显示的压力等于或小于大气压时,分离回收系统的气体泵停泵。然后将与染杯连接的专用加工介质气源或介质罐充系统,以及分离回收系统分别断开分离,并打开高压染杯密封盖4,取出打样样品,完成无水染整的试样打样。重复上述操作,可继续实现下一轮的超临界流体无水染整的试样打样。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (7)

  1. 一种超临界流体无水染整的一种移动式染杯,包括高压染杯筒体(6)、高压染杯密封盖(4)、第一高压管道(8)、第二高压管道(9)、第一高压截止阀(1)和第二高压截止阀(5),其特征在于:
    所述高压染杯密封盖可移动盖设在所述高压染杯筒体的上端杯口处,所述第一高压管道的一端连接在所述高压染杯密封盖的上端并与所述高压染杯筒体连通,所述第一高压管道的另一端供外部气源或罐充系统连接,所述第一高压截止阀安装在所述第一高压管道上;
    所述高压染杯筒体的底部呈圆弧形,所述高压染杯筒体底部圆弧形的最低处设有介质出口(10),所述第二高压管道的一端连接在所述介质出口处,所述第二高压管道的另一端供外部分离回收系统连接,所述第二高压截止阀安装在所述第二高压管道上;
    所述高压染杯筒体中固设有多孔挡板(7),所述多孔挡板位于所述高压染杯筒体底部圆弧的弦上;
    还包括无线压力温度一体化传感器(2)和安全阀(3),所述无线压力温度一体化传感器安装在所述第一高压管道或第二高压管道上,所述安全阀安装在所述第一高压管道或第二高压管道上。
  2. 根据权利要求1所述的超临界流体无水染整的一种移动式染杯,其特征在于:所述无线压力温度一体化传感器和安全阀均安装在所述第二高压管道上,所述第二高压管道上安装有四通接头(12),所述四通接头位于所述介质出口与所述第二高压截止阀之间,所述无线压力温度一体化传感器和安全阀分别安装在所述四通接头两个相对的接口处。
  3. 根据权利要求1所述的超临界流体无水染整的一种移动式染杯,其特征在于:所述无线压力温度一体化传感器和安全阀均安装在所述第一高压管道上,所述第一高压管道上安装有四通接头(12),所述四通接头位于所述高压染杯密封盖与所述第一高压截止阀之间,所述无线压力温度一体化传感器和安全阀分别安装在所述四通接头两个相对的接口处。
  4. 根据权利要求1所述的超临界流体无水染整的一种移动式染杯,其特征在于:所述无线压力温度一体化传感器安装在所述第一高压管道上,所述安全 阀安装在所述第二高压管道上,所述第一高压管道上安装有第一三通接头(13),所述第一三通接头位于所述高压染杯密封盖与所述第一高压截止阀之间,所述无线压力温度一体化传感器安装在所述第一三通接头的中间接口处,所述第二高压管道上安装有第二三通接头(14),所述第二三通接头位于所介质出口与所述第二高压截止阀之间,所述安全阀安装在所述第二三通接头的中间接口处。
  5. 根据权利要求1所述的超临界流体无水染整的一种移动式染杯,其特征在于:所述无线压力温度一体化传感器安装在所述第二高压管道上,所述安全阀安装在所述第一高压管道上,所述第一高压管道上安装有第一三通接头(13),所述第一三通接头位于所述高压染杯密封盖与所述第一高压截止阀之间,所述安全阀安装在所述第一三通接头的中间接口处,所述第二高压管道上安装有第二三通接头(14),所述第二三通接头位于所介质出口与所述第二高压截止阀之间,所述无线压力温度一体化传感器安装在所述第二三通接头的中间接口处。
  6. 根据权利要求1-5中任意一项所述的超临界流体无水染整的一种移动式染杯,其特征在于:所述多孔挡板由镀氟的不锈钢或四氟材料制成,所述多孔挡板上的孔径为0.01-2cm。
  7. 根据权利要求6所述的超临界流体无水染整的一种移动式染杯,其特征在于:所述高压染杯筒体的内表面上涂覆有聚四氟乙烯。
PCT/CN2016/084896 2016-05-27 2016-06-06 一种超临界流体无水染整的一种移动式染杯 WO2017201768A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/556,681 US10294599B2 (en) 2016-05-27 2016-06-06 Mobile dyeing cup for supercritical fluid dyeing and finishing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610363185.1A CN105926210B (zh) 2016-05-27 2016-05-27 一种超临界流体无水染整的一种移动式染杯
CN201610363185.1 2016-05-27

Publications (1)

Publication Number Publication Date
WO2017201768A1 true WO2017201768A1 (zh) 2017-11-30

Family

ID=56842365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084896 WO2017201768A1 (zh) 2016-05-27 2016-06-06 一种超临界流体无水染整的一种移动式染杯

Country Status (3)

Country Link
US (1) US10294599B2 (zh)
CN (1) CN105926210B (zh)
WO (1) WO2017201768A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106906593B (zh) * 2016-05-27 2019-05-31 南通纺织丝绸产业技术研究院 一种移动式的超临界流体无水染整试验杯
CN106801308B (zh) * 2016-11-21 2019-02-19 大连工业大学 一种智能化超临界二氧化碳流体无水染整系统及其方法
CN110359202A (zh) * 2019-08-16 2019-10-22 靖江市华夏科技有限公司 超临界无水染色机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1944762A (zh) * 2006-10-27 2007-04-11 美晨集团股份有限公司 一种超临界二氧化碳染色装置中的染色釜
CN101024922A (zh) * 2007-03-12 2007-08-29 美晨集团股份有限公司 采用超临界流体进行连续化染色的生产系统及其生产工艺
CN101413191A (zh) * 2007-10-15 2009-04-22 香港生产力促进局 超临界co2无水经轴染色系统及其染色方法
CN102535068A (zh) * 2012-02-24 2012-07-04 广东出色无水印染科技有限公司 染色小样机及其染色方法
CN103422288A (zh) * 2012-05-22 2013-12-04 香港纺织及成衣研发中心有限公司 一种超临界co2染色的色样打板机和染料称量系统
CN205775262U (zh) * 2016-05-27 2016-12-07 南通纺织丝绸产业技术研究院 一种超临界流体无水染整的一种移动式染杯

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH390854A (de) * 1960-07-19 1965-04-30 Thies Kg Spezialmaschinenfabri Vorrichtung zum Färben von Textilien
US3230745A (en) * 1963-10-03 1966-01-25 Monsanto Co Continuous annealer
US3255916A (en) * 1964-01-27 1966-06-14 New York Air Brake Co Static seal
US3871821A (en) * 1972-10-12 1975-03-18 Dow Chemical Co Package dye process
WO1997014838A1 (de) * 1995-10-16 1997-04-24 Krupp Uhde Gmbh Verfahren und vorrichtung zur behandlung von textilen substraten mit überkritischem fluid
EP0856078B1 (de) * 1995-10-17 2002-07-31 Amann & Söhne GmbH & Co. Verfahren zum färben eines textilen substrates in mindestens einem überkritischen fluid
US6676710B2 (en) * 2000-10-18 2004-01-13 North Carolina State University Process for treating textile substrates
NL1021142C2 (nl) * 2002-07-24 2004-01-27 Stork Prints Bv Inrichting en werkwijze voor het stuksgewijs of partij-gewijs onder hoge druk veredelen van stukken substraat, in het bijzonder textiel substraat.
JP2004249175A (ja) * 2003-02-18 2004-09-09 Howa Kk 二酸化炭素を回収再使用する含浸処理方法及びその方法により含浸処理された製品
CN201033838Y (zh) * 2007-03-12 2008-03-12 美晨集团股份有限公司 采用超临界流体进行连续化染色的生产系统
CN102776738B (zh) * 2012-07-17 2014-04-16 大连工业大学 一种超临界二氧化碳毛球染色釜及其无水染色方法
CN102828371A (zh) * 2012-07-17 2012-12-19 大连工业大学 一种多元一体化超临界二氧化碳染色设备
WO2015032022A1 (zh) * 2013-09-03 2015-03-12 苏州大学 一种对纺织品进行固色加工的方法及其装置
TWI564448B (zh) * 2015-02-25 2017-01-01 財團法人紡織產業綜合研究所 染色單元及染色裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1944762A (zh) * 2006-10-27 2007-04-11 美晨集团股份有限公司 一种超临界二氧化碳染色装置中的染色釜
CN101024922A (zh) * 2007-03-12 2007-08-29 美晨集团股份有限公司 采用超临界流体进行连续化染色的生产系统及其生产工艺
CN101413191A (zh) * 2007-10-15 2009-04-22 香港生产力促进局 超临界co2无水经轴染色系统及其染色方法
CN102535068A (zh) * 2012-02-24 2012-07-04 广东出色无水印染科技有限公司 染色小样机及其染色方法
CN103422288A (zh) * 2012-05-22 2013-12-04 香港纺织及成衣研发中心有限公司 一种超临界co2染色的色样打板机和染料称量系统
CN205775262U (zh) * 2016-05-27 2016-12-07 南通纺织丝绸产业技术研究院 一种超临界流体无水染整的一种移动式染杯

Also Published As

Publication number Publication date
CN105926210A (zh) 2016-09-07
CN105926210B (zh) 2018-07-13
US10294599B2 (en) 2019-05-21
US20180094374A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
WO2017201768A1 (zh) 一种超临界流体无水染整的一种移动式染杯
WO2020077666A1 (zh) 一种适用于混合流体介质的无水纤染染色机
CN208829244U (zh) 一种密封性强的扎啤机板式分配器
WO2017201767A1 (zh) 一种超临界流体无水染整的打样染杯
CN203259431U (zh) 一种塑料管道交替正负压实验装置
CN208041603U (zh) 一种液体co的充装装置
TWI649472B (zh) 一種移動式的超臨界流體無水染整試驗杯
CN205775262U (zh) 一种超临界流体无水染整的一种移动式染杯
CN206881285U (zh) 一种新型净水器
CN202418791U (zh) 一种快速节能排气阀
CN210638956U (zh) 一种污水处理用污水取样装置
CN206725289U (zh) 一种自来水检测水样收集装置
CN208366731U (zh) 一种螺旋埋弧焊钢管静水压力试验装置
CN205642742U (zh) 一种气密试验装置
CN202789475U (zh) 泵池上的气液安全装置
CN207371021U (zh) 七氟丙烷气体灭火柜
CN204226927U (zh) 一种分流装置
CN201454518U (zh) 反应釜根部阀结构
CN202835885U (zh) 一种用于太阳能热水器的水压式节水即热装置
CN204226724U (zh) 一种新型多功能分流装置
CN205875337U (zh) 一种真空阀
CN204223271U (zh) 一种酒业灌装用多功能分流装置
CN203507993U (zh) 一种反应釜放料装置
CN218539446U (zh) 一种用于曝气池的改进型进气阀门
CN208200946U (zh) 一种有助于沼气发酵过程中增加压强的密封装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15556681

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.03.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16902757

Country of ref document: EP

Kind code of ref document: A1