WO2020076046A1 - 디스플레이 제조 공정용 접합부품 및 디스플레이 제조 공정 장비 - Google Patents

디스플레이 제조 공정용 접합부품 및 디스플레이 제조 공정 장비 Download PDF

Info

Publication number
WO2020076046A1
WO2020076046A1 PCT/KR2019/013181 KR2019013181W WO2020076046A1 WO 2020076046 A1 WO2020076046 A1 WO 2020076046A1 KR 2019013181 W KR2019013181 W KR 2019013181W WO 2020076046 A1 WO2020076046 A1 WO 2020076046A1
Authority
WO
WIPO (PCT)
Prior art keywords
joined
welding
hole
friction stir
manufacturing process
Prior art date
Application number
PCT/KR2019/013181
Other languages
English (en)
French (fr)
Inventor
안범모
Original Assignee
안범모
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안범모 filed Critical 안범모
Publication of WO2020076046A1 publication Critical patent/WO2020076046A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Definitions

  • the present invention relates to a bonding component for a display manufacturing process welded by friction stir welding and a display manufacturing process equipment.
  • the display is a non-light emitting device that injects liquid crystal between an array substrate and a color filter substrate to obtain an image effect by using its characteristics.
  • Each of the array substrate and the color filter substrate is manufactured through deposition, patterning and etching processes of thin films several times on transparent glass made of a material such as glass. In this case, when the reaction and the source material are introduced into the gas phase into the vacuum chamber to proceed with the deposition process, the introduced gas passes through the diffuser and is deposited on the glass installed on the susceptor to form a film quality.
  • Patent Document 1 it is disposed in the upper region in the chamber to provide a deposition material to the surface of the glass substrate.
  • the diffuser can be affected by the temperature in the closed process chamber. If the diffuser is affected by temperature, a temperature deviation may occur in the diffuser itself, and deformation may occur. This causes a problem that the process fluid distribution direction and density are not uniform. In other words, when affected by the temperature in the process chamber, there is a problem that product deformation occurs and negatively affect the diffuser function.
  • FIG. 1 is a view showing a technique that is the background of the concept of the present invention, and is a view showing a partially enlarged junction of a diffuser manufactured using a method of melting or welding a metal filler.
  • FIG. 1 (a) is a view showing the members 1 to be joined before a method of welding or joining by melting a metal filler is used
  • FIG. 1 (b) is a method of welding or joining by melting a metal filler. It is a diagram showing a part of the junction of the diffuser manufactured after.
  • grooves (2) for forming a temperature control space at each interface of the member to be joined (1) are manufactured using a welding or bonding method ) May be formed to face each other.
  • the members 2 to which the grooves 2 are formed are joined using a method in which a metal filler is melted to weld or join, and after welding or joining, the holes 4 are drilled in an area where a temperature control space is not formed. Can form.
  • a metal filler for example, filler metal in the case of welding
  • the metal filling material of the welded portion or the welded portion 3, which is a joining portion may be exposed to the process fluid, which may cause corrosion.
  • the welding part or the bonding part 3 is present, the welding part or the bonding part 3 is exposed due to the process fluid passing through the inner wall of the hole 4 because the welding part or the bonding part 3 is also present in the inner wall of the hole 4. Corrosion may occur.
  • Patent Document 1 Korean Registered Patent No. 10-1352923
  • the present invention has been devised to solve the above-mentioned problems, and is manufactured in a structure capable of controlling temperature by friction stir welding to ensure uniformity of temperature, thereby minimizing deformation of products. It aims to provide manufacturing process equipment.
  • a bonding component for a display manufacturing process is provided in a display manufacturing process equipment, is used in manufacturing a display, and a bonding component for a display manufacturing process in which at least two members to be joined are welded by friction stir welding. It characterized in that a hole through the member to be joined is provided in the welding area by friction stir welding.
  • the process equipment is an etching equipment
  • the joining component is a joining component that supplies a process fluid for an etching process to the workpiece, and the process fluid passes through the hole formed in the welding region by the friction stir welding. It is characterized by.
  • the process equipment is a cleaning equipment
  • the joining component is a joining component that supplies a process fluid for the cleaning process to the object to be processed, and the process fluid passes through the hole formed in the welding region by the friction stir welding. It is characterized by.
  • the process equipment is a heat treatment equipment
  • the joining component is a joining component that supplies a process fluid for a heat treatment process to the workpiece, and the process fluid passes through the hole formed in the welding area by the friction stir welding. It is characterized by.
  • the process equipment is a CVD equipment
  • the joining component is a joining component for supplying a process fluid for a CVD process to the workpiece, the process fluid passing through the hole formed in the welding region by the friction stir welding It is characterized by.
  • the process equipment is a sputtering equipment
  • the joining component is a joining component that supplies a process fluid for a sputtering process to the workpiece, and the process fluid passes through the hole formed in the welding region by the friction stir welding. It is characterized by.
  • the at least two members to be joined are stacked up and down, the friction stir welding welds the interfaces of the members to be joined, and the hole is formed by penetrating the welding region of the members to be joined up and down. It is characterized by.
  • the material of the member to be joined friction heat is generated by mutual friction between the tool rotating at high speed and the member to be joined, and the member to be joined around the tool is softened by the frictional heat, and the member to be joined by stirring of the tool It is characterized in that the member to be joined on the joint surface is a material capable of forcibly mixing due to the plastic flow.
  • the member to be joined is characterized in that it is at least one of aluminum, aluminum alloy, titanium, titanium alloy, magnesium, magnesium alloy, carbon steel or stainless steel.
  • the member to be joined is characterized by being a different type of metal material.
  • a temperature control means is provided on at least one of the interfaces of the members to be joined.
  • a groove is formed on at least one of the interfaces of the members to be joined.
  • a plurality of hollow channels are formed inside the bonding component.
  • the display manufacturing process equipment includes at least two members to be welded by friction stir welding, and includes a joining component provided with a hole through the welding area by the friction stir welding, It is characterized by manufacturing some of the components that make up the display using the fluid supplied through.
  • the bonding component the hollow channel is formed along the interface at the interface of the member to be joined and is provided with a temperature control means therein; And a hole penetrating the member to be joined up and down, and a welding area by the friction stir welding is formed between the hollow channel and the hole.
  • the temperature control means is characterized in that the cooling fluid.
  • the temperature control means is characterized in that the heater.
  • Display manufacturing process equipment includes a substrate; At least two members to be joined are welded by friction stir welding, a hole is provided through the welding region by the friction stir welding, and a joining component supporting the substrate; And an elevating member for seating the substrate on the upper surface of the bonding component while moving up and down in the hole, or detaching the substrate from the upper surface of the bonding component.
  • the bonding parts for display manufacturing process and the display manufacturing process equipment according to the present invention have less fear of deepening corrosion and reduce the risk of particle generation due to deepening corrosion, thereby reducing the defect rate that occurs during the process. Can be obtained.
  • FIG 3 is a view showing a bonding component according to a preferred embodiment of the present invention.
  • FIG. 4 is a view schematically showing a manufacturing procedure of FIG. 3;
  • FIG. 5 is a view showing a direction of cooling or heating fluid flow when the hollow channel has a single-layer structure.
  • FIG. 6 is a view schematically showing a manufacturing procedure of the modified example of FIG. 3.
  • FIG. 7 is a view showing the direction of cooling or heating fluid flow when the hollow channel has a multilayer structure.
  • FIG. 8 is a diagram showing a display manufacturing process equipment.
  • FIG. 9 is an enlarged view of a joining component provided in FIG. 8.
  • FIG. 10 is a view of the members to be joined in FIG. 8 viewed from above.
  • FIG. 11 is a view showing a bonding component supporting a substrate in a display manufacturing process equipment.
  • FIG. 2 is a view schematically showing a part of the welding part of the bonding component 100 for a display manufacturing process welded by friction stir welding, which is a technical feature of the present invention.
  • the bonding parts for the display manufacturing process (hereinafter referred to as 'joint parts') are provided in the display manufacturing process equipment to be used in display manufacturing.
  • the joining component 100 may be formed by welding at least two members 1 to be welded by friction stir welding.
  • at least two members 1 are stacked up and down and welded by friction stir welding, but are not limited thereto.
  • the joining component 100 is a first to-be-joined member 1a and a second to-be-joined member located at the bottom of the drawing. It may be composed of a second member to be joined (1b) located on the upper surface of (1b).
  • the first to-be-joined member 1a and the second to-be-joined member 1b can be welded by friction stir welding.
  • the joining portions formed at the interfaces of the members 1 to be joined by friction stir welding may be joined to each other to form a welding region w.
  • friction stir welding is a method of welding without melting the material, defects such as pores, solidification cracks, residual stresses, etc. due to transformation from liquid to solid phase are less than conventional melt welding or bonding methods.
  • the tool 10b contacts and generates heat.
  • the shoulder 10a coupled to the upper part of the tool 10b contacts and expands the heating area
  • the material of the lower part of the tool is plasticized and flows by the movement of the tool 10b or the member 1 to be brought into friction.
  • Agitation welding is performed by forming a nugget zone.
  • the nugget zone is a part where recovery and recrystallization occurs due to high heat and deformation, and the nugget zone is also called a dynamic recrystallization unit.
  • the material is formed by dynamic recrystallization in a solid phase below the melting point by frictional heat and agitation.
  • the diameter of the nugget zone is larger than the diameter of the tool 10b and smaller than the diameter of the shoulder 10a.
  • the size of the nugget zone varies depending on the rotational speed of the welding tool 10 including the tool 10b and the shoulder 10a. When the rotational speed is fast, the size of the nugget zone decreases. However, if the rotational speed is too fast, the shape of the grain may be incomplete and defects may occur in the grain-incomplete area.
  • thermo-mechanically affected zone formed by wrapping the surroundings of the nugget zone around the nugget zone where the members to be joined (1) are mixed by friction stir welding and heat formed by surrounding the thermo-mechanically affected zone (TMAZ) A heat affected zone (HAZ) is formed.
  • thermo-mechanical zone of influence shows a partial recrystallization by plastic deformation due to friction at the contact surface of the welding tool 10 with the shoulder 10a, and is a region where thermal deformation and mechanical deformation by the shoulder occur simultaneously by friction. .
  • the crystal structure softened by severe plastic flow and deformation of the material is distributed obliquely.
  • the heat-affected zone is a part affected by heat, rather than a thermo-mechanical zone, and the crystal grains of a diagonal shape are visible and a number of pores appear.
  • the welding area w by friction stir welding may refer to the above-described nugget zone, thermo-mechanical influence zone, and thermal influence zone.
  • the welding area w is formed such that the nugget zone and the thermo-mechanical influence zone are formed below the interface of the members 1, or the nugget zone is formed below the interface of the members 1 to be joined. May be Therefore, the hole 4 passing through the welding area w, which will be described later, can be formed through the welding area w within the range of the welding area.
  • the hole 4 may be formed through the range of the nugget zone and the thermo-mechanical influence zone, and more preferably through the range of the nugget zone.
  • the joining component 100 may be provided with a hole 4 penetrating the welding area w by friction stir welding.
  • the hole 4 may be formed to have a different width for each location where the process fluid passes.
  • the width of the inlet through which the process fluid supplied from the process fluid supply part, which is the upper part of the hole 4 is introduced may be arbitrarily formed.
  • a narrow portion may be formed at a lower width than the width of the inlet portion.
  • the process fluid may pass through a narrow portion of a narrower width than the inlet, and thus the flow velocity may be increased. As the process fluid passes through the narrow portion, the process fluid is rapidly supplied to the surface of the substrate to increase the efficiency of the display manufacturing process.
  • Figure 3 is a view showing a bonding component 100 for a display manufacturing process according to an exemplary embodiment of the present invention.
  • Figure 3 (a) is a perspective view of a bonding component 100 for a display manufacturing process according to an embodiment
  • Figure 3 (b) is a view showing a cross-section cut along A-A 'of Figure 3 (a).
  • the bonding component 100 for a display manufacturing process which is provided in the display manufacturing process equipment and used when manufacturing the display, may have a shape having a rectangular cross section. However, it is not limited thereto.
  • the bonding component 100 may be stacked with at least two members 1 to be joined up and down.
  • the interface of the members to be joined 1 is welded by friction stir welding. As a result, a welding area is formed. Holes 4 penetrating the welding region w up and down are formed in the welding region w of the members 1 to be joined.
  • the material of the members to be joined 1 generates frictional heat by mutual friction between the tool 10b rotating at high speed and the member 1, and the member 1 around the tool 10b is generated by the frictional heat. It is softened and may be made of any material as long as the material to be mixed is forcibly mixed by the plastic flow of the member to be joined 1 by stirring of the tool 10b.
  • the material of the to-be-joined members 1 constituting the bonding part 100 may be made of at least one of aluminum, aluminum alloy, titanium, titanium alloy, magnesium, magnesium alloy, carbon steel or stainless steel.
  • the material of the members to be joined 1 may be composed of at least one of non-ferrous metal and carbon steel or stainless steel including aluminum, aluminum alloy, titanium, titanium alloy, magnesium, magnesium alloy, etc., and the material is not limited thereto.
  • the at least two members to be joined 1 may be composed of different metal materials.
  • the first to-be-joined member 1a is made of aluminum, which is one of the above-mentioned materials
  • the second to-be-joined member 1b may be made of stainless steel.
  • the members 1 to be joined may be made of the same type of metal material.
  • the first to-be-joined member 1a is made of aluminum
  • the second to-be-joined member 1b can also be made of aluminum
  • the first to-be-joined member 1a is stainless steel
  • the second The member to be joined 1b may also be made of stainless steel.
  • the bonding since the bonding is performed in a solid phase, members having different melting points can be stably joined.
  • the nugget zone included in the welding region is a region where dynamic recrystallization has occurred and has a structure resistant to external vibration or impact.
  • the thermo-mechanical influence zone included in the welding region is a region where two members are rotated and joined together, and thus the members 1 to be joined are mixed, and thus can exhibit structural characteristics resistant to external shocks and movements.
  • Friction stir welding requires no heat source, welding rods, filler metal, etc., compared to other welding methods such as welding or joining in which the metal filler is joined in a molten state, so no harmful rays or harmful substances are emitted during the welding process.
  • dynamic recombination occurs, solidification cracks that may occur in melt bonding can be prevented, and mechanical properties are excellent due to almost no deformation.
  • the present invention relates to a bonding component 100 for a display manufacturing process in which a hole is processed in a welding region having such high strength and weldability.
  • At least one of the interfaces of the members 1 to be joined may be provided with a temperature control means (not shown).
  • the temperature control means is the interface of the members 1 It may be in the form provided on at least one of the interfaces to be provided inside the bonding component 100. Due to this, the bonding component 100 can perform a function of controlling the temperature of the product itself through an internal temperature control means.
  • the bonding part 100 is provided with a temperature control means to ensure uniformity of temperature, thereby obtaining an effect of minimizing the problem of product deformation and loss of function due to product deformation.
  • the temperature control means can be a cooling fluid or a heater.
  • the bonding component 100 may function as a cooling block.
  • the temperature control means is a heater, the joining component 100 can function as a heating block.
  • the groove 2a formed at at least one of the interfaces of the members 1 to be joined may have a form to be embedded.
  • a groove 2a may be formed at at least one of the interfaces of the members 1 to be joined.
  • a plurality of grooves 2a are formed at the interface of the first member to be joined 1a.
  • the groove 2a formed at the interface of the first member to be joined 1a may be the first groove 2a.
  • the groove 2 is shown to be one between the welding area w and the welding area w, it may be formed of two or more, and in the embodiment of the present invention, the number of grooves 2 is limited. It is not.
  • Groove 2a is formed on at least one of the interfaces of the members 1 to be joined, so that the members 1 are welded by friction stir welding to form a bonding component 100 for a display manufacturing process. Provides a space in which the fluid moves or a separate member is provided.
  • the groove 2a may be provided with the above-described temperature control means.
  • the medium for temperature control which is a means for adjusting the temperature, can move the inside of the bonding component 100 through the groove 2a to make the temperature of the bonding component 100 uniform.
  • the medium for temperature control is a cooling fluid
  • the bonding component 100 has a cooling function.
  • the joining component 100 is provided with a cooling line or a heater line in the groove 2a to retain cooling and / or heating functions.
  • the groove 2a is formed on at least one of the interfaces of the members 1 to be joined. Therefore, when the members 1 to be joined are welded by friction stir welding to form the joining part 100, a plurality of hollow channels may be formed inside the joining part 100. Temperature adjustment means may be provided in the plurality of hollow channels inside the joining part 100 formed by the groove 2a.
  • the interface of the first member to be joined 1a is a groove region where the groove 2a is formed and a groove where the groove 2a is not formed.
  • Non-regions 2a ' may be present.
  • the plurality of grooves 2a formed at the interface of the first to-be-joined member 1a may be the first grooves 2a, and the groove non-regions 2a 'in which the grooves 2a are not formed are the first groove non-regions (2a).
  • the groove non-region 2a ' may be an area where friction stir welding is performed.
  • the first and second to-be-joined members 1a and 1b are stacked up and down and welded by friction stir welding.
  • the first to-be-joined member is placed by rotating the tool 10b on the surface of the second to-be-joined member 1b corresponding to the groove non-region 2a 'of the first to-be-joined member 1a and rotating at high speed.
  • the interface between (1a) and the second member to be joined (1b) may be friction stir welding.
  • the interface between the first contactable member 1a and the second contactable member 1b that is friction stir welded may be a groove specific region 2a '.
  • the groove specific area 2a 'at the interface of the first and second to-be-joined members 1a and 1b is plasticly flowed by friction stir welding to form a welding area w.
  • a hole 4 penetrating the welding area w may be provided in the welding area w.
  • the groove area where the grooves 2a are formed is surrounded by the welding area w by friction stir welding and the grooves 2a and the holes 4 penetrating up and down are formed in the welding area w. Between the holes 4, a welding area w by friction stir welding is provided, and through this, the physical and chemical action between the grooves 2a and the holes 4 is blocked.
  • the area where the hole 4 is processed is a welding area w by friction stir welding, and friction heat is generated by mutual friction between the members 1 to be joined using the tool 10b, and the friction heat is used. Due to this, the member 1 around the tool is softened, and it is an area formed by forcibly mixing the member 1 of the bonding surface by the plastic flow of the member 1 by agitation of the tool 10b. Therefore, the interface between the members 1 to be joined in the welding area w is removed by forcibly mixing. Since the joining part 100 of the present invention forms the hole 4 in the welding area w as described above, the interface does not exist on the inner wall of the hole 4.
  • the interface does not exist on the inner wall of the hole 4, like forming the hole 4 in one member.
  • an interface is present on the inner wall of the hole 4, and there is also an interface between the hole 4 and the periphery of the hole 4, so that a boundary area exists between the hollow channel and the hole 4.
  • the corrosion or leakage problem occurring at the interface of the inner wall of the hole 4 also affects the hollow channel.
  • the bonding part 100 of the present invention even when the hole 4 is formed in the welding area w, a borderless area in which an interface does not exist around the hole 4 is formed. In other words, between the hollow channel and the hole 4, a borderless region having an interface removed is formed. Due to this, there is no negative interaction such as the leakage of particles between the hollow channel and the hole 4 or the leakage of corrosion.
  • the joining part 100 of the present invention has the effect of forming holes 4 in the welding area w, thereby reducing the risk of deepening corrosion and the occurrence of particles at the joint interface and reducing the incidence of defects due to problems such as leakage. Will be able to get
  • the welding area w by friction stir welding surrounds the hole 4. . Since the non-joined portions formed at the interface of the members 1 are integrated by friction stir welding while facing toward the hole 4, particles generated at the non-joined portion enter the hole 4 side. (4) It may be blocked by the surrounding welding area (w). Due to this, particles generated at the non-joined portions of the members 1 are blocked from flowing into the hole 4, and defects due to particles are eliminated.
  • the first to-be-joined member 1a is provided with a first groove region in which the first groove 2a is formed and a first groove non-region 2a 'in which the first groove 2a is not formed.
  • a temperature control means may be provided in the first groove region. Due to this, when the first to-be-joined member 1a and the second to-be-joined member 1b are welded by friction stir welding to form the joining part 100, a temperature control means is provided inside the joining part 100. It is possible to uniformize the temperature of the bonding parts 100.
  • a second to-be-joined member 1b may be located on one surface of the first to-be-joined member 1a. Since the member 1 is stacked up and down, the second member 1b located on one surface of the first member 1a may be positioned on the upper surface of the first member 1a. . In other words, one surface of the first to-be-joined member 1a may be an upper surface.
  • the first groove area and the second to-be-joined member 1b of the first to-be-joined member 1a that face each other One region of is not welded to each other, and the other regions of the first groove non-region 2a 'and the second to-be-joined member 1b that are opposite to each other can be welded by friction stir welding to form a welding region w. .
  • Holes 4 may be formed in the welding area w to penetrate the first to-be-joined member 1a and the second to-be-joined member 1b.
  • the first groove area of the first to-be-joined member 1a and one area of the second to-be-joined member 1b are not welded to each other because the first groove area is provided with a temperature control means, and the temperature control means is a bonding component 100 ), The temperature of the bonding component 100 can be controlled to perform a cooling or heating function.
  • the second to-be-joined member 1b may be in a form welded by friction stir welding with at least a portion of the first to-be-joined member 1a at the top of the first to-be-joined member 1a.
  • the welding area w in which the second member to be joined 1b is formed by welding by friction stir welding with at least a portion of the first member to be joined 1a is the first groove of the first member to be joined 1a. It may be a non-region 2a '.
  • first groove non-region 2a 'of the first to-be-joined member 1a one region of the second to-be-joined member 1b that faces the first groove non-region 2a' is welded to each other to thereby weld the area w ) And a hole 4 penetrating the first and second to-be-joined members 1a and 1b in the welding area w may be formed.
  • the hole 4 may be formed to have a width smaller than the welding area w formed by friction stir welding.
  • the hole 4 formed in the range of the welding area w with a width smaller than the welding area w may have a shape in which the periphery is surrounded by at least a part of the welding area w. Due to this, it is possible to obtain an effect of blocking particles generated at the non-joining portion of the interface of the members 1 from being introduced into the hole 4 side.
  • a hollow channel may be formed in at least a portion of the interfaces where the first and second joined members 1a and 1b are not mutually welded.
  • the hollow channel may be formed by a first groove region in which the first groove 2a of the first to-be-joined member 1a is formed.
  • the second to-be-joined member 1b is located on one surface of the first to-be-joined member 1a where the first groove region and the first groove non-region 2a 'are formed, and the second to-be-joined member 1b is friction stir welding
  • a hole 4 is formed in the welding area w formed by welding to form the joining component 100.
  • the joining component 100 may have a first groove region on at least a portion of an interface where the first and second to-be-joined members 1a and 1b are not mutually welded.
  • the first groove area is the joining part 100 ) It is possible to form a hollow channel inside. Therefore, the first and second to-be-joined members 1a and 1b are located in at least a portion of the interface where the first and second to-be-joined members 1a and 1b are not welded to each other. Hollow channels may be formed in at least a portion of the interfaces that are not mutually welded.
  • the joining component 100 has a first groove region and a first groove non-region formed in the first to-be-joined member 1a. Due to this, when the member 1 is welded by friction stir welding, a hollow channel can be formed along the interface of the members 1.
  • the joining component 100 is formed with holes 4 penetrating the upper and lower members 1 in the welding area w. Due to this, the joining part 100 may be formed in a form in which a welding region w by friction stir welding is formed between the hollow channel and the hole 4 penetrating the upper and lower parts 1 to be joined.
  • FIG. 4 is a view schematically showing a manufacturing procedure of a bonding component 100 for a display manufacturing process according to an embodiment of the present invention.
  • the first to-be-joined member 1a includes a first groove region in which the first groove 2a is formed and a first groove non-region in which the first groove 2a is not formed. (2a ').
  • the first grooved member 2a is formed with the first member 1a formed thereon, but the first member 1 is provided with the first member 1 , Any of the two to-be-joined members 1a, 1b may be provided first.
  • a second to-be-joined member 1b may be provided on one surface of the first to-be-joined member 1a.
  • the to-be-joined members 1 can be welded by friction stir welding.
  • the portion to be subjected to friction stir welding may be a region of the first grooved non-region 2a 'and the first grooved non-region 2a' of the first member to be joined 1a. have. Due to this, a welding area w may be formed.
  • holes 4 penetrating the welding area w up and down may be formed.
  • the hole 4 may be formed in a shape penetrating the members 1 to the upper and lower portions of at least a portion of the welding area w.
  • FIG. 5 shows the direction of the flow of cooling or heating fluid when a medium for temperature control such as cooling or heating fluid is provided as a temperature control means in the case where the hollow channel has a single-layer structure as in the bonding part 100 of the embodiment. It is shown.
  • a medium for temperature control such as cooling or heating fluid
  • the first to-be-joined member 1a may be provided with a first groove region and a first groove non-region 2a '.
  • first and second to-be-joined members 1a and 1b are welded by friction stir welding, and a hole 4 is provided in the welding area and is formed of the joining part 100, the first and second joined members are formed inside the joining part 100.
  • a hollow channel is formed by the one-groove region, and a temperature control means can be provided in the hollow channel.
  • the temperature control medium can be moved inside the bonding part 100 through a hollow channel.
  • the main hole 6 may be formed in the second to-be-joined member 1b to inject the medium for temperature control into the hollow channel.
  • the main hole 6 penetrates the second to-be-joined member 1b up and down, but may be formed to penetrate the communication groove 5 to be described later.
  • a communication groove 5 may be formed along the junction interface so as to intersect the first groove region.
  • the communication groove 5 is formed to intersect the first groove region, and may be formed at positions corresponding to one end and the other end of the first groove region, respectively. Referring to FIG.
  • the member shown on the left side in FIG. 5 is the second member to be joined 1b.
  • a communication groove 5 and a main hole 6 may be formed in the second member to be joined 1b.
  • the communication groove 5 is formed on the lower surface of the second to-be-joined member 1b so as to intersect the first grooved area, and is formed at positions corresponding to one end and the other end of the first grooved area, respectively, and the second to-be-joined member 1b ) May be formed on the upper side and the lower side.
  • the communication groove 5 formed on the upper side of the interface of the second to-be-joined member 1b corresponding to one end of the first groove region intersects the top of the first groove region, and the second to-be-joined member 1b corresponding to the other end ),
  • the communication groove 5 formed at the lower side of the interface intersects the lowermost portion of the first groove region.
  • the first groove region may be present in communication with the communication grooves 5 between the upper and lower communication grooves 5 formed at the interface of the second member to be joined 1b.
  • the main hole 6 penetrates the second to-be-joined member 1b up and down, but is formed to penetrate the communication groove 5 up and down. Therefore, the main hole 6 may be formed to penetrate the second to-be-joined member 1b from above and below the second to-be-joined member 1b, respectively.
  • FIG. 5 The view shown on the left side of FIG. 5 is a view of the second to-be-joined member 1b viewed from above. 5 shows the direction of the flow of cooling or heating fluid on the first to-be-joined member 1a with arrows.
  • the communication groove 5 is formed at the upper and lower sides of the interface of the second member to be joined 1b, and the second member to be joined 1b is positioned at the position where the communication groove 5 is formed. ,
  • the main hole 6 penetrating downward may be formed.
  • the communication groove 5 may communicate with the first groove area while crossing the first groove area of the first member to be joined 1a. Due to this, the cooling or heating fluid injected into the main hole 6 is uniformly spread throughout the first groove region due to the communication groove 5, so that the temperature in the joint can be controlled.
  • the communication groove 5 is composed of a first communication groove 5a formed on the upper side of the interface of the second to-be-joined member 1b, and a second communication groove 5b formed on the lower side.
  • the main hole 6 is composed of a first main hole 6a penetrating the first communication groove 5a and a second main hole 6b penetrating the second communication groove 5b.
  • the medium for temperature control is injected into the first main hole 6a
  • the temperature controlling medium spreads through the first grooved area 5a through the first communication groove 5a, and the bonding component 100 is formed through the first grooved area.
  • the internal temperature can be adjusted.
  • the temperature regulating medium injected through the first main hole 6a flows downward as shown in the flow shown in the right side of FIG. 5 and can exit through the second main hole 6b.
  • the main hole 6 into which the temperature regulating medium is injected may be the first main hole 6a or the second main hole 6b, and the flow of the fluid may be downward or upward depending on the position where the temperature regulating medium is injected. Can be changed to In this case, it is possible to obtain an effect that the temperature is adjusted inside the bonding component 100 due to the flow of the temperature controlling medium in one direction.
  • the process of injecting into the first main hole 6a and discharging it into the second main hole 6b, and then injecting it into the second main hole 6b and discharging it into the first main hole 6a It can be done repeatedly.
  • the main hole 6 and the communication groove 5 can be suitably modified so that the temperature controlling medium such as a cooling or heating fluid can have an alternating flow simultaneously.
  • the temperature control medium horizontally alternately moves the hollow channel to control the temperature of the bonding component 100.
  • the bonding part 100 of the modified example differs in that the number of the member 1 to be joined differs from that of the embodiment and the hollow channel formed inside the bonding part 100 is a two-layer structure.
  • the second to-be-joined member 1b is stacked on the upper surface which is one surface of the first to-be-joined member 1a, and the grooves such as the first and second grooved areas are not formed and the communication grooves are formed. It is described that the formed third member 1c is located under the first member 1a.
  • the shapes of the members 1 to be joined and the shapes in which the members 1 are stacked are exemplarily illustrated, but are not limited thereto, and hollow channels are formed and through the hollow channels of the members 1 Cooling or heating fluid or the like may be formed in a suitable form to control the temperature by moving.
  • the joining part 100 is a first to-be-joined member 1a having a first groove region in which the first groove 2a is formed and a first groove non-region 2a 'in which the first groove 2a is not formed. ), A second skin located on one surface of the first to-be-joined member 1a and provided with a second groove region 2b 'where the second groove 2b is formed and a second groove non-region 2b' where the second groove is not formed A first groove non-region 2a ', a second groove non-region 2b' having a third member to be joined 1c located on one surface of the bonding member 1b and the second member to be joined 1b, and It can be formed by welding a region of the third to-be-joined member 1c by friction stir welding to form a welding region w, and having holes 4 to penetrate the welding region w up and down.
  • the bonding component 100 of the modified example may be provided with first, second, and three to-be-joined members 1a, 1b, and 1c.
  • the first, second, and third joined members 1a, 1b, and 1c are the second to-be-joined members 1b, the first to-be-joined members 1a, and the third to-be-joined drawings from the upper direction to the lower direction in the drawing. It may be laminated in the order of the member (1c).
  • the third to-be-joined member 1c and the first to-be-joined member 1a are first welded by friction stir welding, and the remaining second to-be-joined member 1b is the third to-be-joined member 1c and the first It can be stacked on top of the member to be joined (1a) and welded by friction stir welding.
  • the first, second, and third to-be-joined members 1a, 1b, 1c are formed by forming holes 4 to penetrate the welding area w up and down.
  • the laminated parts 100 laminated and welded by friction stir welding may be manufactured.
  • a communication groove may be formed in the third to-be-joined member 1c.
  • a medium for temperature control such as a cooling or heating fluid that controls the temperature inside the bonding component 100, may be a one-way flow or an alternating flow.
  • a first groove region is formed in the first to-be-joined member 1a, and a second groove region is formed in the second to-be-joined member 1b to form two layers. It may have a hollow channel of structure.
  • the bonding part 100 such as a modified example having a hollow channel having a two-layer structure has a different direction of flow of cooling or heating fluid that moves the hollow channel according to the form in which the hollow channel inside the bonding part 100 is formed. You can.
  • the first layer hollow channel includes a first groove region in which the first groove 2a of the first member to be joined 1a is formed, and the second groove 2b of the second member to be joined 1b is And a formed second groove region.
  • FIG. 7 (a) is a view showing a hollow channel having a two-layer structure in cross-section
  • the drawing shown on the right in FIG. 7 (a) is a view of FIG. 7 (a)
  • a hollow channel of a two-layer structure is formed as shown in the drawing on the left, it is a diagram showing the direction of the flow of cooling or heating fluid in a plan view.
  • cooling or The heating fluid may move in the same direction in one direction in each of the first layer hollow channel and the second layer hollow channel through the hollow channel.
  • the arrow indicated by the dotted line means the direction of the flow of cooling or heating fluid in the first layer hollow channel
  • the arrow indicated by the solid line in the second layer hollow channel It may mean the direction of the flow of cooling or heating fluid. Therefore, as shown in the left figure of the drawing of FIG.
  • cooling or heating fluid can be moved in each layer in the same direction so that the temperature of the bonding component 100 can be made uniform.
  • one direction in which the cooling or heating fluid flows may flow in a direction opposite to the direction shown in FIG. 7 (a).
  • the first-first hollow hollow adjacent to the first-layer hollow channel and the second-layer hollow channel There may be a channel and a 2-1 layer hollow channel.
  • the first-first hollow channel and the second-first hollow channel adjacent to the periphery of the first-layer hollow channel and the second-layer hollow channel are cooled in the first-layer hollow channel and the second-layer hollow channel, or Flowing in a direction opposite to the direction of the flow of the heating fluid may be a flow of fluid in a planar alternating flow.
  • the joining part 100 may control the temperature with such an alternating flow so that the temperature can be uniformly formed.
  • the flow of cooling or heating fluid in the first layer hollow channel and the flow of cooling or heating fluid in the second layer hollow channel may be in opposite directions.
  • the dotted arrow indicates the direction of cooling or heating fluid flow in the first layer hollow channel
  • the solid arrow in the second layer hollow channel It means the direction of flow of cooling or heating fluid.
  • the cooling or heating fluid capable of adjusting the temperature in each of the first layer hollow channel and the second layer hollow channel flows in opposite directions, thereby more uniformly controlling the temperature of the bonding component 100 having the second layer hollow channel structure. It becomes possible.
  • the first layer hollow channel and the second layer hollow channel were formed in communication with each other in the inside of the bonding component 100 provided with the two-layer hollow channel as shown in the left figure.
  • it is a diagram showing the direction of the flow of cooling or heating fluid.
  • the cooling or heating fluid is turned in a region where the first layer hollow channel and the second layer hollow channel communicate with each other, in a direction opposite to the direction of cooling or heating fluid of one hollow channel. Can flow.
  • the cooling or heating fluid flow of at least one hollow channel is turned in the communication area in the opposite direction from the other hollow channel. The flow can change and flow.
  • the bonding component 100 is provided with a hollow channel having a two-layer structure as described above, thereby ensuring uniformity of temperature.
  • FIG. 8 is a view schematically showing a display manufacturing process equipment 100 having a bonding component 100 for a display manufacturing process of the present invention.
  • the bonding component 100 provided in the display manufacturing process equipment 1000 is welded by at least two members 1 to be welded by friction stir welding, and a hole 4 passing through the welding area w by friction stir welding 4 ) May be provided.
  • the display manufacturing process equipment 1000 may manufacture some components constituting the display using the fluid supplied through the hole 4 of the bonding part 100.
  • the display manufacturing process equipment 1000 includes etching equipment, cleaning equipment, heat treatment equipment sputtering equipment, CVD equipment, and the like described below.
  • the joining part 100 is formed along the interface at the interface of the members 1 to be joined, and includes a hollow channel provided with a temperature control means therein and a hole 4 penetrating the members 1 to the top and bottom. .
  • the welding area w by friction stir welding is formed between the hollow channel and the hole 4.
  • the temperature control means provided in the bonding component 100 may be a cooling fluid. When the cooling fluid is provided as a temperature control means, the bonding component 100 can control the temperature of the bonding component 100 by performing a cooling function.
  • the temperature control means provided in the bonding component 100 may be a heater. When the heater is provided as a temperature control means, the bonding component 100 may control the temperature of the bonding component 100 by performing a heating function.
  • Such a joining component 100 can control the temperature of the joining component 100 by providing a cooling fluid or a heater as a temperature control means, thereby minimizing deformation of the joining component 100.
  • the display manufacturing process equipment provided with the bonding component 100 for the display manufacturing process as described above may be an etching device.
  • the bonding component 100 may be a bonding component 100 that supplies a process fluid for an etching process to an object to be processed.
  • the process fluid passes through the hole 4 formed in the welding area w by friction stir welding.
  • the etching equipment provided with the bonding component 100 may pattern a portion of the substrate 200 with a process fluid passing through the hole 4 of the bonding component 100.
  • the etching equipment may be wet etch equipment, dry etch equipment, plasma etching equipment, or reactive ion etching (RIE) equipment.
  • the bonding component 100 When the bonding component 100 is provided in the above etching equipment, the bonding component 100 is secured in uniformity of temperature due to the temperature control means provided in the hollow channel, thereby minimizing deformation.
  • the hole 4 of the joining component 100 is formed through the welding area w by friction stir welding, but is formed within the range of the welding area w, and thus due to the process fluid passing through the hole 4 The risk of particle generation problems due to deep corrosion and corrosion of the inner wall 4 is reduced. Corrosion deepening and particle generation problems of the inner wall of the hole 4 may cause problems of the substrate 200 defect when the process fluid is sprayed onto the substrate 200.
  • the bonding part 100 of the present invention does not have an interface on the inner wall of the hole 4 because the hole 4 is formed in the welding area w by friction stir welding. Due to this, the problem of deepening corrosion of the inner wall of the hole 4 is reduced, and thus, when the process fluid is injected through the hole 4, the defective rate of the substrate 200 caused by the process fluid injection accompanied with particles can be reduced.
  • the display manufacturing process equipment provided with the bonding component 100 may be cleaning equipment.
  • the bonding component 100 supplies a process fluid for the cleaning process to the object to be processed, and the process fluid passes through the hole 4 formed in the welding area by friction stir welding to clean the process.
  • the cleaning equipment provided with the bonding component 100 is a process fluid passing through the hole 4 of the bonding component 100 to clean particulate or chemical foreign substances that cause defects in the production process.
  • the cleaning equipment can be a cleaner or a wafer scrubber.
  • the bonding component 100 is a temperature control means provided in the hollow channel to ensure uniformity of temperature and minimize product deformation. Further, the hole 4 of the joining component 100 is formed in the range of the welding area w. As a result, deepening of corrosion of the inner wall of the hole 4 due to process fluid passing through the hole 4 and particle generation problems due to corrosion are reduced. Corrosion deepening and particle generation problems of the inner wall of the hole 4 may cause problems of the substrate 200 defect when the process fluid is sprayed onto the substrate 200.
  • the bonding part 100 of the present invention does not have an interface on the inner wall of the hole 4 because the hole 4 is formed in the welding area w by friction stir welding. Due to this, the problem of deepening corrosion of the inner wall of the hole 4 may be reduced, and the incidence of defects in the substrate 200 caused by the process fluid injection accompanied with particles may be reduced.
  • the display manufacturing process equipment provided with the bonding component 100 may be a heat treatment equipment.
  • the bonding component 100 may supply a process fluid for a heat treatment process to the object.
  • the process fluid passes through the hole 4 formed in the welding area w by friction stir welding of the joining component 100.
  • the heat treatment equipment provided with the bonding component 100 may apply heat at a high speed and generate an oxide film, a nitride film, and the like in order to activate the draft injected by a method such as ion implantation.
  • the bonding component 100 is a temperature control means provided in the hollow channel to ensure uniformity of temperature and minimize product deformation. Further, the hole 4 through which the process fluid passes is formed in the range of the welding area w. Due to this, the problem of particle generation due to deep corrosion and corrosion of the inner wall of the hole 4 is reduced. Corrosion deepening and particle generation problems of the inner wall of the hole 4 may cause problems of the substrate 200 defect when the process fluid is sprayed onto the substrate 200.
  • the joining part 100 of the present invention does not have an interface on the inner wall of the hole 4 because the hole 4 is formed within the range of the welding area w by friction stir welding. Due to this, the problem of deepening the corrosion of the inner wall of the hole 4 may be reduced, and it is possible to reduce the incidence of defects in the substrate 200 caused by process fluid injection accompanied with particles.
  • the display manufacturing process equipment provided with the bonding component 100 may be sputtering equipment.
  • the bonding component 100 supplies the process fluid for the sputtering process to the object to be processed, and the process fluid is a welding area (w) by friction stir welding. It passes through the hole (4) formed.
  • the sputtering equipment provided with the bonding component 100 is equipment for forming a metal film on the substrate 200.
  • the sputtering equipment may form a metal film on the surface of the substrate 200 using a sputter shape.
  • the splicing component 100 is a temperature control means provided in the hollow channel to ensure uniformity of temperature and minimize product deformation. Further, the hole 4 through which the process fluid passes is formed in the range of the welding area w. Due to this, the problem of particle generation due to deep corrosion and corrosion of the inner wall of the hole 4 is reduced. Corrosion deepening and particle generation problems of the inner wall of the hole 4 may cause problems of the substrate 200 defect when the process fluid is sprayed onto the substrate 200.
  • the joining part 100 of the present invention does not have an interface on the inner wall of the hole 4 because the hole 4 is formed within the range of the welding area w by friction stir welding. Due to this, the problem of deepening corrosion of the inner wall of the hole 4 may be reduced, and the incidence of defects in the substrate 200 caused by the process fluid injection accompanied with particles may be reduced.
  • the display manufacturing process equipment 1000 provided with the bonding component 100 may be CVD equipment.
  • the bonding component 100 supplies a process fluid for a CVD process to the object to be processed, and the process fluid is a hole 4 formed in the welding area w by friction stir welding. ).
  • the CVD equipment equipped with the bonding component 100 can excite the reaction process fluid composed of elements with energy such as thermal plasma discharge photo to deposit a thin film by chemical reaction occurring in the electron or vapor phase, which thins on the surface of the substrate 200. have.
  • the CVD equipment may be atmospheric CVD equipment, reduced pressure CVD equipment, plasma CVD equipment, optical CVD equipment, MO-CVD equipment.
  • CVD equipment is exemplarily illustrated as a display manufacturing process equipment provided with a bonding component 100 for a display manufacturing process.
  • the bonding component 100 provided in the CVD equipment may be a diffuser used in a display manufacturing process.
  • the process fluid may pass through the hole 4 of the bonding component 100 to spray the process fluid on the substrate 200 installed on the susceptor s.
  • the substrate 200 may be a glass substrate.
  • the glass substrate may be a flat panel display such as a liquid crystal display (LCD), or may be a plasma display panel (PDP) and organic light emitting diodes (OLED).
  • LCD liquid crystal display
  • PDP plasma display panel
  • OLED organic light emitting diodes
  • FIG. 9 is an enlarged view illustrating a part of a bonding component 100 for a display manufacturing process provided in the display manufacturing process equipment 1000 of FIG. 8.
  • the joining component 100 is composed of the members 1 to be welded by stirring welding, and the hole 4 penetrating the welding area w by friction stir welding is provided. It is provided.
  • the process fluid performing the CVD process may pass through the hole 4 described above.
  • the hollow channel is provided with a temperature control means to make the temperature of the bonding component 100 uniform.
  • the hole 4 through which the process fluid passes is formed in the welding area w by friction stir welding, there is no interface on the inner wall of the hole 4.
  • a welding area w exists, and since the welding area w is an area formed by friction stir welding, an interface between the members 1 to be joined does not exist, thereby forming a borderless area. For this reason, while the welding area w exists between the hole 4 and the hollow channel, it may be in the form of a borderless area.
  • the joining component 100 may prevent interaction between the hollow channel and the hole 4 due to the presence of a borderless region between the hole 4 and the hollow channel. Specifically, since the hole 4 of the joining component 100 is formed in the welding area w by friction stir welding, the risk of corrosion and particle generation due to corrosion is low. In the case of the welding shown in FIG. 1, since the interface exists on the inner wall of the hole 4, the problem of deepening corrosion may be serious. In this case, particles may be generated due to the corrosion problem of the inner wall interface of the hole 4, and particles may be moved along the interface to the hollow channel around the hole 4. In the case of the welding shown in FIG.
  • the joining part 100 of the present invention is caused by interaction along the interface because the hole 4 and the hollow channel do not interact due to the borderless region formed by the welding region between the hole 4 and the hollow channel. It is possible to prevent a problem such as a negative effect caused by the temperature control means provided in the hollow channel due to the leakage problem and the leakage problem.
  • the display manufacturing process equipment provided with the bonding component 100 as described above may be various equipment.
  • the effect obtained by the bonding component 100 may be the same.
  • 10 is a view showing the member to be joined 1 of the bonding component 100 as viewed from above.
  • 10 (a) shows the second to-be-joined member 1b on which the first and second communication grooves 5a, 5b are formed, and the tenth (b) has a first groove region and a first groove non-region. It shows the first to-be-joined member 1a.
  • the communication groove 5 includes a first communication groove 5a and a second communication groove 5b
  • the main hole 6 includes a first main hole 6a and a second main hole 6b.
  • the communication groove 5 including the first and second communication grooves 5a and 5b and the main hole 6 including the first and second main holes 6 are first If the groove region including the groove region is formed at a position capable of communicating, the position is not limited.
  • the first groove 2a may be formed in a straight line according to the cross-sectional shape of the member 1 to be joined.
  • the shape of the first groove 2a is not limited thereto, and the members 1 to be joined may be formed in a suitable shape according to the cross-sectional shape of the joining component 100 formed by welding by friction stir welding.
  • the cross section of the joining component 100 is a circular cross section
  • the first groove 2a formed in the first to-be-joined member 1a may be formed in a curved shape. Since the hollow channel inside the bonding component 100 is formed by the first groove 2a, the shape of the hollow channel may also be formed in a straight or curved shape.
  • Cooling or heating fluid may be injected into the temperature control means through the first main hole 6a.
  • the injected cooling or heating fluid moves along the first groove region and exits through the second main hole 6b to control the internal temperature of the bonding component 100.
  • the first groove non-region 2a 'of the first to-be-joined member 1a and the second to-be-joined member 1b The region may be welded by friction stir welding to form a welding region w. Then, a hole 4 penetrating the welding region w may be provided in the range of the welding region w to be formed as the joining component 100.
  • the bonding component 100 for a display manufacturing process provided in the display manufacturing process equipment may have a square cross-sectional shape to spray process fluid on a substrate such as a glass substrate.
  • the welding area w is a region in which the first groove non-region and one region of the second to-be-joined member 1b are formed by welding by friction stir welding, the first groove region as shown in FIG. 10 (b). And a first groove region.
  • the welding region in the bonding component 100 may be formed between the first groove region and the first groove region.
  • a hole 4 penetrating the welding area w is provided in the above-described range of the welding area w. In this case, the hole 4 may be preferably formed through the nugget zone of the welding area w.
  • the display manufacturing process equipment 1000 may include and include a bonding component 100 for a display manufacturing process for spraying process fluid.
  • the substrate 200, the at least two members to be joined (1) are welded by friction stir welding, a hole (4) penetrating the welding area (w) by friction stir welding is provided, and the above substrate ( It may be configured to include a bonding component (100 ') for supporting 200).
  • the joining part 100 'supporting the substrate 200 is welded by at least two members to be joined by friction stir welding, such as the joining part 100 for display manufacturing process, and a welding area by friction stir welding ( w) may be provided through the hole (4).
  • the substrate 200 is seated on the upper surface of the bonding component 100 while the board 200 is moved up and down in the hole of the bonding component 100 ′ supporting the board 200 or the board 200 is connected to the bonding component. It may be configured to include an elevating member to be separated from the upper surface.
  • FIG. 11 is a view showing a bonding component 100 ′ configured in the display manufacturing process equipment to support the substrate 200.
  • the bonding component 100 ′ configured in the display manufacturing process equipment to support the substrate 200 may be a susceptor s.
  • the joining parts 100 'supporting the substrate 200 are the same in that the joining members 1 are joined by using the joining parts 100 for display manufacturing process and friction stir welding, and the joined members 1 There is a difference in that a welding region w by friction stir welding is selectively formed at a portion to form a hole 4 penetrating them.
  • FIG. 11 (a) is a view showing a state before welding by friction stir welding of the first to-be-joined member 1a and the second to-be-joined member 1b
  • FIG. 11 (b) is a to-be-joined member 1 )
  • FIG. 11 (c) is a view showing the state where the first and second to-be-joined members 1a and 1b are welded by friction stir welding from above
  • FIG. 11 (d) shows friction stir at the portion where the hole 4 is to be formed.
  • This is a view showing a welding part w formed by welding, and a bonding part 100 ′ having a hole 4 penetrating the welding area w in the range of the welding area w is viewed from above.
  • the joining component 100 has holes 4 through which at least two members 1 to be welded by friction stir welding are welded and penetrate the welding region w by friction stir welding. It is provided to support the substrate 200.
  • 1 to-be-joined member 1a may be formed in a form to be inserted outside the second to-be-joined member 1b.
  • the shape shown in FIG. 11 (a) may be configured as at least two members 1 to be formed in different forms as one embodiment.
  • the vertical inner wall 11a of the first to-be-joined member 1a and the vertical outer wall of the second to-be-joined member 1b 12a is contacted, and the horizontal inner wall 11b of the first member to be joined 1a and the horizontal outer wall 12b of the second member to be joined 1b may be contacted.
  • the inner and outer walls of the first to-be-joined member 1a contact each other, a joint interface exists between the first to-be-joined member 1a and the second to-be-joined member 1b.
  • the joint interface to be welded can be welded by friction stir welding.
  • the member 1 to be joined has a rectangular cross section, as shown in Fig. 11 (c)
  • the vertical inner wall 11a and the second member 1b of the first member 1a are joined.
  • the welding area w by friction stir welding may be continuously formed on the joint interface caused by the contact of the vertical outer wall 12a.
  • the welding area (w) by friction stir welding along the junction interface caused by the contact between the vertical inner wall (11a) of the first member to be joined (1a) and the vertical outer wall (12a) of the second member to be joined (1b) is It can be formed continuously.
  • the horizontal outer portions of the first to-be-joined member 1a and the second to-be-joined member 1b can be welded using friction stir welding.
  • the to-be-joined members 1 are welded by friction stir welding, in order to form the holes 4 penetrating the to-be-joined members 1 up and down, at the portion where the holes 4 will be formed are subjected to friction stir welding.
  • the portion to form the hole 4 may be arbitrarily determined, and friction stir welding may be selectively performed on the hole 4 forming portion.
  • the welding area (w) by friction stir welding for forming the hole (4) is horizontal to the first member to be joined (1a) to form a hole (4) to penetrate the member (1) up and down.
  • the inner wall 11b and the horizontal outer wall 12b of the second to-be-joined member 1b may be formed below the junction interface. Referring to FIG.
  • FIG. 11 (b) shows that the welding area w by friction stir welding in which the hole 4 is formed is formed to the same depth as the hole 4, but the hole (4) In the welding area w formed by friction stir welding, the horizontal inner wall 11b of the first member 1a and the horizontal outer wall 12b of the second member 1b are in contact. If it is formed below the junction interface, the depth may not be the same as the hole 4.
  • the welding area w is selectively welded to the hole 4 forming part by forming a friction stir welding, so that at least a part of the junction interface is formed by welding by friction stir welding. It can be in the form.
  • the welding area w formed by welding by selectively friction stir welding to the hole 4 forming portion is the first to-be-joined member 1a and the second to-be-joined member 1b. It is formed by welding at least a part of the bonding interface due to contact by friction stir welding. Therefore, the welding area w of the hole 4 forming portion may be discontinuous. Unlike the welding area w formed by friction stir welding at the hole 4 formation site discontinuously, the welding area formed by welding by friction stir welding to join the member 1 to be joined up and down ( w) may be in continuous form.
  • the joining part 100 ' forms a hole 4 in the welding area w that is friction stir welding and a substrate 200 is seated on the upper surface of the joining part 100' or the substrate 200 inside the hole 4 ) May be provided with an elevating path of the elevating member for separating from the upper surface of the joining component 100 ′.
  • a welding area w by friction stir welding may be formed around the hoisting member. Since the hole 4 is formed in the welding area w by friction stir welding, the interface of the members 1 to be joined does not exist on the inner wall of the hole 4. Therefore, due to the absence of an interface on the inner wall of the hole 4, unlike the bonding parts in which the members 1 to be joined have an interface on the inner wall of the hole 4, an interface exists on the inner wall of the hole 4, resulting in corrosion of the interface area. It is possible to reduce the fear of malfunction of the inner member function of the hole 4 due to the particles.
  • 5a first communication groove
  • 5b second communication groove
  • 6a 1st main hole
  • 6b 2nd main hole
  • 11a Vertical inner wall of the first member to be joined
  • 11b Horizontal inner wall of the first member to be joined
  • 12a vertical outer wall of the second member to be joined
  • 12b vertical outer wall of the second member to be joined
  • 100 ' a bonding component supporting a substrate
  • 200 a substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

본 발명은 마찰교반용접에 의해 피접합부재들이 용접된 디스플레이 제조 공정용 접합부품 및 디스플레이 제조 공정 장비에 관한 것이다.

Description

디스플레이 제조 공정용 접합부품 및 디스플레이 제조 공정 장비
본 발명은 마찰교반용접에 의해 용접된 디스플레이 제조 공정용 접합부품 및 디스플레이 제조 공정 장비에 관한 것이다.
디스플레이 제조를 위한 진공챔버 내부에는 글라스 상에 균일하게 가스를 분사시키는 디퓨져(diffuser)가 있다. 디스플레이는 어레이 기판과 컬러 필터 기판 사이에 액정을 주입하여 그 특성을 이용하여 영상효과를 얻는 비발광 소자이다. 이러한 어레이 기판과 컬러 필터 기판은 각각 유리 등의 재질로 이루어지는 투명 글라스 상에 수차례에 걸친 박막의 증착, 패터닝 및 식각 공정을 통해 제조된다. 이 경우, 진공 챔버 내부로 반응 및 소스 물질이 가스상으로 유입되어 증착 공정을 진행하고자 하는 경우 유입된 가스는 디퓨져를 통과하여 서셉터상에 설치된 글라스상에 증착되며 막질을 형성한다.
이러한 디퓨져로는 한국등록특허 제10-1352923호(이하, '특허문헌 1'이라 한다)에 기재된 것이 공지되어 있다.
특허문헌 1의 경우, 챔버 내의 상부 영역에 배치되어 유리기판의 표면으로 증착물질을 제공한다.
디퓨져는 밀폐된 공정챔버 내의 온도의 영향을 받을 수 있다. 디퓨져가 온도의 영향을 받을 경우 디퓨져 자체에 온도 편차가 발생하여 변형이 발생할 수 있다. 이로 인해 프로세스 유체 분배 방향 및 밀도가 균일하지 못하게 되는 문제가 발생하게 된다. 다시 말해, 공정챔버 내의 온도의 영향을 받을 경우, 제품의 변형이 발생하고 디퓨져 기능에 부정적인 영향을 끼칠 수 있게 된다는 문제점이 있다.
디퓨져가 온도에 따라 받는 부정적인 영향을 보완하기 위하여 도 1과 같이 디퓨져 내부에 온도를 조절할 수 있는 공간을 형성함으로써 온도를 조절하는 것을 고려해볼 수 있다. 내부에 온도를 조절할 수 있는 공간이 구비된 디퓨져를 제조하기 위한 방법으로는 금속 충전재를 용융하여 용접 또는 접합하는 방식이 이용될 수 있다. 도 1은 본 발명의 착상의 배경이 된 기술을 도시한 도면으로서, 금속 충전재를 용융하여 용접 또는 접합하는 방식을 이용하여 제조된 디퓨져의 접합부위를 일부 확대하여 도시한 도이다. 도 1(a)는 금속 충전재를 용융하여 용접 또는 접합하는 방식이 이용되기 전 피접합부재(1)들을 도시한 도이고, 도 1(b)는 금속 충전재를 용융하여 용접 또는 접합 방식이 이용된 후 제조된 디퓨져의 접합부위 일부를 도시한 도이다.
금속 충전재를 용융하여 용접 또는 접합하는 방식을 이용하여 디퓨져를 제조할 경우, 피접합부재(1)의 각각의 계면에는 용접 또는 접합 방식을 이용하여 제조될 때 온도 조절 공간을 형성하기 위한 그루브(2)가 대향되게 형성될 수 있다. 그루브(2)가 형성된 피접합부재(1)들은 금속 충전재를 용융하여 용접 또는 접합하는 방식을 이용하여 접합되고, 용접 또는 접합 후 온도 조절 공간이 형성되지 않은 영역에 천공 방식으로 홀(4)을 형성할 수 있다.
그러나 용접 또는 접합 방식의 경우, 금속 충전재(예를 들어, 용접의 경우 용가재(filler metal))를 이용하여 용융상태에서 용접 또는 접합하는 방식이므로 홀(4)을 통해 프로세스 유체가 주입될 경우 용접 또는 접합 부위인 용접부 또는 접합부(3)의 금속 충전재가 프로세스 유체에 노출되어 부식이 심화되는 문제가 발생할 수 있다. 구체적으로 용접부 또는 접합부(3)가 존재할 경우, 홀(4) 내벽에도 용접부 또는 접합부(3)가 존재하는 상태이므로 홀(4) 내벽을 통과하는 프로세스 유체로 인해 용접부 또는 접합부(3)가 노출되어 부식이 발생하는 문제점이 발생할 수 있다.
이러한 문제점은 홀(4) 내의 파티클 발생 위험을 증가시키게 되고, 홀(4) 내에 발생한 파티클은 홀(4)에 프로세스 유체가 주입되어 분사될 때 기판 상으로 프로세스 유체와 함께 분사되어 공정 중 불량을 발생시키게 되는 심각한 문제를 초래할 수 있게 된다. 또한, 홀(4) 내벽의 용접부 또는 접합부(3)는 피접합부재(1)들 간의 계면이므로 홀(4) 내의 파티클이 계면을 따라 그루브(2)로 이동하여 그루브(2) 내의 온도 조절 공간에서의 온도 조절 기능 오류를 유발할 수 있다는 문제점이 있다.
이처럼 본 발명의 착상의 배경이 된 기술에 따르면 기존의 용융 접합 방식을 이용할 경우에는 각종 문제를 야기할 수 있는 단점을 가지게 된다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국등록특허 제10-1352923호
본 발명은 전술한 문제를 해결하기 위해 안출된 것으로서, 마찰교반용접에 의해 온도 조절이 가능한 구조로 제조되어 온도의 균일성이 확보되어 제품의 변형을 최소할 수 있는 디스플레이 제조 공정용 접합부품 및 디스플레이 제조 공정 장비를 제공하는 것을 목적으로 한다.
본 발명의 일 특징에 따른 디스플레이 제조 공정용 접합부품은 디스플레이 제조 공정장비에 구비되어 디스플레이 제조 시 이용되며 마찰교반용접에 의해 적어도 2개의 피접합부재들이 용접된 디스플레이 제조 공정용 접합부품에 있어서, 상기 마찰교반용접에 의한 용접영역에 상기 피접합부재들을 관통하는 홀이 구비되는 것을 특징으로 한다.
또한, 상기 공정 장비는 에칭 장비이고, 상기 접합부품은 피처리물에 에칭공정을 위한 프로세스 유체를 공급하는 접합부품이며, 상기 프로세스 유체는 상기 마찰교반용접에 의한 용접영역에 형성된 상기 홀을 통과하는 것을 특징으로 한다.
또한, 상기 공정 장비는 세정 장비이고, 상기 접합부품은 피처리물에 세정공정을 위한 프로세스 유체를 공급하는 접합부품이며, 상기 프로세스 유체는 상기 마찰교반용접에 의한 용접영역에 형성된 상기 홀을 통과하는 것을 특징으로 한다.
또한, 상기 공정 장비는 열처리 장비이고, 상기 접합부품은 피처리물에 열처리 공정을 위한 프로세스 유체를 공급하는 접합부품이며, 상기 프로세스 유체는 상기 마찰교반용접에 의한 용접영역에 형성된 상기 홀을 통과하는 것을 특징으로 한다.
또한, 상기 공정 장비는 CVD 장비이고, 상기 접합부품은 피처리물에 CVD 공정을 위한 프로세스 유체를 공급하는 접합부품이며, 상기 프로세스 유체는 상기 마찰교반용접에 의한 용접영역에 형성된 상기 홀을 통과하는 것을 특징으로 한다.
또한, 상기 공정 장비는 스퍼터링 장비이고, 상기 접합부품은 피처리물에 스퍼터링 공정을 위한 프로세스 유체를 공급하는 접합부품이며, 상기 프로세스 유체는 상기 마찰교반용접에 의한 용접영역에 형성된 상기 홀을 통과하는 것을 특징으로 한다.
또한, 상기 적어도 2개의 피접합부재들은 상,하로 적층되고, 상기 마찰교반용접은 상기 피접합부재들의 계면을 용접하고, 상기 홀은 상기 피접합부재들의 상기 용접영역을 상, 하로 관통하여 형성된 것을 특징으로 한다.
또한, 상기 피접합부재들의 재질은, 고속으로 회전하는 툴과 피접합부재와의 상호마찰에 의해 마찰열이 발생하고 이러한 마찰열에 의해 툴 주변의 상기 피접합부재가 연화되며 툴의 교반에 의해 피접합부재의 소성유동으로 접합면의 피접합부재가 강제적으로 혼합가능한 재질인 것을 특징으로 한다.
또한, 상기 피접합부재들은 알루미늄, 알루미늄 합금, 티타늄, 티타늄 합금, 마그네슘, 마그네슘 합금, 탄소강 또는 스테인레스강 중 적어도 하나인 것을 특징으로 한다.
또한, 상기 피접합부재들은 이종의 금속재질인 것을 특징으로 한다.
또한, 상기 피접합부재들의 계면 중 적어도 어느 한 계면에 온도조절수단이 구비된 것을 특징으로 한다.
또한, 상기 피접합부재들의 계면 중 적어도 어느 한 계면에 그루브가 형성된 것을 특징으로 한다.
또한, 상기 접합부품의 내부에는 복수개의 중공 채널이 형성된 것을 특징으로 한다.
본 발명의 다른 특징에 따른 디스플레이 제조 공정 장비는 마찰교반용접에 의해 적어도 2개의 피접합부재들이 용접되며, 상기 마찰교반용접에 의한 용접영역을 관통하는 홀이 구비된 접합부품을 포함하고, 상기 홀을 통해 공급된 유체를 이용하여 디스플레이를 이루는 일부 구성을 제조하는 것을 특징으로 한다.
또한, 상기 접합부품은, 상기 피접합부재들의 계면에서 상기 계면을 따라 형성되며 내부에 온도조절수단이 구비된 중공 채널; 및 상기 피접합부재들을 상, 하로 관통하는 홀을 포함하고, 상기 마찰교반용접에 의한 용접영역은 상기 중공 채널과 상기 홀 사이에 형성되는 것을 특징으로 한다.
또한, 온도조절수단은 냉각 유체인 것을 특징으로 한다.
또한, 온도조절수단은 히터인 것을 특징으로 한다.
본 발명의 다른 특징에 따른 디스플레이 제조 공정 장비는 기판; 마찰교반용접에 의해 적어도 2개의 피접합부재들이 용접되며, 상기 마찰교반용접에 의한 용접영역을 관통하는 홀이 구비되며, 상기 기판을 지지하는 접합부품; 및 상기 홀 내부에서 승하강하면서 상기 기판을 상기 접합부품의 상면에 안착시키거나 상기 기판을 상기 접합부품의 상면으로부터 이탈시키는 승하강 부재;를 포함하는 것을 특징으로 한다.
이상에서 살펴본 바와 같이, 본 발명에 의한 디스플레이 제조 공정용 접합부품 및 디스플레이 제조 공정 장비는 부식 심화의 염려가 적고, 부식 심화로 인한 파티클 발생 위험도가 감소되어 공정 중 발생하는 불량률을 낮출 수 있는 효과를 얻을 수 있다.
도 1은 본 발명의 배경을 개략적으로 도시한 도.
도 2는 본 발명의 개념을 개략적으로 도시한 도.
도 3은 본 발명의 바람직한 실시 예에 따른 접합부품을 도시한 도.
도 4는 도 3의 제조 순서를 개략적으로 도시한 도.
도 5은 중공 채널이 1층 구조인 경우의 냉각 또는 히팅 유체의 흐름의 방향을 도시한 도.
도 6은 도 3의 변형 예의 제조 순서를 개략적으로 도시한 도.
도 7은 중공 채널이 다층 구조인 경우의 냉각 또는 히팅 유체 흐름의 방향을 도시한 도.
도 8는 디스플레이 제조 공정 장비를 도시한 도.
도 9은 도 8에 구비된 접합부품을 확대하여 도시한 도.
도 10은 도 8에 구비된 접합부품의 피접합부재들을 위에서 바라보고 도시한 도.
도 11는 디스플레이 제조 공정 장비에서 기판을 지지하는 접합부품을 도시한 도.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이며, 그에 따라 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.
본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시 도인 단면도 및/또는 사시도들을 참고하여 설명될 것이다. 이러한 도면들에 도시된 부재들 및 영역들의 두께 및 구멍들의 지름 등은 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 또한 도면에 도시된 홀의 개수는 예시적으로 일부만을 도면에 도시한 것이다. 따라서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다.
다양한 실시예들을 설명함에 있어서, 동일한 기능을 수행하는 구성요소에 대해서는 실시예가 다르더라도 편의상 동일한 명칭 및 동일한 참조번호를 부여하기로 한다. 또한, 이미 다른 실시예에서 설명된 구성 및 작동에 대해서는 편의상 생략하기로 한다.
이하, 본 발명의 바람직한 실시예들을 첨부 도면을 참조하여 상세히 설명하면 다음과 같다.
도 2는 본 발명의 기술적 특징이 되는 마찰교반용접에 의해 용접된 디스플레이 제조 공정용 접합부품(100)의 용접부위를 일부 확대하여 개략적으로 도시한 도이다.
디스플레이 제조 공정용 접합부품(100, 이하 '접합부품'이라 한다)은 디스플레이 제조 공정 장비에 구비되어 디스플레이 제조 시 이용된다.
도 2(a)에 도시된 바와 같이, 접합부품(100)은 적어도 2개의 피접합부재(1)들이 마찰교반용접에 의해 용접어 형성될 수 있다. 도 2에서는 하나의 예로서 적어도 2개의 피접합부재(1)들이 상, 하 적층되어 마찰교반용접에 의해 용접되는 것으로 도시하였지만, 이에 한정되는 것은 아니다.
도 2에 도시된 바와 같이, 피접합부재(1)들이 상, 하로 적층되어 용접될 경우, 접합부품(100)은 도면상으로 하부에 위치한 제1피접합부재(1a)와 제2피접합부재(1b)의 상부면에 위치한 제2피접합부재(1b)로 구성될 수 있다.
도 2(a)에 도시된 바와 같이, 제1피접합부재(1a)와 제2피접합부재(1b)가 마찰교반용접에 의해 용접될 수 있다. 마찰교반용접에 의해 피접합부재(1)들의 계면에 형성되는 접합부위는 서로 접합되어 용접영역(w)이 형성될 수 있다.
마찰교반용접은 소재를 용융시키지 않고 용접하는 방식이므로, 기존 용융 용접 또는 접합방식에 비하여 액상에서 고상으로의 변태에 따른 기공, 응고균열, 잔류응력 등과 같은 결함 생성이 적다. 피접합부재(1)들의 계면에서 형성되는 접합 부위가 마찰교반용접에 의해 서로 접합될 경우, 툴(10b)이 접촉되면서 열을 발생시킨다. 그런 다음 툴(10b)의 상부에 결합된 숄더(10a)가 접촉하여 가열영역을 확대시키고 난 후, 툴(10b) 또는 피접합부재(1)의 이동으로 툴 아래 부분의 소재가 소성유동하여 마찰교반용접 너겟존(nugget zone)를 형성함으로써 접합이 이루어지게 된다. 너겟존은 높은 열과 변형량으로 인해 회복과 재결정이 일어나는 부분으로서 너겟존를 동적 재결정부라고도 한다.
너겟존은, 열에 의해서 용융이 일어나는 일반적인 용접과는 달리, 마찰열과 교반으로 융점 이하의 고상에서 소재가 동적 재결정을 이루어 형성된다. 너겟존의 직경은 툴(10b)의 직경보다는 크고 숄더(10a)의 직경보다는 작다. 너겟존의 크기는 툴(10b)과 숄더(10a)를 포함하는 용접툴(10)의 회전 속도에 따라 달라지는데 회전속도가 빠르면 너겟존의 크기가 감소한다. 다만 회전 속도가 너무 빠르면 결정립의 형상이 불완전해지고 결정립이 불완전한 부분에서 결함이 발생할 수 있다. 피접합부재(1)들이 마찰교반용접되어 혼합된 너겟존의 주변에는 너겟존 주변을 감싸며 형성되는 열-기계적 영향존(thermo-mechanically affected zone; TMAZ) 및 그 열-기계적 영향존를 감싸며 형성되는 열영향존(heat affected zone; HAZ)이 형성된다.
열-기계적 영향존은 용접툴(10)의 숄더(10a)와의 접촉면에서 마찰에 의한 소성 변형에 의해 부분적인 재결정을 보이는 곳으로, 마찰에 의하여 열변형과 숄더에 의한 기계적 변형이 동시에 일어나는 영역이다. 열-기계적 영향존은 소재의 극심한 소성유동과 변형으로 연화된 결정조직이 경사지게 분포한다.
열영향존은 열-기계적 영향존보다는 열에 의한 영향을 받는 부분으로서 사선 형상의 결정립이 보이며 다수의 기공이 나타난다.
마찰교반용접에 의한 용접영역(w)은 상기한 너겟존, 열-기계적 영향존 및 열영향존를 포함하여 의미할 수 있다. 바람직하게는 용접영역(w)은 너겟존 및 열-기계적 영향존이 피접합부재(1)들의 계면 밑으로까지 형성되는 것이거나, 너겟존이 피접합부재(1)들의 계면 밑으로까지 형성되는 것일 수 있다. 따라서, 후술할 용접영역(w)을 관통하는 홀(4)은 용접영역의 범위내에 용접영역(w)을 관통하여 형성될 수 있다. 바람직하게는 홀(4)은 너겟존과 열-기계적 영향존의 범위내를 관통하여 형성될 수 있고, 더 바람직하게는 너겟존의 범위내를 관통하여 형성될 수 있다.
도 2(b)에 도시된 바와 같이, 접합부품(100)은 마찰교반용접에 의한 용접영역(w)을 관통하는 홀(4)이 구비될 수 있다.
홀(4)은 프로세스 유체가 지나는 위치별로 그 폭이 다르게 형성될 수 있다. 도면상 홀(4)의 상부인, 프로세스 유체 공급부에서 공급되는 프로세스 유체가 유입되는 유입부의 폭은 임의로 형성될 수 있다. 유입부의 하부에는 유입부의 폭보다 좁은 폭으로 협소부가 형성될 수 있다. 프로세스 유체는 유입부보다 좁은 폭의 협소부를 지나면서 유속이 빨라질 수 있다. 프로세스 유체는 협소부를 지나면서 기판의 표면상으로 빠르게 프로세스 유체를 공급되어 디스플레이 제조 공정의 효율을 높일 수 있게 된다.
도 3은 본 발명의 바람한 실시 예에 따른 디스플레이 제조 공정용 접합부품(100)을 도시한 도이다. 도 3(a)는 실시 예에 따른 디스플레이 제조 공정용 접합부품(100)의 사시도이고, 도 3(b)는 도 3(a)의 A-A'에 따라 절단한 단면을 도시한 도이다.
디스플레이 제조 공정 장비에 구비되어 디스플레이 제조 시 이용되는 디스플레이 제조 공정용 접합부품(100)은 사각 단면을 갖는 형상일 수 있다. 다만 이에 한정되는 것은 아니다.
접합부품(100)은 적어도 2개의 피접합부재(1)들이 상, 하로 적층될 수 있다. 피접합부재(1)들의 계면은 마찰교반용접에 의해 용접된다. 이로 인해 용접영역이 형성된다. 피접합부재(1)들의 용접영역(w)에는 용접영역(w)을 상, 하 관통하는 홀(4)이 형성된다.
피접합부재(1)들의 재질은 고속으로 회전하는 툴(10b)과 피접합부재(1)와의 상호마찰에 의해 마찰열이 발생하고 이러한 마찰열에 의해 툴(10b) 주변의 피접합부재(1)가 연화되며 툴(10b)의 교반에 의해 피접합부재(1)의 소성유동으로 접합면의 피접합부재(1)가 강제적으로 혼합가능한 재질이라면 어떤 재질로 구성되어도 무방하다. 접합부품(100)을 구성하는 피접합부재(1)들의 재질은 알루미늄, 알루미늄 합금, 티타늄, 티타늄 합금, 마그네슘, 마그네슘 합금, 탄소강 또는 스테인레스강 중 적어도 하나로 구성될 수 있다. 피접합부재(1)들의 재질은 알루미늄, 알라미늄 합금, 티타늄, 티타늄 합금, 마그네슘, 마그네슘 합금 등을 포함하는 비철금속과 탄소강 또는 스테인레스강 중 적어도 하나로 구성될 수 있고 재질의 경우 이에 한정되는 것이 아니다.
적어도 2개의 피접합부재(1)가 마찰교반용접될 경우에 적어도 2개의 피접합부재(1)는 이종의 금속재질로 구성될 수 있다. 예컨대, 제1피접합부재(1a)가 위와 같은 재질의 구성 중 하나인 알루미늄으로 구성될 경우, 제2피접합부재(1b)는 스테인레스강으로 구성될 수 있다. 한편, 피접합부재(1)들은 동종의 금속재질로 구성될 수도 있다. 예컨대, 제1피접합부재(1a)가 알루미늄 재질로 구성될 경우, 제2피접합부재(1b)도 알루미늄 재질로 구성될 수 있고, 제1피접합부재(1a)가 스테인레스강일 경우, 제2피접합부재(1b)도 스테인레스강으로 구성될 수 있다. 마찰교반용접의 경우 고상으로 접합이 이루어지므로 용융점이 상이한 부재들을 안정적으로 접합할 수 있다. 다시 말해 이종의 금속 재질들을 안정적으로 접합할 수 있다. 특히 용접영역에 포함되는 너겟존은 동적 재결정이 일어난 영역으로서 외부의 진동이나 충격에 강한 구조를 갖는다. 또한, 용접영역에 포함되는 열-기계적 영향존은 두 부재가 함께 회전하면서 접합된 영역으로서 피접합부재(1)들이 혼합되어 있어서 외부의 충격과 지동에 강한 구조적인 특징을 나타낼 수 있다. 마찰교반용접은, 금속 충전재를 용융상태에서 접합하는 용접 또는 접합 방식과 같은 타 용접에 비하여, 열원, 용접봉, 용가재(filler metal) 등이 불필요하므로 용접 과정에서 유해광선이나 유해물질이 배출되지 않는다. 또한, 동적 재결합이 일어나므로 용융 접합에서 생길 수 있는 응고 균열을 방지할 수 있고, 변형이 거의 없어서 기계적인 성질이 우수하다. 본 발명은 이렇게 높은 강도 및 용접성을 갖는 용접영역에 홀이 가공된 디스플레이 제조 공정용 접합부품(100)에 관한 것이다.
피접합부재(1)들의 계면 중 적어도 어느 한 계면에는 온도 조절 수단(미도시)이 구비될 수 있다. 피접합부재(1)들이 마찰교반용접되고 마찰교반용접한 용접영역(w)에 홀(4)이 구비되어 접합부품(100)으로 구성되었을 때, 온도 조절 수단은 피접합부재(1)들의 계면 중 적어도 어느 한 계면에 구비되는 형태로 하여 접합부품(100)의 내부에 구비된 형태일 수 있다. 이로 인해 접합부품(100)은 내부의 온도 조절 수단을 통해 제품 자체의 온도를 조절하는 기능을 수행할 수 있게 된다. 접합부품(100)은 온도 조절 수단을 구비함으로써 온도의 균일성이 확보되어 제품의 변형 및 제품 변형으로 인한 기능 상실의 문제를 최소할 수 있는 효과를 얻을 수 있다.
온도 조절 수단은 냉각 유체 또는 히터일 수 있다. 온도 조절 수단이 냉각 유체일 경우, 접합부품(100)은 쿨링블럭으로서의 기능을 수행할 수 있다. 한편, 온도 조절 수단이 히터일 경우 접합부품(100)은 히팅블럭으로서의 기능을 수행할 수 있게 된다.
온도 조절 수단의 경우 피접합부재(1)들의 계면 중 적어도 어느 한 계면에 형성되는 그루브(2a)에 구비되어 내장되는 형태일 수 있다.
도 2 및 도 3에 도시된 바와 같이, 피접합부재(1)들의 계면 중 적어도 어느 한 계면에는 그루브(2a)가 형성될 수 있다. 본 발명에서는 일 예로서 제1피접합부재(1a)의 계면에 그루브(2a)가 복수개 형성된 것으로 도시하였다. 이 경우, 제1피접합부재(1a)의 계면에 형성되는 그루브(2a)는 제1그루브(2a)일 수 있다.
도면에서는 용접영역(w)과 용접영역(w) 사이에 그루브(2)가 하나인 것으로 도시되어 있지만 2개이상으로 형성될 수 있으며, 본 발명의 실시 예에서 그루브(2)의 개수를 한정하는 것은 아니다.
그루브(2a)는 피접합부재(1)들의 계면 중 적어도 어느 한 계면에 형성됨으로써 피접합부재(1)들이 마찰교반용접에 의해 용접되어 디스플레이 제조 공정용 접합부품(100)으로 형성되었을 때, 내부에서 유체가 이동하거나 별도의 부재가 구비되는 공간을 제공한다.
그루브(2a)에는 전술한 온도 조절 수단이 구비될 수 있다.
온도를 조절하는 수단인 온도 조절용 매체는 그루브(2a)를 통해 접합부품(100) 내부를 이동하여 접합부품(100)의 온도를 균일하게 할 수 있다. 온도 조절용 매체가 냉각 유체일 경우, 접합부품(100)은 쿨링 기능을 보유하게 된다. 또한, 접합부품(100)은 그루브(2a)에 냉각선 또는 히터선을 구비하여 쿨링 및/또는 히팅 기능을 보유하게 된다.
그루브(2a)는 피접합부재(1)들의 계면 중 적어도 어느 한 계면에 형성된다. 이로 인해, 피접합부재(1)들이 마찰교반용접에 의해 용접되어 접합부품(100)으로 형성될 경우, 접합부품(100) 내부에는 복수개의 중공 채널이 형성된 형태일 수 있다. 그루브(2a)로 인해 형성된 접합부품(100)의 내부 복수개의 중공 채널에는 온도 조절 수단이 구비될 수 있다.
제1피접합부재(1a)의 계면에 복수개의 그루브(2a)가 형성되면서, 제1피접합부재(1a)의 계면은 그루브(2a)가 형성된 그루브 영역과 그루브(2a)가 형성되지 않은 그루브 비영역(2a')이 존재할 수 있다. 제1피접합부재(1a)의 계면에 형성되는 복수의 그루브(2a)는 제1그루브(2a)일 수 있고, 그루브(2a)형성되지 않은 그루브 비영역(2a')은 제1그루브 비영역(2a)일 수 있다. 그루브 비영역(2a')은 마찰교반용접이 수행되는 영역일 수 있다. 예컨대, 제1, 2피접합부재(1a, 1b)는 상, 하 적층되어 마찰교반용접에 의해 용접된다. 이 경우, 제1피접합부재(1a)의 그루브 비영역(2a')을 기준으로 이와 대응되는 제2피접합부재(1b)의 표면에 툴(10b)을 대고 고속회전시킴으로써 제1피접합부재(1a)와 제2피접합부재(1b)의 계면이 마찰교반용접될 수 있다. 이처럼 마찰교반용접된 제1피접합부재(1a)와 제2피접합부재(1b)의 계면은, 그루브 비영역(2a')일 수 있다.
도 3(b)에 도시된 바와 같이, 제1, 2피접합부재(1a, 1b)의 계면의 그루브 비영역(2a')은 마찰교반용접에 의해 소성유동하여 용접영역(w)이 형성되고, 용접영역(w)에는 용접영역(w)을 관통하는 홀(4)이 구비될 수 있게 된다. 마찰교반용접에 의해 제1, 2피접합부재(1a, 1b)의 계면이 용접되어 접합부품(100)이 형성되고, 용접영역(w)에 형성되는 홀(4)은 접합부품(100)을 상, 하 수직하게 관통하여 형성된다. 그루브(2a)가 형성된 그루브 영역은 마찰교반용접에 의한 용접영역(w)에 의해 둘러쌓이고 용접영역(w)에 상, 하로 관통하는 홀(4)이 형성되는 구성에 의하여, 그루브(2a)와 홀(4) 사이에는 마찰교반용접에 의한 용접영역(w)이 구비되고, 이를 통해 그루브(2a)와 홀(4)간의 상호 물리적·화학적 작용이 차단된다.
도 1에 도시된 바와 같은 용접 또는 접합 방식을 이용하여 피접합부재(1)들을 접합할 경우, 도 1(b)에 도시된 바와 같이 제1, 2피접합부재(1a, 1b)의 접합부위에 용접부 또는 접합부(3)가 형성되게 된다. 그리고 이러한 용접부 또는 접합부(3)는 홀(4)로 주입되는 프로세스 유체에 노출되게 된다.
하지만, 본 발명의 마찰교반용접에 의해 용접된 접합부품(100)은 피접합부재(1)들의 마찰교반용접에 의한 용접영역(w)에 계면이 존재하지 않게 된다.
본 발명에서 홀(4)이 가공되는 영역은, 마찰교반용접에 의한 용접영역(w)으로서, 툴(10b)을 이용하여 피접합부재(1) 간의 상호 마찰에 의해 마찰열이 발생하고, 마찰열로 인해 툴 주변의 피접합부재(1)가 연화되며 툴(10b)의 교반에 의해 피접합부재(1)의 소성유동으로 접합면의 피접합부재(1)가 강제적으로 혼합되어 형성되는 영역이다. 따라서, 용접영역(w)에서의 피접합부재(1)간의 계면은 강제적으로 혼합됨으로써 제거된다. 본 발명의 접합부품(100)은 위와 같은 용접영역(w)에 홀(4)을 형성하므로 홀(4) 내벽에 계면이 존재하지 않는 구성이다. 다시 말해, 마찰교반용접에 의한 용접영역(w)에 홀(4)을 형성하므로, 하나의 부재에 홀(4)을 형성하는 것과 같이, 홀(4)내벽에 계면이 존재하지 않게 된다. 도 1과 같은 용접 방식의 경우 홀(4) 내벽에 계면이 존재하고, 홀(4)주변에도 홀(4)과 이어지는 계면이 존재하여 중공 채널과 홀(4) 사이에 경계영역이 존재한다. 그 결과 도 1과 같은 기술은, 홀(4) 내벽의 계면에서 발생하는 부식 또는 누설 문제가 중공 채널로도 영향을 미치게 된다. 하지만 본 발명의 접합부품(100)은 용접영역(w)에 홀(4)이 형성되어도 홀(4) 주변에 계면이 존재하지 않는 무경계영역이 형성되게 된다. 다시 말해 중공 채널과 홀(4) 사이에는 계면이 제거된 무경계영역이 형성되게 되는 것이다. 이로 인해 중공 채널과 홀(4)간의 누설 또는 부식으로 인한 파티클이 새는 영향 등의 부정적인 상호 작용은 발생하지 않게 된다.
본 발명의 접합부품(100)은 용접영역(w)에 홀(4)을 형성함으로써 접합계면에서의 부식 심화 문제 및 파티클 발생의 위험도가 감소하게 되고 누설과 같은 문제로 인한 불량 발생률이 적어지는 효과를 얻을 수 있게 된다.
또한, 피접합부재(1)들을 상, 하로 관통하는 홀(4)은 마찰교반용접에 의한 용접영역(w)에 형성되므로 마찰교반용접에 의한 용접영역(w)이 홀(4)을 감싸게 된다. 피접합부재(1)들의 계면에 형성되는 비접합 부위는 홀(4)측으로 향하면서 마찰교반용접에 의해 일체화되어 서로 접합된 형태이므로 비접합부위에서 생성되는 파티클이 홀(4)측으로 유입되는 것이 홀(4) 주변의 용접영역(w)에 의해 차단될 수 있다. 이로 인해 피접합부재(1)들의 비접합부위에서 발생한 파티클이 홀(4) 내부로 유입되는 것이 차단되어, 파티클로 인한 불량 발생이 없어지게 된다.
제1피접합부재(1a)에는 제1그루브(2a)가 형성된 제1그루브 영역과 제1그루브(2a)가 형성되지 않은 제1그루브 비영역(2a')이 구비된다. 제1그루브 영역에는 온도 조절 수단이 구비될 수 있다. 이로 인해 제1피접합부재(1a)와 제2피접합부재(1b)가 마찰교반용접에 의해 용접되어 접합부품(100)이 형성될 경우 접합부품(100) 내부에 온도 조절 수단이 구비된 형태가 되어 접합부품(100)의 온도를 균일화할 수 있게 할 수 있다.
제1피접합부재(1a)의 일면에는 제2피접합부재(1b)가 위치할 수 있다. 피접합부재(1)들은 상, 하 적층되므로 제1피접합부재(1a)의 일면에 위치한 제2피접합부재(1b)는 제1피접합부재(1a)의 상부면에 위치한 형태일 수 있다. 다시 말해, 제1피접합부재(1a)의 일면은 상부면일 수 있다.
제1피접합부재(1a)의 일면인 상부면에 제2피접합부재(1b)가 위치하면 상호 대향되는 제1피접합부재(1a)의 제1그루브 영역 및 제2피접합부재(1b)의 일 영역은 상호 용접되지 않고, 상호 대향되는 제1그루브 비영역(2a') 및 제2피접합부재(1b)의 타 영역은 마찰교반용접으로 용접하여 용접영역(w)을 형성할 수 있다. 용접영역(w)에는 제1피접합부재(1a) 및 제2피접합부재(1b)를 상, 하 관통하도록 홀(4)이 형성될 수 있다.
제1피접합부재(1a)의 제1그루브 영역 및 제2피접합부재(1b)의 일 영역은 제1그루브 영역에 온도 조절 수단이 구비됨으로 상호 용접되지 않고, 온도 조절 수단은 접합부품(100)의 내부에서 접합부품(100)의 온도를 조절하여 쿨링 또는 히팅기능을 수행할 수 있다.
제2피접합부재(1b)는 제1피접합부재(1a)의 상부에서 제1피접합부재(1a)의 적어도 일부와 마찰교반용접에 의해 용접된 형태일 수 있다. 제2피접합부재(1b)가 제1피접합부재(1a)의 적어도 일부와 마찰교반용접에 의해 용접되어 형성되는 용접영역(w)은 전술한 제1피접합부재(1a)의 제1그루브 비영역(2a')일 수 있다. 제1피접합부재(1a)의 제1그루브 비영역(2a')은 제1그루브 비영역(2a')과 대향되는 제2피접합부재(1b)의 일 영역이 상호 용접되어 용접영역(w)을 형성하고 용접영역(w)에 제1, 2피접합부재(1a, 1b)를 상, 하 관통하는 홀(4)이 형성될 수 있다. 홀(4)은 마찰교반용접에 의해 형성되는 용접영역(w)보다 작은 폭으로 형성될 수 있다.
용접영역(w)보다 작은 폭으로 용접영역(w)의 범위내에 형성되는 홀(4)은 주변이 적어도 일부의 용접영역(w)으로 둘러싸인 형태일 수 있다. 이로 인해 피접합부재(1)들의 계면의 비접합부위에서 생성되는 파티클이 홀(4) 측으로 유입되는 것이 차단되는 효과를 얻을 수 있다.
제1, 2피접합부재(1a, 1b)가 상호 용접되지 않은 계면 중 적어도 일부에는 중공 채널이 형성될 수 있다. 중공 채널은 전술한 제1피접합부재(1a)의 제1그루브(2a)가 형성된 제1그루브 영역에 의해 형성될 수 있다. 제1그루브 영역 및 제1그루브 비영역(2a')이 형성된 제1피접합부재(1a)의 일면에 제2피접합부재(1b)가 위치하고, 제2피접합부재(1b)가 마찰교반용접에 의해 용접되어 형성된 용접영역(w)에 홀(4)이 형성되어 접합부품(100)이 형성될 수 있다.
이 경우, 접합부품(100)은 제1, 2피접합부재(1a, 1b)가 상호 용접되지 않은 계면의 적어도 일부에 제1그루브 영역이 위치할 수 있다. 제1, 2피접합부재(1a, 1b)가 마찰교반용접에 의해 용접되어 형성된 용접영역에 홀(4)이 형성되면서 접합부품(100)으로 형성될 경우, 제1그루브 영역은 접합부품(100) 내부에서 중공 채널을 형성할 수 있다. 따라서, 접합부품(100)은 제1, 2피접합부재(1a, 1b)가 상호 용접되지 않은 계면의 적어도 일부에 제1그루브 영역이 위치하므로 제1, 2피접합부재(1a, 1b)가 상호 용접되지 않은 계면의 적어도 일부에 중공 채널이 형성되는 형태일 수 있다.
도 3에 도시된 바와 같이, 접합부품(100)은 제1피접합부재(1a)에 제1그루브 영역 및 제1그루브 비영역이 형성된다. 이로 인해 피접합부재(1)들이 마찰교반용접에 의해 용접되었을 때 피접합부재(1)들의 계면을 따라 중공 채널이 형성될 수 있다.
또한, 접합부품(100)은 용접영역(w)에 피접합부재(1)들을 상, 하 관통하는 홀(4)이 형성된다. 이로 인해 접합부품(100)은 중공 채널과 피접합부재(1)들을 상, 하 관통하는 홀(4) 사이에 마찰교반용접에 의한 용접영역(w)이 형성된 형태가 형성될 수 있다.
도 4는 본 발명의 실시 예에 따른 디스플레이 제조 공정용 접합부품(100)의 제조 순서를 개략적으로 도시한 도이다.
먼저, 도 4(a)에 도시된 바와 같이, 제1피접합부재(1a)는 제1그루브(2a)가 형성된 제1그루브 영역 및 제1그루브(2a)가 형성되지 않은 제1그루브 비영역(2a')을 구비할 수 있다. 이 경우, 본 발명의 실시 예의 제조 순서의 설명에서는 제1그루브(2a)가 형성된 제1피접합부재(1a)를 먼저 구비하는 것으로 도시하였지만, 첫번째로 구비되는 피접합부재(1)는 제1, 2피접합부재(1a, 1b) 중 어느 피접합부재가 먼저 구비되어도 무방하다. 그런 다음 도 4(b)에 도시된 바와 같이, 제1피접합부재(1a)의 일면에 제2피접합부재(1b)를 구비할 수 있다. 제1피접합부재(1a)의 일면인 상부에 제2피접합부재(1b)가 구비된 후 마찰교반용접에 의해 피접합부재(1)들이 용접될 수 있다. 이 경우, 마찰교반용접되는 부위는 제1피접합부재(1a)의 제1그루브 비영역(2a') 및 제1그루브 비영역(2a')과 대향되는 제2피접합부재의 일 영역일 수 있다. 이로 인해 용접영역(w)이 형성될 수 있다. 그런 다음 도 4(c)에 도시된 바와 같이, 용접영역(w)을 상, 하 관통하는 홀(4)이 형성될 수 있다. 이 경우, 홀(4)은 용접영역(w)의 적어도 일부에 피접합부재(1)들을 상, 하 관통하는 형상으로 형성될 수 있다.
도 5은 실시 예의 접합부품(100)과 같이 중공 채널이 1층 구조인 경우에 중공 채널에 온도 조절 수단으로 냉각 또는 히팅 유체와 같은 온도 조절용 매체가 구비될 경우 냉각 또는 히팅 유체의 흐름의 방향을 나타낸 도이다. 냉각 또는 히팅 유체의 흐름을 설명하기에 앞서, 냉각 또는 히팅 유체와 같은 온도 조절용 매체가 온도 조절 수단으로 구비될 경우, 제2피접합부재(1b)에 구비되어야 하는 구성의 형상에 대해 설명한다.
전술한 바와 같이, 제1피접합부재(1a)에는 제1그루브 영역 및 제1그루브 비영역(2a')이 구비될 수 있다. 제1, 2피접합부재(1a, 1b)가 마찰교반용접에 의해 용접되고, 용접영역에 홀(4)이 구비되어 접합부품(100)으로 형성되었을 경우, 접합부품(100)의 내부에 제1그루브 영역에 의한 중공 채널이 형성되고, 중공 채널에는 온도 조절 수단이 구비될 수 있게 된다.
온도 조절 수단으로 냉각 또는 히팅 유체와 같은 온도 조절용 매체가 구비될 경우, 중공 채널을 통해 온도 조절용 매체가 접합부품(100) 내부에서 이동할 수 있게 된다. 이 경우, 중공 채널로 온도 조절용 매체를 주입하기 위해서 제2피접합부재(1b)에는 메인홀(6)이 형성될 수 있다. 메인홀(6)은 제2피접합부재(1b)를 상, 하 관통하되, 후술할 연통그루브(5)를 상, 하 관통하게 형성될 수 있다. 제2피접합부재(1b)에는 제1그루브 영역과 교차되도록 연통그루브(5)가 접합계면을 따라 형성될 수 있다. 연통그루브(5)는 제1그루브 영역과 교차되도록 형성되되, 제1그루브 영역의 일단과 타단에 대응되는 위치에 각각 형성될 수 있다. 도 5을 참조하여 설명하면, 도 5 도면 상의 좌측에 도시된 부재는 제2피접합부재(1b)이다. 제2피접합부재(1b)에는 연통그루브(5)와 메인홀(6)이 형성될 수 있다. 연통그루브(5)는 제1그루브 영역과 교차되도록 제2피접합부재(1b)의 하면에 형성되되, 제1그루브 영역의 일단과 타단에 대응되는 위치에 각각 형성되어 제2피접합부재(1b)의 도면상 상측과 하측에 형성될 수 있다. 제1그루브 영역의 일단과 대응되는 제2피접합부재(1b)의 계면의 상측에 형성된 연통그루브(5)는 제1그루브 영역의 최상부와 교차되고, 타단과 대응되는 제2피접합부재(1b)의 계면의 하측에 형성된 연통그루브(5)는 제1그루브 영역의 최하부와 교차된다. 이처럼 제2피접합부재(1b)의 계면에 형성된 상측 및 하측의 연통그루브(5) 사이에 제1그루브영역이 연통그루브(5)들과 연통되면서 존재하는 형태일 수 있다. 메인홀(6)은 제2피접합부재(1b)를 상,하 관통하되, 연통그루브(5)를 상, 하 관통하게 형성된다. 따라서 메인홀(6)은 제2피접합부재(1b)의 상측 및 하측에서 각각 제2피접합부재(1b)를 상, 하 관통하게 형성될 수 있다.
이하에서는, 도 5를 참조하여 실시 예의 접합부품(100)과 같이 중공 채널이 1층 구조인 경우에 냉각 또는 히팅 유체의 흐름을 설명한다.
도 5의 좌측에 도시된 도는 제2피접합부재(1b)를 위에서 바라보고 도시한 도이다. 도 5의 우측에 도시된 도는 제1피접합부재(1a)상에 냉각 또는 히팅 유체의 흐름의 방향을 화살표로 표시한 것이다.
도 5에 도시된 바와 같이, 제2피접합부재(1b)의 계면의 상측 및 하측에 연통그루브(5)가 형성되고, 연통그루브(5) 형성 위치에 제2피접합부재(1b)를 상, 하 관통하는 메인홀(6)이 형성될 수 있다. 연통그루브(5)는 제1피접합부재(1a)의 제1그루브 영역을 교차하면서 제1그루브 영역과 연통될 수 있다. 이로 인해 메인홀(6)로 주입된 냉각 또는 히팅 유체가 연통그루브(5)로 인해 제1그루브 영역에 전체로 균일하게 퍼지면서 접합부품 내의 온도가 조절될 수 있게 된다. 연통그루브(5)는, 제2피접합부재(1b)의 계면의 상측에 형성된 제1연통그루브(5a)와, 하측에 형성된 제2연통그루브(5b)로 구성된다. 또한, 메인홀(6)은 제1연통그루브(5a)를 관통하는 제1메인홀(6a)과, 제2연통그루브(5b)를 관통하는 제2메인홀(6b)로 구성된다. 이 경우, 제1메인홀(6a)로 온도 조절용 매체가 주입되면 제1연통그루브(5a)를 통해 복수의 제1그루브 영역 전체에 온도 조절용 매체가 퍼지면서 제1그루브 영역을 통해 접합부품(100)의 내부 온도가 조절될 수 있다. 제1메인홀(6a)을 통해 주입된 온도 조절용 매체는 도 5 우측에 도시된 흐름과 같이 하방향으로 흘러 제2메인홀(6b)을 통해 빠져나올 수 있게 된다. 온도 조절용 매체가 주입되는 메인홀(6)은 제1메인홀(6a)이거나 제2메인홀(6b)이어도 무방하며, 온도 조절용 매체가 주입되는 위치에 따라 유체의 흐름은 하방향이거나, 상방향으로 바뀔 수 있다. 이 경우, 온도 조절용 매체가 일방향으로 흐름으로 인해 접합부품(100) 내부에서 온도가 조절되는 효과를 얻을 수 있다.
또는 제1메인홀(6a)과 제2메인홀(6b)로의 온도 조절용 매체의 주입 및 배출을 교번적으로 수행할 수 있다. 예컨대 제1메인홀(6a)로 주입하고 제2메인홀(6b)로 배출하는 과정을 수행하고 그 다음으로 제2메인홀(6b)로 주입하고 제1메인홀(6a)로 배출하는 과정을 반복 수행할 수 있다. 한편 냉각 또는 히팅 유체와 같은 온도 조절용 매체가 교번적인 흐름을 동시에 가질 수 있도록 메인홀(6) 및 연통그루브(5)가 적합하게 변형될 수 있다. 온도 조절용 매체가 수평적으로 서로 교번적으로 중공 채널을 이동하여 접합부품(100)의 온도를 조절할 수 있다.
도 6은 실시 예에 따른 접합부품(100)의 변형 예의 제조 순서를 개략적으로 도시한 도이다. 변형 예의 접합부품(100)은 실시 예와 피접합부재(1)들의 개수가 다르고 이로 인해 접합부품(100) 내부에 형성되는 중공 채널이 2층 구조라는 점에서 차이가 있다. 변형 예에서는 실시 예와 동일하게 제1피접합부재(1a)의 일면인 상부에 제2피접합부재(1b)가 적층되고, 제1, 2그루브영역과 같은 그루브영역이 형성되지 않고 연통그루브가 형성된 제3피접합부재(1c)는 제1피접합부재(1a)의 하부에 위치하는 것으로 설명한다. 이 경우, 피접합부재(1)들의 형태 및 피접합부재(1)들이 적층되는 형태는 예시적으로 도시된 것이므로 이에 한정된 것이 아니며, 중공 채널이 형성되고 피접합부재(1)들의 중공 채널을 통해 냉각 또는 히팅 유체 등이 이동하여 온도를 조절할 수 있는 적합한 형태로 이루어질 수 있다.
변형 예의 접합부품(100)은 제1그루브(2a)가 형성된 제1그루브 영역과 제1그루브(2a)가 형성되지 않은 제1그루브 비영역(2a')이 구비된 제1피접합부재(1a), 제1피접합부재(1a)의 일면에 위치하며 제2그루브(2b)가 형성된 제2그루브 영역과 제2그루브가 형성되지 않은 제2그루브 비영역(2b')이 구비된 제2피접합부재(1b) 및 제2피접합부재(1b)의 일면에 위치하는 제3피접합부재(1c)를 구비하여 제1그루브 비영역(2a'), 제2그루브 비영역(2b') 및 제3피접합부재(1c)의 일 영역을 마찰교반용접으로 용접하여 용접영역(w)을 형성하고, 용접영역(w)을 상, 하 관통하도록 홀(4) 구비함으로써 형성될 수 있다.
먼저, 변형 예의 접합부품(100)은 도 6(a)에 도시된 바와 같이, 제1, 2, 3피접합부재(1a, 1b, 1c)가 구비될 수 있다. 이 경우, 제1, 2, 3피접합부재(1a, 1b, 1c)는 도면상 상방향에서 하방향으로 제2피접합부재(1b), 제1피접합부재(1a), 제3피접합부재(1c)의 순서로 적층될 수 있다. 그런 다음 도 6(b)에 도시된 바와 같이, 제1피접합부재(1a)의 제1그루브 비영역(2a'), 제2피접합부재(1b)의 제2그루브 비영역(2b') 및 제3피접합부재(1c)의 일 영역을 마찰교반용접으로 용접하여 용접영역(w)을 형성할 수 있다. 이 경우, 도 6(b)에서는, 제1, 2, 3피접합부재(1a, 1b, 1c)를 한번에 마찰교반용접으로 용접하여 용접영역(w)을 형성하는 것으로 도시하였지만, 3개의 피접합부재(1a, 1b, 1c)들이 상, 하 적층되어 마찰교반용접에 의해 용접될 경우, 2개의 피접합부재(1a, 1b)를 먼저 마찰교반용접으로 용접하고, 나머지 1개의 피접합부재(1c)를 먼저 마찰교반용접에 의해 용접된 피접합부재(1a, 1b)들에 대해 용접할 수 있다. 예컨대, 제3피접합부재(1c) 및 제1피접합부재(1a)가 먼저 마찰교반용접에 의해 용접되고, 나머지 제2피접합부재(1b)가 제3피접합부재(1c) 및 제1피접합부재(1a)의 상부에 적층되어 마찰교반용접에 의해 용접될 수 있다.
그런 다음 도 6(c)에 도시된 바와 같이, 용접영역(w)을 상, 하 관통하도록 홀(4)을 형성하여 제1, 2, 3피접합부재(1a, 1b, 1c)들이 상, 하 적층되어 마찰교반용접에 의해 용접된 접합부품(100)이 제조될 수 있다. 제3피접합부재(1c)에는 연통그루브가 형성될 수 있다. 제3피접합부재(1c)에 형성되는 연통그루브의 위치 및 개수에 따라 접합부품(100) 내부에서 온도를 조절하는 냉각 또는 히팅 유체와 같은 온도 조절용 매체은 일방향 흐름 또는 교번 흐름일 수 있다.
도 6에 도시된 바와 같은 변형 예의 접합부품(100)은 제1피접합부재(1a)에 제1그루브 영역이 형성되고, 제2피접합부재(1b)에 제2그루브 영역이 형성됨으로써 2층 구조의 중공 채널을 가질 수 있다. 이와 같이 2층 구조의 중공 채널을 갖는 변형 예와 같은 접합부품(100)은 접합부품(100) 내부의 중공 채널이 형성되는 형태에 따라 중공 채널을 이동하는 냉각 또는 히팅 유체의 흐름의 방향이 다를 수 있다.
도 7은 변형 예의 접합부품(100)과 같이 중공 채널이 다층 구조인 경우의 냉각 또는 히팅 유체의 흐름의 방향을 도시한 도이다. 이 경우, 제1층 중공 채널은 제1피접합부재(1a)의 제1그루브(2a)가 형성된 제1그루브 영역을 포함하고, 제2피접합부재(1b)의 제2그루브(2b)가 형성된 제2그루브 영역을 포함한다.
도 7(a)의 도면상 좌측에 도시된 도면은 2층 구조의 중공 채널을 단면적으로 도시한 도이고, 도 7(a)의 도면상 우측에 도시된 도면은 도 7(a)의 도면상 좌측의 도면과 같이 2층 구조의 중공 채널이 형성될 경우, 냉각 또는 히팅 유체의 흐름의 방향을 평면적으로 도시한 도이다.
도 7(a)의 도면상 좌측 도면에 도시된 바와 같이, 2층 구조의 중공 채널이 접합부품(100)의 내부에서 제1층 중공 채널 및 제2층 중공 채널로 각각 형성될 경우, 냉각 또는 히팅 유체는 중공 채널을 통해 제1층 중공 채널 및 제2층 중공 채널 각각에서 일방향으로 동일한 방향으로 이동할 수 있다. 도 7(a)의 도면상 우측 도면에 도시된 도면에서 점선으로 표시된 화살표는 제1층 중공 채널에서의 냉각 또는 히팅 유체의 흐름의 방향을 의미하고, 실선으로 표시된 화살표는 제2층 중공 채널에서의 냉각 또는 히팅 유체의 흐름의 방향을 의미할 수 있다. 따라서, 도 7(a)의 도면상 좌측 도면에 도시된 바와 같이, 제1층 중공 채널 및 제2층 중공 채널이 접합부품(100)의 내부에서 각 층에 각각 형성될 경우, 냉각 또는 히팅 유체는 동일한 방향으로 각 층에서 이동하여 접합부품(100)의 온도가 균일해질 수 있도록 할 수 있다. 이 경우, 냉각 또는 히팅 유체가 흐르는 일방향은 도 7(a)에 도시된 방향과 반대되는 방향으로 흘러도 무방하다.
도 7(a)의 도면상 좌측 도면을 기준으로 제1층 중공 채널 및 제2층 중공 채널을 하나로 짝지을 경우, 제1층 중공 채널 및 제2층 중공 채널의 주변으로 인접한 제1-1층 중공 채널 및 제2-1층 중공 채널이 존재할 수 있다. 이 경우, 제1층 중공 채널 및 제2층 중공 채널의 주변에 인접하는 제1-1층 중공 채널 및 제2-1층 중공 채널은 제1층 중공 채널 및 제2층 중공 채널에서의 냉각 또는 히팅 유체의 흐름의 방향과 반대되는 방향으로 흘러 유체 흐름이 평면적으로 교번적인 흐름이 될 수 있다. 접합부품(100)은 이와 같은 교번적인 흐름으로 온도를 조절하여 온도가 균일하게 형성될 수 있게 할 수 있다.
도 7(b)의 도면상 좌측 도면에 도시된 바와 같이, 2층 구조의 중공 채널이 구비된 접합부품(100)의 내부에서 제1층 중공 채널 및 제2층 중공 채널이 각각 형성되었을 경우, 도 7(b)의 도면상 우측 도면에 도시된 바와 같이, 제1층 중공 채널에서의 냉각 또는 히팅 유체의 흐름과 제2층 중공 채널에서의 냉각 또는 히팅 유체의 흐름이 반대되는 방향일 수 있다. 예컨대, 도 7(b)의 도면상 우측 도면에 도시된 바와 같이, 점선 화살표는 제1층 중공 채널에서의 냉각 또는 히팅 유체의 흐름의 방향을 의미하고, 실선 화살표는 제2층 중공 채널에서의 냉각 또는 히팅 유체의 흐름의 방향을 의미한다. 이 경우, 제1층 중공 채널에서의 냉각 또는 히팅 유체의 흐름의 방향이 좌측에서 우측으로 흐른다면 제2층 중공 채널에서의 냉각 또는 히팅 유체의 흐름의 방향은 우측에서 좌측으로 흐를 수 있다. 이로 인해 제1층 중공 채널 및 제2층 중공 채널 각각에서 온도를 조절할 수 있는 냉각 또는 히팅 유체가 반대되는 방향으로 흐르면서 제2층 중공 채널 구조를 갖는 접합부품(100)의 온도를 더욱 균일하게 조절할 수 있게 된다.
도 7(c)는 도면상 좌측 도면에 도시된 바와 같이, 2층 구조의 중공 채널이 구비된 접합부품(100)의 내부에서 제1층 중공 채널 및 제2층 중공 채널이 서로 연통되어 형성되었을 경우, 냉각 또는 히팅 유체의 흐름의 방향을 도시한 도이다. 도 7(c)에 도시된 바와 같이, 제1층 중공 채널 및 제2층 중공 채널이 연통되는 부위에서 냉각 또는 히팅 유체가 유턴하여 하나의 중공 채널의 냉각 또는 히팅 유체의 방향과 반대되는 방향으로 흐를 수 있다. 다시 말해, 복층의 중공 채널이 연통되게 접합부품(100)의 내부에서 형성될 경우, 적어도 하나의 중공 채널의 냉각 또는 히팅 유체의 흐름이 연통부위에서 유턴하여 나머지 하나의 중공 채널에서 반대되는 방향으로 흐름이 바뀌어 흐를 수 있다. 접합부품(100)은 위와 같은 2층 구조의 중공 채널이 구비됨으로써 온도의 균일성을 확보할 수 있게 된다.
도 8은 본 발명의 디스플레이 제조 공정용 접합부품(100)을 구비한 디스플레이 제조 공정 장비(100)를 개략적으로 도시한 도이다.
디스플레이 제조 공정 장비(1000)에 구비되는 접합부품(100)은 마찰교반용접에 의해 적어도 2개의 피접합부재(1)들이 용접되며, 마찰교반용접에 의한 용접영역(w)을 관통하는 홀(4)이 구비될 수 있다. 디스플레이 제조 공정 장비(1000)는 접합부품(100)의 홀(4)을 통해 공급된 유체를 이용하여 디스플레이를 이루는 일부 구성을 제조할 수 있다. 디스플레이 제조 공정 장비(1000)는 이하에서 설명하는 에칭 장비, 세정 장비, 열처리 장비 스퍼터링 장비, CVD장비 등을 포함한다.
접합부품(100)은 피접합부재(1)들의 계면에서 계면을 따라 형성되며 내부에 온도조절수단이 구비된 중공 채널 및 피접합부재(1)들을 상, 하로 관통하는 홀(4)을 포함한다. 마찰교반용접에 의한 용접영역(w)은 중공 채널과 홀(4) 사이에 형성된다. 접합부품(100)에 구비되는 온도 조절 수단은 냉각 유체일 수 있다. 냉각 유체가 온도 조절 수단으로 구비될 경우, 접합부품(100)은 쿨링 기능을 수행함으로써 접합부품(100)의 온도를 조절할 수 있게 된다. 접합부품(100)에 구비되는 온도 조절 수단은 히터일 수 있다. 히터가 온도 조절 수단으로 구비될 경우, 접합부품(100)은 히팅 기능을 수행함으로써 접합부품(100)의 온도를 조절할 수 있다. 이와 같은 접합부품(100)은 온도 조절 수단으로 냉각 유체 또는 히터를 구비함으로써 접합부품(100)의 온도를 조절할 수 있고, 이로 인해 접합부품(100)의 변형을 최소할 수 있게 된다.
위와 같은 디스플레이 제조 공정용 접합부품(100)이 구비되는 디스플레이 제조 공정 장비는 에칭 장비일 수 있다. 접합부품(100)이 구비되는 디스플레이 제조 공정용 장비가 에칭 장비일 경우, 접합부품(100)은 피처리물에 에칭공정을 위한 프로세스 유체를 공급하는 접합부품(100)일 수 있다. 이 경우, 프로세스 유체는 마찰교반용접에 의한 용접영역(w)에 형성된 홀(4)을 통과한다. 접합부품(100)이 구비되는 에칭 장비는 접합부품(100)의 홀(4)을 통과하는 프로세스 유체로 기판(200) 상의 일 부분을 패터닝 할 수 있다. 에칭 장비는 습식식각(wet etch)장비, 건식식각(dry etch)장비, 플라즈마 에칭 장비 또는 반응성 이온 식각(Reactive Ion Etching; RIE)장비일 수 있다.
위와 같은 에칭 장비에 접합부품(100)이 구비될 경우, 접합부품(100)은 중공 채널에 구비되는 온도 조절 수단으로 인해 온도의 균일성이 확보되어 변형이 최소화될 수 있다. 또한, 접합부품(100)의 홀(4)은 마찰교반용접에 의한 용접영역(w)을 관통하여 형성되되, 용접영역(w)의 범위내에 형성되므로 홀(4)을 통과하는 프로세스 유체로 인한 홀(4) 내벽의 부식 심화 및 부식으로 인한 파티클 발생 문제의 위험도가 감소하게 된다. 홀(4) 내벽의 부식 심화 및 파티클 발생 문제는 기판(200) 상으로 프로세스 유체를 분사할 경우 기판(200) 불량의 문제를 유발할 수 있다. 하지만 본 발명의 접합부품(100)은 마찰교반용접에 의한 용접영역(w)에 홀(4)이 형성되므로 홀(4) 내벽에 계면이 존재하지 않게 된다. 이로 인해 홀(4) 내벽의 부식 심화의 문제가 감소되어 홀(4)을 통한 프로세스 유체 분사 시 파티클을 동반한 프로세스 유체 분사로 인해 발생하는 기판(200) 불량 발생률을 감소시킬 수 있게 된다.
접합부품(100)이 구비되는 디스플레이 제조 공정 장비는 세정 장비일 수 있다. 디스플레이 제조 공정 장비가 세정 장비일 경우, 접합부품(100)은 피처리물에 세정공정을 위한 프로세스 유체를 공급하고 프로세스 유체는 마찰교반용접에 의한 용접영역에 형성된 홀(4)을 통과하여 세정공정을 수행할 수 있다. 접합부품(100)이 구비되는 세정 장비는 접합부품(100)의 홀(4)을 통과하는 프로세스 유체로 생산 공정시 결함을 유발시키는 입자성 또는 화학성 이물질을 세정할 수 있다. 세정 장비는 클리너(cleaner) 또는 기판 세척기(wafer scrubber)일 수 있다.
위와 같은 세정 장비에 접합부품(100)이 구비될 경우, 접합부품(100)은 중공 채널에 구비되는 온도 조절 수단으로 온도의 균일성이 확보되고 제품 변형이 최소화될 수 있다. 또한, 접합부품(100)의 홀(4)은 용접영역(w)의 범위내에 형성된다. 이로 인해 홀(4)을 통과하는 프로세스 유체로 인한 홀(4) 내벽의 부식 심화 및 부식으로 인한 파티클 발생 문제가 감소하게 된다. 홀(4) 내벽의 부식 심화 및 파티클 발생 문제는 기판(200) 상으로 프로세스 유체를 분사할 경우 기판(200) 불량의 문제를 유발할 수 있다. 하지만 본 발명의 접합부품(100)은 마찰교반용접에 의한 용접영역(w)에 홀(4)이 형성되므로 홀(4) 내벽에 계면이 존재하지 않게 된다. 이로 인해 홀(4) 내벽의 부식 심화 문제가 감소될 수 있고, 파티클을 동반한 프로세스 유체 분사로 인해 발생하는 기판(200) 불량 발생률을 감소시킬 수 있게 된다.
접합부품(100)이 구비되는 디스플레이 제조 공정 장비는 열처리 장비일 수 있다. 접합부품(100)이 구비되는 디스플레이 제조 공정 장비가 열처리 장비일 경우, 접합부품(100)은 피처리물에 열처리 공정을 위한 프로세스 유체를 공급할 수 있다. 이 경우, 프로세스 유체는 접합부품(100)의 마찰교반용접에 의한 용접영역(w)에 형성된 홀(4)을 통과한다. 접합부품(100)이 구비되는 열처리 장비는 이온주입 등의 방법으로 주입된 드래프트(draft)를 활성시키기 위해서 고속으로 열을 가하고 산화막, 질화막 등을 생성시킬 수 있다.
위와 같은 열처리 장비에 접합부품(100)이 구비될 경우, 접합부품(100)은 중공 채널에 구비되는 온도 조절 수단으로 온도의 균일성이 확보되고 제품 변형이 최소화될 수 있다. 또한, 프로세스 유체가 통과하는 홀(4)은 용접영역(w)의 범위내에 형성된다. 이로 인해 홀(4) 내벽의 부식 심화 및 부식으로 인한 파티클 발생 문제가 감소하게 된다. 홀(4) 내벽의 부식 심화 및 파티클 발생 문제는 기판(200) 상으로 프로세스 유체를 분사할 경우 기판(200) 불량의 문제를 유발할 수 있다. 하지만 본 발명의 접합부품(100)은 마찰교반용접에 의한 용접영역(w)의 범위 내에 홀(4)이 형성되므로 홀(4) 내벽에 계면이 존재하지 않게 된다. 이로 인해 홀(4) 내벽의 부식 심화 문제가 감소될 수 있고, 파티클을 동반한 프로세스 유체 분사로 인해 발생하는 기판(200) 불량 발생률을 감소시킬 수 있게 된다.
접합부품(100)이 구비되는 디스플레이 제조 공정 장비는 스퍼터링 장비일 수 있다. 접합부품(100)이 구비되는 디스플레이 제조 공정 장비가 스퍼터링 장비일 경우, 접합부품(100)은 피처리물에 스퍼터링 공정을 위한 프로세스 유체를 공급하고 프로세스 유체는 마찰교반용접에 의한 용접영역(w)에 형성된 홀(4)을 통과한다. 접합부품(100)이 구비되는 스퍼터링 장비는 금속막을 기판(200)상에 형성하는 장비이다. 스퍼터링 장비는 스퍼터 형상을 이용하여 기판(200) 표면에 금속막을 형성할 수 있다.
위와 같은 스퍼터링 장비에 접합부품(100)이 구비될 경우, 접합부품(100)은 중공 채널에 구비되는 온도 조절 수단으로 온도의 균일성이 확보되고 제품 변형이 최소화될 수 있다. 또한, 프로세스 유체가 통과하는 홀(4)은 용접영역(w)의 범위내에 형성된다. 이로 인해 홀(4) 내벽의 부식 심화 및 부식으로 인한 파티클 발생 문제가 감소하게 된다. 홀(4) 내벽의 부식 심화 및 파티클 발생 문제는 기판(200) 상으로 프로세스 유체를 분사할 경우 기판(200) 불량의 문제를 유발할 수 있다. 하지만 본 발명의 접합부품(100)은 마찰교반용접에 의한 용접영역(w)의 범위 내에 홀(4)이 형성되므로 홀(4) 내벽에 계면이 존재하지 않게 된다. 이로 인해 홀(4) 내벽의 부식 심화 문제가 감소될 수 있고, 파티클을 동반한 프로세스 유체 분사로 인해 발생하는 기판(200) 불량 발생률을 감소시킬 수 있게 된다.
접합부품(100)이 구비되는 디스플레이 제조 공정 장비(1000)는 CVD 장비일 수 있다. 디스플레이 제조 공정 장비(1000)가 CVD 장비일 경우, 접합부품(100)은 피처리물에 CVD공정을 위한 프로세스 유체를 공급하고 프로세스 유체는 마찰교반용접에 의한 용접영역(w)에 형성된 홀(4)을 통과한다. 접합부품(100)이 구비된 CVD 장비는 원소로 구성된 반응프로세스 유체를 열플라즈마 방전 포토 등의 에너지로 여기시켜 기판(200) 표면에 박막하는 전자 또는 기상중에서 일어나는 화학 반응에 의해 박막을 증착할 수 있다. CVD 장비는 상압 CVD 장비, 감압 CVD 장비, 플라즈마 CVD 장비, 광CVD 장비, MO-CVD 장비일 수 있다.
도 8에서는 디스플레이 제조 공정용 접합부품(100)이 구비되는 디스플레이 제조 공정 장비로 CVD장비를 예시적으로 도시하였다. CVD장비에 구비되는 접합부품(100)은 디스플레이 제조 공정에 이용되는 디퓨져(diffuser)일 수 있다.
도 8에 도시된 바와 같이, 프로세스 유체는 접합부품(100)의 홀(4)을 통과하여 서셉터(s)에 설치된 기판(200) 상에 프로세스 유체를 분사시킬 수 있다. 이 경우, 기판(200)은 유리기판일 수 있다. 유리기판은 LCD(Liquid Crystal Display)와 같은 평면디스플레이일 수 있고, PDP(Plasma Display Panel) 및 OLED(Organic Light Emitting Diodes)일 수 있다.
도 9는 도 8의 디스플레이 제조 공정 장비(1000)에 구비되는 디스플레이 제조 공정용 접합부품(100)의 일부를 확대하여 도시한 도이다. 도 9에 도시된 바와 같이, 접합부품(100)은 찰교반용접에 의해 용접된 피접합부재(1)들로 구성되고, 마찰교반용접에 의한 용접영역(w)을 관통하는 홀(4)이 구비된다. CVD 공정을 수행하는 프로세스 유체는 상기한 홀(4)을 통과할 수 있다. 또한, 중공 채널에는 온도 조절 수단이 구비되어 접합부품(100)의 온도를 균일화할 수 있게 된다.
프로세스 유체가 통과하는 홀(4)은 마찰교반용접에 의한 용접영역(w)에 형성되므로, 홀(4) 내벽에 계면이 존재하지 않는다. 홀(4) 주변에는 용접영역(w)이 존재하고 용접영역(w)은 마찰교반용접에 의해 형성된 영역이므로 피접합부재(1)들의 계면이 존재하지 않아 무계면 영역이 형성되게 된다. 이로 인해 홀(4)과 중공 채널 사이에 용접영역(w)이 존재하면서, 무계면 영역이 존재하는 형태일 수 있다.
접합부품(100)은 홀(4)과 중공 채널 사이에 무계면 영역이 존재함으로 인해 중공 채널과 홀(4) 간의 상호 작용이 없도록 할 수 있다. 구체적으로 설명하면, 접합부품(100)의 홀(4)은 마찰교반용접에 의한 용접영역(w)에 형성되므로 부식 문제 및 부식으로 인한 파티클 발생의 위험도가 낮다. 도 1에 도시된 용접의 경우 홀(4) 내벽에 계면이 존재하므로 부식 심화 문제가 심각할 수 있다. 이 경우, 홀(4) 내벽 계면의 부식 문제로 파티클이 발생할 수 있고, 계면을 따라 홀(4) 주변의 중공 채널로 파티클이 이동하게 되는 문제가 발생할 수 있다. 도 1에 도시된 용접의 경우, 홀(4) 내벽에 계면이 그대로 존재하고, 홀(4)과 중공 채널 사이에도 계면이 그대로 존재하므로 홀(4) 내벽에서 발생하는 부식 문제 등이 계면을 따라 중공 채널로 이동하여 부정적인 상호 작용을 하게 된다. 하지만 본 발명의 접합부품(100)은 홀(4)과 중공 채널 사이의 용접영역으로 인해 형성되는 무계면 영역으로 인해 홀(4)과 중공 채널이 상호 작용하지 않으므로 계면을 따라 상호 작용함으로써 발생하는 누설 문제 및 누설 문제로 인한 중공 채널에 구비된 온도 조절 수단에 발생되는 부정적인 영향 문제 등을 방지할 수 있게 된다.
위와 같이 접합부품(100)이 구비되는 디스플레이 제조 공정 장비는 다양한 장비들일 수 있다. 이 경우, 디스플레이 제조 공정 장비는 본 발명의 접합부품(100)이 구비되므로 접합부품(100)으로 인해 얻는 효과는 동일할 수 있다.
도 10은 접합부품(100)의 피접합부재(1)들을 위에서 바라보고 도시한 도이다. 도 10(a)는 제1, 2연통그루브(5a, 5b)가 형성된 제2피접합부재(1b)를 도시한 것이고, 제10(b)는 제1그루브 영역 및 제1그루브 비영역이 구비된 제1피접합부재(1a)를 도시한 것이다. 연통그루브(5)는 제1연통그루브(5a), 제2연통그루브(5b)를 포함하고, 메인홀(6)은 제1메인홀(6a) 및 제2메인홀(6b)을 포함한다. 접합부품(100)이 디퓨져일 경우, 제1, 2연통그루브(5a, 5b)를 포함하는 연통그루브(5) 및 제1, 2메인홀(6)을 포함하는 메인홀(6)은 제1그루브 영역을 포함하는 그루브 영역을 연통시킬 수 있는 위치에 형성된다면 그 위치에 제한은 없다.
제1그루브(2a)는 도 10에 도시된 바와 같이, 피접합부재(1)의 단면 형상에 따라 직선형으로 형성될 수 있다. 제1그루브(2a) 형태는 이에 한정된 것이 아니며, 피접합부재(1)들이 마찰교반용접에 의해 용접되어 형성되는 접합부품(100)의 단면 형상에 따라 적합한 형태로 형성될 수 있다. 에컨대, 접합부품(100)의 단면이 원형 단면이라면 제1피접합부재(1a)에 형성되는 제1그루브(2a)는 곡선형으로 형성될 수 있다. 접합부품(100) 내부의 중공 채널은 제1그루브(2a)로 인해 형성되므로, 중공 채널의 형상도 직선형 또는 곡선형으로 형성될 수 있다.
제1메인홀(6a)을 통해 온도 조절 수단으로 냉각 또는 히팅 유체가 주입될 수 있다. 주입된 냉각 또는 히팅 유체는 제1그루브 영역을 따라 이동하고 제2메인홀(6b)을 통해 빠져나오면서 접합부품(100)의 내부 온도를 조절할 수 있게 된다.
제1, 2피접합부재(1a, 1b)가 마찰교반용접에 의해 용접되면, 제1피접합부재(1a)의 제1그루브 비영역(2a')과 제2피접합부재(1b)의 일영역이 마찰교반용접에 의해 용접되어 용접영역(w)이 형성될 수 있다. 그런 다음 용접영역(w)의 범위 내에 용접영역(w)을 관통하는 홀(4)이 구비되어 접합부품(100)으로 형성될 수 있다. 디스플레이 제조 공정 장비에 구비되는 디스플레이 제조 공정용 접합부품(100)은 유리기판과 같은 기판상에 프로세스 유체를 분사하기 위하여 사각 단면 형상을 가질 수 있다.
용접영역(w)은 제1그루브 비영역과 제2피접합부재(1b)의 일 영역이 마찰교반용접에 의해 용접되어 형성되는 영역이므로, 도 10(b)에 도시된 바와 같은 제1그루브 영역과 제1그루브 영역 사이에 형성되는 형상일 수 있다. 다시 말해, 접합부품(100)에서 용접영역은 제1그루브 영역과 제1그루브 영역 사이에 형성될 수 있다. 위와 같은 용접영역(w)의 범위 내에 용접영역(w)을 관통하는 홀(4)이 구비된다. 이 경우, 홀(4)은 용접영역(w)의 너겟존을 관통하여 형성되는 것이 바람직할 수 있다.
디스플레이 제조 공정 장비(1000)에는 프로세스 유체를 분사하는 디스플레이 제조 공정용 접합부품(100)이 포함되어 구성될 수 있다. 또한, 기판(200), 마찰교반용접에 의해 적어도 2개의 피접합부재(1)들이 용접되며, 마찰교반용접에 의한 용접영역(w)을 관통하는 홀(4)이 구비되며, 상기한 기판(200)을 지지하는 접합부품(100')을 포함하여 구성될 수 있다.
기판(200)을 지지하는 접합부품(100')은 디스플레이 제조 공정용 접합부품(100)과 같이 적어도 2개의 피접합부재(1)들이 마찰교반용접에 의해 용접되고 마찰교반용접에 의한 용접영역(w)을 관통하는 홀(4)이 구비될 수 있다.
디스플레이 제조 공정용 장비에는 기판(200)을 지지하는 접합부품(100')의 홀 내부에서 승하강하면서 기판(200)을 접합부품(100)의 상면에 안착시키거나 기판(200)을 접합부품의 상면으로부터 이탈시키는 승하강 부재가 포함되어 구성될 수 있다.
도 11은 디스플레이 제조 공정 장비에 구성되어 기판(200)을 지지하는 접합부품(100')을 도시한 도이다.
디스플레이 제조 공정 장비에 구성되어 기판(200)을 지지하는 접합부품(100')은 서셉터(s)일 수 있다. 기판(200)을 지지하는 접합부품(100')은 디스플레이 제조 공정용 접합부품(100)과 마찰교반용접을 이용하여 피접합부재(1)들을 접합한다는 점은 동일하고, 피접합부재(1)들을 관통하는 홀(4)을 형성할 부위에 선택적으로 마찰교반용접에 의한 용접영역(w)이 형성된다는 점에서 차이가 있다.
도 11(a)는 제1피접합부재(1a)와 제2피접합부재(1b)들의 마찰교반용접에 의해 용접되기 전 상태를 도시한 도이고, 도 11(b)는 피접합부재(1)들이 마찰교반용접에 의해 용접되고, 홀(4)을 형성할 부위에 마찰교반용접에 의한 용접영역(w)을 형성하여 홀(4)을 형성한 상태를 단면으로 도시한 도이고, 도 11(c)는 제1, 2피접합부재(1a, 1b)를 마찰교반용접으로 용접한 상태를 위에서 바라보고 도시한 도이고, 도 11(d)는 홀(4)을 형성할 부위에 마찰교반용접으로 용접영역(w)을 형성하고, 용접영역(w)의 범위 내에 용접영역(w)을 관통하는 홀(4)이 형성된 접합부품(100')을 위에서 바라보고 도시한 도이다.
도 11에 도시된 바와 같이, 접합부품(100')은 마찰교반용접에 의한 적어도 2개의 피접합부재(1)들이 용접되고 마찰교반용접에 의한 용접영역(w)을 관통하는 홀(4)이 구비되어 기판(200)을 지지할 수 있다.
도 11(a)에 도시된 바와 같이, 접합부품(100')이 서셉터(s)일 경우, 제1피접합부재(1a)의 일면에 제2피접합부재(1b)가 위치하되, 제1피접합부재(1a)가 제2피접합부재(1b)의 외측으로 삽입되는 형태로 형성될 수 있다. 이 경우, 도 11(a)에 도시된 형상은 하나의 실시 예로서 적어도 2개의 피접합부재(1)들이 다른 형태로 구성될 수 있다.
제1피접합부재(1a)가 제2피접합부재(1b)의 외측으로 삽입될 경우, 제1피접합부재(1a)의 수직적 내벽(11a)과 제2피접합부재(1b)의 수직적 외벽(12a)이 접촉되고, 제1피접합부재(1a)의 수평적 내벽(11b)과 제2피접합부재(1b)의 수평적 외벽(12b)이 접촉될 수 있다. 제1피접합부재(1a)의 내벽과 외벽이 서로 접촉되면서 제1피접합부재(1a)와 제2피접합부재(1b) 간에 접합계면이 존재하게 된다. 피접합부재(1)들을 마찰교반용접을 이용하여 접합하기 위하여 제1피접합부재(1a)의 수직적 내벽(11a)과 제2피접합부재(1b)의 수직적 외벽(12a)이 접촉됨으로 인해 형성되는 접합계면을 마찰교반용접에 의해 용접할 수 있다. 예컨대, 피접합부재(1)들이 사각 단면을 가질 경우, 도 11(c)에 도시된 바와 같이, 제1피접합부재(1a)의 수직적 내벽(11a)과 제2피접합부재(1b)의 수직적 외벽(12a)의 접촉으로 인한 접합계면에 마찰교반용접에 의한 용접영역(w)이 연속적으로 형성될 수 있다. 다시 말해 제1피접합부재(1a)의 수직적 내벽(11a)과 제2피접합부재(1b)의 수직적 외벽(12a)의 접촉으로 인한 접합계면을 따라 마찰교반용접에 의한 용접영역(w)은 연속적으로 형성될 수 있다. 이와는 다르게 제1피접합부재(1a)와 제2피접합부재(1b)의 수평적 외측 부분을 마찰교반용접을 이용하여 용접할 수 있다.
피접합부재(1)들이 마찰교반용접에 의해 용접된 후, 피접합부재(1)들을 상, 하 관통하는 홀(4)을 형성하기 위하여, 홀(4)을 형성할 부위에 마찰교반용접에 의한 용접영역(w)을 형성할 수 있다. 홀(4)을 형성할 부위는 임의로 정해질 수 있고 홀(4) 형성 부위에 마찰교반용접이 선택적으로 수행될 수 있다. 홀(4)을 형성하기 위한 마찰교반용접에 의한 용접영역(w)은 피접합부재(1)들을 상, 하 관통하도록 홀(4)을 형성하기 위하여 제1피접합부재(1a)의 수평적 내벽(11b)과 제2피접합부재(1b)의 수평적 외벽(12b)이 접촉되는 접합계면 아래까지 형성될 수 있다. 다시 도 11(b)를 참조하여 설명하면, 도 11(b)에는 홀(4)이 형성되는 마찰교반용접에 의한 용접영역(w)이 홀(4)과 동일한 깊이로 형성된 것으로 도시하였지만, 홀(4)이 형성되는 마찰교반용접에 의한 용접영역(w)은 제1피접합부재(1a)의 수평적 내벽(11b)과 제2피접합부재(1b)의 수평적 외벽(12b)이 접촉되는 접합계면 아래까지 형성된다면 그 깊이는 홀(4)과 동일하지 않아도 무방하다.
홀(4)을 형성하기 위해 홀(4) 형성 부위에 선택적으로 마찰교반용접으로 용접하여 용접영역(w)을 형성할 경우, 접합계면의 적어도 일부를 마찰교반용접으로 용접함으로써 형성되는 것이므로 불연속적인 형태일 수 있다. 예컨대, 홀(4)을 형성하기 위해 홀(4) 형성 부위에 선택적으로 마찰교반용접으로 용접하여 형성되는 용접영역(w)은 제1피접합부재(1a) 제2피접합부재(1b)의 접촉으로 인한 접합계면의 적어도 일부가 마찰교반용접에 의해 용접됨으로써 형성된다. 따라서, 홀(4) 형성 부위의 용접영역(w)은 불연속적인 형태일 수 있다. 홀(4) 형성 부위의 마찰교반용접에 의한 용접영역(w)이 불연속적으로 형성되는 것과는 달리, 피접합부재(1)들을 상, 하 접합하기 위해 마찰교반용접으로 용접되어 형성되는 용접영역(w)은 연속적인 형태일 수 있다.
접합부품(100')은 마찰교반용접한 용접영역(w)에 홀(4)을 형성하고 홀(4) 내부에 기판(200)을 접합부품(100')의 상면에 안착시키거나 기판(200)을 접합부품(100')의 상면으로부터 이탈시키는 승하강 부재의 승강 경로를 구비할 수 있다.
접합부품(100')이 홀(4) 내부에 승강 경로를 구비할 경우, 승하강 부재 주변에 마찰교반용접에 의한 용접영역(w)이 형성된 형태일 수 있다. 홀(4)은 마찰교반용접에 의한 용접영역(w)에 형성된 것이므로 홀(4)의 내벽에 피접합부재(1)들의 계면이 존재하지 않는다. 따라서 피접합부재(1)들이 홀(4) 내벽에 계면이 존재하는 접합부품과 다르게 홀(4) 내벽에 계면이 존재하지 않음으로 홀(4) 내벽에 계면이 존재하여 계면 부위 부식으로 인해 발생하는 파티클로 인한 홀(4) 내부 부재 기능의 불량 염려를 감소시킬 수 있다.
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.
[부호의 설명]
1: 피접합부재
1a: 제1피접합부재, 1b: 제2피접합부재
1c: 제3피접합부재
2a: 제1그루브, 2b: 제2그루브
2a': 제1그루브 비영역, 2b': 제2그루브 비영역
4: 홀
5: 연통그루브
5a: 제1연통그루브, 5b: 제2연통그루브
6: 메인홀
6a: 제1메인홀, 6b: 제2메인홀
10: 용접툴
10a: 숄더, 10b: 툴
11a: 제1피접합부재의 수직적 내벽, 11b: 제1피접합부재의 수평적 내벽
12a: 제2피접합부재의 수직적 외벽, 12b: 제2피접합부재의 수직적 외벽
100: 디스플레이 제조 공정용 접합부품
100': 기판을 지지하는 접합부품, 200: 기판
1000: 디스플레이 제조 공정 장비
s: 서셉터, w: 용접영역

Claims (18)

  1. 디스플레이 제조 공정장비에 구비되어 디스플레이 제조 시 이용되며 마찰교반용접에 의해 적어도 2개의 피접합부재들이 용접된 디스플레이 제조 공정용 접합부품에 있어서,
    상기 마찰교반용접에 의한 용접영역에 상기 피접합부재들을 관통하는 홀이 구비되는 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  2. 제1항에 있어서,
    상기 공정 장비는 에칭 장비이고,
    상기 접합부품은 피처리물에 에칭공정을 위한 프로세스 유체를 공급하는 접합부품이며,
    상기 프로세스 유체는 상기 마찰교반용접에 의한 용접영역에 형성된 상기 홀을 통과하는 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  3. 제1항에 있어서,
    상기 공정 장비는 세정 장비이고,
    상기 접합부품은 피처리물에 세정공정을 위한 프로세스 유체를 공급하는 접합부품이며,
    상기 프로세스 유체는 상기 마찰교반용접에 의한 용접영역에 형성된 상기 홀을 통과하는 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  4. 제1항에 있어서,
    상기 공정 장비는 열처리 장비이고,
    상기 접합부품은 피처리물에 열처리 공정을 위한 프로세스 유체를 공급하는 접합부품이며,
    상기 프로세스 유체는 상기 마찰교반용접에 의한 용접영역에 형성된 상기 홀을 통과하는 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  5. 제1항에 있어서,
    상기 공정 장비는 CVD 장비이고,
    상기 접합부품은 피처리물에 CVD 공정을 위한 프로세스 유체를 공급하는 접합부품이며,
    상기 프로세스 유체는 상기 마찰교반용접에 의한 용접영역에 형성된 상기 홀을 통과하는 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  6. 제1항에 있어서,
    상기 공정 장비는 스퍼터링 장비이고,
    상기 접합부품은 피처리물에 스퍼터링 공정을 위한 프로세스 유체를 공급하는 접합부품이며,
    상기 프로세스 유체는 상기 마찰교반용접에 의한 용접영역에 형성된 상기 홀을 통과하는 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  7. 제1항에 있어서,
    상기 적어도 2개의 피접합부재들은 상,하로 적층되고,
    상기 마찰교반용접은 상기 피접합부재들의 계면을 용접하고,
    상기 홀은 상기 피접합부재들의 상기 용접영역을 상, 하로 관통하여 형성된 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  8. 제1항에 있어서,
    상기 피접합부재들의 재질은, 고속으로 회전하는 툴과 피접합부재와의 상호마찰에 의해 마찰열이 발생하고 이러한 마찰열에 의해 툴 주변의 상기 피접합부재가 연화되며 툴의 교반에 의해 피접합부재의 소성유동으로 접합면의 피접합부재가 강제적으로 혼합가능한 재질인 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  9. 제1항에 있어서,
    상기 피접합부재들은 알루미늄, 알루미늄 합금, 티타늄, 티타늄 합금, 마그네슘, 마그네슘 합금, 탄소강 또는 스테인레스강 중 적어도 하나인 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  10. 제1항에 있어서,
    상기 피접합부재들은 이종의 금속재질인 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  11. 제1항에 있어서,
    상기 피접합부재들의 계면 중 적어도 어느 한 계면에 온도 조절 수단이 구비된 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  12. 제1항에 있어서,
    상기 피접합부재들의 계면 중 적어도 어느 한 계면에 그루브가 형성된 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  13. 제1항에 있어서,
    상기 접합부품의 내부에는 복수개의 중공 채널이 형성된 것을 특징으로 하는 디스플레이 제조 공정용 접합부품.
  14. 마찰교반용접에 의해 적어도 2개의 피접합부재들이 용접되며, 상기 마찰교반용접에 의한 용접영역을 관통하는 홀이 구비된 접합부품을 포함하고,
    상기 홀을 통해 공급된 유체를 이용하여 디스플레이를 이루는 일부 구성을 제조하는 것을 특징으로 하는 디스플레이 제조 공정 장비.
  15. 제14항에 있어서,
    상기 접합부품은,
    상기 피접합부재들의 계면에서 상기 계면을 따라 형성되며 내부에 온도조절수단이 구비된 중공 채널; 및
    상기 피접합부재들을 상, 하로 관통하는 홀을 포함하고,
    상기 마찰교반용접에 의한 용접영역은 상기 중공 채널과 상기 홀 사이에 형성되는 것을 특징으로 하는 디스플레이 제조 공정 장비.
  16. 제15항에 있어서,
    상기 온도조절수단은 냉각 유체인 것을 특징으로 하는 디스플레이 제조 공정 장비.
  17. 제15항에 있어서,
    상기 온도조절수단은 히터인 것을 특징으로 하는 디스플레이 제조 공정 장비.
  18. 기판;
    마찰교반용접에 의해 적어도 2개의 피접합부재들이 용접되며, 상기 마찰교반용접에 의한 용접영역을 관통하는 홀이 구비되며, 상기 기판을 지지하는 접합부품; 및
    상기 홀 내부에서 승하강하면서 상기 기판을 상기 접합부품의 상면에 안착시키거나 상기 기판을 상기 접합부품의 상면으로부터 이탈시키는 승하강 부재;를 포함하는 것을 특징으로 하는 는 디스플레이 제조 공정 장비.
PCT/KR2019/013181 2018-10-10 2019-10-08 디스플레이 제조 공정용 접합부품 및 디스플레이 제조 공정 장비 WO2020076046A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180120214A KR20200040398A (ko) 2018-10-10 2018-10-10 디스플레이 제조 공정용 접합부품 및 디스플레이 제조 공정 장비
KR10-2018-0120214 2018-10-10

Publications (1)

Publication Number Publication Date
WO2020076046A1 true WO2020076046A1 (ko) 2020-04-16

Family

ID=70164818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013181 WO2020076046A1 (ko) 2018-10-10 2019-10-08 디스플레이 제조 공정용 접합부품 및 디스플레이 제조 공정 장비

Country Status (3)

Country Link
KR (1) KR20200040398A (ko)
TW (1) TW202023359A (ko)
WO (1) WO2020076046A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070090516A1 (en) * 2005-10-18 2007-04-26 Applied Materials, Inc. Heated substrate support and method of fabricating same
KR20100071614A (ko) * 2008-12-19 2010-06-29 재단법인 포항산업과학연구원 디스플레이 패널용 보강 프레임 제조 방법 및 이에 의해 제조된 보강 프레임
KR101316807B1 (ko) * 2006-06-23 2013-10-10 재팬 마린 유나이티드 코포레이션 용접 구조체
KR101698433B1 (ko) * 2015-04-30 2017-01-20 주식회사 에이씨엔 기상식각 및 세정을 위한 플라즈마 장치
US20180043483A1 (en) * 2012-10-10 2018-02-15 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352923B1 (ko) 2011-09-16 2014-01-22 주식회사 에스에프에이 평면디스플레이용 화학 기상 증착장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070090516A1 (en) * 2005-10-18 2007-04-26 Applied Materials, Inc. Heated substrate support and method of fabricating same
KR101316807B1 (ko) * 2006-06-23 2013-10-10 재팬 마린 유나이티드 코포레이션 용접 구조체
KR20100071614A (ko) * 2008-12-19 2010-06-29 재단법인 포항산업과학연구원 디스플레이 패널용 보강 프레임 제조 방법 및 이에 의해 제조된 보강 프레임
US20180043483A1 (en) * 2012-10-10 2018-02-15 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
KR101698433B1 (ko) * 2015-04-30 2017-01-20 주식회사 에이씨엔 기상식각 및 세정을 위한 플라즈마 장치

Also Published As

Publication number Publication date
KR20200040398A (ko) 2020-04-20
TW202023359A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2012081766A1 (ko) 진공 유리 패널 및 그 제조 방법
WO2013065339A1 (ja) 溶射皮膜における緻密化層の形成方法、及び溶射皮膜被覆部材
WO2020076038A1 (ko) 접합부품, 반도체 제조 공정용 접합부품 및 반도체 제조 공정 장비
WO2020076046A1 (ko) 디스플레이 제조 공정용 접합부품 및 디스플레이 제조 공정 장비
WO2014129766A1 (ko) 수평 맞대기 이음 대용착 용접 장치 및 그 방법
WO2022124780A1 (ko) 본딩 헤드 및 이를 갖는 본딩 장치
WO2017126814A1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
WO2017126811A1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
WO2016098984A1 (ko) 노즐 헤드, 노즐 헤드의 제조방법 및 노즐 헤드를 포함하는 액체공급장치
JP4665260B2 (ja) ガラス基板の密封システム及び密封方法
TW202035776A (zh) 接合零件
WO2019203510A1 (ko) 프레임 일체형 마스크의 제조 장치
WO2023075280A1 (ko) 서셉터
KR20010049021A (ko) 유리 기판 절단 장치 및 그 방법
KR102517783B1 (ko) 반도체 제조 공정용 또는 디스플레이 제조 공정용 프로세스 유체가 통과하는 접합부품
WO2012050376A2 (en) Ultrathin wafer micro-machining method and apparatus by laser rail-roading technique
WO2021167325A1 (ko) 가스 공급장치 및 이를 구비한 증착장치
WO2020050448A1 (ko) 지그 조립체 및 솔더링 장치
WO2022260474A1 (ko) 기판 처리 장치 및 기판 처리 장치의 세정 방법
WO2016122046A1 (en) Inductive heating linear evaporation deposition apparatus
WO2015130140A1 (ko) 원자층 증착장치 및 원자층 증착시스템
WO2020067672A1 (ko) 이종 소재 접합체의 제조방법 및 이종 소재 접합체
WO2024039091A1 (ko) Oled 화소 증착을 위한 증착용 마스크
WO2020246698A1 (ko) 태양전지 제조방법
KR20200109620A (ko) 접합부품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872175

Country of ref document: EP

Kind code of ref document: A1