WO2020075638A1 - Bearing device and preload sensor - Google Patents

Bearing device and preload sensor Download PDF

Info

Publication number
WO2020075638A1
WO2020075638A1 PCT/JP2019/039255 JP2019039255W WO2020075638A1 WO 2020075638 A1 WO2020075638 A1 WO 2020075638A1 JP 2019039255 W JP2019039255 W JP 2019039255W WO 2020075638 A1 WO2020075638 A1 WO 2020075638A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
bearing
preload sensor
preload
outer ring
Prior art date
Application number
PCT/JP2019/039255
Other languages
French (fr)
Japanese (ja)
Inventor
小池 孝誌
靖之 福島
勇介 澁谷
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to KR1020217013143A priority Critical patent/KR20210068533A/en
Priority to CN201980066382.9A priority patent/CN112823271B/en
Priority to DE112019005064.8T priority patent/DE112019005064T5/en
Publication of WO2020075638A1 publication Critical patent/WO2020075638A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • G01L5/0019Force sensors associated with a bearing by using strain gages, piezoelectric, piezo-resistive or other ohmic-resistance based sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • F16C25/083Ball or roller bearings self-adjusting with resilient means acting axially on a race ring to preload the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/02Arrangements for equalising the load on a plurality of bearings or their elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2229/00Setting preload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Definitions

  • the present invention relates to a bearing device and a preload sensor.
  • preload management of bearings In the spindle device of machine tools, in order to improve machining accuracy and efficiency, preload management of bearings is required. Therefore, there is a demand to detect preload applied to bearings (hereinafter, preload of bearings). There is also a demand for detecting a change in preload as a symptom before a bearing abnormality occurs to prevent the bearing abnormality.
  • Japanese Unexamined Patent Publication No. 2014-071085 discloses a thin film sensor that includes a metal thin film and detects pressure based on a change in electric resistance when pressure is applied to the metal thin film.
  • the thin film sensor disclosed in Japanese Patent Laid-Open No. 2014-071085 has a thin thickness on the order of submicrons, and in particular, the thin metal film has a very thin thickness of about 200 nm. It is susceptible to surface properties such as surface roughness and flatness of each of the two surfaces.
  • a plurality of the thin film sensors are arranged in a circumferential direction between two surfaces of at least one of the bearing and the spacer (hereinafter, bearing) perpendicular to the axial direction. It needs to be spaced apart.
  • bearing the spacer
  • the surface texture of a surface of a general bearing or the like perpendicular to the axial direction has a relatively large variation in the circumferential direction. Therefore, it is difficult to measure the preload of the bearing with high accuracy by the thin film sensor arranged between the two surfaces of a general bearing or the like.
  • a main object of the present invention is to provide a preload sensor capable of detecting a change in bearing preload more stably than a conventional preload sensor, and a bearing device including the preload sensor.
  • the preload sensor according to the present invention is a preload sensor that has a first surface facing one side in the first direction and a second surface facing the other side in the first direction, and detects the preload of the bearing.
  • the preload sensor connects the first terminal portion and the second terminal portion to the first terminal portion and the second terminal portion, and detects the pressure acting between the first surface and the second surface.
  • the pressure-sensitive pattern portion in which the direct current resistance between the first terminal portion and the second terminal portion changes, the covering portion covering the pressure-sensitive pattern portion, and the pressure-sensitive pattern portion are arranged adjacent to the covering portion in the first direction.
  • a buffer section is arranged adjacent to the covering portion in the first direction.
  • the longitudinal elastic modulus of the material forming the cushioning portion is less than the longitudinal elastic modulus of the material forming the covering portion.
  • the bearing device includes the preload sensor according to the present invention, a bearing, and a spacer arranged adjacent to the bearing.
  • the preload sensor, the bearing, and the spacer are arranged so that the first direction is along the axial direction of the bearing and the spacer. At least one of the coating portion and the buffer portion of the preload sensor is in contact with the spacer.
  • the longitudinal elastic modulus of the material forming the cushioning portion is less than the longitudinal elastic modulus of the material forming the spacer.
  • a preload sensor capable of stably detecting a change in preload of a bearing and a bearing device including the preload sensor, as compared with a conventional preload sensor.
  • FIG. 3 is a partial cross-sectional view perpendicular to the circumferential direction of the preload sensor and the bearing device according to Embodiment 1.
  • FIG. 2 is a partially enlarged view of a preload sensor and a bearing device shown in FIG. 1.
  • FIG. 2 is a partial plan view of the preload sensor and the bearing device shown in FIG. 1 viewed from the axial direction.
  • FIG. 3 is a partial cross-sectional view showing an example of an assembling method of the preload sensor and the bearing device shown in FIG. 1. It is the top view seen from the axial direction of the preload sensor and bearing device shown in FIG. It is a figure which shows the detection circuit for detecting the change of preload by a preload sensor.
  • FIG. 1 is a partially enlarged view of a preload sensor and a bearing device shown in FIG. 1.
  • FIG. 2 is a partial plan view of the preload sensor and the bearing device shown in FIG. 1 viewed from the axial direction.
  • FIG. 3 is a partial cross
  • FIG. 7 is a partial cross-sectional view showing a modified example of the preload sensor and the bearing device according to the first embodiment.
  • FIG. 6 is a partial cross-sectional view showing a preload sensor and a bearing device according to a second embodiment.
  • FIG. 9 is a partial cross-sectional view perpendicular to the radial direction of the preload sensor and the bearing device shown in FIG. 8.
  • FIG. 7 is a partial cross-sectional view showing another modified example of the preload sensor and the bearing device according to the second embodiment.
  • FIG. 9 is a partial cross-sectional view showing a preload sensor and a bearing device according to a third embodiment.
  • FIG. 12 is a partially enlarged view of the preload sensor and the bearing device shown in FIG. 11.
  • FIG. 12 is a partial cross-sectional view showing a modified example of the preload sensor and the bearing device shown in FIG. 11.
  • FIG. 7 is a partial cross-sectional view showing a modified example of the preload sensor and the bearing device according to the first to third embodiments.
  • the bearing device 100 As shown in FIGS. 1 to 3, the bearing device 100 according to the first embodiment mainly includes a first bearing 1a, a second bearing 1b, an outer ring spacer 6 and an inner ring spacer 7, and a preload sensor 10. .
  • the bearing device 100 is provided so as to rotatably support the main shaft 11 with respect to the housing 8.
  • a fixed position preload is applied to the first bearing 1a and the second bearing 1b, for example.
  • the first bearing 1a and the second bearing 1b have, for example, the same configuration.
  • the first bearing 1a and the second bearing 1b are, for example, angular ball bearings.
  • the first bearing 1a and the second bearing 1b are, for example, a back surface combination (DB).
  • the first bearing 1a includes an outer ring 2a, an inner ring 3a, balls 4a, and a cage 5a.
  • the outer ring 2a has an outer ring raceway surface.
  • the inner ring 3a has an inner ring raceway surface which is arranged at a distance from the outer ring raceway surface in the radial direction of the outer ring 2a.
  • the plurality of balls 4a are arranged between the outer ring raceway surface and the inner ring raceway surface.
  • the cage 5a holds a plurality of balls 4a at a constant distance in the circumferential direction of the outer ring 2a.
  • the second bearing 1b includes an outer ring 2b, an inner ring 3b, balls 4b, and a cage 5b.
  • the outer ring 2b, the inner ring 3b, the balls 4b, and the cage 5b have the same configurations as the outer ring 2a, the inner ring 3a, the balls 4a, and the cage 5a.
  • the outer rings 2a and 2b are fixed wheels
  • the inner rings 3a and 3b are rotating wheels
  • the outer ring spacer 6 is a fixed side spacer
  • the inner ring spacer 7 is a rotating side spacer.
  • the outer ring spacer 6 and the inner ring spacer 7 are arranged adjacent to the first bearing 1a and the second bearing 1b.
  • the outer ring spacer 6 and the inner ring spacer 7 are provided in an annular shape, and are arranged so that the respective axial directions are along the respective axial directions of the first bearing 1a and the second bearing 1b.
  • the outer ring spacer 6 and the inner ring spacer 7 hold the relative positions of the first bearing 1a and the second bearing 1b constant in a used state in which the bearing device 100 supports the main shaft 11.
  • the outer ring spacer 6 is sandwiched between the outer ring 2a of the first bearing 1a and the outer ring 2b of the second bearing 1b in the axial direction of the outer ring spacer 6.
  • the outer ring spacer 6 has, for example, a first spacer member 61 and a second spacer member 62.
  • the first spacer member 61 and the second spacer member 62 are annularly provided as separate bodies and arranged side by side in the axial direction.
  • the first spacer member 61 and the second spacer member 62 have inner diameter surfaces facing the inner ring spacer 7 in the radial direction.
  • the first spacer member 61 faces the first bearing 1a side in the axial direction and is in contact with the outer ring 2a, and the first end surface 61a and the first end surface 61a. And a second end surface 61b located on the side opposite to.
  • the second end surface 61b faces the axial end surface of the outer ring 2b.
  • the second end surface 61b is the surface closest to the outer ring 2b among the surfaces of the first spacer member 61 facing the axial direction.
  • the second spacer member 62 faces the second bearing 1b side in the axial direction, and the second spacer 61 and the second end surface 61b of the first spacer member 61 are arranged in the axial direction. It has the 3rd end surface 62a which opposes, and the 4th end surface 62b located in the opposite side to the 3rd end surface 62a, and contacting the outer ring 2b.
  • the third end surface 62a faces the axial end surface of the outer ring 2a.
  • the third end surface 62a is a surface closest to the outer ring 2a among the surfaces of the second spacer member 62 that face the axial direction.
  • the third end surface 62a is configured as a fifth surface in contact with the first surface 20a of the preload sensor 10 described later in the bearing device 100.
  • the second end surface 61b is configured as a sixth surface in contact with the second surface 30a of the preload sensor 10 described later in the bearing device 100.
  • the first spacer member 61 is located closer to the first bearing 1a side than the first end face 61a in the axial direction, and faces the first bearing 1a side, and is in the radial direction, for example. In, it further has a fifth end face 61c located inside the first end face 61a.
  • the second spacer member 62 is located closer to the first bearing 1a side than the fourth end surface 62b in the axial direction, and faces the second bearing 1b side, and is in the radial direction, for example. In, it further has a sixth end face 62c located inside the fourth end face 62b.
  • the relative positions of the first spacer member 61 and the second spacer member 62 in the radial direction and the circumferential direction are positioned by the positioning member 63.
  • the first spacer member 61 is provided with a hole 61h opened to the second end surface 61b.
  • the hole 61h extends, for example, along the axial direction and has a bottom surface.
  • the second spacer member 62 is provided with a through hole 62h penetrating between the third end surface 62a and the sixth end surface 62c.
  • the hole 61h and the through hole 62h are provided so as to be continuous with each other in the axial direction and into which the positioning member 63 is inserted.
  • the positioning member 63 is provided such that when one end of the positioning member 63 is in contact with the bottom surface of the hole 61h, the other end of the positioning member 63 is arranged inside the through hole 62h.
  • the positioning member 63 is provided, for example, in a rod shape.
  • the surface roughness of each of the second end surface 61b and the third end surface 62a forming the preload sensor 10 is preferably set to be better than the other surfaces.
  • the inner ring spacer 7 is sandwiched between the inner ring 3a of the first bearing 1a and the inner ring 3b of the second bearing 1b in the axial direction.
  • the inner ring spacer 7 has an end surface that is in contact with the inner ring 3a and an end surface that is located on the opposite side of the end surface and that is in contact with the inner ring 3b.
  • the inner ring spacer 7 is arranged so as to face the first spacer member 61 and the second spacer member 62 in the radial direction.
  • the material forming the outer ring spacer 6 and the inner ring spacer 7 may be the same as the material forming the conventional outer ring spacer and inner ring spacer, and includes, for example, steel.
  • the housing 8 has an inner diameter surface 8a that faces the outer diameter surfaces of the outer rings 2a and 2b and the outer ring spacer 6, and projects inward in the radial direction with respect to the inner diameter surface 8a. It has a convex surface 8b.
  • the convex surface 8b is in contact with the end surface located on the opposite side of the end surface of the outer ring 2a in contact with the outer ring spacer 6.
  • the convex surface 8b is arranged so as to face the first end surface 61a of the outer ring spacer 6 in the axial direction.
  • the inner diameter surface 8a and the convex surface 8b are arranged so that the bearing device 100 inserted into the inner diameter surface 8a from the side opposite to the convex surface 8b in the axial direction moves in the axial direction until the outer ring 2a contacts the convex surface 8b. It is provided.
  • the outer rings 2a and 2b and the outer ring spacer 6 are loosely fitted to the housing 8, for example.
  • the housing 8 has, for example, an inner cylinder 81 that houses the bearing device 100 therein, and an outer cylinder 82 that houses a part of the inner cylinder 81 and the main shaft 11 therein.
  • a cooling medium flow path 83 is formed in the housing 8, for example.
  • the cooling medium flow path 83 is configured as a groove that is concave with respect to the outer diameter surface of the inner cylinder 81, for example.
  • the cooling medium passage 83 is provided so as to extend spirally with respect to the rotation center axis O, for example.
  • a cooling medium flows in the cooling medium flow path 83. As a result, the bearing device 100 is cooled.
  • the front lid 9 is fixed to the housing 8 by a bolt or the like (not shown). As shown in FIG. 1, the front lid 9 is arranged inside the inner diameter surface 8a of the housing 8 in the radial direction and has a pressing surface 9a facing the convex surface 8b of the housing 8 in the axial direction. are doing.
  • the pressing surface 9a is in contact with the end surface located on the opposite side of the end surface of the outer ring 2b in contact with the outer ring spacer 6.
  • the pressing surface 9a is arranged so as to face the fourth end surface 62b of the outer ring spacer 6 in the axial direction.
  • the housing 8 and the front lid 9 position the outer ring 2a, the outer ring 2b, and the outer ring spacer 6 in the axial direction.
  • the main shaft 11 has an outer diameter surface 11a that faces the inner diameter surfaces of the inner rings 3a and 3b and the inner ring spacer 7, and protrudes outward in the radial direction with respect to the outer diameter surface 11a.
  • the convex surface 11b is in contact with the end surface located on the opposite side of the end surface of the inner ring 3b that is in contact with the inner ring spacer 7.
  • the inner rings 3a and 3b and the inner ring spacer 7 are tightly fitted to the main shaft 11, for example.
  • the fixing member 12 is fixed to the main shaft 11.
  • the fixing member 12 is arranged outside the outer diameter surface 11a of the main shaft 11 in the radial direction and has a pressing surface 14a that faces the convex surface 11b of the main shaft 11 in the axial direction.
  • the pressing surface 14a is in contact with the end surface located on the opposite side of the end surface of the inner ring 3a in contact with the inner ring spacer 7.
  • the main shaft 11 and the fixing member 12 position the inner ring 3a, the inner ring 3b, and the inner ring spacer 7 in the axial direction.
  • the fixing member 12 has, for example, a nut 13 and a spacer 14.
  • the nut 13 is provided so as to be screwed onto the outer diameter surface 11 a of the main shaft 11.
  • the nut 13 is connected to the inner ring 3 a via a spacer 14.
  • the spacer 14 is provided so as to slide on the outer diameter surface 11 a of the main shaft 11.
  • One end face of the spacer 14 in the axial direction is in contact with the nut 13, and the other end face thereof constitutes the pressing face 14a.
  • the bearing device 100 is assembled, for example, as follows.
  • the second bearing 1b, the outer ring spacer 6 and the inner ring spacer 7, the first bearing 1a, and the spacer 14 are sequentially inserted into the main shaft 11 from the convex surface 12a side.
  • a design gap is previously created between the inner ring 3a and the inner ring spacer 7, and between the inner ring 3b and the inner ring spacer 7. It is provided.
  • the nut 13 is tightened. As a result, the first bearing 1a, the second bearing 1b, the outer ring spacer 6, the inner ring spacer 7, the main shaft 11, and the fixing member 12 are connected, and the gap is eliminated.
  • the first bearing 1a, the second bearing 1b, the outer ring spacer 6, the inner ring spacer 7, the main shaft 11, and the fixing member 12 connected as described above are inserted into the housing 8.
  • the first bearing 1a, the outer ring spacer 6 and the inner ring spacer 7, and the second bearing 1b are sequentially inserted into the housing 8 from the convex surface 8b side.
  • the front lid 9 is fixed to the housing 8. In the bearing device 100 assembled in this way, a preload is applied to the first bearing 1a and the second bearing 1b.
  • the axial force applied to the inner ring 3a by tightening the nut 13 is transmitted to the outer ring 2a via the balls 4a, and further from the outer ring 2a to the outer ring 2b via the outer ring spacer 6. It is transmitted.
  • the force transmitted to the outer ring 2b is transmitted to the inner ring 3b via the balls 4b.
  • compressive stress is applied to each contact point between the outer ring 2a and the inner ring 3a of the first bearing 1a and the ball 4a, and each contact point between the outer ring 2b and the inner ring 3b of the second bearing 1b and the ball 4b.
  • the first bearing 1a, the outer ring spacer 6 and the second bearing 1b constitute a part of a transmission path of the force for applying a preload to the first bearing 1a and the second bearing 1b.
  • the preload sensor 10 is disposed, for example, between the first spacer member 61 and the second spacer member 62 of the outer ring spacer 6 in the axial direction.
  • the preload sensor 10 has a first surface 20a facing one side in the first direction and a second surface 30a facing the other side in the first direction. It is provided to detect changes in the applied load.
  • the preload sensor 10 is arranged on the force transmission path for applying a preload to the first bearing 1a and the second bearing 1b such that the first direction is along the axial direction.
  • the first surface 20a of the preload sensor 10 is connected to the third end surface 62a of the second spacer member 62, for example.
  • the first surface 20a is connected to a partial region of the third end surface 62a located outside the through hole 62h in the radial direction, for example.
  • the second surface 30a of the preload sensor 10 is connected to the second end surface 61b of the first spacer member 61, for example.
  • the second surface 30a is connected to the entire surface of the second end surface 61b, for example.
  • the preload sensor 10 includes a pressure sensing unit 20 and a buffer unit 30.
  • the pressure sensitive portion 20 has a first surface 20a and a third surface 20b located on the opposite side of the first surface 20a.
  • the first surface 20a and the third surface 20b form both axial end surfaces of the pressure sensitive portion 20.
  • the first surface 20a is a surface closest to the outer ring 2b among the surfaces of the pressure-sensitive portion 20 facing the axial direction.
  • the third surface 20b is a surface closest to the outer ring 2a among the surfaces of the pressure sensitive portion 20 facing the axial direction.
  • the buffer section 30 has a second surface 30a and a fourth surface 30b located on the opposite side of the second surface 30a.
  • the second surface 30a and the fourth surface 30b form both end surfaces of the buffer section 30 in the axial direction.
  • the second surface 30a is the surface closest to the outer ring 2a among the surfaces of the buffer section 30 that face the axial direction.
  • the fourth surface 30b is a surface closest to the outer ring 2b among the surfaces of the cushioning section 30 that face the axial direction.
  • the entire third surface 20b of the pressure sensitive portion 20 is in contact with the fourth surface 30b of the buffer portion 30.
  • the pressure sensitive portion 20 includes a first terminal portion 22a and a second terminal portion 22b, a pressure sensitive pattern portion 22c, and covering portions 21 and 23.
  • the first terminal portion 22a, the second terminal portion 22b, the pressure-sensitive pattern portion 22c, and the covering portions 21 and 23 are not shown.
  • the first terminal portion 22a and the second terminal portion 22b are electrically connected to external wiring via, for example, solder. That is, the first terminal portion 22a and the second terminal portion 22b are exposed from the covering portions 21 and 23 and the buffer portion 30.
  • the pressure sensitive pattern portion 22c connects between the first terminal portion 22a and the second terminal portion 22b.
  • the pressure-sensitive pattern portion 22c is covered with the covering portions 21 and 23, and is arranged so as to overlap the buffer portion 30 in the axial direction.
  • the direct current resistance between the first terminal portion 22a and the second terminal portion 22b of the pressure sensitive pattern portion 22c changes according to the pressure acting between the first surface 20a and the second surface 30a.
  • the first terminal portion 22a, the second terminal portion 22b, and the pressure sensitive pattern portion 22c are formed by, for example, patterning a pressure sensitive film formed on the insulating film 21 described later.
  • the covering portions 21 and 23 are provided so as to cover the pressure sensitive pattern portion 22c.
  • the coating portions 21 and 23 have, for example, an insulating film 21 and a protective film 23.
  • the insulating film 21 has the first surface 20a and a surface 21b located on the opposite side of the first surface 20a.
  • the first terminal portion 22a, the second terminal portion 22b, the pressure sensitive pattern portion 22c, and the protective film 23 are arranged on the surface 21b.
  • the protective film 23 is provided so as to cover the pressure sensitive pattern portion 22c of the first terminal portion 22a, the second terminal portion 22b, and the pressure sensitive pattern portion 22c arranged on the surface 21b of the insulating film 21.
  • the protective film 23 has a surface 23a connected to the surface 21b directly or via the pressure-sensitive pattern portion 22c, and a third surface 20b located on the opposite side of the surface 23a.
  • the material forming the coating portions 21 and 23 may be any material having electrical insulation, but is preferably a material that is not easily corroded by lubricating oil, such as silicon dioxide (SiO 2 ), aluminum oxide (Al). 2 O 3 ) and / or diamond-like carbon (DLC).
  • the material forming the pressure-sensitive pattern portion 22c may be the same as an alloy material forming a general strain gauge, for example, a copper nickel alloy (Cu-Ni alloy) and a nickel chromium alloy (Ni-Cr alloy). At least one is included.
  • the buffer section 30 is provided so as to overlap the pressure-sensitive pattern section 22c in the axial direction.
  • the radial width of the buffer portion 30 exceeds, for example, the radial width of the pressure sensitive portion 20.
  • the buffer portion 30 has, for example, a second surface 30a connected to the second end surface 61b and a surface 30b connected to the third surface 20b of the pressure sensitive portion 20.
  • the second surface 30a of the buffer portion 30 is connected to, for example, the entire second end surface 61b.
  • An escape portion (not shown) is provided on the second surface 30a side so as not to press the wires connected to the first terminal portion 22a and the second terminal portion 22b.
  • the buffer portion 30 has a through hole 30h continuous with the hole 61h and the through hole 62h.
  • the third surface 20b of the pressure-sensitive portion 20 is connected to a partial region of the surface 30b located outside the through hole 30h in the radial direction, for example.
  • the axial thickness of the buffer portion 30 exceeds the thickness of each of the insulating film 21 and the protective film 23, for example.
  • the axial thickness of the buffer portion 30 is, for example, 100 ⁇ m or less.
  • the surface 30b of the buffer portion 30 may or may not be bonded to the pressure-sensitive portion 20 as long as it is in contact with the third surface 20b.
  • the preload sensor 10 includes, for example, a plurality of pressure sensitive parts 20.
  • the plurality of pressure-sensitive portions 20 are arranged, for example, at intervals in the circumferential direction.
  • Each of the plurality of pressure sensitive portions 20 is connected to, for example, one buffer portion 30 provided in a ring shape.
  • the preload sensor 10 may include a plurality of buffer portions 30 arranged at intervals in the circumferential direction. In this case, each buffer section 30 is connected to, for example, one pressure sensitive section 20.
  • the bearing device 100 further includes a sensor signal processing unit 40 shown in FIG.
  • the sensor signal processing unit 40 includes resistors R1 to R3 connected to the DC power supply VSDC, the preload sensor 10, and a differential amplifier AMP.
  • the resistors R1 to R3 and the preload sensor 10 form a bridge circuit.
  • a resistor R1 and a resistor R2 are connected in series between the positive electrode and the negative electrode of the DC power source VSDC.
  • the preload sensor 10 and the resistor R3 are connected in series between the positive electrode and the negative electrode of the DC power source VSDC.
  • One input node of the amplifier AMP is connected to the connection node between the resistors R1 and R2.
  • the other input node of the amplifier AMP is connected to the connection node between the preload sensor 10 and the resistor R3.
  • Such a sensor signal processing unit 40 includes the bridge circuit shown in FIG. 6, so that the DC resistance of the preload sensor 10 caused by a change in the preload applied to the first bearing 1a and the second bearing 1b. Can be detected.
  • the preload sensor 10 is connected to the detection circuit of the sensor signal processing unit 40 via the cable 16 shown in FIG.
  • the housing 8 is provided with an insertion passage 15 through which the cable 16 is passed.
  • One end of the insertion passage 15 is open to the inner diameter surface of the inner cylinder 81 of the housing 8.
  • the rigidity (longitudinal elastic modulus) of the material forming the cushioning portion 30 is lower than that of the material forming the outer ring spacer 6.
  • the rigidity (longitudinal elastic modulus) of the material forming the cushioning portion 30 is lower than that of the material forming the covering portions 21 and 23.
  • the material forming the buffer section 30 may be a metal such as aluminum (Al) or copper (Cu), or an alloy.
  • the buffer section 30 may be formed by, for example, a sputtering method on the second surface 30a and then partially removing the film formed on a region where the buffer section 30 is not required to be formed.
  • the material forming the buffer portion 30 may include a fluororesin, and may be, for example, a coating material using polyamide-imide as a binder and polytetrafluoroethylene (PTFE) as a solid lubricant.
  • the buffer section 30 may be formed by masking an area where the buffer section 30 is not required to be formed and then applying, spraying, or spraying the coating material.
  • the cushioning portion 30 may be formed by adhering a preformed sheet material made of PTFE to a region where the cushioning portion 30 is to be formed.
  • the preload sensor 10 can be formed by any method as long as it has the above configuration.
  • the preload sensor 10 may be formed by assembling the pressure sensitive portion 20 and the cushioning portion 30, which are formed separately from each other, into the outer ring spacer 6.
  • each of the pressure sensing portion 20 and the buffer portion 30 formed separately from the first spacer member 61 and the second spacer member 62 has the first spacer member 61 or the second spacer member. It may be formed by assembling the first spacer member 61 and the second spacer member 62 after being assembled to the seat member 62.
  • each of the pressure-sensitive portion 20 and the buffer portion 30, which are integrally formed with the first spacer member 61 or the second spacer member 62, has the first spacer member 61 and the second spacer member. It may be formed by assembling 62.
  • the insulating film 21 is formed on the third end surface 62a of the second spacer member 62 by a sputtering method or the like.
  • the first terminal portion 22a, the second terminal portion 22b and the pressure sensitive pattern portion 22c are formed on the surface 21b of the insulating film 21 by a sputtering method or the like.
  • the protective film 23 is formed on the surface 21b of the insulating film 21 so as to cover the pressure sensitive pattern portion 22c by a sputtering method or the like.
  • the protective film 23 formed on the first terminal portion 22a and the second terminal portion 22b is selectively removed, or the protective film 23 is formed on the first terminal portion 22a and the second terminal portion 22b.
  • the first terminal portion 22a and the second terminal portion 22b may be masked before forming the protective film 23. In this way, as shown in FIG. 4, the pressure sensitive portion 20 formed integrally with the second spacer member 62 is prepared.
  • the buffer portion 30 is formed on the second end surface 61b of the first spacer member 61 by sputtering or the like. Thereby, as shown in FIG. 4, the buffer portion 30 formed integrally with the first spacer member 61 is prepared.
  • the first spacer member 61 and the second spacer member 62 are relatively positioned by the positioning member 63.
  • the positioning member 63 is inserted into the holes 61h and the through holes 62h of the first spacer member 61 and the second spacer member 62 arranged as shown in FIG.
  • the member 61 and the second spacer member 62 are relatively positioned in the circumferential direction and the radial direction.
  • the preload sensor 10 in which the pressure sensitive portion 20 and the buffer portion 30 are laminated in the axial direction is formed.
  • the preload sensor 10 may be integrally formed in advance as a laminated body of the pressure sensitive portion 20 and the buffer portion 30 before being assembled to the outer ring spacer 6.
  • the preload sensor 10 may be formed as the above-mentioned laminated body formed separately from the first spacer member 61 and the second spacer member 62.
  • the preload sensor 10 may be formed as the above laminated body integrally formed with the first spacer member 61 or the second spacer member 62.
  • the preload sensor 10 includes a pressure-sensitive pattern portion 22c whose DC resistance changes according to a pressure acting in the first direction, coating portions 21 and 23 that cover the pressure-sensitive pattern portion 22c, and coating portions 21 and 23 in the first direction. And a cushioning section 30 disposed adjacent to.
  • the longitudinal elastic modulus of the material forming the cushioning portion 30 is less than the longitudinal elastic modulus of the material forming the covering portions 21 and 23.
  • the detection accuracy of the conventional preload sensor that does not include the buffer section 30 is easily affected by the surface texture such as surface roughness and flatness of each of the two surfaces sandwiching the preload sensor.
  • the surface texture such as surface roughness and flatness of each of the two surfaces sandwiching the preload sensor.
  • the pressure-sensitive pattern portion of the preload sensor is Since the two surfaces are not uniformly pressed, it is difficult to measure the change in the force applied by the pressing with high accuracy.
  • the preload placed between the above two surfaces of the general bearing or the like It is difficult for a sensor to detect a change in bearing preload with high accuracy.
  • the preload sensor 10 changes the force in the first direction regardless of the surface roughness and the flatness of the surface of the buffer section 30 in contact with the second surface 30a, as compared with the conventional preload sensor that does not include the buffer section 30. Can be detected stably. That is, the preload sensor 10 can stably and highly accurately detect a change in the preload applied to the bearing even when the preload sensor 10 is arranged adjacent to a general bearing and a spacer.
  • the preload sensor 10 can be formed integrally with the outer ring spacer 6 by forming and processing the pressure sensitive portion 20 and the buffer portion 30 on the outer ring spacer 6.
  • the preload sensor 10 in the bearing device 100 before being attached to the housing 8, the preload sensor 10 is positioned with respect to the outer ring spacer 6. Therefore, such a bearing device 100 is not positioned on the outer ring spacer 6 before being mounted on the housing 8, but is equipped with the preload sensor 10 which is mounted on the housing 8 and positioned on the outer ring spacer 6. It is easier to assemble than the device.
  • 2008-286219 has a complicated structure in which a magnetostrictive material and a coil as a preload detection device are sandwiched between axially divided outer ring spacers. In this case, it is necessary to attach the bearing device, which is held so that the pair of spacer members are not separated, to the housing. Such an assembly is difficult.
  • the bearing device 100 is more easily assembled than the bearing device including the preload detection device.
  • the coating portions 21 and 23 further have a third surface 20b located on the opposite side of the first surface 20a.
  • the buffer portion 30 further has a fourth surface 30b located on the opposite side of the second surface 30a. The entire surface of the third surface 20b is in contact with the fourth surface 30b.
  • the buffer portion 30 is reliably arranged on the transmission path of the force applied to the pressure sensitive pattern portion 22c in the first direction.
  • the covering portions 21 and 23 cover the pressure-sensitive pattern portion 22c, the areas of the first surface 20a and the third surface 20b viewed from the first direction exceed the area of the pressure-sensitive pattern portion 22c. Therefore, in the preload sensor 10, the pressure sensing portion 20 and the pressure sensing portion 20 are buffered as compared with the preload sensor 10 in which the planar shape and dimensions of the buffering portion 30 viewed from the first direction are equal to those of the pressure sensing pattern portion 22c. The part 30 is easily positioned.
  • the material forming the buffer section 30 includes resin.
  • the buffer portion 30 is relatively easily formed by coating, spraying, spraying, or the like.
  • the longitudinal elastic modulus is smaller than that of metal, so that the pressure-sensitive pattern portion 22c can be pressed reliably even if the surface shape (flatness) of the preload sensor 10 is poor.
  • the thickness of the buffer portion 30 in the first direction is 100 ⁇ m or less.
  • the longitudinal elastic modulus of the material forming the cushioning portion 30 is less than the longitudinal elastic modulus of the material forming the first spacer member 61 and the second spacer member 62.
  • the rigidity of the outer ring spacer 6 decreases.
  • the rigidity of the outer ring spacer 6 due to the provision of the cushioning portion 30 in the preload sensor 10 causes a decrease in rigidity when the bearing device 100 is used in a machine tool. It is suppressed to the extent that it does not affect the machining accuracy of the machine tool.
  • the bearing device 100 includes the preload sensor 10, the first bearing 1a and the second bearing 1b, and the outer ring spacer 6 arranged adjacent to the first bearing 1a and the second bearing 1b.
  • the preload sensor 10, the first bearing 1a and the second bearing 1b, and the outer ring spacer 6 are arranged so that the first direction is along the axial direction.
  • the first surface 20a and the second surface 30a of the preload sensor 10 are in contact with the outer ring spacer 6.
  • the longitudinal elastic modulus of the material forming the buffer portion 30 is less than the longitudinal elastic coefficient of the material forming the outer ring spacer 6.
  • the bearing device 100 is suitable for a bearing device that supports a rotating shaft that rotates at high speed, such as a main shaft of a machine tool.
  • the bearing device 100 includes a plurality of preload sensors 10 arranged at intervals in the circumferential direction. According to such a bearing device 100, the state in which the eccentric load is applied to the first bearing 1a and the second bearing 1b can also be detected by comparing the outputs of the preload sensors 10.
  • the preload sensor 10 may be arranged at any position on the transmission path.
  • the preload sensor 10 may be arranged, for example, between the inner ring 3 a and the spacer 14.
  • the outer ring spacer 6 may be integrally formed.
  • the outer ring spacer 6 shown in FIGS. 1 to 3 has a portion projecting inward in the radial direction with respect to the outer rings 2a and 2b, but is not limited to this.
  • the inner diameter surfaces of the first spacer member 61 and the second spacer member 62 of the outer ring spacer 6 may be provided, for example, so as to be continuous with the inner diameter surfaces of the outer rings 2a and 2b in the axial direction.
  • the entire surface of the third surface 20b of the pressure sensitive portion 20 is provided so as to contact the entire surface of the fourth surface 30b of the buffer portion 30, for example.
  • the first surface 20a of the preload sensor 10 is in contact with the second end surface 61b of the first spacer member 61, and the second surface 30a is the third end surface 62a of the second spacer member 62.
  • the bearing device 101 according to the second embodiment has basically the same configuration as the bearing device 100 according to the first embodiment, but the second space of the outer ring spacer 6 is different.
  • the seat member 62 has a protruding portion 62p protruding in the axial direction, and the top surface of the protruding portion 62p constitutes the third end surface 62a.
  • the bearing device 101 according to the second embodiment is different from the bearing device 100 in that the top surface of the protrusion 62p is configured as the fifth surface in contact with the first surface 20a of the preload sensor 10.
  • the first terminal portion 22a, the second terminal portion 22b, the pressure-sensitive pattern portion 22c, and the covering portions 21 and 23 are not shown. Further, in FIG. 8, the positioning member 63 is not shown.
  • the protruding portion 62p is provided so as to be continuous with the outer diameter surface of the second spacer member 62, for example.
  • the protruding portion 62p is provided so as to overlap at least a part of the outer rings 2a and 2b in the axial direction, and is provided so as to overlap the entire outer rings 2a and 2b in the axial direction, for example.
  • the top surface of the protrusion 62p is the surface of the first spacer member 61 that faces the axial direction and that is closest to the outer ring 2a.
  • the top surface of the protrusion 62p constitutes the third end surface 62a.
  • the preload sensor 10 according to the second embodiment has basically the same configuration as the preload sensor 10 according to the first embodiment.
  • the radial width of the buffer portion 30 is, for example, equal to the radial width of the pressure sensitive portion 20.
  • the second surface 30a of the preload sensor 10 is in contact with only a partial region of the second end surface 61b located outside in the radial direction.
  • the first surface 20a of the preload sensor 10 is in contact with the entire surface of the third end surface 62a, for example.
  • the area of the first surface 20a of the preload sensor 10 is smaller than the area of the first surface 20a of the preload sensor 10 according to the first embodiment, for example.
  • the preload sensor 10 and the bearing device 101 according to the second embodiment have basically the same configurations as the preload sensor 10 and the bearing device 100 according to the first embodiment, the preload sensor 10 and the bearing according to the first embodiment are provided. The same effect as the device 100 can be obtained.
  • the area of the region subjected to the finishing process is smaller than that in the case where the finishing process is performed on the entire third end face 62a shown in FIG. Finishing can be performed relatively easily.
  • the first spacer member 61 in addition to the second spacer member 62, also has the protrusion 61p protruding in the axial direction. Good.
  • the top surface of the protrusion 61p is provided so as to contact the top surface of the protrusion 62p.
  • the top surface of the protrusion 61p constitutes the second end surface 61b, and is in contact with, for example, the second surface 30a of the preload sensor 10.
  • the top surface of the protrusion 61p may be in contact with the first surface 20a of the preload sensor 10, and the top surface of the protrusion 62p may be in contact with the second surface 30a of the preload sensor.
  • the area of the second surface 30a of the preload sensor 10 shown in FIG. 10 is smaller than the area of the second surface 30a of the preload sensor 10 shown in FIGS. 8 and 9. Since the area of the second end face 61b is also small, the area where high processing accuracy is required is small, and thus the processing is easy.
  • the second spacer member 62 does not have the protrusion 62p, and only the first spacer member 61 may have the protrusion 61p.
  • the bearing device 102 according to the third embodiment has basically the same configuration as the bearing device 100 according to the first embodiment, but the second surface 30a of the preload sensor 10 is different. Are arranged so as to contact the outer ring 2b of the second bearing 1b.
  • the bearing device 102 according to the third embodiment is different from the bearing device 100 in that the axial end surface 2c of the outer ring 2b is configured as a sixth surface in contact with the second surface 30a of the preload sensor 10. .
  • the first terminal portion 22a, the second terminal portion 22b, the pressure-sensitive pattern portion 22c, and the covering portions 21 and 23 are not shown.
  • the outer ring spacer 6 is, for example, integrally configured.
  • the outer ring spacer 6 faces the first bearing 1a side in the axial direction and is located on the side opposite to the seventh end surface 6a in contact with the outer ring 2a and the seventh end surface 6a, and the second bearing 1b side.
  • an eighth end face 6b arranged so as to face the end face 2c of the outer ring 2b in the axial direction.
  • the area of the eighth end surface 6b is, for example, equal to the area of the end surface 2c of the outer ring 2b.
  • the first surface 20a of the preload sensor 10 is in contact with the eighth end surface 6b of the outer ring spacer 6.
  • the second surface 30a is in contact with the end surface 2c of the outer ring 2b. That is, the eighth end surface 6b of the outer ring spacer 6 is configured as a fifth surface, and the end surface 2c of the outer ring 2b is configured as a sixth surface.
  • the preload sensor 10 and the bearing device 102 according to the third embodiment have basically the same configurations as the preload sensor 10 and the bearing device 100 according to the first embodiment, the preload sensor 10 and the bearing according to the first embodiment are provided. The same effect as the device 100 can be obtained.
  • the first surface 20a of the preload sensor 10 may be in contact with the end surface 2c of the outer ring 2b, and the second surface 30a may be in contact with the eighth end surface 6b of the outer ring spacer 6. That is, the end surface 2c of the outer ring 2b may be configured as the fifth surface, and the eighth end surface 6b of the outer ring spacer 6 may be configured as the sixth surface.
  • At least one of the first surface 20a and the second surface 30a of the preload sensor 10 is in contact with the outer ring spacer 6, but the invention is not limited to this. As shown in FIG. 14, at least one of the first surface 20a and the second surface 30a of the preload sensor 10 may be in contact with the inner ring spacer 7. In this case, the longitudinal elastic modulus of the material forming the buffer portion 30 may be less than the longitudinal elastic coefficient of the material forming the inner ring spacer 7.
  • the first bearing 1a and the second bearing 1b are a front face combination (DF).
  • DF front face combination
  • the front lid 9 by tightening the front lid 9 to the housing 8 with a bolt or the like (not shown), a preload is applied from the second bearing 1b side toward the first bearing 1a side.
  • the axial force applied to the outer ring 2b by tightening the front lid 9 is transmitted to the inner ring 3b via the balls 4b, and further from the inner ring 3b to the inner ring 3a via the inner ring spacer 7.
  • the force transmitted to the inner ring 3a is transmitted to the outer ring 2a via the balls 4a.
  • the preload sensor 10 is arranged, for example, between the inner ring 3b and the inner ring spacer 7 in the transmission path.
  • the position of the preload sensor 10 may be another position on the transmission path.
  • the preload sensor 10 when the preload sensor 10 is arranged between the inner ring 3b as the rotating wheel and the inner ring spacer 7 as the rotating side spacer, the preload sensor 10 also has the main shaft 11, the inner ring 3b, and the inner ring 3b. It rotates together with the inner ring spacer 7. Therefore, in the bearing device 103 shown in FIG. 14, the transmitter 51 for transmitting the output of the preload sensor 10 to the external device is arranged on the outer diameter surface of the inner ring spacer 7. Further, a receiver 52 is arranged at a position facing the transmitter 51 on the inner diameter surface of the outer ring spacer 6. The transmitter 51 and the receiver 52 are provided so as to communicate and supply power to each other in a non-contact manner.

Abstract

A preload sensor (10) is provided with a pressure-sensitive pattern part (22c) in which the direct-current resistance thereof varies in accordance with pressure applied in a first direction, coating parts (21, 23) for covering the pressure-sensitive pattern part (22c), and a buffer part (30) disposed adjacent to the coating parts (21, 23) in the first direction. The Young's modulus of the material constituting the buffer part (30) is less than the Young's modulus of the material constituting the coating parts (21, 23).

Description

軸受装置および予圧センサBearing device and preload sensor
 本発明は、軸受装置および予圧センサに関する。 The present invention relates to a bearing device and a preload sensor.
 工作機械のスピンドル装置では、加工精度および効率の向上のため、軸受の予圧管理が求められており、そのため軸受に付与される予圧(以下、軸受の予圧)を検出する要求がある。また、軸受に異常が起こる前にその予兆としての予圧の変化を検出して、軸受の異常を未然に防ぐ要求もある。 In the spindle device of machine tools, in order to improve machining accuracy and efficiency, preload management of bearings is required. Therefore, there is a demand to detect preload applied to bearings (hereinafter, preload of bearings). There is also a demand for detecting a change in preload as a symptom before a bearing abnormality occurs to prevent the bearing abnormality.
 特開2014-071085号公報には、金属薄膜を備え、該金属薄膜に圧力が作用したときの電気抵抗の変化に基づいて圧力を検出する薄膜センサが開示されている。 Japanese Unexamined Patent Publication No. 2014-071085 discloses a thin film sensor that includes a metal thin film and detects pressure based on a change in electric resistance when pressure is applied to the metal thin film.
特開2014-071085号公報JP, 2014-071085, A
 特開2014-071085号公報に記載の薄膜センサの厚みはサブミクロン台と薄く、特に上記金属薄膜の厚みは200nm程度と非常に薄いため、上記薄膜センサの検出精度は各薄膜センサが挟まれる2つの面の各々の表面粗さおよび平坦度等の面性状の影響を受けやすい。 The thin film sensor disclosed in Japanese Patent Laid-Open No. 2014-071085 has a thin thickness on the order of submicrons, and in particular, the thin metal film has a very thin thickness of about 200 nm. It is susceptible to surface properties such as surface roughness and flatness of each of the two surfaces.
 上記薄膜センサを軸受の予圧センサに適用する場合、複数の上記薄膜センサが、軸受および間座の少なくともいずれか(以下、軸受等)の軸方向に垂直な2つの面間に、周方向に互いに間隔を隔てて配置される必要がある。一方で、一般的な軸受等の軸方向に垂直な面の面性状は、その周方向において比較的大きなバラつきを有している。そのため、一般的な軸受等の上記2つの面間に配置された上記薄膜センサでは、軸受の予圧を高精度に測定することが困難である。 When the thin film sensor is applied to a preload sensor of a bearing, a plurality of the thin film sensors are arranged in a circumferential direction between two surfaces of at least one of the bearing and the spacer (hereinafter, bearing) perpendicular to the axial direction. It needs to be spaced apart. On the other hand, the surface texture of a surface of a general bearing or the like perpendicular to the axial direction has a relatively large variation in the circumferential direction. Therefore, it is difficult to measure the preload of the bearing with high accuracy by the thin film sensor arranged between the two surfaces of a general bearing or the like.
 本発明の主たる目的は、従来の予圧センサと比べて、軸受の予圧の変化を安定して検出することができる予圧センサおよび該予圧センサを備える軸受装置を提供することにある。 A main object of the present invention is to provide a preload sensor capable of detecting a change in bearing preload more stably than a conventional preload sensor, and a bearing device including the preload sensor.
 本発明に係る予圧センサは、第1方向の一方側を向いた第1面と、第1方向の他方側を向いた第2面とを有し、軸受の予圧を検出する予圧センサである。上記予圧センサは、第1端子部および第2端子部と、第1端子部と第2端子部との間を接続しており、かつ第1面と第2面との間に作用する圧力に応じて第1端子部と第2端子部との間の直流抵抗が変化する感圧パターン部と、感圧パターン部を覆う被覆部と、第1方向において被覆部に隣接して配置されている緩衝部とを備える。緩衝部を構成する材料の縦弾性係数は、被覆部を構成する材料の縦弾性係数未満である。 The preload sensor according to the present invention is a preload sensor that has a first surface facing one side in the first direction and a second surface facing the other side in the first direction, and detects the preload of the bearing. The preload sensor connects the first terminal portion and the second terminal portion to the first terminal portion and the second terminal portion, and detects the pressure acting between the first surface and the second surface. Accordingly, the pressure-sensitive pattern portion in which the direct current resistance between the first terminal portion and the second terminal portion changes, the covering portion covering the pressure-sensitive pattern portion, and the pressure-sensitive pattern portion are arranged adjacent to the covering portion in the first direction. And a buffer section. The longitudinal elastic modulus of the material forming the cushioning portion is less than the longitudinal elastic modulus of the material forming the covering portion.
 本発明に係る軸受装置は、本発明に係る予圧センサと、軸受と、軸受に隣接して配置される間座とを備える。予圧センサ、軸受、および間座は、第1方向が軸受および間座の軸方向に沿うように配置されている。予圧センサの被覆部および緩衝部の少なくともいずれかは、間座に接している。緩衝部を構成する材料の縦弾性係数は、間座を構成する材料の縦弾性係数未満である。 The bearing device according to the present invention includes the preload sensor according to the present invention, a bearing, and a spacer arranged adjacent to the bearing. The preload sensor, the bearing, and the spacer are arranged so that the first direction is along the axial direction of the bearing and the spacer. At least one of the coating portion and the buffer portion of the preload sensor is in contact with the spacer. The longitudinal elastic modulus of the material forming the cushioning portion is less than the longitudinal elastic modulus of the material forming the spacer.
 本発明によれば、従来の予圧センサと比べて、軸受の予圧の変化を安定して検出することができる予圧センサおよび該予圧センサを備える軸受装置を提供することができる。 According to the present invention, it is possible to provide a preload sensor capable of stably detecting a change in preload of a bearing and a bearing device including the preload sensor, as compared with a conventional preload sensor.
実施の形態1に係る予圧センサおよび軸受装置の周方向に垂直な部分断面図である。FIG. 3 is a partial cross-sectional view perpendicular to the circumferential direction of the preload sensor and the bearing device according to Embodiment 1. 図1に示される予圧センサおよび軸受装置の部分拡大図である。FIG. 2 is a partially enlarged view of a preload sensor and a bearing device shown in FIG. 1. 図1に示される予圧センサおよび軸受装置の軸方向から視た部分平面図である。FIG. 2 is a partial plan view of the preload sensor and the bearing device shown in FIG. 1 viewed from the axial direction. 図1に示される予圧センサおよび軸受装置の組立方法の一例を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing an example of an assembling method of the preload sensor and the bearing device shown in FIG. 1. 図1に示される予圧センサおよび軸受装置の軸方向から視た平面図である。It is the top view seen from the axial direction of the preload sensor and bearing device shown in FIG. 予圧センサによって予圧の変化を検出するための検出回路を示す図である。It is a figure which shows the detection circuit for detecting the change of preload by a preload sensor. 実施の形態1に係る予圧センサおよび軸受装置の変形例を示す部分断面図である。FIG. 7 is a partial cross-sectional view showing a modified example of the preload sensor and the bearing device according to the first embodiment. 実施の形態2に係る予圧センサおよび軸受装置を示す部分断面図である。FIG. 6 is a partial cross-sectional view showing a preload sensor and a bearing device according to a second embodiment. 図8に示される予圧センサおよび軸受装置の径方向に垂直な部分断面図である。FIG. 9 is a partial cross-sectional view perpendicular to the radial direction of the preload sensor and the bearing device shown in FIG. 8. 実施の形態2に係る予圧センサおよび軸受装置の他の変形例を示す部分断面図である。FIG. 7 is a partial cross-sectional view showing another modified example of the preload sensor and the bearing device according to the second embodiment. 実施の形態3に係る予圧センサおよび軸受装置を示す部分断面図である。FIG. 9 is a partial cross-sectional view showing a preload sensor and a bearing device according to a third embodiment. 図11に示される予圧センサおよび軸受装置の部分拡大図である。FIG. 12 is a partially enlarged view of the preload sensor and the bearing device shown in FIG. 11. 図11に示される予圧センサおよび軸受装置の変形例を示す部分断面図である。FIG. 12 is a partial cross-sectional view showing a modified example of the preload sensor and the bearing device shown in FIG. 11. 実施の形態1~3に係る予圧センサおよび軸受装置の変形例を示す部分断面図である。FIG. 7 is a partial cross-sectional view showing a modified example of the preload sensor and the bearing device according to the first to third embodiments.
 以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are designated by the same reference numerals, and the description thereof will not be repeated.
 (実施の形態1)
 図1~図3に示されるように、実施の形態1に係る軸受装置100は、第1軸受1a、第2軸受1b、外輪間座6および内輪間座7、ならびに予圧センサ10を主に備える。軸受装置100は、主軸11をハウジング8に対して回転可能に支持するように設けられている。第1軸受1aおよび第2軸受1bには、例えば定位置予圧が付与されている。
(Embodiment 1)
As shown in FIGS. 1 to 3, the bearing device 100 according to the first embodiment mainly includes a first bearing 1a, a second bearing 1b, an outer ring spacer 6 and an inner ring spacer 7, and a preload sensor 10. . The bearing device 100 is provided so as to rotatably support the main shaft 11 with respect to the housing 8. A fixed position preload is applied to the first bearing 1a and the second bearing 1b, for example.
 図1に示されるように、第1軸受1aおよび第2軸受1bは、例えば互いに同等の構成を備えている。第1軸受1aおよび第2軸受1bは、例えばアンギュラ玉軸受である。第1軸受1aおよび第2軸受1bは、例えば背面組み合わせ(DB)とされている。 As shown in FIG. 1, the first bearing 1a and the second bearing 1b have, for example, the same configuration. The first bearing 1a and the second bearing 1b are, for example, angular ball bearings. The first bearing 1a and the second bearing 1b are, for example, a back surface combination (DB).
 図1に示されるように、第1軸受1aは、外輪2a、内輪3a、玉4a、および保持器5aを含む。外輪2aは、外輪軌道面を有している。内輪3aは、外輪2aの径方向において外輪軌道面と間隔を隔てて配置されている内輪軌道面を有している。複数の玉4aは、外輪軌道面と内輪軌道面との間に配置されている。保持器5aは、外輪2aの周方向において複数の玉4aを一定の距離を隔てて保持している。第2軸受1bは、外輪2b、内輪3b、玉4b、および保持器5bを含む。外輪2b、内輪3b、玉4b、および保持器5bは、外輪2a、内輪3a、玉4a、および保持器5aと同様の構成を有している。軸受装置100では、外輪2a,2bが固定輪、内輪3a,3bが回転輪、外輪間座6が固定側間座、内輪間座7が回転側間座として構成されている。 As shown in FIG. 1, the first bearing 1a includes an outer ring 2a, an inner ring 3a, balls 4a, and a cage 5a. The outer ring 2a has an outer ring raceway surface. The inner ring 3a has an inner ring raceway surface which is arranged at a distance from the outer ring raceway surface in the radial direction of the outer ring 2a. The plurality of balls 4a are arranged between the outer ring raceway surface and the inner ring raceway surface. The cage 5a holds a plurality of balls 4a at a constant distance in the circumferential direction of the outer ring 2a. The second bearing 1b includes an outer ring 2b, an inner ring 3b, balls 4b, and a cage 5b. The outer ring 2b, the inner ring 3b, the balls 4b, and the cage 5b have the same configurations as the outer ring 2a, the inner ring 3a, the balls 4a, and the cage 5a. In the bearing device 100, the outer rings 2a and 2b are fixed wheels, the inner rings 3a and 3b are rotating wheels, the outer ring spacer 6 is a fixed side spacer, and the inner ring spacer 7 is a rotating side spacer.
 図1に示されるように、外輪間座6および内輪間座7は、第1軸受1aおよび第2軸受1bに隣接して配置されている。外輪間座6および内輪間座7は、環状に設けられており、各軸方向が第1軸受1aおよび第2軸受1bの各軸方向に沿うように配置されている。外輪間座6および内輪間座7は、軸受装置100が主軸11を支持している使用状態において、第1軸受1aと第2軸受1bとの相対的な位置を一定に保持する。 As shown in FIG. 1, the outer ring spacer 6 and the inner ring spacer 7 are arranged adjacent to the first bearing 1a and the second bearing 1b. The outer ring spacer 6 and the inner ring spacer 7 are provided in an annular shape, and are arranged so that the respective axial directions are along the respective axial directions of the first bearing 1a and the second bearing 1b. The outer ring spacer 6 and the inner ring spacer 7 hold the relative positions of the first bearing 1a and the second bearing 1b constant in a used state in which the bearing device 100 supports the main shaft 11.
 図1に示されるように、外輪間座6は、外輪間座6の軸方向において第1軸受1aの外輪2aと第2軸受1bの外輪2bとの間に挟まれている。外輪間座6は、例えば第1間座部材61および第2間座部材62を有している。第1間座部材61および第2間座部材62は、別体として環状に設けられており、上記軸方向に並んで配置されている。第1間座部材61および第2間座部材62は、上記径方向において内輪間座7と対向する内径面を有している。 As shown in FIG. 1, the outer ring spacer 6 is sandwiched between the outer ring 2a of the first bearing 1a and the outer ring 2b of the second bearing 1b in the axial direction of the outer ring spacer 6. The outer ring spacer 6 has, for example, a first spacer member 61 and a second spacer member 62. The first spacer member 61 and the second spacer member 62 are annularly provided as separate bodies and arranged side by side in the axial direction. The first spacer member 61 and the second spacer member 62 have inner diameter surfaces facing the inner ring spacer 7 in the radial direction.
 図1および図2に示されるように、第1間座部材61は、上記軸方向において第1軸受1a側を向いており、かつ外輪2aと接している第1端面61aと、第1端面61aとは反対側に位置する第2端面61bとを有している。第2端面61bは、外輪2bの上記軸方向の端面と対向している。第2端面61bは、第1間座部材61の上記軸方向に向いた表面のうち、外輪2bに最も近い面である。 As shown in FIGS. 1 and 2, the first spacer member 61 faces the first bearing 1a side in the axial direction and is in contact with the outer ring 2a, and the first end surface 61a and the first end surface 61a. And a second end surface 61b located on the side opposite to. The second end surface 61b faces the axial end surface of the outer ring 2b. The second end surface 61b is the surface closest to the outer ring 2b among the surfaces of the first spacer member 61 facing the axial direction.
 図1および図2に示されるように、第2間座部材62は、上記軸方向において第2軸受1b側を向いており、かつ第1間座部材61の第2端面61bと上記軸方向に対向する第3端面62aと、第3端面62aとは反対側に位置し、かつ外輪2bと接している第4端面62bとを有している。第3端面62aは、外輪2aの上記軸方向の端面と対向している。第3端面62aは、第2間座部材62の上記軸方向に向いた表面のうち、外輪2aに最も近い面である。 As shown in FIG. 1 and FIG. 2, the second spacer member 62 faces the second bearing 1b side in the axial direction, and the second spacer 61 and the second end surface 61b of the first spacer member 61 are arranged in the axial direction. It has the 3rd end surface 62a which opposes, and the 4th end surface 62b located in the opposite side to the 3rd end surface 62a, and contacting the outer ring 2b. The third end surface 62a faces the axial end surface of the outer ring 2a. The third end surface 62a is a surface closest to the outer ring 2a among the surfaces of the second spacer member 62 that face the axial direction.
 第3端面62aは、軸受装置100において後述する予圧センサ10の第1面20aと接する第5面として構成されている。第2端面61bは、軸受装置100において後述する予圧センサ10の第2面30aと接する第6面として構成されている。 The third end surface 62a is configured as a fifth surface in contact with the first surface 20a of the preload sensor 10 described later in the bearing device 100. The second end surface 61b is configured as a sixth surface in contact with the second surface 30a of the preload sensor 10 described later in the bearing device 100.
 図1に示されるように、第1間座部材61は、例えば上記軸方向において第1端面61aよりも第2軸受1b側に位置して第1軸受1a側を向いており、かつ上記径方向において第1端面61aよりも内側に位置する第5端面61cをさらに有している。 As shown in FIG. 1, the first spacer member 61 is located closer to the first bearing 1a side than the first end face 61a in the axial direction, and faces the first bearing 1a side, and is in the radial direction, for example. In, it further has a fifth end face 61c located inside the first end face 61a.
 図2に示されるように、第2間座部材62は、例えば上記軸方向において第4端面62bよりも第1軸受1a側に位置して第2軸受1b側を向いており、かつ上記径方向において第4端面62bよりも内側に位置する第6端面62cをさらに有している。 As shown in FIG. 2, the second spacer member 62 is located closer to the first bearing 1a side than the fourth end surface 62b in the axial direction, and faces the second bearing 1b side, and is in the radial direction, for example. In, it further has a sixth end face 62c located inside the fourth end face 62b.
 図1および図2に示されるように、第1間座部材61および第2間座部材62の上記径方向および上記周方向の相対的な位置は、位置決め部材63によって位置決めされている。図2に示されるように、第1間座部材61には、第2端面61bに開口した穴61hが設けられている。穴61hは、例えば上記軸方向に沿って延びており、かつ底面を有している。第2間座部材62には、第3端面62aと第6端面62cとの間を貫通する貫通孔62hが設けられている。穴61hおよび貫通孔62hは、上記軸方向において互いに連なりかつ位置決め部材63が挿入されるように設けられている。位置決め部材63は、位置決め部材63の一端が穴61hの底面に接しているときに位置決め部材63の他端が貫通孔62hの内部に配置されるように、設けられている。位置決め部材63は、例えば棒状に設けられている。 As shown in FIGS. 1 and 2, the relative positions of the first spacer member 61 and the second spacer member 62 in the radial direction and the circumferential direction are positioned by the positioning member 63. As shown in FIG. 2, the first spacer member 61 is provided with a hole 61h opened to the second end surface 61b. The hole 61h extends, for example, along the axial direction and has a bottom surface. The second spacer member 62 is provided with a through hole 62h penetrating between the third end surface 62a and the sixth end surface 62c. The hole 61h and the through hole 62h are provided so as to be continuous with each other in the axial direction and into which the positioning member 63 is inserted. The positioning member 63 is provided such that when one end of the positioning member 63 is in contact with the bottom surface of the hole 61h, the other end of the positioning member 63 is arranged inside the through hole 62h. The positioning member 63 is provided, for example, in a rod shape.
 なお、予圧センサ10を形成する第2端面61bと第3端面62aの各表面の表面粗さは、他の面よりも良くしておくのが望ましい。 The surface roughness of each of the second end surface 61b and the third end surface 62a forming the preload sensor 10 is preferably set to be better than the other surfaces.
 図1に示されるように、内輪間座7は、上記軸方向において第1軸受1aの内輪3aと第2軸受1bの内輪3bとの間に挟まれている。内輪間座7は、内輪3aと接している端面と、当該端面とは反対側に位置しかつ内輪3bと接している端面とを有している。内輪間座7は、上記径方向において第1間座部材61および第2間座部材62と対向するように配置されている。 As shown in FIG. 1, the inner ring spacer 7 is sandwiched between the inner ring 3a of the first bearing 1a and the inner ring 3b of the second bearing 1b in the axial direction. The inner ring spacer 7 has an end surface that is in contact with the inner ring 3a and an end surface that is located on the opposite side of the end surface and that is in contact with the inner ring 3b. The inner ring spacer 7 is arranged so as to face the first spacer member 61 and the second spacer member 62 in the radial direction.
 外輪間座6および内輪間座7を構成する材料は、従来の外輪間座および内輪間座を構成する材料と同等とすることができ、例えば鋼を含む。 The material forming the outer ring spacer 6 and the inner ring spacer 7 may be the same as the material forming the conventional outer ring spacer and inner ring spacer, and includes, for example, steel.
 図1に示されるように、ハウジング8は、外輪2a,2bおよび外輪間座6の各外径面と対向する内径面8aと、該内径面8aに対して上記径方向の内側に突出している凸面8bとを有している。凸面8bは、外輪間座6と接している外輪2aの端面とは反対側に位置する端面と接している。凸面8bは、外輪間座6の第1端面61aと上記軸方向に対向するように配置されている。内径面8aおよび凸面8bは、上記軸方向において凸面8bとは反対側から内径面8a内に挿入された軸受装置100が、外輪2aが凸面8bに接触するまでで上記軸方向に移動するように設けられている。外輪2a,2bおよび外輪間座6は、例えばハウジング8に対してすきま嵌めとされている。 As shown in FIG. 1, the housing 8 has an inner diameter surface 8a that faces the outer diameter surfaces of the outer rings 2a and 2b and the outer ring spacer 6, and projects inward in the radial direction with respect to the inner diameter surface 8a. It has a convex surface 8b. The convex surface 8b is in contact with the end surface located on the opposite side of the end surface of the outer ring 2a in contact with the outer ring spacer 6. The convex surface 8b is arranged so as to face the first end surface 61a of the outer ring spacer 6 in the axial direction. The inner diameter surface 8a and the convex surface 8b are arranged so that the bearing device 100 inserted into the inner diameter surface 8a from the side opposite to the convex surface 8b in the axial direction moves in the axial direction until the outer ring 2a contacts the convex surface 8b. It is provided. The outer rings 2a and 2b and the outer ring spacer 6 are loosely fitted to the housing 8, for example.
 なお、ハウジング8は、例えば軸受装置100を内部に収容する内筒81と、内筒81および主軸11の一部を内部に収容する外筒82とを有している。ハウジング8には、例えば冷却媒体流路83が形成されている。冷却媒体流路83は、例えば内筒81の外径面に対して凹状である溝部として構成されている。冷却媒体流路83は、例えば上記回転中心軸Oに対して螺旋状に延在するように設けられている。冷却媒体流路83内には冷却媒体が流される。これにより、軸受装置100は冷却される。 The housing 8 has, for example, an inner cylinder 81 that houses the bearing device 100 therein, and an outer cylinder 82 that houses a part of the inner cylinder 81 and the main shaft 11 therein. A cooling medium flow path 83 is formed in the housing 8, for example. The cooling medium flow path 83 is configured as a groove that is concave with respect to the outer diameter surface of the inner cylinder 81, for example. The cooling medium passage 83 is provided so as to extend spirally with respect to the rotation center axis O, for example. A cooling medium flows in the cooling medium flow path 83. As a result, the bearing device 100 is cooled.
 前蓋9は、図示しないボルト等によってハウジング8に固定されている。図1に示されるように、前蓋9は、上記径方向においてハウジング8の内径面8aよりも内側に配置されており、かつ上記軸方向においてハウジング8の凸面8bと対向する押さえ面9aを有している。押さえ面9aは、外輪間座6と接している外輪2bの端面とは反対側に位置する端面と接している。押さえ面9aは、外輪間座6の第4端面62bと上記軸方向に対向するように配置されている。ハウジング8および前蓋9は、上記軸方向において外輪2a、外輪2b、および外輪間座6を位置決めしている。 The front lid 9 is fixed to the housing 8 by a bolt or the like (not shown). As shown in FIG. 1, the front lid 9 is arranged inside the inner diameter surface 8a of the housing 8 in the radial direction and has a pressing surface 9a facing the convex surface 8b of the housing 8 in the axial direction. are doing. The pressing surface 9a is in contact with the end surface located on the opposite side of the end surface of the outer ring 2b in contact with the outer ring spacer 6. The pressing surface 9a is arranged so as to face the fourth end surface 62b of the outer ring spacer 6 in the axial direction. The housing 8 and the front lid 9 position the outer ring 2a, the outer ring 2b, and the outer ring spacer 6 in the axial direction.
 図1に示されるように、主軸11は、内輪3a,3bおよび内輪間座7の各内径面と対向する外径面11aと、該外径面11aに対して上記径方向の外側に突出している凸面11bとを有している。凸面11bは、内輪間座7と接している内輪3bの端面とは反対側に位置する端面と接している。内輪3a,3bおよび内輪間座7は、例えば主軸11に対してしまり嵌めとされている。 As shown in FIG. 1, the main shaft 11 has an outer diameter surface 11a that faces the inner diameter surfaces of the inner rings 3a and 3b and the inner ring spacer 7, and protrudes outward in the radial direction with respect to the outer diameter surface 11a. Has a convex surface 11b. The convex surface 11b is in contact with the end surface located on the opposite side of the end surface of the inner ring 3b that is in contact with the inner ring spacer 7. The inner rings 3a and 3b and the inner ring spacer 7 are tightly fitted to the main shaft 11, for example.
 図1に示されるように、固定部材12は、主軸11に固定されている。固定部材12は、上記径方向において主軸11の外径面11aよりも外側に配置されており、かつ上記軸方向において主軸11の凸面11bと対向する押さえ面14aを有している。押さえ面14aは、内輪間座7と接している内輪3aの端面とは反対側に位置する端面と接している。主軸11および固定部材12は、上記軸方向において内輪3a、内輪3b、および内輪間座7を位置決めしている。 As shown in FIG. 1, the fixing member 12 is fixed to the main shaft 11. The fixing member 12 is arranged outside the outer diameter surface 11a of the main shaft 11 in the radial direction and has a pressing surface 14a that faces the convex surface 11b of the main shaft 11 in the axial direction. The pressing surface 14a is in contact with the end surface located on the opposite side of the end surface of the inner ring 3a in contact with the inner ring spacer 7. The main shaft 11 and the fixing member 12 position the inner ring 3a, the inner ring 3b, and the inner ring spacer 7 in the axial direction.
 図1に示されるように、固定部材12は、例えばナット13と、スペーサ14とを有している。ナット13は、主軸11の外径面11aと螺合するように設けられている。ナット13は、スペーサ14を介して内輪3aと接続されている。スペーサ14は、主軸11の外径面11aに対して摺動するように設けられている。スペーサ14の上記軸方向の一方の端面はナット13に接しており、他方の端面は上記押さえ面14aを構成している。 As shown in FIG. 1, the fixing member 12 has, for example, a nut 13 and a spacer 14. The nut 13 is provided so as to be screwed onto the outer diameter surface 11 a of the main shaft 11. The nut 13 is connected to the inner ring 3 a via a spacer 14. The spacer 14 is provided so as to slide on the outer diameter surface 11 a of the main shaft 11. One end face of the spacer 14 in the axial direction is in contact with the nut 13, and the other end face thereof constitutes the pressing face 14a.
 軸受装置100は、例えば以下のように組み立てられる。第2軸受1b、外輪間座6および内輪間座7、第1軸受1a、ならびにスペーサ14が、凸面12a側から順に主軸11に挿通される。外輪2a、外輪間座6、および外輪2bが接触している状態において、内輪3aと内輪間座7との間、および内輪3bと内輪間座7との間には、予め設計上の隙間が設けられている。次に、ナット13が緊締される。これにより、第1軸受1a、第2軸受1b、外輪間座6、内輪間座7、主軸11、および固定部材12が接続され、かつ上記隙間が無くなる。 The bearing device 100 is assembled, for example, as follows. The second bearing 1b, the outer ring spacer 6 and the inner ring spacer 7, the first bearing 1a, and the spacer 14 are sequentially inserted into the main shaft 11 from the convex surface 12a side. When the outer ring 2a, the outer ring spacer 6, and the outer ring 2b are in contact with each other, a design gap is previously created between the inner ring 3a and the inner ring spacer 7, and between the inner ring 3b and the inner ring spacer 7. It is provided. Next, the nut 13 is tightened. As a result, the first bearing 1a, the second bearing 1b, the outer ring spacer 6, the inner ring spacer 7, the main shaft 11, and the fixing member 12 are connected, and the gap is eliminated.
 次に、上記のように接続された第1軸受1a、第2軸受1b、外輪間座6、内輪間座7、主軸11、および固定部材12がハウジング8に挿入される。第1軸受1a、外輪間座6および内輪間座7、ならびに第2軸受1bは、凸面8b側から順にハウジング8に挿入される。次に、前蓋9がハウジング8に固定される。このように組み立てられた軸受装置100において、第1軸受1aおよび第2軸受1bには予圧が付与されている。具体的には、ナット13が締め付けられることによって内輪3aに印加された上記軸方向への力は、玉4aを経て、外輪2aに伝わり、さらに外輪2aから外輪間座6を介して外輪2bに伝わる。外輪2bに伝わった上記力は、玉4bを経て、内輪3bに伝わる。これにより、第1軸受1aの外輪2aおよび内輪3aと玉4aとの各接触点、および第2軸受1bの外輪2bおよび内輪3bと玉4bとの各接触点に、圧縮応力が印加される。第1軸受1a、外輪間座6および第2軸受1bは、第1軸受1aおよび第2軸受1bに予圧を付与させる上記力の伝達経路の一部を構成している。 Next, the first bearing 1a, the second bearing 1b, the outer ring spacer 6, the inner ring spacer 7, the main shaft 11, and the fixing member 12 connected as described above are inserted into the housing 8. The first bearing 1a, the outer ring spacer 6 and the inner ring spacer 7, and the second bearing 1b are sequentially inserted into the housing 8 from the convex surface 8b side. Next, the front lid 9 is fixed to the housing 8. In the bearing device 100 assembled in this way, a preload is applied to the first bearing 1a and the second bearing 1b. Specifically, the axial force applied to the inner ring 3a by tightening the nut 13 is transmitted to the outer ring 2a via the balls 4a, and further from the outer ring 2a to the outer ring 2b via the outer ring spacer 6. It is transmitted. The force transmitted to the outer ring 2b is transmitted to the inner ring 3b via the balls 4b. As a result, compressive stress is applied to each contact point between the outer ring 2a and the inner ring 3a of the first bearing 1a and the ball 4a, and each contact point between the outer ring 2b and the inner ring 3b of the second bearing 1b and the ball 4b. The first bearing 1a, the outer ring spacer 6 and the second bearing 1b constitute a part of a transmission path of the force for applying a preload to the first bearing 1a and the second bearing 1b.
 図1および図2に示されるように、予圧センサ10は、例えば上記軸方向において外輪間座6の第1間座部材61と第2間座部材62との間に配置されている。予圧センサ10は、第1方向の一方側を向いた第1面20aと、第1方向の他方側を向いた第2面30aとを有しており、第1面20aおよび第2面30aに作用する荷重の変化を検出するように設けられている。予圧センサ10は、第1方向が上記軸方向に沿うように、第1軸受1aおよび第2軸受1bに予圧を付与させる上記力の伝達経路上に配置されている。 As shown in FIGS. 1 and 2, the preload sensor 10 is disposed, for example, between the first spacer member 61 and the second spacer member 62 of the outer ring spacer 6 in the axial direction. The preload sensor 10 has a first surface 20a facing one side in the first direction and a second surface 30a facing the other side in the first direction. It is provided to detect changes in the applied load. The preload sensor 10 is arranged on the force transmission path for applying a preload to the first bearing 1a and the second bearing 1b such that the first direction is along the axial direction.
 図1および図2に示されるように、予圧センサ10の第1面20aは、例えば第2間座部材62の第3端面62aに接続されている。第1面20aは、例えば上記径方向において貫通孔62hよりも外側に位置する第3端面62aの一部領域に接続されている。 As shown in FIGS. 1 and 2, the first surface 20a of the preload sensor 10 is connected to the third end surface 62a of the second spacer member 62, for example. The first surface 20a is connected to a partial region of the third end surface 62a located outside the through hole 62h in the radial direction, for example.
 図1および図2に示されるように、予圧センサ10の第2面30aは、例えば第1間座部材61の第2端面61bに接続されている。第2面30aは、例えば第2端面61bの全面に接続されている。 As shown in FIGS. 1 and 2, the second surface 30a of the preload sensor 10 is connected to the second end surface 61b of the first spacer member 61, for example. The second surface 30a is connected to the entire surface of the second end surface 61b, for example.
 図1および図2に示されるように、予圧センサ10は、感圧部20と、緩衝部30とを備える。感圧部20は、第1面20aと、第1面20aとは反対側に位置する第3面20bを有する。第1面20aおよび第3面20bは感圧部20の上記軸方向の両端面を成している。第1面20aは、感圧部20の上記軸方向を向いた表面のうち、外輪2bに最も近い面である。第3面20bは、感圧部20の上記軸方向を向いた表面のうち、外輪2aに最も近い面である。 As shown in FIGS. 1 and 2, the preload sensor 10 includes a pressure sensing unit 20 and a buffer unit 30. The pressure sensitive portion 20 has a first surface 20a and a third surface 20b located on the opposite side of the first surface 20a. The first surface 20a and the third surface 20b form both axial end surfaces of the pressure sensitive portion 20. The first surface 20a is a surface closest to the outer ring 2b among the surfaces of the pressure-sensitive portion 20 facing the axial direction. The third surface 20b is a surface closest to the outer ring 2a among the surfaces of the pressure sensitive portion 20 facing the axial direction.
 緩衝部30は、第2面30aと、第2面30aとは反対側に位置する第4面30bとを有する。第2面30aおよび第4面30bは緩衝部30の上記軸方向の両端面を成している。第2面30aは、緩衝部30の上記軸方向を向いた表面のうち、外輪2aに最も近い面である。第4面30bは、緩衝部30の上記軸方向を向いた表面のうち、外輪2bに最も近い面である。感圧部20の第3面20bの全体が、緩衝部30の第4面30bと接している。 The buffer section 30 has a second surface 30a and a fourth surface 30b located on the opposite side of the second surface 30a. The second surface 30a and the fourth surface 30b form both end surfaces of the buffer section 30 in the axial direction. The second surface 30a is the surface closest to the outer ring 2a among the surfaces of the buffer section 30 that face the axial direction. The fourth surface 30b is a surface closest to the outer ring 2b among the surfaces of the cushioning section 30 that face the axial direction. The entire third surface 20b of the pressure sensitive portion 20 is in contact with the fourth surface 30b of the buffer portion 30.
 図2および図3に示されるように、感圧部20は、第1端子部22aおよび第2端子部22bと、感圧パターン部22cと、被覆部21,23とを含む。なお、図1では、第1端子部22a、第2端子部22b、感圧パターン部22c、および被覆部21,23の図示が省略されている。 As shown in FIGS. 2 and 3, the pressure sensitive portion 20 includes a first terminal portion 22a and a second terminal portion 22b, a pressure sensitive pattern portion 22c, and covering portions 21 and 23. In FIG. 1, the first terminal portion 22a, the second terminal portion 22b, the pressure-sensitive pattern portion 22c, and the covering portions 21 and 23 are not shown.
 第1端子部22aおよび第2端子部22bは、例えば半田等を介して外部配線と電気的に接続される。つまり、第1端子部22aおよび第2端子部22bは、被覆部21,23および緩衝部30から露出している。 The first terminal portion 22a and the second terminal portion 22b are electrically connected to external wiring via, for example, solder. That is, the first terminal portion 22a and the second terminal portion 22b are exposed from the covering portions 21 and 23 and the buffer portion 30.
 感圧パターン部22cは、第1端子部22aと第2端子部22bとの間を接続している。感圧パターン部22cは、被覆部21,23に被覆されており、かつ上記軸方向において緩衝部30と重なるように配置されている。感圧パターン部22cの第1端子部22aと第2端子部22bとの間の直流抵抗は、第1面20aと第2面30aとの間に作用する圧力に応じて変化する。第1端子部22a、第2端子部22bおよび感圧パターン部22cは、例えば後述する絶縁膜21上に成膜された感圧膜がパターニングされることにより形成されたものである。 The pressure sensitive pattern portion 22c connects between the first terminal portion 22a and the second terminal portion 22b. The pressure-sensitive pattern portion 22c is covered with the covering portions 21 and 23, and is arranged so as to overlap the buffer portion 30 in the axial direction. The direct current resistance between the first terminal portion 22a and the second terminal portion 22b of the pressure sensitive pattern portion 22c changes according to the pressure acting between the first surface 20a and the second surface 30a. The first terminal portion 22a, the second terminal portion 22b, and the pressure sensitive pattern portion 22c are formed by, for example, patterning a pressure sensitive film formed on the insulating film 21 described later.
 図2に示されるように、被覆部21,23は、感圧パターン部22cを覆うように設けられている。被覆部21,23は、例えば絶縁膜21と、保護膜23とを有する。絶縁膜21は、上記第1面20aと、第1面20aとは反対側に位置する面21bとを有する。第1端子部22a、第2端子部22b、感圧パターン部22c、および保護膜23は、面21b上に配置されている。保護膜23は、絶縁膜21の面21b上に配置された第1端子部22a、第2端子部22b、および感圧パターン部22cのうち、感圧パターン部22cを覆うように設けられている。保護膜23は、面21bと直接または感圧パターン部22cを介して接続されている面23aと、面23aとは反対側に位置する第3面20bとを有する。 As shown in FIG. 2, the covering portions 21 and 23 are provided so as to cover the pressure sensitive pattern portion 22c. The coating portions 21 and 23 have, for example, an insulating film 21 and a protective film 23. The insulating film 21 has the first surface 20a and a surface 21b located on the opposite side of the first surface 20a. The first terminal portion 22a, the second terminal portion 22b, the pressure sensitive pattern portion 22c, and the protective film 23 are arranged on the surface 21b. The protective film 23 is provided so as to cover the pressure sensitive pattern portion 22c of the first terminal portion 22a, the second terminal portion 22b, and the pressure sensitive pattern portion 22c arranged on the surface 21b of the insulating film 21. . The protective film 23 has a surface 23a connected to the surface 21b directly or via the pressure-sensitive pattern portion 22c, and a third surface 20b located on the opposite side of the surface 23a.
 被覆部21,23を構成する材料は、電気的絶縁性を有する任意の材料であればよいが、好ましくは潤滑油によって腐食されにくい材料であり、例えば二酸化珪素(SiO2)、酸化アルミニウム(Al23)、およびダイヤモンドライクカーボン(DLC)の少なくともいずれかを含む。感圧パターン部22cを構成する材料は、一般的な歪みゲージを構成する合金材料と同等であってもよく、例えば銅ニッケル合金(Cu‐Ni合金)およびニッケルクロム合金(Ni‐Cr合金)の少なくともいずれかを含む。 The material forming the coating portions 21 and 23 may be any material having electrical insulation, but is preferably a material that is not easily corroded by lubricating oil, such as silicon dioxide (SiO 2 ), aluminum oxide (Al). 2 O 3 ) and / or diamond-like carbon (DLC). The material forming the pressure-sensitive pattern portion 22c may be the same as an alloy material forming a general strain gauge, for example, a copper nickel alloy (Cu-Ni alloy) and a nickel chromium alloy (Ni-Cr alloy). At least one is included.
 図1および図2に示されるように、緩衝部30は、上記軸方向において感圧パターン部22cと重なるように設けられている。緩衝部30の上記径方向の幅は、例えば感圧部20の上記径方向の幅を超えている。緩衝部30は、例えば第2端面61bと接続されている第2面30aと,感圧部20の第3面20bと接続されている面30bとを有している。 As shown in FIGS. 1 and 2, the buffer section 30 is provided so as to overlap the pressure-sensitive pattern section 22c in the axial direction. The radial width of the buffer portion 30 exceeds, for example, the radial width of the pressure sensitive portion 20. The buffer portion 30 has, for example, a second surface 30a connected to the second end surface 61b and a surface 30b connected to the third surface 20b of the pressure sensitive portion 20.
 図1および図2に示されるように、緩衝部30の第2面30aは、例えば第2端面61bの全面と接続されている。なお、第1端子部22aと第2端子部22bに接続される配線を押圧しないよう、第2面30a側に図示しない逃げ部を設ける。緩衝部30には、穴61hおよび貫通孔62hに連なる貫通孔30hが形成されている。感圧部20の第3面20bは、例えば上記径方向において貫通孔30hよりも外側に位置する面30bの一部領域に接続されている。緩衝部30の上記軸方向の厚みは、例えば絶縁膜21および保護膜23の各厚みを超えている。緩衝部30の上記軸方向の厚みは、例えば100μm以下である。 As shown in FIGS. 1 and 2, the second surface 30a of the buffer portion 30 is connected to, for example, the entire second end surface 61b. An escape portion (not shown) is provided on the second surface 30a side so as not to press the wires connected to the first terminal portion 22a and the second terminal portion 22b. The buffer portion 30 has a through hole 30h continuous with the hole 61h and the through hole 62h. The third surface 20b of the pressure-sensitive portion 20 is connected to a partial region of the surface 30b located outside the through hole 30h in the radial direction, for example. The axial thickness of the buffer portion 30 exceeds the thickness of each of the insulating film 21 and the protective film 23, for example. The axial thickness of the buffer portion 30 is, for example, 100 μm or less.
 緩衝部30の面30bは、感圧部20第3面20bと接触している限りにおいて、これと接着されていてもよいし、これと接着されていなくてもよい。 The surface 30b of the buffer portion 30 may or may not be bonded to the pressure-sensitive portion 20 as long as it is in contact with the third surface 20b.
 図5に示されるように、予圧センサ10は、例えば複数の感圧部20を含んでいる。複数の感圧部20は、例えば上記周方向において互いに間隔を隔てて配置されている。複数の感圧部20の各々は、例えば環状に設けられた1つの緩衝部30と接続されている。なお、予圧センサ10は、上記周方向において互いに間隔を隔てて配置された複数の緩衝部30を含んでいてもよい。この場合、各緩衝部30は、例えば1つの感圧部20と接続されている。 As shown in FIG. 5, the preload sensor 10 includes, for example, a plurality of pressure sensitive parts 20. The plurality of pressure-sensitive portions 20 are arranged, for example, at intervals in the circumferential direction. Each of the plurality of pressure sensitive portions 20 is connected to, for example, one buffer portion 30 provided in a ring shape. It should be noted that the preload sensor 10 may include a plurality of buffer portions 30 arranged at intervals in the circumferential direction. In this case, each buffer section 30 is connected to, for example, one pressure sensitive section 20.
 軸受装置100は、図6に示されるセンサ信号処理部40をさらに備えている。図6に示されるように、センサ信号処理部40は、DC電源VSDCに接続される抵抗R1~R3と、予圧センサ10と、差動アンプAMPとを含む。抵抗R1~R3と予圧センサ10とはブリッジ回路を構成している。DC電源VSDCの正極と負極との間には、抵抗R1と抵抗R2とが直列に接続されている。また、DC電源VSDCの正極と負極との間には、予圧センサ10と抵抗R3とが直列に接続されている。抵抗R1と抵抗R2との接続ノードには、アンプAMPの一方の入力ノードが接続されている。予圧センサ10と抵抗R3との接続ノードには、アンプAMPの他方の入力ノードが接続されている。このようなセンサ信号処理部40は、図6に示されるブリッジ回路を備えることによって、第1軸受1aおよび第2軸受1bに付与されている予圧が変化することによって引き起こされる予圧センサ10の直流抵抗の変化を検出することができる。 The bearing device 100 further includes a sensor signal processing unit 40 shown in FIG. As shown in FIG. 6, the sensor signal processing unit 40 includes resistors R1 to R3 connected to the DC power supply VSDC, the preload sensor 10, and a differential amplifier AMP. The resistors R1 to R3 and the preload sensor 10 form a bridge circuit. A resistor R1 and a resistor R2 are connected in series between the positive electrode and the negative electrode of the DC power source VSDC. Further, the preload sensor 10 and the resistor R3 are connected in series between the positive electrode and the negative electrode of the DC power source VSDC. One input node of the amplifier AMP is connected to the connection node between the resistors R1 and R2. The other input node of the amplifier AMP is connected to the connection node between the preload sensor 10 and the resistor R3. Such a sensor signal processing unit 40 includes the bridge circuit shown in FIG. 6, so that the DC resistance of the preload sensor 10 caused by a change in the preload applied to the first bearing 1a and the second bearing 1b. Can be detected.
 予圧センサ10は、図1に示されるケーブル16を介して上記センサ信号処理部40の検出回路に接続されている。ハウジング8には、ケーブル16が通される挿通路15が設けられている。挿通路15の一端は、ハウジング8の内筒81の内径面に開口している。 The preload sensor 10 is connected to the detection circuit of the sensor signal processing unit 40 via the cable 16 shown in FIG. The housing 8 is provided with an insertion passage 15 through which the cable 16 is passed. One end of the insertion passage 15 is open to the inner diameter surface of the inner cylinder 81 of the housing 8.
 緩衝部30を構成する材料の剛性(縦弾性係数)は、外輪間座6を構成する材料のそれよりも低い。緩衝部30を構成する材料の剛性(縦弾性係数)は、被覆部21,23を構成する材料のそれよりも低い。 The rigidity (longitudinal elastic modulus) of the material forming the cushioning portion 30 is lower than that of the material forming the outer ring spacer 6. The rigidity (longitudinal elastic modulus) of the material forming the cushioning portion 30 is lower than that of the material forming the covering portions 21 and 23.
 緩衝部30を構成する材料は、たとえばアルミニウム(Al)や銅(Cu)などの金属、あるいは合金でもよい。緩衝部30は、例えばスパッタリング法により第2面30a上に成膜した後、緩衝部30を形成する必要がない領域上に形成された膜を部分的に除去してもよい。 The material forming the buffer section 30 may be a metal such as aluminum (Al) or copper (Cu), or an alloy. The buffer section 30 may be formed by, for example, a sputtering method on the second surface 30a and then partially removing the film formed on a region where the buffer section 30 is not required to be formed.
 緩衝部30を構成する材料は、フッ素系樹脂を含んでいてもよく、例えばポリアミドイミドをバインダーとしポリテトラフルオロエチレン(PTFE)を個体潤滑剤とするコーティング材料であってもよい。この場合、緩衝部30は、緩衝部30を形成する必要がない領域をマスキングした後、上記コーティング材料を塗布、噴霧、または溶射する等により形成され得る。あるいは、緩衝部30は、予め成形されたPTFEからなるシート材を、緩衝部30を形成すべき領域に接着することにより形成され得る。 The material forming the buffer portion 30 may include a fluororesin, and may be, for example, a coating material using polyamide-imide as a binder and polytetrafluoroethylene (PTFE) as a solid lubricant. In this case, the buffer section 30 may be formed by masking an area where the buffer section 30 is not required to be formed and then applying, spraying, or spraying the coating material. Alternatively, the cushioning portion 30 may be formed by adhering a preformed sheet material made of PTFE to a region where the cushioning portion 30 is to be formed.
 予圧センサ10は、上記構成を備える限りにおいて、任意の方法により形成され得る。一例として、予圧センサ10は、互いに独立に別体として形成された感圧部20および緩衝部30の各々が外輪間座6に組み付けられることにより、形成されてもよい。この場合、予圧センサ10は、第1間座部材61および第2間座部材62とは別体として形成された感圧部20および緩衝部30の各々が第1間座部材61または第2間座部材62に組み付けられた後、第1間座部材61および第2間座部材62が組み立てられることにより、形成されていてもよい。あるいは、予圧センサ10は、第1間座部材61または第2間座部材62と一体として形成された感圧部20および緩衝部30の各々が、第1間座部材61および第2間座部材62が組み立てられることにより、形成されていてもよい。 The preload sensor 10 can be formed by any method as long as it has the above configuration. As an example, the preload sensor 10 may be formed by assembling the pressure sensitive portion 20 and the cushioning portion 30, which are formed separately from each other, into the outer ring spacer 6. In this case, in the preload sensor 10, each of the pressure sensing portion 20 and the buffer portion 30 formed separately from the first spacer member 61 and the second spacer member 62 has the first spacer member 61 or the second spacer member. It may be formed by assembling the first spacer member 61 and the second spacer member 62 after being assembled to the seat member 62. Alternatively, in the preload sensor 10, each of the pressure-sensitive portion 20 and the buffer portion 30, which are integrally formed with the first spacer member 61 or the second spacer member 62, has the first spacer member 61 and the second spacer member. It may be formed by assembling 62.
 例えば、まず、絶縁膜21が、スパッタリング法等によって第2間座部材62の第3端面62a上に形成される。次に、第1端子部22a、第2端子部22bおよび感圧パターン部22cが、スパッタリング法等によって絶縁膜21の面21b上に形成される。次に、保護膜23が、スパッタリング法等によって感圧パターン部22cを覆うように絶縁膜21の面21b上に形成される。第1端子部22aおよび第2端子部22b上に成膜された保護膜23は、選択的に除去されるか、あるいは第1端子部22aと第2端子部22b上に保護膜23が成膜されないように、保護膜23の成膜前に第1端子部22aと第2端子部22bがマスキングされていてもよい。このようにして、図4に示されるように、第2間座部材62と一体として形成された感圧部20が準備される。 For example, first, the insulating film 21 is formed on the third end surface 62a of the second spacer member 62 by a sputtering method or the like. Next, the first terminal portion 22a, the second terminal portion 22b and the pressure sensitive pattern portion 22c are formed on the surface 21b of the insulating film 21 by a sputtering method or the like. Next, the protective film 23 is formed on the surface 21b of the insulating film 21 so as to cover the pressure sensitive pattern portion 22c by a sputtering method or the like. The protective film 23 formed on the first terminal portion 22a and the second terminal portion 22b is selectively removed, or the protective film 23 is formed on the first terminal portion 22a and the second terminal portion 22b. To prevent this, the first terminal portion 22a and the second terminal portion 22b may be masked before forming the protective film 23. In this way, as shown in FIG. 4, the pressure sensitive portion 20 formed integrally with the second spacer member 62 is prepared.
 さらに、緩衝部30が、スパッタリング等によって第1間座部材61の第2端面61b上に形成される。これにより、図4に示されるように、第1間座部材61と一体として形成された緩衝部30が準備される。 Further, the buffer portion 30 is formed on the second end surface 61b of the first spacer member 61 by sputtering or the like. Thereby, as shown in FIG. 4, the buffer portion 30 formed integrally with the first spacer member 61 is prepared.
 次に、第1間座部材61および第2間座部材62が位置決め部材63によって相対的に位置決めされる。具体的には、図4に示されるように配置された第1間座部材61および第2間座部材62の穴61hおよび貫通孔62hに位置決め部材63が挿入されることにより、第1間座部材61および第2間座部材62が上記周方向および上記径方向において相対的に位置決めされる。これにより、感圧部20と緩衝部30とが上記軸方向に積層した予圧センサ10が形成される。 Next, the first spacer member 61 and the second spacer member 62 are relatively positioned by the positioning member 63. Specifically, the positioning member 63 is inserted into the holes 61h and the through holes 62h of the first spacer member 61 and the second spacer member 62 arranged as shown in FIG. The member 61 and the second spacer member 62 are relatively positioned in the circumferential direction and the radial direction. As a result, the preload sensor 10 in which the pressure sensitive portion 20 and the buffer portion 30 are laminated in the axial direction is formed.
 他の一例として、予圧センサ10は、外輪間座6に組み付けられる前に、感圧部20および緩衝部30の積層体として予め一体として形成されていてもよい。この場合、予圧センサ10は、第1間座部材61および第2間座部材62とは別体として形成された上記積層体として形成されていてもよい。あるいは、予圧センサ10は、第1間座部材61または第2間座部材62と一体として形成された上記積層体として形成されていてもよい。 As another example, the preload sensor 10 may be integrally formed in advance as a laminated body of the pressure sensitive portion 20 and the buffer portion 30 before being assembled to the outer ring spacer 6. In this case, the preload sensor 10 may be formed as the above-mentioned laminated body formed separately from the first spacer member 61 and the second spacer member 62. Alternatively, the preload sensor 10 may be formed as the above laminated body integrally formed with the first spacer member 61 or the second spacer member 62.
 <作用効果>
 予圧センサ10は、第1方向に作用する圧力に応じて直流抵抗が変化する感圧パターン部22cと、感圧パターン部22cを覆う被覆部21,23と、第1方向において被覆部21,23に隣接して配置されている緩衝部30とを備える。緩衝部30を構成する材料の縦弾性係数は、被覆部21,23を構成する材料の縦弾性係数未満である。
<Effect>
The preload sensor 10 includes a pressure-sensitive pattern portion 22c whose DC resistance changes according to a pressure acting in the first direction, coating portions 21 and 23 that cover the pressure-sensitive pattern portion 22c, and coating portions 21 and 23 in the first direction. And a cushioning section 30 disposed adjacent to. The longitudinal elastic modulus of the material forming the cushioning portion 30 is less than the longitudinal elastic modulus of the material forming the covering portions 21 and 23.
 上述のように緩衝部30を備えない従来の予圧センサの検出精度は、予圧センサが挟まれる2つの面の各々の表面粗さおよび平坦度等の面性状の影響を受けやすい。具体的には、上記2つの面の少なくとも一方の表面粗さが比較的大きい場合、あるいは上記2つの面の少なくとも一方の平坦度が比較的低い場合、予圧センサの感圧パターン部は、上記2つの面によって均一に押圧されないため、押圧により印加された力の変化を高精度に測定することが困難である。特に、一般的な軸受等の軸方向に垂直な面の面性状はその面内において比較的大きなバラつきを有しているため、一般的な軸受等の上記2つの面間に配置された上記予圧センサでは、軸受の予圧の変化を高精度に検出することが困難である。 As described above, the detection accuracy of the conventional preload sensor that does not include the buffer section 30 is easily affected by the surface texture such as surface roughness and flatness of each of the two surfaces sandwiching the preload sensor. Specifically, when the surface roughness of at least one of the two surfaces is relatively large, or the flatness of at least one of the two surfaces is relatively low, the pressure-sensitive pattern portion of the preload sensor is Since the two surfaces are not uniformly pressed, it is difficult to measure the change in the force applied by the pressing with high accuracy. In particular, since the surface properties of a surface of a general bearing or the like which is perpendicular to the axial direction have a relatively large variation within the surface, the preload placed between the above two surfaces of the general bearing or the like. It is difficult for a sensor to detect a change in bearing preload with high accuracy.
 これに対し、予圧センサ10の感圧パターン部22cには、第1方向への力が緩衝部30を介して印加される。そのため、予圧センサ10は、緩衝部30を備えない従来の予圧センサと比べて、緩衝部30の第2面30aが接する面の表面粗さおよび平坦度によらず、第1方向の力の変化を安定して検出できる。つまり、予圧センサ10は、一般的な軸受および間座に隣接して配置された場合にも、該軸受に付与される予圧の変化を安定して高精度に検出することができる。 On the other hand, a force in the first direction is applied to the pressure sensitive pattern portion 22c of the preload sensor 10 via the buffer portion 30. Therefore, the preload sensor 10 changes the force in the first direction regardless of the surface roughness and the flatness of the surface of the buffer section 30 in contact with the second surface 30a, as compared with the conventional preload sensor that does not include the buffer section 30. Can be detected stably. That is, the preload sensor 10 can stably and highly accurately detect a change in the preload applied to the bearing even when the preload sensor 10 is arranged adjacent to a general bearing and a spacer.
 さらに、予圧センサ10は、外輪間座6に感圧部20および緩衝部30を成膜、加工することにより、外輪間座6と一体として形成され得る。この場合、ハウジング8に取り付けられる前の軸受装置100において、予圧センサ10は外輪間座6に対して位置決められている。そのため、このような軸受装置100は、ハウジング8に取り付けられる前には外輪間座6に位置決めされておらず、ハウジング8に取り付けられることによって外輪間座6に位置決めされる予圧センサ10を備える軸受装置と比べて、容易に組み立てられる。例えば特開2008-286219号公報に記載の軸受装置は、予圧検出装置としての磁歪材およびコイルを、軸方向に分割された外輪間座間に挟み込んだ複雑な構造を有しているため、組み立ての際には一対の間座部材が分離しないよう保持された軸受装置をハウジングに取り付ける必要がある。このような組立は困難である。軸受装置100は、上記予圧検出装置を備える軸受装置と比べて、容易に組み立てられる。 Further, the preload sensor 10 can be formed integrally with the outer ring spacer 6 by forming and processing the pressure sensitive portion 20 and the buffer portion 30 on the outer ring spacer 6. In this case, in the bearing device 100 before being attached to the housing 8, the preload sensor 10 is positioned with respect to the outer ring spacer 6. Therefore, such a bearing device 100 is not positioned on the outer ring spacer 6 before being mounted on the housing 8, but is equipped with the preload sensor 10 which is mounted on the housing 8 and positioned on the outer ring spacer 6. It is easier to assemble than the device. For example, the bearing device disclosed in Japanese Unexamined Patent Application Publication No. 2008-286219 has a complicated structure in which a magnetostrictive material and a coil as a preload detection device are sandwiched between axially divided outer ring spacers. In this case, it is necessary to attach the bearing device, which is held so that the pair of spacer members are not separated, to the housing. Such an assembly is difficult. The bearing device 100 is more easily assembled than the bearing device including the preload detection device.
 上記軸受装置100では、被覆部21,23は、第1面20aとは反対側に位置する第3面20bをさらに有している。緩衝部30は、第2面30aとは反対側に位置する第4面30bをさらに有している。第3面20bの全面が第4面30bに接している。 In the above bearing device 100, the coating portions 21 and 23 further have a third surface 20b located on the opposite side of the first surface 20a. The buffer portion 30 further has a fourth surface 30b located on the opposite side of the second surface 30a. The entire surface of the third surface 20b is in contact with the fourth surface 30b.
 このような予圧センサ10では、緩衝部30が感圧パターン部22cに印加される第1方向への力の伝達経路上に確実に配置されている。 In such a preload sensor 10, the buffer portion 30 is reliably arranged on the transmission path of the force applied to the pressure sensitive pattern portion 22c in the first direction.
 また、被覆部21,23は感圧パターン部22cを被覆しているため、第1方向から視た第1面20aおよび第3面20bの面積は感圧パターン部22cの面積を超えている。そのため、上記予圧センサ10は、例えば第1方向から視た緩衝部30の平面形状および寸法が感圧パターン部22cのそれらと同等とされている予圧センサ10と比べて、感圧部20と緩衝部30とが容易に位置決めされる。 Further, since the covering portions 21 and 23 cover the pressure-sensitive pattern portion 22c, the areas of the first surface 20a and the third surface 20b viewed from the first direction exceed the area of the pressure-sensitive pattern portion 22c. Therefore, in the preload sensor 10, the pressure sensing portion 20 and the pressure sensing portion 20 are buffered as compared with the preload sensor 10 in which the planar shape and dimensions of the buffering portion 30 viewed from the first direction are equal to those of the pressure sensing pattern portion 22c. The part 30 is easily positioned.
 上記予圧センサ10では、緩衝部30を構成する材料は、樹脂を含む。このようにすれば、緩衝部30は、塗布、噴霧、または溶射等によって比較的容易に形成される。さらに、緩衝部30として樹脂を用いることで、金属に比べて縦弾性係数が小さいので、予圧センサ10の表面形状(平坦度)が悪くても確実に感圧パターン部22cを押すことができる。 In the preload sensor 10, the material forming the buffer section 30 includes resin. With this configuration, the buffer portion 30 is relatively easily formed by coating, spraying, spraying, or the like. Further, by using resin as the buffer portion 30, the longitudinal elastic modulus is smaller than that of metal, so that the pressure-sensitive pattern portion 22c can be pressed reliably even if the surface shape (flatness) of the preload sensor 10 is poor.
 上記予圧センサ10では、緩衝部30の第1方向の厚みが100μm以下である。予圧センサ10を備える軸受装置100では、緩衝部30を構成する材料の縦弾性係数が第1間座部材61および第2間座部材62を構成する材料の縦弾性係数未満とされているため、緩衝部30の上記厚みが比較的厚くなると、外輪間座6の剛性が低下する。これに対し、緩衝部30の上記厚みが100μm以下であれば、予圧センサ10が緩衝部30を備えることによる外輪間座6の剛性の低下が、軸受装置100が工作機械に用いられたときに工作機械の加工精度に影響を及ぼさない程度に抑制される。 In the above preload sensor 10, the thickness of the buffer portion 30 in the first direction is 100 μm or less. In the bearing device 100 including the preload sensor 10, the longitudinal elastic modulus of the material forming the cushioning portion 30 is less than the longitudinal elastic modulus of the material forming the first spacer member 61 and the second spacer member 62. When the above-mentioned thickness of the cushioning portion 30 becomes relatively thick, the rigidity of the outer ring spacer 6 decreases. On the other hand, when the thickness of the cushioning portion 30 is 100 μm or less, the rigidity of the outer ring spacer 6 due to the provision of the cushioning portion 30 in the preload sensor 10 causes a decrease in rigidity when the bearing device 100 is used in a machine tool. It is suppressed to the extent that it does not affect the machining accuracy of the machine tool.
 上記軸受装置100は、上記予圧センサ10と、第1軸受1aおよび第2軸受1bと、第1軸受1aおよび第2軸受1bに隣接して配置される外輪間座6とを備える。予圧センサ10、第1軸受1aおよび第2軸受1b、ならびに外輪間座6は、上記第1方向が上記軸方向に沿うように配置されている。予圧センサ10の第1面20aおよび第2面30aは、外輪間座6に接している。緩衝部30を構成する材料の縦弾性係数は、外輪間座6を構成する材料の縦弾性係数未満である。 The bearing device 100 includes the preload sensor 10, the first bearing 1a and the second bearing 1b, and the outer ring spacer 6 arranged adjacent to the first bearing 1a and the second bearing 1b. The preload sensor 10, the first bearing 1a and the second bearing 1b, and the outer ring spacer 6 are arranged so that the first direction is along the axial direction. The first surface 20a and the second surface 30a of the preload sensor 10 are in contact with the outer ring spacer 6. The longitudinal elastic modulus of the material forming the buffer portion 30 is less than the longitudinal elastic coefficient of the material forming the outer ring spacer 6.
 このようにすれば、予圧センサ10、第1軸受1a、第2軸受1b、および外輪間座6に上記軸方向への力が作用するときに、これらの部材のうち相対的に剛性が低い緩衝部30が、上記力を伝達する面である第2端面61bおよび第3端面62aの面性状のばらつきに起因した当該力のばらつきを低減できる。そのため、軸受装置100によれば、第2端面61bおよび第3端面62aの面性状のばらつきが一般的な軸受装置におけるそれと同等であっても、予圧センサ10によって上記予圧の変化を高精度の検出することができる。軸受装置100は、例えば工作機械の主軸のように、高速回転する回転軸を支持する軸受装置に好適である。 With this configuration, when the force in the axial direction acts on the preload sensor 10, the first bearing 1a, the second bearing 1b, and the outer ring spacer 6, a buffer having relatively low rigidity among these members is used. The portion 30 can reduce the variation in the force due to the variation in the surface properties of the second end surface 61b and the third end surface 62a, which are the surfaces that transmit the force. Therefore, according to the bearing device 100, even if the variation of the surface properties of the second end face 61b and the third end face 62a is equivalent to that in a general bearing device, the preload sensor 10 can detect the change of the preload with high accuracy. can do. The bearing device 100 is suitable for a bearing device that supports a rotating shaft that rotates at high speed, such as a main shaft of a machine tool.
 上記軸受装置100は、上記周方向に互いに間隔を隔てて配置された複数の予圧センサ10を備えている。このような軸受装置100によれば、各予圧センサ10の出力を比較することにより、第1軸受1aおよび第2軸受1bに偏心荷重が印加されている状態も検出され得る。 The bearing device 100 includes a plurality of preload sensors 10 arranged at intervals in the circumferential direction. According to such a bearing device 100, the state in which the eccentric load is applied to the first bearing 1a and the second bearing 1b can also be detected by comparing the outputs of the preload sensors 10.
 なお、予圧センサ10は、上記伝達経路の任意の場所に配置されていてもよい。予圧センサ10は、例えば内輪3aとスペーサ14との間に配置されても良い。この場合、外輪間座6は一体として構成されていてもよい。 Note that the preload sensor 10 may be arranged at any position on the transmission path. The preload sensor 10 may be arranged, for example, between the inner ring 3 a and the spacer 14. In this case, the outer ring spacer 6 may be integrally formed.
 なお、図1~図3に示される外輪間座6は、外輪2a,2bよりも上記径方向の内側に突出している部分を有しているが、これに限られるものではない。外輪間座6の第1間座部材61および第2間座部材62の内径面は、例えば外輪2a,2bの各内径面と上記軸方向に連なるように設けられていてもよい。この場合、感圧部20の第3面20bの全面は、例えば緩衝部30の第4面30bの全面と接するように設けられている。 The outer ring spacer 6 shown in FIGS. 1 to 3 has a portion projecting inward in the radial direction with respect to the outer rings 2a and 2b, but is not limited to this. The inner diameter surfaces of the first spacer member 61 and the second spacer member 62 of the outer ring spacer 6 may be provided, for example, so as to be continuous with the inner diameter surfaces of the outer rings 2a and 2b in the axial direction. In this case, the entire surface of the third surface 20b of the pressure sensitive portion 20 is provided so as to contact the entire surface of the fourth surface 30b of the buffer portion 30, for example.
 また、図7に示されるように、予圧センサ10の第1面20aが第1間座部材61の第2端面61bに接し、第2面30aが第2間座部材62の第3端面62aに接していてもよい。つまり、第1間座部材61の第2端面61bが第5面として構成され、第2間座部材62の第3端面62aが第6面として構成されていてもよい。 Further, as shown in FIG. 7, the first surface 20a of the preload sensor 10 is in contact with the second end surface 61b of the first spacer member 61, and the second surface 30a is the third end surface 62a of the second spacer member 62. You may touch. That is, the second end surface 61b of the first spacer member 61 may be configured as the fifth surface, and the third end surface 62a of the second spacer member 62 may be configured as the sixth surface.
 (実施の形態2)
 図8および図9に示されるように、実施の形態2に係る軸受装置101は、実施の形態1に係る軸受装置100と基本的に同様の構成を備えるが、外輪間座6の第2間座部材62が上記軸方向に突出している突出部62pを有しており、突出部62pの頂面が第3端面62aを構成している点で異なる。言い換えれば、実施の形態2に係る軸受装置101は、突出部62pの頂面が予圧センサ10の第1面20aと接する第5面として構成されている点で、軸受装置100と異なる。なお、図8および図9では、第1端子部22a、第2端子部22b、感圧パターン部22c、および被覆部21,23の図示が省略されている。また、図8では、位置決め部材63の図示が省略されている。
(Embodiment 2)
As shown in FIGS. 8 and 9, the bearing device 101 according to the second embodiment has basically the same configuration as the bearing device 100 according to the first embodiment, but the second space of the outer ring spacer 6 is different. The difference is that the seat member 62 has a protruding portion 62p protruding in the axial direction, and the top surface of the protruding portion 62p constitutes the third end surface 62a. In other words, the bearing device 101 according to the second embodiment is different from the bearing device 100 in that the top surface of the protrusion 62p is configured as the fifth surface in contact with the first surface 20a of the preload sensor 10. 8 and 9, the first terminal portion 22a, the second terminal portion 22b, the pressure-sensitive pattern portion 22c, and the covering portions 21 and 23 are not shown. Further, in FIG. 8, the positioning member 63 is not shown.
 突出部62pは、例えば第2間座部材62の外径面に連なるように設けられている。突出部62pは、上記軸方向において外輪2a,2bの少なくとも一部と重なるように設けられており、例えば上記軸方向において外輪2a,2bの全体と重なるように設けられている。突出部62pの頂面は、第1間座部材61の上記軸方向を向いた表面のうち、外輪2aに最も近い面である。突出部62pの頂面が第3端面62aを構成している。 The protruding portion 62p is provided so as to be continuous with the outer diameter surface of the second spacer member 62, for example. The protruding portion 62p is provided so as to overlap at least a part of the outer rings 2a and 2b in the axial direction, and is provided so as to overlap the entire outer rings 2a and 2b in the axial direction, for example. The top surface of the protrusion 62p is the surface of the first spacer member 61 that faces the axial direction and that is closest to the outer ring 2a. The top surface of the protrusion 62p constitutes the third end surface 62a.
 実施の形態2に係る予圧センサ10は、実施の形態1に係る予圧センサ10と基本的に同様の構成を備えている。緩衝部30の上記径方向の幅は、例えば感圧部20の上記径方向の幅と同等とされている。予圧センサ10の第2面30aは、上記径方向において外側に位置する第2端面61bの一部領域のみと接している。予圧センサ10の第1面20aは、例えば第3端面62aの全面と接している。予圧センサ10の第1面20aの面積は、例えば実施の形態1に係る予圧センサ10の第1面20aの面積未満である。 The preload sensor 10 according to the second embodiment has basically the same configuration as the preload sensor 10 according to the first embodiment. The radial width of the buffer portion 30 is, for example, equal to the radial width of the pressure sensitive portion 20. The second surface 30a of the preload sensor 10 is in contact with only a partial region of the second end surface 61b located outside in the radial direction. The first surface 20a of the preload sensor 10 is in contact with the entire surface of the third end surface 62a, for example. The area of the first surface 20a of the preload sensor 10 is smaller than the area of the first surface 20a of the preload sensor 10 according to the first embodiment, for example.
 実施の形態2に係る予圧センサ10および軸受装置101は、実施の形態1に係る予圧センサ10および軸受装置100と基本的に同様の構成を備えるため、実施の形態1に係る予圧センサ10および軸受装置100と同様の効果を奏することができる。 Since the preload sensor 10 and the bearing device 101 according to the second embodiment have basically the same configurations as the preload sensor 10 and the bearing device 100 according to the first embodiment, the preload sensor 10 and the bearing according to the first embodiment are provided. The same effect as the device 100 can be obtained.
 実施の形態2に係る軸受装置101では、上記仕上げ加工が図1に示される第3端面62aの全面に施される場合と比べて、上記仕上げ加工が施される領域の面積が小さいため、上記仕上げ加工が比較的容易に実施され得る。 In the bearing device 101 according to the second embodiment, the area of the region subjected to the finishing process is smaller than that in the case where the finishing process is performed on the entire third end face 62a shown in FIG. Finishing can be performed relatively easily.
 図10に示されるように、実施の形態2に係る軸受装置101では、第2間座部材62に加え、第1間座部材61も上記軸方向に突出する突出部61pを有していてもよい。突出部61pの頂面は、突出部62pの頂面と接するように設けられている。突出部61pの頂面は、第2端面61bを構成しており、例えば予圧センサ10の第2面30aに接している。なお、突出部61pの頂面が予圧センサ10の第1面20aに接しており、突出部62pの頂面が予圧センサの第2面30aに接していてもよい。 As shown in FIG. 10, in the bearing device 101 according to the second embodiment, in addition to the second spacer member 62, the first spacer member 61 also has the protrusion 61p protruding in the axial direction. Good. The top surface of the protrusion 61p is provided so as to contact the top surface of the protrusion 62p. The top surface of the protrusion 61p constitutes the second end surface 61b, and is in contact with, for example, the second surface 30a of the preload sensor 10. The top surface of the protrusion 61p may be in contact with the first surface 20a of the preload sensor 10, and the top surface of the protrusion 62p may be in contact with the second surface 30a of the preload sensor.
 図10に示される予圧センサ10の第2面30aの面積は、図8および図9に示される予圧センサ10の第2面30aの面積未満とされている。第2端面61bの面積も小さくなるので、高い加工精度が要求される領域が小さくなるので、加工が容易になる。 The area of the second surface 30a of the preload sensor 10 shown in FIG. 10 is smaller than the area of the second surface 30a of the preload sensor 10 shown in FIGS. 8 and 9. Since the area of the second end face 61b is also small, the area where high processing accuracy is required is small, and thus the processing is easy.
 なお、実施の形態2に係る軸受装置101では、第2間座部材62は突出部62pを有しておらず、第1間座部材61のみが突出部61pを有していてもよい。 In the bearing device 101 according to the second embodiment, the second spacer member 62 does not have the protrusion 62p, and only the first spacer member 61 may have the protrusion 61p.
 (実施の形態3)
 図11および図12に示されるように、実施の形態3に係る軸受装置102は、実施の形態1に係る軸受装置100と基本的に同様の構成を備えるが、予圧センサ10の第2面30aが第2軸受1bの外輪2bに接するように配置されている点で異なる。言い換えれば、実施の形態3に係る軸受装置102は、外輪2bの上記軸方向の端面2cが予圧センサ10の第2面30aと接する第6面として構成されている点で、軸受装置100と異なる。なお、図11では、第1端子部22a、第2端子部22b、感圧パターン部22c、および被覆部21,23の図示が省略されている。
(Embodiment 3)
As shown in FIGS. 11 and 12, the bearing device 102 according to the third embodiment has basically the same configuration as the bearing device 100 according to the first embodiment, but the second surface 30a of the preload sensor 10 is different. Are arranged so as to contact the outer ring 2b of the second bearing 1b. In other words, the bearing device 102 according to the third embodiment is different from the bearing device 100 in that the axial end surface 2c of the outer ring 2b is configured as a sixth surface in contact with the second surface 30a of the preload sensor 10. . Note that, in FIG. 11, the first terminal portion 22a, the second terminal portion 22b, the pressure-sensitive pattern portion 22c, and the covering portions 21 and 23 are not shown.
 外輪間座6は、例えば一体として構成されている。外輪間座6は、上記軸方向において第1軸受1a側を向いており、かつ外輪2aと接している第7端面6aと、第7端面6aとは反対側に位置して第2軸受1b側を向いており、かつ上記軸方向において外輪2bの上記端面2cと対向するように配置されている第8端面6bとを有している。第8端面6bの面積は、例えば外輪2bの上記端面2cの面積と同等とされている。 The outer ring spacer 6 is, for example, integrally configured. The outer ring spacer 6 faces the first bearing 1a side in the axial direction and is located on the side opposite to the seventh end surface 6a in contact with the outer ring 2a and the seventh end surface 6a, and the second bearing 1b side. And an eighth end face 6b arranged so as to face the end face 2c of the outer ring 2b in the axial direction. The area of the eighth end surface 6b is, for example, equal to the area of the end surface 2c of the outer ring 2b.
 予圧センサ10の第1面20aは、外輪間座6の第8端面6bに接している。第2面30aは、外輪2bの上記端面2cに接している。つまり、外輪間座6の第8端面6bが第5面として構成され、外輪2bの上記端面2cが第6面として構成されている。 The first surface 20a of the preload sensor 10 is in contact with the eighth end surface 6b of the outer ring spacer 6. The second surface 30a is in contact with the end surface 2c of the outer ring 2b. That is, the eighth end surface 6b of the outer ring spacer 6 is configured as a fifth surface, and the end surface 2c of the outer ring 2b is configured as a sixth surface.
 実施の形態3に係る予圧センサ10および軸受装置102は、実施の形態1に係る予圧センサ10および軸受装置100と基本的に同様の構成を備えるため、実施の形態1に係る予圧センサ10および軸受装置100と同様の効果を奏することができる。 Since the preload sensor 10 and the bearing device 102 according to the third embodiment have basically the same configurations as the preload sensor 10 and the bearing device 100 according to the first embodiment, the preload sensor 10 and the bearing according to the first embodiment are provided. The same effect as the device 100 can be obtained.
 図13に示されるように、予圧センサ10の第1面20aが外輪2bの上記端面2cに接し、第2面30aが外輪間座6の第8端面6bに接していてもよい。つまり、外輪2bの上記端面2cが第5面として構成され、外輪間座6の第8端面6bが第6面として構成されていてもよい。 As shown in FIG. 13, the first surface 20a of the preload sensor 10 may be in contact with the end surface 2c of the outer ring 2b, and the second surface 30a may be in contact with the eighth end surface 6b of the outer ring spacer 6. That is, the end surface 2c of the outer ring 2b may be configured as the fifth surface, and the eighth end surface 6b of the outer ring spacer 6 may be configured as the sixth surface.
 上記軸受装置100,101,102では、予圧センサ10の第1面20aおよび第2面30aの少なくともいずれかは外輪間座6に接しているが、これに限られるものでは無い。図14に示されるように、予圧センサ10の第1面20aおよび第2面30aの少なくともいずれかは内輪間座7に接していてもよい。この場合、緩衝部30を構成する材料の縦弾性係数は、内輪間座7を構成する材料の縦弾性係数未満であればよい。 In the above bearing devices 100, 101, 102, at least one of the first surface 20a and the second surface 30a of the preload sensor 10 is in contact with the outer ring spacer 6, but the invention is not limited to this. As shown in FIG. 14, at least one of the first surface 20a and the second surface 30a of the preload sensor 10 may be in contact with the inner ring spacer 7. In this case, the longitudinal elastic modulus of the material forming the buffer portion 30 may be less than the longitudinal elastic coefficient of the material forming the inner ring spacer 7.
 図14に示される軸受装置103では、第1軸受1aおよび第2軸受1bが正面組み合わせ(DF)とされている。この場合、前蓋9を図示しないボルト等によってハウジング8に対して締め付けることにより、第2軸受1b側から第1軸受1a側に向けて予圧が与えられる。前蓋9が締め付けられることによって外輪2bに印加された上記軸方向への力は、玉4bを経て、内輪3bに伝わり、さらに内輪3bから内輪間座7を介して内輪3aに伝わる。内輪3aに伝わった上記力は、玉4aを経て、外輪2aに伝わる。これにより、第1軸受1aの外輪2aおよび内輪3aと玉4aとの各接触点、および第2軸受1bの外輪2bおよび内輪3bと玉4bとの各接触点に、圧縮応力が印加される。第2軸受1b、内輪間座7および第1軸受1aは、第1軸受1aおよび第2軸受1bに予圧を付与させる上記力の伝達経路の一部を構成している。 In the bearing device 103 shown in FIG. 14, the first bearing 1a and the second bearing 1b are a front face combination (DF). In this case, by tightening the front lid 9 to the housing 8 with a bolt or the like (not shown), a preload is applied from the second bearing 1b side toward the first bearing 1a side. The axial force applied to the outer ring 2b by tightening the front lid 9 is transmitted to the inner ring 3b via the balls 4b, and further from the inner ring 3b to the inner ring 3a via the inner ring spacer 7. The force transmitted to the inner ring 3a is transmitted to the outer ring 2a via the balls 4a. As a result, compressive stress is applied to each contact point between the outer ring 2a and the inner ring 3a of the first bearing 1a and the ball 4a, and each contact point between the outer ring 2b and the inner ring 3b of the second bearing 1b and the ball 4b. The second bearing 1b, the inner ring spacer 7, and the first bearing 1a form a part of a transmission path of the force for applying a preload to the first bearing 1a and the second bearing 1b.
 予圧センサ10は、上記伝達経路において、例えば内輪3bと内輪間座7との間に配置されている。なお、予圧センサ10の位置は、上記伝達経路上の他の位置であってもよい。 The preload sensor 10 is arranged, for example, between the inner ring 3b and the inner ring spacer 7 in the transmission path. The position of the preload sensor 10 may be another position on the transmission path.
 なお、図14に示されるように、予圧センサ10が回転輪としての内輪3bと回転側間座としての内輪間座7との間に配置される場合、予圧センサ10も主軸11、内輪3bおよび内輪間座7とともに回転する。そのため、図14に示される軸受装置103では、予圧センサ10の出力を外部機器に送信するための送信機51が、内輪間座7の外径面に配置されている。また、外輪間座6の内径面には、送信機51と対向する位置に受信機52が配置されている。送信機51および受信機52は、互いに非接触で通信および給電するように設けられている。 As shown in FIG. 14, when the preload sensor 10 is arranged between the inner ring 3b as the rotating wheel and the inner ring spacer 7 as the rotating side spacer, the preload sensor 10 also has the main shaft 11, the inner ring 3b, and the inner ring 3b. It rotates together with the inner ring spacer 7. Therefore, in the bearing device 103 shown in FIG. 14, the transmitter 51 for transmitting the output of the preload sensor 10 to the external device is arranged on the outer diameter surface of the inner ring spacer 7. Further, a receiver 52 is arranged at a position facing the transmitter 51 on the inner diameter surface of the outer ring spacer 6. The transmitter 51 and the receiver 52 are provided so as to communicate and supply power to each other in a non-contact manner.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1a 第1軸受、1b 第2軸受、2a,2b 外輪、2c 端面、3a,3b 内輪、4a,4b 玉、5a,5b 保持器、6 外輪間座、6a 第7端面、6b 第8端面、61p,62p 突出部、7 内輪間座、8 ハウジング、8a 内径面、8b,11b 凸面、9 前蓋、9a,12a 押さえ面、10 予圧センサ、11 主軸、11a 外径面、12 固定部材、13 ナット、14 スペーサ、15 挿通路、16 ケーブル、20 感圧部、20a 第1面、20b 第3面、21 絶縁膜(被覆部)、23 保護膜(被覆部)、22a 第1端子部、22b 第2端子部、22c 感圧パターン部、30 緩衝部、30a 第2面、30b 第4面、40 センサ信号処理部、61 第1間座部材、61a 第1端面、61b 第2端面、61c 第5端面、62 第2間座部材、62a 第3端面、62b 第4端面、62c 第6端面、63 位置決め部材、81 内筒、82 外筒、83 冷却媒体流路、100 軸受装置。 1a 1st bearing, 1b 2nd bearing, 2a, 2b outer ring, 2c end surface, 3a, 3b inner ring, 4a, 4b ball, 5a, 5b retainer, 6 outer ring spacer, 6a 7th end surface, 6b 8th end surface, 61p , 62p protrusion, 7 inner ring spacer, 8 housing, 8a inner diameter surface, 8b, 11b convex surface, 9 front lid, 9a, 12a holding surface, 10 preload sensor, 11 spindle, 11a outer diameter surface, 12 fixing member, 13 nut , 14 spacers, 15 insertion passages, 16 cables, 20 pressure sensitive parts, 20a first surface, 20b third surface, 21 insulating film (covering part), 23 protective film (covering part), 22a first terminal part, 22b first 2 terminal parts, 22c pressure sensitive pattern part, 30 shock absorbing part, 30a second surface, 30b fourth surface, 40 sensor signal processing part, 61 first spacer member, 61a first End face, 61b second end face, 61c fifth end face, 62 second spacer member, 62a third end face, 62b fourth end face, 62c sixth end face, 63 positioning member, 81 inner cylinder, 82 outer cylinder, 83 cooling medium flow Road, 100 bearing device.

Claims (9)

  1.  第1方向に作用する圧力に応じて直流抵抗が変化する感圧パターン部と、
     前記感圧パターン部を覆う被覆部と、
     前記第1方向において前記被覆部に隣接して配置されている緩衝部とを備え、
     前記緩衝部を構成する材料の縦弾性係数は、前記被覆部を構成する材料の縦弾性係数未満である、予圧センサ。
    A pressure sensitive pattern portion in which a direct current resistance changes according to a pressure acting in a first direction,
    A covering portion that covers the pressure-sensitive pattern portion,
    A buffer portion arranged adjacent to the covering portion in the first direction,
    The preload sensor, wherein the longitudinal elastic modulus of the material forming the buffer portion is less than the longitudinal elastic coefficient of the material forming the covering portion.
  2.  前記被覆部は、前記第1方向の一方側を向いた第1面を有し、
     前記緩衝部は、前記第1方向の他方側を向いた第2面を有し、
     前記被覆部は、前記第1面とは反対側に位置する第3面をさらに有し、
     前記緩衝部は、前記第2面とは反対側に位置する第4面をさらに有し、
     前記第3面が前記第4面に接している、請求項1に記載の予圧センサ。
    The covering portion has a first surface facing one side of the first direction,
    The buffer portion has a second surface facing the other side of the first direction,
    The covering portion further has a third surface located on the side opposite to the first surface,
    The buffer portion further has a fourth surface located on the side opposite to the second surface,
    The preload sensor according to claim 1, wherein the third surface is in contact with the fourth surface.
  3.  前記緩衝部を構成する材料は、樹脂を含む、請求項1または2に記載の予圧センサ。 The preload sensor according to claim 1 or 2, wherein the material forming the buffer portion includes a resin.
  4.  前記緩衝部の前記第1方向の厚みは、100μm以下である、請求項1~3のいずれか1項に記載の予圧センサ。 The preload sensor according to any one of claims 1 to 3, wherein the thickness of the buffer portion in the first direction is 100 µm or less.
  5.  請求項1~4のいずれか1項に記載の予圧センサと、
     軸受と、
     前記軸受に隣接して配置される間座とを備え、
     前記予圧センサ、前記軸受、および前記間座は、前記第1方向が前記軸受および前記間座の軸方向に沿うように配置されており、
     前記予圧センサの前記被覆部および前記緩衝部の少なくともいずれかは、前記間座に接しており、
     前記緩衝部を構成する材料の縦弾性係数は、前記間座を構成する材料の縦弾性係数未満である、軸受装置。
    A preload sensor according to any one of claims 1 to 4,
    Bearings,
    A spacer arranged adjacent to the bearing,
    The preload sensor, the bearing, and the spacer are arranged such that the first direction is along the axial direction of the bearing and the spacer,
    At least one of the covering portion and the buffer portion of the preload sensor is in contact with the spacer,
    The bearing device in which the longitudinal elastic modulus of the material forming the buffer portion is less than the longitudinal elastic coefficient of the material forming the spacer.
  6.  前記予圧センサは、前記軸方向において前記軸受と前記間座との間に配置されている、請求項5に記載の軸受装置。 The bearing device according to claim 5, wherein the preload sensor is arranged between the bearing and the spacer in the axial direction.
  7.  前記間座は、第1間座部材と、前記第1間座部材と別体として構成されており、かつ前記軸方向において前記第1間座部材と並んで配置されている第2間座部材とを含み、
     前記予圧センサは、前記軸方向において前記第1間座部材と前記第2間座部材との間に配置されている、請求項5に記載の軸受装置。
    The spacer is a second spacer member that is configured separately from the first spacer member and the first spacer member, and is arranged side by side with the first spacer member in the axial direction. Including and
    The bearing device according to claim 5, wherein the preload sensor is arranged between the first spacer member and the second spacer member in the axial direction.
  8.  前記間座は、前記軸方向に突出している少なくとも1つの突出部を含み、
     前記予圧センサは、前記軸方向において前記突出部と隣接して配置されている、請求項6または7に記載の軸受装置。
    The spacer includes at least one protrusion protruding in the axial direction,
    The bearing device according to claim 6 or 7, wherein the preload sensor is arranged adjacent to the protrusion in the axial direction.
  9.  前記緩衝部は、前記軸受および前記間座と同軸の環状部材として構成されている、請求項5~8のいずれか1項に記載の軸受装置。 The bearing device according to any one of claims 5 to 8, wherein the buffer portion is configured as an annular member coaxial with the bearing and the spacer.
PCT/JP2019/039255 2018-10-09 2019-10-04 Bearing device and preload sensor WO2020075638A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217013143A KR20210068533A (en) 2018-10-09 2019-10-04 Bearing device and preload sensor
CN201980066382.9A CN112823271B (en) 2018-10-09 2019-10-04 Bearing device and pre-compression sensor
DE112019005064.8T DE112019005064T5 (en) 2018-10-09 2019-10-04 Storage device and preload sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018190850A JP7165021B2 (en) 2018-10-09 2018-10-09 bearing device
JP2018-190850 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020075638A1 true WO2020075638A1 (en) 2020-04-16

Family

ID=70164601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039255 WO2020075638A1 (en) 2018-10-09 2019-10-04 Bearing device and preload sensor

Country Status (5)

Country Link
JP (1) JP7165021B2 (en)
KR (1) KR20210068533A (en)
CN (1) CN112823271B (en)
DE (1) DE112019005064T5 (en)
WO (1) WO2020075638A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230027711A1 (en) * 2019-12-23 2023-01-26 Ntn Corporation Bearing device, spindle device, bearing and spacer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022153711A (en) * 2021-03-30 2022-10-13 Ntn株式会社 Bearing device, spindle device and spacer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611416A (en) * 1993-02-02 1994-01-21 Mitsubishi Motors Corp Engine trial operation device
JP2001281076A (en) * 2000-03-30 2001-10-10 Toyota Motor Corp Thin-film sensor
JP2004279125A (en) * 2003-03-13 2004-10-07 Nsk Ltd Preload measuring instrument for bearing unit
JP2007086060A (en) * 2005-08-25 2007-04-05 Ntn Corp Turbine unit for air cycle refrigeration cooling
JP2008281157A (en) * 2007-05-14 2008-11-20 Ntn Corp Bearing device and bearing pre-load detection device
WO2009097867A1 (en) * 2008-02-04 2009-08-13 Ab Skf Sensor element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254742A (en) * 2000-03-08 2001-09-21 Ntn Corp Bearing device
JP2005265446A (en) * 2004-03-16 2005-09-29 Koichi Niihara Piezoelectric sensor
JP2006170626A (en) * 2004-12-10 2006-06-29 Ntn Corp Bearing with rotation sensor
KR101286626B1 (en) * 2005-08-25 2013-07-15 엔티엔 가부시키가이샤 Turbine unit for refrigerating/cooling air cycle
JP6008426B2 (en) 2012-10-02 2016-10-19 本田技研工業株式会社 Thin film sensor
CN105650132A (en) 2016-03-07 2016-06-08 洛阳轴研科技股份有限公司 Hydraulic device capable of adjusting bearing preloads

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611416A (en) * 1993-02-02 1994-01-21 Mitsubishi Motors Corp Engine trial operation device
JP2001281076A (en) * 2000-03-30 2001-10-10 Toyota Motor Corp Thin-film sensor
JP2004279125A (en) * 2003-03-13 2004-10-07 Nsk Ltd Preload measuring instrument for bearing unit
JP2007086060A (en) * 2005-08-25 2007-04-05 Ntn Corp Turbine unit for air cycle refrigeration cooling
JP2008281157A (en) * 2007-05-14 2008-11-20 Ntn Corp Bearing device and bearing pre-load detection device
WO2009097867A1 (en) * 2008-02-04 2009-08-13 Ab Skf Sensor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230027711A1 (en) * 2019-12-23 2023-01-26 Ntn Corporation Bearing device, spindle device, bearing and spacer

Also Published As

Publication number Publication date
JP2020060411A (en) 2020-04-16
CN112823271B (en) 2023-08-04
KR20210068533A (en) 2021-06-09
CN112823271A (en) 2021-05-18
DE112019005064T5 (en) 2021-07-01
JP7165021B2 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
US7762128B2 (en) Wheel support bearing assembly equipped with sensor
US20080170817A1 (en) Bearing Assemly With Integrated Sensor System
WO2020075638A1 (en) Bearing device and preload sensor
WO2020004430A1 (en) Preload sensor, bearing device, bearing, and spacer
KR20100014772A (en) A sensorized bearing unit
WO2022210561A1 (en) Bearing device and spindle device
KR20100075578A (en) Bearing device
WO2021131662A1 (en) Bearing device, spindle device, bearing and spacer
JP2006170352A (en) Thrust bearing
CN113710926A (en) Lead screw device capable of detecting prepressing
JP2008281388A (en) Bearing with bearing load measuring device, and method of measuring bearing load
JP2020060227A (en) Bearing device
JP2020060411A5 (en) Bearing equipment
JP7149155B2 (en) bearing device
JP2009156399A (en) Bearing device for wheel
WO2020166542A1 (en) Bearing device and spindle device
WO2022210720A1 (en) Bearing device, spindle device, and spacer
JP2006258202A (en) Tapered roller bearing device
WO2022210722A1 (en) Bearing device and spindle device
JP5030744B2 (en) Bearing device
WO2024101268A1 (en) Bearing device with sensor, and spindle device for machine tool
JP7480256B1 (en) Bearing device with strain sensor and spindle device for machine tool
JP2024067958A (en) Bearing device with strain sensor and spindle device for machine tool
JP2009036313A (en) Bearing device
JP2024067953A (en) Bearing device with strain sensor and spindle device for machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217013143

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19871881

Country of ref document: EP

Kind code of ref document: A1