JP6008426B2 - Thin film sensor - Google Patents

Thin film sensor Download PDF

Info

Publication number
JP6008426B2
JP6008426B2 JP2012219960A JP2012219960A JP6008426B2 JP 6008426 B2 JP6008426 B2 JP 6008426B2 JP 2012219960 A JP2012219960 A JP 2012219960A JP 2012219960 A JP2012219960 A JP 2012219960A JP 6008426 B2 JP6008426 B2 JP 6008426B2
Authority
JP
Japan
Prior art keywords
thin film
sensor
alloy
sensitivity
film sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012219960A
Other languages
Japanese (ja)
Other versions
JP2014071085A (en
Inventor
謙司 松本
謙司 松本
雄司 三原
雄司 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Gotoh Educational Corp
Original Assignee
Honda Motor Co Ltd
Gotoh Educational Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Gotoh Educational Corp filed Critical Honda Motor Co Ltd
Priority to JP2012219960A priority Critical patent/JP6008426B2/en
Publication of JP2014071085A publication Critical patent/JP2014071085A/en
Application granted granted Critical
Publication of JP6008426B2 publication Critical patent/JP6008426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は、金属薄膜に圧力が作用したときの電気抵抗の変化に基づいて圧力を検出する薄膜センサに関する。   The present invention relates to a thin film sensor that detects pressure based on a change in electrical resistance when pressure acts on a metal thin film.

下記特許文献1には、薄膜センサの材料として銅、マンガンおよびニッケルの合金を使用し、それぞれの組成を適宜調整することにより、温度変化に対する圧力検出誤差を小さくしたものが記載されている。また同特許文献1には、薄膜センサの材料としてクロムおよび金の合金を用いるとともに、薄膜センサの感知部の形状を、任意の直交軸に対して一方向の長さおよび幅の比が、他方向の長さおよび幅の比と同じになるように構成することで、縦方向および横方向の歪み感度を略同じ値にして薄膜センサの歪みによる圧力検出誤差を小さくしたものが記載されている。そこには、上記後者の薄膜センサの感知部の一例として、一対の半円弧状部を組み合わせた形状のもの(一周型の薄膜センサ)が開示されている。   Patent Document 1 listed below uses an alloy of copper, manganese, and nickel as the material of the thin film sensor, and appropriately adjusts the respective compositions to reduce the pressure detection error with respect to the temperature change. Further, in Patent Document 1, an alloy of chrome and gold is used as a material for the thin film sensor, and the shape of the sensing part of the thin film sensor is different in length and width ratio in one direction with respect to an arbitrary orthogonal axis. It describes that the pressure sensitivity error due to the strain of the thin film sensor is reduced by making the strain sensitivity in the longitudinal direction and the lateral direction substantially the same value by configuring it to be the same as the ratio of the length and width in the direction. . As an example of the sensing part of the latter thin film sensor, there is disclosed one having a shape in which a pair of semicircular arc shaped parts are combined (one-round thin film sensor).

特許第4527236号公報Japanese Patent No. 4527236

ところで、この種の薄膜センサは厚さが極めて小さいために狭い隙間に装着することが可能であり、エンジンのピストンのスカート部の表面に加わる圧力を検出するような場合に好適に使用することができる。しかしながら、ピストンのスカート部は比較的に剛性が低いために運転中に変形し易く、そこに装着された薄膜センサが母材であるスカート部の変形に追従して歪むことで、検出すべき圧力による歪み(電気抵抗変化)と母材の変形による歪み(電気抵抗変化)とが重畳してしまい、圧力の検出精度が低下する問題がある。ピストンのスカート部のような変形し易い母材の表面の圧力を精度良く検出するには、母材の変形による歪み(電気抵抗変化)の影響を効果的に排除可能な薄膜センサが必要となる。   By the way, since this type of thin film sensor is extremely small, it can be mounted in a narrow gap, and can be suitably used for detecting pressure applied to the surface of the skirt portion of an engine piston. it can. However, since the piston skirt is relatively low in rigidity, it easily deforms during operation, and the thin film sensor mounted on the piston distorts following the deformation of the skirt, which is the base material. There is a problem in that the strain due to deformation (electric resistance change) and the strain due to deformation of the base material (electric resistance change) are superposed, and the pressure detection accuracy decreases. In order to accurately detect the pressure on the surface of a base material that is easily deformed, such as a piston skirt, a thin film sensor that can effectively eliminate the influence of distortion (electric resistance change) due to deformation of the base material is required. .

上記特許文献1に記載された一周型の薄膜センサでは、縦方向の歪み感度および横方向の歪み感度を略同じ値にして歪みによる圧力検出誤差を小さくしているが、縦方向および横方向の歪み感度を共にゼロにすることができれば、歪みによる圧力検出誤差を更に低減することができる。   In the one-round thin film sensor described in Patent Document 1, the vertical strain sensitivity and the lateral strain sensitivity are set to substantially the same value to reduce the pressure detection error due to the strain. If both strain sensitivities can be reduced to zero, pressure detection errors due to strain can be further reduced.

本発明は前述の事情に鑑みてなされたもので、薄膜センサが装着される母材の変形の影響を排除して正確な圧力検出を可能にすることを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to enable accurate pressure detection by eliminating the influence of deformation of a base material on which a thin film sensor is mounted.

上記目的を達成するために、請求項1に記載された発明によれば、銅、マンガンおよびニッケルの合金である第1の合金の薄膜と、ニッケルおよびクロムの合金である第2の合金の薄膜とが積層され、前記積層された薄膜は、任意の直交軸に対して一方向の長さおよび幅の比が、他方向の長さおよび幅の比と同じであり、前記第1の合金の薄膜および前記第2の合金の薄膜の符号が逆で絶対値が略等しいゲージ率が相殺するように、前記第1の合金と前記第2の合金との膜厚比が設定されることを特徴とする薄膜センサが提案される。 To achieve the above object, according to the first aspect of the invention, a thin film of a first alloy that is an alloy of copper, manganese, and nickel and a thin film of a second alloy that is an alloy of nickel and chromium bets are stacked, the stacked thin film, the ratio of one-way length and width for any orthogonal axes, Ri same der the ratio in the other direction of the length and width, said first alloy of such absolute value is substantially equal gauge factor is offset by a thin film and the second code of the thin film opposite alloys, Rukoto thickness ratio is set between the first alloy and the second alloy A featured thin film sensor is proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記第1の合金と前記第2の合金との膜厚比は略4:1であることを特徴とする薄膜センサが提案される。   According to the invention described in claim 2, in addition to the structure of claim 1, the film thickness ratio between the first alloy and the second alloy is approximately 4: 1. A thin film sensor is proposed.

また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、圧力を感知する感知部と前記感知部から延びるリード部とを備え、少なくとも前記感知部が前記第1の合金の薄膜および前記第2の合金の薄膜を積層して構成されることを特徴とする薄膜センサが提案される。   According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, the sensor includes a sensing unit that senses pressure and a lead portion that extends from the sensing unit, and at least the sensing unit includes the sensing unit. A thin film sensor is proposed which is formed by laminating a thin film of a first alloy and a thin film of the second alloy.

請求項1の構成によれば、第1の合金および第2の合金を積層した薄膜は、任意の直交軸に対して一方向の長さおよび幅の比が、他方向の長さおよび幅の比と同じであるので、縦方向および横方向の歪み感度を略同じ値にして薄膜センサの歪みによる圧力検出誤差を小さくすることができる。しかも薄膜センサを、銅、マンガンおよびニッケルの合金である第1の合金の薄膜と、ニッケルおよびクロムの合金である第2の合金の薄膜とを積層して構成し、第1の合金の薄膜および第2の合金の薄膜の符号が逆で絶対値が略等しいゲージ率が相殺するように、第1の合金と第2の合金との膜厚比を設定することで、薄膜センサの縦歪み感度および横歪み感度であるゲージ率を小さくして母材の歪みによる圧力検出誤差を減少させることができる。 According to the configuration of claim 1, the thin film formed by laminating the first alloy and the second alloy has a ratio of the length and width in one direction to the arbitrary orthogonal axis, and the length and width in the other direction. Since the ratio is the same, the pressure detection error due to the distortion of the thin film sensor can be reduced by setting the vertical and horizontal strain sensitivity to substantially the same value. Moreover, the thin film sensor is formed by laminating a thin film of a first alloy that is an alloy of copper, manganese, and nickel and a thin film of a second alloy that is an alloy of nickel and chromium, and the thin film of the first alloy The longitudinal strain sensitivity of the thin film sensor is set by setting the film thickness ratio of the first alloy and the second alloy so that the gauge factors having the opposite signs and the absolute values substantially equal to each other cancel each other. In addition , the gauge factor , which is the lateral strain sensitivity , can be reduced to reduce the pressure detection error due to the distortion of the base material.

また請求項2の構成によれば、第1の合金と第2の合金との膜厚比は略4:1であるので、薄膜センサのゲージ率を略ゼロにすることができ、母材の歪みによる圧力検出誤差を最小限に抑えることができる。 According to the second aspect of the present invention, since the film thickness ratio between the first alloy and the second alloy is approximately 4: 1, the gauge factor of the thin film sensor can be substantially zero. Pressure detection error due to distortion can be minimized.

また請求項3の構成によれば、圧力を感知する感知部と、感知部から延びるリード部とのうち、少なくとも感知部が第1の合金の薄膜および第2の合金の薄膜を積層して構成されるので、圧力検出精度を確保することができる。   According to the third aspect of the present invention, at least the sensing part of the sensing part for sensing pressure and the lead part extending from the sensing part is formed by laminating the first alloy thin film and the second alloy thin film. Therefore, pressure detection accuracy can be ensured.

単線型の薄膜センサおよび一周型の薄膜センサの平面形状を示す図。The figure which shows the planar shape of a single wire | line type thin film sensor and a round type thin film sensor. 薄膜センサの圧力感度の測定装置を示す図。The figure which shows the measuring apparatus of the pressure sensitivity of a thin film sensor. 一層型の薄膜センサの圧力感度を示すグラフ。The graph which shows the pressure sensitivity of a single layer type thin film sensor. 薄膜センサの温度感度の測定装置を示す図。The figure which shows the measuring apparatus of the temperature sensitivity of a thin film sensor. 一層型の薄膜センサの温度感度を示すグラフ。The graph which shows the temperature sensitivity of a single layer type thin film sensor. 薄膜センサの歪み感度の測定装置を示す図。The figure which shows the measuring apparatus of the distortion sensitivity of a thin film sensor. 単線型の薄膜センサおよび一周型の薄膜センサの断面形状を示す図。The figure which shows the cross-sectional shape of a single wire | line type thin film sensor and a round type thin film sensor. 二層型の薄膜センサをモデル化した回路を示す図。The figure which shows the circuit which modeled the two-layer type thin film sensor. 二層型の薄膜センサの膜厚比を変えた場合の出力特性の変化を示すグラフ。The graph which shows the change of the output characteristic at the time of changing the film thickness ratio of a two-layer type thin film sensor.

以下、図1〜図9に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

先ず、本発明に適用するセンサ合金について説明する。   First, the sensor alloy applied to the present invention will be described.

表1に示すように、センサ合金(1) 〜センサ合金(4) は何れもCu−Mn−Ni合金であり、その組成(重量%)は、センサ合金(1) はCuが87.8%、Mnが8.75%、Niが3.45%であり、センサ合金(2) はCuが86.6%、Mnが11.0%、Niが2.4%であり、センサ合金(3) はCuが87.4%、Mnが9.6%、Niが3.0%であり、センサ合金(4) はCuが86.0%、Mnが12.0%、Niが2.0%である。またセンサ合金(5) はNi−Cr合金であり、その組成(重量%)は、Niが90%、Crが10%である。   As shown in Table 1, the sensor alloy (1) to the sensor alloy (4) are all Cu-Mn-Ni alloys, and the composition (% by weight) of the sensor alloy (1) is 87.8% of Cu. , Mn is 8.75%, Ni is 3.45%, and the sensor alloy (2) is Cu is 86.6%, Mn is 11.0%, Ni is 2.4%. ) Is 87.4% Cu, 9.6% Mn and 3.0% Ni, and the sensor alloy (4) is 86.0% Cu, 12.0% Mn and 2.0% Ni. %. The sensor alloy (5) is a Ni-Cr alloy, and the composition (% by weight) of Ni is 90% and Cr is 10%.

Figure 0006008426
Figure 0006008426

図1(A)は単線型の薄膜センサSaの形状を示すもので、一対のリード部11,11が直線状の感知部12で接続される。図1(B)は一周型の薄膜センサSbの形状を示すもので、一対のリード部11,11と、二つの半円を組み合わせた接続部13,13とが、二つの半円弧状の感知部12,12で接続される。   FIG. 1A shows the shape of a single-wire thin film sensor Sa, and a pair of lead portions 11 are connected by a linear sensing portion 12. FIG. 1B shows the shape of a one-round thin film sensor Sb. A pair of lead portions 11 and 11 and a connection portion 13 and 13 combining two semicircles are two semicircular arc-shaped sensings. The units 12 and 12 are connected.

図2は薄膜センサの圧力感度の測定装置を示すもので、測定装置は、薄膜センサを収納する圧力容器21と、圧力容器21の内部を加圧する高圧ポンプ22と、圧力容器21の内部の圧力を電圧に変換する圧力センサ23と、圧力センサ23の出力を増幅する増幅器24と、薄膜センサの電気抵抗値を電圧に変換するホイートストンブリッジ25と、ホイートストンブリッジ25の出力を増幅する増幅器26と、データを記録する記録装置27とで構成される。   FIG. 2 shows an apparatus for measuring pressure sensitivity of a thin film sensor. The measuring apparatus includes a pressure vessel 21 that houses the thin film sensor, a high-pressure pump 22 that pressurizes the inside of the pressure vessel 21, and a pressure inside the pressure vessel 21. A pressure sensor 23 for converting the output of the pressure sensor 23 to a voltage, a Wheatstone bridge 25 for converting the electrical resistance value of the thin film sensor to a voltage, an amplifier 26 for amplifying the output of the Wheatstone bridge 25, And a recording device 27 for recording data.

図3は各センサ合金毎の圧力感度の測定結果を示すもので、センサ合金(1) 〜センサ合金(4) の圧力感度は18〜21×10-6[(Ω/Ω)/MPa]にあって略同一であり、センサ合金(5) の圧力感度は12〜17×10-6[(Ω/Ω)/MPa]であってセンサ合金(1) 〜センサ合金(4) の圧力感度よりも僅かに低くなっている。 FIG. 3 shows the measurement results of pressure sensitivity for each sensor alloy. The pressure sensitivity of sensor alloy (1) to sensor alloy (4) is 18 to 21 × 10 −6 [(Ω / Ω) / MPa]. Thus, the pressure sensitivity of the sensor alloy (5) is 12 to 17 × 10 −6 [(Ω / Ω) / MPa], which is more than the pressure sensitivity of the sensor alloy (1) to the sensor alloy (4). Is slightly lower.

図4は薄膜センサの温度感度の測定装置を示すもので、測定装置は、薄膜センサを収納するヒータ27と、ヒータ27の内部の温度を電圧に変換する温度センサ28と、薄膜センサの電気抵抗値を電圧に変換するホイートストンブリッジ29と、ホイートストンブリッジ29の出力を増幅する増幅器30と、データを記録する記録装置31とで構成される。   FIG. 4 shows an apparatus for measuring temperature sensitivity of a thin film sensor. The measurement apparatus includes a heater 27 that houses the thin film sensor, a temperature sensor 28 that converts the temperature inside the heater 27 into a voltage, and the electrical resistance of the thin film sensor. It comprises a Wheatstone bridge 29 that converts a value into a voltage, an amplifier 30 that amplifies the output of the Wheatstone bridge 29, and a recording device 31 that records data.

図5は各センサ合金毎の温度感度の測定結果を示すもので、センサ合金(1) の温度感度は10〜30×10-6[(Ω/Ω)/°C]、センサ合金(2) の温度感度は−12〜−36×10-6[(Ω/Ω)/°C]、センサ合金(3) の温度感度は−20〜8×10-6[(Ω/Ω)/°C]、センサ合金(4) の温度感度は−43〜−53×10-6[(Ω/Ω)/°C]であって個々にばらついている。一方、センサ合金(5) の温度感度は84〜128×10-6[(Ω/Ω)/°C]であり、温度の上昇に伴って著しく増加している。 FIG. 5 shows measurement results of temperature sensitivity for each sensor alloy. The temperature sensitivity of the sensor alloy (1) is 10 to 30 × 10 −6 [(Ω / Ω) / ° C], and the sensor alloy (2) Has a temperature sensitivity of −12 to −36 × 10 −6 [(Ω / Ω) / ° C], and the sensor alloy (3) has a temperature sensitivity of −20 to 8 × 10 −6 [(Ω / Ω) / ° C. The temperature sensitivity of the sensor alloy (4) is −43 to −53 × 10 −6 [(Ω / Ω) / ° C.], which varies individually. On the other hand, the temperature sensitivity of the sensor alloy (5) is 84 to 128 × 10 −6 [(Ω / Ω) / ° C.], which is remarkably increased as the temperature rises.

図6は薄膜センサの歪み感度を測定する手法を示すものである。断面コ字状の試験器32の一対の平行な梁部33,33に挟まれた薄肉部34に、図1(A)に示す単線型の薄膜センサSaおよび図1(B)に示す一周型の薄膜センサSbを2個ずつ貼り付ける。図中右側の単線型の薄膜センサSaおよび一周型の薄膜センサSbは縦歪み感度の測定用であり、その軸線が縦方向(y方向)に整列する。また図中左側の単線型の薄膜センサSaおよび一周型の薄膜センサSbは横歪み感度の測定用であり、その軸線が横方向(x方向)に整列する。更に、試験器32の薄肉部34には、縦方向および横方向の歪み量のモニタとして、市販の二軸型歪みゲージ35を貼り付ける。   FIG. 6 shows a method for measuring the strain sensitivity of the thin film sensor. A thin wire portion 34 sandwiched between a pair of parallel beam portions 33, 33 of a U-shaped tester 32 has a single wire type thin film sensor Sa shown in FIG. 1 (A) and a round type shown in FIG. 1 (B). Two thin film sensors Sb are attached. The single-line type thin film sensor Sa and the one-round type thin film sensor Sb on the right side in the drawing are used for measuring the longitudinal strain sensitivity, and their axes are aligned in the vertical direction (y direction). Further, the single-line thin film sensor Sa and the one-round thin film sensor Sb on the left side in the figure are for measuring the lateral strain sensitivity, and their axes are aligned in the horizontal direction (x direction). Further, a commercially available biaxial strain gauge 35 is attached to the thin portion 34 of the tester 32 as a monitor of the amount of strain in the vertical and horizontal directions.

尚、単線型の薄膜センサSaは感知部12が直線で構成されていて方向性を持つため、その歪み感度は縦歪み感度Klおよび横歪み感度Kwで表される。一方、一周型の薄膜センサSbは感知部12,12が一対の半円弧で構成されていて方向性を持たないため、その縦歪み感度Klおよび横歪み感度Kwは同じ値となる。以下、一周型の薄膜センサSbの縦歪み感度Klおよび横歪み感度Kwをゲージ率Kcと呼ぶ場合がある。   In the single-line thin film sensor Sa, since the sensing unit 12 is formed of a straight line and has directionality, the strain sensitivity is represented by the longitudinal strain sensitivity Kl and the lateral strain sensitivity Kw. On the other hand, in the one-round thin film sensor Sb, since the sensing units 12 and 12 are formed of a pair of semicircular arcs and have no directionality, the longitudinal strain sensitivity Kl and the lateral strain sensitivity Kw have the same value. Hereinafter, the longitudinal strain sensitivity Kl and the lateral strain sensitivity Kw of the one-round thin film sensor Sb may be referred to as a gauge factor Kc.

一対の梁部33,33に相互に対向する荷重F,Fを加え、薄肉部34に曲げモーメントMを作用させることで、薄肉部34に縦方向および横方向に歪ませ、単線型の薄膜センサSaの出力および一周型の薄膜センサSbの出力を2軸型歪みゲージ35の出力と比較することで、単線型の薄膜センサSaおよび一周型の薄膜センサSbの歪み感度を測定する。   By applying loads F, F facing each other to the pair of beam portions 33, 33 and causing a bending moment M to act on the thin portion 34, the thin portion 34 is distorted in the vertical and horizontal directions, and a single-wire thin film sensor By comparing the output of Sa and the output of the round type thin film sensor Sb with the output of the biaxial strain gauge 35, the strain sensitivity of the single-line type thin film sensor Sa and the round type thin film sensor Sb is measured.

表2は歪み感度の測定結果を示すものである。単線型の薄膜センサSaの歪み感度は、Cu−Mn−Niのセンサ合金(1) 〜(4) を用いた場合、縦歪み感度Klが0.50〜0.70、横歪み感度Kwが−1.1〜−1.4であり、Ni−Crのセンサ合金(5) を用いた場合、縦歪み感度Klが2.4〜2.5、横歪み感度Kwが−0.11〜−0.13である。   Table 2 shows the measurement results of strain sensitivity. The strain sensitivity of the single-line thin film sensor Sa is such that when Cu—Mn—Ni sensor alloys (1) to (4) are used, the longitudinal strain sensitivity Kl is 0.50 to 0.70, and the lateral strain sensitivity Kw is − When the Ni-Cr sensor alloy (5) is used, the longitudinal strain sensitivity Kl is 2.4 to 2.5, and the lateral strain sensitivity Kw is -0.11 to -0. .13.

また一周型の薄膜センサSbの歪み感度は、Cu−Mn−Niのセンサ合金(1) 〜(4) を用いた場合、縦歪み感度Klが−0.25〜−0.35、横歪み感度Kwが−0.25〜−0.35であり、Ni−Crのセンサ合金(5) を用いた場合、縦歪み感度Klが1.18〜1.2、横歪み感度Kwが1.18〜1.2である。   In addition, the strain sensitivity of the one-round thin film sensor Sb is such that when Cu—Mn—Ni sensor alloys (1) to (4) are used, the longitudinal strain sensitivity Kl is −0.25 to −0.35, and the lateral strain sensitivity. When Kw is −0.25 to −0.35 and the Ni—Cr sensor alloy (5) is used, the longitudinal strain sensitivity Kl is 1.18 to 1.2, and the lateral strain sensitivity Kw is 1.18 to 1.2.

Figure 0006008426
Figure 0006008426

上記特許文献1に開示されているように、薄膜センサに加わる歪みの影響を排除して圧力を高精度に検出するには、縦歪み感度Klおよび横歪み感度Kwを一致させることが望ましいが、単線型の薄膜センサSaでは、何れのセンサ合金(1) 〜(5) を用いた場合であっても、縦歪み感度Klおよび横歪み感度Kwが不一致であり、薄膜センサに加わる歪みの影響を排除できないことが分かる。   As disclosed in the above-mentioned Patent Document 1, in order to eliminate the influence of the strain applied to the thin film sensor and detect the pressure with high accuracy, it is desirable to match the longitudinal strain sensitivity Kl and the lateral strain sensitivity Kw. In the single-line thin film sensor Sa, the longitudinal strain sensitivity Kl and the lateral strain sensitivity Kw are inconsistent regardless of which sensor alloy (1) to (5) is used, and the influence of the strain applied to the thin film sensor is affected. It turns out that it cannot be excluded.

それに対し、一周型の薄膜センサSbを採用すれば、何れのセンサ合金(1) 〜(5) を用いた場合であっても、縦歪み感度Klおよび横歪み感度Kw、即ちゲージ率Kcを略一致させ、薄膜センサSbに加わる歪みの影響をかなり排除できることが分かる。   On the other hand, if the one-round type thin film sensor Sb is employed, the longitudinal strain sensitivity Kl and the lateral strain sensitivity Kw, that is, the gauge factor Kc is substantially reduced regardless of which sensor alloy (1) to (5) is used. It can be seen that the influence of distortion applied to the thin film sensor Sb can be considerably eliminated.

しかしながら、一周型の薄膜センサSbのゲージ率Kcをゼロにすることができれば、薄膜センサSbに加わる歪みの影響をより一層排除して圧力を更に高精度を検出することができる。本発明は、従来は一層のセンサ合金で構成されていた一周型の薄膜センサSbを、二層のセンサ合金で構成することで、上記課題を達成するものである。   However, if the gauge factor Kc of the one-round type thin film sensor Sb can be made zero, the influence of the strain applied to the thin film sensor Sb can be further eliminated and the pressure can be detected with higher accuracy. The present invention achieves the above-mentioned problem by forming a one-round thin film sensor Sb, which has conventionally been formed of a single layer of a sensor alloy, by using a two-layer sensor alloy.

図7(A)は従来の一層型の薄膜センサの断面を示すもので、母材15に非導電性を有する絶縁膜16、センサ合金よりなるセンサ層17および耐摩耗性を有する保護膜18を積層して構成される。図7(B)は本発明の一層型の薄膜センサの断面を示すもので、一層型の薄膜センサの一層のセンサ層17に代えて、第1センサ層17Aおよび第2センサ17Bよりなる二層のセンサ層を備える。第1センサ層17AはCu−Mn−Ni合金よりなり、第2センサ層17BはNi−Cr合金よりなり、第1センサ層17Aの厚さおよび第2センサ層17Bの厚さは所定の比率に設定される。   FIG. 7A shows a cross section of a conventional single-layer thin film sensor. A non-conductive insulating film 16, a sensor layer 17 made of a sensor alloy and a wear-resistant protective film 18 are formed on a base material 15. It is constructed by stacking. FIG. 7B shows a cross section of a single-layer thin film sensor of the present invention. Instead of the single sensor layer 17 of the single-layer thin film sensor, two layers comprising a first sensor layer 17A and a second sensor 17B. The sensor layer is provided. The first sensor layer 17A is made of a Cu—Mn—Ni alloy, the second sensor layer 17B is made of a Ni—Cr alloy, and the thickness of the first sensor layer 17A and the thickness of the second sensor layer 17B are in a predetermined ratio. Is set.

尚、母材15はシリコンウエハであっても良いし、ピストンのスカート部のような圧力検出を行う部材であっても良い。また上記二層構造は、図1(B)に示す一周型の薄膜センサSbの一対のリード部11,11、感知部12,12および接続部13,13の全てに適用しても良いが、リード部11,11および接続部13,13は必ずしも二層構造である必要はなく、一層構造であっても良い。   The base material 15 may be a silicon wafer, or may be a member that detects pressure, such as a piston skirt. The two-layer structure may be applied to all of the pair of lead portions 11, 11, the sensing portions 12, 12 and the connecting portions 13, 13 of the one-round thin film sensor Sb shown in FIG. The lead parts 11 and 11 and the connection parts 13 and 13 do not necessarily have a two-layer structure, and may have a single-layer structure.

次に、一周型の薄膜センサSbを二層構造にすることで、その歪み感度をゼロにできる理由を説明する。   Next, the reason why the distortion sensitivity can be reduced to zero by making the one-round thin film sensor Sb into a two-layer structure will be described.

符号を以下のように定義すると、
R:二層構造の薄膜センサの抵抗値[Ω]
K:二層構造の薄膜センサの歪み感度
ε:二層構造の薄膜センサの歪み
RA :第1センサ層17Aの電気抵抗値[Ω]
ρA :第1センサ層17Aの電気抵抗率[Ω・m]
tA :第1センサ層17Aの厚さ[m]
KA :第1センサ層17Aの歪み感度
εA :第1センサ層17Aの歪み
RB :第2センサ層17Bの電気抵抗値[Ω]
ρB :第2センサ層17Bの電気抵抗率[Ω・m]
tB :第2センサ層17Bの厚さ[m]
KB :第2センサ層17Bの歪み感度
εB :第2センサ層17Bの歪み
L:センサ層の長さ[m]
W:センサ層の幅[m]
歪みによる薄膜センサの出力は次のように表される。
If the sign is defined as
R: resistance value of a thin film sensor having a two-layer structure [Ω]
K: Strain sensitivity of a thin film sensor having a two-layer structure ε: Strain of a thin film sensor having a two-layer structure RA: Electric resistance value [Ω] of the first sensor layer 17A
ρA: Electric resistivity [Ω · m] of the first sensor layer 17A
tA: thickness of the first sensor layer 17A [m]
KA: strain sensitivity of first sensor layer 17A εA: strain of first sensor layer 17A RB: electric resistance value [Ω] of second sensor layer 17B
ρB: Electric resistivity [Ω · m] of the second sensor layer 17B
tB: thickness of the second sensor layer 17B [m]
KB: strain sensitivity of second sensor layer 17B εB: strain of second sensor layer 17B L: length of sensor layer [m]
W: Width of sensor layer [m]
The output of the thin film sensor due to strain is expressed as follows.

Figure 0006008426
Figure 0006008426

図8に示すように、第1センサ層17Aおよび第2センサ層17Bは電気的に並列に接続されていると見做すことができるため、薄膜センサの抵抗値Rは、   As shown in FIG. 8, since the first sensor layer 17A and the second sensor layer 17B can be regarded as being electrically connected in parallel, the resistance value R of the thin film sensor is

Figure 0006008426
で与えられる。
Figure 0006008426
Given in.

(1)式および(2)式から   From equations (1) and (2)

Figure 0006008426
が得られる。
Figure 0006008426
Is obtained.

ここで、RA およびRB に(1)式を変形して代入し、dRに(2)式を変形して代入すると、   Here, when (1) is modified and substituted for RA and RB, and (2) is modified and substituted for dR,

Figure 0006008426
が得られる。
Figure 0006008426
Is obtained.

第1センサ層17Aの歪みと第2センサ層17Bの歪みは等しいと見做せるため、つまりdε=dεA =dεB であるため、(4)式から、   Since it can be considered that the strain of the first sensor layer 17A and the strain of the second sensor layer 17B are equal, that is, dε = dεA = dεB,

Figure 0006008426
が得られる。
Figure 0006008426
Is obtained.

また抵抗値Rの変化は、   The change in resistance value R is

Figure 0006008426
で与えられる。
Figure 0006008426
Given in.

またdLA =dLB 、dWA =dWB 、dρ=ρと見なし、かつW≫tからdt=tと見なし、(5)式に(6)式を代入すると、   Further, dLA = dLB, dWA = dWB, dρ = ρ, and W >> t to dt = t, and substituting equation (6) into equation (5),

Figure 0006008426
が得られる。
Figure 0006008426
Is obtained.

(7)式において、第1センサ層17Aの電気抵抗率ρA および第2センサ層17bの電気抵抗率ρB は、表3に示すように既知である。   In the equation (7), the electrical resistivity ρA of the first sensor layer 17A and the electrical resistivity ρB of the second sensor layer 17b are known as shown in Table 3.

Figure 0006008426
Figure 0006008426

また第1センサ層17Aの歪み感度KA および第2センサ層17Bの歪み感度KB は、表2に示すように測定可能である。即ち、表2の一周型の薄膜センサSbの欄のCu−Mn−Ni合金のKlあるいはKwが(7)式のKA に対応し、表2の一周型の薄膜センサSbの欄のNi−Cr合金のKlあるいはKwが(7)式のKB に対応する。   The strain sensitivity KA of the first sensor layer 17A and the strain sensitivity KB of the second sensor layer 17B can be measured as shown in Table 2. That is, Kl or Kw of the Cu-Mn-Ni alloy in the column of the round-type thin film sensor Sb in Table 2 corresponds to KA in the formula (7), and Ni-Cr in the column of the round-type thin film sensor Sb in Table 2 The K1 or Kw of the alloy corresponds to KB in the equation (7).

また第1センサ層17Aの厚さtA および第2センサ層17Bの厚さtB は任意に設定可能であるため、それらの比(膜厚比=tB /tA )を適切な値に設定することにより、二層構造の薄膜センサの歪み感度K、つまり一周型の薄膜センサSbがゲージ率Kcをゼロにすることができる。   Moreover, since the thickness tA of the first sensor layer 17A and the thickness tB of the second sensor layer 17B can be arbitrarily set, the ratio (film thickness ratio = tB / tA) is set to an appropriate value. The strain sensitivity K of the thin film sensor having the two-layer structure, that is, the one-round thin film sensor Sb can make the gauge factor Kc zero.

図9(A)は膜厚比=tB /tA を変化させたときの二層構造の単線型の薄膜センサの縦歪み感度Kl(■参照)および横歪み感度Kw(●参照)の測定値と、二層構造の一周型の薄膜センサSbの歪み感度であるゲージ率Kc(▲参照)の測定値とを示すもので、実線で示す計算値と良く一致している。同図から、膜厚比=略25%のとき、例えば、第1センサ層17Aの厚さtA を200nmとし、第2センサ層17Bの厚さtB を50nmとしたとき、一周型の薄膜センサSbのゲージ率Kcが略ゼロになることが分かる。 FIG. 9A shows measured values of the longitudinal strain sensitivity Kl (see ■) and lateral strain sensitivity Kw (see ●) of a single- layer thin film sensor having a two-layer structure when the film thickness ratio = tB / tA is changed. , shows the measurements of the two-layer structure gauge factor Kc is the strain sensitivity of the thin-film sensor Sb of the round type (see ▲), in good agreement with the calculated value shown by the solid line. From the figure, when the film thickness ratio = approximately 25%, for example, when the thickness tA of the first sensor layer 17A is 200 nm and the thickness tB of the second sensor layer 17B is 50 nm, the one-round thin film sensor Sb It can be seen that the gage factor Kc of is substantially zero.

表4は、一周型の薄膜センサSbの縦歪み感度Klおよび横歪み感度Kwの測定値を、Cu−Mn−Ni合金の一層構造を適用したものと、Ni−Cr合金の一層構造を適用したものと、Cu−Mn−Ni合金およびNi−Cr合金の二層構造を適用したものとについて、それぞれ示している。   Table 4 shows the measured values of the longitudinal strain sensitivity Kl and the lateral strain sensitivity Kw of the one-round thin film sensor Sb, to which one layer structure of Cu—Mn—Ni alloy is applied and one layer structure of Ni—Cr alloy is applied. 1 and those to which a two-layer structure of a Cu—Mn—Ni alloy and a Ni—Cr alloy are applied are shown.

Figure 0006008426
Figure 0006008426

Cu−Mn−Ni合金の一層構造を適用したものと、Ni−Cr合金の一層構造を適用したものとは、縦歪み感度Klおよび横歪み感度Kwが相互に等しい値になっているが、それらをゼロにすることはできない。一方、Cu−Mn−Ni合金およびNi−Cr合金の膜厚比=略25%の二層構造を適用したものは、縦歪み感度Klおよび横歪み感度Kwが共に略ゼロになっていることが分かる。   The longitudinal strain sensitivity Kl and the lateral strain sensitivity Kw are equal to each other when the single layer structure of the Cu—Mn—Ni alloy and the single layer structure of the Ni—Cr alloy are applied. Cannot be zero. On the other hand, in the case of applying a two-layer structure in which the film thickness ratio of the Cu—Mn—Ni alloy and the Ni—Cr alloy is approximately 25%, the longitudinal strain sensitivity Kl and the lateral strain sensitivity Kw are both substantially zero. I understand.

次に、二層構造の一周型の薄膜センサSbの圧力感度および温度感度について説明する。   Next, the pressure sensitivity and the temperature sensitivity of the one-layer thin film sensor Sb having a two-layer structure will be described.

αP :二層構造の薄膜センサの圧力感度[(Ω/Ω)/MPa]
αPA:第1センサ層17Aの圧力感度[(Ω/Ω)/MPa]
αPB:第2センサ層17Bの圧力感度[(Ω/Ω)/MPa]
αT :二層構造の薄膜センサの温度感度[(Ω/Ω)/°C]
αTA:第1センサ層17Aの温度感度[(Ω/Ω)/°C]
αTB:第2センサ層17Bの温度感度[(Ω/Ω)/°C]
と定義すると、二層構造の薄膜センサの歪み感度Kを示す(7)式と同様にして、二層構造の薄膜センサの温度感度αP および二層構造の薄膜センサの温度感度αT を示す式を、それぞれ次のように導くことができる。
αP: Pressure sensitivity of thin film sensor having a two-layer structure [(Ω / Ω) / MPa]
αPA: Pressure sensitivity of first sensor layer 17A [(Ω / Ω) / MPa]
αPB: Pressure sensitivity of second sensor layer 17B [(Ω / Ω) / MPa]
αT: Temperature sensitivity of thin-film sensor with two-layer structure [(Ω / Ω) / ° C]
αTA: temperature sensitivity of first sensor layer 17A [(Ω / Ω) / ° C]
αTB: Temperature sensitivity of second sensor layer 17B [(Ω / Ω) / ° C]
In the same way as the equation (7) showing the strain sensitivity K of the thin film sensor having the two-layer structure, the equations showing the temperature sensitivity αP of the thin film sensor having the two-layer structure and the temperature sensitivity αT of the thin film sensor having the two-layer structure are defined. Each can be derived as follows.

Figure 0006008426
Figure 0006008426

Figure 0006008426
Figure 0006008426

(8)式に、図3に示す第1センサ層17Aの圧力感度αPAおよび第2センサ層17Bの圧力感度αPBと、表3に示す第1センサ層17Aの電気抵抗率ρA および第2センサ層17bの電気抵抗率ρB とを代入し、膜厚比=tB /tA を変化させると、図9(B)のグラフが得られる。▲で示す測定値は実線で示す計算値に良く一致しており、膜厚比=tB /tA に関わらずに二層構造の薄膜センサの圧力感度αP は略一定であることが分かる。   (8), the pressure sensitivity αPA of the first sensor layer 17A and the pressure sensitivity αPB of the second sensor layer 17B shown in FIG. 3, the electrical resistivity ρA of the first sensor layer 17A shown in Table 3, and the second sensor layer When the electric resistivity ρB of 17b is substituted and the film thickness ratio = tB / tA is changed, the graph of FIG. 9B is obtained. The measured value indicated by ▲ is in good agreement with the calculated value indicated by the solid line, and it can be seen that the pressure sensitivity αP of the thin film sensor having the two-layer structure is substantially constant regardless of the film thickness ratio = tB / tA.

(9)式に、図5に示す第1センサ層17Aの温度感度αTAおよび第2センサ層17Bの温度感度αTBと、表3に示す第1センサ層17Aの電気抵抗率ρA および第2センサ層17bの電気抵抗率ρB とを代入し、膜厚比=tB /tA を変化させると、図9(C)のグラフが得られる。膜厚比=tB /tA =25%に設定した場合、▼で示すセンサ合金(4) を採用すると、温度感度αT を略ゼロにできることが分かる。   In Equation (9), the temperature sensitivity αTA of the first sensor layer 17A and the temperature sensitivity αTB of the second sensor layer 17B shown in FIG. 5 and the electric resistivity ρA and the second sensor layer of the first sensor layer 17A shown in Table 3 are shown. When the electric resistivity ρB of 17b is substituted and the film thickness ratio = tB / tA is changed, the graph of FIG. 9C is obtained. It can be seen that when the film thickness ratio = tB / tA = 25%, the temperature sensitivity αT can be made substantially zero by using the sensor alloy (4) indicated by ▼.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、本発明の薄膜センサは、実施の形態の一周型の薄膜センサSbに限定されず、任意の直交軸に対して一方向の長さおよび幅の比が、他方向の長さおよび幅の比と同じになるものであれば良い。   For example, the thin film sensor of the present invention is not limited to the one-round thin film sensor Sb of the embodiment, and the ratio of the length and width in one direction to the arbitrary orthogonal axis is the length and width in the other direction. It is sufficient if it is the same as the ratio.

Sa 単線型の薄膜センサ
Sb 一周型の薄膜センサ
11 リード部
12 感知部
15 母材
16 絶縁膜
17 センサ層
17A 第1センサ層
17B 第2センサ
18 保護膜
Sa Single-line type thin film sensor Sb Round circuit type thin film sensor 11 Lead part 12 Sensing part 15 Base material 16 Insulating film 17 Sensor layer 17A First sensor layer 17B Second sensor 18 Protective film

Claims (3)

銅、マンガンおよびニッケルの合金である第1の合金の薄膜と、ニッケルおよびクロムの合金である第2の合金の薄膜とが積層され、前記積層された薄膜は、任意の直交軸に対して一方向の長さおよび幅の比が、他方向の長さおよび幅の比と同じであり、前記第1の合金の薄膜および前記第2の合金の薄膜の符号が逆で絶対値が略等しいゲージ率が相殺するように、前記第1の合金と前記第2の合金との膜厚比が設定されることを特徴とする薄膜センサ。 A thin film of a first alloy, which is an alloy of copper, manganese and nickel, and a thin film of a second alloy, which is an alloy of nickel and chromium, are laminated, and the laminated thin films are aligned with respect to an arbitrary orthogonal axis. the ratio of the direction of length and width, Ri same der the ratio in the other direction of the length and width, the sign of the thin film and the second alloy of the first alloy are substantially equal absolute value in opposite as the gauge factor is canceled out, thin-film sensor, wherein Rukoto thickness ratio of the second alloy and said first alloy is set. 前記第1の合金と前記第2の合金との膜厚比は略4:1であることを特徴とする、請求項1に記載の薄膜センサ。   2. The thin film sensor according to claim 1, wherein a film thickness ratio between the first alloy and the second alloy is approximately 4: 1. 圧力を感知する感知部と前記感知部から延びるリード部とを備え、少なくとも前記感知部が前記第1の合金の薄膜および前記第2の合金の薄膜を積層して構成されることを特徴とする、請求項1または請求項2に記載の薄膜センサ。   A pressure sensing section; and a lead section extending from the sensing section, wherein at least the sensing section is configured by laminating the first alloy thin film and the second alloy thin film. The thin film sensor according to claim 1 or 2.
JP2012219960A 2012-10-02 2012-10-02 Thin film sensor Active JP6008426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012219960A JP6008426B2 (en) 2012-10-02 2012-10-02 Thin film sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012219960A JP6008426B2 (en) 2012-10-02 2012-10-02 Thin film sensor

Publications (2)

Publication Number Publication Date
JP2014071085A JP2014071085A (en) 2014-04-21
JP6008426B2 true JP6008426B2 (en) 2016-10-19

Family

ID=50746400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012219960A Active JP6008426B2 (en) 2012-10-02 2012-10-02 Thin film sensor

Country Status (1)

Country Link
JP (1) JP6008426B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7138494B2 (en) * 2018-06-29 2022-09-16 Ntn株式会社 Preload sensors, bearing arrangements, bearings and spacers
JP7165021B2 (en) 2018-10-09 2022-11-02 Ntn株式会社 bearing device
DE112019005429T5 (en) 2018-10-31 2021-07-15 Ntn Corporation STORAGE DEVICE
IT201900023355A1 (en) 2019-12-09 2021-06-09 Skf Ab VEHICLE SENSORIZED SUSPENSION ASSEMBLY, INCLUDING A WHEEL HUB UNIT AND A SUSPENSION POST OR JOINT, ASSOCIATED METHOD AND WHEEL HUB UNIT

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975104A (en) * 1982-10-22 1984-04-27 Tokyo Electric Co Ltd Strain sensor
DE60025355T2 (en) * 1999-07-09 2006-08-17 Nok Corp. STRAIN GAUGES
JP4527236B2 (en) * 2000-03-30 2010-08-18 トヨタ自動車株式会社 Thin film sensor
JP4482250B2 (en) * 2001-07-19 2010-06-16 本田技研工業株式会社 Strain gauge with reduced pressure sensitivity and temperature sensitivity and design method thereof

Also Published As

Publication number Publication date
JP2014071085A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
JP6008426B2 (en) Thin film sensor
KR102482611B1 (en) Split bridge circuit force sensor
Cao et al. Simulation and fabrication of piezoresistive membrane type MEMS strain sensors
US20200088592A1 (en) Axial Force Pressure Transducer
CN202158916U (en) Measuring device for deformation detection
CN108240843A (en) Sensor element
EP2735855A1 (en) A measuring device for measuring a physical quantity
US20160334289A1 (en) High gage factor strain gage
US20130126249A1 (en) Load cell and applications thereof
JP5827583B2 (en) Surface pressure sensor
CN106679843A (en) Film temperature sensor withstanding piezoresistive effects and method for detecting temperature
KR101808928B1 (en) Strain transmitter
JP5928859B1 (en) Sensor sheet
JP4482250B2 (en) Strain gauge with reduced pressure sensitivity and temperature sensitivity and design method thereof
WO2005010472A2 (en) Flexible weighing device
US7752927B2 (en) Cable-type load sensor
JP7268333B2 (en) Strain sensing element and mechanical quantity sensor
JP4988938B2 (en) Temperature sensitive strain sensor
US11137309B2 (en) Strain gauge type pressure sensing
US11177059B2 (en) Film resistor and thin-film sensor
JP6256899B2 (en) Sensor using polymer gel
CN104279947A (en) Panel with Strain Gauges for Measuring Deformation Information
US10247619B2 (en) Resistance temperature detector with medium temperature coefficient and high linearity
KR102215844B1 (en) Method for detecting isolation and true value of sensor resistance on metal device by lamination technique
CN216978194U (en) Multi-bridge type wide-range miniature force cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160909

R150 Certificate of patent or registration of utility model

Ref document number: 6008426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350