WO2024101268A1 - Bearing device with sensor, and spindle device for machine tool - Google Patents

Bearing device with sensor, and spindle device for machine tool Download PDF

Info

Publication number
WO2024101268A1
WO2024101268A1 PCT/JP2023/039606 JP2023039606W WO2024101268A1 WO 2024101268 A1 WO2024101268 A1 WO 2024101268A1 JP 2023039606 W JP2023039606 W JP 2023039606W WO 2024101268 A1 WO2024101268 A1 WO 2024101268A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
bearing
spacer
sensor
axial
Prior art date
Application number
PCT/JP2023/039606
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 橋爪
庸平 山本
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022178395A external-priority patent/JP7480256B1/en
Priority claimed from JP2022178404A external-priority patent/JP7480257B1/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2024101268A1 publication Critical patent/WO2024101268A1/en

Links

Images

Definitions

  • This invention relates to a sensor-equipped bearing device and a machine tool spindle device that uses the sensor-equipped bearing device.
  • Spindle devices are used in machine tools such as machining centers and lathes, and other industrial machines, to rotatably support a rotating shaft (main shaft) on which tools, workpieces, and other objects are attached.
  • main shaft rotating shaft
  • spindle devices are used to strengthen status monitoring functions to reduce manpower and achieve automation.
  • Patent Document 1 The applicant of this application has already proposed a bearing device with a sensor to meet the need for improved condition monitoring functions.
  • the sensor-equipped bearing device of Patent Document 1 has a first bearing and a second bearing spaced apart in the axial direction, a cylindrical outer ring spacer provided between the first bearing and the second bearing, and a strain sensor attached to the outer ring spacer.
  • the first bearing has a first outer ring, a first inner ring provided radially inward of the first outer ring, and a plurality of first rolling elements incorporated between the first outer ring and the first inner ring.
  • the second bearing has a second outer ring, a second inner ring provided radially inward of the second outer ring, and a plurality of second rolling elements incorporated between the second outer ring and the second inner ring.
  • the outer ring spacer is arranged by being sandwiched between the first outer ring and the second outer ring in the axial direction.
  • a preload nut is fastened to the axial end face of the first inner ring opposite the second inner ring, and the axial end face of the second inner ring opposite the first inner ring, to bring the first inner ring and the second inner ring closer together.
  • the first bearing and the second bearing are configured to transmit this preload through the first inner ring, the first rolling element, the first outer ring, the outer ring spacer, the second outer ring, the second rolling element, and the second inner ring.
  • the first bearing is an angular ball bearing configured so that the axial preload between the first outer ring and the first inner ring generates a radial component force that causes the first rolling element to press the first outer ring
  • the second bearing is also an angular ball bearing configured so that the axial preload between the second outer ring and the second inner ring generates a radial component force that causes the second rolling element to press the second outer ring.
  • the strain sensor is attached to the outer periphery (or inner periphery) of the outer ring spacer, and the preload of the first bearing and second bearing (hereinafter referred to as “bearing preload”) can be detected based on the output of this strain sensor.
  • the problem that the first invention aims to solve is to provide a bearing device with a sensor that can detect bearing preload with high accuracy.
  • the bearing device in Patent Document 1 supports the main shaft of a spindle device, and is arranged in a back-to-back combination on the inside of a cylindrical bearing housing.
  • the first and second bearings are angular contact ball bearings each having an outer ring, an inner ring rotatably arranged radially inside the outer ring, and multiple rolling elements assembled between the outer and inner rings.
  • a strain sensor is attached to the outer ring spacer assembled between the outer ring of the first bearing and the outer ring of the second bearing.
  • the axial force of the preload nut is transmitted to the second bearing, the outer ring spacer, and the first bearing in that order, applying a preload to both bearings, and the axial preload load can be calculated based on the output of a strain sensor attached to the outer ring spacer.
  • a spindle device using this bearing device can detect an increase in preload caused by heat generation in each bearing supporting the spindle, and has an enhanced condition monitoring function. Furthermore, when the spindle device is incorporated into a machine tool, changes in cutting load can also be detected, making it possible to monitor the machining condition.
  • the load acting on the outer ring spacer is determined from the strain caused by deformation of the outer ring spacer when subjected to axial force. Therefore, in order to detect changes in load with high sensitivity, it is desirable to make the outer ring spacer easily deformable within a practical range.
  • the problem that the second invention aims to solve is to provide a bearing device with a sensor that can detect load changes stably and with high sensitivity.
  • the inventors of the present application conducted an evaluation test in which the bearing preload was changed in the sensor-equipped bearing device of Patent Document 1 and the bearing preload was detected based on the output of the strain sensor in the outer ring spacer. They discovered that, even if the magnitude of the bearing preload was the same, the output of the strain sensor was not the same during the process of increasing the bearing preload and the process of decreasing the bearing preload, and that hysteresis occurred, resulting in a certain difference between the former and the latter, and that this hysteresis was the cause of an error in the bearing preload detected based on the output of the strain sensor.
  • the first outer ring elastically deforms in the radial expansion direction due to an increase in the radial component of the force it receives from the first rolling element, and this elastic deformation causes a small amount of slippage between the contact surfaces of the first outer ring and the outer ring spacer, where the first outer ring moves radially outward relative to the outer ring spacer.
  • the first outer ring elastically restores in the radial contraction direction due to a decrease in the radial component of the force it receives from the first rolling element, and this elastic restoration causes a small amount of slippage between the contact surfaces of the first outer ring and the outer ring spacer, where the first outer ring moves radially inward relative to the outer ring spacer.
  • the second outer ring elastically deforms in the radial expansion direction due to an increase in the radial component of the force it receives from the second rolling element, and this elastic deformation causes a small amount of slippage between the contact surfaces of the second outer ring and the outer ring spacer, where the second outer ring moves radially outward relative to the outer ring spacer.
  • the second outer ring elastically restores in the radial contraction direction due to a decrease in the radial component of the force it receives from the second rolling element, and this elastic restoration causes a small amount of slippage between the contact surfaces of the second outer ring and the outer ring spacer, where the second outer ring moves radially inward relative to the outer ring spacer.
  • the inventors of the present application came up with the idea that if the surface pressure between the contact surfaces of the first outer ring and the outer ring spacer is increased, the frictional force between the contact surfaces of the first outer ring and the outer ring spacer will increase, making it possible to suppress radial slippage between the contact surfaces of the first outer ring and the outer ring spacer when the radial component of the force that the first outer ring receives from the first rolling element changes in response to changes in the bearing preload; similarly, if the surface pressure between the contact surfaces of the second outer ring and the outer ring spacer is increased, the frictional force between the contact surfaces of the second outer ring and the outer ring spacer will increase, making it possible to suppress radial slippage between the contact surfaces of the second outer ring and the outer ring spacer when the radial component of the force that the second outer ring receives from the second rolling element changes in response to changes in the bearing preload; as a result, the hysteresis in the output of the strain sensor
  • a first aspect of the present invention provides a sensor-equipped bearing device having the following configuration.
  • the bearing has a first bearing and a second bearing spaced apart in the axial direction, a cylindrical outer ring spacer provided between the first bearing and the second bearing, and a strain sensor attached to the outer ring spacer
  • the first bearing includes a first outer ring, a first inner ring provided radially inside the first outer ring, and a plurality of first rolling elements assembled between the first outer ring and the first inner ring
  • the second bearing includes a second outer ring, a second inner ring provided radially inside the second outer ring, and a plurality of second rolling elements assembled between the second outer ring and the second inner ring
  • a preload is applied to an axial end face of the first inner ring opposite to a side of the second inner ring and an axial end face of the second inner ring opposite to a side of the first inner ring in a direction to bring the first inner
  • a surface pressure of the sum of the preload applied to the axial end faces of the first inner ring and the second inner ring and the pressing force applied to the axial end faces of the first outer ring and the second outer ring acts between the contact surfaces of the second outer ring and the outer ring spacer, so the surface pressure between the contact surfaces of the second outer ring and the outer ring spacer is large. Therefore, the frictional force between the contact surfaces of the second outer ring and the outer ring spacer increases, and when the radial component of the force that the second outer ring receives from the second rolling element changes in response to a change in the bearing preload, it becomes possible to suppress radial slippage between the contact surfaces of the second outer ring and the outer ring spacer. As a result, the hysteresis of the output of the strain sensor of the outer ring spacer is reduced, making it possible to detect the bearing preload with high accuracy.
  • the frictional force between the contact surfaces of the second outer ring and the outer ring spacer is particularly effectively large, and when the radial component of the force that the second outer ring receives from the second rolling element changes in response to a change in the bearing preload, it is possible to particularly effectively suppress radial slippage between the contact surfaces of the second outer ring and the outer ring spacer.
  • the screw member is positioned at the same circumferential position as the strain sensor, so the surface pressure between the contact surfaces of the first outer ring and the outer ring spacer and the surface pressure between the contact surfaces of the second outer ring and the outer ring spacer can be effectively increased at the same circumferential position as the strain sensor. This makes it possible to effectively reduce hysteresis in the output of the strain sensor.
  • a second aspect of the present invention provides a sensor-equipped bearing device having the following configuration.
  • a plurality of rolling bearings having a non-zero contact angle are arranged in a back-to-back arrangement in two or more rows inside a cylindrical bearing housing,
  • the plurality of rolling bearings include a first bearing and a second bearing opposed to each other in a back-to-back arrangement,
  • the first bearing includes a first outer ring, a first inner ring rotatably provided radially inside the first outer ring, and a plurality of first rolling elements assembled between the first outer ring and the first inner ring
  • the second bearing includes a second outer ring, a second inner ring rotatably provided radially inside the second outer ring, and a plurality of second rolling elements assembled between the second outer ring and the second inner ring,
  • a cylindrical outer ring spacer is disposed between the first outer ring and the second outer ring in a state of being sandwiched in the
  • the difference between ⁇ 1 and ⁇ 2 should be 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the present invention also provides a machine tool spindle device using the above-mentioned sensor-equipped bearing device, which has the following configuration.
  • a surface pressure acts between the contact surfaces of the first outer ring and the outer ring spacer, which is equal to the sum of the preload applied to the axial end faces of the first inner ring and the second inner ring and the pressing force applied to the axial end faces of the first outer ring and the second outer ring. Therefore, the frictional force between the contact surfaces of the first outer ring and the outer ring spacer is large, and when the radial component of the force that the first outer ring receives from the first rolling element changes in response to the change in the bearing preload, it is possible to suppress radial slip between the contact surfaces of the first outer ring and the outer ring spacer.
  • a surface pressure acts between the contact surfaces of the second outer ring and the outer ring spacer, which is equal to the sum of the preload applied to the axial end faces of the first inner ring and the second inner ring and the pressing force applied to the axial end faces of the first outer ring and the second outer ring. Therefore, the surface pressure between the contact surfaces of the second outer ring and the outer ring spacer is large. Therefore, when the frictional force between the contact surfaces of the second outer ring and the outer ring spacer is large and the radial component of the force that the second outer ring receives from the second rolling element changes in response to changes in the bearing preload, it is possible to suppress radial slippage between the contact surfaces of the second outer ring and the outer ring spacer. As a result, the hysteresis of the output of the strain sensor of the outer ring spacer is reduced, making it possible to detect the bearing preload with high accuracy.
  • the sensor-equipped bearing device of the second invention specifies the fit clearance between the two bearings and the outer ring spacer that are each loosely fitted into the housing, so that the outer ring spacer to which the load sensor is attached is unlikely to come into contact with the inner circumference of the housing even if it expands and deforms radially due to an axial force, making it possible to detect load changes stably and with high sensitivity.
  • FIG. 1 is a cross-sectional view showing a machine tool spindle device using a sensor-equipped bearing device according to a first embodiment of the present invention
  • FIG. 2 is an enlarged view of the sensor-equipped bearing device of FIG. 1 and its surroundings
  • 3 is a cross-sectional view taken along line III-III in FIG. 2
  • FIG. 3 is a diagram showing a transmission path of an axial preload applied between the first inner ring and the second inner ring shown in FIG. 2 and a transmission path of an axial pressing force applied between the first outer ring and the second outer ring.
  • 1 is a cross-sectional view of a machine tool spindle device using a sensor-equipped bearing device according to a second embodiment of the present invention
  • FIG. 1 is a cross-sectional view of a machine tool spindle device using a sensor-equipped bearing device according to a second embodiment of the present invention
  • FIG. 1 is a cross-sectional view of a machine tool spindle device using a sensor-equipped bearing device
  • FIG. 6 is an enlarged cross-sectional view of a main part of FIG.
  • FIG. 6 is an explanatory diagram of a force transmission path caused by a cutting load applied to the spindle device for a machine tool of FIG.
  • FIG. 6 is an explanatory diagram of a force transmission path caused by a preload applied to the sensor-equipped bearing device of the machine tool spindle device of FIG. 5;
  • FIG. 8 is a schematic diagram illustrating a force transmission mode of a comparative example corresponding to FIG. 7 .
  • FIG. 8 is a schematic diagram illustrating a force transmission mode of the embodiment corresponding to FIG. 7 .
  • FIG. 1 shows a spindle device for a machine tool that uses a sensor-equipped bearing device 1 (hereinafter simply referred to as "bearing device 1") according to a first embodiment of the invention.
  • This spindle device has a main spindle 2 of the machine tool, a main spindle housing (outer cylinder) 3 that accommodates the main spindle 2, a motor 4 that drives and rotates the main spindle 2, a bearing device 1 of the embodiment that rotatably supports the main spindle 2 axially forward of the motor 4 (left side in the figure), and a rear bearing device 5 that rotatably supports the main spindle 2 axially rearward of the motor 4 (right side in the figure).
  • the spindle housing 3 is formed in a hollow cylinder with both ends open.
  • the spindle housing 3 accommodates the bearing device 1 and the motor 4 in that order from the front to the rear in the axial direction.
  • the part of the spindle housing 3 that accommodates the bearing device 1 and the part of the spindle housing 3 that accommodates the motor 4 are formed as a seamless integrated unit, but the part of the spindle housing 3 that accommodates the bearing device 1 and the part of the spindle housing 3 that accommodates the motor 4 may be formed separately and then connected to integrate the two parts.
  • the spindle 2 is inserted into the spindle housing 3 with the front end of the spindle 2 protruding from the front end opening of the spindle housing 3.
  • a chuck (not shown) for gripping a tool or workpiece is removably attached to the front end of the spindle 2.
  • a through hole 6 is formed axially through the spindle 2 to accommodate a drawbar (not shown) of the machine tool so that it can slide axially.
  • the motor 4 has a rotor 7 attached to the outer periphery of the main shaft 2 and an annular stator 8 that applies a rotational force to the rotor 7.
  • the rotor 7 has a rotor sleeve 9 that fits onto the outer periphery of the main shaft 2 and a rotor core 10 fixed to the outer periphery of the rotor sleeve 9.
  • the rotor core 10 is, for example, a laminate of electromagnetic steel sheets.
  • the rotor sleeve 9 is prevented from rotating on the main shaft 2 so as to rotate integrally with the main shaft 2.
  • the axial front end of the rotor sleeve 9 contacts a step portion 11 that faces the axial rear side and is formed on the outer periphery of the main shaft 2, and is positioned in the axial direction by the contact with the step portion 11.
  • the stator 8 has a stator core 12 fixed to the inner circumference of the spindle housing 3, and electromagnetic coils 13 wound around a number of teeth formed at intervals in the circumferential direction on the stator core 12.
  • electromagnetic coils 13 wound around a number of teeth formed at intervals in the circumferential direction on the stator core 12.
  • a rotational force is generated in the rotor core 10 by the electromagnetic force acting between the stator core 12 and the rotor core 10, causing the rotor 7 and the spindle 2 to rotate integrally.
  • an electric motor that generates rotational force using electricity is used as the motor 4, but instead of an electric motor, it is also possible to use a motor that generates rotational force using another power source such as compressed air.
  • the rear bearing device 5 has an annular bearing support member 14 that is coaxially fixed to the rear end of the spindle housing 3, and a rolling bearing 15 that is assembled into the bearing support member 14.
  • the rolling bearing 15 is a cylindrical roller bearing that has an outer ring 16 that fits into the inner circumference of the bearing support member 14, an inner ring 17 that fits into the outer circumference of the spindle 2, and a number of cylindrical rollers 18 that are assembled between the outer ring 16 and the inner ring 17.
  • An outer ring pressing member 19 is attached to the bearing support member 14.
  • the outer ring pressing member 19 fixes the axial position of the outer ring 16 by contacting the axial rear end face of the outer ring 16.
  • a nut member 20 that presses the inner ring 17 axially forward and an annular spacer 21 assembled between the inner ring 17 and the nut member 20 are attached to the outer periphery of the main shaft 2.
  • the nut member 20 is threadedly engaged with a male thread 22 formed on the outer periphery of the rear end of the main shaft 2.
  • the axial front end face of the spacer 21 contacts the axial rear end face of the inner ring 17, and the axial rear end face of the spacer 21 contacts the axial front end face of the nut member 20.
  • the axial front end face of the inner ring 17 contacts the axial rear end of the rotor sleeve 9.
  • the bearing device 1 includes: The bearing has a cylindrical bearing housing 23 fixed to the spindle housing 3, a first bearing 24 and a second bearing 25 assembled into the bearing housing 23 at an axial distance from each other, an outer ring spacer 26 and an inner ring spacer 27 provided between the first bearing 24 and the second bearing 25, and a strain sensor 28 attached to the outer ring spacer 26.
  • the bearing housing 23 is fitted to the inner circumference of the spindle housing 3.
  • a cooling groove 29 is formed on the outer circumference of the bearing housing 23, through which a refrigerant for cooling the bearing device 1 flows.
  • the cooling groove 29 is a plurality of annular grooves formed at intervals in the axial direction on the outer circumference of the bearing housing 23, or a spiral groove extending in a spiral shape around the outer circumference of the bearing housing 23.
  • the inner diameter of the bearing housing 23 is larger than the outer diameter of the rotor 7.
  • the first bearing 24 has a first outer ring 30 that fits into the inner circumference of the bearing housing 23, a first inner ring 31 that is rotatably arranged radially inside the first outer ring 30, and a plurality of first rolling elements 32 that are assembled between the first outer ring 30 and the first inner ring 31.
  • the first rolling elements 32 are balls here.
  • the inner circumference of the first outer ring 30 is provided with a first outer ring raceway surface 33 that has an arc-shaped cross section with which the first rolling elements 32 roll and contact.
  • the first outer ring 30 is a shoulder-dropped outer ring that has a shape in which the axially front outer ring shoulder is removed from the outer ring shoulder on the axially front side and the outer ring shoulder on the axially rear side with respect to the first outer ring raceway surface 33.
  • the outer circumference of the first outer ring 30 fits into the inner circumference of the bearing housing 23 with a gap.
  • the outer circumference of the first inner ring 31 is provided with a first inner ring raceway surface 34 that has an arc-shaped cross section with which the first rolling elements 32 roll and contact.
  • the first inner ring 31 is a shoulder-reduced inner ring with a shape in which the axially rear inner ring shoulder is removed from the axially front inner ring shoulder and the axially rear inner ring shoulder with respect to the first inner ring raceway surface 34 with which the first rolling element 32 rolls.
  • the first inner ring 31 is fitted to the outer periphery of the main shaft 2 with a tightening margin.
  • the second bearing 25 has a second outer ring 35 that fits into the inner circumference of the bearing housing 23, a second inner ring 36 that is rotatably arranged radially inside the second outer ring 35, and a plurality of second rolling elements 37 that are assembled between the second outer ring 35 and the second inner ring 36.
  • the second rolling elements 37 are balls here.
  • the inner circumference of the second outer ring 35 is provided with a second outer ring raceway surface 38 that has an arc-shaped cross section with which the second rolling elements 37 roll and contact.
  • the second outer ring 35 is spaced axially rearward from the first outer ring 30, and the second inner ring 36 is also spaced axially rearward from the first inner ring 31.
  • the second outer ring 35 is a shoulder-dropped outer ring that has a shape in which the axially rear outer ring shoulder is removed from the outer ring shoulder on the axial front side and the outer ring shoulder on the axial rear side relative to the second outer ring raceway surface 38.
  • the outer periphery of the second outer ring 35 is fitted with a gap to the inner periphery of the bearing housing 23.
  • the outer periphery of the second inner ring 36 is provided with a second inner ring raceway 39 with an arc-shaped cross section, with which the second rolling element 37 rolls.
  • the second inner ring 36 is a shoulder-reduced inner ring with a shape in which the axially front inner ring shoulder is removed from the axially front inner ring shoulder and the axially rear inner ring shoulder with respect to the second inner ring raceway 39 with which the second rolling element 37 rolls.
  • the second inner ring 36 is fitted with a tightening margin to the outer periphery of the main shaft 2.
  • the first bearing 24 is configured so that the first rolling body 32 generates a radial component force pressing the first outer ring 30 under axial preload
  • the second bearing 25 is configured so that the second rolling body 37 generates a radial component force pressing the second outer ring 35 under axial preload
  • the first bearing 24 is an angular ball bearing in which the line connecting the contact point of the first inner ring 31 and the first rolling body 32 and the contact point of the first outer ring 30 and the first rolling body 32 is inclined axially backward from the radial inside toward the radial outside.
  • the second bearing 25 is an angular ball bearing in which the line connecting the contact point of the second inner ring 36 and the second rolling body 37 and the contact point of the second outer ring 35 and the second rolling body 37 is inclined axially forward from the radial inside toward the radial outside.
  • the first bearing 24 and the second bearing 25 are a pair of angular contact ball bearings arranged back-to-back with a gap in the axial direction.
  • the outer ring spacer 26 is a hollow cylindrical member with both ends open.
  • the outer ring spacer 26 is fitted with a gap around the inner circumference of the bearing housing 23.
  • the outer ring spacer 26 is axially sandwiched between the axial rear end face of the first outer ring 30 (the axial end face of the first outer ring 30 on the side of the second outer ring 35) and the axial front end face of the second outer ring 35 (the axial end face of the second outer ring 35 on the side of the first outer ring 30).
  • the inner ring spacer 27 is a hollow cylindrical member with both ends open.
  • the inner ring spacer 27 fits onto the outer periphery of the main shaft 2 with a gap.
  • the inner ring spacer 27 is sandwiched axially between the first inner ring 31 and the second inner ring 36.
  • an annular inner ring positioning step 40 is formed on the outer periphery of the main shaft 2, facing the axial front end face of the first inner ring 31 (the axial end face of the first inner ring 31 opposite the second inner ring 36 side).
  • the inner ring positioning step 40 positions the first inner ring 31 in the axial direction by restricting the movement of the first inner ring 31 forward in the axial direction (in the direction away from the second outer ring 35).
  • a preload nut 41 is attached to the outer periphery of the main shaft 2, axially rearward of the second inner ring 36.
  • the preload nut 41 is threadedly engaged with a male thread 42 formed on the outer periphery of the main shaft 2.
  • An annular spacer 43 is assembled between the second inner ring 36 and the preload nut 41.
  • the axial front end face of the spacer 43 contacts the axial rear end face of the second inner ring 36, and the axial rear end face of the spacer 43 contacts the axial front end face of the preload nut 41.
  • the preload nut 41 is tightened with a predetermined force, and the axial force of the preload nut 41 applies a preload to the axial front end face of the first inner ring 31 (the axial end face of the first inner ring 31 opposite the second inner ring 36 side) and the axial rear end face of the second inner ring 36 (the axial end face of the second inner ring 36 opposite the first inner ring 31 side) in a direction that brings the first inner ring 31 and the second inner ring 36 closer together.
  • the axial force of the preload nut 41 applies an axial preload between the first inner ring 31 and the second inner ring 36 so that the preload is transmitted through the first inner ring 31, the first rolling element 32, the first outer ring 30, the outer ring spacer 26, the second outer ring 35, the second rolling element 37, and the second inner ring 36 in that order.
  • the strain sensor 28 is attached to the axial center of the outer ring spacer 26. Specifically, the strain sensor 28 is attached to the outer ring spacer 26 so that the strain sensor 28 fits within an area within an axial distance of 1/4 of the total axial length of the outer ring spacer 26 from the axial center position of the outer ring spacer 26.
  • multiple strain sensors 28 are provided at equal intervals in the circumferential direction on the inner circumference of the outer ring spacer 26.
  • Axial grooves 44 the same number as the strain sensors 28, are formed at equal intervals in the circumferential direction on the inner circumference of the outer ring spacer 26.
  • Each of the axial grooves 44 has a planar groove bottom surface parallel to the axis, and a strain sensor 28 is attached to each of the groove bottom surfaces.
  • each strain sensor 28 has a strain detection unit 45 and a processing unit 46 connected to the strain detection unit 45.
  • the strain detection unit 45 is a strain gauge whose electrical resistance changes according to strain.
  • the processing unit 46 has a strain detection circuit that detects strain based on the change in the electrical resistance of the strain gauge, and an AD conversion circuit that converts the strain detected by the detection circuit from an analog signal to a digital signal and outputs it.
  • the strain detection unit 45 employs an axial strain detection unit (strain gauge arranged with the axial direction as the strain detection direction) that detects the axial strain of the outer ring spacer 26 at the mounting position of the strain sensor 28, and a circumferential strain detection unit (strain gauge arranged with the circumferential direction as the strain detection direction) that detects the circumferential strain of the outer ring spacer 26 at the mounting position of the strain sensor 28.
  • the processing unit 46 is configured to take the difference between the axial strain detected by the axial strain detection unit and the circumferential strain detected by the circumferential strain detection unit (i.e., the sum of the absolute value of the axial strain and the absolute value of the circumferential strain), and to use this difference as the output of the strain sensor 28.
  • a ring-shaped outer ring positioning step 50 is formed on the inner circumference of the bearing housing 23, axially facing the axial rear end face of the second outer ring 35 (the axial end face of the second outer ring 35 opposite the first outer ring 30 side).
  • the outer ring positioning step 50 positions the second outer ring 35 in the axial direction by restricting movement of the second outer ring 35 axially rearward (away from the first outer ring 30).
  • An annular cover member 51 is fixed to the axial front end face of the bearing housing 23.
  • the cover member 51 has a cylindrical portion 52 that fits into the inner circumference of the bearing housing 23, and a ring-shaped flange portion 53 that extends radially outward from the axial front end of the cylindrical portion 52.
  • the flange portion 53 is fixed to the axial front end face of the bearing housing 23 by a plurality of screw members 54 arranged at equal intervals in the circumferential direction.
  • the screw members 54 are bolts.
  • the screw members 54 are arranged at the same circumferential position as the strain sensor 28. That is, in Figure 3, the strain sensor 28 is arranged at circumferential positions of 0°, 120°, and 240° clockwise from the upper side of the outer ring spacer 26, and the screw members 54 are arranged at circumferential positions that include all of the circumferential positions of the strain sensor 28 (in the figure, the screw members 54 are arranged at circumferential positions of 0°, 60°, 120°, 180°, 240°, and 300°).
  • the flange portion 53 has a plurality of through holes 55 formed at equal intervals in the circumferential direction, through which the screw members 54 are inserted. Furthermore, the axial front end face of the bearing housing 23 has a plurality of screw holes 56 formed at equal intervals in the circumferential direction, into which the screw members 54 are screwed.
  • the flange portion 53 is pressed against the axial front end face of the bearing housing 23. Furthermore, the axial rear end of the tubular portion 52 is in contact with the axial front end face of the first outer ring 30 (the axial end face of the first outer ring 30 opposite the side of the second outer ring 35).
  • the first outer ring 30 and the second outer ring 35 are assembled between the cover member 51 and the outer ring positioning step 50 with an axial interference, and the axial interference applies a pressing force to the axial front end face of the first outer ring 30 (the axial end face of the first outer ring 30 opposite the second outer ring 35 side) and the axial rear end face of the second outer ring 35 (the axial end face of the second outer ring 35 opposite the first outer ring 30 side) in a direction that brings the first outer ring 30 and the second outer ring 35 closer together.
  • the distance between the axial opposing surfaces of the cover member 51 and the outer ring positioning step 50 is set to be shorter by an amount equivalent to the axial tightening margin than the distance from the axial front end face of the first outer ring 30 to the axial rear end face of the second outer ring 35 when the first outer ring 30, outer ring spacer 26, and second outer ring 35 are removed from the bearing housing 23 and the first outer ring 30, outer ring spacer 26, and second outer ring 35 are aligned in the axial direction without any gaps.
  • first outer ring 30, the outer ring spacer 26, and the second outer ring 35 are assembled into the bearing housing 23, and then the cover member 51 is tightened in the axial direction with a plurality of screw members 54.
  • an axial pressing force is applied between the first outer ring 30 and the second outer ring 35.
  • the axial interference is set in the range of 10 ⁇ m to 50 ⁇ m (preferably 20 ⁇ m or less).
  • the magnitude of the axial pressing force applied to the axial end faces of the first outer ring 30 and the second outer ring 35 by the axial interference is significantly greater than the magnitude of the axial preload applied to the axial end faces of the first inner ring 31 and the second inner ring 36 by tightening the preload nut 41.
  • the magnitude of the axial preload applied to the axial end faces of the first inner ring 31 and the second inner ring 36 by tightening the preload nut 41 is less than 1 kN (approximately several tens to several hundreds of N).
  • an axial pressing force of 10 kN or more is applied to the axial end faces of the first outer ring 30 and the second outer ring 35 by the axial interference.
  • the magnitude of the axial pressing force applied to the axial end faces of the first outer ring 30 and the second outer ring 35 by the axial interference is set to 10 times or more (preferably 50 times or more) the magnitude of the axial preload applied to the axial end faces of the first inner ring 31 and the second inner ring 36 by tightening the preload nut 41.
  • the preload of the first bearing 24 and the second bearing 25 (hereinafter referred to as “bearing preload”) changes depending on the rotational speed of the main shaft 2 when the spindle device is in operation.
  • the bearing preload can be detected based on the strain of the outer ring spacer 26 detected by the strain sensor 28.
  • the centrifugal force of the first rolling body 32 and the second rolling body 37 changes, and in accordance with the change in centrifugal force, the load with which the first rolling body 32 presses against the first outer ring raceway surface 33 (preload load of the first bearing 24) and the load with which the second rolling body 37 presses against the first outer ring raceway surface 33 (preload load of the second bearing 25) also change.
  • first outer ring raceway surface 33 and the second outer ring raceway surface 38 are in contact with the first rolling body 32 and the second rolling body 37 at an angle inclined with respect to the axial direction, so when the load with which the first rolling body 32 presses the first outer ring raceway surface 33 and the load with which the second rolling body 37 presses the first outer ring raceway surface 33 change, the axial preload load applied from the first outer ring 30 and the second outer ring 35 to the outer ring spacer 26 changes, and the strain of the outer ring spacer 26 changes. Therefore, it is possible to detect the preload (bearing preload) of the first bearing 24 and the second bearing 25 based on the strain of the outer ring spacer 26 detected by the strain sensor 28.
  • the first outer ring 30 elastically deforms in the radial expansion direction due to the increasing radial component force it receives from the first rolling body 32. At this time, the radial expansion force acting on the first outer ring 30 becomes greater than the maximum static friction force between the contact surfaces of the first outer ring 30 and the outer ring spacer 26. As a result, there is a possibility that minute slippage will occur between the contact surfaces of the first outer ring 30 and the outer ring spacer 26, causing the first outer ring 30 to move radially outward relative to the outer ring spacer 26.
  • the first outer ring 30 elastically recovers in the radial contraction direction due to the reduction in the radial component of the force it receives from the first rolling element 32.
  • the radial contraction force acting on the first outer ring 30 becomes greater than the maximum static friction force between the contact surfaces of the first outer ring 30 and the outer ring spacer 26. This may cause a slight slippage between the contact surfaces of the first outer ring 30 and the outer ring spacer 26, causing the first outer ring 30 to move radially inward relative to the outer ring spacer 26.
  • the second outer ring 35 elastically deforms in the radial expansion direction due to an increase in the radial component force it receives from the second rolling element 37, and this elastic deformation may cause slight slippage between the contact surfaces of the second outer ring 35 and the outer ring spacer 26, where the second outer ring 35 moves radially outward relative to the outer ring spacer 26.
  • the second outer ring 35 elastically restores in the radial contraction direction due to a decrease in the radial component force it receives from the second rolling element 37, and this elastic restoration may cause slight slippage between the contact surfaces of the second outer ring 35 and the outer ring spacer 26, where the second outer ring 35 moves radially inward relative to the outer ring spacer 26.
  • the output of the strain sensor 28 will not be the same in the process of increasing the bearing preload and in the process of decreasing the bearing preload, and hysteresis will occur in which a certain difference occurs between the former and the latter, and this hysteresis will cause an error in the bearing preload detected based on the output of the strain sensor 28.
  • an axial tightening margin is set between the cover member 51 and the outer ring positioning step 50, and a pressing force is applied to the axial end faces of the first outer ring 30 and the second outer ring 35 in a direction that brings the first outer ring 30 and the second outer ring 35 closer together.
  • a surface pressure acts between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 on the basis of the sum of the preload applied to the axial end faces of the first inner ring 31 and the second inner ring 36 (thick solid line in the figure) and the pressing force applied to the axial end faces of the first outer ring 30 and the second outer ring 35 (thick dashed line in the figure), resulting in a large surface pressure between the contact surfaces of the first outer ring 30 and the outer ring spacer 26.
  • the friction force between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 is large, and it is possible to suppress radial slip between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 when the radial component of force that the first outer ring 30 receives from the first rolling element 32 changes in response to a change in the bearing preload.
  • a surface pressure acts between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 on the basis of the sum of the preload (thick solid line in the figure) applied to the axial end faces of the first inner ring 31 and the second inner ring 36 and the pressing force (thick dashed line in the figure) applied to the axial end faces of the first outer ring 30 and the second outer ring 35, so that the surface pressure between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 is large.
  • the frictional force between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 is large, and when the radial component of the force that the second outer ring 35 receives from the second rolling element 37 changes in response to a change in the bearing preload, it is possible to suppress radial slippage between the contact surfaces of the second outer ring 35 and the outer ring spacer 26. As a result, the hysteresis of the output of the strain sensor 28 of the outer ring spacer 26 is reduced, making it possible to detect the bearing preload with high accuracy.
  • the axial pressing force (thick broken line in the figure) applied to the axial end faces of the first outer ring 30 and the second outer ring 35 is set to be significantly larger, at 10 times or more (preferably 50 times or more) the magnitude of the axial preload (thick solid line in the figure) applied to the axial end faces of the first inner ring 31 and the second inner ring 36 by tightening the preload nut 41, so that the surface pressure between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 and the surface pressure between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 are particularly large.
  • the friction force between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 is particularly effectively large, and when the radial component of the force that the first outer ring 30 receives from the first rolling element 32 changes in response to a change in the bearing preload, it is possible to particularly effectively suppress radial slip between the contact surfaces of the first outer ring 30 and the outer ring spacer 26.
  • the friction force between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 is particularly effectively large, and when the radial component of the force that the second outer ring 35 receives from the second rolling element 37 changes in response to a change in the bearing preload, it is possible to particularly effectively suppress radial slippage between the contact surfaces of the second outer ring 35 and the outer ring spacer 26.
  • this bearing device 1 utilizes the axial interference as a method for applying a pressing force to the axial end faces of the first outer ring 30 and the second outer ring 35, so it is possible to apply a large pressing force to the axial end faces of the first outer ring 30 and the second outer ring 35 by simply tightening the screw member 54.
  • the screw member 54 is disposed at the same circumferential position as the strain sensor 28, so that the surface pressure between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 and the surface pressure between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 shown in FIG. 4 can be effectively increased at the same circumferential position as the strain sensor 28. This makes it possible to effectively reduce the hysteresis in the output of the strain sensor 28.
  • the axial clamping margin can be set by applying a pressing force to at least one of the axial end faces of the first outer ring 30 or the second outer ring 35 using a test machine or the like that can load and measure a specified pressing amount ( ⁇ m) and pressing force (N), and deriving the relationship between the pressing amount ( ⁇ m) and pressing force (N).
  • the strain sensor 28 is disposed on the inner circumference of the outer ring spacer 26, but the strain sensor 28 may be disposed on the outer circumference of the outer ring spacer 26.
  • angular contact ball bearings have been used as the first bearing 24 and the second bearing 25, but it is also possible to use other types of rolling bearings, such as tapered roller bearings or deep groove ball bearings, as the first bearing 24 and the second bearing 25, which generate a radial component force due to an axial preload.
  • the strain sensor 28 is exemplified as having a strain detection unit 45 and a processing unit 46, but the strain sensor 28 can also be configured with only the strain detection unit 45 (only a strain gauge).
  • FIG. 5 shows a spindle device for a machine tool that uses a bearing device 1 according to the second embodiment of the invention.
  • parts corresponding to the first embodiment of the invention are given the same reference numerals and their explanations are omitted. Parts given the same reference numerals are basically configured the same as the first embodiment of the invention.
  • the bearing device 1 has a bearing housing 23 fixed to the spindle housing 3, a first bearing 24 fitted to the inner periphery of the bearing housing 23, a second bearing 25 fitted to the inner periphery of the bearing housing 23 axially rearward of the first bearing 24, and an outer ring spacer 26 and an inner ring spacer 27 sandwiched axially between the first bearing 24 and the second bearing 25, and the first bearing 24 and the second bearing 25 support the spindle 2.
  • the first bearing 24 is an angular ball bearing having a non-rotating first outer ring 30 that is loosely fitted to the inner circumference of the bearing housing 23, a first inner ring 31 that is rotatably arranged radially inside the first outer ring 30, and a plurality of first rolling elements (here, balls) 32 assembled between the first outer ring 30 and the first inner ring 31.
  • the inner circumference of the first outer ring 30 is provided with a first outer ring raceway surface 33 that has an arc-shaped cross section with which the first rolling elements 32 roll and contact
  • the outer circumference of the first inner ring 31 is provided with a first inner ring raceway surface 34 that has an arc-shaped cross section with which the first rolling elements 32 roll and contact.
  • the first outer ring 30 is a shoulder-dropped outer ring that has a shape in which the axially front outer ring shoulder is removed from the axially front outer ring shoulder and the axially rear outer ring shoulder relative to the first outer ring raceway surface 33.
  • the first inner ring 31 is a shoulder-reduced inner ring in which the axially rear inner ring shoulder is removed from the axially front inner ring shoulder and the axially rear inner ring shoulder relative to the first inner ring raceway surface 34.
  • the second bearing 25 is an angular ball bearing having a non-rotating second outer ring 35 that is spaced axially rearward from the first outer ring 30 and is loosely fitted to the inner circumference of the bearing housing 23, a second inner ring 36 that is rotatably provided radially inside the second outer ring 35, and a plurality of second rolling elements (here, balls) 37 that are assembled between the second outer ring 35 and the second inner ring 36.
  • second rolling elements here, balls
  • the inner circumference of the second outer ring 35 is provided with a second outer ring raceway surface 38 that has an arc-shaped cross section with which the second rolling elements 37 roll and contact
  • the outer circumference of the second inner ring 36 is provided with a second inner ring raceway surface 39 that has an arc-shaped cross section with which the second rolling elements 37 roll and contact.
  • the second outer ring 35 is a shoulder-dropped outer ring that has a shape in which the axially rear outer ring shoulder is removed from the outer ring shoulder on the axial front side and the outer ring shoulder on the axial rear side relative to the second outer ring raceway surface 38.
  • the second inner ring 36 is a shoulder-reduced inner ring in which the axially front inner ring shoulder is removed from the axially rear inner ring shoulder relative to the second inner ring raceway surface 39.
  • a straight line connecting the contact point of the first inner ring 31 and the first rolling element 32 and the contact point of the first outer ring 30 and the first rolling element 32 is inclined axially backward from the radially inner side toward the radially outer side.
  • a straight line connecting the contact point of the second inner ring 36 and the second rolling element 37 and the contact point of the second outer ring 35 and the second rolling element 37 is inclined axially forward from the radially inner side toward the radially outer side.
  • the first bearing 24 and the second bearing 25 are arranged in a back-to-back arrangement.
  • the outer ring spacer 26 consists of a metal outer ring 26a that fits loosely around the inner circumference of the bearing housing 23, and a resin inner ring 26b that is disposed radially inward of the outer ring 26a.
  • the outer ring 26a is formed in a hollow cylindrical shape with both ends open.
  • the inner ring 26b is formed in an L-shaped cross section with an outward flange portion at the axial rear end of the hollow cylindrical portion that is open at both ends, and the flange portion is fixed to the inner peripheral surface of the outer ring 26a.
  • the fixing method can be a method of pressing the flange portion of the inner ring 26b into the inner peripheral surface of the outer ring 26a or a method of gluing, or these methods can be used in combination.
  • the outer ring 26a is formed so that its radial thickness is approximately the same as the thickness of the first outer ring 30 and the second outer ring 35, and its axial dimension is larger than the axial dimension of the inner ring 26b.
  • the outer ring 26a's axial front end contacts the axial rear end face of the first outer ring 30, and its axial rear end contacts the axial front end face of the second outer ring 35, but the inner ring 26b does not contact the first outer ring 30 or the second outer ring 35.
  • load sensors 28 are attached at equal intervals in the circumferential direction to the axial center of the inner peripheral surface of the outer ring 26a.
  • the load sensor 28 is a printed circuit board 28a fixed to the outer ring 26a with adhesive or the like, and is equipped with a strain gauge 28b that detects the strain of the outer ring 26a and a processing circuit 28c that determines the load acting on the outer ring 26a from the strain detected by the strain gauge 28b.
  • the space between the cylindrical parts of the outer ring 26a and the inner ring 26b (the space around the load sensor 28) is filled with a sealant 47 such as a resin material. This ensures that the load sensor 28 is fixed securely in a protected state with guaranteed insulation.
  • the inner ring spacer 27, like the outer ring 26a of the outer ring spacer 26, is formed as a hollow cylinder with both ends open, with its axial front end contacting the axial rear end face of the first inner ring 31 and its axial rear end contacting the axial front end face of the second inner ring 36.
  • An outer ring pressing member 60 is fixed to the axial front end of the spindle housing 3, which fixes the axial position of the first outer ring 30 by contacting the axial front end face of the first outer ring 30.
  • the outer ring pressing member 60 has a cylindrical portion 61 that fits into the inner circumference of the bearing housing 23, and a flange portion 62 that extends radially outward from the axial front end of the cylindrical portion 61.
  • the flange portion 62 is fixed to the axial front end face of the bearing housing 23.
  • a step portion 63 that contacts the axial front end face of the first inner ring 31 is formed on the outer periphery of the axial front end of the spindle 2. The first inner ring 31 is positioned in the axial direction by contacting this step portion 63.
  • a preload nut 64 that presses the second inner ring 36 axially forward is attached to the outer periphery of the spindle 2, and an annular spacer 65 is fitted between the second inner ring 36 and the preload nut 64.
  • the preload nut 64 is threadedly engaged with a male thread 66 formed on a portion extending axially forward from a stepped portion 11 (see FIG. 5) on the outer periphery of the spindle 2.
  • the spacer 65 has its axial front end in contact with the axial rear end face of the second inner ring 36, and its axial rear end in contact with the axial front end face of the preload nut 64.
  • a stepped portion 67 that contacts the axial rear end face of the second outer ring 35 is formed on the inner periphery of the bearing housing 23. The second outer ring 35 is positioned in the axial direction by contact with this stepped portion 67.
  • the bearing housing 23 has a cylindrical portion 68 that fits into the inner circumference of the spindle housing 3, and a flange portion 69 that extends radially outward from the axial front end of the cylindrical portion 68.
  • a cooling groove 70 is formed on the outer circumference of the cylindrical portion 68, through which a refrigerant for cooling the bearing device 1 flows.
  • the cooling groove 70 is a plurality of annular grooves formed at intervals in the axial direction on the outer circumference of the cylindrical portion 68, or a spiral groove that extends spirally around the outer circumference of the cylindrical portion 68.
  • the flange portion 69 is fixed in contact with the axial front end of the spindle housing 3.
  • This spindle device for machine tools has the above-mentioned configuration.
  • an axial force (cutting load) is applied to the main shaft 2 by cutting, the axial force is transmitted in the order of the first inner ring 31, the first rolling element 32, the first outer ring 30, the outer ring 26a of the outer ring spacer 26, and the second outer ring 35 of the bearing device 1, as shown in FIG. 7, and is received by the step portion 67 of the bearing housing 23.
  • the outer ring 26a of the outer ring spacer 26 that receives the axial force is compressed between the first outer ring 30 and the second outer ring 35 and undergoes radial expansion deformation. Therefore, the load sensors 28 attached at equal intervals around the outer ring 26a can detect the load acting on the outer ring 26a, that is, the cutting load acting on the main shaft 2, from the strain at each circumferential position of the outer ring 26a.
  • the axial force is transmitted in sequence to the spacer 65, second inner ring 36, second rolling element 37, second outer ring 35, outer ring 26a of the outer ring spacer 26, first outer ring 30, first rolling element 32, and first inner ring 31 by tightening the preload nut 64, as shown in FIG. 8, and is received by the stepped portion 63 of the main shaft 2, so that a preload is applied to the first bearing 24 and the second bearing 25.
  • the load acting on the outer ring 26a at this time i.e., the preload load, can also be detected by the load sensor 28.
  • the fit clearance ⁇ 1 between the outer ring 26a of the outer ring spacer 26 and the bearing housing 23 is set to be larger than the amount of radial expansion of the outer ring 26a due to the load acting on the outer ring 26a, and larger than the fit clearance ⁇ 2 between the first outer ring 30 and the second outer ring 35 and the bearing housing 23 (here, the fit clearances of the first outer ring 30 and the second outer ring 35 are set to be the same).
  • ⁇ 2 is set to 40 ⁇ m or less in diameter as in the conventional case, but the difference between ⁇ 1 and ⁇ 2 is set to 50 ⁇ m or less in diameter (preferably 30 ⁇ m or less). If the difference between ⁇ 1 and ⁇ 2 exceeds 50 ⁇ m in diameter, it becomes difficult to align the outer ring spacer 26 when assembling the bearing device 1, and the measurement accuracy of the load decreases.
  • the force transmission path is basically as shown in Figure 7.
  • the fit clearance ⁇ 1 between the outer ring 26a of the outer ring spacer 26 and the bearing housing 23 is set smaller than the above-mentioned setting range, as shown in Figure 9, the outer ring 26a of the outer ring spacer 26 will come into contact with the inner circumference of the bearing housing 23 before the first outer ring 30, which has expanded in diameter due to the radial component of the force transmitted from the first rolling element 32, comes into contact with the inner circumference of the bearing housing 23, causing the deformation mode of the outer ring 26a to change, which may reduce the sensitivity of detecting load changes.
  • the outside diameter of the outer ring 26a of the outer ring spacer 26 and the outside diameters of the first outer ring 30 and the second outer ring 35 can be measured using a dial gauge or a micrometer, etc.
  • the inside diameter of the bearing housing 23 can be measured using a cylinder gauge, an inside micrometer, etc.
  • the fit clearances ⁇ 1 and ⁇ 2 between the outer ring 26a, the first outer ring 30, and the second outer ring 35 of the outer ring spacer 26 and the bearing housing 23 can be derived from the difference between the measured outside diameter and inside diameter.
  • the amount of radial expansion of the outer ring spacer 26 can be estimated by measuring the amount of displacement of the outer diameter side of the outer ring spacer 26 when an axial pressing force is applied to the outer ring spacer 26 using a dial gauge or a micrometer, etc., and deriving the relationship between the pressing force and the amount of radial expansion of the outer ring spacer 26.
  • the second outer ring 35 which has been expanded in diameter by the radial component of the force transmitted from the second rolling element 37, contacts the inner circumference of the bearing housing 23 before the outer ring 26a, and the outer ring 26a is less likely to contact the inner circumference of the bearing housing 23, so that changes in the preload can be detected stably and with high sensitivity.
  • this spindle device for machine tools can quickly respond to cases where the cutting load increases suddenly or where the preload increases due to heat generation in the first bearing 24 and the second bearing 25, etc., and can improve the reliability of condition monitoring.
  • the preload can be set efficiently and accurately when assembling the bearing device 1.
  • angular contact ball bearings are used for the first and second bearings that make up the bearing device, but any rolling bearing with a non-zero contact angle, such as a tapered roller bearing, may be used.
  • the outer ring spacer is not limited to a double structure with an outer ring and an inner ring as in the embodiment, but may be a single cylinder with a load sensor attached to its inner or outer circumferential surface.
  • the fit clearance between the outer ring spacer and the bearing housing is made larger than the fit clearance between the outer rings of both bearings and the bearing housing.
  • the fit clearance between the outer ring spacer and the bearing housing can be made larger than the fit clearance between that one bearing and the bearing housing.
  • the bearing device 1 that rotatably supports the spindle 2 of a machine tool (such as a machining center or a lathe) has been described as an example, but the present invention can also be applied to a bearing device that rotatably supports the rotating shaft of other devices, such as the spindle of a wind power generation device.

Landscapes

  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

In this bearing device with a sensor, configured such that a preload is transmitted to a first inner race (31), a first rolling element (32), a first outer race (30), an outer race spacer (26), a second outer race (35), a second rolling element (37), and a second inner race (36), a pressing force in a direction causing the first outer race (30) and the second outer race (35) to approach one another is applied to an axial direction end surface of the first outer race (30) on the opposite side to the second outer race (35) and to an axial direction end surface of the second outer race (35) on the opposite side to the first outer race (30), and the magnitude of the pressing force is set to be larger than the preload.

Description

センサ付き軸受装置および工作機械用スピンドル装置Sensor-equipped bearing device and machine tool spindle device
 この発明は、センサ付き軸受装置、およびそのセンサ付き軸受装置を使用した工作機械用スピンドル装置に関する。 This invention relates to a sensor-equipped bearing device and a machine tool spindle device that uses the sensor-equipped bearing device.
 マシニングセンタや旋盤等の工作機械や、その他の産業機械では、工具や加工物等の対象物が取り付けられる回転軸(主軸)を回転可能に支持するスピンドル装置が用いられる。このようなスピンドル装置の使用分野において、近年、省人化や無人化のための状態監視機能の強化が求められるようになっている。  Spindle devices are used in machine tools such as machining centers and lathes, and other industrial machines, to rotatably support a rotating shaft (main shaft) on which tools, workpieces, and other objects are attached. In recent years, there has been a demand in fields where such spindle devices are used to strengthen status monitoring functions to reduce manpower and achieve automation.
 そこで、本願の出願人は、状態監視機能の強化のニーズに応えるため、センサ付き軸受装置を既に提案している(特許文献1)。 The applicant of this application has already proposed a bearing device with a sensor to meet the need for improved condition monitoring functions (Patent Document 1).
 特許文献1のセンサ付き軸受装置は、軸方向に間隔をおいて配置された第1軸受および第2軸受と、第1軸受と第2軸受の間に設けられた筒状の外輪間座と、外輪間座に取り付けられたひずみセンサとを有する。 The sensor-equipped bearing device of Patent Document 1 has a first bearing and a second bearing spaced apart in the axial direction, a cylindrical outer ring spacer provided between the first bearing and the second bearing, and a strain sensor attached to the outer ring spacer.
 第1軸受は、第1外輪と、第1外輪の径方向内側に設けられた第1内輪と、第1外輪と第1内輪の間に組み込まれた複数の第1転動体とを有する。同様に、第2軸受は、第2外輪と、第2外輪の径方向内側に設けられた第2内輪と、第2外輪と第2内輪の間に組み込まれた複数の第2転動体とを有する。外輪間座は、第1外輪と第2外輪の間に軸方向に挟み込まれて配置されている。 The first bearing has a first outer ring, a first inner ring provided radially inward of the first outer ring, and a plurality of first rolling elements incorporated between the first outer ring and the first inner ring. Similarly, the second bearing has a second outer ring, a second inner ring provided radially inward of the second outer ring, and a plurality of second rolling elements incorporated between the second outer ring and the second inner ring. The outer ring spacer is arranged by being sandwiched between the first outer ring and the second outer ring in the axial direction.
 第1内輪の第2内輪の側とは反対側の軸方向端面と、第2内輪の第1内輪の側とは反対側の軸方向端面には、予圧ナットの締め込みにより、第1内輪と第2内輪とを接近させる方向の予圧が付与されている。第1軸受と第2軸受は、この予圧が、第1内輪、第1転動体、第1外輪、外輪間座、第2外輪、第2転動体、第2内輪を伝達するように構成されている。第1軸受は、第1外輪と第1内輪の間の軸方向の予圧で、第1転動体が第1外輪を押圧する径方向分力を生じるように構成されたアンギュラ玉軸受であり、第2軸受も、第2外輪と第2内輪の間の軸方向の予圧で、第2転動体が第2外輪を押圧する径方向分力を生じるように構成されたアンギュラ玉軸受である。  A preload nut is fastened to the axial end face of the first inner ring opposite the second inner ring, and the axial end face of the second inner ring opposite the first inner ring, to bring the first inner ring and the second inner ring closer together. The first bearing and the second bearing are configured to transmit this preload through the first inner ring, the first rolling element, the first outer ring, the outer ring spacer, the second outer ring, the second rolling element, and the second inner ring. The first bearing is an angular ball bearing configured so that the axial preload between the first outer ring and the first inner ring generates a radial component force that causes the first rolling element to press the first outer ring, and the second bearing is also an angular ball bearing configured so that the axial preload between the second outer ring and the second inner ring generates a radial component force that causes the second rolling element to press the second outer ring.
 ひずみセンサは、外輪間座の外周(または内周)に取り付けられ、このひずみセンサの出力に基づいて、第1軸受および第2軸受の予圧荷重(以下「軸受予圧」という)を検出することが可能となっている。 The strain sensor is attached to the outer periphery (or inner periphery) of the outer ring spacer, and the preload of the first bearing and second bearing (hereinafter referred to as "bearing preload") can be detected based on the output of this strain sensor.
特開2021-014886号公報JP 2021-014886 A
 ところで、特許文献1のセンサ付き軸受装置において、外輪間座のひずみセンサの出力に基づいて検出される軸受予圧の大きさに誤差が生じることがあった。この誤差を無くし、高い精度で軸受予圧を検出することができれば、省人化や無人化のための状態監視の信頼性を高めることが可能となる。 However, in the sensor-equipped bearing device of Patent Document 1, an error could occur in the magnitude of the bearing preload detected based on the output of the strain sensor in the outer ring spacer. If this error could be eliminated and the bearing preload could be detected with high accuracy, it would be possible to improve the reliability of condition monitoring for labor-saving or unmanned operation.
 そこで、第1の発明が解決しようとする課題は、高い精度で軸受予圧を検出することが可能なセンサ付き軸受装置を提供することである。 The problem that the first invention aims to solve is to provide a bearing device with a sensor that can detect bearing preload with high accuracy.
 また、特許文献1の軸受装置は、スピンドル装置の主軸を支持するもので、筒状の軸受ハウジングの内側に、それぞれ外輪と、外輪の径方向内側に回転可能に設けられた内輪と、外輪と内輪の間に組み込まれた複数の転動体とを有するアンギュラ玉軸受からなる第1軸受および第2軸受が背面組合せで配置されており、その第1軸受の外輪と第2軸受の外輪の間に組み込まれた外輪間座にひずみセンサが取り付けられている。 The bearing device in Patent Document 1 supports the main shaft of a spindle device, and is arranged in a back-to-back combination on the inside of a cylindrical bearing housing. The first and second bearings are angular contact ball bearings each having an outer ring, an inner ring rotatably arranged radially inside the outer ring, and multiple rolling elements assembled between the outer and inner rings. A strain sensor is attached to the outer ring spacer assembled between the outer ring of the first bearing and the outer ring of the second bearing.
 そして、両軸受が支持する主軸の外周にねじ結合する予圧ナットの締め付けにより、その予圧ナットの軸力が第2軸受、外輪間座、第1軸受に順に伝達されて両軸受に予圧が付与されており、外輪間座に取り付けられたひずみセンサの出力に基づいて軸方向の予圧荷重を求められるようになっている。 Then, by tightening the preload nut that is screwed onto the outer circumference of the main shaft supported by both bearings, the axial force of the preload nut is transmitted to the second bearing, the outer ring spacer, and the first bearing in that order, applying a preload to both bearings, and the axial preload load can be calculated based on the output of a strain sensor attached to the outer ring spacer.
 したがって、この軸受装置を用いたスピンドル装置は、主軸を支持する各軸受の発熱等による予圧荷重の増加を検出することができ、状態監視機能が強化されたものとなる。また、そのスピンドル装置が工作機械に組み込まれた場合には、切削荷重の変化も検出されるので、加工状態を監視することもできる。 Therefore, a spindle device using this bearing device can detect an increase in preload caused by heat generation in each bearing supporting the spindle, and has an enhanced condition monitoring function. Furthermore, when the spindle device is incorporated into a machine tool, changes in cutting load can also be detected, making it possible to monitor the machining condition.
 上記特許文献1の軸受装置では、軸方向の力を受けた外輪間座の変形によるひずみから外輪間座に作用する荷重を求めている。このため、荷重の変化を高感度で検出するには、外輪間座を実用的な範囲で変形しやすいものとすることが望ましい。 In the bearing device of Patent Document 1, the load acting on the outer ring spacer is determined from the strain caused by deformation of the outer ring spacer when subjected to axial force. Therefore, in order to detect changes in load with high sensitivity, it is desirable to make the outer ring spacer easily deformable within a practical range.
 しかし、変形しやすい外輪間座を採用した場合は、過大な荷重が作用したときに、膨張変形した外輪間座の外周が軸受ハウジングの内周に接触することにより、外輪間座の変形態様が変化し、かえって荷重変化を検出する感度が低くなる。 However, if an outer ring spacer that is easily deformed is used, when an excessive load is applied, the outer circumference of the outer ring spacer expands and deforms, coming into contact with the inner circumference of the bearing housing, changing the deformation pattern of the outer ring spacer, which in turn reduces the sensitivity of detecting changes in load.
 そこで、第2の発明が解決しようとする課題は、安定して高感度で荷重変化を検出することができるセンサ付き軸受装置を提供することである。 The problem that the second invention aims to solve is to provide a bearing device with a sensor that can detect load changes stably and with high sensitivity.
 本願の発明者らは、上記の特許文献1のセンサ付き軸受装置において、軸受予圧を変化させ、外輪間座のひずみセンサの出力に基づいてその軸受予圧を検出する評価試験を行なったところ、軸受予圧が増加する過程と、軸受予圧が減少する過程とで、軸受予圧の大きさが同じでもひずみセンサの出力が同じにならず、前者と後者の間に一定の差が生じるというヒステリシスが生じ、そのヒステリシスが、ひずみセンサの出力に基づいて検出される軸受予圧の誤差の原因となっていることを見出した。 The inventors of the present application conducted an evaluation test in which the bearing preload was changed in the sensor-equipped bearing device of Patent Document 1 and the bearing preload was detected based on the output of the strain sensor in the outer ring spacer. They discovered that, even if the magnitude of the bearing preload was the same, the output of the strain sensor was not the same during the process of increasing the bearing preload and the process of decreasing the bearing preload, and that hysteresis occurred, resulting in a certain difference between the former and the latter, and that this hysteresis was the cause of an error in the bearing preload detected based on the output of the strain sensor.
 上記のヒステリシスが生じる理由は、次のように考えられる。 The reasons for the above hysteresis are thought to be as follows:
 軸受予圧が増大するとき、第1外輪は、第1転動体から受ける径方向分力が増大することで拡径方向に弾性変形し、この弾性変形により、第1外輪と外輪間座の接触面間には、第1外輪が外輪間座に対して径方向外方に相対的に移動する微小なすべりが生じる。一方、軸受予圧が減少するときは、第1外輪は、第1転動体から受ける径方向分力が減少することで縮径方向に弾性復元し、この弾性復元により、第1外輪と外輪間座の接触面間には、第1外輪が外輪間座に対して径方向内方に相対的に移動する微小なすべりが生じる。 When the bearing preload increases, the first outer ring elastically deforms in the radial expansion direction due to an increase in the radial component of the force it receives from the first rolling element, and this elastic deformation causes a small amount of slippage between the contact surfaces of the first outer ring and the outer ring spacer, where the first outer ring moves radially outward relative to the outer ring spacer. On the other hand, when the bearing preload decreases, the first outer ring elastically restores in the radial contraction direction due to a decrease in the radial component of the force it receives from the first rolling element, and this elastic restoration causes a small amount of slippage between the contact surfaces of the first outer ring and the outer ring spacer, where the first outer ring moves radially inward relative to the outer ring spacer.
 同様に、軸受予圧が増大するとき、第2外輪は、第2転動体から受ける径方向分力が増大することで拡径方向に弾性変形し、この弾性変形により、第2外輪と外輪間座の接触面間には、第2外輪が外輪間座に対して径方向外方に相対的に移動する微小なすべりが生じる。一方、軸受予圧が減少するときは、第2外輪は、第2転動体から受ける径方向分力が減少することで縮径方向に弾性復元し、この弾性復元により、第2外輪と外輪間座の接触面間には、第2外輪が外輪間座に対して径方向内方に相対的に移動する微小なすべりが生じる。 Similarly, when the bearing preload increases, the second outer ring elastically deforms in the radial expansion direction due to an increase in the radial component of the force it receives from the second rolling element, and this elastic deformation causes a small amount of slippage between the contact surfaces of the second outer ring and the outer ring spacer, where the second outer ring moves radially outward relative to the outer ring spacer. On the other hand, when the bearing preload decreases, the second outer ring elastically restores in the radial contraction direction due to a decrease in the radial component of the force it receives from the second rolling element, and this elastic restoration causes a small amount of slippage between the contact surfaces of the second outer ring and the outer ring spacer, where the second outer ring moves radially inward relative to the outer ring spacer.
 そして、第1外輪と外輪間座の接触面間や、第2外輪と外輪間座の接触面間に、上記の径方向のすべりが生じると、軸受予圧が増加する過程と、軸受予圧が減少する過程とで、外輪間座の変形が同じにならない。そのため、軸受予圧が増加する過程と、軸受予圧が減少する過程とで、軸受予圧の大きさが同じでもひずみセンサの出力が同じにならず、前者と後者の間に一定の差が生じるというヒステリシスが生じるものと考えられる。このひずみセンサの出力のヒステリシスは、ひずみセンサの出力に基づいて検出される軸受予圧の誤差の原因となる。 If the above-mentioned radial slippage occurs between the contact surfaces of the first outer ring and the outer ring spacer, or between the contact surfaces of the second outer ring and the outer ring spacer, the deformation of the outer ring spacer will not be the same when the bearing preload is increasing and when the bearing preload is decreasing. As a result, even if the magnitude of the bearing preload is the same when the bearing preload is increasing and when the bearing preload is decreasing, the output of the strain sensor will not be the same, and it is thought that hysteresis will occur, resulting in a certain difference between the former and the latter. This hysteresis in the strain sensor output will cause an error in the bearing preload detected based on the strain sensor output.
 さらに、本願の発明者らは、第1外輪と外輪間座の接触面間の面圧を大きくすれば、第1外輪と外輪間座の接触面間の摩擦力が大きくなるので、軸受予圧の変化に応じて第1外輪が第1転動体から受ける径方向分力が変化したときに、第1外輪と外輪間座の接触面間の径方向のすべりを抑制することが可能となり、同様に、第2外輪と外輪間座の接触面間の面圧を大きくすれば、第2外輪と外輪間座の接触面間の摩擦力が大きくなるので、軸受予圧の変化に応じて第2外輪が第2転動体から受ける径方向分力が変化したときに、第2外輪と外輪間座の接触面間の径方向のすべりを抑制することが可能となり、その結果、外輪間座のひずみセンサの出力のヒステリシスが低減され、ヒステリシスによる誤差を小さく抑えることができるという着想を得た。 Furthermore, the inventors of the present application came up with the idea that if the surface pressure between the contact surfaces of the first outer ring and the outer ring spacer is increased, the frictional force between the contact surfaces of the first outer ring and the outer ring spacer will increase, making it possible to suppress radial slippage between the contact surfaces of the first outer ring and the outer ring spacer when the radial component of the force that the first outer ring receives from the first rolling element changes in response to changes in the bearing preload; similarly, if the surface pressure between the contact surfaces of the second outer ring and the outer ring spacer is increased, the frictional force between the contact surfaces of the second outer ring and the outer ring spacer will increase, making it possible to suppress radial slippage between the contact surfaces of the second outer ring and the outer ring spacer when the radial component of the force that the second outer ring receives from the second rolling element changes in response to changes in the bearing preload; as a result, the hysteresis in the output of the strain sensor of the outer ring spacer is reduced, making it possible to keep errors due to hysteresis to a minimum.
 この着想に基づいて、第1の発明は、上記の課題を解決するため、以下の構成のセンサ付き軸受装置を提供する。
[構成1]
 軸方向に間隔をおいて配置された第1軸受および第2軸受と、前記第1軸受と前記第2軸受の間に設けられた筒状の外輪間座と、前記外輪間座に取り付けられたひずみセンサとを有し、
 前記第1軸受は、第1外輪と、第1外輪の径方向内側に設けられた第1内輪と、第1外輪と第1内輪の間に組み込まれた複数の第1転動体とを有し、
 前記第2軸受は、第2外輪と、第2外輪の径方向内側に設けられた第2内輪と、第2外輪と第2内輪の間に組み込まれた複数の第2転動体とを有し、
 前記第1内輪の前記第2内輪の側とは反対側の軸方向端面と、前記第2内輪の前記第1内輪の側とは反対側の軸方向端面とに、前記第1内輪と前記第2内輪とを接近させる方向の予圧が付与され、
 前記予圧が、前記第1内輪、前記第1転動体、前記第1外輪、前記外輪間座、前記第2外輪、前記第2転動体、前記第2内輪を伝達するように構成されているセンサ付き軸受装置において、
 前記第1外輪の前記第2外輪の側とは反対側の軸方向端面と、前記第2外輪の前記第1外輪の側とは反対側の軸方向端面とに、前記第1外輪と前記第2外輪とを接近させる方向の押圧力が付与され、
 前記押圧力の大きさが、前記内輪予圧よりも大きく設定されていることを特徴とするセンサ付き軸受装置。
Based on this idea, in order to solve the above problems, a first aspect of the present invention provides a sensor-equipped bearing device having the following configuration.
[Configuration 1]
The bearing has a first bearing and a second bearing spaced apart in the axial direction, a cylindrical outer ring spacer provided between the first bearing and the second bearing, and a strain sensor attached to the outer ring spacer,
the first bearing includes a first outer ring, a first inner ring provided radially inside the first outer ring, and a plurality of first rolling elements assembled between the first outer ring and the first inner ring,
the second bearing includes a second outer ring, a second inner ring provided radially inside the second outer ring, and a plurality of second rolling elements assembled between the second outer ring and the second inner ring,
a preload is applied to an axial end face of the first inner ring opposite to a side of the second inner ring and an axial end face of the second inner ring opposite to a side of the first inner ring in a direction to bring the first inner ring and the second inner ring closer to each other,
In a sensor-equipped bearing device configured so that the preload is transmitted through the first inner ring, the first rolling element, the first outer ring, the outer ring spacer, the second outer ring, the second rolling element, and the second inner ring,
a pressing force in a direction bringing the first outer ring and the second outer ring closer together is applied to an axial end face of the first outer ring opposite to a side of the second outer ring and an axial end face of the second outer ring opposite to a side of the first outer ring,
A sensor-equipped bearing device, characterized in that the magnitude of the pressing force is set to be greater than the inner ring preload.
 この構成を採用すると、第1外輪と外輪間座の接触面間には、第1内輪と第2内輪の軸方向端面に付与される予圧と、第1外輪と第2外輪の軸方向端面に付与される押圧力とを合計した大きさの面圧が作用することとなるので、第1外輪と外輪間座の接触面間の面圧が大きくなる。そのため、第1外輪と外輪間座の接触面間の摩擦力が大きくなり、軸受予圧の変化に応じて第1外輪が第1転動体から受ける径方向分力が変化したときに、第1外輪と外輪間座の接触面間の径方向のすべりを抑制することが可能となる。同様に、第2外輪と外輪間座の接触面間にも、第1内輪と第2内輪の軸方向端面に付与される予圧と、第1外輪と第2外輪の軸方向端面に付与される押圧力とを合計した大きさの面圧が作用することとなるので、第2外輪と外輪間座の接触面間の面圧が大きくなる。そのため、第2外輪と外輪間座の接触面間の摩擦力が大きくなり、軸受予圧の変化に応じて第2外輪が第2転動体から受ける径方向分力が変化したときに、第2外輪と外輪間座の接触面間の径方向のすべりを抑制することが可能となる。その結果、外輪間座のひずみセンサの出力のヒステリシスが低減され、高い精度で軸受予圧を検出することが可能となる。 When this configuration is adopted, a surface pressure of the sum of the preload applied to the axial end faces of the first inner ring and the second inner ring and the pressing force applied to the axial end faces of the first outer ring and the second outer ring acts between the contact surfaces of the first outer ring and the outer ring spacer, so the surface pressure between the contact surfaces of the first outer ring and the outer ring spacer is large. Therefore, the friction force between the contact surfaces of the first outer ring and the outer ring spacer is large, and when the radial component of the force that the first outer ring receives from the first rolling element changes in response to the change in the bearing preload, it is possible to suppress radial slip between the contact surfaces of the first outer ring and the outer ring spacer. Similarly, a surface pressure of the sum of the preload applied to the axial end faces of the first inner ring and the second inner ring and the pressing force applied to the axial end faces of the first outer ring and the second outer ring acts between the contact surfaces of the second outer ring and the outer ring spacer, so the surface pressure between the contact surfaces of the second outer ring and the outer ring spacer is large. Therefore, the frictional force between the contact surfaces of the second outer ring and the outer ring spacer increases, and when the radial component of the force that the second outer ring receives from the second rolling element changes in response to a change in the bearing preload, it becomes possible to suppress radial slippage between the contact surfaces of the second outer ring and the outer ring spacer. As a result, the hysteresis of the output of the strain sensor of the outer ring spacer is reduced, making it possible to detect the bearing preload with high accuracy.
[構成2]
 前記押圧力の大きさが、前記予圧の10倍以上の大きさに設定されている構成1に記載のセンサ付き軸受装置。
[Configuration 2]
2. The sensor-equipped bearing device according to claim 1, wherein the magnitude of the pressing force is set to be 10 times or more the magnitude of the preload.
 この構成を採用すると、第1外輪および第2外輪の軸方向端面に、予圧に比べて著しく大きい押圧力が付与されるので、第1外輪と外輪間座の接触面間の面圧と、第2外輪と外輪間座の接触面間の面圧とが、特に大きいものとなる。そのため、第1外輪と外輪間座の接触面間の摩擦力が特に効果的に大きいものとなり、軸受予圧の変化に応じて第1外輪が第1転動体から受ける径方向分力が変化したときに、第1外輪と外輪間座の接触面間の径方向のすべりを特に効果的に抑制することが可能となる。同様に、第2外輪と外輪間座の接触面間の摩擦力が特に効果的に大きいものとなり、軸受予圧の変化に応じて第2外輪が第2転動体から受ける径方向分力が変化したときに、第2外輪と外輪間座の接触面間の径方向のすべりを特に効果的に抑制することが可能となる。  When this configuration is adopted, a pressing force significantly larger than the preload is applied to the axial end faces of the first outer ring and the second outer ring, so that the surface pressure between the contact surfaces of the first outer ring and the outer ring spacer and the surface pressure between the contact surfaces of the second outer ring and the outer ring spacer are particularly large. Therefore, the frictional force between the contact surfaces of the first outer ring and the outer ring spacer is particularly effectively large, and when the radial component of the force that the first outer ring receives from the first rolling element changes in response to a change in the bearing preload, it is possible to particularly effectively suppress radial slippage between the contact surfaces of the first outer ring and the outer ring spacer. Similarly, the frictional force between the contact surfaces of the second outer ring and the outer ring spacer is particularly effectively large, and when the radial component of the force that the second outer ring receives from the second rolling element changes in response to a change in the bearing preload, it is possible to particularly effectively suppress radial slippage between the contact surfaces of the second outer ring and the outer ring spacer.
[構成3]
 前記押圧力は、前記第1外輪および前記第2外輪を、前記第1外輪の外周と前記第2外輪の外周とに嵌合する筒状の軸受ハウジングの内周に設けた環状の外輪位置決め段部と、前記軸受ハウジングの軸方向端面にねじ部材で固定される蓋部材との間に、軸方向の締め代をもって組み込むことで付与されている構成1または2に記載のセンサ付き軸受装置。
[Configuration 3]
3. The sensor-equipped bearing device of configuration 1 or 2, in which the pressing force is applied by assembling the first outer ring and the second outer ring with an axial interference between an annular outer ring positioning step provided on the inner circumference of a cylindrical bearing housing that fits onto the outer circumference of the first outer ring and the outer circumference of the second outer ring, and a cover member fixed to the axial end face of the bearing housing by a screw member.
 この構成を採用すると、ねじ部材を締め付ける簡単な方法で、第1外輪および第2外輪の軸方向端面に大きい押圧力を付与することができる。 By adopting this configuration, a large pressing force can be applied to the axial end faces of the first and second outer rings using a simple method of tightening the screw members.
[構成4]
 前記ねじ部材は、前記ひずみセンサと同じ周方向位置に配置されている構成3に記載のセンサ付き軸受装置。
[Configuration 4]
4. The sensor-equipped bearing device according to configuration 3, wherein the screw member is disposed at the same circumferential position as the strain sensor.
 この構成を採用すると、ひずみセンサと同じ周方向位置にねじ部材が配置されているので、第1外輪と外輪間座の接触面間の面圧と、第2外輪と外輪間座の接触面間の面圧とを、ひずみセンサと同じ周方向位置で効果的に大きくすることができる。そのため、ひずみセンサの出力のヒステリシスを効果的に低減することが可能となる。 By adopting this configuration, the screw member is positioned at the same circumferential position as the strain sensor, so the surface pressure between the contact surfaces of the first outer ring and the outer ring spacer and the surface pressure between the contact surfaces of the second outer ring and the outer ring spacer can be effectively increased at the same circumferential position as the strain sensor. This makes it possible to effectively reduce hysteresis in the output of the strain sensor.
[構成5]
 前記軸方向の締め代が10μm以上に設定されている構成3または4に記載のセンサ付き軸受装置。
[Configuration 5]
5. The sensor-equipped bearing device according to configuration 3 or 4, wherein the axial interference is set to 10 μm or more.
 また、第2の発明は、上記の課題を解決するため、以下の構成のセンサ付き軸受装置を提供する。
[構成6]
 筒状の軸受ハウジングの内側に、接触角が0でない複数の転がり軸受が2列以上の背面組合せで配置され、
 前記複数の転がり軸受は、背面組合せで対向する第1軸受と第2軸受を含み、
 前記第1軸受は、第1外輪と、前記第1外輪の径方向内側に回転可能に設けられた第1内輪と、前記第1外輪と前記第1内輪の間に組み込まれた複数の第1転動体とを有し、
 前記第2軸受は、第2外輪と、前記第2外輪の径方向内側に回転可能に設けられた第2内輪と、前記第2外輪と前記第2内輪の間に組み込まれた複数の第2転動体とを有し、
 前記第1外輪と前記第2外輪の間に筒状の外輪間座が軸方向に挟まれた状態で配置され、
 前記外輪間座には、その外輪間座のひずみから外輪間座に作用する荷重を求める荷重センサが取り付けられているセンサ付き軸受装置において、
 前記第1外輪、前記第2外輪および前記外輪間座がそれぞれすきまばめで前記軸受ハウジングの内周に嵌合しており、
 前記外輪間座と前記軸受ハウジングのはめあいすきまΔ1は、前記外輪間座に作用する荷重による外輪間座の径方向膨張量よりも大きく、かつ前記第1軸受と前記第2軸受のうちで外部から力を加えられる方の軸受の外輪と前記軸受ハウジングのはめあいすきまΔ2よりも大きいことを特徴とするセンサ付き軸受装置。
In order to solve the above-mentioned problems, a second aspect of the present invention provides a sensor-equipped bearing device having the following configuration.
[Configuration 6]
A plurality of rolling bearings having a non-zero contact angle are arranged in a back-to-back arrangement in two or more rows inside a cylindrical bearing housing,
The plurality of rolling bearings include a first bearing and a second bearing opposed to each other in a back-to-back arrangement,
the first bearing includes a first outer ring, a first inner ring rotatably provided radially inside the first outer ring, and a plurality of first rolling elements assembled between the first outer ring and the first inner ring,
the second bearing includes a second outer ring, a second inner ring rotatably provided radially inside the second outer ring, and a plurality of second rolling elements assembled between the second outer ring and the second inner ring,
a cylindrical outer ring spacer is disposed between the first outer ring and the second outer ring in a state of being sandwiched in the axial direction;
In a bearing device with a sensor, a load sensor is attached to the outer ring spacer to determine a load acting on the outer ring spacer from a strain of the outer ring spacer,
the first outer ring, the second outer ring and the outer ring spacer are each fitted with a clearance fit onto an inner periphery of the bearing housing,
a fitting clearance Δ1 between the outer ring spacer and the bearing housing is larger than an amount of radial expansion of the outer ring spacer due to a load acting on the outer ring spacer, and is also larger than a fitting clearance Δ2 between an outer ring of one of the first bearing and the second bearing, which is subjected to an external force.
 この構成を採用すると、外輪間座に加わる軸方向の力が大きくなって外輪間座の径方向膨張変形が大きくなっても、外輪間座の外周が軸受ハウジングの内周に接触しにくくなるので、外輪間座として実用的な範囲内で変形しやすいものを採用することにより、外輪間座に作用する荷重の変化を安定して高感度で検出できるようになる。  By adopting this configuration, even if the axial force applied to the outer ring spacer increases and the radial expansion deformation of the outer ring spacer increases, the outer circumference of the outer ring spacer is less likely to come into contact with the inner circumference of the bearing housing. Therefore, by using an outer ring spacer that is easily deformed within a practical range, changes in the load acting on the outer ring spacer can be detected stably and with high sensitivity.
[構成7]
 前記第1軸受と前記第2軸受のうちで外部から軸方向力を加えられる方の軸受の外輪と前記軸受ハウジングのはめあいすきまΔ2は直径で40μm以下であり、前記外輪間座と前記軸受ハウジングのはめあいすきまΔ1は直径でΔ2+50μm以下(望ましくはΔ2+30μm以下)である構成6に記載のセンサ付き軸受装置。
[Configuration 7]
A bearing device with a sensor as described in configuration 6, wherein a fitting clearance Δ2 between an outer ring of one of the first bearing and the second bearing, which is subjected to an external axial force, and the bearing housing is 40 μm or less in diameter, and a fitting clearance Δ1 between the outer ring spacer and the bearing housing is Δ2 + 50 μm or less (preferably Δ2 + 30 μm or less) in diameter.
 Δ2を従来のように40μm以下としても、Δ1とΔ2の差が50μmを超えると、スピンドル装置等に組みこむ際に外輪間座の芯合わせが難しくなる。すなわち、荷重測定精度を高めるためには、できるだけ正確に外輪間座の芯合わせを行う必要があり、芯合わせをしやすくするには、Δ1とΔ2の差は50μm以下、望ましくは30μm以下がよい。 Even if Δ2 is set to 40 μm or less as in the past, if the difference between Δ1 and Δ2 exceeds 50 μm, it becomes difficult to align the outer ring spacer when installing it in a spindle device, etc. In other words, to improve the load measurement accuracy, it is necessary to align the outer ring spacer as accurately as possible, and to make centering easier, the difference between Δ1 and Δ2 should be 50 μm or less, preferably 30 μm or less.
[構成8]
 前記外輪間座は、前記軸受ハウジングの内周にすきまばめで嵌合し、前記第1外輪および前記第2外輪に軸方向で接触する金属製の外環と、前記外環の径方向内側に配される樹脂製の内環とからなり、前記外環に前記荷重センサが取り付けられるものである構成6または7に記載のセンサ付き軸受装置。
[Configuration 8]
The sensor-equipped bearing device of configuration 6 or 7, wherein the outer ring spacer comprises a metal outer ring that is loosely fitted onto the inner circumference of the bearing housing and that contacts the first outer ring and the second outer ring in the axial direction, and a resin inner ring that is arranged radially inside the outer ring, and the load sensor is attached to the outer ring.
 この構成を採用すると、外輪間座の製作コストの増加を抑えながら、荷重センサを外輪間座の外環と内環の間に保護状態で配置することが可能となる。 By adopting this configuration, it is possible to position the load sensor in a protected state between the outer and inner rings of the outer ring spacer while suppressing any increase in manufacturing costs of the outer ring spacer.
[構成9]
 前記第1軸受および前記第2軸受に予圧が付与されている構成6から8のいずれかに記載のセンサ付き軸受装置。
[Configuration 9]
9. The sensor-equipped bearing device according to any one of configurations 6 to 8, wherein a preload is applied to the first bearing and the second bearing.
[構成10]
 前記第1軸受および前記第2軸受がアンギュラ玉軸受である構成1から9のいずれかに記載のセンサ付き軸受装置。
[Configuration 10]
10. The sensor-equipped bearing device according to any one of configurations 1 to 9, wherein the first bearing and the second bearing are angular contact ball bearings.
 また、この発明では、上記のセンサ付き軸受装置を使用した工作機械用スピンドル装置として、以下の構成のものを併せて提供する。
[構成11]
 構成1から10のいずれかに記載のセンサ付き軸受装置と、
 前記センサ付き軸受装置で回転可能に支持される工作機械の主軸と、
 前記主軸を回転駆動するモータと、を有する工作機械用スピンドル装置。
The present invention also provides a machine tool spindle device using the above-mentioned sensor-equipped bearing device, which has the following configuration.
[Configuration 11]
A sensor-equipped bearing device according to any one of configurations 1 to 10,
a main spindle of a machine tool rotatably supported by the sensor-equipped bearing device;
a motor that drives and rotates the main shaft.
 この構成を採用すると、工作機械の省人化や無人化のための状態監視を安定して行なうことが可能となる。また、切削加工中の工作機械の主軸に作用する加工荷重を検出することも可能となる。 By adopting this configuration, it becomes possible to stably monitor the status of machine tools to reduce the number of workers required and to automate the operation. It also becomes possible to detect the processing load acting on the spindle of the machine tool during cutting operations.
 第1の発明のセンサ付き軸受装置は、第1外輪と外輪間座の接触面間に、第1内輪と第2内輪の軸方向端面に付与される予圧と、第1外輪と第2外輪の軸方向端面に付与される押圧力とを合計した大きさの面圧が作用するので、第1外輪と外輪間座の接触面間の面圧が大きい。そのため、第1外輪と外輪間座の接触面間の摩擦力が大きく、軸受予圧の変化に応じて第1外輪が第1転動体から受ける径方向分力が変化したときに、第1外輪と外輪間座の接触面間の径方向のすべりを抑制することが可能である。同様に、第2外輪と外輪間座の接触面間にも、第1内輪と第2内輪の軸方向端面に付与される予圧と、第1外輪と第2外輪の軸方向端面に付与される押圧力とを合計した大きさの面圧が作用するので、第2外輪と外輪間座の接触面間の面圧が大きい。そのため、第2外輪と外輪間座の接触面間の摩擦力が大きく、軸受予圧の変化に応じて第2外輪が第2転動体から受ける径方向分力が変化したときに、第2外輪と外輪間座の接触面間の径方向のすべりを抑制することが可能である。その結果、外輪間座のひずみセンサの出力のヒステリシスが低減され、高い精度で軸受予圧を検出することが可能である。 In the sensor-equipped bearing device of the first invention, a surface pressure acts between the contact surfaces of the first outer ring and the outer ring spacer, which is equal to the sum of the preload applied to the axial end faces of the first inner ring and the second inner ring and the pressing force applied to the axial end faces of the first outer ring and the second outer ring. Therefore, the frictional force between the contact surfaces of the first outer ring and the outer ring spacer is large, and when the radial component of the force that the first outer ring receives from the first rolling element changes in response to the change in the bearing preload, it is possible to suppress radial slip between the contact surfaces of the first outer ring and the outer ring spacer. Similarly, a surface pressure acts between the contact surfaces of the second outer ring and the outer ring spacer, which is equal to the sum of the preload applied to the axial end faces of the first inner ring and the second inner ring and the pressing force applied to the axial end faces of the first outer ring and the second outer ring. Therefore, the surface pressure between the contact surfaces of the second outer ring and the outer ring spacer is large. Therefore, when the frictional force between the contact surfaces of the second outer ring and the outer ring spacer is large and the radial component of the force that the second outer ring receives from the second rolling element changes in response to changes in the bearing preload, it is possible to suppress radial slippage between the contact surfaces of the second outer ring and the outer ring spacer. As a result, the hysteresis of the output of the strain sensor of the outer ring spacer is reduced, making it possible to detect the bearing preload with high accuracy.
 第2の発明のセンサ付き軸受装置は、上述したように、ハウジングにそれぞれすきまばめされる2つの軸受と外輪間座のはめあいすきまを規定することにより、荷重センサを取り付けられた外輪間座が、軸方向の力を受けて径方向に膨張変形してもハウジングの内周に接触しにくいようにしたものであるから、安定して高感度で荷重変化を検出することができる。 As described above, the sensor-equipped bearing device of the second invention specifies the fit clearance between the two bearings and the outer ring spacer that are each loosely fitted into the housing, so that the outer ring spacer to which the load sensor is attached is unlikely to come into contact with the inner circumference of the housing even if it expands and deforms radially due to an axial force, making it possible to detect load changes stably and with high sensitivity.
第1の発明の実施形態にかかるセンサ付き軸受装置を使用した工作機械用スピンドル装置を示す断面図FIG. 1 is a cross-sectional view showing a machine tool spindle device using a sensor-equipped bearing device according to a first embodiment of the present invention; 図1のセンサ付き軸受装置の近傍の拡大図FIG. 2 is an enlarged view of the sensor-equipped bearing device of FIG. 1 and its surroundings; 図2のIII-III線に沿った断面図3 is a cross-sectional view taken along line III-III in FIG. 2 . 図2に示す第1内輪と第2内輪の間に付与される軸方向の予圧の伝達経路と、第1外輪と第2外輪の間に付与される軸方向の押圧力の伝達経路とを示す図FIG. 3 is a diagram showing a transmission path of an axial preload applied between the first inner ring and the second inner ring shown in FIG. 2 and a transmission path of an axial pressing force applied between the first outer ring and the second outer ring. 第2の発明の実施形態のセンサ付き軸受装置を使用した工作機械用スピンドル装置の断面図1 is a cross-sectional view of a machine tool spindle device using a sensor-equipped bearing device according to a second embodiment of the present invention; 図5の要部を拡大して示す断面図FIG. 6 is an enlarged cross-sectional view of a main part of FIG. 図5の工作機械用スピンドル装置に加えられた切削荷重によって生じる力の伝達経路の説明図FIG. 6 is an explanatory diagram of a force transmission path caused by a cutting load applied to the spindle device for a machine tool of FIG. 図5の工作機械用スピンドル装置のセンサ付き軸受装置に加えられた予圧によって生じる力の伝達経路の説明図FIG. 6 is an explanatory diagram of a force transmission path caused by a preload applied to the sensor-equipped bearing device of the machine tool spindle device of FIG. 5; 図7に対応して比較例の力の伝達態様を説明する模式図FIG. 8 is a schematic diagram illustrating a force transmission mode of a comparative example corresponding to FIG. 7 . 図7に対応して実施形態の力の伝達態様を説明する模式図FIG. 8 is a schematic diagram illustrating a force transmission mode of the embodiment corresponding to FIG. 7 .
 図1に、第1の発明の実施形態にかかるセンサ付き軸受装置1(以下、単に「軸受装置1」という)を使用した工作機械用スピンドル装置を示す。このスピンドル装置は、工作機械の主軸2と、主軸2を収容する主軸ハウジング(外筒)3と、主軸2を回転駆動するモータ4と、モータ4よりも軸方向前側(図では左側)で主軸2を回転可能に支持する実施形態の軸受装置1と、モータ4よりも軸方向後側(図では右側)で主軸2を回転可能に支持する後側軸受装置5とを有する。 Figure 1 shows a spindle device for a machine tool that uses a sensor-equipped bearing device 1 (hereinafter simply referred to as "bearing device 1") according to a first embodiment of the invention. This spindle device has a main spindle 2 of the machine tool, a main spindle housing (outer cylinder) 3 that accommodates the main spindle 2, a motor 4 that drives and rotates the main spindle 2, a bearing device 1 of the embodiment that rotatably supports the main spindle 2 axially forward of the motor 4 (left side in the figure), and a rear bearing device 5 that rotatably supports the main spindle 2 axially rearward of the motor 4 (right side in the figure).
 主軸ハウジング3は、両端が開放した中空筒状に形成されている。主軸ハウジング3は、軸方向の前側から後側に向かって順に軸受装置1とモータ4とを収容している。図では、主軸ハウジング3の軸受装置1を収容する部分と、主軸ハウジング3のモータ4を収容する部分とを継ぎ目の無い一体に形成しているが、主軸ハウジング3の軸受装置1を収容する部分と、主軸ハウジング3のモータ4を収容する部分とを別体に形成し、その両部分を連結して一体化してもよい。 The spindle housing 3 is formed in a hollow cylinder with both ends open. The spindle housing 3 accommodates the bearing device 1 and the motor 4 in that order from the front to the rear in the axial direction. In the figure, the part of the spindle housing 3 that accommodates the bearing device 1 and the part of the spindle housing 3 that accommodates the motor 4 are formed as a seamless integrated unit, but the part of the spindle housing 3 that accommodates the bearing device 1 and the part of the spindle housing 3 that accommodates the motor 4 may be formed separately and then connected to integrate the two parts.
 主軸2は、主軸2の前端が主軸ハウジング3の前端開口から突出した状態で主軸ハウジング3に挿入されている。主軸2の前端には、工具または加工物を把持するチャック(図示せず)が着脱可能に取り付けられるようになっている。主軸2には、工作機械のドローバー(図示せず)を軸方向に摺動可能に収容する貫通孔6が軸方向に貫通して形成されている。 The spindle 2 is inserted into the spindle housing 3 with the front end of the spindle 2 protruding from the front end opening of the spindle housing 3. A chuck (not shown) for gripping a tool or workpiece is removably attached to the front end of the spindle 2. A through hole 6 is formed axially through the spindle 2 to accommodate a drawbar (not shown) of the machine tool so that it can slide axially.
 モータ4は、主軸2の外周に取り付けられたロータ7と、ロータ7に回転力を付与する環状のステータ8とを有する。ロータ7は、主軸2の外周に嵌合するロータスリーブ9と、ロータスリーブ9の外周に固定されたロータコア10とを有する。ロータコア10は、例えば、電磁鋼板の積層体である。ロータスリーブ9は、主軸2と一体回転するように主軸2に回り止めされている。ロータスリーブ9の軸方向前端は、主軸2の外周に形成された軸方向後側を向く段差部11に接触し、その段差部11との接触によって軸方向に位置決めされている。 The motor 4 has a rotor 7 attached to the outer periphery of the main shaft 2 and an annular stator 8 that applies a rotational force to the rotor 7. The rotor 7 has a rotor sleeve 9 that fits onto the outer periphery of the main shaft 2 and a rotor core 10 fixed to the outer periphery of the rotor sleeve 9. The rotor core 10 is, for example, a laminate of electromagnetic steel sheets. The rotor sleeve 9 is prevented from rotating on the main shaft 2 so as to rotate integrally with the main shaft 2. The axial front end of the rotor sleeve 9 contacts a step portion 11 that faces the axial rear side and is formed on the outer periphery of the main shaft 2, and is positioned in the axial direction by the contact with the step portion 11.
 ステータ8は、主軸ハウジング3の内周に固定されたステータコア12と、ステータコア12に周方向に間隔をおいて形成された複数のティース部分にそれぞれ巻回された電磁コイル13とを有する。電磁コイル13に通電すると、ステータコア12とロータコア10の間に働く電磁力によってロータコア10に回転力が発生し、ロータ7と主軸2が一体に回転する。ここでは、モータ4として、電力で回転力を発生する電動モータを採用したが、電動モータに代えて、圧縮空気など他の動力源で回転力を発生する方式のモータを採用することも可能である。 The stator 8 has a stator core 12 fixed to the inner circumference of the spindle housing 3, and electromagnetic coils 13 wound around a number of teeth formed at intervals in the circumferential direction on the stator core 12. When current is applied to the electromagnetic coil 13, a rotational force is generated in the rotor core 10 by the electromagnetic force acting between the stator core 12 and the rotor core 10, causing the rotor 7 and the spindle 2 to rotate integrally. Here, an electric motor that generates rotational force using electricity is used as the motor 4, but instead of an electric motor, it is also possible to use a motor that generates rotational force using another power source such as compressed air.
 後側軸受装置5は、主軸ハウジング3の後端に同軸に固定された環状の軸受支持部材14と、軸受支持部材14に組み込まれた転がり軸受15とを有する。転がり軸受15は、軸受支持部材14の内周に嵌合する外輪16と、主軸2の外周に嵌合する内輪17と、外輪16と内輪17の間に組み込まれた複数の円筒ころ18とを有する円筒ころ軸受である。 The rear bearing device 5 has an annular bearing support member 14 that is coaxially fixed to the rear end of the spindle housing 3, and a rolling bearing 15 that is assembled into the bearing support member 14. The rolling bearing 15 is a cylindrical roller bearing that has an outer ring 16 that fits into the inner circumference of the bearing support member 14, an inner ring 17 that fits into the outer circumference of the spindle 2, and a number of cylindrical rollers 18 that are assembled between the outer ring 16 and the inner ring 17.
 軸受支持部材14には、外輪押さえ部材19が取り付けられている。外輪押さえ部材19は、外輪16の軸方向後端面に接触することで外輪16の軸方向位置を固定している。主軸2の外周には、内輪17を軸方向前方に押圧するナット部材20と、内輪17とナット部材20の間に組み込まれた環状のスペーサ21とが装着されている。ナット部材20は、主軸2の後端部外周に形成された雄ねじ22にねじ係合している。スペーサ21の軸方向前端面は、内輪17の軸方向後端面に接触し、スペーサ21の軸方向後端面は、ナット部材20の軸方向前端面に接触している。内輪17の軸方向前端面は、ロータスリーブ9の軸方向後端に接触している。 An outer ring pressing member 19 is attached to the bearing support member 14. The outer ring pressing member 19 fixes the axial position of the outer ring 16 by contacting the axial rear end face of the outer ring 16. A nut member 20 that presses the inner ring 17 axially forward and an annular spacer 21 assembled between the inner ring 17 and the nut member 20 are attached to the outer periphery of the main shaft 2. The nut member 20 is threadedly engaged with a male thread 22 formed on the outer periphery of the rear end of the main shaft 2. The axial front end face of the spacer 21 contacts the axial rear end face of the inner ring 17, and the axial rear end face of the spacer 21 contacts the axial front end face of the nut member 20. The axial front end face of the inner ring 17 contacts the axial rear end of the rotor sleeve 9.
 軸受装置1は、
主軸ハウジング3に固定された筒状の軸受ハウジング23と、軸受ハウジング23に軸方向に間隔をおいて組み込まれた第1軸受24および第2軸受25と、第1軸受24と第2軸受25の間に設けられた外輪間座26および内輪間座27と、外輪間座26に取り付けられたひずみセンサ28とを有する。
The bearing device 1 includes:
The bearing has a cylindrical bearing housing 23 fixed to the spindle housing 3, a first bearing 24 and a second bearing 25 assembled into the bearing housing 23 at an axial distance from each other, an outer ring spacer 26 and an inner ring spacer 27 provided between the first bearing 24 and the second bearing 25, and a strain sensor 28 attached to the outer ring spacer 26.
 軸受ハウジング23は、主軸ハウジング3の内周に嵌合している。軸受ハウジング23の外周には、軸受装置1の冷却用の冷媒が流れる冷却溝29が形成されている。冷却溝29は、軸受ハウジング23の外周に軸方向に間隔をおいて形成された複数の環状溝または軸受ハウジング23の外周を螺旋状に延びる螺旋溝である。軸受ハウジング23の内径は、ロータ7の外径よりも大きい。 The bearing housing 23 is fitted to the inner circumference of the spindle housing 3. A cooling groove 29 is formed on the outer circumference of the bearing housing 23, through which a refrigerant for cooling the bearing device 1 flows. The cooling groove 29 is a plurality of annular grooves formed at intervals in the axial direction on the outer circumference of the bearing housing 23, or a spiral groove extending in a spiral shape around the outer circumference of the bearing housing 23. The inner diameter of the bearing housing 23 is larger than the outer diameter of the rotor 7.
 図2に示すように、第1軸受24は、軸受ハウジング23の内周に嵌合する第1外輪30と、第1外輪30の径方向内側に回転可能に設けられた第1内輪31と、第1外輪30と第1内輪31の間に組み込まれた複数の第1転動体32とを有する。第1転動体32は、ここでは玉である。第1外輪30の内周には、第1転動体32が転がり接触する断面円弧状の第1外輪軌道面33が設けられている。第1外輪30は、第1外輪軌道面33に対して軸方向前側の外輪肩部と軸方向後側の外輪肩部のうち、軸方向前側の外輪肩部を除去した形状の肩落とし外輪である。第1外輪30の外周は、軸受ハウジング23の内周に隙間をもって嵌合している。第1内輪31の外周には、第1転動体32が転がり接触する断面円弧状の第1内輪軌道面34が設けられている。第1内輪31は、第1転動体32が転がり接触する第1内輪軌道面34に対して軸方向前側の内輪肩部と軸方向後側の内輪肩部のうち、軸方向後側の内輪肩部を除去した形状の肩落とし内輪である。第1内輪31は、主軸2の外周に締め代をもって嵌合している。 As shown in FIG. 2, the first bearing 24 has a first outer ring 30 that fits into the inner circumference of the bearing housing 23, a first inner ring 31 that is rotatably arranged radially inside the first outer ring 30, and a plurality of first rolling elements 32 that are assembled between the first outer ring 30 and the first inner ring 31. The first rolling elements 32 are balls here. The inner circumference of the first outer ring 30 is provided with a first outer ring raceway surface 33 that has an arc-shaped cross section with which the first rolling elements 32 roll and contact. The first outer ring 30 is a shoulder-dropped outer ring that has a shape in which the axially front outer ring shoulder is removed from the outer ring shoulder on the axially front side and the outer ring shoulder on the axially rear side with respect to the first outer ring raceway surface 33. The outer circumference of the first outer ring 30 fits into the inner circumference of the bearing housing 23 with a gap. The outer circumference of the first inner ring 31 is provided with a first inner ring raceway surface 34 that has an arc-shaped cross section with which the first rolling elements 32 roll and contact. The first inner ring 31 is a shoulder-reduced inner ring with a shape in which the axially rear inner ring shoulder is removed from the axially front inner ring shoulder and the axially rear inner ring shoulder with respect to the first inner ring raceway surface 34 with which the first rolling element 32 rolls. The first inner ring 31 is fitted to the outer periphery of the main shaft 2 with a tightening margin.
 第2軸受25は、軸受ハウジング23の内周に嵌合する第2外輪35と、第2外輪35の径方向内側に回転可能に設けられた第2内輪36と、第2外輪35と第2内輪36の間に組み込まれた複数の第2転動体37とを有する。第2転動体37は、ここでは玉である。第2外輪35の内周には、第2転動体37が転がり接触する断面円弧状の第2外輪軌道面38が設けられている。第2外輪35は、第1外輪30から軸方向後方に間隔をおいて配置され、第2内輪36も、第1内輪31から軸方向後方に間隔をおいて配置されている。第2外輪35は、第2外輪軌道面38に対して軸方向前側の外輪肩部と軸方向後側の外輪肩部のうち、軸方向後側の外輪肩部を除去した形状の肩落とし外輪である。第2外輪35の外周は、軸受ハウジング23の内周に隙間をもって嵌合している。第2内輪36の外周には、第2転動体37が転がり接触する断面円弧状の第2内輪軌道面39が設けられている。第2内輪36は、第2転動体37が転がり接触する第2内輪軌道面39に対して軸方向前側の内輪肩部と軸方向後側の内輪肩部のうち、軸方向前側の内輪肩部を除去した形状の肩落とし内輪である。第2内輪36は、主軸2の外周に締め代をもって嵌合している。 The second bearing 25 has a second outer ring 35 that fits into the inner circumference of the bearing housing 23, a second inner ring 36 that is rotatably arranged radially inside the second outer ring 35, and a plurality of second rolling elements 37 that are assembled between the second outer ring 35 and the second inner ring 36. The second rolling elements 37 are balls here. The inner circumference of the second outer ring 35 is provided with a second outer ring raceway surface 38 that has an arc-shaped cross section with which the second rolling elements 37 roll and contact. The second outer ring 35 is spaced axially rearward from the first outer ring 30, and the second inner ring 36 is also spaced axially rearward from the first inner ring 31. The second outer ring 35 is a shoulder-dropped outer ring that has a shape in which the axially rear outer ring shoulder is removed from the outer ring shoulder on the axial front side and the outer ring shoulder on the axial rear side relative to the second outer ring raceway surface 38. The outer periphery of the second outer ring 35 is fitted with a gap to the inner periphery of the bearing housing 23. The outer periphery of the second inner ring 36 is provided with a second inner ring raceway 39 with an arc-shaped cross section, with which the second rolling element 37 rolls. The second inner ring 36 is a shoulder-reduced inner ring with a shape in which the axially front inner ring shoulder is removed from the axially front inner ring shoulder and the axially rear inner ring shoulder with respect to the second inner ring raceway 39 with which the second rolling element 37 rolls. The second inner ring 36 is fitted with a tightening margin to the outer periphery of the main shaft 2.
 ここで、第1軸受24は、軸方向の予圧で、第1転動体32が第1外輪30を押圧する径方向分力を生じるように構成され、同様に、第2軸受25も、軸方向の予圧で、第2転動体37が第2外輪35を押圧する径方向分力を生じるように構成されている。この実施形態では、第1軸受24は、第1内輪31と第1転動体32の接触点と、第1外輪30と第1転動体32の接触点とを結ぶ直線が、半径方向内側から半径方向外側に向かって軸方向後方に傾斜するアンギュラ玉軸受である。また、第2軸受25は、第2内輪36と第2転動体37の接触点と、第2外輪35と第2転動体37の接触点とを結ぶ直線が、半径方向内側から半径方向外側に向かって軸方向前方に傾斜するアンギュラ玉軸受である。つまり、第1軸受24と第2軸受25は、背面合わせの関係で軸方向に間隔をおいて配置された一対のアンギュラ玉軸受である。 Here, the first bearing 24 is configured so that the first rolling body 32 generates a radial component force pressing the first outer ring 30 under axial preload, and similarly, the second bearing 25 is configured so that the second rolling body 37 generates a radial component force pressing the second outer ring 35 under axial preload. In this embodiment, the first bearing 24 is an angular ball bearing in which the line connecting the contact point of the first inner ring 31 and the first rolling body 32 and the contact point of the first outer ring 30 and the first rolling body 32 is inclined axially backward from the radial inside toward the radial outside. Also, the second bearing 25 is an angular ball bearing in which the line connecting the contact point of the second inner ring 36 and the second rolling body 37 and the contact point of the second outer ring 35 and the second rolling body 37 is inclined axially forward from the radial inside toward the radial outside. In other words, the first bearing 24 and the second bearing 25 are a pair of angular contact ball bearings arranged back-to-back with a gap in the axial direction.
 外輪間座26は、両端が開放した中空の筒状部材である。外輪間座26は、軸受ハウジング23の内周に隙間をもって嵌合している。外輪間座26は、第1外輪30の軸方向後端面(第1外輪30の第2外輪35の側の軸方向端面)と、第2外輪35の軸方向前端面(第2外輪35の第1外輪30の側の軸方向端面)との間で軸方向に挟み込まれている。 The outer ring spacer 26 is a hollow cylindrical member with both ends open. The outer ring spacer 26 is fitted with a gap around the inner circumference of the bearing housing 23. The outer ring spacer 26 is axially sandwiched between the axial rear end face of the first outer ring 30 (the axial end face of the first outer ring 30 on the side of the second outer ring 35) and the axial front end face of the second outer ring 35 (the axial end face of the second outer ring 35 on the side of the first outer ring 30).
 内輪間座27も、外輪間座26と同様、両端が開放した中空の筒状部材である。内輪間座27は、主軸2の外周に隙間をもって嵌合している。内輪間座27は、第1内輪31と第2内輪36の間で軸方向に挟み込まれている。 Like the outer ring spacer 26, the inner ring spacer 27 is a hollow cylindrical member with both ends open. The inner ring spacer 27 fits onto the outer periphery of the main shaft 2 with a gap. The inner ring spacer 27 is sandwiched axially between the first inner ring 31 and the second inner ring 36.
 図4に示すように、主軸2の外周には、第1内輪31の軸方向前端面(第1内輪31の第2内輪36の側とは反対側の軸方向端面)に軸方向に対向する環状の内輪位置決め段部40が形成されている。内輪位置決め段部40は、第1内輪31の軸方向前方(第2外輪35から遠ざかる方向)への移動を規制することで、第1内輪31を軸方向に位置決めしている。また、主軸2の外周には、第2内輪36よりも軸方向後側に予圧ナット41が装着されている。予圧ナット41は、主軸2の外周に形成された雄ねじ42にねじ係合している。第2内輪36と予圧ナット41の間には、環状のスペーサ43が組み込まれている。スペーサ43の軸方向前端面は、第2内輪36の軸方向後端面に接触し、スペーサ43の軸方向後端面は、予圧ナット41の軸方向前端面に接触している。 As shown in FIG. 4, an annular inner ring positioning step 40 is formed on the outer periphery of the main shaft 2, facing the axial front end face of the first inner ring 31 (the axial end face of the first inner ring 31 opposite the second inner ring 36 side). The inner ring positioning step 40 positions the first inner ring 31 in the axial direction by restricting the movement of the first inner ring 31 forward in the axial direction (in the direction away from the second outer ring 35). In addition, a preload nut 41 is attached to the outer periphery of the main shaft 2, axially rearward of the second inner ring 36. The preload nut 41 is threadedly engaged with a male thread 42 formed on the outer periphery of the main shaft 2. An annular spacer 43 is assembled between the second inner ring 36 and the preload nut 41. The axial front end face of the spacer 43 contacts the axial rear end face of the second inner ring 36, and the axial rear end face of the spacer 43 contacts the axial front end face of the preload nut 41.
 予圧ナット41は所定の力で締め付けられ、その予圧ナット41の軸力により、第1内輪31の軸方向前端面(第1内輪31の第2内輪36の側とは反対側の軸方向端面)と、第2内輪36の軸方向後端面(第2内輪36の第1内輪31の側とは反対側の軸方向端面)とに、第1内輪31と第2内輪36とを接近させる方向の予圧が付与されている。すなわち、第1内輪31と第2内輪36の間には、図の太い実線に示すように、予圧ナット41の軸力により、第1内輪31、第1転動体32、第1外輪30、外輪間座26、第2外輪35、第2転動体37、第2内輪36を順に通って予圧が伝達するように軸方向の予圧が付与された状態となっている。 The preload nut 41 is tightened with a predetermined force, and the axial force of the preload nut 41 applies a preload to the axial front end face of the first inner ring 31 (the axial end face of the first inner ring 31 opposite the second inner ring 36 side) and the axial rear end face of the second inner ring 36 (the axial end face of the second inner ring 36 opposite the first inner ring 31 side) in a direction that brings the first inner ring 31 and the second inner ring 36 closer together. In other words, as shown by the thick solid line in the figure, the axial force of the preload nut 41 applies an axial preload between the first inner ring 31 and the second inner ring 36 so that the preload is transmitted through the first inner ring 31, the first rolling element 32, the first outer ring 30, the outer ring spacer 26, the second outer ring 35, the second rolling element 37, and the second inner ring 36 in that order.
 ひずみセンサ28は、外輪間座26の軸方向中央部に取り付けられている。具体的には、ひずみセンサ28は、外輪間座26の軸方向の中心位置から、外輪間座26の軸方向全長の1/4の軸方向距離の範囲内の領域にひずみセンサ28が収まるように外輪間座26に取り付けられている。 The strain sensor 28 is attached to the axial center of the outer ring spacer 26. Specifically, the strain sensor 28 is attached to the outer ring spacer 26 so that the strain sensor 28 fits within an area within an axial distance of 1/4 of the total axial length of the outer ring spacer 26 from the axial center position of the outer ring spacer 26.
 図3に示すように、ひずみセンサ28は、外輪間座26の内周に周方向に等間隔に複数(ここでは3つ)設けられている。外輪間座26の内周には、ひずみセンサ28の個数と同数の軸方向溝44が周方向に等間隔に形成されている。軸方向溝44は、それぞれ軸線に平行な平面状の溝底面を有し、その各溝底面にひずみセンサ28が取り付けられている。 As shown in FIG. 3, multiple strain sensors 28 (three in this example) are provided at equal intervals in the circumferential direction on the inner circumference of the outer ring spacer 26. Axial grooves 44, the same number as the strain sensors 28, are formed at equal intervals in the circumferential direction on the inner circumference of the outer ring spacer 26. Each of the axial grooves 44 has a planar groove bottom surface parallel to the axis, and a strain sensor 28 is attached to each of the groove bottom surfaces.
 図4に示すように、各ひずみセンサ28は、ひずみ検出部45と、ひずみ検出部45に接続された処理部46とを有する。ひずみ検出部45は、ひずみに応じて電気抵抗が変化するひずみゲージである。処理部46は、ひずみゲージの電気抵抗の変化に基づいてひずみを検出するひずみ検出回路と、その検出回路で検出されたひずみをアナログ信号からデジタル信号に変換して出力するAD変換回路とを有する。 As shown in FIG. 4, each strain sensor 28 has a strain detection unit 45 and a processing unit 46 connected to the strain detection unit 45. The strain detection unit 45 is a strain gauge whose electrical resistance changes according to strain. The processing unit 46 has a strain detection circuit that detects strain based on the change in the electrical resistance of the strain gauge, and an AD conversion circuit that converts the strain detected by the detection circuit from an analog signal to a digital signal and outputs it.
 ここで、ひずみ検出部45は、ひずみセンサ28の取り付け位置における外輪間座26の軸方向ひずみを検出する軸方向ひずみ検出部(軸方向をひずみ検出方向として配置したひずみゲージ)と、ひずみセンサ28の取り付け位置における外輪間座26の周方向ひずみを検出する周方向ひずみ検出部(周方向をひずみ検出方向として配置したひずみゲージ)とを有するものを採用している。そして、処理部46は、軸方向ひずみ検出部で検出される軸方向ひずみと、周方向ひずみ検出部で検出される周方向ひずみとの差分(つまり、軸方向ひずみの絶対値と周方向ひずみの絶対値の和)をとり、その差分をひずみセンサ28の出力とするように構成されている。 Here, the strain detection unit 45 employs an axial strain detection unit (strain gauge arranged with the axial direction as the strain detection direction) that detects the axial strain of the outer ring spacer 26 at the mounting position of the strain sensor 28, and a circumferential strain detection unit (strain gauge arranged with the circumferential direction as the strain detection direction) that detects the circumferential strain of the outer ring spacer 26 at the mounting position of the strain sensor 28. The processing unit 46 is configured to take the difference between the axial strain detected by the axial strain detection unit and the circumferential strain detected by the circumferential strain detection unit (i.e., the sum of the absolute value of the axial strain and the absolute value of the circumferential strain), and to use this difference as the output of the strain sensor 28.
 軸受ハウジング23の内周には、第2外輪35の軸方向後端面(第2外輪35の第1外輪30の側とは反対側の軸方向端面)に軸方向に対向する環状の外輪位置決め段部50が形成されている。外輪位置決め段部50は、第2外輪35の軸方向後方(第1外輪30から遠ざかる方向)への移動を規制することで、第2外輪35を軸方向に位置決めしている。 A ring-shaped outer ring positioning step 50 is formed on the inner circumference of the bearing housing 23, axially facing the axial rear end face of the second outer ring 35 (the axial end face of the second outer ring 35 opposite the first outer ring 30 side). The outer ring positioning step 50 positions the second outer ring 35 in the axial direction by restricting movement of the second outer ring 35 axially rearward (away from the first outer ring 30).
 軸受ハウジング23の軸方向前端面には、環状の蓋部材51が固定されている。蓋部材51は、軸受ハウジング23の内周に嵌合する筒部52と、筒部52の軸方向前端から径方向外方に延びる円環板状のフランジ部53とを有する。 An annular cover member 51 is fixed to the axial front end face of the bearing housing 23. The cover member 51 has a cylindrical portion 52 that fits into the inner circumference of the bearing housing 23, and a ring-shaped flange portion 53 that extends radially outward from the axial front end of the cylindrical portion 52.
 図2、図3に示すように、フランジ部53は、周方向に等間隔に配置された複数のねじ部材54で、軸受ハウジング23の軸方向前端面に固定されている。ここでは、ねじ部材54はボルトである。ねじ部材54は、ひずみセンサ28と同じ周方向位置に配置されている。すなわち、図3において、ひずみセンサ28は、外輪間座26の上側から時計回りに0°、120°、240°の各周方向位置に配置され、ねじ部材54は、ひずみセンサ28の周方向位置をすべて含む周方向位置(図では、0°、60°、120°、180°、240°、300°の各周方向位置)に配置されている。 As shown in Figures 2 and 3, the flange portion 53 is fixed to the axial front end face of the bearing housing 23 by a plurality of screw members 54 arranged at equal intervals in the circumferential direction. Here, the screw members 54 are bolts. The screw members 54 are arranged at the same circumferential position as the strain sensor 28. That is, in Figure 3, the strain sensor 28 is arranged at circumferential positions of 0°, 120°, and 240° clockwise from the upper side of the outer ring spacer 26, and the screw members 54 are arranged at circumferential positions that include all of the circumferential positions of the strain sensor 28 (in the figure, the screw members 54 are arranged at circumferential positions of 0°, 60°, 120°, 180°, 240°, and 300°).
 フランジ部53には、ねじ部材54が挿通される複数の貫通穴55が周方向に等間隔に形成されている。また、軸受ハウジング23の軸方向前端面には、ねじ部材54がねじ込まれる複数のねじ穴56が周方向に等間隔に形成されている。ねじ部材54の締め込みによって、フランジ部53は軸受ハウジング23の軸方向前端面に押し付けられている。また、筒部52の軸方向後端は、第1外輪30の軸方向前端面(第1外輪30の第2外輪35の側とは反対側の軸方向端面)に接触している。 The flange portion 53 has a plurality of through holes 55 formed at equal intervals in the circumferential direction, through which the screw members 54 are inserted. Furthermore, the axial front end face of the bearing housing 23 has a plurality of screw holes 56 formed at equal intervals in the circumferential direction, into which the screw members 54 are screwed. By tightening the screw members 54, the flange portion 53 is pressed against the axial front end face of the bearing housing 23. Furthermore, the axial rear end of the tubular portion 52 is in contact with the axial front end face of the first outer ring 30 (the axial end face of the first outer ring 30 opposite the side of the second outer ring 35).
 図4に示すように、第1外輪30および第2外輪35は、蓋部材51と外輪位置決め段部50との間に軸方向の締め代をもって組み込まれ、その軸方向の締め代によって、第1外輪30の軸方向前端面(第1外輪30の第2外輪35の側とは反対側の軸方向端面)と、第2外輪35の軸方向後端面(第2外輪35の第1外輪30の側とは反対側の軸方向端面)とに、第1外輪30と第2外輪35とを接近させる方向の押圧力が付与されている。 As shown in FIG. 4, the first outer ring 30 and the second outer ring 35 are assembled between the cover member 51 and the outer ring positioning step 50 with an axial interference, and the axial interference applies a pressing force to the axial front end face of the first outer ring 30 (the axial end face of the first outer ring 30 opposite the second outer ring 35 side) and the axial rear end face of the second outer ring 35 (the axial end face of the second outer ring 35 opposite the first outer ring 30 side) in a direction that brings the first outer ring 30 and the second outer ring 35 closer together.
 すなわち、図4に示す軸受ハウジング23から、第1外輪30と外輪間座26と第2外輪35とを取り外した状態で、蓋部材51を軸受ハウジング23に固定したときの蓋部材51と外輪位置決め段部50の軸方向の対向面間の距離は、軸受ハウジング23から第1外輪30と外輪間座26と第2外輪35とを取り外した状態で、その第1外輪30と外輪間座26と第2外輪35とを隙間なく軸方向に並べたときの第1外輪30の軸方向前端面から第2外輪35の軸方向後端面までの距離よりも、軸方向の締め代に相当する分、短く設定されている。そして、軸受ハウジング23に第1外輪30と外輪間座26と第2外輪35とを組み込み、その後、蓋部材51を複数のねじ部材54で軸方向に締め込むことで、軸方向の締め代の分、第1外輪30と外輪間座26と第2外輪35とが、蓋部材51と外輪位置決め段部50との間で軸方向に圧縮され、その結果、図の太い破線に示すように、第1外輪30と第2外輪35の間に、軸方向の押圧力が付与された状態となっている。軸方向の締め代は、10μm以上50μm以下(好ましくは20μm以下)の範囲で設定されている。 In other words, when the first outer ring 30, outer ring spacer 26, and second outer ring 35 are removed from the bearing housing 23 shown in Figure 4 and the cover member 51 is fixed to the bearing housing 23, the distance between the axial opposing surfaces of the cover member 51 and the outer ring positioning step 50 is set to be shorter by an amount equivalent to the axial tightening margin than the distance from the axial front end face of the first outer ring 30 to the axial rear end face of the second outer ring 35 when the first outer ring 30, outer ring spacer 26, and second outer ring 35 are removed from the bearing housing 23 and the first outer ring 30, outer ring spacer 26, and second outer ring 35 are aligned in the axial direction without any gaps. Then, the first outer ring 30, the outer ring spacer 26, and the second outer ring 35 are assembled into the bearing housing 23, and then the cover member 51 is tightened in the axial direction with a plurality of screw members 54. This causes the first outer ring 30, the outer ring spacer 26, and the second outer ring 35 to be compressed in the axial direction between the cover member 51 and the outer ring positioning step 50 by the amount of the axial interference. As a result, as shown by the thick dashed line in the figure, an axial pressing force is applied between the first outer ring 30 and the second outer ring 35. The axial interference is set in the range of 10 μm to 50 μm (preferably 20 μm or less).
 ここで、軸方向の締め代により第1外輪30および第2外輪35の軸方向端面に付与される軸方向の押圧力の大きさは、予圧ナット41の締め付けにより第1内輪31および第2内輪36の軸方向端面に付与される軸方向の予圧の大きさに比べて、著しく大きいものとなっている。 The magnitude of the axial pressing force applied to the axial end faces of the first outer ring 30 and the second outer ring 35 by the axial interference is significantly greater than the magnitude of the axial preload applied to the axial end faces of the first inner ring 31 and the second inner ring 36 by tightening the preload nut 41.
 すなわち、予圧ナット41の締め付けにより、第1内輪31および第2内輪36の軸方向端面に付与される軸方向の予圧の大きさは、1kN未満(数十~数百N程度)である。一方、軸方向の締め代により第1外輪30および第2外輪35の軸方向端面には、10kN以上の大きさの軸方向の押圧力が付与されている。軸方向の締め代により第1外輪30および第2外輪35の軸方向端面に付与される軸方向の押圧力の大きさは、予圧ナット41の締め付けにより第1内輪31および第2内輪36の軸方向端面に付与される軸方向の予圧の大きさの10倍以上(好ましくは50倍以上)の大きさに設定されている。 In other words, the magnitude of the axial preload applied to the axial end faces of the first inner ring 31 and the second inner ring 36 by tightening the preload nut 41 is less than 1 kN (approximately several tens to several hundreds of N). On the other hand, an axial pressing force of 10 kN or more is applied to the axial end faces of the first outer ring 30 and the second outer ring 35 by the axial interference. The magnitude of the axial pressing force applied to the axial end faces of the first outer ring 30 and the second outer ring 35 by the axial interference is set to 10 times or more (preferably 50 times or more) the magnitude of the axial preload applied to the axial end faces of the first inner ring 31 and the second inner ring 36 by tightening the preload nut 41.
 図2に示す軸受装置1において、第1軸受24および第2軸受25の予圧荷重(以下「軸受予圧」という)は、スピンドル装置の運転時における主軸2の回転速度によって変化する。そして、ひずみセンサ28で検出される外輪間座26のひずみに基づいて、その軸受予圧を検出することが可能となっている。 In the bearing device 1 shown in FIG. 2, the preload of the first bearing 24 and the second bearing 25 (hereinafter referred to as "bearing preload") changes depending on the rotational speed of the main shaft 2 when the spindle device is in operation. The bearing preload can be detected based on the strain of the outer ring spacer 26 detected by the strain sensor 28.
 すなわち、スピンドル装置の運転時において、主軸2の回転速度が変化すると、第1転動体32および第2転動体37の遠心力が変化し、その遠心力の変化に応じて、第1転動体32が第1外輪軌道面33を押圧する荷重(第1軸受24の予圧荷重)および第2転動体37が第1外輪軌道面33を押圧する荷重(第2軸受25の予圧荷重)も変化する。ここで、第1外輪軌道面33および第2外輪軌道面38は、軸方向に対して傾斜した角度をもって第1転動体32および第2転動体37と接触しているので、第1転動体32が第1外輪軌道面33を押圧する荷重および第2転動体37が第1外輪軌道面33を押圧する荷重が変化すると、第1外輪30および第2外輪35から外輪間座26に負荷される軸方向の予圧荷重が変化し、外輪間座26のひずみが変化する。そのため、ひずみセンサ28で検知される外輪間座26のひずみに基づいて、第1軸受24および第2軸受25の予圧荷重(軸受予圧)を検出することが可能となっている。 In other words, when the rotational speed of the main shaft 2 changes during operation of the spindle device, the centrifugal force of the first rolling body 32 and the second rolling body 37 changes, and in accordance with the change in centrifugal force, the load with which the first rolling body 32 presses against the first outer ring raceway surface 33 (preload load of the first bearing 24) and the load with which the second rolling body 37 presses against the first outer ring raceway surface 33 (preload load of the second bearing 25) also change. Here, the first outer ring raceway surface 33 and the second outer ring raceway surface 38 are in contact with the first rolling body 32 and the second rolling body 37 at an angle inclined with respect to the axial direction, so when the load with which the first rolling body 32 presses the first outer ring raceway surface 33 and the load with which the second rolling body 37 presses the first outer ring raceway surface 33 change, the axial preload load applied from the first outer ring 30 and the second outer ring 35 to the outer ring spacer 26 changes, and the strain of the outer ring spacer 26 changes. Therefore, it is possible to detect the preload (bearing preload) of the first bearing 24 and the second bearing 25 based on the strain of the outer ring spacer 26 detected by the strain sensor 28.
 また、主軸2にモーメント荷重が作用すると、周方向に等間隔に配置された各ひずみセンサ28の位置には異なる大きさの荷重が加わる。そのため、複数のひずみセンサ28のそれぞれの出力に基づいて、切削加工中の工作機械の主軸2に作用するモーメント荷重を検知することも可能である。 In addition, when a moment load acts on the spindle 2, loads of different magnitudes are applied to the positions of the strain sensors 28 arranged at equal intervals in the circumferential direction. Therefore, it is possible to detect the moment load acting on the spindle 2 of the machine tool during cutting processing based on the output of each of the multiple strain sensors 28.
 ところで、軸受予圧が増大するとき、第1外輪30は、第1転動体32から受ける径方向分力が増大することで拡径方向に弾性変形し、このとき第1外輪30に作用する拡径方向の力が、第1外輪30と外輪間座26の接触面間の最大静止摩擦力よりも大きくなることによって、第1外輪30と外輪間座26の接触面間には、第1外輪30が外輪間座26に対して径方向外方に相対的に移動する微小なすべりが生じる可能性がある。一方、軸受予圧が減少するときは、第1外輪30は、第1転動体32から受ける径方向分力が減少することで縮径方向に弾性復元し、このとき第1外輪30に作用する縮径方向の力が、第1外輪30と外輪間座26の接触面間の最大静止摩擦力よりも大きくなることによって、第1外輪30と外輪間座26の接触面間には、第1外輪30が外輪間座26に対して径方向内方に相対的に移動する微小なすべりが生じる可能性がある。 However, when the bearing preload increases, the first outer ring 30 elastically deforms in the radial expansion direction due to the increasing radial component force it receives from the first rolling body 32. At this time, the radial expansion force acting on the first outer ring 30 becomes greater than the maximum static friction force between the contact surfaces of the first outer ring 30 and the outer ring spacer 26. As a result, there is a possibility that minute slippage will occur between the contact surfaces of the first outer ring 30 and the outer ring spacer 26, causing the first outer ring 30 to move radially outward relative to the outer ring spacer 26. On the other hand, when the bearing preload decreases, the first outer ring 30 elastically recovers in the radial contraction direction due to the reduction in the radial component of the force it receives from the first rolling element 32. At this time, the radial contraction force acting on the first outer ring 30 becomes greater than the maximum static friction force between the contact surfaces of the first outer ring 30 and the outer ring spacer 26. This may cause a slight slippage between the contact surfaces of the first outer ring 30 and the outer ring spacer 26, causing the first outer ring 30 to move radially inward relative to the outer ring spacer 26.
 同様に、軸受予圧が増大するとき、第2外輪35は、第2転動体37から受ける径方向分力が増大することで拡径方向に弾性変形し、この弾性変形により、第2外輪35と外輪間座26の接触面間には、第2外輪35が外輪間座26に対して径方向外方に相対的に移動する微小なすべりが生じる可能性がある。一方、軸受予圧が減少するときは、第2外輪35は、第2転動体37から受ける径方向分力が減少することで縮径方向に弾性復元し、この弾性復元により、第2外輪35と外輪間座26の接触面間には、第2外輪35が外輪間座26に対して径方向内方に相対的に移動する微小なすべりが生じる可能性がある。 Similarly, when the bearing preload increases, the second outer ring 35 elastically deforms in the radial expansion direction due to an increase in the radial component force it receives from the second rolling element 37, and this elastic deformation may cause slight slippage between the contact surfaces of the second outer ring 35 and the outer ring spacer 26, where the second outer ring 35 moves radially outward relative to the outer ring spacer 26. On the other hand, when the bearing preload decreases, the second outer ring 35 elastically restores in the radial contraction direction due to a decrease in the radial component force it receives from the second rolling element 37, and this elastic restoration may cause slight slippage between the contact surfaces of the second outer ring 35 and the outer ring spacer 26, where the second outer ring 35 moves radially inward relative to the outer ring spacer 26.
 そして、第1外輪30と外輪間座26の接触面間や、第2外輪35と外輪間座26の接触面間に、上記の径方向のすべりが生じると、軸受予圧が増加する過程と、軸受予圧が減少する過程とで、外輪間座26の変形が同じにならない。そのため、軸受予圧が増加する過程と、軸受予圧が減少する過程とで、軸受予圧の大きさが同じでもひずみセンサ28の出力が同じにならず、前者と後者の間に一定の差が生じるというヒステリシスが生じ、そのヒステリシスによって、ひずみセンサ28の出力に基づいて検出される軸受予圧に誤差が生じるという問題がある。 If the above-mentioned radial slippage occurs between the contact surfaces of the first outer ring 30 and the outer ring spacer 26, or between the contact surfaces of the second outer ring 35 and the outer ring spacer 26, the deformation of the outer ring spacer 26 will not be the same in the process of increasing the bearing preload and in the process of decreasing the bearing preload. As a result, even if the magnitude of the bearing preload is the same, the output of the strain sensor 28 will not be the same in the process of increasing the bearing preload and in the process of decreasing the bearing preload, and hysteresis will occur in which a certain difference occurs between the former and the latter, and this hysteresis will cause an error in the bearing preload detected based on the output of the strain sensor 28.
 この問題に対し、図4に示すように、この実施形態の軸受装置1では、蓋部材51と外輪位置決め段部50の間に軸方向の締め代を設定することで、第1外輪30および第2外輪35の軸方向端面に、第1外輪30と第2外輪35とを接近させる方向の押圧力を付与しているので、第1外輪30と外輪間座26の接触面間には、第1内輪31と第2内輪36の軸方向端面に付与される予圧(図の太い実線)と、第1外輪30と第2外輪35の軸方向端面に付与される押圧力(図の太い破線)とを合計した大きさの面圧が作用し、第1外輪30と外輪間座26の接触面間の面圧が大きいものとなる。そのため、第1外輪30と外輪間座26の接触面間の摩擦力が大きく、軸受予圧の変化に応じて第1外輪30が第1転動体32から受ける径方向分力が変化したときに、第1外輪30と外輪間座26の接触面間の径方向のすべりを抑制することが可能である。同様に、第2外輪35と外輪間座26の接触面間にも、第1内輪31と第2内輪36の軸方向端面に付与される予圧(図の太い実線)と、第1外輪30と第2外輪35の軸方向端面に付与される押圧力(図の太い破線)とを合計した大きさの面圧が作用するので、第2外輪35と外輪間座26の接触面間の面圧が大きい。そのため、第2外輪35と外輪間座26の接触面間の摩擦力が大きく、軸受予圧の変化に応じて第2外輪35が第2転動体37から受ける径方向分力が変化したときに、第2外輪35と外輪間座26の接触面間の径方向のすべりを抑制することが可能である。その結果、外輪間座26のひずみセンサ28の出力のヒステリシスが低減され、高い精度で軸受予圧を検出することが可能となっている。 To address this problem, as shown in Figure 4, in the bearing device 1 of this embodiment, an axial tightening margin is set between the cover member 51 and the outer ring positioning step 50, and a pressing force is applied to the axial end faces of the first outer ring 30 and the second outer ring 35 in a direction that brings the first outer ring 30 and the second outer ring 35 closer together.Therefore, a surface pressure acts between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 on the basis of the sum of the preload applied to the axial end faces of the first inner ring 31 and the second inner ring 36 (thick solid line in the figure) and the pressing force applied to the axial end faces of the first outer ring 30 and the second outer ring 35 (thick dashed line in the figure), resulting in a large surface pressure between the contact surfaces of the first outer ring 30 and the outer ring spacer 26. Therefore, the friction force between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 is large, and it is possible to suppress radial slip between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 when the radial component of force that the first outer ring 30 receives from the first rolling element 32 changes in response to a change in the bearing preload. Similarly, a surface pressure acts between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 on the basis of the sum of the preload (thick solid line in the figure) applied to the axial end faces of the first inner ring 31 and the second inner ring 36 and the pressing force (thick dashed line in the figure) applied to the axial end faces of the first outer ring 30 and the second outer ring 35, so that the surface pressure between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 is large. Therefore, the frictional force between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 is large, and when the radial component of the force that the second outer ring 35 receives from the second rolling element 37 changes in response to a change in the bearing preload, it is possible to suppress radial slippage between the contact surfaces of the second outer ring 35 and the outer ring spacer 26. As a result, the hysteresis of the output of the strain sensor 28 of the outer ring spacer 26 is reduced, making it possible to detect the bearing preload with high accuracy.
 特に、この軸受装置1では、第1外輪30および第2外輪35の軸方向端面に付与する軸方向の押圧力(図の太い破線)を、予圧ナット41の締め付けにより第1内輪31および第2内輪36の軸方向端面に付与される軸方向の予圧(図の太い実線)の大きさの10倍以上(好ましくは50倍以上)と著しく大きく設定しているので、第1外輪30と外輪間座26の接触面間の面圧と、第2外輪35と外輪間座26の接触面間の面圧とが、特に大きいものとなる。そのため、第1外輪30と外輪間座26の接触面間の摩擦力が特に効果的に大きいものとなり、軸受予圧の変化に応じて第1外輪30が第1転動体32から受ける径方向分力が変化したときに、第1外輪30と外輪間座26の接触面間の径方向のすべりを特に効果的に抑制することが可能である。同様に、第2外輪35と外輪間座26の接触面間の摩擦力が特に効果的に大きいものとなり、軸受予圧の変化に応じて第2外輪35が第2転動体37から受ける径方向分力が変化したときに、第2外輪35と外輪間座26の接触面間の径方向のすべりを特に効果的に抑制することが可能である。 In particular, in this bearing device 1, the axial pressing force (thick broken line in the figure) applied to the axial end faces of the first outer ring 30 and the second outer ring 35 is set to be significantly larger, at 10 times or more (preferably 50 times or more) the magnitude of the axial preload (thick solid line in the figure) applied to the axial end faces of the first inner ring 31 and the second inner ring 36 by tightening the preload nut 41, so that the surface pressure between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 and the surface pressure between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 are particularly large. Therefore, the friction force between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 is particularly effectively large, and when the radial component of the force that the first outer ring 30 receives from the first rolling element 32 changes in response to a change in the bearing preload, it is possible to particularly effectively suppress radial slip between the contact surfaces of the first outer ring 30 and the outer ring spacer 26. Similarly, the friction force between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 is particularly effectively large, and when the radial component of the force that the second outer ring 35 receives from the second rolling element 37 changes in response to a change in the bearing preload, it is possible to particularly effectively suppress radial slippage between the contact surfaces of the second outer ring 35 and the outer ring spacer 26.
 また、この軸受装置1は、第1外輪30および第2外輪35の軸方向端面に押圧力を付与する方法として、軸方向の締め代を利用しているので、ねじ部材54を締め付ける簡単な方法で、第1外輪30および第2外輪35の軸方向端面に大きい押圧力を付与することが可能である。 In addition, this bearing device 1 utilizes the axial interference as a method for applying a pressing force to the axial end faces of the first outer ring 30 and the second outer ring 35, so it is possible to apply a large pressing force to the axial end faces of the first outer ring 30 and the second outer ring 35 by simply tightening the screw member 54.
 また、この軸受装置1は、図3に示すように、ひずみセンサ28と同じ周方向位置にねじ部材54が配置されているので、図4に示す第1外輪30と外輪間座26の接触面間の面圧と、第2外輪35と外輪間座26の接触面間の面圧とを、ひずみセンサ28と同じ周方向位置で効果的に大きくすることができる。そのため、ひずみセンサ28の出力のヒステリシスを効果的に低減することが可能である。 In addition, as shown in FIG. 3, in this bearing device 1, the screw member 54 is disposed at the same circumferential position as the strain sensor 28, so that the surface pressure between the contact surfaces of the first outer ring 30 and the outer ring spacer 26 and the surface pressure between the contact surfaces of the second outer ring 35 and the outer ring spacer 26 shown in FIG. 4 can be effectively increased at the same circumferential position as the strain sensor 28. This makes it possible to effectively reduce the hysteresis in the output of the strain sensor 28.
 軸方向の締め代は、第1外輪30の軸方向端面または第2外輪35の軸方向端面の少なくともいずれか一方に、定められた押込量(μm)と押圧力(N)を負荷および測定できる試験機等で押圧力を与え、押込量(μm)と押圧力(N)の関係を導くことで設定することができる。 The axial clamping margin can be set by applying a pressing force to at least one of the axial end faces of the first outer ring 30 or the second outer ring 35 using a test machine or the like that can load and measure a specified pressing amount (μm) and pressing force (N), and deriving the relationship between the pressing amount (μm) and pressing force (N).
 上記実施形態では、ひずみセンサ28を外輪間座26の内周に配置したものを例に挙げたが、ひずみセンサ28は外輪間座26の外周に配置するようにしてもよい。 In the above embodiment, the strain sensor 28 is disposed on the inner circumference of the outer ring spacer 26, but the strain sensor 28 may be disposed on the outer circumference of the outer ring spacer 26.
 上記実施形態では、第1軸受24および第2軸受25として、アンギュラ玉軸受を例に挙げて説明したが、第1軸受24および第2軸受25として、例えば、円すいころ軸受や深溝玉軸受など、軸方向の予圧で径方向分力を生じる他の形式の転がり軸受を採用することも可能である。 In the above embodiment, angular contact ball bearings have been used as the first bearing 24 and the second bearing 25, but it is also possible to use other types of rolling bearings, such as tapered roller bearings or deep groove ball bearings, as the first bearing 24 and the second bearing 25, which generate a radial component force due to an axial preload.
 また、上記実施形態では、ひずみセンサ28として、ひずみ検出部45と処理部46とを有するものを例に挙げたが、ひずみセンサ28は、ひずみ検出部45のみ(ひずみゲージのみ)で構成することも可能である。 In addition, in the above embodiment, the strain sensor 28 is exemplified as having a strain detection unit 45 and a processing unit 46, but the strain sensor 28 can also be configured with only the strain detection unit 45 (only a strain gauge).
 図5に、第2の発明の実施形態にかかる軸受装置1を使用した工作機械用スピンドル装置を示す。以下、第1の発明の実施形態に対応する部分は、同一の符号を付して説明を省略する。同一の符号を付した部分は、第1の発明の実施形態と基本的に同一の構成である。 FIG. 5 shows a spindle device for a machine tool that uses a bearing device 1 according to the second embodiment of the invention. In the following, parts corresponding to the first embodiment of the invention are given the same reference numerals and their explanations are omitted. Parts given the same reference numerals are basically configured the same as the first embodiment of the invention.
 図5および図6に示すように、軸受装置1は、主軸ハウジング3に固定して設けられた軸受ハウジング23と、軸受ハウジング23の内周に嵌合する第1軸受24と、軸受ハウジング23の内周の第1軸受24よりも軸方向後側に嵌合する第2軸受25と、第1軸受24と第2軸受25の間で軸方向に挟まれた外輪間座26および内輪間座27とを有し、その第1軸受24と第2軸受25とで主軸2を支持している。 As shown in Figures 5 and 6, the bearing device 1 has a bearing housing 23 fixed to the spindle housing 3, a first bearing 24 fitted to the inner periphery of the bearing housing 23, a second bearing 25 fitted to the inner periphery of the bearing housing 23 axially rearward of the first bearing 24, and an outer ring spacer 26 and an inner ring spacer 27 sandwiched axially between the first bearing 24 and the second bearing 25, and the first bearing 24 and the second bearing 25 support the spindle 2.
 第1軸受24は、軸受ハウジング23の内周にすきまばめで嵌合する非回転の第1外輪30と、第1外輪30の径方向内側に回転可能に設けられた第1内輪31と、第1外輪30と第1内輪31の間に組み込まれた複数の第1転動体(ここでは玉)32とを有するアンギュラ玉軸受である。第1外輪30の内周には、第1転動体32が転がり接触する断面円弧状の第1外輪軌道面33が設けられ、第1内輪31の外周には、第1転動体32が転がり接触する断面円弧状の第1内輪軌道面34が設けられている。第1外輪30は、第1外輪軌道面33に対して軸方向前側の外輪肩部と軸方向後側の外輪肩部のうち、軸方向前側の外輪肩部を除去した形状の肩落とし外輪である。また、第1内輪31は、第1内輪軌道面34に対して軸方向前側の内輪肩部と軸方向後側の内輪肩部のうち、軸方向後側の内輪肩部を除去した形状の肩落とし内輪である。 The first bearing 24 is an angular ball bearing having a non-rotating first outer ring 30 that is loosely fitted to the inner circumference of the bearing housing 23, a first inner ring 31 that is rotatably arranged radially inside the first outer ring 30, and a plurality of first rolling elements (here, balls) 32 assembled between the first outer ring 30 and the first inner ring 31. The inner circumference of the first outer ring 30 is provided with a first outer ring raceway surface 33 that has an arc-shaped cross section with which the first rolling elements 32 roll and contact, and the outer circumference of the first inner ring 31 is provided with a first inner ring raceway surface 34 that has an arc-shaped cross section with which the first rolling elements 32 roll and contact. The first outer ring 30 is a shoulder-dropped outer ring that has a shape in which the axially front outer ring shoulder is removed from the axially front outer ring shoulder and the axially rear outer ring shoulder relative to the first outer ring raceway surface 33. In addition, the first inner ring 31 is a shoulder-reduced inner ring in which the axially rear inner ring shoulder is removed from the axially front inner ring shoulder and the axially rear inner ring shoulder relative to the first inner ring raceway surface 34.
 第2軸受25は、第1外輪30から軸方向後方に間隔をおいて配置され、軸受ハウジング23の内周にすきまばめで嵌合する非回転の第2外輪35と、第2外輪35の径方向内側に回転可能に設けられた第2内輪36と、第2外輪35と第2内輪36の間に組み込まれた複数の第2転動体(ここでは玉)37とを有するアンギュラ玉軸受である。第2外輪35の内周には、第2転動体37が転がり接触する断面円弧状の第2外輪軌道面38が設けられ、第2内輪36の外周には、第2転動体37が転がり接触する断面円弧状の第2内輪軌道面39が設けられている。第2外輪35は、第2外輪軌道面38に対して軸方向前側の外輪肩部と軸方向後側の外輪肩部のうち、軸方向後側の外輪肩部を除去した形状の肩落とし外輪である。また、第2内輪36は、第2内輪軌道面39に対して軸方向前側の内輪肩部と軸方向後側の内輪肩部のうち、軸方向前側の内輪肩部を除去した形状の肩落とし内輪である。 The second bearing 25 is an angular ball bearing having a non-rotating second outer ring 35 that is spaced axially rearward from the first outer ring 30 and is loosely fitted to the inner circumference of the bearing housing 23, a second inner ring 36 that is rotatably provided radially inside the second outer ring 35, and a plurality of second rolling elements (here, balls) 37 that are assembled between the second outer ring 35 and the second inner ring 36. The inner circumference of the second outer ring 35 is provided with a second outer ring raceway surface 38 that has an arc-shaped cross section with which the second rolling elements 37 roll and contact, and the outer circumference of the second inner ring 36 is provided with a second inner ring raceway surface 39 that has an arc-shaped cross section with which the second rolling elements 37 roll and contact. The second outer ring 35 is a shoulder-dropped outer ring that has a shape in which the axially rear outer ring shoulder is removed from the outer ring shoulder on the axial front side and the outer ring shoulder on the axial rear side relative to the second outer ring raceway surface 38. The second inner ring 36 is a shoulder-reduced inner ring in which the axially front inner ring shoulder is removed from the axially rear inner ring shoulder relative to the second inner ring raceway surface 39.
 ここで、第1軸受24は、第1内輪31と第1転動体32の接触点と、第1外輪30と第1転動体32の接触点とを結ぶ直線が、半径方向内側から半径方向外側に向かって軸方向後方に傾斜している。一方、第2軸受25は、第2内輪36と第2転動体37の接触点と、第2外輪35と第2転動体37の接触点とを結ぶ直線が、半径方向内側から半径方向外側に向かって軸方向前方に傾斜している。すなわち、第1軸受24と第2軸受25は、背面組合せで配置されている。 Here, in the first bearing 24, a straight line connecting the contact point of the first inner ring 31 and the first rolling element 32 and the contact point of the first outer ring 30 and the first rolling element 32 is inclined axially backward from the radially inner side toward the radially outer side. On the other hand, in the second bearing 25, a straight line connecting the contact point of the second inner ring 36 and the second rolling element 37 and the contact point of the second outer ring 35 and the second rolling element 37 is inclined axially forward from the radially inner side toward the radially outer side. In other words, the first bearing 24 and the second bearing 25 are arranged in a back-to-back arrangement.
 外輪間座26は、軸受ハウジング23の内周にすきまばめで嵌合する金属製の外環26aと、外環26aの径方向内側に配される樹脂製の内環26bとからなる。外環26aは、両端が開放された中空の円筒状に形成されている。一方、内環26bは、両端が開放された中空の円筒部の軸方向後端に外向きのフランジ部を有する断面L字状に形成されており、そのフランジ部が外環26aの内周面に固定されている。その固定手段としては、外環26aの内周面に内環26bのフランジ部を圧入する方法や接着する方法をとることができ、これらの方法を併用することもできる。 The outer ring spacer 26 consists of a metal outer ring 26a that fits loosely around the inner circumference of the bearing housing 23, and a resin inner ring 26b that is disposed radially inward of the outer ring 26a. The outer ring 26a is formed in a hollow cylindrical shape with both ends open. Meanwhile, the inner ring 26b is formed in an L-shaped cross section with an outward flange portion at the axial rear end of the hollow cylindrical portion that is open at both ends, and the flange portion is fixed to the inner peripheral surface of the outer ring 26a. The fixing method can be a method of pressing the flange portion of the inner ring 26b into the inner peripheral surface of the outer ring 26a or a method of gluing, or these methods can be used in combination.
 外環26aは、その径方向の厚みが第1外輪30および第2外輪35の厚みとほぼ同じに形成され、軸方向寸法が内環26bの軸方向寸法よりも大きく形成されている。これにより、外環26aは、軸方向前端が第1外輪30の軸方向後端面に接触し、軸方向後端が第2外輪35の軸方向前端面に接触しているが、内環26bは第1外輪30および第2外輪35と接触していない。 The outer ring 26a is formed so that its radial thickness is approximately the same as the thickness of the first outer ring 30 and the second outer ring 35, and its axial dimension is larger than the axial dimension of the inner ring 26b. As a result, the outer ring 26a's axial front end contacts the axial rear end face of the first outer ring 30, and its axial rear end contacts the axial front end face of the second outer ring 35, but the inner ring 26b does not contact the first outer ring 30 or the second outer ring 35.
 そして、外環26aの内周面の軸方向中央部に、周方向に等間隔で複数個(好ましくは3個以上、ここでは4個)の荷重センサ28が取り付けられている。荷重センサ28は、外環26aに接着剤等で固定されるプリント基板28aに、外環26aのひずみを検出するひずみゲージ28bと、ひずみゲージ28bが検出したひずみから外環26aに作用する荷重を求める処理回路28cを実装したものである。また、外環26aと内環26bの円筒部との間の空間(荷重センサ28の周囲の空間)には、樹脂材料等の封止剤47が充填されている。これにより、荷重センサ28は、絶縁性を確保された保護状態で確実に固定される。 Then, multiple load sensors 28 (preferably three or more, here four) are attached at equal intervals in the circumferential direction to the axial center of the inner peripheral surface of the outer ring 26a. The load sensor 28 is a printed circuit board 28a fixed to the outer ring 26a with adhesive or the like, and is equipped with a strain gauge 28b that detects the strain of the outer ring 26a and a processing circuit 28c that determines the load acting on the outer ring 26a from the strain detected by the strain gauge 28b. The space between the cylindrical parts of the outer ring 26a and the inner ring 26b (the space around the load sensor 28) is filled with a sealant 47 such as a resin material. This ensures that the load sensor 28 is fixed securely in a protected state with guaranteed insulation.
 一方、内輪間座27は、外輪間座26の外環26aと同様、両端が開放された中空の円筒状に形成されており、その軸方向前端が第1内輪31の軸方向後端面に接触し、軸方向後端が第2内輪36の軸方向前端面に接触している。 On the other hand, the inner ring spacer 27, like the outer ring 26a of the outer ring spacer 26, is formed as a hollow cylinder with both ends open, with its axial front end contacting the axial rear end face of the first inner ring 31 and its axial rear end contacting the axial front end face of the second inner ring 36.
 主軸ハウジング3の軸方向前端には、第1外輪30の軸方向前端面に接触することにより第1外輪30の軸方向位置を固定する外輪押さえ部材60が固定されている。外輪押さえ部材60は、軸受ハウジング23の内周に嵌合する筒部61と、筒部61の軸方向前端から径方向外側に延びるフランジ部62とを有する。フランジ部62は、軸受ハウジング23の軸方向前端面に固定されている。また、主軸2の軸方向前端部の外周には、第1内輪31の軸方向前端面に接触する段差部63が形成されている。第1内輪31は、この段差部63との接触により軸方向に位置決めされている。 An outer ring pressing member 60 is fixed to the axial front end of the spindle housing 3, which fixes the axial position of the first outer ring 30 by contacting the axial front end face of the first outer ring 30. The outer ring pressing member 60 has a cylindrical portion 61 that fits into the inner circumference of the bearing housing 23, and a flange portion 62 that extends radially outward from the axial front end of the cylindrical portion 61. The flange portion 62 is fixed to the axial front end face of the bearing housing 23. In addition, a step portion 63 that contacts the axial front end face of the first inner ring 31 is formed on the outer periphery of the axial front end of the spindle 2. The first inner ring 31 is positioned in the axial direction by contacting this step portion 63.
 主軸2の外周には、第2内輪36を軸方向前方に押圧する予圧ナット64と、第2内輪36と予圧ナット64の間に組み込まれた環状のスペーサ65とが装着されている。予圧ナット64は、主軸2の外周の段差部11(図5参照)から軸方向前側に延びる部分に形成された雄ねじ66にねじ結合している。スペーサ65は、軸方向前端が第2内輪36の軸方向後端面に接触し、軸方向後端が予圧ナット64の軸方向前端面に接触している。軸受ハウジング23の内周には、第2外輪35の軸方向後端面に接触する段差部67が形成されている。第2外輪35は、この段差部67との接触により軸方向に位置決めされている。 A preload nut 64 that presses the second inner ring 36 axially forward is attached to the outer periphery of the spindle 2, and an annular spacer 65 is fitted between the second inner ring 36 and the preload nut 64. The preload nut 64 is threadedly engaged with a male thread 66 formed on a portion extending axially forward from a stepped portion 11 (see FIG. 5) on the outer periphery of the spindle 2. The spacer 65 has its axial front end in contact with the axial rear end face of the second inner ring 36, and its axial rear end in contact with the axial front end face of the preload nut 64. A stepped portion 67 that contacts the axial rear end face of the second outer ring 35 is formed on the inner periphery of the bearing housing 23. The second outer ring 35 is positioned in the axial direction by contact with this stepped portion 67.
 軸受ハウジング23は、主軸ハウジング3の内周に嵌合する筒部68と、筒部68の軸方向前端から径方向外側に延びるフランジ部69とを有する。筒部68の外周には、軸受装置1の冷却用の冷媒が流れる冷却溝70が形成されている。冷却溝70は、筒部68の外周に軸方向に間隔をおいて形成された複数の環状溝または筒部68の外周を螺旋状に延びる螺旋溝である。フランジ部69は、主軸ハウジング3の軸方向前端に接触して固定されている。 The bearing housing 23 has a cylindrical portion 68 that fits into the inner circumference of the spindle housing 3, and a flange portion 69 that extends radially outward from the axial front end of the cylindrical portion 68. A cooling groove 70 is formed on the outer circumference of the cylindrical portion 68, through which a refrigerant for cooling the bearing device 1 flows. The cooling groove 70 is a plurality of annular grooves formed at intervals in the axial direction on the outer circumference of the cylindrical portion 68, or a spiral groove that extends spirally around the outer circumference of the cylindrical portion 68. The flange portion 69 is fixed in contact with the axial front end of the spindle housing 3.
 この工作機械用スピンドル装置は、上記の構成であり、切削加工によって主軸2に軸方向の力(切削荷重)が加わると、その軸方向の力は、図7に示すように、軸受装置1の第1内輪31、第1転動体32、第1外輪30、外輪間座26の外環26a、第2外輪35の順に伝達され、軸受ハウジング23の段差部67で受け止められる。このとき、軸方向の力を受けた外輪間座26の外環26aは、第1外輪30と第2外輪35の間で圧縮されて径方向膨張変形する。したがって、外環26aの周方向に等間隔で取り付けた荷重センサ28により、外環26aの周方向各位置のひずみから外環26aに作用する荷重つまり主軸2に作用する切削荷重を検出することができる。 This spindle device for machine tools has the above-mentioned configuration. When an axial force (cutting load) is applied to the main shaft 2 by cutting, the axial force is transmitted in the order of the first inner ring 31, the first rolling element 32, the first outer ring 30, the outer ring 26a of the outer ring spacer 26, and the second outer ring 35 of the bearing device 1, as shown in FIG. 7, and is received by the step portion 67 of the bearing housing 23. At this time, the outer ring 26a of the outer ring spacer 26 that receives the axial force is compressed between the first outer ring 30 and the second outer ring 35 and undergoes radial expansion deformation. Therefore, the load sensors 28 attached at equal intervals around the outer ring 26a can detect the load acting on the outer ring 26a, that is, the cutting load acting on the main shaft 2, from the strain at each circumferential position of the outer ring 26a.
 また、軸受装置1の組み込みの際には、予圧ナット64を締め付けることにより、その軸力が、図8に示すように、スペーサ65、第2内輪36、第2転動体37、第2外輪35、外輪間座26の外環26a、第1外輪30、第1転動体32、第1内輪31に順に伝達され、主軸2の段差部63で受け止められた状態となって、第1軸受24および第2軸受25に予圧が付与されるようになっており、このときに外環26aに作用する荷重つまり予圧荷重も荷重センサ28で検出することができる。 When the bearing device 1 is assembled, the axial force is transmitted in sequence to the spacer 65, second inner ring 36, second rolling element 37, second outer ring 35, outer ring 26a of the outer ring spacer 26, first outer ring 30, first rolling element 32, and first inner ring 31 by tightening the preload nut 64, as shown in FIG. 8, and is received by the stepped portion 63 of the main shaft 2, so that a preload is applied to the first bearing 24 and the second bearing 25. The load acting on the outer ring 26a at this time, i.e., the preload load, can also be detected by the load sensor 28.
 ここで、この実施形態の軸受装置1では、外輪間座26の外環26aと軸受ハウジング23のはめあいすきまΔ1を、外環26aに作用する荷重による外環26aの径方向膨張量よりも大きく、かつ第1外輪30および第2外輪35と軸受ハウジング23のはめあいすきまΔ2よりも大きく設定している(ここでは、第1外輪30と第2外輪35のはめあいすきまを同じに設定)。また、Δ2は従来と同様に直径で40μm以下に設定するが、Δ1とΔ2の差は直径で50μm以下(望ましくは30μm以下)とする。Δ1とΔ2の差が直径で50μmを超えると、軸受装置1を組みこむ際に外輪間座26の芯合わせが難しくなって、荷重の測定精度が低下するからである。 Here, in the bearing device 1 of this embodiment, the fit clearance Δ1 between the outer ring 26a of the outer ring spacer 26 and the bearing housing 23 is set to be larger than the amount of radial expansion of the outer ring 26a due to the load acting on the outer ring 26a, and larger than the fit clearance Δ2 between the first outer ring 30 and the second outer ring 35 and the bearing housing 23 (here, the fit clearances of the first outer ring 30 and the second outer ring 35 are set to be the same). Also, Δ2 is set to 40 μm or less in diameter as in the conventional case, but the difference between Δ1 and Δ2 is set to 50 μm or less in diameter (preferably 30 μm or less). If the difference between Δ1 and Δ2 exceeds 50 μm in diameter, it becomes difficult to align the outer ring spacer 26 when assembling the bearing device 1, and the measurement accuracy of the load decreases.
 外輪間座26の外環26a、第1外輪30および第2外輪35と軸受ハウジング23のはめあいすきまΔ1、Δ2を上記のように設定することにより、外環26aに作用する切削荷重や予圧荷重の変化を安定して高感度で検出することができる。これについて、図9(比較例)および図10に基づいて以下に説明する。なお、図9、図10では、外環26aおよび第1外輪30と軸受ハウジング23の隙間を誇張して表している。 By setting the fit clearances Δ1 and Δ2 between the outer ring 26a, first outer ring 30, and second outer ring 35 of the outer ring spacer 26 and the bearing housing 23 as described above, it is possible to detect changes in the cutting load and preload acting on the outer ring 26a stably and with high sensitivity. This will be explained below with reference to Figures 9 (Comparative Example) and 10. Note that in Figures 9 and 10, the gaps between the outer ring 26a and the first outer ring 30 and the bearing housing 23 are exaggerated.
 まず、主軸2に切削荷重が加わると力の伝達経路は基本的には図7に示したようになるが、このとき、比較例として、仮に、外輪間座26の外環26aと軸受ハウジング23のはめあいすきまΔ1を上記の設定範囲よりも小さく設定すると、図9に示すように、第1転動体32から伝達される力の径方向分力により拡径した第1外輪30が軸受ハウジング23の内周に接触する前に、外輪間座26の外環26aが軸受ハウジング23の内周に接触して、外環26aの変形態様が変化することにより、荷重変化を検出する感度が低くなってしまうおそれがある。 First, when a cutting load is applied to the spindle 2, the force transmission path is basically as shown in Figure 7. However, in this case, as a comparative example, if the fit clearance Δ1 between the outer ring 26a of the outer ring spacer 26 and the bearing housing 23 is set smaller than the above-mentioned setting range, as shown in Figure 9, the outer ring 26a of the outer ring spacer 26 will come into contact with the inner circumference of the bearing housing 23 before the first outer ring 30, which has expanded in diameter due to the radial component of the force transmitted from the first rolling element 32, comes into contact with the inner circumference of the bearing housing 23, causing the deformation mode of the outer ring 26a to change, which may reduce the sensitivity of detecting load changes.
 これに対し、上記のようにΔ1、Δ2を設定しておけば、主軸2に切削荷重が加わったとき、図10に示すように、第1転動体32から伝達される力の径方向分力により拡径した第1外輪30の方が外輪間座26の外環26aよりも先に軸受ハウジング23の内周に接触するので、外環26aは軸受ハウジング23の内周に接触しにくくなる。したがって、外環26aとして実用的な範囲内で変形しやすいものを採用することにより、外環26aに作用する切削荷重のレベルによらず、その切削荷重の変化を安定して高感度で検出できる。 In contrast, if Δ1 and Δ2 are set as described above, when a cutting load is applied to the spindle 2, as shown in FIG. 10, the first outer ring 30, which has expanded in diameter due to the radial component of the force transmitted from the first rolling element 32, contacts the inner circumference of the bearing housing 23 before the outer ring 26a of the outer ring spacer 26, so that the outer ring 26a is less likely to contact the inner circumference of the bearing housing 23. Therefore, by using an outer ring 26a that is easily deformed within a practical range, changes in the cutting load can be detected stably and with high sensitivity, regardless of the level of the cutting load acting on the outer ring 26a.
 ここで、外輪間座26の外環26aの外径寸法、第1外輪30および第2外輪35の外径寸法は、ダイヤルゲージまたはマイクロメータ等を用いて測定することができる。軸受ハウジング23の内径寸法は、シリンダーゲージ、内側マイクロメータ等を用いて測定することができる。外輪間座26の外環26a、第1外輪30および第2外輪35と軸受ハウジング23のはめあいすきまΔ1、Δ2は、測定した外径寸法と内径寸法の差分によって導くことができる。また、外輪間座26の径方向膨張量は、外輪間座26に軸方向押圧力を与えた際の、外輪間座26外径側の変位量をダイヤルゲージまたはマイクロメータ等を用いて測定することで、押圧力と外輪間座26の径方向膨張量の関係を導くことで推定することができる。 Here, the outside diameter of the outer ring 26a of the outer ring spacer 26 and the outside diameters of the first outer ring 30 and the second outer ring 35 can be measured using a dial gauge or a micrometer, etc. The inside diameter of the bearing housing 23 can be measured using a cylinder gauge, an inside micrometer, etc. The fit clearances Δ1 and Δ2 between the outer ring 26a, the first outer ring 30, and the second outer ring 35 of the outer ring spacer 26 and the bearing housing 23 can be derived from the difference between the measured outside diameter and inside diameter. The amount of radial expansion of the outer ring spacer 26 can be estimated by measuring the amount of displacement of the outer diameter side of the outer ring spacer 26 when an axial pressing force is applied to the outer ring spacer 26 using a dial gauge or a micrometer, etc., and deriving the relationship between the pressing force and the amount of radial expansion of the outer ring spacer 26.
 同様に、軸受装置1の予圧ナット64の締め付けによって第1軸受24および第2軸受25に予圧を付与するときも、第2転動体37から伝達される力の径方向分力により拡径した第2外輪35が外環26aよりも先に軸受ハウジング23の内周に接触し、外環26aは軸受ハウジング23の内周に接触しにくくなるので、予圧荷重の変化を安定して高感度で検出できる。 Similarly, when preload is applied to the first bearing 24 and the second bearing 25 by tightening the preload nut 64 of the bearing device 1, the second outer ring 35, which has been expanded in diameter by the radial component of the force transmitted from the second rolling element 37, contacts the inner circumference of the bearing housing 23 before the outer ring 26a, and the outer ring 26a is less likely to contact the inner circumference of the bearing housing 23, so that changes in the preload can be detected stably and with high sensitivity.
 したがって、この工作機械用スピンドル装置では、切削荷重が急激に増加した場合や、第1軸受24および第2軸受25の発熱等によって予圧荷重が増加した場合に速やかに対応でき、状態監視の信頼性を高めることが可能となっている。また、軸受装置1の組み込み時の予圧の設定も効率的に精度よく行うことができる。 Therefore, this spindle device for machine tools can quickly respond to cases where the cutting load increases suddenly or where the preload increases due to heat generation in the first bearing 24 and the second bearing 25, etc., and can improve the reliability of condition monitoring. In addition, the preload can be set efficiently and accurately when assembling the bearing device 1.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. The scope of the invention is indicated by the claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 例えば、軸受装置を構成する第1軸受および第2軸受は、実施形態ではアンギュラ玉軸受を採用しているが、円すいころ軸受等、接触角が0でない転がり軸受であればよい。また、外輪間座は、実施形態のような外環と内環を有する二重構造のものに限らず、1つの円筒体からなるものを用い、その内周面または外周面に荷重センサを取り付けるようにしてもよい。 For example, in the embodiment, angular contact ball bearings are used for the first and second bearings that make up the bearing device, but any rolling bearing with a non-zero contact angle, such as a tapered roller bearing, may be used. In addition, the outer ring spacer is not limited to a double structure with an outer ring and an inner ring as in the embodiment, but may be a single cylinder with a load sensor attached to its inner or outer circumferential surface.
 また、実施形態では、第1軸受と第2軸受がいずれも外部から軸方向力を加えられるため、外輪間座と軸受ハウジングのはめあいすきまを両軸受の外輪と軸受ハウジングのはめあいすきまよりも大きくしたが、第1軸受と第2軸受のいずれか一方の軸受のみが外部から軸方向力を加えられるように組み込まれる場合は、その一方の軸受と軸受ハウジングのはめあいすきまよりも外輪間座と軸受ハウジングのはめあいすきまを大きくすればよい。 In addition, in the embodiment, since both the first bearing and the second bearing are subjected to an external axial force, the fit clearance between the outer ring spacer and the bearing housing is made larger than the fit clearance between the outer rings of both bearings and the bearing housing. However, if only one of the first bearing and the second bearing is assembled so that an external axial force is applied to it, the fit clearance between the outer ring spacer and the bearing housing can be made larger than the fit clearance between that one bearing and the bearing housing.
 また、上記各実施形態では、工作機械(マシニングセンタや旋盤など)の主軸2を回転可能に支持する軸受装置1を例に挙げて説明したが、この発明は、例えば、風力発電装置の主軸など、他の装置の回転軸を回転可能に支持する軸受装置に適用することも可能である。 In addition, in each of the above embodiments, the bearing device 1 that rotatably supports the spindle 2 of a machine tool (such as a machining center or a lathe) has been described as an example, but the present invention can also be applied to a bearing device that rotatably supports the rotating shaft of other devices, such as the spindle of a wind power generation device.
1    センサ付き軸受装置
2    主軸
3    主軸ハウジング
4    モータ
23   軸受ハウジング
24   第1軸受
25   第2軸受
26   外輪間座
26a  外環
26b  内環
28   ひずみセンサ、荷重センサ
30   第1外輪
31   第1内輪
32   第1転動体
35   第2外輪
36   第2内輪
37   第2転動体
50   外輪位置決め段部
51   蓋部材
54   ねじ部材
Reference Signs List 1 Sensor-equipped bearing device 2 Spindle 3 Spindle housing 4 Motor 23 Bearing housing 24 First bearing 25 Second bearing 26 Outer ring spacer 26a Outer ring 26b Inner ring 28 Strain sensor, load sensor 30 First outer ring 31 First inner ring 32 First rolling element 35 Second outer ring 36 Second inner ring 37 Second rolling element 50 Outer ring positioning step 51 Cover member 54 Screw member

Claims (11)

  1.  軸方向に間隔をおいて配置された第1軸受(24)および第2軸受(25)と、前記第1軸受(24)と前記第2軸受(25)の間に設けられた筒状の外輪間座(26)と、前記外輪間座(26)に取り付けられたひずみセンサ(28)とを有し、
     前記第1軸受(24)は、第1外輪(30)と、第1外輪(30)の径方向内側に設けられた第1内輪(31)と、第1外輪(30)と第1内輪(31)の間に組み込まれた複数の第1転動体(32)とを有し、
     前記第2軸受(25)は、第2外輪(35)と、第2外輪(35)の径方向内側に設けられた第2内輪(36)と、第2外輪(35)と第2内輪(36)の間に組み込まれた複数の第2転動体(37)とを有し、
     前記第1内輪(31)の前記第2内輪(36)の側とは反対側の軸方向端面と、前記第2内輪(36)の前記第1内輪(31)の側とは反対側の軸方向端面とに、前記第1内輪(31)と前記第2内輪(36)とを接近させる方向の予圧が付与され、
     前記予圧が、前記第1内輪(31)、前記第1転動体(32)、前記第1外輪(30)、前記外輪間座(26)、前記第2外輪(35)、前記第2転動体(37)、前記第2内輪(36)を伝達するように構成されているセンサ付き軸受装置において、
     前記第1外輪(30)の前記第2外輪(35)の側とは反対側の軸方向端面と、前記第2外輪(35)の前記第1外輪(30)の側とは反対側の軸方向端面とに、前記第1外輪(30)と前記第2外輪(35)とを接近させる方向の押圧力が付与され、
     前記押圧力の大きさが、前記予圧よりも大きく設定されていることを特徴とするセンサ付き軸受装置。
    The bearing has a first bearing (24) and a second bearing (25) that are spaced apart in the axial direction, a cylindrical outer ring spacer (26) provided between the first bearing (24) and the second bearing (25), and a strain sensor (28) attached to the outer ring spacer (26),
    The first bearing (24) has a first outer ring (30), a first inner ring (31) provided radially inside the first outer ring (30), and a plurality of first rolling elements (32) assembled between the first outer ring (30) and the first inner ring (31),
    The second bearing (25) has a second outer ring (35), a second inner ring (36) provided radially inside the second outer ring (35), and a plurality of second rolling elements (37) assembled between the second outer ring (35) and the second inner ring (36),
    a preload is applied to an axial end face of the first inner ring (31) opposite to the second inner ring (36) side and to an axial end face of the second inner ring (36) opposite to the first inner ring (31) side, in a direction to bring the first inner ring (31) and the second inner ring (36) closer to each other;
    In the sensor-equipped bearing device, the preload is transmitted through the first inner ring (31), the first rolling element (32), the first outer ring (30), the outer ring spacer (26), the second outer ring (35), the second rolling element (37), and the second inner ring (36),
    a pressing force in a direction to bring the first outer ring (30) and the second outer ring (35) closer to each other is applied to an axial end face of the first outer ring (30) opposite to the second outer ring (35) and an axial end face of the second outer ring (35) opposite to the first outer ring (30);
    A sensor-equipped bearing device, characterized in that the pressing force is set to be greater than the preload.
  2.  前記押圧力の大きさが、前記予圧の10倍以上の大きさに設定されている請求項1に記載のセンサ付き軸受装置。 The sensor-equipped bearing device according to claim 1, wherein the magnitude of the pressing force is set to 10 times or more the preload.
  3.  前記押圧力は、前記第1外輪(30)および前記第2外輪(35)を、前記第1外輪(30)の外周と前記第2外輪(35)の外周とに嵌合する筒状の軸受ハウジング(23)の内周に設けた環状の外輪位置決め段部(50)と、前記軸受ハウジング(23)の軸方向端面にねじ部材(54)で固定される蓋部材(51)との間に、軸方向の締め代をもって組み込むことで付与されている請求項1または2に記載のセンサ付き軸受装置。 The sensor-equipped bearing device according to claim 1 or 2, in which the pressing force is applied by assembling the first outer ring (30) and the second outer ring (35) with an axial tightening margin between an annular outer ring positioning step (50) provided on the inner circumference of a cylindrical bearing housing (23) that fits onto the outer circumference of the first outer ring (30) and the outer circumference of the second outer ring (35), and a cover member (51) fixed to the axial end face of the bearing housing (23) by a screw member (54).
  4.  前記ねじ部材(54)は、前記ひずみセンサ(28)と同じ周方向位置に配置されている請求項3に記載のセンサ付き軸受装置。 The sensor-equipped bearing device according to claim 3, wherein the screw member (54) is disposed at the same circumferential position as the strain sensor (28).
  5.  前記軸方向の締め代が10μm以上に設定されている請求項3または4に記載のセンサ付き軸受装置。 The sensor-equipped bearing device according to claim 3 or 4, in which the axial interference is set to 10 μm or more.
  6.  筒状の軸受ハウジング(23)の内側に、接触角が0でない複数の転がり軸受が2列以上の背面組合せで配置され、
     前記複数の転がり軸受は、背面組合せで対向する第1軸受(24)と第2軸受(25)を含み、
     前記第1軸受(24)は、第1外輪(30)と、前記第1外輪(30)の径方向内側に回転可能に設けられた第1内輪(31)と、前記第1外輪(30)と前記第1内輪(31)の間に組み込まれた複数の第1転動体(32)とを有し、
     前記第2軸受(25)は、第2外輪(35)と、前記第2外輪(35)の径方向内側に回転可能に設けられた第2内輪(36)と、前記第2外輪(35)と前記第2内輪(36)の間に組み込まれた複数の第2転動体(37)とを有し、
     前記第1外輪(30)と前記第2外輪(35)の間に筒状の外輪間座(26)が軸方向に挟まれた状態で配置され、
     前記外輪間座(26)には、その外輪間座(26)のひずみから外輪間座(26)に作用する荷重を求める荷重センサ(28)が取り付けられているセンサ付き軸受装置において、
     前記第1外輪(30)、前記第2外輪(35)および前記外輪間座(26)がそれぞれすきまばめで前記軸受ハウジング(23)の内周に嵌合しており、
     前記外輪間座(26)と前記軸受ハウジング(23)のはめあいすきまΔ1は、前記外輪間座(26)に作用する荷重による外輪間座(26)の径方向膨張量よりも大きく、かつ前記第1軸受(24)と前記第2軸受(25)のうちで外部から力を加えられる方の軸受の外輪(30、35)と前記軸受ハウジング(23)のはめあいすきまΔ2よりも大きいことを特徴とするセンサ付き軸受装置。
    A plurality of rolling bearings having a non-zero contact angle are arranged in a back-to-back arrangement in two or more rows inside a cylindrical bearing housing (23);
    The plurality of rolling bearings include a first bearing (24) and a second bearing (25) opposed to each other in a back-to-back arrangement,
    The first bearing (24) has a first outer ring (30), a first inner ring (31) rotatably provided radially inside the first outer ring (30), and a plurality of first rolling elements (32) assembled between the first outer ring (30) and the first inner ring (31),
    The second bearing (25) has a second outer ring (35), a second inner ring (36) rotatably provided radially inside the second outer ring (35), and a plurality of second rolling elements (37) assembled between the second outer ring (35) and the second inner ring (36),
    A cylindrical outer ring spacer (26) is disposed between the first outer ring (30) and the second outer ring (35) in a state of being sandwiched in the axial direction,
    In the sensor-equipped bearing device, a load sensor (28) is attached to the outer ring spacer (26) for determining a load acting on the outer ring spacer (26) from a strain of the outer ring spacer (26),
    the first outer ring (30), the second outer ring (35) and the outer ring spacer (26) are each fitted with a clearance fit onto the inner periphery of the bearing housing (23);
    A bearing device with a sensor, characterized in that a fitting clearance Δ1 between the outer ring spacer (26) and the bearing housing (23) is larger than an amount of radial expansion of the outer ring spacer (26) due to a load acting on the outer ring spacer (26), and is also larger than a fitting clearance Δ2 between an outer ring (30, 35) of one of the first bearing (24) and the second bearing (25) to which an external force is applied, and the bearing housing (23).
  7.  前記第1軸受(24)と前記第2軸受(25)のうちで外部から軸方向力を加えられる方の軸受の外輪(30、35)と前記軸受ハウジング(23)のはめあいすきまΔ2は直径で40μm以下であり、前記外輪間座(26)と前記軸受ハウジング(23)のはめあいすきまΔ1は直径でΔ2+50μm以下である請求項6に記載のセンサ付き軸受装置。 The sensor-equipped bearing device according to claim 6, wherein the fitting clearance Δ2 between the outer ring (30, 35) of the bearing to which an external axial force is applied between the first bearing (24) and the second bearing (25) and the bearing housing (23) is 40 μm or less in diameter, and the fitting clearance Δ1 between the outer ring spacer (26) and the bearing housing (23) is Δ2 + 50 μm or less in diameter.
  8.  前記外輪間座(26)は、前記軸受ハウジング(23)の内周にすきまばめで嵌合し、前記第1外輪(30)および前記第2外輪(35)に軸方向で接触する金属製の外環(26a)と、前記外環(26a)の径方向内側に配される樹脂製の内環(26b)とからなり、前記外環(26a)に前記荷重センサ(28)が取り付けられるものである請求項6または7に記載のセンサ付き軸受装置。 The sensor-equipped bearing device according to claim 6 or 7, wherein the outer ring spacer (26) is comprised of a metal outer ring (26a) that is loosely fitted around the inner circumference of the bearing housing (23) and that contacts the first outer ring (30) and the second outer ring (35) in the axial direction, and a resin inner ring (26b) that is disposed radially inside the outer ring (26a), and the load sensor (28) is attached to the outer ring (26a).
  9.  前記第1軸受(24)および前記第2軸受(25)に予圧が付与されている請求項6から8のいずれかに記載のセンサ付き軸受装置。 A sensor-equipped bearing device according to any one of claims 6 to 8, in which a preload is applied to the first bearing (24) and the second bearing (25).
  10.  前記第1軸受(24)および前記第2軸受(25)がアンギュラ玉軸受である請求項1から9のいずれかに記載のセンサ付き軸受装置。 A sensor-equipped bearing device according to any one of claims 1 to 9, wherein the first bearing (24) and the second bearing (25) are angular ball bearings.
  11.  請求項1から10のいずれかに記載のセンサ付き軸受装置(1)と、
     前記センサ付き軸受装置(1)で回転可能に支持される工作機械の主軸(2)と、
     前記主軸(2)を回転駆動するモータ(4)と、を有する工作機械用スピンドル装置。
    A sensor-equipped bearing device (1) according to any one of claims 1 to 10,
    a main spindle (2) of a machine tool rotatably supported by the sensor-equipped bearing device (1);
    and a motor (4) for rotating the main shaft (2).
PCT/JP2023/039606 2022-11-07 2023-11-02 Bearing device with sensor, and spindle device for machine tool WO2024101268A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-178404 2022-11-07
JP2022-178395 2022-11-07
JP2022178395A JP7480256B1 (en) 2022-11-07 2022-11-07 Bearing device with strain sensor and spindle device for machine tool
JP2022178404A JP7480257B1 (en) 2022-11-07 2022-11-07 Bearing device with load sensor

Publications (1)

Publication Number Publication Date
WO2024101268A1 true WO2024101268A1 (en) 2024-05-16

Family

ID=91032365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039606 WO2024101268A1 (en) 2022-11-07 2023-11-02 Bearing device with sensor, and spindle device for machine tool

Country Status (1)

Country Link
WO (1) WO2024101268A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065199A1 (en) * 2020-09-24 2022-03-31 Ntn株式会社 Bearing device
WO2022210561A1 (en) * 2021-03-31 2022-10-06 Ntn株式会社 Bearing device and spindle device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065199A1 (en) * 2020-09-24 2022-03-31 Ntn株式会社 Bearing device
WO2022210561A1 (en) * 2021-03-31 2022-10-06 Ntn株式会社 Bearing device and spindle device

Similar Documents

Publication Publication Date Title
US8845197B2 (en) Dental machining unit with tool spindle
US6237428B1 (en) Magnetostrictive torque sensor
WO2022065199A1 (en) Bearing device
WO2020004430A1 (en) Preload sensor, bearing device, bearing, and spacer
JP2018529897A (en) Rolling bearing assembly with strain sensor device
CN104662314A (en) Bearing ring for a bearing, in particular for a rolling or sliding bearing
WO2024101268A1 (en) Bearing device with sensor, and spindle device for machine tool
JP2007078615A (en) Bearing with sensor for wheel
JP7480256B1 (en) Bearing device with strain sensor and spindle device for machine tool
JP7480257B1 (en) Bearing device with load sensor
US20180238384A1 (en) Combined ball bearing, main spindle device, and machine tool
KR20100075578A (en) Bearing device
JP7165021B2 (en) bearing device
KR20210125012A (en) Bearing unit and spindle unit
WO2020166542A1 (en) Bearing device and spindle device
JP2024067312A (en) Bearing device with strain sensor and spindle device for machine tool
JP2024067713A (en) Bearing device with strain sensor and spindle device for machine tool
JP2024067958A (en) Bearing device with strain sensor and spindle device for machine tool
WO2021131662A1 (en) Bearing device, spindle device, bearing and spacer
JP2024068106A (en) Bearing device with strain sensor and spindle device for machine tool
JP2009156399A (en) Bearing device for wheel
TWI666391B (en) Gas bearing spindles and method of sensing load in gas bearing spindles
CN112389002A (en) Electric actuator and load detection unit
JP5030744B2 (en) Bearing device
JP2009036313A (en) Bearing device