WO2020075550A1 - パワーステアリングバルブ - Google Patents

パワーステアリングバルブ Download PDF

Info

Publication number
WO2020075550A1
WO2020075550A1 PCT/JP2019/038466 JP2019038466W WO2020075550A1 WO 2020075550 A1 WO2020075550 A1 WO 2020075550A1 JP 2019038466 W JP2019038466 W JP 2019038466W WO 2020075550 A1 WO2020075550 A1 WO 2020075550A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
sleeve
groove
power steering
spool
Prior art date
Application number
PCT/JP2019/038466
Other languages
English (en)
French (fr)
Inventor
幸徳 武田
中島 滋人
Original Assignee
仁科工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 仁科工業株式会社 filed Critical 仁科工業株式会社
Priority to US17/253,706 priority Critical patent/US12024243B2/en
Publication of WO2020075550A1 publication Critical patent/WO2020075550A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/08Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of steering valve used
    • B62D5/083Rotary valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/062Details, component parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/09Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by means for actuating valves
    • B62D5/093Telemotor driven by steering wheel movement
    • B62D5/097Telemotor driven by steering wheel movement gerotor type

Definitions

  • the present invention relates to a power steering valve.
  • a steering cylinder that changes the direction of the tire also requires an operating force according to the size of the tire, and is equipped with an optimal cylinder diameter and stroke that satisfies the operating force. Therefore, a power steering valve that supplies hydraulic oil for operating the steering cylinder is also required to have a performance capable of discharging the amount of hydraulic oil according to the cylinder diameter and stroke.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power steering valve that can be downsized in comparison with a conventional power steering valve that is difficult to simply downsize.
  • the disclosed power steering valve has a supply passage through which hydraulic oil flows from a hydraulic source, a tank passage through which the hydraulic oil flows out to a storage tank, the hydraulic oil flows out to a steering cylinder, and the operation is performed from the steering cylinder.
  • a housing having a plurality of control flow paths through which oil flows, and a plurality of openings that are cylindrical and that allow the working oil to flow in and out are formed through the peripheral wall so as to rotate in the circumferential direction inside the housing.
  • a sleeve that is movably held, and a plurality of axial grooves that are cylindrical and that allow the hydraulic fluid that flows from the predetermined opening of the sleeve to flow therethrough are formed in the circumferential surface.
  • a spool that is rotatably held within a predetermined range in the circumferential direction and that is fixed to a first end of the housing and a spool to which a steering input shaft is connected to a second end of the sleeve. Opening A gerotor driven by the hydraulic oil flowing out of the gimbal, and a drive shaft having a first end meshed with the inner rotor of the gerotor and a second end pivotally supported by the sleeve using a pin.
  • the hydraulic oil flowing from the gerotor flows according to the amount of overlap between the predetermined axial groove of the spool and the predetermined opening of the sleeve, which is set in accordance with the rotation of the steering wheel.
  • the drive shaft has a total length Ld with respect to a total length Ls of the sleeve. (1/4) ⁇ Ls ⁇ Ld ⁇ (1/2) ⁇ Ls And the pin is arranged at a position closer to the gerotor in the axial direction than the central position in the sleeve.
  • FIG. 2 is a schematic diagram showing a system configuration example using the power steering valve shown in FIG. 1.
  • FIG. 2 is a schematic diagram (side sectional view) showing an example of the power steering valve shown in FIG. 1.
  • FIG. 2 is a schematic view (side view) showing an example of a sleeve of the power steering valve shown in FIG. 1.
  • FIG. 2 is a schematic diagram (side view) showing an example of a spool of the power steering valve shown in FIG. 1.
  • FIG. 2 is a schematic view (front sectional view) showing an example of a gerotor of the power steering valve shown in FIG. 1.
  • FIG. 1 It is explanatory drawing for demonstrating the structure and operation
  • FIG. It is a schematic diagram showing a modification of a power steering valve concerning an embodiment of the present invention. It is a schematic diagram (side sectional view) showing an example of a power steering valve concerning a conventional embodiment.
  • FIG. 1 is a perspective view (schematic diagram) showing an example of a power steering valve 1 according to the present embodiment.
  • FIG. 2 is a schematic diagram showing the configuration of the power steering valve 1 and a system using the same.
  • FIG. 3 is a side sectional view (schematic diagram) of the power steering valve 1.
  • members having the same function are designated by the same reference numeral, and repeated description thereof may be omitted.
  • the power steering valve 1 is a device that supplies hydraulic oil to a steering cylinder that changes the direction of a tire while assisting turning power in response to a steering operation of a steering wheel by a driver in a vehicle such as a forklift. Is.
  • the conventional power steering valve 100 has the configuration illustrated in FIG. 9, and in order to improve efficiency and reduce costs in the manufacturing process, the main body 102 including the housing 110 and the like is made into a common component, It is generally provided as a product having performance (particularly, the amount of hydraulic oil discharged) suitable for the assumed steering cylinder by a method of changing the thickness of the gerotor 130 that is connected to the portion 102 and discharges hydraulic oil. Met. Therefore, when applied to the above-mentioned problem, that is, when applied to a small-capacity steering cylinder, the physique of the main body portion 102 becomes over-spec, resulting in an increase in cost such as material cost and an increase in apparatus weight.
  • the power steering valve for a steering cylinder having a relatively small capacity requires a relatively small capacity for the discharge amount of hydraulic oil in the gerotor. That is, if the diameter of the gerotor is reduced, it is considered that the diameter of the main body including the housing can be reduced accordingly. Therefore, based on the usual design concept, it is conceivable that if the conventional power steering valve 100 is downsized in the same ratio (reduced in both the radial direction and the axial direction), the required configuration can be realized. .
  • the gerotor 130 used in the conventional power steering valve 100 the number of concave portions provided on the inner periphery of the outer rotor 131 is 7 and the convex portion provided on the outer periphery of the inner rotor 132 is from the viewpoint of securing an optimum discharge amount.
  • the number of parts is generally six, when the diameter of the gerotor 130 is simply reduced, as an end mill of a machine tool that processes the outer rotor 131 and the inner rotor 132 (particularly, the concave portion of the outer rotor 131), Since a smaller diameter must be used and the strength is low, the required processing accuracy cannot be obtained.
  • the inventors of the present application have determined that it is difficult to realize a configuration in which the conventional power steering valve 100 is simply downsized. Furthermore, based on the research results, by devising a new configuration that is different from the conventional one as shown below, it is possible to realize a power steering valve that can be relatively downsized, especially the diameter. did.
  • the power steering valve 1 is, as an embodiment, a main body portion 2 in which a housing 10 having a plurality of flow paths for hydraulic oil flows in and out, and a circumferential rotation in the housing 10. And a cylindrical sleeve 40 that is held in the sleeve 40 so as to be rotatable in the circumferential direction within a predetermined range, and the input shaft U of the steering wheel S is connected to the second end 60b.
  • the spool 60, the gerotor 30 which is fixed to the first end 10a of the housing 10 and is driven by the hydraulic oil flowing out from a predetermined opening of the sleeve 40, and the first end 80a is the inner circumference of the inner rotor 32 of the gerotor 30.
  • the drive shaft 80 is meshed with the gear 36, and the second end portion 80b is pivotally supported by the sleeve 40 using the pin 81 so as to be swingable.
  • the spool 60 is held by the sleeve 40 while being biased by a leaf spring 82 provided so as to be interposed between the spool 60 and the sleeve 40 so as to be in a predetermined neutral position with respect to the sleeve 40.
  • the hydraulic fluid is controlled while the flow of the hydraulic fluid is controlled according to the amount of overlap between the predetermined axial groove of the spool 60 and the predetermined opening of the sleeve 40 which is set in accordance with the rotation of the steering wheel S.
  • the hydraulic oil flows out from a predetermined opening of the sleeve 40 and flows into the gerotor 30 to rotate the inner rotor 32.
  • the sleeve 40 connected to the inner rotor 32 via the drive shaft 80 and the pin 81 is rotated, and the working oil flowing out of the gerotor 30 and flowing into the sleeve 40 is transferred to the sleeve 40.
  • the action of operating the piston Cp to steer is obtained. That is, the basic operation required for the power steering valve is obtained in which hydraulic oil is supplied to the steering cylinder C that changes the direction of the tire while assisting the turning force in accordance with the turning operation of the steering wheel S by the driver.
  • the inner rotor 32 is housed in the housing space 33 provided in the center of the outer rotor 31, and the inner circumference of the housing space 33 is An outer gear (predetermined concave portions 35a and convex portions 35b are alternately arranged on the outer circumference of the inner rotor 32, in an inner gear (gear in which predetermined concave portions 34a and convex portions 34b are alternately arranged)
  • This is an inscribed pump that rotates while sliding while being engaged with the driven gear 35.
  • “driving the gerotor 30” refers to an operation in which the inner rotor 32 is rotated by the hydraulic oil with respect to the outer rotor 31 fixed to the housing 10.
  • the number of the concave portions 34a of the inner gear 34 is set to 6 (that is, the number of the convex portions 34b adjacent to the concave portion 34a is also the same), and the number of the convex portions 35b of the outer gear 35 is set. Is set to 5 (that is, the number of concave portions 35a adjacent to the convex portion 35b is also the same).
  • the end mill of the machine tool for machining the outer rotor 31 and the inner rotor 32 (in particular, the recess 34a of the outer rotor 31)
  • a machine having a relatively large diameter and high strength can be used as the end mill of the machine tool for machining the outer rotor 31 and the inner rotor 32 (in particular, the recess 34a of the outer rotor 31). It is possible to obtain high processing accuracy. Therefore, the diameter of the gerotor 30 can be reduced. On the other hand, reducing the diameter of the gerotor 30 causes a decrease in the amount of hydraulic oil discharged. In order to solve this problem, the inventors of the present application did not adopt the configuration in which the thickness of the gerotor 30 is increased to increase the discharge amount, because the size of the device is increased (the axial length is increased).
  • the housing 10, the sleeve 40, and the spool 60 according to the present embodiment have the following characteristic configurations.
  • the housing 10 includes a supply passage 11 into which hydraulic oil flows from a hydraulic power source (eg, hydraulic pump, hydraulic cylinder, etc.) P, a tank passage 12 from which hydraulic oil flows to a storage tank T, and a steering cylinder C. And a plurality of control flow paths (first control flow path 13, second control flow path 14) through which the hydraulic oil flows out and the hydraulic oil flows in from the steering cylinder C (see FIGS. 2 and 3).
  • a hydraulic power source eg, hydraulic pump, hydraulic cylinder, etc.
  • second control flow path 14 through which the hydraulic oil flows out and the hydraulic oil flows in from the steering cylinder C (see FIGS. 2 and 3).
  • the external connection port (port) 11a of the supply flow channel 11, the external connection port (port) 12a of the tank flow channel 12, the external connection port (port) 13a of the first control flow channel 13, the second The external connection port (port) 14a of the control flow path 14 is shown.
  • the housing 10 has a pressure adjusting portion 15 that adjusts the inflow pressure of
  • the sleeve 40 has a cylindrical shape as a whole (composite cylindrical shape having a portion whose outer diameter varies depending on the axial position), and the peripheral wall thereof has a predetermined shape of the housing 10.
  • a plurality of openings through which the hydraulic oil flows in and the openings through which the hydraulic oil flows into a predetermined flow path of the housing 10 are formed so as to penetrate therethrough.
  • an LS portion 41 is formed on the outer peripheral surface near the first end portion 40a so that a part of the hydraulic oil flowing from the gerotor 30 flows out to the LS passage 16.
  • the LS portion is configured to include an annular groove (in the present embodiment, an annular groove that extends over the entire circumference) formed on the outer peripheral surface of the sleeve 40.
  • an annular groove in the present embodiment, an annular groove that extends over the entire circumference
  • a configuration including the annular groove on the corresponding inner peripheral surface of the housing 10 at the same position instead of the configuration including the annular groove on the outer peripheral surface of the sleeve 40 (or in parallel with the configuration including the annular groove), a configuration including the annular groove on the corresponding inner peripheral surface of the housing 10 at the same position. (Not shown).
  • Reference numeral 48 in the drawing is a through hole into which a pin 81 for pivotally supporting and fixing the drive shaft 80 to the sleeve 40 is fitted.
  • the opening of the sleeve 40 will be described in more detail.
  • the LS opening 42, the neutral opening 43, and the supply flow path 11 which are arranged at the bottom of the LS portion (in the present embodiment, configured to include an annular groove on the outer peripheral surface of the sleeve 40) 41.
  • a supply opening 44 through which the working oil flows in and an input / output opening 45 through which the working oil flows out and flows into the gerotor 30.
  • One or a plurality of (first in this embodiment) a first control opening 46 and a second control opening 47 that flow in and out.
  • a flow path that connects the input / output opening 45 and the gerotor 30 is provided at a predetermined position of the housing 10 (not shown).
  • the spool 60 has an overall cylindrical shape (composite cylindrical shape having a portion whose outer diameter differs depending on the axial position), and has a sleeve 40 on its peripheral surface.
  • a plurality of holes are provided.
  • Reference numeral 70 in the drawing is a through hole having a long hole shape into which a pin 81 for fixing the drive shaft 80 is inserted into the sleeve 40 and which allows relative movement of the pin 81 in the circumferential direction.
  • the spool 60 connected to the input shaft U of the steering wheel S can be rotated within a range in which a predetermined angular difference is generated in the circumferential direction with respect to the sleeve 40.
  • the sleeve 40 and the spool 60 are connected to each other via the plate spring 82, and when an angle difference occurs due to the rotation, the plate spring 82 returns to the neutral state where there is no angle difference. Is biased in the direction.
  • the axial groove of the spool 60 will be described in more detail.
  • the first groove 61 is formed to have a length from the LS opening 42 to the input / output opening 45 via the supply opening 44
  • the axial groove is formed to have a length from the supply opening 44 to the input / output opening 45.
  • the second groove 62, the third groove 63 formed to have a length from the input / output opening 45 to the second control opening 47 via the first control opening 46, and the first control opening 46 to the second control opening 47.
  • a fourth groove 64 which is annularly provided on the outer peripheral surface of the spool 60 and has a length to reach the peripheral flow passage 66 communicating with the tank flow passage 12, and the first opening 60 a of the spool 60 from the neutral opening 43.
  • a plurality of fifth grooves 65 that are formed at a length to reach the through flow passage 67 that penetrates the peripheral wall so as to communicate with the inner tubular portion of the spool 60, respectively (one or a plurality in the present embodiment). It is provided.
  • the axial groove will be described in more detail.
  • the first groove 61 is formed at a predetermined rotation position of the spool 60 (a position where a predetermined angular difference is generated with respect to the sleeve 40, and the same applies hereinafter).
  • the LS opening 42, the supply opening 44, and the input / output opening 45 are formed to have an axial dimension and a width dimension capable of overlapping with each other.
  • the second groove 62 is formed to have an axial dimension and a width dimension that allow the spool 60 to overlap the supply opening 44 and the input / output opening 45 at a predetermined rotation position.
  • the third groove 63 has an axial dimension and a width dimension that allow the spool 60 to overlap the input / output opening 45, the first control opening 46, and the second control opening 47 at a predetermined rotation position. Is formed in.
  • the fourth groove 64 has an axial dimension and a width dimension that allow the spool 60 to overlap the first control opening 46, the second control opening 47, and the peripheral flow passage 66 when the spool 60 is in a predetermined rotation position. Is formed.
  • the fifth groove 65 has an axial dimension and a width dimension that allow the spool 60 to overlap the neutral opening 43 and the through-flow passage 67 when the spool 60 is in the neutral position (position that is neutral with respect to the sleeve 40). Is formed to have.
  • a first annular groove 68 formed in an annular shape is provided so as to communicate with all of the plurality of first grooves 61 and the plurality of second grooves 62.
  • a second annular groove 69 formed in an annular shape is provided so as to communicate with all of the plurality of third grooves.
  • the steering S (input shaft U) is driven by driving the gerotor 30 with the hydraulic oil supplied from the hydraulic source according to the basic operation required for the power steering valve 1, that is, the steering operation by the driver. It is possible to obtain the effect of steering the tire by flowing the hydraulic oil flowing back from the gerotor 30 into the steering cylinder C while assisting the rotation of the.
  • a structure for enabling driving of the gerotor 30 having a relatively small diameter and a relatively large eccentricity amount, that is, the drive shaft 80 has a size satisfying the above expression (1).
  • the pin 81 for axially supporting and fixing the drive shaft 80 to the sleeve 40 is closer to the gerotor 30 (first end) than the central position (which indicates a position equidistant from both ends) in the axial direction of the sleeve 40. It is possible to realize a configuration in which it is arranged at a position closer to the portion 40a.
  • the following configuration is obtained.
  • the through hole 48 is formed at a position (close to the first end 40a) and the pin 81 is fitted therein.
  • the sleeve 40 indicates a position (a predetermined distance (relatively farther than the LS portion 41) from the first end 40a where the supply opening 44 communicating with the supply passage 11 is disposed. ) And a position at which the LS portion 41 is disposed (which indicates a position at a predetermined distance (relatively closer than the supply opening 44) from the first end 40a), a through hole 48 is formed. It is even more preferable that the pin 81 is fitted.
  • the diameter of the gerotor 30 can be reduced, the diameter of the main body portion 2 to be connected can also be reduced.
  • the sleeve 40 and the spool 60 whose diameters are reduced as the diameter of the main body 2 is reduced, two new problems may occur.
  • the issue is how to properly form the LS opening and the neutral opening in the reduced diameter sleeve 40.
  • a plurality of relatively large-diameter through holes that are arranged side by side in the circumferential direction are formed as the LS openings 42, and the neutral opening 43 serves as the neutral direction opening 43.
  • a plurality of through holes each having a relatively small diameter and arranged side by side are formed.
  • Another issue is how to reduce the pressure loss when hydraulic oil flows through the sleeve 40 and the spool 60, both of which have a reduced diameter, due to the pressure of the hydraulic source.
  • a solution is considered in which the width of each opening of the sleeve 40 and the axial groove of the spool 60 is increased.
  • the width dimension and the depth dimension of each axial groove are increased. There is a limit to what you can do.
  • the diameters of the first control opening 46 and the second control opening 47 are set to be the same as the diameter Ds of the input / output opening 45.
  • FIG. 7 shows each flow path of the housing 10 and the sleeve 10 in a state in which the housing 10 (illustrated by a chain line), the sleeve 40 (illustrated by a solid line), and the spool 60 (illustrated by a broken line) are assembled.
  • FIG. 6 is a view showing a positional relationship between each opening of 40 and each axial groove of the spool 60 so as to be grasped.
  • the sleeve 40 formed in a cylindrical shape may have a visual illusion in FIG. 7 due to the peripheral wall having a predetermined thickness.
  • the state of FIG. 7 is when the steering wheel S is in the neutral position.
  • the spool 60 is in the neutral position with no angular difference with respect to the sleeve 40.
  • the neutral opening 43 provided in the LS portion 41 of the sleeve 40 and the fifth groove 65 provided in the spool 60 communicate with each other.
  • the LS portion 41 and the supply opening 44 of the sleeve 40 do not communicate with each other. Therefore, the LS portion 41 communicating with the LS passage 16 and the fifth groove 65 communicating with the tank passage 12 are in communication with each other, so that the pressure of the hydraulic oil in the LS portion 41 is equal to the pressure in the tank passage 12. The same effect can be obtained.
  • the fifth groove 65 includes the through passage 67, the inner tubular portion of the spool 60, the opening portion of the spool 60 near the second end portion 60b (provided in the portion where the leaf spring 82 is disposed), and the first portion of the sleeve 40. It is configured to communicate with the tank flow path 12 via an opening (provided in the disposition portion of the leaf spring 82) near the second end 40b.
  • the fifth groove 65 is formed in a through-hole shape so as to also serve as the through-flow passage 67.
  • the spool 60 to which the input shaft U of the steering wheel S is connected turns in the same direction,
  • the spool is in a state in which an angle difference is generated with respect to the sleeve 40 against the biasing force of the leaf spring 82.
  • the supply opening 44 of the sleeve 40 and the second groove 62 of the spool 60 overlap each other.
  • the second groove 62 and the input / output opening 45 (45a in this case) overlap each other.
  • the input / output opening 45 (45b in this case) and the third groove 63 overlap each other.
  • the third groove 63 and the second control opening 47 overlap each other.
  • the first control opening 46 and the fourth groove 64 overlap each other. Therefore, the hydraulic oil flowing in from the supply opening 44 flows through the second groove 62 (and the annular groove 68) from the input / output opening 45 (45a in this case) to the gerotor 30 to drive the gerotor 30, and then the input / output opening. It flows into 45 (45b in this case).
  • the input / output openings 45a and the input / output openings 45b are provided alternately in the circumferential direction.
  • the hydraulic oil that has flowed into the input / output opening 45 passes through the third groove 63 (and the annular groove 69) to the second control passage 14 through the second control opening 47. leak. Therefore, the hydraulic oil flowing out from the second control flow path 14 flows into the first chamber C1 of the steering cylinder C to move the piston Cp leftward.
  • the hydraulic oil in the second chamber C2 pushed by the movement of the piston Cp flows from the first control flow path 13 into the first control opening 46, passes through the fourth groove 64, and then flows into the tank flow path 12. Shed.
  • the supply opening 44 of the sleeve 40 and the LS opening 42 are configured to communicate with each other via the second groove 62, the annular groove 68, and the first groove 61 of the spool 60.
  • the hydraulic oil flows to the pressure adjusting unit 15 via the LS flow passage 16 provided so as to communicate with the LS unit 41.
  • the spool 60 connected to the input shaft U of the steering wheel S turns in the same direction, and The spool 60 is in a state in which an angle difference is generated with respect to the sleeve 40 against the biasing force of the spring 82.
  • the supply opening 44 of the sleeve 40 and the first groove 61 of the spool 60 overlap each other.
  • the first groove 61 and the input / output opening 45 (45b in this case) overlap each other.
  • the input / output opening 45 (45a in this case) and the third groove 63 overlap each other.
  • the third groove 63 and the first control opening 46 overlap each other.
  • the second control opening 47 and the fourth groove 64 overlap each other. Therefore, the hydraulic oil flowing in from the supply opening 44 flows through the first groove 61 (and the annular groove 68) from the input / output opening 45 (45b in this case) to the gerotor 30 to drive the gerotor 30, and then the input / output opening. 45 (45a in this case).
  • the hydraulic oil flowing into the input / output opening 45 passes through the third groove 63 (and the annular groove 69) to the first control flow path 13 through the first control opening 46. leak. Therefore, the hydraulic oil flowing out from the first control flow path 13 flows into the second chamber C2 of the steering cylinder C to move the piston Cp to the right.
  • the hydraulic oil in the first chamber C1 pushed by the movement of the piston Cp flows from the second control flow passage 14 into the second control opening 47, passes through the fourth groove 64, and flows into the tank flow passage 12. Shed.
  • the supply opening 44 of the sleeve 40 and the LS opening 42 are in communication with each other via the first groove 61 of the spool 60.
  • the hydraulic oil flows through the LS flow path 16 provided so as to communicate with the LS section 41 to the pressure adjusting section 15, and the above-described pressure adjusting action is obtained.
  • FIG. 8 shows a modification of the power steering valve 1 according to the present embodiment.
  • FIG. 8 is an explanatory diagram similar to FIG. 7.
  • the position of the pin 81 for fixing the drive shaft 80 that is, the position of the through hole 48 of the sleeve 40 and the position of the through hole 70 of the spool 60
  • the position of the pin 81 for fixing the drive shaft 80 is the position where the LS portion 41 is arranged in the sleeve 40.
  • the power steering valve according to the present invention by devising a new configuration, it is possible to relatively reduce the size of the conventional power steering valve, which has been difficult to be simply downsized. It becomes possible to realize miniaturization, especially diameter reduction. As a result, it is possible to solve the problem that had to use an over-spec body in the past when applying it to a small-capacity steering cylinder, and to reduce the cost such as material cost and the weight of the device. Can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

従来よりも小型化を目的として、このパワーステアリングバルブ(1)は、ハウジング(10)内に回動可能に保持される円筒状で所定の開口を有するスリーブ(40)と、スリーブ(40)内に回動可能に保持されると共にステアリングSの入力軸Uが連結される円筒状で所定の軸方向溝を有するスプール(60)と、ハウジング(10)に固定されスリーブ(40)の所定の開口から流出する作動油で駆動されるジロータ(30)と、ジロータ(30)のインナーロータ(32)に噛合されると共にピン(81)を用いてスリーブ(40)に揺動可能に軸支されるドライブシャフト(80)とを備え、ドライブシャフト(80)の全長Ldが、スリーブ(40)の全長Lsに対して、(1/4)・Ls≦Ld≦(1/2)・Lsとなる寸法に形成されて、且つ、ピン(81)はスリーブ(40)において中央位置よりも軸方向におけるジロータ(30)寄りの位置に配設されている。

Description

パワーステアリングバルブ
 本発明は、パワーステアリングバルブに関する。
 例えば、図9に示すように、フォークリフト等の車両(以下、単に「車両」と称する場合がある)において、運転者によるステアリングの回動操作に応じて、回動力を補助しつつ、タイヤの方向を変える操舵シリンダへ作動油を供給するパワーステアリングバルブが知られている(特許文献1:米国特許第9238479号明細書参照)。
米国特許第9238479号明細書
 ここで、上記車両としてフォークリフトを例に挙げれば、定格荷重によって車体寸法が異なるため、装備されるタイヤも径および幅が様々なサイズとなる。したがって、タイヤの方向を変える操舵シリンダに関しても、タイヤのサイズに応じた作動力が求められることとなり、作動力を満たす最適なシリンダ径およびストロークのものが装備される。そのため、操舵シリンダを作動させる作動油を供給するパワーステアリングバルブに対しても、シリンダ径およびストロークに応じた作動油の油量を吐出できる性能が求められる。
 本来であれば、操舵シリンダの種類毎に、そのシリンダ径およびストロークに応じた最適なパワーステアリングバルブを専用で設計することが理想的である。しかし、実際の製造工程においては、多品種少量生産は高コストとなり採用が困難であることから、要求されるパワーステアリングバルブの性能を満たすために、ハウジング等からなる本体部を共通部品化し、本体部に連結されて作動油を吐出するジロータの厚みを変更する手法によって、想定される操舵シリンダに見合った性能(特に、作動油の吐出量)を備えるパワーステアリングバルブの製造を行っていた。したがって、本体部の体格はおのずと大容量の操舵シリンダへも適用が可能なように大型の形状で統一されていた。すなわち、小容量の操舵シリンダへ適用する場合には、本体部の体格がオーバースペックとなってしまうため、本来必要な体格と比較して、大型であることによる材料費等の原価の増加および装置重量の増加という課題が生じていた。
 本発明は、上記事情に鑑みてなされ、単純に小型化することが困難な従来のパワーステアリングバルブに対し、小型化が可能なパワーステアリングバルブを提供することを目的とする。
 一実施形態として、以下に開示するような解決手段により、前記課題を解決する。
 開示のパワーステアリングバルブは、油圧源から作動油が流入する供給流路と、貯留タンクへ前記作動油が流出するタンク流路と、操舵シリンダへ前記作動油が流出し、前記操舵シリンダから前記作動油が流入する複数の制御流路と、を有するハウジングと、円筒状であって、前記作動油が流入、流出する複数の開口が周壁に貫通形成されており、前記ハウジング内に周方向に回動可能に保持されるスリーブと、円筒状であって、前記スリーブの所定の前記開口から流入する前記作動油が通流する複数の軸方向溝が周面に穿設されており、前記スリーブ内に周方向に所定範囲内で回動可能に保持されると共に、第2端部にステアリングの入力軸が連結されるスプールと、前記ハウジングの第1端部に固定され、前記スリーブの所定の前記開口から流出する前記作動油で駆動されるジロータと、第1端部が前記ジロータのインナーロータに噛合され、第2端部がピンを用いて前記スリーブに揺動可能に軸支されるドライブシャフトと、を備え、前記ジロータから流入する前記作動油が、前記ステアリングの回動に伴って設定される前記スプールの所定の前記軸方向溝と前記スリーブの所定の前記開口との重なり量に応じて通流し、前記制御流路を介して前記操舵シリンダへ流出するパワーステアリングバルブであって、前記ドライブシャフトは、全長Ldが、前記スリーブの全長Lsに対して、
 (1/4)・Ls≦Ld≦(1/2)・Ls
となる寸法に形成されており、且つ、前記ピンは、前記スリーブにおいて、中央位置よりも軸方向における前記ジロータ寄りの位置に配設されていることを特徴とする。
 本発明によれば、単純に小型化することが困難な従来のパワーステアリングバルブに対して、小型化、特に径小化を実現することが可能となる。
本発明の実施形態に係るパワーステアリングバルブの例を示す概略図(斜視図)である。 図1に示すパワーステアリングバルブを用いたシステム構成例を示す概略図である。 図1に示すパワーステアリングバルブの例を示す概略図(側面断面図)である。 図1に示すパワーステアリングバルブのスリーブの例を示す概略図(側面図)である。 図1に示すパワーステアリングバルブのスプールの例を示す概略図(側面図)である。 図1に示すパワーステアリングバルブのジロータの例を示す概略図(正面断面図)である。 図1に示すパワーステアリングバルブの構成および動作を説明するための説明図である。 本発明の実施形態に係るパワーステアリングバルブの変形例を示す概略図である。 従来の実施形態に係るパワーステアリングバルブの例を示す概略図(側面断面図)である。
 以下、図面を参照して、本発明の実施形態について詳しく説明する。図1は、本実施形態に係るパワーステアリングバルブ1の例を示す斜視図(概略図)である。また、図2は、パワーステアリングバルブ1およびこれを用いたシステムの構成を示す概略図である。また、図3は、パワーステアリングバルブ1の側面断面図(概略図)である。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する場合がある。
 本実施形態に係るパワーステアリングバルブ1は、フォークリフト等の車両において、運転者によるステアリングの回動操作に応じて、回動力を補助しつつ、タイヤの方向を変える操舵シリンダへ作動油を供給する装置である。
 先ず、従来のパワーステアリングバルブ100は、図9に例示される構成を有しており、製造工程における効率化やコスト低減等の要求から、ハウジング110等からなる本体部102を共通部品化し、本体部102に連結されて作動油を吐出するジロータ130の厚みを変更する手法によって、想定される操舵シリンダに見合った性能(特に、作動油の吐出量)を備える製品として提供されることが一般的であった。そのため、前述した課題、すなわち、小容量の操舵シリンダへ適用する場合には、本体部102の体格がオーバースペックとなり、材料費等の原価の増加および装置重量の増加を招いていた。
 そこで、本願発明者らは、小容量の操舵シリンダへ適用する場合に好適となるパワーステアリングバルブについて鋭意研究を行った。相対的に小容量の操舵シリンダ用となるパワーステアリングバルブは、ジロータにおける作動油の吐出量が相対的に小容量で足りる。すなわち、ジロータを径小化すれば、これに伴って、ハウジング等からなる本体部も径小化が可能と考えられる。したがって、通常の設計思想に基づけば、従来のパワーステアリングバルブ100を、全体的に同一比率で小型化(径方向、軸方向共に縮小化)すれば、求める構成が実現可能なようにも考えられる。
 しかしながら、上記の構成例を検討したところ、理論上(設計上)は可能であっても、製造に供する工作機械の加工精度の面で困難性を有するという課題が生じることが判明した。具体的には、従来のパワーステアリングバルブ100に用いられるジロータ130は、最適な吐出量確保の観点からアウターロータ131の内周に設けられる凹部の数が7、インナーロータ132の外周に設けられる凸部の数が6である構成が一般的であったところ、単純にジロータ130を径小化すると、アウターロータ131およびインナーロータ132(特にアウターロータ131の凹部)を加工する工作機械のエンドミルとして、より小径のものを用いなければならず、強度が低いため、求める加工精度を得ることができないという課題である。
 以上のように、本願発明者らは、従来のパワーステアリングバルブ100を単純に小型化した構成は実現することが困難であることを究明した。さらに、研究成果を踏まえて、以下に示すような従来とは相違する新たな構成を案出することによって、相対的に小型化、特に径小化を可能とするパワーステアリングバルブの実現を可能とした。
 本発明に係るパワーステアリングバルブ1は、一実施形態として、作動油が流入・流出する複数の流路を有するハウジング10が配設される本体部2と、ハウジング10内に周方向に回動可能に保持される円筒状のスリーブ40と、スリーブ40内に周方向に所定範囲内で回動可能に保持されると共に、第2端部60bにステアリングSの入力軸Uが連結される円筒状のスプール60と、ハウジング10の第1端部10aに固定され、スリーブ40の所定の開口から流出する作動油で駆動されるジロータ30と、第1端部80aがジロータ30のインナーロータ32の内周歯車36に噛合され、第2端部80bがピン81を用いてスリーブ40に揺動可能に軸支されるドライブシャフト80と、を備えて構成されている。なお、スプール60は、スリーブ40との間に介在させて設けられる板バネ82によって、スリーブ40に対して所定の中立位置となるように付勢された状態で当該スリーブ40に保持されている。
 上記の構成により、ステアリングSの回動に伴って設定されるスプール60の所定の軸方向溝とスリーブ40の所定の開口との重なり量に応じて通流が制御されながら、作動油がハウジング10の所定の流路からスリーブ40へ供給される。当該作動油は、スリーブ40の所定の開口から流出してジロータ30へ流入し、インナーロータ32を回動させる。これによって、インナーロータ32にドライブシャフト80およびピン81を介して連結されているスリーブ40が回動される作用が得られると共に、ジロータ30から流出してスリーブ40へ流入する作動油が、スリーブ40の所定の開口から流出して操舵シリンダCへ流入することにより、ピストンCpを動作させて操舵する作用が得られる。すなわち、運転者によるステアリングSの回動操作に応じて、回動力を補助しつつ、タイヤの方向を変える操舵シリンダCへ作動油を供給するという、パワーステアリングバルブに求められる基本作用が得られる。
 ここで、本実施形態に係るジロータ30は、図6の断面図に示すように、インナーロータ32が、アウターロータ31の中央に設けられる収納空間33に収納されると共に、収納空間33の内周に設けられるインナーギア(所定の凹部34aおよび凸部34bが交互に配設されたギア)34に、インナーロータ32の外周に設けられるアウターギア(所定の凹部35aおよび凸部35bが交互に配設されたギア)35が係合され、摺動しながら回転する内接型ポンプである。したがって、「ジロータ30の駆動」とは、ハウジング10に固定されたアウターロータ31に対してインナーロータ32が作動油により回動される動作をいう。本実施形態に特徴的な構成として、インナーギア34の凹部34aの数が6(すなわち凹部34aに隣接する凸部34bの数も同数)に設定されると共に、アウターギア35の凸部35bの数が5(すなわち凸部35bに隣接する凹部35aの数も同数)に設定されている。
 これによれば、アウターロータ31およびインナーロータ32(特にアウターロータ31の凹部34a)を加工する工作機械のエンドミルとして、相対的に大径であって強度が高いものを用いることができるため、所望の高い加工精度を得ることができる。したがって、ジロータ30の径小化を実現することができる。その一方で、ジロータ30の径小化は、作動油の吐出量を減少させる原因となる。この問題に対して、本願発明者らは、ジロータ30の厚みを厚くして吐出量を増加させる構成は装置の大型化(軸方向の長大化)を招くため採用せずに、ジロータ30の径小化を図ると共に、アウターロータ31に対するインナーロータ32の偏心量を大きく設定することによって、ジロータ30からの作動油の吐出量を増加させる構成を試みた。しかしながら、従来のパワーステアリングバルブ100に例示される構成を踏襲すると、相対的に偏心量が大きいジロータ30を駆動することが不可能となる課題に直面した。これは、従来のドライブシャフト180(図9参照)と同様の構成では、偏心量の大きいジロータ30(ここでは、インナーロータ32)に追従(係合)できないことが主要因であった。
 当該課題に対して、本願発明者らは以下の構成を案出することによって、その解決を図ることを可能としている。より具体的には、ドライブシャフト80は、全長Ldが、スリーブ40の全長Lsに対して、
 (1/4)・Ls≦Ld≦(1/2)・Ls   ・・・式(1)
となる寸法に形成されており、且つ、ドライブシャフト80をスリーブ40に軸支して固定するピン81が、当該スリーブ40において、中央位置(両端部から等距離の位置を指す)よりも軸方向におけるジロータ30寄り(第1端部40a寄り)の位置に配設されている構成である。この構成によれば、相対的に径小化され、且つ相対的に偏心量が大きく設定されたジロータ30であっても、ドライブシャフト80により駆動することが可能となる。ちなみに、ドライブシャフト80の最大触れ角θは、θ=10[度]程度(従来比3倍以上)まで達成可能である。
 上記の構成を実現するために、本実施形態に係るハウジング10、スリーブ40、スプール60は、以下の特徴的な構成を備えている。
 先ず、ハウジング10は、油圧源(例えば、油圧ポンプ、油圧シリンダ等)Pから作動油が流入する供給流路11と、貯留タンクTへ作動油が流出するタンク流路12と、操舵シリンダCへ作動油が流出し、当該操舵シリンダCから作動油が流入する複数の制御流路(第1制御流路13、第2制御流路14)と、を有している(図2、3参照)。なお、図1においては、供給流路11の外部接続口(ポート)11a、タンク流路12の外部接続口(ポート)12a、第1制御流路13の外部接続口(ポート)13a、第2制御流路14の外部接続口(ポート)14aが示されている。さらに、ハウジング10は、供給流路11からスリーブ40へ流入する作動油の流入圧を調整する圧力調整部15と、圧力調整部15に連通するLS流路16と、を有している(図2参照)。
 次に、スリーブ40は、図4の側面図に示すように、全体が円筒状(軸方向位置によって外径が異なる部分を有する複合円筒状)であって、その周壁には、ハウジング10の所定の流路から作動油が流入する開口や、ハウジング10の所定の流路へ作動油が流出する開口が、複数、貫通形成されている。さらに、第1端部40a寄りの外周面に、ジロータ30から流入する作動油の一部を、LS流路16へ流出するLS部41が形成されている。一例として、LS部は、スリーブ40の外周面に形成される環状溝(本実施形態では、全周に渡る環状溝としている)を備えて構成されている。あるいは変形例として、スリーブ40外周面に環状溝を備える構成に代えて(もしくは当該環状溝を備える構成と並設して)、対応する同位置のハウジング10の内周面に環状溝を備える構成としてもよい(不図示)。なお、図中の符号48は、スリーブ40に対して、ドライブシャフト80を揺動可能に軸支して固定するピン81が嵌合される貫通孔である。
 ここで、上記スリーブ40の開口についてより詳しく説明する。当該開口として、LS部(本実施形態においては、スリーブ40外周面の環状溝を備えて構成される)41の底部に配設されるLS用開口42、中立用開口43と、供給流路11に連通して作動油が流入する供給開口44と、ジロータ30へ作動油を流出、流入する入出力開口45と、第1制御流路13、第2制御流路14にそれぞれ連通して作動油を流出、流入する第1制御開口46、第2制御開口47と、がそれぞれ1または複数(本実施形態においては複数)設けられている。なお、入出力開口45とジロータ30とを連通する流路は、ハウジング10の所定位置に設けられている(不図示)。
 次に、スプール60は、図5の側面図に示すように、全体が円筒状(軸方向位置によって外径が異なる部分を有する複合円筒状)であって、その周面には、スリーブ40の所定の開口から流入する作動油が通流し、所定部位(スリーブ40の所定の開口等)へ流出する軸方向溝(長手方向が軸方向に平行であって周方向に所定幅を有する溝)が、複数、穿設されている。なお、図中の符号70は、スリーブ40にドライブシャフト80を固定するピン81が挿通され、当該ピン81の周方向への相対移動を許容する長孔形状の貫通孔である。この貫通孔70の構成によって、ステアリングSの入力軸Uに連結されるスプール60を、スリーブ40に対して周方向に所定の角度差が生じる範囲内で回動させることが可能となる。また、前述の通り、スリーブ40とスプール60とは板バネ82を介して連結されており、回動により相互に角度差が生じた際には、板バネ82によって角度差が無い中立状態に戻る方向に付勢される。
 ここで、上記スプール60の軸方向溝についてより詳しく説明する。当該軸方向溝として、LS用開口42から供給開口44を経て入出力開口45に至る長さに形成された第1溝61と、供給開口44から入出力開口45に至る長さに形成された第2溝62と、入出力開口45から第1制御開口46を経て第2制御開口47に至る長さに形成された第3溝63と、第1制御開口46から第2制御開口47を経てスプール60の外周面に環状に設けられてタンク流路12に連通する周面流路66に至る長さに形成された第4溝64と、中立用開口43からスプール60の第1端部60aに設けられてスプール60の内筒部に連通するように周壁を貫通する貫通流路67に至る長さに形成された第5溝65と、がそれぞれ1または複数(本実施形態においては複数)設けられている。
 上記の軸方向溝について、さらに詳しく説明すると、第1溝61は、スプール60が所定の回動位置(スリーブ40に対して所定の角度差が生じた位置であって、以下、同様)において、LS用開口42、供給開口44、および入出力開口45との重なりが可能な軸方向寸法および幅寸法を有するように形成されている。また、第2溝62は、スプール60が所定の回動位置において、供給開口44、および入出力開口45との重なりが可能な軸方向寸法および幅寸法を有するように形成さている。また、第3溝63は、スプール60が所定の回動位置において、入出力開口45、第1制御開口46、および第2制御開口47との重なりが可能な軸方向寸法および幅寸法を有するように形成さている。また、第4溝64は、スプール60が所定の回動位置において、第1制御開口46、第2制御開口47、および周面流路66との重なりが可能な軸方向寸法および幅寸法を有するように形成さている。また、第5溝65は、スプール60が中立位置(スリーブ40に対して中立となった位置)において、中立用開口43、および貫通流路67との重なりが可能な軸方向寸法および幅寸法を有するように形成されている。
 さらに、スプール60の周面には、複数の第1溝61および複数の第2溝62の全てに対して連通するように環状に形成された第1環状溝68が配設されている。また、複数の第3溝の全てに連通するように環状に形成された第2環状溝69が配設されている。
 上記の構成によれば、パワーステアリングバルブ1に求められる基本作用、すなわち、運転者のステアリング操作に応じて、油圧源から供給される作動油でジロータ30を駆動してステアリングS(入力軸U)の回動を補助しつつ、ジロータ30から還流する作動油を操舵シリンダCへ流出することによりタイヤの操舵を行う作用を得ることができる。そのうえで、相対的に径小化され、且つ相対的に偏心量が大きく設定されたジロータ30の駆動を可能とするための構成、すなわち、ドライブシャフト80が前記式(1)を充足する寸法であって、且つ、ドライブシャフト80をスリーブ40に軸支して固定するピン81を、スリーブ40の軸方向において、中央位置(両端部から等距離の位置を指す)よりもジロータ30寄り(第1端部40a寄り)の位置に配設する構成を実現することができる。
 本実施形態においては、上記のパワーステアリングバルブの基本作用を得るために必要となるスリーブ40の所定開口を設けることができ、且つ、スリーブ40が長尺化しない構造を検討した結果、以下の構成を案出した。具体的には、スリーブ40の軸方向において、供給流路11に連通する供給開口44が配設される位置(第1端部40aから所定距離の位置を指す)よりも軸方向におけるジロータ30寄り(第1端部40a寄り)の位置に貫通孔48が形成されてピン81が嵌合される構成とすることが好適である。さらに、スリーブ40の軸方向において、供給流路11に連通する供給開口44が配設される位置(第1端部40aから所定距離(LS部41よりも相対的に遠距離)の位置を指す)とLS部41が配設される位置(第1端部40aから所定距離(供給開口44よりも相対的に近距離)の位置を指す)との間の位置に貫通孔48が形成されてピン81が嵌合される構成とすることがより一層好適である。
 上記構成によれば、ジロータ30の径小化が可能となることによって、連結される本体部2の径小化も可能となる。しかしながら、本体部2の径小化に伴って径小化が図られるスリーブ40およびスプール60に関しては、新たな二つの課題が生じ得る。
 先ず一つは、径小化されたスリーブ40において、LS用開口、中立用開口を如何に適切に形成するかという課題である。この課題に対して、本実施形態に係るスリーブ40においては、LS用開口42として、周方向に複数並設された相対的に大径の貫通孔が形成され、中立用開口43として、軸方向に複数並設された相対的に小径の貫通孔が形成された構成としている。
 もう一つは、共に径小化されたスリーブ40およびスプール60において、油圧源の圧力によって作動油が通流する際の圧力損失を如何に低減するかという課題である。通常の設計思想に基づけば、スリーブ40の各開口やスプール60の各軸方向溝の幅寸法等を大きくする解決方法が考えられる。しかしながら、径小化されたスリーブ40においては、各開口の内径を大きくすることに限界があり、また、径小化されたスプール60においては、各軸方向溝の幅寸法および深さ寸法を大きくすることに限界がある。
 そのため、当該課題に対して、本実施形態に係るスリーブ40およびスプール60においては、以下の構成を案出することによって、その解決を図ることを可能としている。より具体的には、スプール60に設けられる第3溝63の周方向幅Dxおよび第4溝64の周方向幅Dyが、
 Dx=Dy   ・・・式(2)
であって、且つ、スリーブ40に設けられる入出力開口45の直径Ds(一例として、4[mm]程度)に対して、
 (1/2)・Ds<Dx<Ds   ・・・式(3)
 (1/2)・Ds<Dy<Ds   ・・・式(4)
となる寸法に形成されて構成である。この構成によれば、共に径小化されたスリーブ40およびスプール60において、作動油の圧力損失を低減することが可能となる。特に、Dx=Dy=(3/4)・Ds程度に構成することが好適である。なお、本実施形態においては、第1制御開口46および第2制御開口47の直径に関して、入出力開口45の直径Dsと同じ寸法に設定している。
 続いて、本実施形態に係るパワーステアリングバルブ1の作用について、図2のシステム構成図や、図7の説明図等を参照しながら説明する。ここで、図7は、ハウジング10(一点鎖線で図示)と、スリーブ40(実線で図示)と、スプール60(破線で図示)とを組付けた状態で、ハウジング10の各流路と、スリーブ40の各開口と、スプール60の各軸方向溝との位置関係が把握できるように示した図である。なお、円筒状に形成されるスリーブ40には周壁に所定の厚みがあることに起因して、図7には視覚的な錯覚が生じ得る。すなわち、中央付近の位置(例えば、貫通孔70、ピン81の位置)では、スリーブ40の開口とスプール60の軸方向溝との視覚的なズレは無いが、中央から離れた位置(例えば、第2制御開口47、第4溝64の位置)では、スリーブ40の開口とスプール60の軸方向溝との視覚的なズレが生じる。具体的な例を挙げると、第2制御開口47と第4溝64とは連通しているように見えるが、これは、第2制御開口47における外壁側の輪郭線が第4溝64と重なっているためであり、実際にこの状態では、第2制御開口47における内壁側の輪郭線から明らかなように、第2制御開口47と第4溝64とは連通していない。
 図7の状態は、ステアリングSが中立位置となっている場合である。この状態においては、スプール60がスリーブ40に対して角度差の無い中立位置となっている。また、スリーブ40のLS部41に設けられた中立用開口43と、スプール60に設けられた第5溝65とが連通している。なお、LS部41とスリーブ40の供給開口44とは連通していない。したがって、LS流路16に連通するLS部41と、タンク流路12に連通する第5溝65とが連通した状態となるため、LS部41における作動油の圧力をタンク流路12内の圧力と同じにする作用が得られる。これは、LS流路16は圧力調整部15に連通し、ステアリング操作を検知してLS部41に圧力をフィードバックする機構であるため、中立位置のステアリング操作を検知するためである。ちなみに、第5溝65は、貫通流路67、スプール60の内筒部、スプール60の第2端部60b寄りの開口部(板バネ82の配設部に設けられる)、およびスリーブ40の第2端部40b寄りの開口部(板バネ82の配設部に設けられる)を介して、タンク流路12と連通する構成となっている。なお、本実施形態においては、第5溝65を貫通孔状に形成することにより貫通流路67を兼用する構成としている。
 次に、図7の状態から、運転者がステアリングSを左方向(反時計回り)に回動操作を行うと、ステアリングSの入力軸Uが連結されたスプール60が同方向に回動し、板バネ82の付勢力に抗してスプールがスリーブ40に対して角度差が生じた状態となる。これによれば、スリーブ40の供給開口44と、スプール60の第2溝62との重なりが生じる。また、第2溝62と、入出力開口45(この場合45a)との重なりが生じる。また、入出力開口45(この場合45b)と、第3溝63との重なりが生じる。また、第3溝63と、第2制御開口47との重なりが生じる。また、第1制御開口46と、第4溝64との重なりが生じる。したがって、供給開口44から流入した作動油が、第2溝62(および環状溝68)を経て入出力開口45(この場合45a)からジロータ30へ流出してジロータ30を駆動した後、入出力開口45(この場合45b)へ流入する。なお、本実施形態においては、入出力開口45aと、入出力開口45bとが、周方向において交互に設けられている。
 一方、ジロータ30を駆動した後、入出力開口45(この場合45b)へ流入した作動油は、第3溝63(および環状溝69)を経て第2制御開口47から第2制御流路14へ流出する。したがって、第2制御流路14から流出した作動油が操舵シリンダCの第1室C1へ流入してピストンCpを左方向へ移動させる。ここで、ピストンCpの移動によって押動された第2室C2の作動油は、第1制御流路13から第1制御開口46へ流入し、第4溝64を経て、タンク流路12へ通流する。
 また、スリーブ40の供給開口44と、LS用開口42とが、スプール60の第2溝62、環状溝68、および第1溝61を介して連通する構成となる。これにより、LS部41と連通するように設けられるLS流路16を経て、作動油が圧力調整部15へと通流する。
 以上のような作用により、ジロータ30が駆動、すなわち固定されたアウターロータ31に対してインナーロータ32が回動されると、インナーロータ32の内周歯車36に噛合されたドライブシャフト80が同方向に回動される。これによって、ドライブシャフト80に対してピン81で連結されたスリーブ40が同方向に回動される。このように、ステアリングSを回動させてスプール60とスリーブ40との間で角度差を生じさせることによって、ジロータ30(具体的には、インナーロータ32)が作動油で駆動(回動)されて、インナーロータ32に連結されているスリーブ40を回動させる(スプール60に対し上記角度差を保って追従させる)作用と、操舵シリンダCに作動油を通流させてピストンCpを動作させて操舵する作用とを得ることができる。
 なお、ステアリングSの回動を継続すると、角度差が生じたままとなるため、上記作用が継続することとなる。このとき、回動速度が速い場合は角度差が大きくなり、上記作用が高速で生じ、回動速度が低い場合は角度差が小さくなり、上記作用が低速で生じることとなる。
 一方、ステアリングSの回動を停止すると、板バネ82の付勢力により角度差が解消した状態(スプール60がスリーブ40に対して角度差の無い中立位置となっている状態)となるため、上記作用が停止する。
 次に、図7の状態から、運転者がステアリングSを右方向(時計回り)に回動操作を行うと、ステアリングSの入力軸Uが連結されたスプール60が同方向に回動し、板バネ82の付勢力に抗してスプール60がスリーブ40に対して角度差が生じた状態となる。これによれば、スリーブ40の供給開口44と、スプール60の第1溝61との重なりが生じる。また、第1溝61と、入出力開口45(この場合45b)との重なりが生じる。また、入出力開口45(この場合45a)と、第3溝63との重なりが生じる。また、第3溝63と、第1制御開口46との重なりが生じる。また、第2制御開口47と、第4溝64との重なりが生じる。したがって、供給開口44から流入した作動油が、第1溝61(および環状溝68)を経て入出力開口45(この場合45b)からジロータ30へ流出してジロータ30を駆動した後、入出力開口45(この場合45a)へ流入する。
 一方、ジロータ30を駆動した後、入出力開口45(この場合45a)へ流入した作動油は、第3溝63(および環状溝69)を経て第1制御開口46から第1制御流路13へ流出する。したがって、第1制御流路13から流出した作動油が操舵シリンダCの第2室C2へ流入してピストンCpを右方向へ移動させる。ここで、ピストンCpの移動によって押動された第1室C1の作動油は、第2制御流路14から第2制御開口47へ流入し、第4溝64を経て、タンク流路12へ通流する。
 また、スリーブ40の供給開口44と、LS用開口42とが、スプール60の第1溝61を介して連通する構成となる。これにより、LS部41と連通するように設けられるLS流路16を経て、作動油が圧力調整部15へと通流し、前述の圧力調整作用が得られる。
 この回動操作の場合(ステアリングSを右方向(時計回り)に回動した場合)において、ジロータ30の駆動によって得られるスリーブ40の回動作用、および操舵シリンダCの操舵作用は、前述の回動操作の場合(ステアリングSを左方向(反時計回り)に回動した場合)と向きのみが逆で同様の作用を得ることができる。
 続いて、本実施形態に係るパワーステアリングバルブ1の変形例を図8に示す。ここで、図8は図7と同様に図示した説明図である。この図に示すように、ドライブシャフト80を固定するピン81の位置(すなわち、スリーブ40の貫通孔48およびスプール60の貫通孔70の位置)が、スリーブ40においてLS部41が配設される位置よりも、さらにジロータ寄りの位置に配設される構成とすることが考えられる。このような構成によっても前述の実施形態と同様の作用効果を得ることができる。
 以上、説明した通り、本発明に係るパワーステアリングバルブによれば、単純に小型化することが困難であった従来のパワーステアリングバルブに対して、新たな構成を案出することによって、相対的に小型化、特に径小化を実現することが可能となる。これにより、小容量の操舵シリンダへ適用する場合等において、従来はオーバースペックの本体部を用いざるを得なかった課題を解決することが可能となり、材料費等の原価の低減および装置重量の低減を図ることが可能となる。
 なお、本発明は、以上説明した実施例に限定されることなく、本発明を逸脱しない範囲において種々変更が可能である。

 

Claims (7)

  1.  油圧源から作動油が流入する供給流路と、貯留タンクへ前記作動油が流出するタンク流路と、操舵シリンダへ前記作動油が流出し、前記操舵シリンダから前記作動油が流入する複数の制御流路と、を有するハウジングと、
     円筒状であって、前記作動油が流入、流出する複数の開口が周壁に貫通形成されており、前記ハウジング内に周方向に回動可能に保持されるスリーブと、
     円筒状であって、前記スリーブの所定の前記開口から流入する前記作動油が通流する複数の軸方向溝が周面に穿設されており、前記スリーブ内に周方向に所定範囲内で回動可能に保持されると共に、第2端部にステアリングの入力軸が連結されるスプールと、
     前記ハウジングの第1端部に固定され、前記スリーブの所定の前記開口から流出する前記作動油で駆動されるジロータと、
     第1端部が前記ジロータのインナーロータに噛合され、第2端部がピンを用いて前記スリーブに揺動可能に軸支されるドライブシャフトと、を備え、
     前記ジロータから流入する前記作動油が、前記ステアリングの回動に伴って設定される前記スプールの所定の前記軸方向溝と前記スリーブの所定の前記開口との重なり量に応じて通流し、前記制御流路を介して前記操舵シリンダへ流出するパワーステアリングバルブであって、
     前記ドライブシャフトは、全長Ldが、前記スリーブの全長Lsに対して、
     (1/4)・Ls≦Ld≦(1/2)・Ls
    となる寸法に形成されており、且つ、前記ピンは、前記スリーブにおいて、中央位置よりも軸方向における前記ジロータ寄りの位置に配設されていることを特徴とするパワーステアリングバルブ。
  2.  前記ピンは、前記スリーブにおいて、前記開口のうち前記供給流路に連通する開口が配設される位置よりも軸方向における前記ジロータ寄りの位置に配設されていることを特徴とする請求項1記載のパワーステアリングバルブ。
  3.  前記ハウジングは、前記供給流路から前記スリーブへ流入する前記作動油の流入圧を調整する圧力調整部と、前記圧力調整部に連通するLS流路と、を有し、
     前記スリーブは、第1端部の外周面に、前記ジロータから流入する前記作動油の一部を、前記LS流路へ流出するLS部を有し、
     前記ピンは、前記スリーブにおいて、前記開口のうち前記供給流路に連通する開口が配設される位置と前記LS部が配設される位置との間の位置に配設されていることを特徴とする請求項1または請求項2記載のパワーステアリングバルブ。
  4.  前記スリーブは、前記開口として、前記LS部に配設されるLS用開口、中立用開口と、前記供給流路に連通して前記作動油が流入する供給開口と、前記ジロータへ前記作動油を流出、流入する入出力開口と、第1および第2の2つ設けられる前記制御流路にそれぞれ連通して前記作動油を流出、流入する第1制御開口、第2制御開口と、をそれぞれ1または複数有し、
     前記スプールは、前記軸方向溝として、前記LS用開口から前記供給開口を経て前記入出力開口に至る長さに形成された第1溝と、前記供給開口から前記入出力開口に至る長さに形成された第2溝と、前記入出力開口から前記第1制御開口を経て前記第2制御開口に至る長さに形成された第3溝と、前記第1制御開口から前記第2制御開口を経て前記スプールの外周面に環状に設けられて前記タンク流路に連通する周面流路に至る長さに形成された第4溝と、前記中立用開口から前記スプールの第1端部に設けられて前記スプールの内筒部に連通する貫通流路に至る長さに形成された第5溝と、をそれぞれ1または複数有し、さらに、外周面において、全ての前記第1溝および全ての前記第2溝に連通するように環状に設けられる第1環状溝と、全ての第3溝に連通するように環状に設けられる第2環状溝と、を有することを特徴とする請求項3記載のパワーステアリングバルブ。
  5.  前記スプールは、前記第3溝の周方向幅Dxおよび前記第4溝の周方向幅Dyが、
     Dx=Dy
    であって、且つ、前記スリーブの前記入出力開口の直径Dsに対して、
     (1/2)・Ds<Dx<Ds
     (1/2)・Ds<Dy<Ds
    となる寸法に形成されていることを特徴とする請求項4記載のパワーステアリングバルブ。
  6.  前記スリーブは、前記LS用開口として、周方向に複数並設された相対的に大径の孔を有し、前記中立用開口として、軸方向に複数並設された相対的に小径の孔を有することを特徴とする請求項4または請求項5記載のパワーステアリングバルブ。
  7.  前記ジロータは、前記インナーロータが、アウターロータに設けられる収納空間に収納されると共に、前記収納空間の内周に設けられる凹部に、前記インナーロータの外周に設けられる凸部が係合され、摺動しながら回転する内接型ポンプであって、前記凹部の数が6、前記凸部の数が5として設定されていることを特徴とする請求項1~6のいずれか一項記載のパワーステアリングバルブ。

     
PCT/JP2019/038466 2018-10-09 2019-09-30 パワーステアリングバルブ WO2020075550A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/253,706 US12024243B2 (en) 2018-10-09 2019-09-30 Power steering valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-190670 2018-10-09
JP2018190670A JP7242239B2 (ja) 2018-10-09 2018-10-09 パワーステアリングバルブ

Publications (1)

Publication Number Publication Date
WO2020075550A1 true WO2020075550A1 (ja) 2020-04-16

Family

ID=70164879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038466 WO2020075550A1 (ja) 2018-10-09 2019-09-30 パワーステアリングバルブ

Country Status (3)

Country Link
US (1) US12024243B2 (ja)
JP (1) JP7242239B2 (ja)
WO (1) WO2020075550A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012184B1 (en) * 2020-12-14 2023-09-06 White Drive Motors and Steering sp. z o.o. Hydraulic machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976236A (ja) * 1972-11-02 1974-07-23
JPS504731A (ja) * 1972-11-02 1975-01-18
JPS51147826A (en) * 1975-06-04 1976-12-18 Trw Inc Apparatus used in vehicle with steering system
JPS5555060A (en) * 1978-09-22 1980-04-22 Trw Inc Water pressure device
JP2002019627A (ja) * 2000-07-06 2002-01-23 Toyota Industries Corp 油圧式パワーステアリング装置および該装置を備えた産業用車両
US9238479B2 (en) * 2010-05-21 2016-01-19 Eaton Corporation Steering system with dynamic slip reduction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2419672A1 (de) * 1974-04-24 1975-10-30 Zahnradfabrik Friedrichshafen Hydrostatische hilfskraftlenkung, insbesondere fuer kraftfahrzeuge
DE3243400C2 (de) * 1982-11-24 1986-10-30 Danfoss A/S, Nordborg Hydrostatische Steuereinrichtung, insbesondere Lenkeinrichtung
DE3504993A1 (de) * 1985-02-14 1986-08-14 Danfoss A/S, Nordborg Steuergeraet fuer hydrostatische hilfskraftlenkeinrichtungen
US5992458A (en) * 1999-01-13 1999-11-30 Eaton Corporation Load reaction steering unit for unequal area cylinder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976236A (ja) * 1972-11-02 1974-07-23
JPS504731A (ja) * 1972-11-02 1975-01-18
JPS51147826A (en) * 1975-06-04 1976-12-18 Trw Inc Apparatus used in vehicle with steering system
JPS5555060A (en) * 1978-09-22 1980-04-22 Trw Inc Water pressure device
JP2002019627A (ja) * 2000-07-06 2002-01-23 Toyota Industries Corp 油圧式パワーステアリング装置および該装置を備えた産業用車両
US9238479B2 (en) * 2010-05-21 2016-01-19 Eaton Corporation Steering system with dynamic slip reduction

Also Published As

Publication number Publication date
JP7242239B2 (ja) 2023-03-20
JP2020059343A (ja) 2020-04-16
US12024243B2 (en) 2024-07-02
US20210347407A1 (en) 2021-11-11

Similar Documents

Publication Publication Date Title
EP2250068B1 (en) Fluid controller with multiple fluid meters
US7427191B2 (en) Oil pump
EP2065292A2 (en) Variable ratio steering apparatus
JP2006306239A (ja) パワーステアリング装置
WO2020075550A1 (ja) パワーステアリングバルブ
JP2008025386A (ja) 内接歯車ポンプおよびパワーステアリング装置
US4377217A (en) Power steering system having hydraulic reaction chambers
RU2457971C2 (ru) Золотниковый клапан для рулевого управления с гидравлическим усилителем
US4458580A (en) Power steering apparatus
US5992458A (en) Load reaction steering unit for unequal area cylinder
US6769451B2 (en) Power beyond steering unit with bypass
JP2960006B2 (ja) 大きさの異なる流れ隙間を持つステアリング制御弁
US6769249B2 (en) Low slip steering system and improved fluid controller therefor
JP2008001251A (ja) ポンプ装置及びこのポンプ装置が適用されるパワーステアリング装置
JP2006299846A (ja) 内接歯車ポンプ
JP4033232B2 (ja) 動力舵取装置
JP2671399B2 (ja) 動力舵取装置用操舵力制御装置
US5975138A (en) Fluid controller with improved follow-up
US7490626B2 (en) Steer valve with hydraulic vehicle position feedback
JP2989990B2 (ja) バルブ装置
JP3563157B2 (ja) 油圧パワーステアリング装置
JP2007131114A (ja) パワーステアリング装置
JP2007008391A (ja) シール構造及びパワーステアリング装置
KR950013090B1 (ko) 자동차용 동력조향장치
JP2008025496A (ja) 内接歯車ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870228

Country of ref document: EP

Kind code of ref document: A1