WO2020073707A1 - 一种光纤集成模块以及微结构光纤器件 - Google Patents

一种光纤集成模块以及微结构光纤器件 Download PDF

Info

Publication number
WO2020073707A1
WO2020073707A1 PCT/CN2019/096305 CN2019096305W WO2020073707A1 WO 2020073707 A1 WO2020073707 A1 WO 2020073707A1 CN 2019096305 W CN2019096305 W CN 2019096305W WO 2020073707 A1 WO2020073707 A1 WO 2020073707A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
mode
fiber
integrated module
lens
Prior art date
Application number
PCT/CN2019/096305
Other languages
English (en)
French (fr)
Inventor
何淳
陈广隆
秦国双
Original Assignee
英诺激光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英诺激光科技股份有限公司 filed Critical 英诺激光科技股份有限公司
Publication of WO2020073707A1 publication Critical patent/WO2020073707A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06783Amplifying coupler

Definitions

  • This application relates to the field of optical fiber technology, in particular to an optical fiber integrated module and a microstructured optical fiber device
  • Single-mode fiber lasers and single-mode fiber amplifiers can meet these requirements.
  • the use of single-mode fiber in short-pulse amplifiers is disadvantageous because the core of the single-mode fiber limits the saturation energy of the fiber itself, which in turn limits the available pulse energy.
  • the pattern matcher is used in fiber laser systems, it is mainly used in single-mode fiber primary amplifiers and subsequent large The fundamental mode coupling connection between mode field fiber amplifiers, or the single mode fiber seed source is coupled to the fundamental mode coupling of the subsequent large mode field fiber amplifier.
  • MFA pattern matcher
  • fusion taper technology by expanding the single-mode fiber core size and shrinking the large-mode field fiber core size, and then melt-pulling together. It is placed between the laser single-mode laser and the large-mode field fiber amplifier or between the single-mode fiber amplifier and the large-mode field fiber amplifier.
  • An optical fiber integrated module the optical fiber integrated module in turn includes:
  • a collimating lens to convert the diverging laser light output from the single-mode optical fiber into a collimated light beam
  • a convergent lens the convergent lens to couple the collimated light beam into the large mode field fiber in the LP01 mode
  • the optical fiber integrated module is further provided between the collimating lens and the converging lens along the incident end of the optical path:
  • a filter where the filter is used to filter the collimated light beam.
  • the optical fiber integrated module is further provided in sequence between the collimating lens and the converging lens along the light path incident end:
  • the first polarizer the Faraday rotator, the half wave plate, and the second polarizer.
  • the optical fiber integrated module is further provided in sequence between the collimating lens and the converging lens along the incident end of the optical path:
  • a first polarizer a Faraday rotator, a half-wave plate, a second polarizer, and a filter.
  • the collimating lens and the converging lens are C-lens.
  • the fiber integrated module is a module with a micro-optical mode field adaptation function.
  • the filter is a 1064 ⁇ lnm bandpass filter.
  • the first polarizer and the second polarizer are beam shifters.
  • the Faraday rotator is a 45-degree Faraday rotator.
  • a micro-structured fiber optic device, the micro-structured fiber optic device in turn along the light path incident end includes:
  • a single-mode fiber the single-mode fiber is used as an input end of the fiber
  • a large-mode field fiber the large-mode field fiber is used as an output end of the optical fiber
  • the single-mode optical fiber, the optical fiber integrated module, and the large-mode field optical fiber are disposed inside the package housing.
  • the above-mentioned optical fiber integrated module sequentially includes: a collimating lens, a collimating lens to make the diverging laser light output from the single-mode fiber into a collimated beam; a converging lens, a converging lens to make the collimating beam LP0 1 mode is coupled into the large mode field fiber.
  • the coupling relationship between the collimating lens and the converging lens enables the single-mode fiber to be matched with the large-mode-field fiber, and realizes the mode-field matching and low-loss connection between the single-mode fiber and the large-mode-field fiber.
  • the assembly steps are simplified and a lot of labor and resource costs are saved.
  • the incident end of the microstructure fiber device along the optical path includes: a single-mode fiber, the single-mode fiber is used as the input end of the fiber; an optical fiber integrated module; a large-mode field fiber, and the large-mode field fiber is used as the output end of the fiber;
  • the optical fiber integrated module and the large mode field optical fiber are arranged inside the package shell.
  • the coupling relationship between the collimating lens and the converging lens enables the single-mode optical fiber to be matched with the large-mode field optical fiber, and realizes the mode-field matching and low-loss connection between the single-mode optical fiber and the large-mode field optical fiber.
  • the assembly steps are simplified and a lot of labor and resource costs are saved.
  • FIG. 1 is a schematic structural view of an optical fiber integrated module in an embodiment
  • FIG. 2 is a schematic structural view of an optical fiber integrated module in another embodiment
  • FIG. 3 is a schematic structural view of an optical fiber integrated module in another embodiment
  • FIG. 4 is a schematic structural diagram of an optical fiber integrated module in another embodiment.
  • first”, “second”, etc. used in this application may be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish the first element from another element.
  • first polarizer may be referred to as the second polarizer, and similarly, the second polarizer may be referred to as the first polarizer.
  • an optical fiber integrated module includes:
  • the collimating lens 200 and the collimating lens 200 make the divergent laser light output from the single-mode optical fiber 100 into a collimated beam
  • Converging lens 210 converging lens 210, so that the collimated light beam is coupled into the large mode field fiber 110 in the LP01 mode.
  • the optical fiber integrated module consists of a single-mode optical fiber input and a large-mode field optical fiber output, and specifically includes: a micro-optical mode field matcher that aligns the straight lens 200 and the converging lens 210.
  • the collimating lens 200 and the converging lens 210 are C-lens.
  • the incident surface of the collimator lens 200 is a flat surface, and the exit surface of the collimator lens 200 is a convex surface.
  • the entrance surface of the condensing lens 210 is a convex surface, and the exit surface of the condensing lens 210 is a flat surface.
  • the collimating lens 200 turns the diverging laser light output by the single-mode fiber into a collimated beam.
  • the condensing lens 210 couples the collimated beam of the collimating lens 200 into the large mode field fiber in the LP01 mode.
  • the ratio of the effective focal length of the converging lens 210 to the effective focal length of the collimating lens 200 is equal to the ratio of the mode field radius (wl) at SMF to the mode field radius (w2) at LMAF.
  • the accurate calculation should take into account the LP01 mode of single-mode fiber physical optics propagating to a large-mode-field diameter fiber and consider the distortion of the collimating lens 200 and the converging lens 210.
  • the coupling relationship between the collimator lens 200 and the condensing lens 210 enables the single-mode optical fiber 100 and the large-mode field optical fiber 110 to be adapted, thereby realizing the relationship between the single-mode optical fiber 100 and the large-mode field optical fiber 110 Mode field matching and low loss connection.
  • the assembly steps are simplified and a lot of labor and resource costs are saved.
  • an optical fiber integrated module includes: [0052] Collimating lens 200, collimating lens 200 so that the diverging laser light output from the single-mode optical fiber 100 becomes a collimated beam
  • a filter 300 which is used to perform filtering by aligning a straight beam
  • Converging lens 210 converging lens 210, so that the collimated light beam is coupled into the large mode field fiber 110 in the LP01 mode.
  • the fiber integrated module is input by a single-mode fiber and output by a large-mode field fiber, and specifically includes: a pair of micro-optical mode field matchers of the lens 200 and the lens 210 and the filter 300.
  • the filter can filter out part of the ASE reflected back from the laser, effectively make up for the shortcomings of the isolator, and ultimately protect the laser from damage and improve the stability of the laser energy output.
  • the filter can be a beam splitter or a filter with a wider wavelength. This can increase the versatility of this integrated module.
  • the filter 300 is a 1064 ⁇ lnm bandpass filter.
  • This bandpass filter can be a wider wavelength, it can also be a filter of other wavelengths, or even a beam splitter.
  • the converging lens 210 couples the light beam collimated by the collimating lens 200 into the large mode field fiber in the LP01 mode.
  • the ratio of the effective focal length of the converging lens 210 to the effective focal length of the collimating lens 200 is equal to the ratio of the mode field radius (wl) at SMF to the mode field radius (w2) at LMAF.
  • the accurate calculation should take into account the LP01 mode of single-mode fiber physical optics propagating to a large-mode-field diameter fiber and consider the distortion of the collimating lens 200 and the converging lens 210.
  • an optical fiber integrated module which in turn includes:
  • Collimating lens 200 collimating lens 200 so that the diverging laser light output from the single-mode fiber 100 becomes a collimated beam; first polarizer 400; Faraday rotator 410; half-wave plate 420; second polarizer 401;
  • the fiber integrated module is input by a single-mode fiber and output by a large-mode field fiber, and includes: a micro-optical mode field matcher and a micro-optical isolator that are aligned with the straight lens 200 and the converging lens 210.
  • the isolator specifically includes: a first polarizer 400, a Faraday rotator 410, a half-wave plate 420, and a second polarizer 401.
  • the first polarizer 400 and the second polarizer 401 are beam displacers.
  • the beam shifter can also be the same type of polarizer.
  • the Faraday rotator 410 is a 45-degree Faraday rotator.
  • the converging lens 210 couples the light beam collimated by the collimating lens 200 into the large mode field fiber in the LP01 mode.
  • the ratio of the effective focal length of the converging lens 210 to the effective focal length of the collimating lens 200 is equal to the ratio of the mode field radius (wl) at SMF to the mode field radius (w2) at LMAF.
  • the accurate calculation should take into account the LP01 mode of single-mode fiber physical optics propagating to a large-mode-field diameter fiber and consider the distortion of the collimating lens 200 and the converging lens 210.
  • an optical fiber integrated module is provided, and the optical fiber integrated module includes:
  • collimating lens 200 collimating lens 200 so that the diverging laser light output from the single-mode optical fiber 100 becomes a collimated beam
  • a filter 300 which is used to perform filtering by aligning a straight beam
  • Converging lens 210 converging lens 210, so that the collimated light beam is coupled into the large mode field fiber 110 in the LP01 mode.
  • the optical fiber integrated module consists of a single-mode fiber input and a large-mode field fiber output, including: a micro-optical mode field matcher with collimating lens 200 and converging lens 210, and having MFA, BPF and isolator functions Optical module.
  • the collimating lens 200 is a collimating lens 200
  • the condensing lens 210 is a condensing lens 210
  • a filter 300 and a micro-optical isolator specifically includes: a first polarizer 400, a Faraday rotator 410, a half-wave plate 420, and Second polarizer 401.
  • the condensing lens 210 couples the light beam collimated by the collimating lens 200 into the large mode field fiber in the LP01 mode.
  • the ratio of the effective focal length of the converging lens 210 to the effective focal length of the collimating lens 200 is equal to the ratio of the mode field radius (wl) in SMF to the mode field radius (w2) in LMAF. It is understandable that the accurate calculation should take into account the LP01 mode of single-mode fiber physical optics propagating to a large-mode-field diameter fiber and consider the distortion of the collimator lens 200 and the converging lens 210.
  • FIGS. 1-4 give a detailed idea, implementation method and structure of this application. But there are more methods besides the four methods mentioned here. This application is just an application to realize this idea, and there are many ways to realize the concept of this application, which is obvious to those who are good at laser, optics, optoelectronics and optics.
  • a micro-structured fiber optic device is provided, the micro-structured fiber optic device sequentially including:
  • single-mode optical fiber 100 single-mode optical fiber 100 as an input end of the optical fiber
  • optical fiber integrated module in any of the above embodiments.
  • Large mode field optical fiber 110, and the large mode field optical fiber 110 is used as an output end of the optical fiber;
  • the single-mode optical fiber 100, the optical fiber integrated module, and the large-mode field optical fiber 110 are disposed inside the package housing.
  • the microstructured optical fiber device may integrate two or more independent optical devices together. This includes mode field adapters, filters, isolators, and other possible devices, such as optical path monitors, circulators, and more.
  • the specific definition of the micro-structured optical fiber device regarding the optical fiber integrated module can be referred to the definition of the optical fiber integrated module in the above, which will not be repeated here.
  • some common components within the module or device can be shared, such as collimating lens collimating lens 200, converging lens L2, single-mode optical fiber at the input end, large-mode field optical fiber at the output end, and package housing, so that Reduce costs, simplify assembly steps and reduce volume.
  • This microstructured fiber optic device can reduce the overall additional loss.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光纤集成模块以及微结构光纤器件,光纤集成模块沿光路入射端依次包括:准直透镜(200),准直透镜(200)以使从单模光纤(100)输出的发散激光变成准直光束;会聚透镜(210),会聚透镜(210)以使准直光束以LP01模式耦合进入大模场光纤(110)中。通过准直透镜(200)与会聚透镜(210)的耦合关系使得单模光纤(100)与大模场光纤(110)得以适配,实现了单模光纤(100)和大模场光纤(110)间的模场匹配和低损耗连接。光纤集成模块结构简单,易于组装,成本低。

Description

说明书 发明名称:一种光纤集成模块以及微结构光纤器件
[0001] 本申请是以申请号为 201811178784.1、 申请日为 2018年 10月 10日的中国专利申 请为基础, 并主张其优先权, 该申请的全部内容在此作为整体引入本申请中。
[0002] 技术领域
[0003] 本申请涉及光纤技术领域, 特别是涉及一种光纤集成模块以及微结构光纤器件
[0004] 背景技术
[0005] 目前, 随着光纤器件运用的越来越广泛, 人们对于光纤器件的要求越来越高。
其中的一种就是对于光纤器件, 渴望实现更小的噪音、 没有高阶模和没有模式 色散。 单模光纤激光器和单模光纤放大器可以满足这些要求。 但是, 在短脉冲 放大器中使用单模光纤是不利的, 因为单模光纤纤芯限制了光纤本身的饱和能 量, 进而限制可获得的脉冲能量。
[0006] 在传统技术中, 为了实现低噪音、 减少和消除任何的高阶模和完成抑制模式色 散, 模式匹配器被用于光纤激光器系统中, 它主要用于单模光纤一级放大器和 后面的大模场光纤放大器间的基模耦合连接, 或者单模光纤种子源与后面的大 模场光纤放大器的基模耦合连接。
[0007] MFA (模式匹配器) 一般是采用熔融拉锥技术制造, 通过扩大单模光纤纤芯尺 寸和收缩大模场光纤纤芯尺寸, 然后熔拉在一起。 它被放在激光器单模激光和 大模场光纤放大器之间或者放在单模光纤放大器和大模场光纤放大器之间。
[0008] 熔融拉锥型 MFA的缺点包括:
[0009] 1、 大多数光纤激光器使用的光纤器件都是基于微光学技术, 熔融拉锥型 MFA 与其它微光学器件不兼容, 所以熔融拉锥型 MFA只能单独制作和封装, 无法与 其它微光学器件集成, 这会增加激光器的体积和成本。
[0010] 2、 反射的激光或者来自大模场光纤放大器中自发辐射回来的强激光。 这些强 激光会造成单模光纤纤芯表面损伤, 特别是单模光纤芯纤表面镀增透膜情况下 容易损伤。 解决的方法是在 MFA后面加入一个带通滤波片, 大部分反射回来的 激光 (即不在滤波片工作波长范围内的激光) 将被堵住和不允许其通过 MFA。 但是, 这个缺点是带通滤波器输出端必须是大模场光纤而不是单模光纤。 大模 场光纤和封装是昂贵和复杂的。
[0011] 3、 单模光纤放大器与大模场光纤放大器之间的传统连接方式是采用三个单独 的器件熔接。 这种结构缺点体现在额外的激光损耗高、 成本高和体积大, 不仅 三个单独器件需要占用更多的空间, 器件间的盘纤也会占用更多的空间。
[0012] 申请内容
[0013] 基于此, 有必要针对上述技术问题, 提供一种可以实现减小损耗并且结构简单 易于组装的光纤集成模块以及微结构光纤器件。
[0014] 一种光纤集成模块, 所述光纤集成模块沿光路入射端依次包括:
[0015] 准直透镜, 所述准直透镜以使从单模光纤输出的发散激光变成准直光束;
[0016] 会聚透镜, 所述会聚透镜以使所述准直光束以 LP01模式耦合进入大模场光纤中
[0017] 在其中一个实施例中, 所述光纤集成模块沿光路入射端在所述准直透镜与所述 会聚透镜之间还设有:
[0018] 滤波片, 所述滤波片用于对所述准直光束进行滤波。
[0019] 在其中一个实施例中, 所述光纤集成模块沿光路入射端在所述准直透镜与所述 会聚透镜之间还依次设有:
[0020] 第一起偏器、 法拉第旋转器、 半波片以及第二起偏器。
[0021] 在其中一个实施例中, 所述光纤集成模块沿光路入射端在所述准直透镜与所述 会聚透镜之间还依次设有:
[0022] 第一起偏器、 法拉第旋转器、 半波片、 第二起偏器以及滤波片。
[0023] 在其中一个实施例中, 所述准直透镜和所述会聚透镜为 C-lens。
[0024] 在其中一个实施例中, 所述光纤集成模块是一个具有微光学型模场适配功能的 模块。
[0025] 在其中一个实施例中, 所述滤波片为 1064±lnm带通滤波片。
[0026] 在其中一个实施例中, 所述第一起偏器和所述第二起偏器为光束移位器。
[0027] 在其中一个实施例中, 所述法拉第旋转器为 45度法拉第旋转器。 [0028] 一种微结构光纤器件, 所述微结构光纤器件沿光路入射端依次包括:
[0029] 单模光纤, 所述单模光纤作为光纤输入端;
[0030] 上述的光纤集成模块;
[0031] 大模场光纤, 所述大模场光纤作为光纤输出端;
[0032] 其中, 所述单模光纤、 光纤集成模块以及大模场光纤设置于封装壳体内部。
[0033] 上述光纤集成模块沿光路入射端依次包括: 准直透镜, 准直透镜以使从单模光 纤输出的发散激光变成准直光束; 会聚透镜, 会聚透镜以使所述准直光束以 LP0 1模式耦合进入大模场光纤中。 本申请通过准直透镜与会聚透镜的耦合关系使得 单模光纤与大模场光纤得以适配, 实现了单模光纤和大模场光纤间的模场匹配 和低损耗连接。 此外, 由于该光纤集成模块结构简单, 因此简化了组装步骤并 节省了大量的人力以及资源成本。
[0034] 上述微结构光纤器件沿光路入射端依次包括: 单模光纤, 单模光纤作为光纤输 入端; 光纤集成模块; 大模场光纤, 大模场光纤作为光纤输出端; 其中, 单模 光纤、 光纤集成模块以及大模场光纤设置于封装壳体内部。 本申请通过准直透 镜与会聚透镜的耦合关系使得单模光纤与大模场光纤得以适配, 实现了单模光 纤和大模场光纤间的模场匹配和低损耗连接。 此外, 由于该微结构光纤器件结 构简单, 因此简化了组装步骤并节省了大量的人力以及资源成本。
[0035] 附图说明
[0036] 图 1为一个实施例中光纤集成模块的结构示意图;
[0037] 图 2为另一个实施例中光纤集成模块的结构示意图;
[0038] 图 3为另一个实施例中光纤集成模块的结构示意图;
[0039] 图 4为另一个实施例中光纤集成模块的结构示意图。
[0040] 附图标号: 100-单模光纤; 110-大模场光纤; 200 -准直透镜; 210 -会聚透镜; 3 00 -滤波片; 400-第一起偏器; 401-第二起偏器; 410 -法拉第旋转器; 420-半波片
[0041] 具体实施方式
[0042] 为了使本申请的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本申请进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本申请, 并不用于限定本申请。
[0043] 可以理解, 本申请所使用的术语“第一”、 “第二”等可在本文中用于描述各种元 件, 但这些元件不受这些术语限制。 这些术语仅用于将第一个元件与另一个元 件区分。 举例来说, 在不脱离本申请的范围的情况下, 可以将第一起偏器称为 第二起偏器, 且类似地, 可将第二起偏器称为第一起偏器。
[0044] 在一个实施例中, 如图 1所示, 提供了一种光纤集成模块, 该光纤集成模块沿 光路入射端依次包括:
[0045] 准直透镜 200, 准直透镜 200以使从单模光纤 100输出的发散激光变成准直光束
[0046] 会聚透镜 210, 会聚透镜 210以使准直光束以 LP01模式耦合进入大模场光纤 110 中。
[0047] 具体地, 该光纤集成模块由单模光纤输入以及大模场光纤输出, 具体包括: 一 对准直透镜 200和会聚透镜 210的微光学模场匹配器。
[0048] 在一个具体的实施例中, 准直透镜 200和会聚透镜 210为 C-lens。 准直透镜 200的 入射面为平面, 准直透镜 200的出射面为凸面。 会聚透镜 210的入射面为凸面, 会聚透镜 210的出射面为平面。
[0049] 准直透镜 200使单模光纤输出的发散激光变成准直光束。 会聚透镜 210使准直透 镜 200准直的光束以 LP01模式耦合进入大模场光纤中。 对于一阶近似计算, 会聚 透镜 210的有效焦距与准直透镜 200有效焦距的比值等于在 SMF的模场半径 (wl) 与 LMAF的模场半径 (w2) 的比值。 可以理解的, 准确的计算应该考虑到单模 光纤物理光学传播到大模场直径光纤的 LP01模式和考虑准直透镜 200和会聚透镜 210的畸变。
[0050] 在本实施例中, 通过准直透镜 200与会聚透镜 210的耦合关系使得单模光纤 100 与大模场光纤 110得以适配, 实现了单模光纤 100和大模场光纤 110间的模场匹配 和低损耗连接。 此外, 由于该光纤集成模块结构简单, 因此简化了组装步骤并 节省了大量的人力以及资源成本。
[0051] 在一个实施例中, 如图 2所示, 提供了一种光纤集成模块, 该光纤集成模块沿 光路入射端依次包括: [0052] 准直透镜 200, 准直透镜 200以使从单模光纤 100输出的发散激光变成准直光束
[0053] 滤波片 300, 滤波片 300用于对准直光束进行滤波;
[0054] 会聚透镜 210, 会聚透镜 210以使准直光束以 LP01模式耦合进入大模场光纤 110 中。
[0055] 具体地, 该光纤集成模块由单模光纤输入以及大模场光纤输出, 具体包括: 一 对透镜 200和透镜 210的微光学模场匹配器以及滤波片 300。
[0056] 滤波片的加入可以滤掉激光器中反射回来的部分 ASE, 有效地弥补也隔离器的 不足, 最终保护了激光器不受损坏和提高激光器的能量输出的稳定性。 同时此 滤波片可以是分光片或者更宽波长的滤波片。 这样可以增加了此集成模块的多 功能化。
[0057] 在一个具体实施例中, 该滤波片 300为 1064±lnm带通滤波片。 此带通滤波片可 以是更宽波长, 也可以是其它波长的滤波片, 甚至可以是分光片。 会聚透镜 210 使准直透镜 200准直的光束以 LP01模式耦合进入大模场光纤中。 对于一阶近似计 算, 会聚透镜 210的有效焦距与准直透镜 200有效焦距的比值等于在 SMF的模场 半径 (wl)与 LMAF的模场半径 (w2) 的比值。 可以理解的, 准确的计算应该考 虑到单模光纤物理光学传播到大模场直径光纤的 LP01模式和考虑准直透镜 200和 会聚透镜 210的畸变。
[0058] 在本实施例中, 通过在准直透镜 200与会聚透镜 210之间设有滤波片 300, 实现 了对准直光束的滤波功能。
[0059] 在一个实施例中, 如图 3所示, 提供了一种光纤集成模块, 该光纤集成模块沿 光路入射端依次包括:
[0060] 准直透镜 200, 准直透镜 200以使从单模光纤 100输出的发散激光变成准直光束 ; 第一起偏器 400; 法拉第旋转器 410; 半波片 420; 第二起偏器 401 ;
[0061] 会聚透镜 210, 会聚透镜 210以使准直光束以 LP01模式耦合进入大模场光纤中 11
0。
[0062] 具体地, 该光纤集成模块由单模光纤输入以及大模场光纤输出, 包括: 一对准 直透镜 200和会聚透镜 210的微光学模场匹配器以及微光学隔离器。 其中, 微光 学隔离器具体包括: 第一起偏器 400、 法拉第旋转器 410、 半波片 420以及第二起 偏器 401。
[0063] 在一个具体的实施例中, 第一起偏器 400和第二起偏器 401为光束位移器。 此光 束位移器也可以是同等类型的起偏器。
[0064] 在一个具体的实施例中, 法拉第旋转器 410为 45度法拉第旋转器。
[0065] 会聚透镜 210使准直透镜 200准直的光束以 LP01模式耦合进入大模场光纤中。 对 于一阶近似计算, 会聚透镜 210的有效焦距与准直透镜 200有效焦距的比值等于 在 SMF的模场半径 (wl)与 LMAF的模场半径 (w2) 的比值。 可以理解的, 准确 的计算应该考虑到单模光纤物理光学传播到大模场直径光纤的 LP01模式和考虑 准直透镜 200和会聚透镜 210的畸变。
[0066] 在本实施例中, 通过在准直透镜 200与会聚透镜 210之间设有第一起偏器 400、 法拉第旋转器 410、 半波片 420以及第二起偏器 401, 实现了微光学器件的隔离功 能。
[0067] 在一个实施例中, 如图 4所示, 提供了一种光纤集成模块, 该光纤集成模块沿 光路入射端依次包括:
[0068] 准直透镜 200, 准直透镜 200以使从单模光纤 100输出的发散激光变成准直光束
[0069] 第一起偏器 400; 法拉第旋转器 410; 半波片 420; 第二起偏器 401 ;
[0070] 滤波片 300, 滤波片 300用于对准直光束进行滤波;
[0071] 会聚透镜 210, 会聚透镜 210以使准直光束以 LP01模式耦合进入大模场光纤 110 中。
[0072] 具体地, 该光纤集成模块由单模光纤输入以及大模场光纤输出, 包括: 一对准 直透镜 200和会聚透镜 210的微光学模场匹配器以及具有 MFA, BPF和隔离器功能 的光模块。
[0073] 其中, 准直透镜 200为准直透镜 200, 会聚透镜 210为会聚透镜 210, 滤波片 300 , 微光学隔离器具体包括: 第一起偏器 400、 法拉第旋转器 410、 半波片 420以及 第二起偏器 401。
[0074] 会聚透镜 210使准直透镜 200准直的光束以 LP01模式耦合进入大模场光纤中。 对 于一阶近似计算, 会聚透镜 210的有效焦距与准直透镜 200有效焦距的比值等于 在 SMF的模场半径 (wl)与 LMAF的模场半径 (w2) 的比值。 可以理解的, 准确 的计算应该考虑到单模光纤物理光学传播到大模场直径光纤的 LP01模式和考虑 准直透镜 200和会聚透镜 210的畸变。
[0075] 在本实施例中, 通过在准直透镜 200与会聚透镜 210之间设有第一起偏器 400、 法拉第旋转器 410、 半波片 420以及第二起偏器 401, 实现了 MFA, BPF以及隔离 器功能。
[0076] 可以理解的, 图 1-4给出此申请详细的思路、 实施方法和结构。 但是除了这里 提到的 4种方法还有更多的方法。 本申请只是一种实现此思路的申请, 还有很多 方法可以实现此申请的观念, 这对于那些在激光、 光学、 光电子和光学领域善 于的人来说是很显而易见的。
[0077] 在一个实施例中, 提供了一种微结构光纤器件, 该微结构光纤器件沿光路入射 端依次包括:
[0078] 单模光纤 100, 单模光纤 100作为光纤输入端;
[0079] 上述任一实施例中的光纤集成模块;
[0080] 大模场光纤 110, 大模场光纤 110作为光纤输出端;
[0081] 其中, 单模光纤 100、 光纤集成模块以及大模场光纤 110设置于封装壳体内部。
[0082] 具体地, 该微结构光纤器件可以集成 2种或者多种独立的光器件在一起。 包括 模场适配器、 滤波器、 隔离器和其它可能的器件, 例如: 光路监控器、 环形器 和更多。 其中, 该微结构光纤器件种关于光纤集成模块的具体限定可以参见上 文中对于光纤集成模块的限定, 在此不再赘述。
[0083] 另外, 在模块或器件内部一些公共元件是可以共用, 比如准直透镜准直透镜 20 0、 会聚透镜 L2、 输入端的单模光纤、 输出端的大模场光纤和封装壳体, 这样可 以减少成本、 简化组装步骤和减小体积。 这个微结构光纤器件可以减少总体的 额外损耗。
[0084] 以上实施例的各技术特征可以进行任意的组合, 为使描述简洁, 未对上述实施 例中的各个技术特征所有可能的组合都进行描述, 然而, 只要这些技术特征的 组合不存在矛盾, 都应当认为是本说明书记载的范围。 [0085] 以上所述实施例仅表达了本申请的几种实施方式, 其描述较为具体和详细, 但 并不能因此而理解为对申请专利范围的限制。 应当指出的是, 对于本领域的普 通技术人员来说, 在不脱离本申请构思的前提下, 还可以做出若干变形和改进 , 这些都属于本申请的保护范围。 因此, 本申请专利的保护范围应以所附权利 要求为准。
发明概述
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
[权利要求 1] 一种光纤集成模块, 其特征在于, 所述光纤集成模块沿光路入射端依 次包括:
准直透镜, 所述准直透镜以使从单模光纤输出的发散激光变成准直光 束;
会聚透镜, 所述会聚透镜以使所述准直光束以 LP01模式耦合进入大 模场光纤中。
[权利要求 2] 根据权利要求 1所述的光纤集成模块, 其特征在于, 所述光纤集成模 块沿光路入射端在所述准直透镜与所述会聚透镜之间还设有: 滤波片, 所述滤波片用于对所述准直光束进行滤波。
[权利要求 3] 根据权利要求 1所述的光纤集成模块, 其特征在于, 所述光纤集成模 块沿光路入射端在所述准直透镜与所述会聚透镜之间还依次设有: 第一起偏器、 法拉第旋转器、 半波片以及第二起偏器。
[权利要求 4] 根据权利要求 1所述的光纤集成模块, 其特征在于, 所述光纤集成模 块沿光路入射端在所述准直透镜与所述会聚透镜之间还依次设有: 第一起偏器、 法拉第旋转器、 半波片、 第二起偏器以及滤波片。
[权利要求 5] 根据权利要求 1-4任一项所述的光纤集成模块, 其特征在于, 所述准 直透镜和所述会聚透镜为 C-lens。
[权利要求 6] 根据权利要求 1-4任一项所述的光纤集成模块, 其特征在于, 所述光 纤集成模块是一个具有微光学型模场适配功能的模块。
[权利要求 7] 根据权利要求 2或 4任一项所述的光纤集成模块, 其特征在于, 所述滤 波片为 1064±lnm带通滤波片。
[权利要求 8] 根据权利要求 3或 4任一项所述的光纤集成模块, 其特征在于, 所述第 一起偏器和所述第二起偏器为光束移位器。
[权利要求 9] 根据权利要求 8所述的光纤集成模块, 其特征在于, 所述法拉第旋转 器为 45度法拉第旋转器。
[权利要求 10] 一种微结构光纤器件, 其特征在于, 所述微结构光纤器件沿光路入射 端依次包括: 单模光纤, 所述单模光纤作为光纤输入端;
如权利要求 1-9任一项所述的光纤集成模块;
大模场光纤, 所述大模场光纤作为光纤输出端;
其中, 所述单模光纤、 光纤集成模块以及大模场光纤设置于封装壳体 内部。
PCT/CN2019/096305 2018-10-10 2019-07-17 一种光纤集成模块以及微结构光纤器件 WO2020073707A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811178784.1A CN108919428A (zh) 2018-10-10 2018-10-10 一种光纤集成模块以及微结构光纤器件
CN201811178784.1 2018-10-10

Publications (1)

Publication Number Publication Date
WO2020073707A1 true WO2020073707A1 (zh) 2020-04-16

Family

ID=64409582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096305 WO2020073707A1 (zh) 2018-10-10 2019-07-17 一种光纤集成模块以及微结构光纤器件

Country Status (2)

Country Link
CN (1) CN108919428A (zh)
WO (1) WO2020073707A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4411439A1 (en) * 2023-02-06 2024-08-07 Corning Research & Development Corporation Optical fiber mode field adapter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919428A (zh) * 2018-10-10 2018-11-30 英诺激光科技股份有限公司 一种光纤集成模块以及微结构光纤器件
CN115664518A (zh) * 2022-12-28 2023-01-31 中国科学院长春光学精密机械与物理研究所 基于空间激光传输的单向导入设备及单向导入系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1371005A (zh) * 2001-02-15 2002-09-25 日本板硝子株式会社 光耦合系统及利用该系统的光学装置
US20050047786A1 (en) * 2003-09-03 2005-03-03 Fujitsu Limited Control method of wavelength dispersion compensator, and wavelength dispersion compensator
WO2007072883A1 (ja) * 2005-12-21 2007-06-28 Nippon Sheet Glass Co., Ltd. 光学フィルタ切り替え装置
CN102201640A (zh) * 2011-04-11 2011-09-28 北京工业大学 瓦级1050nm光子晶体光纤脉冲激光器及其放大系统
CN104155722A (zh) * 2013-05-13 2014-11-19 株式会社自动网络技术研究所 光连接器
CN107111079A (zh) * 2014-10-31 2017-08-29 住友电气工业株式会社 发光组件和多信道发光组件
CN108919428A (zh) * 2018-10-10 2018-11-30 英诺激光科技股份有限公司 一种光纤集成模块以及微结构光纤器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108155548A (zh) * 2018-02-11 2018-06-12 深圳市星汉激光科技有限公司 一种模式匹配隔离器和光纤激光器
CN208953731U (zh) * 2018-10-10 2019-06-07 英诺激光科技股份有限公司 一种光纤集成模块以及微结构光纤器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1371005A (zh) * 2001-02-15 2002-09-25 日本板硝子株式会社 光耦合系统及利用该系统的光学装置
US20050047786A1 (en) * 2003-09-03 2005-03-03 Fujitsu Limited Control method of wavelength dispersion compensator, and wavelength dispersion compensator
WO2007072883A1 (ja) * 2005-12-21 2007-06-28 Nippon Sheet Glass Co., Ltd. 光学フィルタ切り替え装置
CN102201640A (zh) * 2011-04-11 2011-09-28 北京工业大学 瓦级1050nm光子晶体光纤脉冲激光器及其放大系统
CN104155722A (zh) * 2013-05-13 2014-11-19 株式会社自动网络技术研究所 光连接器
CN107111079A (zh) * 2014-10-31 2017-08-29 住友电气工业株式会社 发光组件和多信道发光组件
CN108919428A (zh) * 2018-10-10 2018-11-30 英诺激光科技股份有限公司 一种光纤集成模块以及微结构光纤器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4411439A1 (en) * 2023-02-06 2024-08-07 Corning Research & Development Corporation Optical fiber mode field adapter

Also Published As

Publication number Publication date
CN108919428A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
US6088153A (en) Multi-functional optical isolator
CA2237319C (en) Device for focusing light through an optical component
WO2020073707A1 (zh) 一种光纤集成模块以及微结构光纤器件
CA2403682C (en) Fiber coupler, system and associated methods for reducing back reflections
EP0786681A1 (en) Polarization-independent optical isolator
US4981335A (en) Optical package arrangement with reduced reflections
US5825950A (en) Optical isolator
JP2020144186A (ja) 光接続構造
WO2013023350A1 (zh) 光纤模式转换器及具有模式转换功能的光纤隔离器
US6546168B1 (en) Integrated isolator fused coupler method and apparatus
WO2001096920A2 (en) Micro-optic coupler incorporating a tapered fiber
CN210982809U (zh) 一种紧凑型光路混合器件
JPH06138342A (ja) 光ファイバ機能部品およびその製造方法
TW200411238A (en) Optical fiber part
CN208953731U (zh) 一种光纤集成模块以及微结构光纤器件
US20030058536A1 (en) Multi-port reflective optical isolator
CN210982807U (zh) 一种光路混合器件
US20210018688A1 (en) Optical circulator
CN211123363U (zh) 一种高隔离度分光器
WO2014168040A1 (ja) 光結合構造
RU2638095C1 (ru) Моностатический оптический приемопередатчик
US20040091196A1 (en) Reflection type optical device
JPH0743640A (ja) 偏波無依存型光アイソレータ
US6826319B2 (en) Optical isolator
CN215264116U (zh) 一种双光纤在线型隔离器及光纤激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/08/2021)