WO2020073339A1 - 适于自动检测焊缝的激光焊接系统及其工作方法 - Google Patents

适于自动检测焊缝的激光焊接系统及其工作方法 Download PDF

Info

Publication number
WO2020073339A1
WO2020073339A1 PCT/CN2018/110148 CN2018110148W WO2020073339A1 WO 2020073339 A1 WO2020073339 A1 WO 2020073339A1 CN 2018110148 W CN2018110148 W CN 2018110148W WO 2020073339 A1 WO2020073339 A1 WO 2020073339A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
metal
laser welding
rectangular metal
welding system
Prior art date
Application number
PCT/CN2018/110148
Other languages
English (en)
French (fr)
Inventor
王小绪
孔见
王应静
王栓林
王力
Original Assignee
南京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京理工大学 filed Critical 南京理工大学
Publication of WO2020073339A1 publication Critical patent/WO2020073339A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Definitions

  • the invention relates to the technical field of welding equipment, in particular to a laser welding system suitable for automatic detection of welding seams and a working method thereof.
  • Laser welding is to attach a laser emitter to the shaft flange of the welding mechanism to align the welded parts, so that it can weld, cut or thermal spray the welded parts. In particular, it affects the range of heat affected zone and the size and depth of the molten pool. There are many unstable factors in the welding process, such as the power, focal length and stability of the laser beam, the cleanliness, dryness of the weld surface, and the welding speed will affect the welding quality. If the welding seam quality is checked after multiple welding seams or processing procedures of the weldment are completed, if the quality of the welding seam is unqualified, rework is required and even the workpiece is scrapped. Therefore, timely detection of the weld after welding is an effective way to avoid the above consequences.
  • the purpose of the present invention is to provide a laser welding system suitable for automatic welding seam detection and its working method. After the welding mechanism performs gas-shielded welding on the welding seam, the welding seam inspection machine is used to detect it, thereby improving the product qualification rate.
  • the present invention provides a laser welding system, including: a cloud server and a control module, and a welding mechanism and a welding seam detection mechanism respectively connected to the control module;
  • the welding mechanism includes: a welding manipulator, respectively installed Laser transmitter and gas protection mechanism on the manipulator;
  • the welding seam detection mechanism includes: an inspection manipulator and an ultrasonic flaw detector installed on the inspection manipulator;
  • the cloud server is adapted to store welding seam grid setting values through wireless
  • the communication module is sent to the control module to control the weld inspection machine to detect the weld after welding by the welding mechanism.
  • the wireless communication module includes: a dual-frequency dual circularly polarized antenna; wherein the dual-frequency dual circularly polarized antenna includes: a left-handed metamaterial, an omnidirectional dual-frequency linearly polarized antenna on the upper surface of the left-handed metamaterial, and a medium An air matching layer between the two; the left-hand metamaterial includes: a first dielectric substrate, and a metal unit array and a metal layer respectively located on the upper and lower surfaces of the first dielectric substrate; The metal units are arranged from top to bottom and from left to right.
  • the metal unit includes: two rectangular metal parts that are symmetrical in the center, that is, first and second rectangular metal parts;
  • the rectangular metal part includes: a double U-shaped arm and an L-shaped arm disposed outside the double U-shaped arm Resonant patch;
  • the double U-shaped arm includes: first and second U-shaped arms connected end to end; the tail end of the first U-shaped arm is vertically connected to the head end of the second U-shaped arm; and two The head end of the first U-shaped arm of the rectangular metal part is adapted to extend and connect to the symmetric centers of the two rectangular metal parts.
  • each metal unit is adapted to be distributed in parallel from left to right, and the second rectangular metal part is located directly under the first rectangular metal part of the adjacent metal unit.
  • the geometric center of the left-hand metamaterial is on the same straight line as the center of the omnidirectional dual-frequency linear polarization antenna.
  • the omnidirectional dual-frequency linearly polarized antenna is a planar monopole printed antenna fed by a coplanar waveguide.
  • the planar monopole printed antenna includes: a second dielectric substrate, first, second, and third rectangular metal radiating portions and a polygonal metal radiating portion respectively located on the upper surface of the second dielectric substrate;
  • the polygonal metal radiating portion It is a centrally symmetric structure and includes: an irregular pentagonal hollow metal patch, an H-shaped hollow radiating unit, and an inverted U-shaped resonance slot;
  • the third rectangular metal radiating portion is suitable for the first and second rectangular metal radiating portions Through the gap so that one end is connected to the vertex of the irregular pentagonal hollow metal patch, and the other end is connected to the middle of one side of the second dielectric substrate; and the first and second rectangular metal radiating parts are located at the The two corners of the side.
  • the second dielectric substrate is suitable to use a polytetrafluoroethylene single-sided copper clad laminate, which has a thickness of 0.8 to 0.9 mm and a dielectric constant of 4 to 5.
  • the thickness of the left-hand metamaterial is 0.015 to 0.020 mm; and the dielectric constant of the first dielectric substrate is 4 to 5.
  • the present invention also provides a working method of a laser welding system
  • the cloud server is adapted to store welding seam setting values, and send to the control module through a wireless communication module to control the welding seam detection mechanism butt welding Work after welding.
  • the beneficial effect of the present invention is that the laser welding system of the present invention can detect the quality problem of the weld seam in time after the gas welding of the welding seam by the welding mechanism of the welding mechanism by the weld seam inspection machine to avoid reflow into the next process, resulting in rework Or scrapped, saving costs and improving the product qualification rate; in addition, the welding server setting value is stored through the cloud server, and is sent to the control module by the wireless communication module, which reduces the dependence of the welding process on people and the welding process evaluation The human factors in the process have improved the degree of automation and production efficiency.
  • FIG. 1 is a functional block diagram of the laser welding system of the present invention
  • FIG. 2 is a schematic structural view of the dual-frequency dual-circular polarization antenna of the present invention
  • FIG. 3 is a schematic diagram of the structure of the left-handed metamaterial of the present invention.
  • left-handed metamaterial 1 omnidirectional dual-frequency linearly polarized antenna 2, second dielectric substrate 21, first rectangular metal radiator 22, second rectangular metal radiator 23, third rectangular metal radiator 24, polygonal metal Radiation part 25, irregular pentagonal hollow metal patch 251, H-shaped hollow radiation unit 252, inverted U-shaped resonance slit 253, first dielectric substrate 3, metal unit 4, first rectangular metal part 41, second rectangular metal Part 42, a first U-shaped arm 421, a second U-shaped arm 422, an L-shaped resonant patch 423.
  • FIG. 1 is a functional block diagram of the laser welding system of the present invention.
  • this embodiment 1 provides a laser welding system, including: a cloud server and a control module, and a welding mechanism and a welding seam detection mechanism respectively connected to the control module;
  • the welding mechanism includes: a welding manipulator, A laser transmitter and a gas protection mechanism respectively installed on the manipulator;
  • the welding seam detection mechanism includes: an inspection manipulator and an ultrasonic flaw detector installed on the inspection manipulator; and
  • the cloud server is adapted to store welding seam grid settings, It is sent to the control module through the wireless communication module to control the weld inspection machine to detect the weld after welding by the welding mechanism.
  • the laser emitter is suitable for welding the weld by emitting a laser beam; after completing the welding action, the control module controls the ultrasonic flaw detector to detect the pores or impurities inside the weld after welding, and When the control module judges that it is unqualified, it will alarm through an external alarm.
  • the gas protection mechanism includes but is not limited to: a gas nozzle controlled by an electromagnetic valve, the gas nozzle is suitable for being coated on the outside of the launching head, and connected to a high-pressure gas source through a gas pipeline to surround the laser beam Forming a protective gas flow; and the protective gas includes, but is not limited to, one or more mixed gases of inert gases such as argon and helium.
  • the electromagnetic valve When welding, first open the electromagnetic valve to spray protective gas for 30 to 50 seconds, then the air around the welding seam can be exhausted, and then turn on the laser emitter to emit the laser beam for welding.
  • the cloud server can be remotely controlled by a PC to input and store welding seam grid setting values to the cloud server; and the welding seam grid setting values include but are not limited to: air holes or inclusions in the welding seam The size and corresponding number, etc.
  • control module is, for example but not limited to, 51 single-chip microcomputer, which can control the welding manipulator, detection manipulator, laser transmitter, electromagnetic valve, and ultrasonic flaw detector to work through corresponding drive circuits.
  • the welding seam inspection machine is used to detect the quality problem of the welding seam in time to prevent it from flowing into the next process, resulting in rework or scrap, saving The cost improves the product qualification rate; in addition, the welding server setting value is stored through the cloud server and sent to the control module by the wireless communication module, which reduces the dependence of the welding process on humans and the human factors in the welding process evaluation process , Improve the degree of automation and production efficiency.
  • FIG. 2 is a schematic diagram of the structure of the dual-frequency dual-circular polarization antenna of the present invention.
  • FIG. 3 is a schematic diagram of the left-hand metamaterial of the present invention.
  • the wireless communication module includes: a dual-frequency dual-circularly polarized antenna; wherein the dual-frequency dual-circularly polarized antenna includes: a left-handed metamaterial 1, an omnidirectional dual on the upper surface of the left-handed metamaterial 1 Frequency-line polarized antenna 2 and an air matching layer between them (located on the lower surface of the omnidirectional dual-frequency linear-polarized antenna, not shown in FIG. 2); the left-handed metamaterial 1 includes: a first medium Substrate 3, and metal unit arrays and metal layers on the upper and lower surfaces of the first dielectric substrate 3 (located on the lower surface of the first dielectric substrate, not shown in FIG. 3); The units 4 are arranged from top to bottom and from left to right.
  • the dual-frequency dual-circularly polarized antenna includes: a left-handed metamaterial 1, an omnidirectional dual on the upper surface of the left-handed metamaterial 1 Frequency-line polarized antenna 2 and an air matching layer between them (located on the lower surface of the omni
  • the thickness of the left-hand metamaterial 1 is 0.015 to 0.020 mm, preferably 0.018 mm; and the dielectric constant of the first dielectric substrate is 4 to 5, preferably 4.6.
  • the dual-frequency dual-circularly polarized antenna of this embodiment is used by a left-handed metamaterial and an omnidirectional dual-frequency linearly polarized antenna, and the metal units of the left-handed metamaterial are arranged from top to bottom and from left to right (as shown in FIG.
  • the gain of the polarized antenna is to improve the welding seam grid setting value as the radiation intensity and radiation range of the transmitted signal, and to ensure that the control module accurately receives the welding seam grid setting value to accurately determine whether the welding seam is qualified. It has a popular structure and simple process. , Flexible design and strong functionality.
  • FIG. 4 is a schematic structural diagram of a metal unit of the present invention.
  • the metal unit 4 includes two rectangular metal parts that are symmetrical in the center, that is, a first rectangular metal part 41 and a second rectangular metal part 42, and the structures of the two rectangular metal parts are the same.
  • the structure of the metal unit 4 will be described by taking the second rectangular metal 42 in FIG. 4 as an example, that is, the second rectangular metal 42 includes: a double U-shaped arm and an outer side of the double U-shaped arm L-shaped resonant patch 423; the double U-shaped arm includes: first and second U-shaped arms connected end to end, and the opening end of the first U-shaped arm 421 is symmetric toward the center (upper in FIG.
  • the first The open end of the two U-shaped arms 422 faces the first U-shaped arm 421 (right side in FIG. 4); the tail end of the first U-shaped arm 421 is vertically connected to the head end of the second U-shaped arm 422; and two The head end of the first U-shaped arm 421 of the rectangular metal part is adapted to extend and connect to the symmetric centers of the two rectangular metal parts.
  • each metal unit 4 is suitable for parallel distribution from left to right; the second rectangular metal portion 42 is located directly under the first rectangular metal portion 41 of the adjacent metal unit 4, and there is a second Two gaps.
  • the metal unit of this embodiment can not only improve the gain of the antenna by the two rectangular metal parts symmetrically arranged about the center, but also facilitate the arrangement of the second rectangular metal part directly under the first rectangular metal part of the adjacent metal unit to achieve
  • the metal units are arranged from top to bottom and from left to right, so as to ensure that the left-hand metamaterial loading can form a circularly polarized antenna, and the radiation intensity and radiation range of the setting value of the welding grid are improved.
  • the geometric center of the left-hand metamaterial 1 and the center of the omnidirectional dual-frequency linearly polarized antenna 2 are on the same straight line.
  • the omnidirectional dual-frequency linearly polarized antenna 2 may be a planar monopole printed antenna fed by a coplanar waveguide.
  • the planar monopole printed antenna includes: a second dielectric substrate 21, a first rectangular metal radiation portion 22, a second rectangular metal radiation portion 23 and a third rectangular metal located on the upper surface of the second dielectric substrate 21 respectively.
  • the radiating portion 24 and the polygonal metal radiating portion 25; the polygonal metal radiating portion 25 is a center symmetrical structure, and includes: an irregular pentagonal hollow metal patch 251, an H-shaped hollow radiating unit 252, and an inverted U-shaped resonance slot 253;
  • the third rectangular metal radiating portion 24 is adapted to pass through the gap between the first and second rectangular metal radiating portions, so that one end thereof is connected to the vertex of the irregular pentagonal hollow metal patch 251, and the other end is connected to the second medium
  • the middle part of one side of the substrate 21 is connected; and the first and second rectangular metal radiating parts are located at two corners of the side respectively.
  • the H-shaped hollow radiating unit 252 is composed of first, second, and third hollow structures, where the first and second hollow structures are arranged in parallel (in FIG. 2, they are vertically parallel)
  • the third hollow structure is arranged in the middle of the first and second hollow structures, and the first and second hollow structures are both perpendicular to the third hollow structure.
  • the second dielectric substrate 21 is suitable for using a polytetrafluoroethylene single-sided copper clad laminate, and its thickness is 0.8-0.9 mm, preferably 0.86 mm; and the dielectric constant is 4-5, preferably 4.6.
  • the first dielectric substrate, the second dielectric substrate, and the left-hand metamaterial in this application all have limitations on thickness and dielectric constant. If the thickness is too large, it not only affects the overall size of the antenna, but also may cause electromagnetic shielding caused by the metal layer and affect the gain effect of the antenna; if the thickness is too small, it will affect the strength of the antenna and will be easily bent, thus affecting normal installation and use Even changing the gain of the antenna.
  • planar monopole printed antenna of this embodiment is used in conjunction with the first, second, and third rectangular metal radiating portions and polygonal metal radiating portions provided on the second dielectric substrate to improve the antenna gain state and ensure the welding seam
  • the radiation intensity and radiation range of the qualified setting value improve the receiving accuracy of the control module and the accuracy of the welding seam grid judgment, and also increase the response speed of the laser welding system.
  • the laser welding system of the present application can detect the quality problem of the weld seam in time after the gas welding of the welding seam by the welding mechanism and the weld seam inspection machine to prevent it from flowing into the next process, causing rework or Scrapped, saving costs and improving the product qualification rate; in addition, the welding server setting value is stored through the cloud server and sent to the control module by the wireless communication module, which reduces the dependence of the welding process on people and the welding process evaluation process
  • the human factor in the system improves the degree of automation and production efficiency;
  • the dual-frequency dual-circular polarized antenna is used by left-handed metamaterial and omnidirectional dual-frequency linearly polarized antenna, and the left-handed metamaterial metal unit is from top to bottom and left Arranged to the right (as shown in Figure 3), it can realize left-handed circularly polarized waves and right-handed circularly polarized waves to form circularly polarized antennas, which greatly simplifies the design of dual-frequency dual-circularly polarized antennas while optimizing antenna performance The
  • planar monopole printed antenna is installed on the second dielectric substrate
  • the use of the first, second and third rectangular metal radiating parts and polygonal metal radiating parts improves the gain state of the antenna, ensures the radiation intensity and radiation range of the welding seam setting value, and improves the receiving accuracy of the control module , Improve the response speed of the laser welding system.
  • this Embodiment 2 provides a working method of a laser welding system.
  • the cloud server is adapted to store welding seam setting values and send them to the control module through a wireless communication module to control welding
  • the seam detection mechanism works on the weld after welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种适于自动检测焊缝的激光焊接系统。该激光焊接系统包括:云服务器和控制模块,以及分别与控制模块相连的焊接机构和焊缝检测机构;所述焊接机构包括:焊接机械手,分别安装在机械手上的激光发射器和气体保护机构;所述焊缝检测机构包括:检测机械手和安装在检测机械手上的超声波探伤仪;以及所述云服务器适于存储焊缝合格设定值,通过无线通信模块发送至控制模块,以控制焊缝检测机对焊接机构焊合后的焊缝进行检测,该系统避免了存在缺陷的焊缝流入下一工序,提高了产品合格率。还涉及一种激光焊接系统的工作方法。

Description

适于自动检测焊缝的激光焊接系统及其工作方法 技术领域
本发明涉及焊接设备技术领域,具体涉及一种适于自动检测焊缝的激光焊接系统及其工作方法。
背景技术
激光焊接就是在焊接机构的轴法兰装接激光发射器等以对准焊接件,使之能对焊接件进行焊接、切割或热喷涂。尤其影响热影响区范围和熔池的大小、深度等。由于焊接过程中存在诸多不稳定因素,比如,激光束的功率、焦距和稳定性,焊缝表面的清洁度、干燥度,焊接速度等均会影响焊接质量。若在焊接件的多个焊缝或者加工工序完成后再检测焊缝质量,如果出现焊缝质量不合格,则需要返工,甚至造成工件报废。因此,及时对焊接后的焊缝进行检测,是避免上述后果的有效途径。
发明内容
本发明的目的是提供一种适于自动检测焊缝的激光焊接系统及其工作方法,在焊接机构对焊缝进行气体保护焊接后,通过焊缝检测机进行检测,提高了产品合格率。
为了解决上述技术问题,本发明提供了一种激光焊接系统,包括:云服务器和控制模块,以及分别与控制模块相连的焊接机构和焊缝检测机构;所述焊接机构包括:焊接机械手,分别安装在机械手上的激光发射器和气体保护机构;所述焊缝检测机构包括:检测机械手和安装在检测机械手上的超声波探伤仪;以及所述云服务器适于存储焊缝合格设定值,通过无线通信模块发送至控制模块,以控制焊缝检测机对焊接机构焊合后的焊缝进行检测。
进一步,所述无线通信模块包括:一双频双圆极化天线;其中所述双频双圆极化天线包括:左手超材料、位于左手超材料上表面的全向双频线极化天线和介于二者之间的空气匹配层;所述左手超材料包括:第一介质基板,以及分别位于第一介质基板的上、下表面的金属单元阵列、金属层;以所述金属单元阵列由若干金属单元从上到下、从左到右排列而成。
进一步,所述金属单元包括:呈中心对称的两个矩形金属部,即第一、第二矩形金属部;所述矩形金属部包括:双U形臂和设置在双U形臂外侧的L形谐振贴片;所述双U形臂包括:首尾相接的第一、第二U形臂;所述第一U形臂的尾端与第二U形臂的首端垂直相连;以及两个矩形金属部的第一U形臂的首端适于向两个矩形金属部的对称中心延伸连接。
进一步,各金属单元适于左右平行分布,且第二矩形金属部位于相邻金属单元的第一矩形金属部的正下方。
进一步,所述左手超材料的几何中心与全向双频线极化天线的中心位于同一条直线上。
进一步,所述全向双频线极化天线为共面波导馈电的平面单极子印刷天线。
进一步,所述平面单极子印刷天线包括:第二介质基板,分别位于第二介质基板上表面的第一、第二和第三矩形金属辐射部以及多边形金属辐射部;所述多边形金属辐射部为中心对称结构,且包括:不规则五边形中空金属贴片、H形镂空辐射单元和倒U形谐振缝隙;所述第三矩形金属辐射部适于从第一、第二矩形金属辐射部的间隙穿过,以使其一端连接不规则五边形中空金属贴片的顶点,另一端与第二介质基板的一条侧边的中部连接;以及第一、第二矩形金属辐射部分别位于该条侧边的两个边角上。
进一步,所述第二介质基板适于采用聚四氟乙烯单面覆铜板,其厚度为 0.8~0.9mm,介电常数为4~5。
进一步,所述左手超材料的厚度为0.015~0.020mm;以及所述第一介质基板的介电常数为4~5。
又一方面,本发明还提供了一种激光焊接系统的工作方法,所述云服务器适于存储焊缝合格设定值,并通过无线通信模块发送至控制模块,以控制焊缝检测机构对焊合后的焊缝进行工作。
本发明的有益效果是,本发明的激光焊接系统在焊接机构对焊缝进行气体保护焊接后,通过焊缝检测机进行检测,可以及时发现焊缝质量问题,避免其流入下一工序,导致返工或报废,节省了成本,提高了产品合格率;此外,通过云服务器存储焊缝合格设定值,并由无线通信模块发送至控制模块,降低了焊接过程对人的依赖度和焊缝合格评判过程中的人为因素,提高了自动化程度和生产效率。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的激光焊接系统的原理框图;
图2是本发明的双频双圆极化天线的结构示意图;
图3是本发明的左手超材料的结构示意图;
图4为本发明的金属单元的结构示意图;
图中:左手超材料1,全向双频线极化天线2,第二介质基板21,第一矩形金属辐射部22,第二矩形金属辐射部23,第三矩形金属辐射部24,多边形金属辐射部25,不规则五边形中空金属贴片251,H形镂空辐射单元252,倒U形谐振缝隙253,第一介质基板3,金属单元4,第一矩形金属部41,第二矩形金属部42,第一U形臂421,第二U形臂422,L形谐振贴片423。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
实施例1
图1是本发明的激光焊接系统的原理框图。
如图1所示,本实施例1提供了一种激光焊接系统,包括:云服务器和控制模块,以及分别与控制模块相连的焊接机构和焊缝检测机构;所述焊接机构包括:焊接机械手,分别安装在机械手上的激光发射器和气体保护机构;所述焊缝检测机构包括:检测机械手和安装在检测机械手上的超声波探伤仪;以及所述云服务器适于存储焊缝合格设定值,通过无线通信模块发送至控制模块,以控制焊缝检测机对焊接机构焊合后的焊缝进行检测。具体的,所述激光发射器适于通过发射头发出激光束对焊缝进行焊接;在完成焊接动作后,所述控制模块控制超声波探伤仪检测焊合后的焊缝内部的气孔或杂质,并在控制模块判定不合格时,通过外接的报警器报警。
可选的,所述气体保护机构包括但不限于:由电磁阀门控制开启的气嘴,所述气嘴适于外套在发射头的外侧,并通过气体管道连接高压气源,以在激光束周围形成保护气流;以及所述保护气体包括但不限于:氩气、氦气等惰性气体的一种或多种混合气体。在进行焊接时,先打开电磁阀门喷出保护气体30~50s后,可以排出焊缝周围的空气,然后再开启激光发射器发射激光束进行焊接。
可选的,所述云服务器可以通过一PC机远程控制,以向云服务器输入并存储焊缝合格设定值;以及所述焊缝合格设定值包括但不限于:焊缝中气孔或夹杂的大小及对应数量等。
可选的,所述控制模块例如但不限于51单片机,可以通过相应的驱动电路 控制焊接机械手、检测机械手、激光发射器、电磁阀门、超声波探伤仪进行工作。
本实施例1的激光焊接系统在焊接机构对焊缝进行气体保护焊接后,通过焊缝检测机进行检测,可以及时发现焊缝质量问题,避免其流入下一工序,导致返工或报废,节省了成本,提高了产品合格率;此外,通过云服务器存储焊缝合格设定值,并由无线通信模块发送至控制模块,降低了焊接过程对人的依赖度和焊缝合格评判过程中的人为因素,提高了自动化程度和生产效率。
图2是本发明的双频双圆极化天线的结构示意图。
图3是本发明的左手超材料的结构示意图。
作为双频双圆极化天线的一种可选的实施方式。
见图2和图3,所述无线通信模块包括:一双频双圆极化天线;其中所述双频双圆极化天线包括:左手超材料1、位于左手超材料1上表面的全向双频线极化天线2和介于二者之间的空气匹配层(位于全向双频线极化天线的下表面,在图2中未显示);所述左手超材料1包括:第一介质基板3,以及分别位于第一介质基板3的上、下表面的金属单元阵列、金属层(位于第一介质基板的下表面,在图3中未显示);以所述金属单元阵列由若干金属单元4从上到下、从左到右排列而成。
可选的,所述左手超材料1的厚度为0.015~0.020mm,优选为0.018mm;以及所述第一介质基板的介电常数为4~5,优选为4.6。
本实施方式的双频双圆极化天线由左手超材料和全向双频线极化天线配合使用,将左手超材料的金属单元从上到下、从左到右排列(如图3所示),能够实现左旋圆极化波和右旋圆极化波,形成圆极化天线,在优化天线性能的同时大大简化了双频双圆极化天线的设计难度,进一步提高了双频双圆极化天线的 增益,以提高焊缝合格设定值作为发射信号的辐射强度和辐射范围,保证控制模块准确接收焊缝合格设定值,以准确判定焊缝是否合格,具有结构通俗、工艺简单、设计灵活、功能性强等特点。
图4为本发明的金属单元的结构示意图。
作为金属单元的一种可选的实施方式。
见图4,所述金属单元4包括:呈中心对称的两个矩形金属部,即第一矩形金属部41、第二矩形金属部42,且两个矩形金属部的结构相同。具体的,现以图4中的第二矩形金属42部为例,对金属单元4的结构加以说明,即所述第二矩形金属部42包括:双U形臂和设置在双U形臂外侧的L形谐振贴片423;所述双U形臂包括:首尾相接的第一、第二U形臂,且第一U形臂421的开口端朝向中心对称(图4中上方),第二U形臂422的开口端朝向第一U形臂421(图4中右侧);所述第一U形臂421的尾端与第二U形臂422的首端垂直相连;以及两个矩形金属部的第一U形臂421的首端适于向两个矩形金属部的对称中心延伸连接。
可选的,在单个金属单元中,两个L形谐振贴片和对应的双U形臂之间均存在第一缝隙,且两个第一缝隙的中心与圆环的圆心(L形谐振贴片的延长线的交汇处)组成一条L形折线。
可选的,各金属单元4适于左右平行分布;第二矩形金属部42位于相邻金属单元4的第一矩形金属部41的正下方,且与第一矩形金属部41之间留有第二缝隙。
本实施方式的金属单元通过关于中心对称设置的两个矩形金属部,不仅可以提高天线的增益,还便于第二矩形金属部排列在相邻金属单元的第一矩形金属部的正下方,以实现金属单元从上到下、从左到右排列,从而保证左手超材 料的加载能够形成圆极化天线,提高了焊缝合格设定值的辐射强度和辐射范围。
进一步,所述左手超材料1的几何中心与全向双频线极化天线2的中心位于同一条直线上。
作为平面单极子印刷天线的一种可选的实施方式。
进一步,所述全向双频线极化天线2可以为共面波导馈电的平面单极子印刷天线。
见图2,所述平面单极子印刷天线包括:第二介质基板21,分别位于第二介质基板21上表面的第一矩形金属辐射部22、第二矩形金属辐射部23和第三矩形金属辐射部24以及多边形金属辐射部25;所述多边形金属辐射部25为中心对称结构,且包括:不规则五边形中空金属贴片251、H形镂空辐射单元252和倒U形谐振缝隙253;所述第三矩形金属辐射部24适于从第一、第二矩形金属辐射部的间隙穿过,以使其一端连接不规则五边形中空金属贴片251的顶点,另一端与第二介质基板21的一条侧边的中部连接;以及第一、第二矩形金属辐射部分别位于该条侧边的两个边角上。
可选的,见图2,所述H形镂空辐射单元252由第一、第二和第三镂空结构组成,其中第一、第二镂空结构平行设置(在图2中为竖直平行设置),第三镂空结构设置在第一、第二镂空结构的中间,第一、第二镂空结构均与第三镂空结构垂直。
可选的,第二介质基板21的下表面与第一介质基板3的上表面之间有空气匹配层。
可选的,所述第二介质基板21适于采用聚四氟乙烯单面覆铜板,其厚度为0.8~0.9mm,优选为0.86mm;介电常数为4~5,优选为4.6。
本申请中的第一介质基板、第二介质基板和左手超材料均有厚度和介电常 数的限制。若厚度太大,不仅影响天线的整体尺寸,还有可能导致金属层造成电磁屏蔽,影响天线的增益效果;若厚度太小,会影响天线的强度,会容易弯折,从而影响正常安装使用,甚至改变天线的增益。
本实施方式的平面单极子印刷天线通过设置在第二介质基板上的第一、第二和第三矩形金属辐射部以及多边形金属辐射部配合使用,提高了天线的增益状态,保证了焊缝合格设定值的辐射强度和辐射范围,提高了控制模块的接收准确度和焊缝合格的判定准确度,也提高了激光焊接系统的响应速度。
综上所述,本申请的激光焊接系统通在焊接机构对焊缝进行气体保护焊接后,通过焊缝检测机进行检测,可以及时发现焊缝质量问题,避免其流入下一工序,导致返工或报废,节省了成本,提高了产品合格率;此外,通过云服务器存储焊缝合格设定值,并由无线通信模块发送至控制模块,降低了焊接过程对人的依赖度和焊缝合格评判过程中的人为因素,提高了自动化程度和生产效率;双频双圆极化天线由左手超材料和全向双频线极化天线配合使用,将左手超材料的金属单元从上到下、从左到右排列(如图3所示),能够实现左旋圆极化波和右旋圆极化波,形成圆极化天线,在优化天线性能的同时大大简化了双频双圆极化天线的设计难度,进一步提高了双频双圆极化天线的增益,以提高焊缝合格设定值作为发射信号的辐射强度和辐射范围,保证控制模块准确接收焊缝合格设定值,以提高焊缝质量的判定准确度,具有结构通俗、工艺简单、设计灵活、功能性强等特点;平面单极子印刷天线通过设置在第二介质基板上的第一、第二和第三矩形金属辐射部以及多边形金属辐射部配合使用,提高了天线的增益状态,保证了焊缝合格设定值的辐射强度和辐射范围,提高了控制模块的接收准确度,提高了激光焊接系统的响应速度。
实施例2
在实施例1的基础上,本实施例2提供了一种激光焊接系统的工作方法,所述云服务器适于存储焊缝合格设定值,并通过无线通信模块发送至控制模块,以控制焊缝检测机构对焊合后的焊缝进行工作。
关于激光焊接系统的具体结构及实施过程参见实施例1的相关论述,此处不再赘述。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种激光焊接系统,其特征在于,包括:
    云服务器和控制模块,以及分别与控制模块相连的焊接机构和焊缝检测机构;
    所述焊接机构包括:焊接机械手,分别安装在机械手上的激光发射器和气体保护机构;
    所述焊缝检测机构包括:检测机械手和安装在检测机械手上的超声波探伤仪;以及
    所述云服务器适于存储焊缝合格设定值,通过无线通信模块发送至控制模块,以控制焊缝检测机对焊接机构焊合后的焊缝进行检测。
  2. 根据权利要求1所述的激光焊接系统,其特征在于,
    所述无线通信模块包括:一双频双圆极化天线;其中
    所述双频双圆极化天线包括:左手超材料、位于左手超材料上表面的全向双频线极化天线和介于二者之间的空气匹配层;
    所述左手超材料包括:第一介质基板,以及分别位于第一介质基板上、下表面的金属单元阵列、金属层;以及
    所述金属单元阵列由若干金属单元从上到下、从左到右排列而成。
  3. 根据权利要求2所述的激光焊接系统,其特征在于,
    所述金属单元包括:呈中心对称的两个矩形金属部,即第一、第二矩形金属部;
    所述矩形金属部包括:双U形臂和设置在双U形臂外侧的L形谐振贴片;
    所述双U形臂包括:首尾相接的第一、第二U形臂;
    所述第一U形臂的尾端与第二U形臂的首端垂直相连;以及
    两个矩形金属部的第一U形臂的首端适于向两个矩形金属部的对称中心延 伸连接。
  4. 根据权利要求3所述的激光焊接系统,其特征在于,
    各金属单元适于左右平行分布,且第二矩形金属部位于相邻金属单元的第一矩形金属部的正下方。
  5. 根据权利要求2所述的激光焊接系统,其特征在于,
    所述左手超材料的几何中心与全向双频线极化天线的中心位于同一条直线上。
  6. 根据权利要求5所述的激光焊接系统,其特征在于,
    所述全向双频线极化天线为共面波导馈电的平面单极子印刷天线。
  7. 根据权利要求6所述的激光焊接系统,其特征在于,
    所述平面单极子印刷天线包括:第二介质基板,分别位于第二介质基板上表面的第一、第二和第三矩形金属辐射部以及多边形金属辐射部;
    所述多边形金属辐射部为中心对称结构,且包括:不规则五边形中空金属贴片、H形镂空辐射单元和倒U形谐振缝隙;
    所述第三矩形金属辐射部适于从第一、第二矩形金属辐射部的间隙穿过,以使其一端连接不规则五边形中空金属贴片的顶点,另一端与第二介质基板的一条侧边的中部连接;以及
    第一、第二矩形金属辐射部分别位于该条侧边的两个边角上。
  8. 根据权利要求7所述的激光焊接系统,其特征在于,
    所述第二介质基板适于采用聚四氟乙烯单面覆铜板,其厚度为0.8~0.9mm,介电常数为4~5。
  9. 根据权利要求2所述的激光焊接系统,其特征在于,
    所述左手超材料的厚度为0.015~0.020mm;以及
    所述第一介质基板的介电常数为4~5。
  10. 一种激光焊接系统的工作方法,其特征在于,
    所述云服务器适于存储焊缝合格设定值,并通过无线通信模块发送至控制模块,以控制焊缝检测机构对焊合后的焊缝进行工作。
PCT/CN2018/110148 2018-10-10 2018-10-12 适于自动检测焊缝的激光焊接系统及其工作方法 WO2020073339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811178800.7 2018-10-10
CN201811178800.7A CN109290679A (zh) 2018-10-10 2018-10-10 适于自动检测焊缝的激光焊接系统及其工作方法

Publications (1)

Publication Number Publication Date
WO2020073339A1 true WO2020073339A1 (zh) 2020-04-16

Family

ID=65162131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110148 WO2020073339A1 (zh) 2018-10-10 2018-10-12 适于自动检测焊缝的激光焊接系统及其工作方法

Country Status (2)

Country Link
CN (1) CN109290679A (zh)
WO (1) WO2020073339A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111992940B (zh) * 2020-08-28 2022-03-22 北京博清科技有限公司 一种焊接检测控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140003797A (ko) * 2012-06-28 2014-01-10 현대제철 주식회사 레이저 용접 장치
CN105499805A (zh) * 2016-02-24 2016-04-20 山东雅百特科技有限公司 一种智能激光焊接系统及其工作方法
CN107134654A (zh) * 2017-04-21 2017-09-05 南京航空航天大学 基于电磁超表面的双频双圆极化天线及其性能实现方法
CN206519665U (zh) * 2017-02-23 2017-09-26 厦门市三熠智能科技有限公司 方形电池激光侧焊设备
CN108115682A (zh) * 2016-11-29 2018-06-05 发那科株式会社 机械学习装置、机器人系统以及机械学习方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217474B (zh) * 2013-03-11 2015-02-18 哈尔滨工业大学 基于无线通讯技术的焊接结构服役状态检测系统及检测方法
WO2014150118A1 (en) * 2013-03-15 2014-09-25 Illinois Tool Works Inc. Welding power source with conformal antenna
CN103822970B (zh) * 2014-03-05 2016-03-23 吉林大学 一种便携式电阻点焊全自动超声波检测仪及检测方法
CN105562929A (zh) * 2016-02-23 2016-05-11 江苏拓平密封科技有限公司 一种基于超声波探测技术的刷式密封机器人焊接系统
CN105974882B (zh) * 2016-04-28 2019-05-21 北京小米移动软件有限公司 加工方法、装置、设备及待加工产品
CN106450728B (zh) * 2016-10-14 2018-07-03 天津大学 一种基于pdms材料的柔性可穿戴双频单极子天线
CN106356622B (zh) * 2016-11-25 2019-01-15 南京理工大学 高增益双频双圆极化共口径平面阵列天线
CN107834178A (zh) * 2017-11-24 2018-03-23 广东虹勤通讯技术有限公司 一种微带天线和能量采集系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140003797A (ko) * 2012-06-28 2014-01-10 현대제철 주식회사 레이저 용접 장치
CN105499805A (zh) * 2016-02-24 2016-04-20 山东雅百特科技有限公司 一种智能激光焊接系统及其工作方法
CN108115682A (zh) * 2016-11-29 2018-06-05 发那科株式会社 机械学习装置、机器人系统以及机械学习方法
CN206519665U (zh) * 2017-02-23 2017-09-26 厦门市三熠智能科技有限公司 方形电池激光侧焊设备
CN107134654A (zh) * 2017-04-21 2017-09-05 南京航空航天大学 基于电磁超表面的双频双圆极化天线及其性能实现方法

Also Published As

Publication number Publication date
CN109290679A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
CN107052571B (zh) 一种激光焊接设备及激光焊接方法
WO2020073339A1 (zh) 适于自动检测焊缝的激光焊接系统及其工作方法
FI129966B (en) Microwave converter and system for its production
WO2021027206A1 (zh) 一种同轴双激光电弧复合焊接装置及方法
CN106154396B (zh) 一种超宽带太赫兹布鲁斯特真空窗及其制备方法
WO2020073340A1 (zh) 适于水冷保护的激光焊接系统及其工作方法
CN107999959A (zh) 一种手持激光焊接设备及其焊接方法
WO2020073338A1 (zh) 智能协作型激光焊接系统及其工作方法
CN103529125A (zh) 大壁厚钢管埋弧焊缝超声波检测方法
CN104131154A (zh) 一种基于激光和脉冲磁的焊管焊接残余应力消除方法
CN205049663U (zh) 一种全向性探头及场强测量仪器
CN103501951A (zh) 通过微波定位焊接头的方法
CN109262139A (zh) 适于预打磨焊缝的激光焊接系统及其工作方法
CN113798636B (zh) 精确控制直角焊缝区域的多层激光锻造复合电弧焊接方法和装置
CN109317818A (zh) 气体保护激光焊接系统及其工作方法
CN115945784A (zh) 一种基于激光焊接的单面焊双面成型焊接方法
CN113552226B (zh) 一种电子束焊缝水浸超声检测的对比试块及检测方法
CN111203640B (zh) 一种双激光束双侧同步焊接装置
CN111299835A (zh) 一种激光飞行焊在线补焊设备及方法
JPH06335777A (ja) ウェルドヘッド及び溶接装置並びに溶接方法
CN210387934U (zh) 一种多管同轴装配焊接装置
CN117655525B (zh) 一种动力电池连接片的自动焊接方法及其装置
CN208336523U (zh) 一种串联辐射振子的高增益全向天线
WO2020073343A1 (zh) 高效型双面激光焊接系统及其工作方法
CN219443798U (zh) 一种可无级变换板厚及调整焊枪角度的夹具装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936681

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18936681

Country of ref document: EP

Kind code of ref document: A1