WO2020072516A1 - Solid-state circuit interrupters - Google Patents
Solid-state circuit interruptersInfo
- Publication number
- WO2020072516A1 WO2020072516A1 PCT/US2019/054102 US2019054102W WO2020072516A1 WO 2020072516 A1 WO2020072516 A1 WO 2020072516A1 US 2019054102 W US2019054102 W US 2019054102W WO 2020072516 A1 WO2020072516 A1 WO 2020072516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch
- state
- circuit
- solid
- circuit interrupter
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
- H02H3/10—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current additionally responsive to some other abnormal electrical conditions
- H02H3/105—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current additionally responsive to some other abnormal electrical conditions responsive to excess current and fault current to earth
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
- H02H1/0007—Details of emergency protective circuit arrangements concerning the detecting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
- H02H1/0061—Details of emergency protective circuit arrangements concerning transmission of signals
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
- H02H1/06—Arrangements for supplying operative power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/20—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H5/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
- H02H5/04—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H5/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
- H02H5/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal fluid pressure, liquid level or liquid displacement, e.g. Buchholz relays
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/02—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
- H02H9/025—Current limitation using field effect transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/082—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
- H03K17/0822—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
- H03K17/6871—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
- H03K17/6872—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor using complementary field-effect transistors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
- H02H3/10—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current additionally responsive to some other abnormal electrical conditions
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/16—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/24—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to undervoltage or no-voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/08—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
Definitions
- a circuit interrupter comprises a solid-state switch, an air-gap electromagnetic switch, a switch controller, a zero-crossing sensor, and a current sensor.
- the solid-state switch and the air-gap electromagnetic switch are connected in series between a line input terminal and a load output terminal of the circuit interrupter.
- the switch controller is configured to control operation of the solid-state switch and the air-gap electromagnetic switch.
- the zero-crossing sensor is configured to detect zero crossings of a supply power waveform input to the line input terminal of the circuit interrupter.
- the current sensor is configured to sense a current flowing in the electrical path between the line input terminal and the load output terminal, and detect a fault condition.
- FIG. 4 schematically illustrates a solid-state circuit interrupter according to another embodiment of the disclosure.
- FIG. 5 schematically illustrates a solid-state circuit interrupter according to another embodiment of the disclosure.
- FIG. 6 schematically illustrates a solid-state circuit interrupter according to another embodiment of the disclosure.
- FIG. 8 schematically illustrates a solid-state circuit interrupter according to another embodiment of the disclosure.
- FIG. 1 IB is a schematic circuit diagram of the AC-to-DC converter circuit of FIG. 11 A, according to an embodiment of the disclosure.
- FIG. 1B schematically illustrates another conventional embodiment of a circuit interrupter 101.
- the circuit interrupter 101 comprises a controller 110 and an AC switch which comprises a first diode 125, a second diode 130, a first transistor 135, and a second transistor 140, which are interconnected as shown in FIG. 1B.
- the first and second transistors 135 and 140 comprise insulated-gate bipolar transistor (IGBT) devices.
- the controller 110 controls current flow by injecting a control signal simultaneously into the first and second transistors 135 and 140.
- IGBT insulated-gate bipolar transistor
- a disadvantage of the circuit interrupter 101 shown in FIG. 1B is that it requires the implementation of four discrete elements (e.g. diodes 125 and 130 and BJT devices 135 and 140).
- the BJT devices 135 and 140 do not efficiently operate as bidirectional switches, and the discrete diodes 125 and 130 must be utilized for bidirectional switching.
- the discrete diodes 125 and 130 have relatively large forward bias voltage drops of about 0.7 V, as compared to the forward bias voltage drop of about 0.1 V-0.2 V of the BJT devices 135 and 140. As such, the diodes 125 and 130 increase the power dissipation of the circuit interrupter 101.
- circuit interrupters shown in FIGs. 2-8 can be implemented in an electrical receptacle device, or an electrical light switch (e.g., a wall- mounted light switch or a light switch implemented in a smart light fixture or smart ceiling light bulb socket, etc.).
- the circuit interrupters shown in FIGs. 2-8 may comprise standalone devices that can be disposed within a gang box in an electrical network of a home or building and configured to protect one or more electrical devices, appliances, loads, etc. that are connected in a branch circuit downstream of the standalone circuit interrupter device.
- the first and second current sensors 230 and 232 are configured to sense a magnitude of current flowing to and from the load 20 and generate current sense data that is utilized by the first and second mode control circuits 220 and 222 to identify fault events such as short-circuit fault events, over-current fault events, arc fault events, etc. In response to the detection of such fault events, the first and second current sensors 230 and 232 are configured to trigger the force turn-off mode which results in the first and second solid-state switches 210 and 212 being turned-off.
- the target threshold voltage level for the solid-state switches 210 and 212 is limited by the Zener voltages of the Zener diodes 320 and 322 such that the Zener diodes 320 and 322 serve as a solid-state clamp to limit the turn-on threshold voltage.
- the self-bias turn-on threshold voltage control mode is input-line voltage independent, as the level of the self-bias turn-on threshold voltage is limited by the solid-state clamp.
- the self-bias turn-on threshold voltage control mode is configured to maintain the control switches 360 and 362 tumed-on for a period of time which is sufficient keep the first and second solid-state switches 210 and 212 turned-off and allow the capacitors 310 and 312 to be charged to the clamping voltages of the Zener diodes 320 and 322.
- the sensors 380 include one or more sensors that are configured to sense environmental conditions.
- the sensors 380 can include one or more of (i) a chemical sensitive detector that is configured to detect the presence of hazardous chemicals, (ii) a gas sensitive detector that is configured to detect the presence of hazardous gases, (iii) a temperature sensor that is configured to detect high temperatures indicative of, e.g., a fire; a (iv) a piezoelectric detector that is configured to detect large vibrations associated with, e.g., explosions, earthquakes, etc., (v) a humidity sensor or water sensor that is configured to detect floods or damp conditions, and other types of sensors that are configured to detect for the presence or occurrence of hazardous environmental conditions that would warrant circuit interruption.
- FIG. 6 schematically illustrates a solid-state circuit interrupter according to another embodiment of the disclosure.
- FIG. 6 schematically illustrates a solid-state circuit interrupter 600 which is similar to the solid-state circuit interrupter 200 of FIG. 2, except that the solid-state switches 210 and 212 of the DPST switching circuit 202 are coupled to the respective line hot lines 11-1 and 11-2 of two separate hot phases 10-1 and 10-2 of the AC mains 10, wherein the hot phases 10-1 and 10-2 are 180 degrees out of phase.
- FIG. 7 schematically illustrates a solid-state circuit interrupter according to another embodiment of the disclosure.
- FIG. 7 schematically illustrates a solid-state circuit interrupter 700 which is similar to the solid-state circuit interrupter 200 of FIG. 2, except that the solid-state circuit interrupter 700 omits the current sensors 230 and 232 shown in FIG. 2, and further includes the isolation circuitry 510 as in the exemplary embodiment of FIG. 5.
- the isolation circuitry 510 shunts the leakage current, which is generated by the solid-state switches 210 and 212 in their switched-off states, and thereby prevents the leakage current from flowing through the load 20.
- the effect by bypassing or shunting leakage current away from the load 20 serves as an equivalent to galvanic isolation.
- the mode control circuits 710 and 712 can implement a self-bias turn-on threshold voltage mode utilizing a free-standing isolated AC -DC power supply with floating voltage output that serves as a turn-on threshold voltage to bias the solid-state switches 210 and 212.
- a self-bias turn-on threshold voltage mode can be implemented using galvanic isolation devices such as capacitive, RF, and optical isolation devices.
- the solid-state switch 810 comprises a power MOSFET switch 810 (e.g., N-type enhancement MOSFET device) having gate terminals (G), drain terminals (D), and source terminals (S) as shown, and an intrinsic body diode 810-1.
- the air-gap electromagnetic switch 820 comprises any suitable type of electromagnetic switch mechanism which is configured to physically open and close a set of electrical contacts, wherein an air gap is created between the electrical contacts when the air-gap electromagnetic switch 820 is in a switched-open state.
- the air-gap electromagnetic switch 820 may comprise a latching solenoid or relay element that is responsive to control signals from the switch controller 870 to automatically open or close the electrical contacts of the air-gap electromagnetic switch 820.
- the sensors 860 include one or more optional sensors that are configured to detect for possible hazardous environmental conditions (e.g., chemical, gas, humidity, water, temperature, light, etc.) and generate sensor data that is indicative of potentially hazardous environmental conditions.
- the sensors 860 are coupled to the switch controller 870 by one or more data acquisition and control lines 860-1.
- the switch controller 870 is configured place the solid-state switch 810 into a switched-off state before placing the air-gap electromagnetic switch 820 into a switched- open or switched-closed state.
- the body diode 810-1 of the solid-state switch 810 will allow negative current to conduct from the load 20 to the AC mains 10 when the AC power supply waveform of the AC mains 10 is in a negative half-cycle (i.e., when the line hot 11 is negative and the line neutral 12 is positive).
- the switch controller 870 would detect that the next zero voltage crossing of the input waveform 900 is a negative transitioning zero voltage crossing 910 at time Tl, and then wait for the next positive transitioning zero voltage crossing 910 at time T2 before deactivating the air-gap electromagnetic switch 820 to ensure that no current is flowing in the line hot path between the load 20 and AC mains 10 when the air-gap electromagnetic switch 820 is opened.
- the exemplary voltage waveforms 9A and 9B represent a load 20 having a power factor of about one (1) where is it is assumed that AC voltage waveform and the current drawn by the load 20 are in phase. In such instance, the zero voltage crossings are assumed to be zero current crossings. However, in instances where the load 20 has a power factor that is less than 1 (e.g., capacitive or inductive load), the voltage waveform and current drawn by the load 20 will be out of phase.
- the switching on and off of the solid- state switch 810 may be timed with either a voltage or current zero-crossing event, as desired.
- FIG. 1 IB is a schematic circuit diagram of the AC-to-DC converter circuit of FIG. 11 A, according to an embodiment of the disclosure.
- the inrush protection circuitry 1110 comprises a first input resistor 1111 connected to the line hot 11 of the AC mains 10 and a second input resistor 1112 connected to the line neutral 12 of the AC mains 10.
- the inrush protection circuitry 1110 comprises switch elements that are configured to allow current to flow through the resistors 1111 and 1112 at startup, and then bypass the resistors 1111 and 1112 once steady state operation is reached.
- the inrush protection circuitry 1110 comprises first and second inductor elements in place of the first and second resistors 1111 and 1112.
- the sampling circuitry 1120 comprises a plurality of resistors 1121, 1122, 1123, and 1124 which are connected to various nodes Nl, N2, N3, and N4 as shown.
- the resistors 1121, 1122, and 1123 form a voltage divider network for sampling the input AC waveform, wherein the voltage divider network comprises a feedback node N2 and an output node N3.
- the resistor 1124 is connected between the feedback node N2 and an output node N4 of the storage circuitry 1150 to provide a feedback voltage from the storage capacitor 1152.
- the switch driver circuitry 1130 comprises a resistor 1131 connected between nodes Nl and N5, and a switch element 1132.
- the switch element 1161 of the voltage regulator circuitry 1160 comprises a drain terminal D connected to the output node N4 of the storage circuitry 1150, a gate terminal G connected to a node N7 between the resistor 1162 and the Zener diode 1163, and a source terminal S connected to an output node N8 of the voltage regulator circuitry 1160.
- the capacitor 1164 is connected between the output node N8 of the voltage regulator circuitry 1160 and the output node N6 of the inrush protection circuitry 1110.
- the resistor 1124 (or sense resistor) is connected between the output node N4 of the storage circuitry 1150 to provide a feedback voltage that is applied to the feedback node N2 of the sampling circuitry 1120 through the feedback resistor 1124.
- the feedback path provided by the connection of the feedback resistor 1124 between nodes N4 and N2 provides an exemplary embodiment of the feedback voltage 1180 as shown in FIG. 11 A, wherein the charge of the storage capacitor 1152 is utilized, in part, to generate a control voltage at the output node N3 of the sampling circuitry 1120 connected to the gate terminal G of the switch element 1132 of the switch driver circuitry 1130.
- the switch element 1132 and control switch 1141 are activated, either opened or closed, in synch with the AC voltage input.
- the AC-to-DC converter circuit 1100 provides a low voltage output with pulse modulation at the frequency of the incoming AC source.
- the switches 1132 and 1141 are activated, either opened or closed, at voltages that are near, within the threshold voltages for the switches 1132 and 1141, of the zero crossing of the AC source.
- the output node N4 of the storage circuitry 1150 is applied to an input of the voltage regulator circuitry 1160 and then the load circuit 1102.
- the capacitor 1164 provides storage capacity to buffer and thereby smooth the output from the AC-to-DC converter 1100 to the load circuitry 1102.
- the exemplary AC-to-DC converter circuits 1100 as shown in FIGs. 11A and 11B comprise the inrush protection circuit 1110, the voltage sampling circuit 1120, the switch driver circuit 1130, the control switch and clamp circuit 1140, the storage circuit 1150, and the voltage regulator circuit 1160.
- the selection of components in the voltage sampling circuit 1120 determine the timing of the switch driver 1130.
- the selection of components of the control switch and clamping circuit 1140 determine a peak voltage and current for out pulses. Power output is controlled by selection of both the peak current and the pulse timing. Feedback from the storage element 1152 through the voltage sampling circuit 1120 is utilized to select the pulse timing.
- the AC-to-DC converter circuit 1100 operates in sync with the AC voltage waveform of the AC mains 110
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- Electronic Switches (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021543973A JP7519363B2 (en) | 2018-10-01 | 2019-10-01 | Solid State Circuit Breakers |
EP19869963.9A EP3857662A4 (en) | 2018-10-01 | 2019-10-01 | Solid-state circuit interrupters |
CA3115120A CA3115120A1 (en) | 2018-10-01 | 2019-10-01 | Solid-state circuit interrupters |
CN201980076826.7A CN113454864A (en) | 2018-10-01 | 2019-10-01 | Solid state circuit interrupter |
KR1020217013156A KR20210064372A (en) | 2018-10-01 | 2019-10-01 | Solid-state circuit breakers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/149,094 US10985548B2 (en) | 2018-10-01 | 2018-10-01 | Circuit interrupter with optical connection |
US16/149,094 | 2018-10-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020072516A1 true WO2020072516A1 (en) | 2020-04-09 |
Family
ID=69946228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2019/054102 WO2020072516A1 (en) | 2018-10-01 | 2019-10-01 | Solid-state circuit interrupters |
Country Status (7)
Country | Link |
---|---|
US (1) | US10985548B2 (en) |
EP (1) | EP3857662A4 (en) |
JP (1) | JP7519363B2 (en) |
KR (1) | KR20210064372A (en) |
CN (1) | CN113454864A (en) |
CA (1) | CA3115120A1 (en) |
WO (1) | WO2020072516A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10834792B2 (en) | 2018-12-17 | 2020-11-10 | Intelesol, Llc | AC-driven light-emitting diode systems |
US10985548B2 (en) | 2018-10-01 | 2021-04-20 | Intelesol, Llc | Circuit interrupter with optical connection |
US11056981B2 (en) | 2018-07-07 | 2021-07-06 | Intelesol, Llc | Method and apparatus for signal extraction with sample and hold and release |
US11170964B2 (en) | 2019-05-18 | 2021-11-09 | Amber Solutions, Inc. | Intelligent circuit breakers with detection circuitry configured to detect fault conditions |
US11197153B2 (en) | 2018-09-27 | 2021-12-07 | Amber Solutions, Inc. | Privacy control and enhancements for distributed networks |
US11205011B2 (en) | 2018-09-27 | 2021-12-21 | Amber Solutions, Inc. | Privacy and the management of permissions |
US11334388B2 (en) | 2018-09-27 | 2022-05-17 | Amber Solutions, Inc. | Infrastructure support to enhance resource-constrained device capabilities |
US11349296B2 (en) | 2018-10-01 | 2022-05-31 | Intelesol, Llc | Solid-state circuit interrupters |
US11349297B2 (en) | 2020-01-21 | 2022-05-31 | Amber Solutions, Inc. | Intelligent circuit interruption |
US11581725B2 (en) | 2018-07-07 | 2023-02-14 | Intelesol, Llc | Solid-state power interrupters |
US11671029B2 (en) | 2018-07-07 | 2023-06-06 | Intelesol, Llc | AC to DC converters |
US11670946B2 (en) | 2020-08-11 | 2023-06-06 | Amber Semiconductor, Inc. | Intelligent energy source monitoring and selection control system |
US12113525B2 (en) | 2021-09-30 | 2024-10-08 | Amber Semiconductor, Inc. | Intelligent electrical switches |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11270854B2 (en) * | 2018-12-26 | 2022-03-08 | Eaton Intelligent Power Limited | Circuit protection devices, systems and methods for explosive environment compliance |
US11539201B2 (en) * | 2019-03-04 | 2022-12-27 | Portwell Inc. | Reverse polarity protection device |
US11664741B2 (en) * | 2019-07-25 | 2023-05-30 | Susan Rhodes | System and method for AC power control |
EP3799306A1 (en) * | 2019-09-27 | 2021-03-31 | Siemens Aktiengesellschaft | Electronic circuit breaker |
US11742653B2 (en) * | 2019-11-04 | 2023-08-29 | Semiconductor Components Industries, Llc | Integrated circuit module for circuit breakers, relays and contactors |
US12119688B2 (en) | 2022-08-23 | 2024-10-15 | Caterpillar Inc. | Dual pole high voltage disconnect |
CN115603275A (en) * | 2022-09-08 | 2023-01-13 | 英业达科技有限公司(Cn) | Electronic fuse type protection circuit system and electronic fuse type protection circuit thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1302357A (en) | 1969-05-29 | 1973-01-10 | ||
EP0016646A1 (en) * | 1979-03-23 | 1980-10-01 | Westinghouse Electric Corporation | AC Solid-state circuit breaker |
US5559656A (en) * | 1993-04-01 | 1996-09-24 | International Rectifier Corporation | IGBT switching voltage transient protection circuit |
DE19712261A1 (en) | 1997-03-24 | 1998-10-08 | Siemens Ag | Electronic security |
US6160689A (en) * | 1997-10-09 | 2000-12-12 | Jay Stolzenberg | Two wire solid state AC/DC circuit breaker |
US7643256B2 (en) * | 2006-12-06 | 2010-01-05 | General Electric Company | Electromechanical switching circuitry in parallel with solid state switching circuitry selectively switchable to carry a load appropriate to such circuitry |
US8482885B2 (en) * | 2009-09-14 | 2013-07-09 | Electronic Systems Protection, Inc. | Hybrid switch circuit |
WO2016105505A1 (en) | 2014-12-23 | 2016-06-30 | Revive Electronics, LLC | Apparatuses and methods for controlling power to electronic devices |
US20170179946A1 (en) * | 2015-12-22 | 2017-06-22 | Rolls-Royce Plc | Solid state power control |
CA3022065A1 (en) * | 2016-05-07 | 2017-11-16 | Intelesol, Llc | Solid-state line disturbance circuit interrupter |
WO2020014161A1 (en) | 2018-07-07 | 2020-01-16 | Intelesol, Llc | Solid state power interrupter |
Family Cites Families (278)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1563772A1 (en) | 1966-10-20 | 1970-04-09 | Siemens Ag | Circuit arrangement acting as fully electronic, bipolar overcurrent protection |
US3777253A (en) | 1972-10-24 | 1973-12-04 | Allen Bradley Co | Low power loss voltage supply circuit |
US4074345A (en) | 1976-11-02 | 1978-02-14 | Ackermann Walter J | Electronic power supply |
US4127895A (en) | 1977-08-19 | 1978-11-28 | Krueger Paul J | Charge-transfer voltage converter |
DE2747607C2 (en) | 1977-10-24 | 1991-05-08 | Sds-Elektro Gmbh, 8024 Deisenhofen | Circuit arrangement for controlling a bistable relay |
US4245185A (en) | 1979-03-23 | 1981-01-13 | Westinghouse Electric Corp. | Solid state circuit breaker with three phase capability |
US4245184A (en) | 1979-03-23 | 1981-01-13 | Westinghouse Electric Corp. | AC Solid-state circuit breaker |
US4245148A (en) | 1979-09-14 | 1981-01-13 | Wisco Industries, Inc. | Optically sensitive control circuit for a food browning device |
US4466071A (en) | 1981-09-28 | 1984-08-14 | Texas A&M University System | High impedance fault detection apparatus and method |
US4487458A (en) | 1982-09-28 | 1984-12-11 | Eaton Corporation | Bidirectional source to source stacked FET gating circuit |
DE3240778A1 (en) | 1982-11-04 | 1984-05-10 | Siemens AG, 1000 Berlin und 8000 München | ELECTRONIC SWITCH |
US4581540A (en) | 1984-03-16 | 1986-04-08 | Teledyne Industries, Inc. | Current overload protected solid state relay |
US4653084A (en) | 1984-07-20 | 1987-03-24 | Om Ahuja | Remote actuated switch |
US4649302A (en) | 1984-07-30 | 1987-03-10 | Eaton Corporation | DC or AC solid state switch with improved line-derived control circuit power supply |
US4631625A (en) | 1984-09-27 | 1986-12-23 | Siemens Energy & Automation, Inc. | Microprocessor controlled circuit breaker trip unit |
US4636907A (en) | 1985-07-11 | 1987-01-13 | General Electric Company | Arcless circuit interrupter |
JPS6244917A (en) * | 1985-08-22 | 1987-02-26 | 三菱電機株式会社 | Switching circuit |
US4685046A (en) | 1985-10-03 | 1987-08-04 | The Scott & Fetzer Company | Low voltage direct current power supply |
US4682061A (en) | 1986-05-01 | 1987-07-21 | Honeywell Inc. | MOSFET transistor switch control |
DE3639256A1 (en) | 1986-11-17 | 1988-05-26 | Agie Ag Ind Elektronik | PULSE GENERATOR FOR SPARK-EROSIVE METAL PROCESSING |
US4812995A (en) | 1987-05-19 | 1989-03-14 | Girgis Adly A | Adaptive Kalman Filtering in fault classification |
JPS6486712A (en) * | 1987-09-29 | 1989-03-31 | Idec Izumi Corp | Single pole circuit breaker |
US4888504A (en) | 1988-10-07 | 1989-12-19 | International Rectifier Corporation | Bidirectional MOSFET switching circuit with single gate bias |
US5006737A (en) | 1989-04-24 | 1991-04-09 | Motorola Inc. | Transformerless semiconductor AC switch having internal biasing means |
US5121282A (en) | 1990-03-30 | 1992-06-09 | White Orval C | Arcing fault detector |
ES2096742T3 (en) | 1991-01-16 | 1997-03-16 | Felten & Guilleaume Ag Oester | FAULT CURRENT SWITCH. |
EP0500113B1 (en) | 1991-02-22 | 1997-12-17 | Matsushita Electric Industrial Co., Ltd. | Power-supply unit |
US5537029A (en) | 1992-02-21 | 1996-07-16 | Abb Power T&D Company Inc. | Method and apparatus for electronic meter testing |
US5276737B1 (en) | 1992-04-20 | 1995-09-12 | Silvio Micali | Fair cryptosystems and methods of use |
JPH0653779A (en) | 1992-07-30 | 1994-02-25 | Hioki Ee Corp | Dc signal extract method in ac signal and method for eliminating the dc signal |
US5410745A (en) | 1993-05-20 | 1995-04-25 | Motorola, Inc. | Detector and video amplifier |
JP3126565B2 (en) | 1993-11-01 | 2001-01-22 | 株式会社東芝 | AC / DC converter |
US5510747A (en) | 1993-11-30 | 1996-04-23 | Siliconix Incorporated | Gate drive technique for a bidirectional blocking lateral MOSFET |
US5581433A (en) | 1994-04-22 | 1996-12-03 | Unitrode Corporation | Electronic circuit breaker |
US5654880A (en) | 1996-01-16 | 1997-08-05 | California Institute Of Technology | Single-stage AC-to-DC full-bridge converter with magnetic amplifiers for input current shaping independent of output voltage regulation |
DE19631477A1 (en) | 1996-08-03 | 1998-02-05 | Bosch Gmbh Robert | Adjustable voltage divider arrangement manufactured in hybrid technology |
US5796274A (en) | 1996-10-16 | 1998-08-18 | Lockheed Martin Corporation | Fault tolerant MOSFET driver |
US5903130A (en) | 1996-11-01 | 1999-05-11 | Lucas Aerospace Power Equipment Corporation | Fail-safe regulator biasing circuit |
FR2755536B1 (en) | 1996-11-07 | 1998-12-04 | Schneider Electric Sa | ADJUSTABLE ELECTROMAGNETIC TRIGGER AND CIRCUIT BREAKER COMPRISING SUCH A TRIGGER |
FR2756049B1 (en) | 1996-11-18 | 1998-12-31 | Schneider Electric Sa | DEVICE FOR THE PREVENTIVE DETECTION OF FAULTS WITH IDENTIFICATION OF THE TYPE OF LOAD |
JPH11178211A (en) * | 1997-12-12 | 1999-07-02 | Moriguchi Katsura | Tap |
US6141197A (en) | 1998-03-10 | 2000-10-31 | General Electric Company | Smart residential circuit breaker |
US6167329A (en) | 1998-04-06 | 2000-12-26 | Eaton Corporation | Dual microprocessor electronic trip unit for a circuit interrupter |
US5933305A (en) | 1998-06-02 | 1999-08-03 | Eaton Corporation | Arc fault detector comparing integrated interval to interval filtered load current and circuit breaker incorporating same |
US6115267A (en) | 1998-06-09 | 2000-09-05 | Herbert; Edward | AC-DC converter with no input rectifiers and power factor correction |
US6169391B1 (en) | 1999-07-12 | 2001-01-02 | Supertex, Inc. | Device for converting high voltage alternating current to low voltage direct current |
JP2001045650A (en) * | 1999-08-02 | 2001-02-16 | Yazaki Corp | Power supply controller |
JP3630032B2 (en) * | 1999-09-10 | 2005-03-16 | 松下電器産業株式会社 | Relay drive device |
DE19950135A1 (en) | 1999-10-18 | 2001-04-19 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Control circuit for LED array has master string with given number of LEDs in string and control circuit also controls semiconducting switch of slave string |
JP2001196908A (en) * | 1999-10-28 | 2001-07-19 | Harumi Suzuki | Semiconductor switch circuit for ac circuit |
FR2802360B1 (en) | 1999-12-14 | 2002-03-01 | Legrand Sa | METHOD AND DEVICE FOR ELECTRIC POWER SUPPLY OF A LOAD BY A DRIVE HAS AT LEAST ONE SWITCH CONTROLLED |
US7367121B1 (en) | 2000-01-05 | 2008-05-06 | Protectconnect | Electrical wiring method |
CA2337446A1 (en) | 2000-02-17 | 2001-08-17 | Bruce F. Macbeth | Arc fault circuit interrupter recognizing arc noise burst patterns |
CN1416614A (en) | 2000-03-08 | 2003-05-07 | 株式会社安川电机 | PWM cycloconverter and power fault detctor |
US6369554B1 (en) | 2000-09-01 | 2002-04-09 | Marvell International, Ltd. | Linear regulator which provides stabilized current flow |
US6756998B1 (en) | 2000-10-19 | 2004-06-29 | Destiny Networks, Inc. | User interface and method for home automation system |
AU2002237761A1 (en) | 2001-01-10 | 2002-07-24 | Iwatt Corporation | Phase-controlled ac-dc power converter |
ES2287266T3 (en) | 2001-01-23 | 2007-12-16 | Donnelly Corporation | IMPROVED VEHICLE LIGHTING SYSTEM. |
DE10139860A1 (en) | 2001-08-14 | 2003-03-13 | Bosch Gmbh Robert | Device and method for monitoring the connection of an electrical supply unit |
US7164238B2 (en) | 2001-11-14 | 2007-01-16 | Astral Communications, Inc. | Energy savings device and method for a resistive and/or an inductive load and/or a capacitive load |
US6538906B1 (en) | 2002-02-11 | 2003-03-25 | Delta Electronics, Inc. | Energy storage circuit for DC-DC converter |
JP2003243512A (en) | 2002-02-14 | 2003-08-29 | Hitachi Ltd | Electrostatic breakdown protection circuit |
EP1345310A1 (en) | 2002-03-12 | 2003-09-17 | STMicroelectronics N.V. | Transformerless ac/dc-converter |
US6788512B2 (en) | 2002-04-16 | 2004-09-07 | General Electric Company | Electronic trip unit capable of analog and digital setting of circuit breaker setpoints |
AU2003248564A1 (en) | 2002-05-23 | 2003-12-12 | Protectconnect, Inc. | Safety module electrical distribution system |
JP4061168B2 (en) | 2002-10-16 | 2008-03-12 | 矢崎総業株式会社 | Ground fault detection device and insulation resistance measurement device |
JP3672552B2 (en) * | 2002-12-26 | 2005-07-20 | 株式会社エヌ・ティ・ティ・データ・イー・エックス・テクノ | Overvoltage overcurrent protection circuit |
US7369386B2 (en) | 2003-06-06 | 2008-05-06 | Electronic Theatre Controls, Inc. | Overcurrent protection for solid state switching system |
US7091672B2 (en) | 2003-06-10 | 2006-08-15 | Lutron Electronics Co., Inc. | High efficiency off-line linear power supply |
US6906476B1 (en) | 2003-07-25 | 2005-06-14 | Asp Corporation | Power control system for reducing power to lighting systems |
US7610616B2 (en) | 2003-10-17 | 2009-10-27 | Fujitsu Limited | Pervasive security mechanism by combinations of network and physical interfaces |
US20050162139A1 (en) | 2004-01-23 | 2005-07-28 | Mark Hirst | Alternating current switching circuit |
DE102004025420B4 (en) | 2004-05-24 | 2014-05-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Circuit element for securing a load circuit and chip with such a circuit element |
US7304828B1 (en) | 2004-09-22 | 2007-12-04 | Shvartsman Vladimir A | Intelligent solid state relay/breaker |
USD568253S1 (en) | 2004-12-08 | 2008-05-06 | Protectconnect, Inc. | Electrical module |
US7821023B2 (en) | 2005-01-10 | 2010-10-26 | Cree, Inc. | Solid state lighting component |
US7110225B1 (en) | 2005-03-31 | 2006-09-19 | Leviton Manufacturing Co., Inc. | Arc-limiting switching circuit |
US7297603B2 (en) | 2005-03-31 | 2007-11-20 | Semiconductor Components Industries, L.L.C. | Bi-directional transistor and method therefor |
DE102006022845B4 (en) | 2005-05-23 | 2016-01-07 | Infineon Technologies Ag | A drive circuit for a switch unit of a clocked power supply circuit and resonance converter |
US7319574B2 (en) | 2005-05-23 | 2008-01-15 | Eaton Corporation | Arc fault detection apparatus, method and system for an underground electrical conductor |
US7830042B2 (en) | 2005-06-06 | 2010-11-09 | Lutron Electronics Co., Inc. | Dimmer switch for use with lighting circuits having three-way switches |
US8615332B2 (en) | 2005-06-09 | 2013-12-24 | Whirlpool Corporation | Smart current attenuator for energy conservation in appliances |
US7164589B1 (en) | 2005-07-11 | 2007-01-16 | International Rectifier Corporation | Bridgeless bi-directional forward type converter |
US7045723B1 (en) | 2005-09-27 | 2006-05-16 | Joti Projkovski | Fail safe electrical receptacle |
US20070143826A1 (en) | 2005-12-21 | 2007-06-21 | Sastry Manoj R | Method, apparatus and system for providing stronger authentication by extending physical presence to a remote entity |
USD558683S1 (en) | 2006-01-20 | 2008-01-01 | Watlow Electric Manufacturing Company | Power controller base housing |
JP4741391B2 (en) | 2006-03-09 | 2011-08-03 | オムロンオートモーティブエレクトロニクス株式会社 | Ground fault detection device for motor drive circuit |
US7746677B2 (en) | 2006-03-09 | 2010-06-29 | Avago Technologies Wireless Ip (Singapore) Pte. Ltd. | AC-DC converter circuit and power supply |
US7570031B2 (en) * | 2006-03-17 | 2009-08-04 | Lutron Electronics Co., Inc. | Method and apparatus for preventing multiple attempted firings of a semiconductor switch in a load control device |
US7619365B2 (en) | 2006-04-10 | 2009-11-17 | Lutron Electronics Co., Inc. | Load control device having a variable drive circuit |
FI20065390L (en) | 2006-06-08 | 2007-12-09 | Innohome Oy | Automatic multi-level access control system for electronic and electrical equipment |
US20080151444A1 (en) * | 2006-12-20 | 2008-06-26 | John D Upton | Method and apparatus for protection against current overloads |
US7595680B2 (en) | 2007-01-25 | 2009-09-29 | Panasonic Corporation | Bidirectional switch and method for driving the same |
US20080180866A1 (en) | 2007-01-29 | 2008-07-31 | Honor Tone, Ltd. | Combined arc fault circuit interrupter and leakage current detector interrupter |
US7633727B2 (en) | 2007-02-27 | 2009-12-15 | Eaton Corporation | Arc fault circuit interrupter and series arc fault detection method using plural high frequency bands |
US7904209B2 (en) | 2007-03-01 | 2011-03-08 | Syracuse University | Open web services-based indoor climate control system |
BRPI0808869B1 (en) | 2007-03-14 | 2019-02-19 | Zonit Structured Solutions, Llc | NEMA SMART OUTLETS AND ASSOCIATED NETWORKS. |
TWI330441B (en) | 2007-04-13 | 2010-09-11 | Ablerex Electronics Co Ltd | Active power conditioner |
JP2009032506A (en) | 2007-07-26 | 2009-02-12 | Panasonic Corp | Internal short-circuit detection method and device of non-aqueous electrolyte secondary battery |
US7693670B2 (en) | 2007-08-14 | 2010-04-06 | General Electric Company | Cognitive electric power meter |
US7808802B2 (en) | 2007-09-06 | 2010-10-05 | Jun Cai | Isolated switched-mode power supply with output regulation from primary side |
US7729147B1 (en) | 2007-09-13 | 2010-06-01 | Henry Wong | Integrated circuit device using substrate-on-insulator for driving a load and method for fabricating the same |
US7817382B2 (en) | 2008-01-02 | 2010-10-19 | Honeywell International, Inc. | Hybrid high voltage DC contactor with arc energy diversion |
WO2009100230A1 (en) | 2008-02-07 | 2009-08-13 | Inflexis Corporation | Mobile electronic security apparatus and method |
TW200937828A (en) | 2008-02-22 | 2009-09-01 | Macroblock Inc | Electricity -extraction circuit of AC/DC converter take |
GB2458699A (en) | 2008-03-28 | 2009-09-30 | Deepstream Technologies Ltd | Linear regulator with zero crossing coordination |
FR2930091B1 (en) * | 2008-04-09 | 2011-10-28 | Schneider Electric Ind Sas | STATIC RELAY SYSTEM COMPRISING TWO JFET-TYPE TRANSISTORS IN SERIES |
US7936279B2 (en) | 2008-05-15 | 2011-05-03 | Lex Products Corp. | Apparatus and method of illuminating indicator lights |
US8124888B2 (en) | 2008-06-25 | 2012-02-28 | Wire Wrangler, LLC | Concealed and flush dual phone and power outlet |
US20100145479A1 (en) | 2008-10-09 | 2010-06-10 | G2 Software Systems, Inc. | Wireless Portable Sensor Monitoring System |
US7948719B2 (en) | 2008-10-15 | 2011-05-24 | Masco Corporation | Solid state circuit protection system that works with arc fault circuit interrupter |
US7907430B2 (en) | 2008-12-18 | 2011-03-15 | WaikotoLink Limited | High current voltage regulator |
US8125326B2 (en) | 2009-03-13 | 2012-02-28 | Greg Romp | Intelligent vehicular speed control system |
US8072158B2 (en) | 2009-03-25 | 2011-12-06 | General Electric Company | Dimming interface for power line |
US8062059B2 (en) | 2009-04-11 | 2011-11-22 | Roneker Michael D | Switched receptacle device with LED indication |
JP2010261862A (en) | 2009-05-08 | 2010-11-18 | Sony Corp | Ac line signal detection device, method therefor, and power supply device |
US8569956B2 (en) | 2009-06-04 | 2013-10-29 | Point Somee Limited Liability Company | Apparatus, method and system for providing AC line power to lighting devices |
JP5501667B2 (en) | 2009-06-17 | 2014-05-28 | パナソニック株式会社 | AC / DC switch |
US8729729B2 (en) | 2009-06-18 | 2014-05-20 | Mikhail Fridberg | Method and apparatus for driving low-power loads from AC sources |
US7936135B2 (en) | 2009-07-17 | 2011-05-03 | Bridgelux, Inc | Reconfigurable LED array and use in lighting system |
GB2473056A (en) * | 2009-09-01 | 2011-03-02 | Vetco Gray Controls Ltd | AC power switch with overcurrent protection |
US8781637B2 (en) * | 2009-10-27 | 2014-07-15 | Voltserver Inc. | Safe exposed conductor power distribution system |
US8463453B2 (en) | 2009-11-13 | 2013-06-11 | Leviton Manufacturing Co., Inc. | Intelligent metering demand response |
US8664881B2 (en) | 2009-11-25 | 2014-03-04 | Lutron Electronics Co., Inc. | Two-wire dimmer switch for low-power loads |
US8664804B2 (en) | 2009-12-01 | 2014-03-04 | International Electrical Savings & Development, LLC | Systems and devices for reducing phantom load |
US8817431B2 (en) | 2009-12-18 | 2014-08-26 | True-Safe Technologies, Inc. | System and integrated method for a parallel and series arc fault circuit interrupter |
US8618751B2 (en) | 2009-12-30 | 2013-12-31 | Leviton Manufacturing Co., Inc. | Phase control with adaptive parameters |
KR100997050B1 (en) | 2010-05-06 | 2010-11-29 | 주식회사 티엘아이 | Led lighting system for improving linghting amount |
US20110292703A1 (en) | 2010-05-29 | 2011-12-01 | Cuks, Llc | Single-stage AC-to-DC converter with isolation and power factor correction |
CA2799441A1 (en) | 2010-06-04 | 2011-12-08 | Sensus Usa Inc. | Method and system for non-intrusive load monitoring and processing |
US9401967B2 (en) | 2010-06-09 | 2016-07-26 | Brocade Communications Systems, Inc. | Inline wire speed deduplication system |
JP2012004253A (en) | 2010-06-15 | 2012-01-05 | Panasonic Corp | Bidirectional switch, two-wire ac switch, switching power circuit, and method for driving bidirectional switch |
US8717720B2 (en) | 2010-07-20 | 2014-05-06 | Siemens Industry, Inc. | Systems and methods for providing arc fault and/or ground fault protection for distributed generation sources |
US8743523B2 (en) | 2010-07-28 | 2014-06-03 | General Electric Company | Systems, methods, and apparatus for limiting voltage across a switch |
US8817441B2 (en) | 2010-08-04 | 2014-08-26 | Cree, Inc. | Circuit breaker |
JP5406146B2 (en) | 2010-08-31 | 2014-02-05 | 日立オートモティブシステムズ株式会社 | Overcurrent detection device and overcurrent detection method for electric drive control device |
USD638355S1 (en) | 2010-09-09 | 2011-05-24 | Cheng Uei Precision Industry Co., Ltd. | Power adapter |
US8560134B1 (en) | 2010-09-10 | 2013-10-15 | Kwangduk Douglas Lee | System and method for electric load recognition from centrally monitored power signal and its application to home energy management |
JP2012065459A (en) * | 2010-09-16 | 2012-03-29 | Nippon Telegr & Teleph Corp <Ntt> | Overcurrent detecting device, and overcurrent detecting method |
US8330390B2 (en) | 2011-04-11 | 2012-12-11 | Bridgelux, Inc. | AC LED light source with reduced flicker |
JP5711040B2 (en) | 2011-04-28 | 2015-04-30 | トランスフォーム・ジャパン株式会社 | Bidirectional switch and charge / discharge protection device using the same |
US8941264B2 (en) | 2011-06-20 | 2015-01-27 | Bae Systems Information And Electronic Systems Integration Inc. | Apparatus for bi-directional power switching in low voltage vehicle power distribution systems |
US8599523B1 (en) | 2011-07-29 | 2013-12-03 | Leviton Manufacturing Company, Inc. | Arc fault circuit interrupter |
EP2560063A1 (en) | 2011-08-15 | 2013-02-20 | Nxp B.V. | Voltage regulator circuit and method |
US8861238B2 (en) | 2011-08-25 | 2014-10-14 | North Carolina State University | Isolated soft-switch single-stage AC-DC converter |
US9142962B2 (en) | 2011-08-29 | 2015-09-22 | Control4 Corporation | Wall box device for managing energy |
US8718830B2 (en) | 2011-09-08 | 2014-05-06 | Schneider Electric USA, Inc. | Optimized protection coordination of electronic-trip circuit breaker by short circuit current availability monitoring |
US20120095605A1 (en) | 2011-09-17 | 2012-04-19 | Tran Bao Q | Smart building systems and methods |
US8649883B2 (en) | 2011-10-04 | 2014-02-11 | Advanergy, Inc. | Power distribution system and method |
US8482013B2 (en) | 2011-10-05 | 2013-07-09 | Bridgelux, Inc. | Reconfigurable multi-LED light source |
US9252652B2 (en) | 2011-11-16 | 2016-02-02 | Rockwell Automation Technologies, Inc. | Wide input voltage range power supply circuit |
US8664886B2 (en) | 2011-12-22 | 2014-03-04 | Leviton Manufacturing Company, Inc. | Timer-based switching circuit synchronization in an electrical dimmer |
TWI467903B (en) | 2011-12-28 | 2015-01-01 | Richtek Technology Corp | Self discharge bleeding circuit, independent bleeding integrated circuit device and bleeding method for an input power filter capacitor, and ac-to-dc interface |
CA2865697C (en) | 2012-02-28 | 2018-01-09 | Jeffrey N. Arensmeier | Hvac system remote monitoring and diagnosis |
US20130253898A1 (en) | 2012-03-23 | 2013-09-26 | Power Analytics Corporation | Systems and methods for model-driven demand response |
JP2013230034A (en) | 2012-04-26 | 2013-11-07 | Diamond Electric Mfg Co Ltd | Input voltage data formation device, and ac/dc converter including the same |
US8760825B2 (en) | 2012-06-11 | 2014-06-24 | Schneider Electric USA, Inc. | Wireless branch circuit energy monitoring system |
US8886785B2 (en) | 2012-07-17 | 2014-11-11 | The Procter & Gamble Company | Home network of connected consumer devices |
US9099846B2 (en) | 2012-07-20 | 2015-08-04 | Assembled Products, A Unit Of Jason Incorporated | Plug and play control panel module with integrally socketed circuit board |
US9287792B2 (en) | 2012-08-13 | 2016-03-15 | Flextronics Ap, Llc | Control method to reduce switching loss on MOSFET |
MX349045B (en) | 2012-08-21 | 2017-07-06 | N2 Global Solutions Incorporated | A system and apparatus for providing and managing electricity. |
US9144139B2 (en) | 2012-08-27 | 2015-09-22 | The Watt Stopper, Inc. | Method and apparatus for controlling light levels to save energy |
US9391525B2 (en) | 2012-09-24 | 2016-07-12 | Dialog Semiconductor Inc. | Power system switch protection using output driver regulation |
US9465927B2 (en) | 2012-10-02 | 2016-10-11 | Disney Enterprises, Inc. | Validating input by detecting and recognizing human presence |
FR2996693B1 (en) | 2012-10-05 | 2014-11-21 | Schneider Electric Ind Sas | REACTIVE ENERGY COMPENSATOR |
US20140159593A1 (en) | 2012-12-07 | 2014-06-12 | Vastview Technology Inc. | Apparatus having universal structure for driving a plurality of led strings |
US9506952B2 (en) | 2012-12-31 | 2016-11-29 | Veris Industries, Llc | Power meter with automatic configuration |
US9461546B2 (en) | 2013-02-08 | 2016-10-04 | Advanced Charging Technologies, LLC | Power device and method for delivering power to electronic devices |
US20170004948A1 (en) | 2013-03-13 | 2017-01-05 | Google Inc. | Electrical circuit protector |
US9824568B2 (en) | 2013-03-13 | 2017-11-21 | Qualcomm Incorporated | Systems and methods for monitoring a proximity of a personal item and automatically assigning safe and unsafe zones |
US9498275B2 (en) | 2013-03-14 | 2016-11-22 | Covidien Lp | Systems and methods for arc detection and drag adjustment |
TWI479784B (en) | 2013-03-18 | 2015-04-01 | Power Forest Technology Corp | Ac/dc converting circuit |
KR20150018734A (en) | 2013-08-09 | 2015-02-24 | 삼성전자주식회사 | Apparatus and method for wireless power receiving system |
US9965007B2 (en) | 2013-08-21 | 2018-05-08 | N2 Global Solutions Incorporated | System and apparatus for providing and managing electricity |
US8971002B1 (en) * | 2013-08-22 | 2015-03-03 | Varian Semiconductor Equipment Associates, Inc. | System and method of providing isolated power to gate driving circuits in solid state fault current limiters |
US9366702B2 (en) | 2013-08-23 | 2016-06-14 | Green Edge Technologies, Inc. | Devices and methods for determining whether an electrical device or component can sustain variations in voltage |
CN104427688B (en) | 2013-08-23 | 2016-09-28 | 四川新力光源股份有限公司 | LED alternating-current drive circuit |
JP5643951B2 (en) | 2013-10-28 | 2014-12-24 | 株式会社中央製作所 | DC power supply |
USD720295S1 (en) | 2013-12-06 | 2014-12-30 | Cooper Technologies Company | Multi-port USB device |
CN103682799B (en) | 2013-12-11 | 2016-03-02 | 杨家明 | Waterproof socket |
US9264034B2 (en) | 2013-12-19 | 2016-02-16 | Nxp B.V. | Circuit and method for body biasing |
US9990786B1 (en) | 2014-01-17 | 2018-06-05 | Microstrategy Incorporated | Visitor credentials |
US10072942B2 (en) | 2016-05-03 | 2018-09-11 | Ivani, LLC | Electrical monitoring and network enabled electrical faceplate |
US10211004B2 (en) | 2014-11-04 | 2019-02-19 | Ivani, LLC | Intelligent electrical switch |
US10362112B2 (en) | 2014-03-06 | 2019-07-23 | Verizon Patent And Licensing Inc. | Application environment for lighting sensory networks |
WO2015134755A2 (en) | 2014-03-07 | 2015-09-11 | Ubiquiti Networks, Inc. | Devices and methods for networked living and work spaces |
CN104954399B (en) | 2014-03-27 | 2018-06-19 | 正文科技股份有限公司 | Bind the method and its binding system of mobile carrier and intelligent apparatus |
US20150309521A1 (en) | 2014-04-29 | 2015-10-29 | Yang Pan | Cloud Based Power Management System |
US9747298B2 (en) | 2014-05-02 | 2017-08-29 | Vmware, Inc. | Inline garbage collection for log-structured file systems |
US9939823B2 (en) | 2014-06-05 | 2018-04-10 | Wise Spaces Ltd. | Home automation control system |
US9774410B2 (en) | 2014-06-10 | 2017-09-26 | PB, Inc. | Radiobeacon data sharing by forwarding low energy transmissions to a cloud host |
US9639098B2 (en) | 2014-06-17 | 2017-05-02 | Magnum Energy Solutions, LLC | Thermostat and messaging device and methods thereof |
US9372477B2 (en) | 2014-07-15 | 2016-06-21 | Leeo, Inc. | Selective electrical coupling based on environmental conditions |
WO2016010529A1 (en) | 2014-07-15 | 2016-01-21 | Leeo, Inc. | Selective electrical coupling based on environmental conditions |
US9824193B2 (en) | 2014-07-29 | 2017-11-21 | Aruba Networks, Inc. | Method for using mobile devices with validated user network identity as physical identity proof |
US9621053B1 (en) | 2014-08-05 | 2017-04-11 | Flextronics Ap, Llc | Peak power control technique for primary side controller operation in continuous conduction mode |
US10101716B2 (en) | 2014-12-04 | 2018-10-16 | Belkin International, Inc. | Autonomous, distributed, rule-based intelligence |
US9941799B1 (en) | 2014-08-08 | 2018-04-10 | Flextronics Ap, Llc | Cascade power system with isolated Class-E resonant circuit |
US9307622B2 (en) | 2014-08-22 | 2016-04-05 | Lutron Electronics Co., Inc. | Three-way switching circuit having delay for inrush current protection |
US10133511B2 (en) | 2014-09-12 | 2018-11-20 | Netapp, Inc | Optimized segment cleaning technique |
US20160110977A1 (en) | 2014-10-15 | 2016-04-21 | Umbrela Smart Inc. | Wall-Mounted Smart Switches and Outlets for Use in Building Wiring for Load Control, Home Automation, and/or Security Purposes |
US10175276B2 (en) | 2014-11-26 | 2019-01-08 | Sense Labs, Inc. | Identifying and categorizing power consumption with disaggregation |
FR3029703B1 (en) | 2014-12-09 | 2017-12-15 | Legrand France | ELECTRICAL SOCKET DEVICE COMPRISING AT LEAST ONE LOCKING AND UNLOCKING ELEMENT |
US9608538B2 (en) | 2014-12-19 | 2017-03-28 | Distech Controls Inc. | Common zero volt reference AC / DC power supply with positive and negative rectification and method of operation thereof |
US9791112B2 (en) | 2014-12-24 | 2017-10-17 | Bridgelux, Inc. | Serial and parallel LED configurations for linear lighting modules |
EP3243195A4 (en) | 2015-01-06 | 2018-08-22 | Cmoo Systems Itd. | A method and apparatus for power extraction in a pre-existing ac wiring infrastructure |
US9439318B2 (en) | 2015-01-23 | 2016-09-06 | Liang Light Chen | Electrical receptacle controller |
US9443845B1 (en) | 2015-02-23 | 2016-09-13 | Freescale Semiconductor, Inc. | Transistor body control circuit and an integrated circuit |
US10212251B2 (en) | 2015-03-16 | 2019-02-19 | Invensense, Inc. | Method and system for generating exchangeable user profiles |
JP6470083B2 (en) | 2015-03-20 | 2019-02-13 | ローム株式会社 | Switch drive device, light emitting device, vehicle |
US10276321B2 (en) | 2015-04-06 | 2019-04-30 | Atom Power, Inc. | Dynamic coordination of protection devices in electrical distribution systems |
US9490996B1 (en) | 2015-04-17 | 2016-11-08 | Facebook, Inc. | Home automation device |
US9646325B2 (en) | 2015-05-21 | 2017-05-09 | Cloudtraq Llc | Zero-wait publishing, searching, and queuing systems and methods |
US9774182B2 (en) | 2015-06-09 | 2017-09-26 | The United States Of America As Represented By Secretary Of The Navy | Intelligent solid-state integrated crowbar/circuit breaker |
KR102303984B1 (en) | 2015-06-22 | 2021-09-23 | 삼성전자 주식회사 | Method and apparatus for subscribing electronic device |
US20170019969A1 (en) | 2015-07-17 | 2017-01-19 | EPtronics, Inc. | Ac led light engine |
US10181959B2 (en) | 2015-07-27 | 2019-01-15 | International Business Machines Corporation | Methods and systems for mindful home automation |
US10122718B2 (en) | 2015-08-21 | 2018-11-06 | Arm Ip Limited | Data access and ownership management |
US10468985B2 (en) | 2015-08-27 | 2019-11-05 | Fairchild Semiconductor Corporation | Input AC line control for AC-DC converters |
WO2017040840A1 (en) | 2015-09-04 | 2017-03-09 | Pcms Holdings, Inc. | User interface method and apparatus for networked devices |
WO2017041011A2 (en) | 2015-09-04 | 2017-03-09 | Lutron Electronics Co., Inc. | Load control device for high-efficiency loads |
WO2017046940A1 (en) | 2015-09-18 | 2017-03-23 | 三菱電機株式会社 | Integrated electric power steering apparatus |
US20170099647A1 (en) | 2015-10-05 | 2017-04-06 | Nebulae LLC | Systems and Methods for Registering Devices in a Wireless Network |
US9679453B2 (en) | 2015-10-20 | 2017-06-13 | Vivint, Inc. | System and methods for correlating sound events to security and/or automation system operations |
US9502832B1 (en) | 2015-12-07 | 2016-11-22 | Mustafa Majeed Ullahkhan | Duplex receptacle having a plurality of LEDs to illuminate the sockets |
JP6632358B2 (en) | 2015-12-11 | 2020-01-22 | エイブリック株式会社 | Amplifier and voltage regulator |
CN105450655B (en) | 2015-12-14 | 2019-05-28 | 小米科技有限责任公司 | Apparatus bound method and apparatus |
US10091017B2 (en) | 2015-12-30 | 2018-10-02 | Echostar Technologies International Corporation | Personalized home automation control based on individualized profiling |
EP3400729B1 (en) | 2016-01-08 | 2019-10-16 | Deutsche Telekom AG | Method for enhanced machine type communication between a mobile communication network and a group of machine type communication devices, mobile communication network, program and computer program product |
US10511492B2 (en) | 2016-01-27 | 2019-12-17 | Starry, Inc. | Application programming interface for premises networking device |
US10109997B2 (en) * | 2016-02-19 | 2018-10-23 | Varian Semiconductor Equipment Associates, Inc. | Fault current limiter having self-checking power electronics and triggering circuit |
EP3770936B1 (en) | 2016-03-01 | 2023-06-07 | Atom Power, Inc. | Hybrid air-gap / solid-state circuit breaker |
US10474636B2 (en) | 2016-03-25 | 2019-11-12 | Amazon Technologies, Inc. | Block allocation for low latency file systems |
US9836243B1 (en) | 2016-03-31 | 2017-12-05 | EMC IP Holding Company LLC | Cache management techniques |
US10148759B2 (en) | 2016-04-04 | 2018-12-04 | Gogo Llc | Presence-based network authentication |
EP3453107A4 (en) | 2016-05-07 | 2019-11-20 | Intelesol, LLC | High efficiency ac to dc converter and methods |
EP3455938B1 (en) | 2016-05-12 | 2023-06-28 | Intelesol, LLC | Electronic switch and dimmer |
US11050236B2 (en) | 2016-05-12 | 2021-06-29 | Intelesol, Llc | Solid-state line disturbance circuit interrupter |
EP3249815B1 (en) | 2016-05-23 | 2019-08-28 | NXP USA, Inc. | Circuit arrangement for fast turn-off of bi-directional switching device |
CN109417844B (en) | 2016-05-24 | 2021-03-12 | 昕诺飞控股有限公司 | Switch-based lighting control |
US10863324B2 (en) | 2016-06-16 | 2020-12-08 | Oath Inc. | Mobile content delivery optimization |
FR3054340B1 (en) | 2016-07-22 | 2020-01-10 | Overkiz | METHOD FOR CONFIGURATION, CONTROL OR SUPERVISION OF A HOME AUTOMATION |
US10049515B2 (en) | 2016-08-24 | 2018-08-14 | Echostar Technologies International Corporation | Trusted user identification and management for home automation systems |
WO2018075726A1 (en) | 2016-10-20 | 2018-04-26 | Intelesol, Llc | Building automation system |
EP3533140B1 (en) | 2016-10-28 | 2024-06-05 | Intelesol, LLC | High efficiency ac direct to dc extraction converter and methods |
KR102399201B1 (en) | 2016-10-28 | 2022-05-17 | 인테레솔, 엘엘씨 | Controls and Methods of AC Power Sources to Identify Loads |
USD814424S1 (en) | 2016-11-10 | 2018-04-03 | Thomas DeCosta | Duplex receptacle housing |
US10492067B2 (en) | 2016-11-18 | 2019-11-26 | Siemens Industry, Inc. | Secure access authorization method |
US20180174076A1 (en) | 2016-12-21 | 2018-06-21 | Shuji Fukami | Automated Property Management, Authorized Entry, and Reservation System Platform |
US10191812B2 (en) | 2017-03-30 | 2019-01-29 | Pavilion Data Systems, Inc. | Recovery mechanism for low latency metadata log |
US10397005B2 (en) | 2017-03-31 | 2019-08-27 | Intel Corporation | Using a trusted execution environment as a trusted third party providing privacy for attestation |
US10223272B2 (en) | 2017-04-25 | 2019-03-05 | Seagate Technology Llc | Latency sensitive metadata object persistence operation for storage device |
US20180342329A1 (en) | 2017-05-24 | 2018-11-29 | Happie Home, Inc. | Happie home system |
US10511576B2 (en) | 2017-06-08 | 2019-12-17 | Microsoft Technology Licensing, Llc | Privacy as a service by offloading user identification and network protection to a third party |
MX2019014839A (en) | 2017-06-09 | 2020-08-03 | Lutron Tech Co Llc | Motor control device. |
US10700864B2 (en) | 2017-07-12 | 2020-06-30 | International Business Machines Corporation | Anonymous encrypted data |
US10541618B2 (en) | 2017-08-09 | 2020-01-21 | Infineon Technologies Austria Ag | Method and apparatus for measuring at least one of output current and output power for isolated power converters |
US20190086979A1 (en) | 2017-09-18 | 2019-03-21 | Lite-On Electronics (Guangzhou) Limited | Monitoring apparatus, monitoring system and monitoring method |
US10673871B2 (en) | 2017-10-04 | 2020-06-02 | New Context Services, Inc. | Autonomous edge device for monitoring and threat detection |
US10819336B2 (en) | 2017-12-28 | 2020-10-27 | Intelesol, Llc | Electronic switch and dimmer |
US10587400B2 (en) | 2018-02-12 | 2020-03-10 | Afero, Inc. | System and method for securely configuring a new device with network credentials |
US10812282B2 (en) | 2018-02-15 | 2020-10-20 | Intelesol, Llc | Multifunctional system integrator |
USD881144S1 (en) | 2018-05-10 | 2020-04-14 | Mark Telefus | Electrical outlet dongle |
USD879056S1 (en) | 2018-05-10 | 2020-03-24 | Mark Telefus | Electrical outlet dongle |
US20190355014A1 (en) | 2018-05-15 | 2019-11-21 | Amber Solutions, Inc. | Predictive analytics system |
US11056981B2 (en) | 2018-07-07 | 2021-07-06 | Intelesol, Llc | Method and apparatus for signal extraction with sample and hold and release |
US11477209B2 (en) | 2018-08-08 | 2022-10-18 | Amber Semiconductor, Inc. | Managing access rights of transferable sensor systems |
US11197153B2 (en) | 2018-09-27 | 2021-12-07 | Amber Solutions, Inc. | Privacy control and enhancements for distributed networks |
US10993082B2 (en) | 2018-09-27 | 2021-04-27 | Amber Solutions, Inc. | Methods and apparatus for device location services |
US10936749B2 (en) | 2018-09-27 | 2021-03-02 | Amber Solutions, Inc. | Privacy enhancement using derived data disclosure |
US10951435B2 (en) | 2018-09-27 | 2021-03-16 | Amber Solutions, Inc. | Methods and apparatus for determining preferences and events and generating associated outreach therefrom |
US10985548B2 (en) | 2018-10-01 | 2021-04-20 | Intelesol, Llc | Circuit interrupter with optical connection |
US11349296B2 (en) | 2018-10-01 | 2022-05-31 | Intelesol, Llc | Solid-state circuit interrupters |
US10887447B2 (en) | 2018-10-10 | 2021-01-05 | Amber Solutions, Inc. | Configuration and management of smart nodes with limited user interfaces |
US11463274B2 (en) | 2018-11-07 | 2022-10-04 | Amber Semiconductor, Inc. | Third party application enablement for node networks deployed in residential and commercial settings |
US11336096B2 (en) | 2018-11-13 | 2022-05-17 | Amber Solutions, Inc. | Managing power for residential and commercial networks |
CA3123586A1 (en) | 2018-12-17 | 2020-06-25 | Intelesol, Llc | Ac-driven light-emitting diode systems |
US11336199B2 (en) | 2019-04-09 | 2022-05-17 | Intelesol, Llc | Load identifying AC power supply with control and methods |
-
2018
- 2018-10-01 US US16/149,094 patent/US10985548B2/en active Active
-
2019
- 2019-10-01 EP EP19869963.9A patent/EP3857662A4/en active Pending
- 2019-10-01 CA CA3115120A patent/CA3115120A1/en active Pending
- 2019-10-01 JP JP2021543973A patent/JP7519363B2/en active Active
- 2019-10-01 WO PCT/US2019/054102 patent/WO2020072516A1/en unknown
- 2019-10-01 KR KR1020217013156A patent/KR20210064372A/en unknown
- 2019-10-01 CN CN201980076826.7A patent/CN113454864A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1302357A (en) | 1969-05-29 | 1973-01-10 | ||
EP0016646A1 (en) * | 1979-03-23 | 1980-10-01 | Westinghouse Electric Corporation | AC Solid-state circuit breaker |
US5559656A (en) * | 1993-04-01 | 1996-09-24 | International Rectifier Corporation | IGBT switching voltage transient protection circuit |
DE19712261A1 (en) | 1997-03-24 | 1998-10-08 | Siemens Ag | Electronic security |
US6160689A (en) * | 1997-10-09 | 2000-12-12 | Jay Stolzenberg | Two wire solid state AC/DC circuit breaker |
US7643256B2 (en) * | 2006-12-06 | 2010-01-05 | General Electric Company | Electromechanical switching circuitry in parallel with solid state switching circuitry selectively switchable to carry a load appropriate to such circuitry |
US8482885B2 (en) * | 2009-09-14 | 2013-07-09 | Electronic Systems Protection, Inc. | Hybrid switch circuit |
WO2016105505A1 (en) | 2014-12-23 | 2016-06-30 | Revive Electronics, LLC | Apparatuses and methods for controlling power to electronic devices |
US20170179946A1 (en) * | 2015-12-22 | 2017-06-22 | Rolls-Royce Plc | Solid state power control |
CA3022065A1 (en) * | 2016-05-07 | 2017-11-16 | Intelesol, Llc | Solid-state line disturbance circuit interrupter |
WO2020014161A1 (en) | 2018-07-07 | 2020-01-16 | Intelesol, Llc | Solid state power interrupter |
Non-Patent Citations (1)
Title |
---|
See also references of EP3857662A4 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11581725B2 (en) | 2018-07-07 | 2023-02-14 | Intelesol, Llc | Solid-state power interrupters |
US11056981B2 (en) | 2018-07-07 | 2021-07-06 | Intelesol, Llc | Method and apparatus for signal extraction with sample and hold and release |
US11764565B2 (en) | 2018-07-07 | 2023-09-19 | Intelesol, Llc | Solid-state power interrupters |
US11671029B2 (en) | 2018-07-07 | 2023-06-06 | Intelesol, Llc | AC to DC converters |
US11197153B2 (en) | 2018-09-27 | 2021-12-07 | Amber Solutions, Inc. | Privacy control and enhancements for distributed networks |
US11205011B2 (en) | 2018-09-27 | 2021-12-21 | Amber Solutions, Inc. | Privacy and the management of permissions |
US11334388B2 (en) | 2018-09-27 | 2022-05-17 | Amber Solutions, Inc. | Infrastructure support to enhance resource-constrained device capabilities |
US10985548B2 (en) | 2018-10-01 | 2021-04-20 | Intelesol, Llc | Circuit interrupter with optical connection |
US11791616B2 (en) | 2018-10-01 | 2023-10-17 | Intelesol, Llc | Solid-state circuit interrupters |
US11349296B2 (en) | 2018-10-01 | 2022-05-31 | Intelesol, Llc | Solid-state circuit interrupters |
US11363690B2 (en) | 2018-12-17 | 2022-06-14 | Intelesol, Llc | AC-driven light-emitting diode systems |
US11064586B2 (en) | 2018-12-17 | 2021-07-13 | Intelesol, Llc | AC-driven light-emitting diode systems |
US10834792B2 (en) | 2018-12-17 | 2020-11-10 | Intelesol, Llc | AC-driven light-emitting diode systems |
US11551899B2 (en) | 2019-05-18 | 2023-01-10 | Amber Semiconductor, Inc. | Intelligent circuit breakers with solid-state bidirectional switches |
US11348752B2 (en) | 2019-05-18 | 2022-05-31 | Amber Solutions, Inc. | Intelligent circuit breakers with air-gap and solid-state switches |
US11342151B2 (en) | 2019-05-18 | 2022-05-24 | Amber Solutions, Inc. | Intelligent circuit breakers with visual indicators to provide operational status |
US11682891B2 (en) | 2019-05-18 | 2023-06-20 | Amber Semiconductor, Inc. | Intelligent circuit breakers with internal short circuit control system |
US11170964B2 (en) | 2019-05-18 | 2021-11-09 | Amber Solutions, Inc. | Intelligent circuit breakers with detection circuitry configured to detect fault conditions |
US11373831B2 (en) | 2019-05-18 | 2022-06-28 | Amber Solutions, Inc. | Intelligent circuit breakers |
US12015261B2 (en) | 2019-05-18 | 2024-06-18 | Amber Semiconductor, Inc. | Intelligent circuit breakers with solid-state bidirectional switches |
US11349297B2 (en) | 2020-01-21 | 2022-05-31 | Amber Solutions, Inc. | Intelligent circuit interruption |
US11670946B2 (en) | 2020-08-11 | 2023-06-06 | Amber Semiconductor, Inc. | Intelligent energy source monitoring and selection control system |
US12095275B2 (en) | 2020-08-11 | 2024-09-17 | Amber Semiconductor, Inc. | Intelligent energy source monitoring and selection control system |
US12113525B2 (en) | 2021-09-30 | 2024-10-08 | Amber Semiconductor, Inc. | Intelligent electrical switches |
Also Published As
Publication number | Publication date |
---|---|
EP3857662A1 (en) | 2021-08-04 |
JP7519363B2 (en) | 2024-07-19 |
CN113454864A (en) | 2021-09-28 |
EP3857662A4 (en) | 2022-08-24 |
CA3115120A1 (en) | 2020-04-09 |
US20200106259A1 (en) | 2020-04-02 |
JP2022508611A (en) | 2022-01-19 |
US10985548B2 (en) | 2021-04-20 |
KR20210064372A (en) | 2021-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11791616B2 (en) | Solid-state circuit interrupters | |
JP7519363B2 (en) | Solid State Circuit Breakers | |
US12015261B2 (en) | Intelligent circuit breakers with solid-state bidirectional switches | |
JP7554272B2 (en) | Intelligent Circuit Breaker | |
US11764565B2 (en) | Solid-state power interrupters | |
EP3039701B1 (en) | Circuit breaker with hybrid switch | |
WO2021112870A1 (en) | Solid-state ground-fault circuit interrupter | |
GB2520529A (en) | Circuit breaker with hybrid switch | |
Solangi et al. | Selective coordination of GaN-based solid state circuit breakers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19869963 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3115120 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2021543973 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217013156 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019869963 Country of ref document: EP Effective date: 20210503 |